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Περίληψη

Σκοπός της παρούσας διπλωματικής εργασίας είναι η μελέτη των τεχνικών
κωδικοποίησης διαύλου που χρησιμοποιούνται στις ψηφιακές επικοινωνίες και
των υλοποιήσεών τους. Εξαιτίας του θορύβου στον οποίο είναι εκτεθειμένες
οι επικοινωνίες, και ο οποίος μπορεί να εισάγει σφάλματα στα μηνύματα που
μεταδίδονται από τον πομπό στο δέκτη, οι τεχνικές αυτές περιλαμβάνουν τρόπους
ανίχνευσης και διόρθωσης σφαλμάτων που επιτρέπουν την ανακατασκευή των
αρχικών δεδομένων.

Οι κώδικες LDPC (Low-Density Parity-Che) συμπεριλαμβάνονται στους
πιο δυνατούς γραμμικούς κώδικες διόρθωσης σφαλμάτων, καθώς επιτρέπουν
επιδόσεις κοντά στο όριο της χωρητικότητας του καναλιού. Για το λόγο αυτό
είναι πολύ διαδεδομένοι και αρκετά καινούρια πρότυπα ψηφιακών επικοινωνιών
βασίζονται σε αυτούς, όπως το πρόσφατο πρωτόκολλο DVB-S2 για τις δορυφορι-
κές μεταδόσεις της ψηφιακής τηλεόρασης.

Η αποκωδικοποίηση των κωδίκων LDPC είναι μια επαναληπτική διαδικασία
που χρησιμοποιεί τον αλγόριθμο belief-propagation, ο οποίος είναι μια τεχνική
μετάδοσης μηνυμάτων πραγματικών τιμών ανάμεσα στις ακμές ενός γράφου του
κώδικα. Eπειδή υλοποιήσεις υψηλής πολυπλοκότητας και λειτουργία υψηλής
κατανάλωσης αντίκεινται στους αποκωδικοποιητές υψηλής ταχύτητας, προτεί-
νονται επιπλέον μερικές απλοποιήσεις και βελτιστοποιήσεις.

Τέσσερις διαφορετικές τεχνικές δοκιμάστηκαν για την επίδοσή τους σε κα-
νάλια θορύβου έπειτα από την προσομοίωσή τους με μηνύματα διαμορφωμένα
κατά Binary Phase-shi keying (BPSK) και μεταδιδόμενα μέσω καναλιών λευκού
αθροιστικού θορύβου (AWGN), Rician και Rayleigh fading.

Στο τελευταίο στάδιο, η τεχνική με την καλύτερη αναλογία επίδοσης προς
πολυπλοκότητα επιλέχθηκε για την υλοποίηση ενός LDPC πομποδέκτη σε ένα
FPGA της οικογένειας Spartan-3E της Xilinx. Το τελικό σχέδιο αναλύεται λε-
πτομερώς, περιγράφοντας τα συστατικά του και τη λειτουργία τους, ενώ στο
τέλος σχολιάζεται το ποσοστό χρησιμοποίησης του υλικού της πλατφόρμας που
απαιτείται.

Λέξεις κλειδιά: ψηφιακές επικοινωνίες, κωδικοποίηση διαύλου, πομποδέκτης,
κωδικοποιητής, αποκωδικοποιητής, blo codes, ανίχνευση σφαλμάτων, διόρθωση
σφαλμάτων, fading annels, low-density parity-e codes, belief propagation,
επαναληπτική αποκωδικοποίηση, πρώιμος τερματισμός, VHDL, FPGA





Abstract

e purpose of this diploma thesis is the study of the digital communications
annel code decoding semes and their hardware implementations. Since many
communication annels are subject to annel noise, and thus errors may be
introduced during transmission from the source to the receiver, these semes include
error detection and correction teniques whi enable reconstruction of the original
data.

e Low-Density Parity-Che (LDPC) codes are among themost powerful linear
error correcting codes, since they enable performance near the limits of the annel
capacity. As a result, they have received a lot of aention and several new digital
communication standards have adopted them, su as the recent DVB-S2 standard
for the satellite transmission of digital television.

e decoding of LDPC codes is an iterative process whi uses the belief-
propagation algorithm, a message passing tenique whi defines real-valued mes-
sages passing along edges in a code graph. Since high complexity implementations
and high power operation are inappropriate for high-speed LDPC decoders, several
proposals for optimization and simplifications are also described.

Four different decoding teniques have been tried and tested for their perfor-
mance under noisy annel by computer-based simulations of messages modulated
under the Binary Phase-shi keying (BPSK) modulation seme and transmied
through Additive White Gaussian Noise (AWGN), Rician and Rayleigh fading
annel models.

Finally, the algorithm with the best ratio of performance versus complexity is
osen as the decoding seme of an LDPC transceiver implemented on a FPGA
platform of the Xilinx Spartan-3E family. e design is analyzed in detail, describing
its components and their operation and, ultimately, the device utilization required.

Keywords: digital communication, annel coding, transceiver, encoder, decoder,
blo codes, error detection, error correction, fading annels, low-density parity-
e codes, belief propagation, iterative decoding, early termination, VHDL, FPGA
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Chapter 1

Introduction

Overview:

e first apter outlines the field of interest of this thesis by introducing
the main keywords and notations whi are used in the text. First,
the concept of telecommunication systems is presented, followed by the
piece of information they transfer and exange, signals. Aerwards,
the definition of the transceivers is presented, succeeded by one of the
available error correcting codes they use, the Low-Density Parity-Che
coding seme. Finally, the integrated circuits whi will be used to
implement this application, the Field-Programmable Gate Arrays, are
also discussed.

1.1 Telecommunication systems

In today’s modern society, the term communication enters people’s lifestyle in
many different and various ways, making it difficult to observe the diversity of its
forms. Whether at job or at leisure, people come across various modern means of
telecommunication and digital communication systems, su as the radio, telephone,
television and the Internet. Aided by these means and systems of communication,
people are able to instantaneously contact others, however far they maybe, stay
informed about whatever happens everywhere, commit everyday transactions and,
of course, entertain. It has nowadays become impossible to imagine a world without
these means, even though most of them were only invented during the previous
century.

e piece of information exanged by the communication systems also varies,
as its form can be visual, audio, text, or a mixture of them. However, regardless
the kind of information, it can generally be considered as, simply, a signal. e
telecommunication systems viewpoint adopted in this text will focus on the aributes
and various possible manipulations of the electrical signals that aracterize these
systems.

1



2 Chapter 1. Introduction

1.2 Signals

In the fields of communications, in signal processing and generally in electrical
engineering, a signal is any time-varying or spatial-varying quantity that carries
a certain amount of information. In the physical world, any quantity measurable
through time or over space is actually a signal, supposed that it contains some piece
of useful or usable information (otherwise it is considered as noise). Signals used
in telecommunication systems are usually time-variable, therefore their independent
variable is usually time.

Communication signals (taken to be a function of time) are usually easier to
handle when represented over frequency. Information represented in the time
domain describes when something occurs and what the amplitude of the occurrence
is. In contrast, information represented in the frequency domain is more indirect; by
measuring the frequency, phase, and amplitude of a signal showing periodic motion,
information can oen be obtained about the system producing the motion. e
representation over time or frequency can be aieved by means of signal processing,
whi is the area of applied mathematics that deals with analyzing signals, in either
discrete or continuous time in order to perform useful operations on them.

e complete range of frequencies of a system or signal, from the lowest to the
highest, is its frequency spectrum. Specifically, signals and systems whose range
of frequencies is measured from zero to a maximum bandwidth (or highest signal
frequency) are described as baseband.

1.3 Transceivers

Mainly used in wireless communications, a transceiver is a combined transmit-
ter/receiver in a single paage. It is, therefore, a device capable of both transmiing
and receiving analog or digital signals, and this ability is extensively used in cellular
telephones or two-way radios for instance. If the transmit and receive functions
do not share common circuitry or a single housing, the device is referred to as
a transmier-receiver instead. Physical layer (PHY ) transceivers are commonly
used for sending and receiving network signals over various types of annels,
like telephone lines, optic fiber, or the air. When the receiver is silenced while
transmiing, the transceiver is in half-duplex mode; on the contrary, when allowing
reception of signals during transmission periods, the transceiver is in full-duplex
mode.

Transceivers are able to perform consistency eing in the baground while
operating. Use of an optimal error correcting code allows data transmission at rates
near the annel capacity with arbitrarily low probability of error.
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1.4 Low-Density Parity-Che (LDPC) codes

In information theory, Low-Density Parity-Che codes are a sub-class of linear
error correcting coding semes, whi are methods of transmiing messages over
noisy transmission annels. LDPC codes can be described as the null space of
a sparse {0, 1}-valued parity-e matrix as well as by a bipartite graph, Tanner
graph, whi represents the rows and columns of the parity-e matrix.

LDPC codes, originally developed in 1963 by Robert Gallager but long time
ignored due to impractical implementation, have now become more popular in
modern communication systems with advanced VLSI tenology. Several new
digital communication standards have adopted LDPC codes due to the excellent error
correction performance they feature, their inherently-parallel decoding algorithm
and freedom from patent protection. us, LDPC decoders appear to be the best
solution for future communication applications that demand performance near the
limits of the annel capacity by transmiing close to the theoretical limit (Shannon
limit).

1.5 Field-Programmable Gate Arrays (FPGAs)

It has been a recent trend to implement modern communication applications,
su as digital signal processing, radio, aerospace and defense systems, on integrated
circuits designed to be configured by the customer or designer aer manufacturing
(hence field-programmable gate arrays – FPGAs). ough FPGAs can be used to
implement any logical function, they especially find applications in any area or
algorithm that can make use of the massive parallelism offered by their aritecture.

FPGAs consist of an array of programmable logic components, called logic blos,
and a hierary of reconfigurable interconnects (routing annels) that allow the
blos to be wired together. Most FPGAs include memory elements, whi may be
simple flip-flops or more complete blos of memory.

e behavior of the FPGA is defined by a sematic design or a hardware
description language (HDL), the most common being VHDL and Verilog. en, using
an electronic design automation tool, a tenology-mapped netlist is generated that
can be fied to the actual FPGA aritecture, finally (re)configuring the FPGA to a
specific application.

e Spartan-3E family, whi will be used to implement a transceiver as part of
this thesis, is a high-performance FPGA family fabricated by Xilinx. Ea platform
offers a variety of features to address the needs of a wide variety of advanced logic
designs.

1.6 Motivation and objectives

Traditionally, the study of the digital communication systems has been increas-
ingly aractive, as a result of the ever-growing demand of data communication and
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the digital processing options and flexibilities whi are not available with analog
transmission. Since digital circuits are less subject to distortion and interference than
their analog counterparts, they have been used in almost all recent communication
applications and this trend does not seem to fade in the future.

Communication involves sending data over noisy annels, whi results in
introducing erroneous samples during transmission from the source to the receiver.
In order to overcome this and aieve reliable transmission, error detection and
correction teniques are utilized, whi enable reconstruction of the original data.
Su teniques are typically adopted in every communication seme nowadays;
therefore, resear is constantly focused on inventing increasingly beer performing
semes, with an ambition to ultimately approa the annel capacity (Shannon
limit).

e invention of LDPC codes has had a major impact on telecommunication
systems due to their ability to perform close to the Shanon limit by using an iterative
algorithm. For this reason, several new digital communication standards have
adopted them as the coding seme of their oice. In addition, the fact that several
resear groups have recently developed LDPC decoders running on FPGAs, has
made LDPC codes more popular in advanced communication systems, su asMobile
WiMAX, with advanced VLSI tenology.

e aim of this thesis is to review the concepts of digital communication, study
the effect of the decoding semes on the performance of the LDPC codes, compare
and contrast their strong and weak points under several annels, and finally
implement a generic LDPC transceiver whi utilizes the best performing decoding
tenique.

1.7 Document structure
In order to present the work provided in this thesis, the document is organized in

the following way:

Chapter 2 initially presents the classical communication seme and discusses the
optimal code decoding of transmied information. en, the decoding of
linear blo codes is also discussed and it is finally shown that optimal code
decoding is possible using an iterative algorithm.

Chapter 3 introduces the concept of LDPC codes, first by briefly reviewing their
history and then by defining their operation. Aerwards, the construction of
LDPC codes is described. eapter also discusses the encoding and decoding
of LDPC codes, focusing on their performance.

Chapter 4 investigates hardware aritectures for LDPC decoders amenable to low-
complexity implementation aswell as low-voltage and low-power operation. It
is shown that increased parallelism coupled with reduced supply voltage is an
effective tenique to reduce the power consumption of LDPC decoders, whi
have inherent parallelism. In addition, a seme to efficiently terminate the
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iterative decoding earlier, when convergence has been detected, is proposed
to further reduce the power consumption. Finally, the apter describes a
quantization seme, whi can be used to increase the memory efficiency
while decreasing the hardware complexity of the implementation, at the cost
of storing slightly inaccurate information.

Chapter 5 presents a performance analysis of four different LDPC codes decoding
teniques. It describes the operation of hard-decision (bit-flip), probability-
domain and log-domain decoders, along with a simplified version of the log-
domain decoding algorithm. In addition, it presents the results of a computer-
based simulation in order to describe the performance, in terms of bit error
rate, versus implementation cost trade-off imposed by ea tenique. e
decoders are simulated under Additive White Gaussian Noise (AWGN) and
fading annels and the results of the simulations offer graphic comparison
between them.

Chapter 6 presents the implementation of an LDPC transceiver on a Xilinx Spartan-
3E FPGA. e apter initially presents an overview of the whole design
and aerwards analyzes ea entity of it in detail. is is done firstly by
describing the operation of ea entity and the components used by them, then,
by presenting the operation stages of the encoding and decoding procedures
and finally, by verifying the correct operation of ea entity by run-time
simulations of the implemented design.

Chapter 7 offers an overall discussion over the work covered in this thesis, present-
ing the final remarks and future perspectives of the designed LDPC transceiver.

In addition, two appendices are included to present the source codes whi
have been used to simulate the different decoding teniques and implement the
transceiver on a FPGA.





Chapter 2

e communication model

Overview:

In this apter the classical communication seme is initially reviewed.
en the optimal code decoding is discussed, preceded by the theorems
whi affect its operation. Finally, the decoding of linear blo codes
is discussed and it is shown that, under the cycle-free hypothesis, the
optimal code decoding is possible using a simple iterative algorithm.

2.1 e classical communication seme
e basic seme for annel code encoding and decoding is depicted in Figure

2.1. e typical communication model consists of the source blo whi delivers
information, the encoder blo whi delivers a coded version of the originally sent
message, theannel over whi the message is transmied and, finally, the decoder
blo, whi in Figure 2.1 may be one of two possible types.

Information derived from the source blo is delivered by the mean of sequences
of row vectors x of lengthK . ese sequences pass through the encoder blo, thus
producing a codeword, whi is the coded version of x. e encoding process delivers
a codeword, a row vector c of length N , based on the encoding seme used in the
communication system. e code rate of the selected encoder is defined by the ratio:

R =
K

N
(2.1)

e codeword c is then sent over a, usually noisy, annel, whi is the medium
the message is transmied through. erefore, a new vector y is created, whi is

Source Encoder Channel

Decoder 1

Decoder 2

-
x

-
c y

-

-

-

-x̂

ĉ

Figure 2.1: Basic communication model
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then received by the decoder. Vector y is a distorted version of c, provided that
the annel is not ideal, so its length is also N elements. e annel is a non-
deterministic mapper between its input c and its output y. Wemake two assumptions:
first, that y depends on c via a conditional probability density function (PDF), p(y|c);

and second, that the annel is memoryless, therefore p(y|c) =
N∏

n=1

p(yn|cn).

Figure 2.1 depicts two possible types of decoder: type 1 decoders try to compute
the best estimation x̂ of the source word x, while type 2 decoders aim at computing
the best estimation ĉ of the sent codeword c derived from the encoder. e laer
type of decoders then post process ĉ, extracting x̂ by a reverse process of encoding,
when the code is non-systematic¹.

Both types of decoder can perform two methods of decoding: so decoding,
during whi the output samples yn of the annel are not decided, and hard
decoding, during whi the output samples yn are decided. So decoders use the
annel specifications to compute the probability for ea yn to be ea one of the
code-alphabet element denoted ydi ∈ AC : {Pr(yn = ydi), 0 ≤ i ≤ |C|}, and then
decide upon the value of this probability. e output of so decoders includes both
the decided word yd = (yd1 , . . . , ydN ), ydi ∈ AC , where AC denotes the alphabet
of the code symbols, and the probability of ea decided symbol Pr(yn = ydn).
On the other hand, hard decoders decide without using the knowledge of the
probability set, since ea of the output samples yn of the annel is associated with
the most probable code-alphabet element, followed by a processing performed on
yd = (yd1 , . . . , ydN ) trying to detect and correct the transmission errors.

2.2 Optimal code decoding

2.2.1 e Shannon–Hartley theorem

Optimalannel coding refers to establishing a communication link, transmiing
the maximum amount of error-free digital data (information) that can be transmied
with a specified bandwidth in the presence of the noise interference, under the
assumption that the signal power is bounded and the Gaussian noise process is
aracterized by a known power or power spectral density. e famous annel
coding theorem, as demonstrated by Claude E. Shannon and Ralph V. L. Hartley [1],
states that below a maximum rate R equal to the capacity C of the annel, it is
possible to find error correction codes to aieve any given probability of error:

Shannon theorem for annel coding. Let a discrete annel have the capacity C
and a discrete source the entropy per second H . If H ≤ C there exists a coding
system su that the output of the source can be transmied over the annel with an

¹In coding theory, a systematic code is one in whi the input data are embedded in the encoded
output, hence adding redundant information to data (e.g. transmiing data with a esum). On the
contrary, a non-systematic code is one in whi the output does not contain the input bits.
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arbitrarily small frequency of errors (or an arbitrarily small equivocation). IfH ≥ C
it is possible to encode the source so that the equivocation is less thanH .

When comparing different coding semes, their performance is measured by
their gap to the capacity. e Shannon capacity of the band-limited AWGN annel
is given by

C = B log2 (1 + SNR) [bit/s] (2.2)

where B refers to the annel bandwidth and SNR is the sound-to-noise ratio:

SNR =
PS

PN

(2.3)

where PS is the transmied signal power and PN the annel noise power. In
addition we have:

PN = N0B (2.4)

PS = RIEb (2.5)

where N0 is the one sided noise power spectrum density, Eb is the energy per
information bit and RI is the information rate, defined by:

RI =
R log2 M

Ts

[bit/s] (2.6)

where R is the code rate,M is the size of the constellation of the modulation, while
Ts is the symbol time duration.

Combining equations 2.4, 2.5 with 2.3 we have that:

SNR =
RIEb

BN0

= η

(
Eb

N0

)
(2.7)

where Eb/N0 is the normalized signal-to-noise ratio (SNR) measure (sometimes
called the “signal-to-noise ratio per information bit”), and η is the spectral efficiency,
defined as the ratio of information rate to annel bandwidth:

η =
RI

B
(2.8)

By definition, the maximal information rate is equal to the capacity, therefore we get
the following equations:

ηmax =
RImax

B
=

C

B
(2.9)

using the definition of η as shown in equation 2.8, whi, using equation 2.2, yields
to:

RImax = B log2

(
1 + ηmax

(
Eb

N0

))
(2.10)

thus giving:

ηmax = log2

(
1 + ηmax

(
Eb

N0

))
(2.11)
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finally giving the Shannon bound as:(
Eb

N0

)
min

=
2ηmax − 1

ηmax
(2.12)

or (
Eb

N0

)
≥ 2η − 1

η
(2.13)

Notice that the Shannon limit onEb/N0 is a monotonic function of η. For η = 2,
it is equal to 3/2 (1.76 dB), for η = 1, it is equal to 1 (0 dB) and as η → 0, it
approaes ln 2 ≈ 0.69 (−1.59 dB), whi is called the ultimate Shannon limit [2]
on Eb/N0.

Summing up, the Shannon theorem can be summarized as a conditional e
of the information rate’s relation to the annel capacity: reliable communications
require thatRI ≤ C whereasRI ≥ C leads to unreliability. e limit of reliable data
rate of a annel depends on bandwidth and signal-to-noise ratio (SNR) according
to equation 2.2, whi can be solved to get the Shannon-limit bound on Eb/N0 as in
equation 2.12.

2.2.2 e Nyquist-Shannon sampling theorem

According to the the Nyquist-Shannon sampling theorem [1], also known as the
Cardinaleorem of Interpolationeory, a real bandlimited analog signal whi has
a bandwidthB and has been sampled can be perfectly reconstructed from an infinite
sequence of samples if the sampling rate exceeds 2B samples per second without any
inter-symbol interference:

Nyquist sampling theorem. If a function x(t) contains no frequencies higher than
B hertz, it is completely determined by giving its ordinates at a series of points spaced
1/(2B) seconds apart.

e 2B samples are then independent and they are carried on 2B signal
dimensions [dim] per second.

2.2.3 Optimal word decoding

As mentioned previously, the decoder tries to find the codeword ĉ whi is the
most probable to have been sent over the annel, based on the annel output y and
on the knowledge of the code:

ĉ = argmax
c′∈C

Pr (c = c′|y) (2.14)



2.3. Linear blo codes decoding 11

is is thewordmaximum a posteriori² (W-MAP) decoder. If the a priori probabilities
Pr (c) are identical, therefore the source is equally probable, this can be expressed as:

ĉ = argmax
c′∈C

Pr (y|c = c′) (2.15)

is is named word maximum likelihood (W-ML) decoding. e W-MAP and W-ML
decoders are two equivalent and optimal decoders if the source is equally probable.

e only way to aieve an optimal W-MAP decoder is by testing ea codeword
(2k for a binary source).

2.2.4 Optimal symbol decoding

Similarly to above, but if the symbol (or bit) error rate is concerned, the bit
maximum a posteriori (B-MAP) decoder and the bit maximum likelihood (B-ML)
decoders give an estimation of the codeword symbols cn:

ĉn = argmax
c′∈AC

Pr (cn = c′|y) (2.16)

ĉn = argmax
c′∈AC

Pr (y|cn = c′) (2.17)

2.3 Linear blo codes decoding

2.3.1 Binary blo codes

Let u be a k-bit information sequence and v be the corresponding n-bit codeword.
en, a total of 2k n-bit codewords constitute a (n, k) code. A linear code of length
n and rank k is a linear subspace C with dimension k of the vector space Fn

q , where
Fq is the finite field (or Galois field)³ with q elements. Su a code with parameter q
is called a q-ary code, e.g., when q = 5, the code is a 5-ary code. If q = 2 the code is
described as a binary code, while if q = 3 it is called a ternary code.

e code C can be defined by the list of all the codewords as:

C =
{
c(i), i ∈

{
0, . . . , 2k − 1

}}
(2.18)

is representation is, of course, unique. For example, a (6, 3) code is C =
{000000, 100110, 010101, 001011, 110011, 101101, 011110, 111000}.

Alternatively, the code can also be defined by a vector base BC of k independent
codewords as

{
c(i), i ∈ {0, . . . , k − 1}

}
, whi is not unique. e vector base BC ,

however, has some useful equivalent representations:

²According to Bayes’ rule, the posterior probabilities Pr (c = c′|y) are expressed by:

Pr (c|y) = p (y|c) Pr (c)
p (y)

=
p (y|c) Pr (c)∑
c∈C p (y|c) Pr (c)

³In abstract algebra, a finite field is a field that contains only finitely many elements. It is also
named Galois field in honor of Évariste Galois [3].



12 Chapter 2. e communication model

Generator matrix: If we arrange the k codewords into a k × n matrix G, whose
rows are the vectors of the base BC , G is called a generator matrix for for C:
let u = (u0, u1, . . . , uk−1), where ui ∈ Fq. en C = (c0, c1, . . . , cn−1) = uG.
e rows of G are linearly independent, since G is assumed to have rank k.

Parity-e matrix: A (n, k) linear code can also be specified by a (n− k) × n
matrix H with elements in Fq as C =

{
c(i)/c(i) ·HT = 0

}
. H is called a

parity-e matrix: ea row ofH is a parity-e equation on some bits of
the codeword. Note that for any given matrix G, many solutions for H are
possible.

Tanner graph: Code C with parity matrix H can also be described by a bipartite
graph⁴, or Tanner graph [4], with vertex set V = V1 ∪ V2, whi has one
vertex in V1 for ea row ofH and one vertex in V2 for ea column ofH , and
there is an edge between two vertices i and j exactly when hij 6= 0. erefore,
the elements of V1 are the variable nodes, denoted by vnm, and the elements of
V2 are the e nodes, denoted by cnm. Ea variable node vnm is associated
with one code symbol cn and ea e node cnm is associated with the m-
th parity-e constraint (row) of H . e Tanner graph representation of
error correcting codes is useful in explaining their decoding algorithms by the
exange of information along the edges of these graphs.

Figure 2.2 displays an example of the different ways of describing a (6, 3) linear
code in F2.

Short cycles of Tanner graphs have negative impact on decoding. Cycles
necessarily have even length, however length 2 is not possible. e requirement that
a Tanner graph should not have short cycles is an intricate part in the construction of
efficient LDPC codes. Note that, however, the degrading effect of short-length cycles
diminishes as the code length increases and is strongly reduced with length greater
than 1.000 bits.

2.3.2 Decoding of binary blo codes

Using equation 2.16 for binary blo codes, so that the symbols will equivalently
be named bits, we get that:

ĉn =

{
0, if Pr (cn = 0|y) > Pr (cn = 1|y)
1, if Pr (cn = 0|y) < Pr (cn = 1|y)

(2.19)

e decoder receives the word y = (y1, . . . , yN) whi can be split into two sets, yn
and yn′ 6=n. en, as cn, yn are independent of yn′ 6=n, the above probabilities can be

⁴In the mathematical field of graph theory, a bipartite graph, or bigraph, is a graph whose vertices
can be divided into two disjoint sets su that every edge connects a vertex in the first set to one in
the second. Su graph, equivalently, does not contain any odd-length cycles.
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(a)

C = {000000, 011001, 110010, 101011,
111100, 100101, 001110, 010111}

(b)

G =

 1 0 0 1 0 1
0 1 0 1 1 1
0 0 1 1 1 0


(c)

H =

 1 1 1 1 0 0
0 1 1 0 1 0
1 1 0 0 0 1


(d)

.

.vn1 .vn2 .vn3 .vn4 .vn5 .vn6

.cn1 .cn2 .cn3

Figure 2.2: Example of a (6, 3) linear code in F2: (a) the code C can be defined by
the list of all the codewords; (b) generator matrix G can be obtained as G = [Ik|P ],
where Ik is the k × k identity matrix and P is a k × (n− k) matrix; (c) the parity-
ematrixH can be put into the form

[
−P T |In−k

]
(noting that in this special case

of being a binary code P = −P ); (d) the Tanner graph can be designed based on the
parity e H .
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expressed as:

Pr (cn|y) = Pr (cn|yn, yn′ 6=n)

=
p (cn, yn, yn′ 6=n)

p (yn, yn′ 6=n)

=
p (yn|cn, yn′ 6=n) p (cn|yn′ 6=n)

p (yn|yn′ 6=n) p (yn′ 6=n)

=
p (yn|cn) Pr (cn|yn′ 6=n)

p (yn|yn′ 6=n)
(2.20)

In addition, from equation 2.19 derives that:

ĉn = 0⇒ Pr (cn = 0|y)
Pr (cn = 1|y)

> 1⇒ log
Pr (cn = 0|y)
Pr (cn = 1|y)

> 0 (2.21)

ĉn = 1⇒ Pr (cn = 0|y)
Pr (cn = 1|y)

< 1⇒ log
Pr (cn = 0|y)
Pr (cn = 1|y)

< 0 (2.22)

Using the above formulas it is obvious that an equivalent way to decide for optimal
bit error rate (BER) for binary blo codes is to calculate the sign of:

log
Pr (cn = 0|y)
Pr (cn = 1|y)

(2.23)

whi, using equation 2.20 gives:

log
Pr (cn = 0|y)
Pr (cn = 1|y)︸ ︷︷ ︸

Tn

= log
p (yn|cn = 0)

p (yn|cn = 1)︸ ︷︷ ︸
In

+ log
Pr (cn = 0|yn′ 6=n)

Pr (cn = 1|yn′ 6=n)︸ ︷︷ ︸
En

(2.24)

where:

• Tn is the overall information of the bit n, and it is related to the two a posteriori
probabilities on the bit n. e sign of Tn enables estimation of cn and the
magnitude of Tn, |Tn|, is the reliability of the decision.

• In is the intrinsic information of the bit n, and it is related to the received
symbol yn and to the annel parameters cn.

• En is the extrinsic information of the bit n. It shows the improvement
of information gained when the coded symbols respect the parity-e
constraints. However, this improvement does not necessarily mean an increase
of the reliability expressed by |Tn|.
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Figure 2.3: An example of a cycle free bipartite graph of a code C

2.3.3 Belief propagation

Optimal decoding of error correcting codes is feasible using a simple iterative
message passing algorithm called belief propagation⁵. An important hypothesis
related to the Tanner graph representation is required, however, whi is known
as the cycle-free graph hypothesis:

Cycle-free graph hypothesis. e bipartite graph (or Tanner graph) of the code C
is cycle-free. A graph is cycle-free if it contains no path whi begins and ends at
the same bit node without going bawards. When the graph is not cycle-free, the
minimum cycle length is called the girth of the graph.

is hypothesis ensures that the bipartite graph of the code has a tree represen-
tation, so that ea variable node vn and ea e code cn appear exactly once in
the tree. Figure 2.3 shows an example of a cycle free bipartite graph of a code C.

Let Tn,m be the information whi is sent by a variable node vnn to its connected
e node cnm. en:

Tn,m = Tn − En,m (2.25)

whereEn,m is the information given by ea of the parity-e constraints on the bit
cn. e partial results Tn,m and En,m are called messages, since they are transmied
from nodes to nodes.

In the example of Figure 2.3 the total information T1 of the bit (variable) node vn1

is calculated in 4 steps, as many as the depth between the leaves of the tree and the

⁵e belief propagation algorithm was first proposed by Judea Pearl in 1982 [5].
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.T1 = I1 + E1,1 + E1,2

.E1,1 = f (T2,1, T3,1)

.T3,1 = I3 + E3,5 + E3,6

.E3,6 = f (T12,6, T13,6)

.T12,6 = I12 .T13,6 = I13

.E1,1

−−→
.E
1,2←−−

.T 2,
1

−→
.T
3,1←−

.E 3,
5

−−→
.E

3,6

←−−

.T 1
2,
6

−−
→

.T
13,6

←−−

.−−→
.←−−

. −−→

.←−−

. −−→

.←−−

Figure 2.4: e operations of the graph of Figure 2.3 for calculating T1

variable node in consideration. During the calculation process, some partial results
from previous calculations are reused, while the others are not replaced by different
results, but by messages in the opposite way. erefore, the calculation of all Tn can
be processed in parallel as the cycle free hypothesis lets them be all independent.

Figure 2.4 shows the operations of the graph of Figure 2.3 for calculating T1 and
Figure 2.5 for T3.

During calculation, the general behavior of ea node is to process all the
messages all the time: when one or more incoming messages on the variable node
vnn (respectively e node cnm) has anged, the variable node (resp. e
node) processes all the possible outgoing messages, in a process called e (resp.
variable) node update. However, the nodes do not have to process conditionally to
the processing of other nodes, leing them behave like independent processors.

e process is repeated until the total information Tn of ea bit is computed.
Notice that ea node performs a repetition of an iteration, while ea processor
performs an iteration. e seduling of the different processors does not affect the
convergence of the algorithm.

Low-density parity-e (LDPC) codes are a class of blo codes whi can be
decoded with the belief propagation algorithm, as described in the next apter.
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Figure 2.5: e operations of the graph of Figure 2.3 for calculating T3





Chapter 3

Low-Density Parity-Che (LDPC)
codes

Overview:

e third apter introduces the LDPC codes, first by briefly reviewing
their history and followed by defining their function. en, the two
possible ways of constructing LDPC codes are described and aerwards
different ways of encoding of LDPC codes are proposed. e apter is
concluded by describing different ways of iterative decoding of LDPC
codes and illustrating their performance.

3.1 History

In 1962, Robert G. Gallager [6] developed an iterative decoding algorithm whi
he applied to a new class of codes. Gallager named these codes Low-Density Parity-
Che (LDPC) codes¹, because the parity-e matrices they used had to be sparse
in order to perform well. Since then, however, LDPC codes had been ignored
because they were impractical to implement at the time, requiring unavailable high
complexity computation.

Another class of capacity-approaing codes were discovered by C. Berrou et al.
in 1993. ese turbo codes had remarkable performance, making them the coding
seme of oice of the time, used for applications su as deep space satellite
communications, whi also raised the interest toward iterative teniques.

LDPC codes were discovered again aer a long time in 1995 when D. J. MacKay
and R. M. Neal set up a link between the iterative algorithm used in LDPC codes to
Pearl’s algorithm (Pearl 1988) from the artificial intelligence community (bayesian
networks). e articles of MacKay and Neal have been the ki off of great work in
the field of LDPC codes.

In 1996, M. Sipser andD. A. Spielman used the first decoding algorithm (algorithm
A) of R. G. Gallager to decode expander codes. In 1998, McEliece et al. showed that

¹LDPC codes are also known as Gallager codes in honor of R. G. Gallager who developed this
coding seme in his doctoral dissertation at MIT.
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turbo decoding of turbo codes is an instance of Pearl’s belief propagation algorithm.
Meanwhile, graph representation has gradually become a standard representation

of error correcting codes. Using the work of Tanner (Tanner 1981) and N. Wiberg et
al. (Wiberg 1996), F. R. Ksisang in 1998 denoted by factor graphs a class of graphs
associated with the sum-product algorithm, whi aim at describing many different
algorithms by the same formalism.

Mainly inspired by two major revolutions in the annel coding community, the
graph-based code-description and the iterative decoding teniques, LDPC codes
have recently been developed past turbo codes, and have now been adopted for
several new digital communication standards due to their excellent error correction
performance, freedom from patent protection and inherently parallel decoding
algorithm. Su examples include the recent DVB-S2 standard for the satellite
transmission of digital television and 10GBase-T Ethernet, whi sends data at 10
gigabits per second over twisted-pair cable [7–9].

3.2 Description of LDPC codes

3.2.1 Definition

Gallager defined a (N, j, k) LDPC code as a blo code of length N having a
small fixed number j of ones in ea column of the parity-e matrix H and a
small fixed number k of ones in ea row of H .

is class of codes is to be decoded by the iterative algorithm described in Chapter
2. As shown, the algorithm computes exact a posteriori probabilities, under the
hypothesis that the Tanner graph of the code is cycle-free. However, LDPC codes
generally do have cycles, and for this reason the sparseness of the parity-ematrix
aims at reducing the number of cycles and at increasing the size of the cycles. In
addition, as the length N of the code increases, the cycle-free hypothesis becomes
more realistic. e iterative algorithm performs quite well on these graphs, although
not optimally.

3.2.2 Classes of LDPC codes

A code is called regular if every column and every row of its parity-ematrix
has a fixed number of ones, j and k respectively. ismeans that ea bit is implied in
j parity-e constraints and ea parity-e constraint is the exclusive-or (XOR)
of k bits. Gallager’s original LDPC code design was a regular LDPC code.

On the contrary, codes whose parity-e matrix does not have a constant
number of non-zero entries in their rows or in their columns are called irregular.
Codes of this type are specified by a the distribution degree of the bit λ (x) and of
the parity constraints ρ (x):

λ (x) =
dv∑
i=2

λix
i−1 (3.1)
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Notation Description
Lq LDPC code in Fq (e.g. L2 are binary LDPC codes)

Lq (M,N) LDPC code in Fq of length N and rate 1−M/N
Lq (N, λ, ρ) LDPC code in Fq of length N and degree distribution defined by

λ (x) and ρ (x)
Lq (N, j, k) regular LDPC code in Fq of length N with λ (x) = xj−1 and

ρ (x) = xk−1

Table 3.1: Different classes of LDPC codes

ρ (x) =
dc∑
i=2

ρix
i−1 (3.2)

where λi denotes the proportion of non-zero entries of the parity-e matrix H
whi belongs to the columns ofH of weight i. Similarly, ρi denotes the proportion
of non-zero entries of H whi belongs to the rows of H of weight i. By definition
it is λ (1) = ρ (1) = 1.

Table 3.1 lists some classes of the LDPC codes. Gallager’s original LDPC code
used in [6] is a regular (N = 20, j = 3, k = 4) LDPC code, whi is in the class
L2 (20, 3, 4) = L2 (20, x

2, x3).

3.2.3 Code rate

e code rate R of LDPC codes is defined by R ≥ Rd
4
= 1− M

N
where Rd is the

design code rate. It isR = Rd if the parity-ematrix has full rank. It is also shown
that as N increases the parity-e matrix is almost sure to be full rank (Miller and
Cohen 2003), therefore in this text it will be assumed that R = Rd unless otherwise
mentioned.

e rate R is linked to the other parameters of the class by:

R = 1−
∑

i ρi/i∑
i λi/i

= 1− j

k
(3.3)

and in general, depending on j it is:

R = 1− M

N
(3.4)

when j is odd and

R = 1− M − 1

N
(3.5)

when j is even.
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3.3 Construction of LDPC codes

3.3.1 Random based construction

Construction of LDPC codes implies construction of a particular parity-e
matrixH , whose design must meet the asymptotical constraints (e.g. the parameters
of the code’s class, the degree distribution or the rate) with the practical constraints
(e.g. finite dimension, size of girths). During the design process there is a compromise
that must be taken into consideration though: increasing the girth, the sparseness of
H has to be decreased, effectively reducing the code performance due to low mini-
mum distance. On the other hand, maximizing minimum distance requires that the
sparseness be increased, consequently creating low-length girth, as the dimensions of
H are finite, and thus reducing the convergence of the belief propagation algorithm.

One of the two possible teniques for constructing LDPC codes, and in fact the
first ronologically, is the random based one. e constructions of Gallager in 1962
as well as MacKay and Neal in 1995 were random.

For the random based construction, the parity-e matrix is the concatenation
and/or superposition of sub-matrices, whi are created by processing some permuta-
tions on a particular sub-matrix. is sub-matrix may be random or not and usually
has a column weight of 1.

e advantage of random constructions is that they do not have many constraints
apart from the girth’s value and they can fit quite well to the parameters of any given
class. However, they do not guarantee that the girth will be small enough, so either
post-processing or additional constraints are added, increasing the complexity of the
design.

3.3.2 Deterministic based construction

e second construction tenique, deterministic constructions, have been de-
veloped to deal with the girth problem, but their explicit design can lead to easier
encoding and easier hardware implementation as well. ere are two branes in
combinatorial mathematics that are involved in su designs: finite geometry and
Balanced Incomplete Blo Designs (BIBDs), whi seem to be more efficient than
previous algebraic constructions based on expander graphs.

However, deterministic constructions la the variety of combinations of param-
eters the random ones offer. erefore, it may be hard to find a combination that fits
the specifications of a given system.

3.4 Encoding

3.4.1 Lower-triangle shape based encoding

e encoding process of LDPC codes is actually their weak point, due to the fact
that a sparse parity-ematrix does not necessarily have a sparse generator matrix,
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Figure 3.1: Shape of parity-e matrix for efficient encoding as proposed by
(MacKay, Wilson and Davey 1999)

and in fact, it appears to be particularly dense.
One possible encoding seme is to create a parity-e matrix with an almost

lower-triangular shape as depicted in Figure 3.1. is was the approa of (MacKay,
Wilson and Davey 1999). e lower-triangular constraint affects the performance of
the encoding: instead of computing the product c = uGt, the equation H · ct = 0 is
solved, where c is the unknown variable.

e encoding is systematic:

{c1, . . . , cN−M} = {u1, . . . , uN−M} (3.6)

e nextM1 ci are recursively computed by using the lower-triangular shape of
the parity-e matrix as:

ci = −pci × (c1, . . . , ci−1)
t , for i ∈ {N −M + 1, . . . , N −M +M1} (3.7)

e last M − M1 ci, i ∈ {N −M +M1, . . . , N} have to be solved without
reduced complexity, thus the higherM1 is, the less complex the encoding will be.

Another approa was proposed by T. Riardson and R. Urbanke (Riardson
and Urbanke 2001), whi is depicted in Figure 3.2. e authors also propose
some greedy algorithms whi transform any given parity-e matrix H into
an equivalent H ′ using columns and permutations, minimizing g depicted on the
picture, so that H ′ will still be sparse. en, complexity of the encoding will be
O (N + g2), where g is a small fraction of N .

3.4.2 Low-density generator matrices

As mentioned before, one of the problems of LDPC codes is that their generator
matrices are usually not sparse, because of the inversion. An approa by (Oenning
and Moon 2001) is to construct H both sparse and systematic, and then:

H = (P, IM) and G =
(
IN−M , P t

)
(3.8)

where G is a sparse generator matrix (LDGM).
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Figure 3.2: Proposal for efficient encoding of a parity-e matrix by (Riardson
and Urbanke 2001)

3.4.3 Cyclic parity-e matrices

Cyclic or pseudo-cyclic codes are the most popular codes that can be easily
encoded. A Gallager-like construction using cyclic shis is proposed in (Okamura
2003), whi enables having a cyclic-based encoder. LDPC codes constructed by
finite geometry or BIBDs are also cyclic or pseudo-cyclic (Kou, Lin and Fossorier
2001; Ammar et al. 2002; Vasic 2002).

3.4.4 Iterative encoding

A class of parity-e codes whi can be iteratively encoded using the same
graph-based algorithm as the decoder was proposed in (Haley, Grant and Buetefuer
2002). However, the codes do not seem to perform as well for irregular cases as the
random ones.

3.5 Decoding

3.5.1 Seduling

Decoding of LDPC codes is processed by applying the optimal iterative decoding
algorithm described in Chapter 2. If the graph of the code has cycles (the cycle-
free hypothesis does not apply) then the optimality is lost. In su cases, the good
performance aieved yields to use it as a good approximation. is algorithm is
called the belief propagation (BP) algorithm.

e BP algorithm is seduled, whimeans that the messages of the graph of the
code are propagated in certain order. If the graph is cycle-free then the seduling
does not affect the convergence of the algorithm. Two sedules have been proposed
for implementation purpose (Ksisang and Frey 1998):
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Two way seduling: A serial oriented sedule, in whi only the relevant mes-
sages are processed and passed.

Flooding sedule: A parallel oriented sedule, in whi all the nodes of the same
type are processed and then the nodes of the other type are also all updated.
e update for the nodes of a type can be either serial (one node at a time) or
parallel without affecting the output messages.

For codes without cycle-free graph representations, the flooding sedule is used,
since the behavior of ea node processor is more simplified.

Mao and Banihashemi described a probabilistic sedule, with the idea of
avoiding the auto-confirmation messages induced by the cycles of the graph. eir
propagation would be avoided by sometimes not activating the node processors that
should be in the flooding sedule (Mao and Banihashemi 2001):

Probabilistic sedule: Let gn be the girth of the variable node vnn. Also, let gmax be
the maximum size of girths gn, n ∈ {1, . . . , N}. en, the smallest number of
iterations avoiding the auto-confirmation of information of the variable node
vnn on itself is

gn
2
, since one iteration is a data path of 2 edges long. erefore,

ea variable node vnn should be updated only as long as iteration i <
gn
2
, and

aerwards it is idled. When more than gmax
2

iterations have to be processed, the
variable nodes are all updated at iterations k gmax

2
, where k is an integer. en

the same activation rule applies on vnn by comparing i mod
(
gmax
2

)
to gn

2
.

Other seduling teniques have been proposed as well. e authors of (Zhang
and Fossorier 2002) proposed a shuffle BP algorithm whi converges faster than
the standard BP algorithm, by updating the information as soon as it has been
computed, so that the next node processor to be updated could use a more up-to-
date information. e authors of (Yeo, Nikolić and Anantharam 2001) proposed in
a serialized aritecture a staggered aritecture whi consist of processing serially
the parity-e processors: information sent to the e node under process takes
into account information of the previous iteration as well as information of the
current iteration whi has been updated by all the previous e nodes.

3.5.2 Performance

e error rate of iterative decoding algorithms has a typical curve, whi is shown
in Figure 3.3. ere are three regions that can be distinguished on the solid line curve:

• the first region, below the convergence threshold, where the code is not very
efficient. While in this region, even if the number of iterations is increased, the
performance is not improved.

• the waterfall region, where the error rate has a huge negative slope whi
increases as the number of iterations increases.
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Figure 3.3: Typical error probability curve of iterative decoding algorithms. e
dashed curve illustrates the trade-off between the waterfall and the error floor region,
since the lower error floor comes at the expense of a higher convergence threshold.

• the error floor region, where the error rate slope is lower than the one of the
waterfall region. e error floor is due to the minimum hamming distance of
the code, and for LDPC codes it is also caused by near codewords (also called
pseudo-codewords).



Chapter 4

Low-power and memory-efficient
LDPC decoding

Overview:

is apter investigates hardware aritectures for LDPC decoders
amenable to low-complexity implementation as well as low-voltage and
low-power operation. First, a type of iterative message-passing decoding
is described. Aerwards, the increased parallelism coupled with reduced
supply voltage is proposed as an effective tenique to reduce the
power consumption of LDPC decoders, whi have inherent parallelism.
erefore, a partially-parallel and fully-parallel decoder aritecture is
described. en, a seme to efficiently early terminate the iterative
decoding, under certain conditions, is proposed to further reduce the
power consumption. Finally, a quantization seme is described, whi
can be used to increase the memory efficiency while decreasing the
hardware complexity of the implementation, at the cost of storing slightly
inaccurate information.

4.1 Min-sum decoding

A generic LDPC decoder aritecture is shown in Figure 4.1. It comprises
Kv shared variable nodes units (VNUs), Kc shared e nodes units (CNUs) and
a shared memory fabric used to communicate messages between the VNUs and
CNUs. e outputs of VNUs feted from the memory are the inputs to ea CNU,
whose outputs, aer some computations, are wrien ba into the extrinsic memory.
Similarly, inputs to ea VNU arrive from the annel and several CNUs via the
memory, and aer performing the message update, the outputs of the VNUs are also
wrien ba into the extrinsic memory for use by the CNUs in the next decoding
iteration. e process continues with all CNUs and VNUs alternately performing
their computations for a fixed number of iterations before the decoded bits are
obtained from one final computation performed by the VNUs.

27
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Figure 4.1: A partially-parallel LDPC decoder

e computing operations taking place in ea iteration are part of the min-sum
decoding [10] algorithm, whi is a type of iterative message-passing decoding, also
proposed as an approximation to the belief propagation (BP) algorithm. It is also
referred to as the BP-based algorithm. e min-sum algorithm is a so-decision,
iterative algorithm for decoding binary-LDPC codes and is commonly used due to
its simplicity and good BER performance.

During the process, ea decoding iteration consists of updating and transferring
extrinsic messages between neighboring variable nodes and e nodes. e
messages state a belief about the value of the corresponding received bit expressed in
the form of log likelihood ratio (LLR). At the beginning of the decoding process, the
variable nodes pass the LLR value of the received symbols, i.e. the intrinsic message,
to all the neighboring e nodes. en, in ea iteration, a e node update is
followed by a variable node update. In the e node update phase the outgoing
message on ea edge of a e node has the sign of the parity of the signs of
the incoming messages from all other edges and its magnitude calculated as the
minimum of the magnitudes of the incoming messages. In the variable node update
phase the outgoing message on ea edge of a variable node is calculated as the sum
of all the incoming messages from all other edges plus the intrinsic message from the
annel.

4.2 Low power parallel decoders

4.2.1 Partially-parallel decoders

e decoder presented in Figure 4.1 will be able to perform more computations
in parallel if the number of VNUs and CNUs is increased. With su increased
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Figure 4.2: Supply voltage reduction obtainable by increased parallelism

parallelism, when operated from a fixed supply voltage, the decoder may aieve
higher throughput, with aendant increases in power and area.

However, increased parallelism can also permit a system to operate from a
lower supply voltage with constant throughput, therefore greatly decreasing power
consumption [11]. In addition, the advantages offered by parallelism in power
consumption are mitigated by the overhead associated with multiplexing and de-
multiplexing the inputs and outputs amongst several parallel computing units.

e iterative decoding of LDPC codes has inherent parallelism: all of the signals
required for ea iteration are already available in parallel in the extrinsic memory.
erefore, the iterative decoding of LDPC codes is well suited to implementationwith
a low supply voltage. e reduced supply voltage obtained by increasing parallelism
is described qualitatively in Figure 4.2.

As shown in Figure 4.2, there is a practical limit to the power savings obtained
by the decoder’s parallelism when the number of VNUs and CNUs equal the total
number of variable and e node computations required in ea iteration. Further
increases ofKv orKc are not straightforwardly possible, because the required input
messages are not available in the memory. e figure also shows that, unless the
targeted throughput is low, the supply voltage will remain significantly higher than
the MOS threshold voltage. However, sub-threshold circuits, although seemingly
energy-efficient, they are mostly suitable for low-to-mid performance systems with
relaxed constraints on throughput [12].

e benefits that high parallelism induces can be proved mathematically by
comparing a reference decoder with Kv VNUs and Kc CNUs (decoder A) versus
one with increased parallelism having k ·Kv VNUs and k ·Kc CNUs, where k > 1
(decoder B) [13].
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Power consumption

e dynamic power consumption of both decoders, operated at a clo frequency
f from a supply voltage Vdd is:

P = fCeffV
2
dd (4.1)

where Ceff is the effective capacitance of ea decoder including an activity factor.
However, since the total number of messages stored in ea iteration is constant, the
memory size is the same for both decoders. erefore, only the effective capacitance
of the VNUs and CNUs are scaled by increasing parallelism.

Effective capacitance

Let β be the fraction of the reference decoder’s (A) total effectiveness that scales
with increasing parallelism, i.e. k. Also letCM be the effective capacitance associated
with the memory and CA be the total effective capacitance of the reference design.
en:

β =
CA − CM

CA

(4.2)

Since CM does not scale with k, the effective capacitance of the decoder with
increased parallelism (B) is:

CB = (1 + β (k − 1))CA (4.3)

Supply voltage

Let fA be the clo frequency the reference design operates and fB the one of
decoder B, that is k times lower than the reference’s while maintaining the same
throughput:

fB =
fA
k

(4.4)

Since the aim is low-power operation, it can be supposed that ea decoder operates
from the lowest supply voltage possible that will support its targeted clo frequency.
Hence, if VddA is the supply voltage of the reference design, then the decoder with
increased parallelism can be operated from a lower supply voltage VddB , whi is
analyzed as [14]:

VddB = uscVddA (4.5)

where:

usc = m+
(1−m)2

2k
+

√√√√(m+
(1−m)2

2k

)2

−m2 (4.6)

is the normalized voltage and

m =
Vt

VddA

(4.7)
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Figure 4.3: e fully-parallel iterative LDPC decoder aritecture

Power savings

With the preceding analysis, the power savings offered by the decoder with
increasing parallelism is:

PB =
u2
sc

k
(1 + β (k − 1))PA ≡ ηPA (4.8)

4.2.2 Fully-parallel decoders

A fully-parallel aritecture can be implemented by having a separate VNU or
CNU designated for ea variable node orenode in the Tanner graph of the code.
A high-level fully-parallel iterative decoder aritecture, based on a (4, 15)-regular
LDPC code with 660 variable nodes and 176 e nodes (V and C respectively)
is shown in Figure 4.3. In this aritecture, ea extrinsic message is only wrien
by one VNU or CNU, therefore the extrinsic memory can be distributed among
VNUs and CNUs and no address generation is needed. Hence, the extrinsic memory
blo of Figure 4.1 has been replaced with the interconnections and Control/Address
Generation blo has been replaced with a simple Control blo.

e advantage of the fully-parallel aritecture is that it can be applied to
irregular codes with no constraint on the code structure, unlike most partially-
parallel decoders that are based on a particular code construction, su as the (3, k)-
regular construction in [15], or the Aritecture-Aware code construction in [16].
e implementation of irregular codes is possible simply by instantiating the VNUs
and CNUs of the desired degree and connecting them based on the graph of the code.
However, the timing performance of the decoder for irregular codes will be typically
limited by a critical path through the nodes with the highest degree.
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In addition, the major allenge the implementation of high-parallel decoders
has, is the large area and the overhead effects, su as the routing complexity [17]. In
order to reduce the effect of routing complexity, a proposal to use a bit-serial message-
passing seme, wheremulti-bit messages are communicated between the nodes over
multiple clo cycles has been made in [18]. e bit-serial message-passing also
requires less logic to perform the min-sum decoding algorithm, since both the “min”
and the “sum” operations are inherently bit-serial, and therefore bit-serial VNUs and
CNUs can be efficiently implemented to generate only partial 1-bit extrinsic messages
every clo cycle.

e use of bit-serial message-passing pushes the practical code length limit to
higher values, and for this reason it is able to implement fully-parallel decoders for
cuing-edge high-speed standards, su as 10GBase-T or Mobile WiMAX, whi
specify code lengths of 2048 and 2304 respectively. However, the maximum length
of the LDPC codes that can be implemented in a bit-serial fully-parallel decoder will
be eventually limited by the routing complexity.

4.3 Early termination

4.3.1 Description

e concept of early termination is to eliminate iterations of the decoding process
whi provide diminishing incremental improvements in decoder performance. e
general decoder design implements a fixed, a-priori determined number of iterations,
whi are usually based on worst-case simulations. On the contrary, since most bit
errors will have generally been corrected within the first few decoding iterations, the
decoder may continue performing iterations even though it will usually converge to
its final output mu sooner.

e idea is to create a decoder whi can automatically detect when it has
converged to its final output and when it does, it will shut down all VNUs and CNUs
for the remainder of ea frame, saving power.

An approa in this area is to focus on identifying particular bits within ea
frame that appear likely to have converged, and then stop updating extrinsic
messages for those reliable bits, while other unreliable bits are still being decoded
[19, 20]. However, these bits are sometimes incorrectly identified, so the decoder’s
performance suffers, unless an additional post-processing decoder is used in order
to mitigate this performance degradation [21]. ere is, however, an overhead
associated with identifying the reliable bits and with the post-processing decoder
that reduces the power savings of this approa.

Another approa, instead of trying to identify individual bits that appear to have
converged early, is to monitor the entire frame to determine when the decoder has
converged to a valid codeword, and then deactivate the entire decoder for the rest of
the iterations in order to save power [13].
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4.3.2 Implementation

A general approa to implement the detection the decoder’s convergence to a
correct codeword is the syndrome eing: it refers to making final decisions in
ea VNU at the end of ea iteration and then eing if all parity constraints
are satisfied. is approa, although straightforward, introduces a considerable
hardware cost to the design, since it requires additional hardware to enable the
VNUs to make the hard decisions at the end of ea iteration, and it must also
distribute those hard decisions to the destinationenodes in every iterationwhere
syndrome eing can be performed.

e distribution of the VNUs’ hard decisions to the e nodes can be done
either by using additional hard wires from VNUs to the neighboring CNUs or by
using the same wires that are used for transferring extrinsic messages in a bit-serial
time multiplexed way. Both approaes, however, are inefficient because they either
increase the routing complexity by adding extra global wires or decrease the decoding
throughput by increasing the number of clo cycles per iteration, respectively.

An alternative approa is to e the parity of the normal variable-to-e
messages that are already required by the decoding iterations: if the parity of all
these messages are satisfied, the decoding for that frame can be stopped and the
final hard decision can be computed at the beginning of the next iteration. is
method, however, on average requires one extra iteration to terminate, compared to
the conventional syndrome eing approa, but on the other hand, it does not
increase the number of VNU-to-CNU wires, and it also does not require extra clo
cycles per iteration to distribute the results of hard decisions to the CNUs. In addition,
this approa induces less hardware overhead, since most of the calculations are
already part of the normal VNU and CNU operations.

4.4 antization

4.4.1 Description

e standard belief propagation seme uses real-valued messages whi pass
along edges in the code’s graph and whi are typically stored and updated in a very
accurate representation, su as floating numbers. Computing and storing su an
accurate representation, however, imposes high complexity, whi, for high-speed
LDPC decoders, should be avoided to reduce degradation of performance. For this
reason, a low-complexity LDPC quantization seme has been proposed to make
efficient hardware implementation possible [22].

With quantization, the memory needed to store messages passing along edges in
a code graph scales with the n-bit quantization as O (n). In addition, the number
of interconnect wires to connect variable nodes and e nodes is also proportional
to the n-bit quantization and the complexity of interconnect routing scales at least
linearly with n. erefore, a smaller n-bit quantization is generally a good idea
as it makes the message update process easier for the variable and e nodes,
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whose logic complexity are oen more than linear with the n-bit quantization. In
fact, the worst case imposes an n-bit-input n-bit-output look-up table to have logic
complexity O (2n).

Memory efficiency is highly considered when implementing LDPC decoders on
FPGAs¹, even though newer generations of FPGA ips, su as Xilinx Virtex-II and
Virtex-4, are equipped with high-capacity on-board memory for storage-demanding
applications of signal processing (DSP). e memory blo division of these devices
imposes a practical constraint that also needs to be taken into consideration: the
blo memory is only divisible into fixed bit length, su as 4-bit wide, or high-
resolution, su as 9-bit, 18-bit and 36-bit [25, 26], hence, to efficiently utilize the
available memory, the n-bit quantization seme applied should be compatible to the
blo memory division. e trade-off in this case is that higher bit length provides
good resolution at the cost of limiting the size of the code the device can implement,
as well as significantly increasing the amounts of power required to consume. On
the contrary, an efficient low bit length quantization seme can allow decoding of
larger codes, and it is also very aractive if it can aieve small quantization loss.

4.4.2 Function

e decoding process that takes place is a quantized belief propagation algorithm,
amessage passing rule similar to the default algorithm described in previousapters,
but with the difference that the messages representing the likelihood ratios are
compressed by ea variable or e node before being transmied to the adjacent
nodes. e operation of ea variable node occurs in the log-likelihood ratio (LLR)
domain, or “reliability” domain. On the contrary, for e nodes, the domain
is called “unreliability” domain. By domain, we mean the environment where
updates can be performed through simple additions and subtractions, and where the
values are typically represented by more bits than are required to transmit and store
internode messages.

Two functions,Qv andQc, are utilized to quantize the messages in the reliability
and unreliability domains respectively into n-bit compressed messages. Complimen-
tary to these functions are also φv and φc, whose purpose is to restore the n-bit
compressed messages into the reliability and unreliability domains for variable and
e nodes respectively. A message that is compressed from one domain (e.g. the
reliability domain) can always be restored into the other domain (the unreliability
domain in this example) and vice-versa, since variable nodes always send messages
to e nodes and vice-versa.

e process begins with a annel quantizer,Qch, that captures and quantizes the
annel’s information, takes real-valued log-likelihood ratios, and finally produces
a quantized representation. A reconstruction function, φch, is implemented to take
a message produced by the annel quantizer and output a value to be used by the
variable node. en, the process goes as follows:

¹Proposals for implementation of LDPC code decoders on Xilinx FPGA devices can be found in
[23, 24].
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• At ea iteration, the variable node produces the variable-to-e messages
vi→j , whi for the first iteration (0) are given by:

vi→j (0) = Qch (anneli) , i ∈ {1, . . . , n} (4.9)

• At ea next iteration, let it be the kth iteration, the parity e phase occurs
first. All CNUs read the variable-to-e messages vi→j from some edge
memory connecting the ith variable node to the jth e node in the code
graph, and update the message by:

uj→i (k) = Qc

(∑
i′ 6=i

φc (vi′→j (k − 1))

)
, j ∈ {1, . . . , r} (4.10)

where i′ ranges over all edges connected to the jth e node excluding i, Qc

is the quantization rule for the e-to-variable message uj→i and φc is the
reconstruction function for the variable-to-e message vi→j . Finally, they
write the resulting e-to-variable messages, uj→i, ba to the edge memory
according to the code graph connections.

• Aerwards, the variable phase occurs, when n VNUs read the e-to-
variable messages uj→i from edge memory and update the message by:

vi→j (k) = Qv

(
φch (Qch (anneli)) +

∑
j′ 6=j

φv (uj′→i (k))

)
, i ∈ {1, . . . , n}

(4.11)
where j′ ranges over all edges connected to the jth node excluding j, Qv

is the quantization rule for the variable-to-e message vi→j , φv is the
reconstruction function for the e-to-variable message uj→i and φch is
the reconstruction function for the annel message Qch (anneli). Finally,
they write the resulting variable-to-e message vi→j ba to edge memory
according to the code graph connections.

• At the final iteration, let it be the K th iteration, the variable nodes make hard
decisions Xi as:

Xi =

{
0, if

∑
j uj→i (K) ≥ 0

1, if
∑

j uj→i (K) < 0
(4.12)





Chapter 5

Performance of BPSK-modulated
LDPC codes

Overview:

is apter presents a performance analysis of several standard LDPC
codes decoding teniques. At first, the algorithm behind ea tenique
is presented, and aerwards a computer-based simulation is suggested
in order to describe the performance versus implementation cost trade-
off imposed. e simulation extracts information about the bit error rate
(BER) of ea tenique, offering a graphic comparison between them.
In the end, the best performing decoding tenique will be osen to
implement on a FPGA.

5.1 Decoding teniques for LDPC codes

LDPC codes can be decoded using iterative decoding algorithms, in order
to improve the code’s performance. ese algorithms generally perform local
calculations and pass the local results via messages. is step is typically repeated
several times during the decoding process. Different proposals have been made
for decoding messages, whi include both hard-decision and so-decision belief
propagation or sum-product algorithm (SPA) teniques. For messages whi
are BPSK modulated under Additive White Gaussian Noise (AWGN) and fading
annels, some su proposals will be discussed.

5.1.1 Hard-decision (bit-flip) decoders

With this tenique, the bits of a binary message will be decoded as 1 in a
variable node if the majority of the incoming bits (from the source and the e
nodes connected to the variable node) is 1, otherwise it will be decoded as 0.

More specifically, the procedure begins with all variable nodes vni sending a
message to their connected e nodes cnj containing the bit they believe to be the

37
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correct one for them. At this (first) stage, the only information a variable node has,
is the corresponding received ith bit of the source codeword c, let it be yi.

en, every e node cnj calculates a response to every connected variable
node vni. e response message contains the bit that the e node believes to
be the correct one for this variable node, assuming that the other variable nodes
connected to the e node are correct. erefore, at this step, a e node looks
at the message received from its connected variable nodes and calculates the bit that
ea other connected variable node should have in order to fulfill the parity e
equation. Note that this might also be the point at whi the decoding algorithm
terminates. is will be the case if all e equations are fulfilled. Teniques, su
as early termination, can be used in cases that the decoding algorithm contains a
loop, in order to stop the process when a threshold for the amount of loops has been
reaed.

e final step requires the variable nodes to receive the messages from the e
nodes and use this additional information to decide if their originally received bit is
correct. A simple way to do this is to decide upon the majority of their incoming
information. Specifically, ea variable node in this step has the source (original)
information concerning its bit, as well as the suggestions from thee nodes. Upon
deciding, the variable nodes can send another message with their (hard) decision for
the correct value to the e nodes.

is type of decoders are usually simple to implement, since they do not employ
complicated probability or log-likelihood function. is, however, may result in
inferior performance compared to other decoders for very low values of Eb/N0.

5.1.2 So-decision probability-domain SPA decoders

Contrary to hard-decision decoding, whi is made without using the knowledge
of the probability set, so-decision decoding of LDPC codes is based on the concept
of belief propagation with the decoding process basing its decisions on the value of
the probability for ea bit to be 0 or 1 (for binary messages). e underlying idea
for updating node information, however, is the same as in hard-decision decoding.

In the first step of the decoding process all variable nodes vni send their variable-
to-e messages vi→j to their connected e nodes cnj . Every variable-to-e
message contains contains always the pair vi→j (0) and vi→j (1)whi stands for the
amount of belief that yi is 0 or 1 respectively. Since no other information is available
at this step, vi→j (1) = Pi and vi→j (0) = 1− Pi, where Pi = Pr (ci = 1|yi).

In the following step, the e nodes calculate their response e-to-variable
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messages uj→i as¹:

uj→i (0) =
1

2
+

1

2

∏
i′ 6=i

(1− 2vi′→j (1)) (5.2)

and
uj→i (1) = 1− uj→i (0) (5.3)

In this way, the e nodes calculate the probability that there is an even number
of 1s among the variable nodes except vni (as i′ spans all nodes except i). is
probability is equal to the probability uj→i (0) that vni is a 0.

Aerwards, the variable nodes update their response variable-to-e messages
vi→j as:

vi→j (0) = Kij (1− Pi)
∏
j′ 6=j

uj′→i (0) (5.4)

and
vi→j (1) = KijPi

∏
j′ 6=j

uj′→i (1) (5.5)

where the constantsKij are osen to ensure that vi→j (0) + vi→j (1) = 1.
In the final step, the variable nodes update their current estimation ĉi of their

variable ci by calculating the probabilities for 0 and 1 as:

Qi (0) = Ki (1− Pi)
∏
j

uj→i (0) (5.6)

and
Qi (1) = KiPi

∏
j

uj→i (1) (5.7)

and then voting for the bigger one:

ĉi =

{
0, if Qi (0) > Qi (1)

1, if Qi (0) < Qi (1)
(5.8)

If the current estimated codeword fulfills the paritye equations the algorithm
may terminate. Otherwise, the process must continue and termination may be
ensured through a maximum number of iterations.

¹Equation 5.2 uses the result from Gallager that for a sequence ofM independent binary digits ai
with a probability of pi for ai = 1, the probability that the whole sequence contains an even number
of 1s is then:

1

2
+

1

2

M∏
i=1

(1− 2pi) (5.1)
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5.1.3 Log-domain SPA decoders

eprobabilistic type of so-decision decoders has beer performance than hard-
decision decoders, since they use probability function for deciding, even though there
are still some performance issues, su as numerical stability problems, due to the
many multiplications of probabilities. In addition, an important issue is that for large
blo lengths the results will come very close to zero. In order to prevent this, it is
possible toange into the log-domain and doing additions instead ofmultiplications.
e result is a more stable algorithm that even has performance advantages since
additions are computationally less expensive.

Before presenting the algorithm, some notations are introduced. First, for a
Binary Symmetric Channel (BSC) with error probability pi, the log-likelihood ratio
(LLR) in favor of a 1 bit is defined as:

L (ci)
4
= log

1− pi
pi

(5.9)

for ea variable ci and:

L (vi→j)
4
= log

vi→j (0)

vi→j (1)
(5.10)

for ea variable-to-e message vi→j .
e most frequently involved computation in the process can be defined as:

φ (x) = − log tanh
(
1

2
x

)
= log

ex + 1

ex − 1
(5.11)

whi has the property of:

φ−1 (x) = φ (x) , for x > 0 (5.12)

Finally, the log-likelihood ratio for variable-to-e messages can be separated
as:

L (vi→j) = αijβij (5.13)

where:
αij = sign (L (vi→j)) (5.14)

and
βij = abs (L (vi→j)) (5.15)

In the first step of the log-domain decoding algorithm, all variable nodes send
their variable-to-es message to their connected e nodes as:

L (vi→j) = 2yi/σ
2 (5.16)

for an Additive White Gaussian Noise (AWGN) annel with noise standard devia-
tion σ.
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In the following step, the e nodes calculate their response e-to-variable
as:

L (uj→i) =
∏
i′ 6=i

αi′j · φ

[∑
i′ 6=i

φ (βi′j)

]
(5.17)

en, the variable nodes update their response variable-to-e messages as:

L (vi→j) = L (ci) +
∑
j′ 6=j

L (uj′→i) (5.18)

In the final step of the iteration, the variable nodes update their current estimation
ĉi of their variable ci by calculating its log-likelihood ratio as:

L (Qi) = L (ci) +
∑
j

L (uj→i) (5.19)

and then deciding upon the sign of the LLR:

ĉi =

{
0, if L (Qi) > 0

1, if L (Qi) < 0
(5.20)

A modified version of log-domain SPA decoder can also been proposed: this type
of decoding process replaces probabilities Pi with mini. For further simplification,
log-likelihood function can be replaced with incoming signal waveform directly,
hence simplified log-domain decoder does not need noise variance information.

5.2 Bit error rate analysis

e main allenge when implementing an LDPC decoder is to oose the most
preferred decoding tenique regarding the possibly specific type of messages the
decoder will handle. For this reason, the teniques discussed in this section have
been simulated on PC by a MATLAB script². e script includes all steps of LDPC
transmissions and its operation flowart can be seen in Figure 5.1. According to
this, the script operates as follows:

1. First, it creates an LDPC matrix for a code, with specific parameters for the
number of rows and columns, as well as an option for eliminating cycles of
length four in the factor graph of the parity-e matrix and the distribution
of the user-defined number of 1s in the columns and rows of the matrix.

²MATLAB (http://www.mathworks.com/products/matlab) is a numerical computing
environment whi allows matrix manipulation, ploing of functions and data, implementation
of algorithms, creation of user interfaces, and interfacing with programs in other languages.
e script used for simulation is based on Radford M. Neal’s programs collection wrien in C
programming language, whi are available at http://www.cs.toronto.edu/~radford/ftp/
LDPC-2006-02-08.

http://www.mathworks.com/products/matlab
http://www.cs.toronto.edu/~radford/ftp/LDPC-2006-02-08
http://www.cs.toronto.edu/~radford/ftp/LDPC-2006-02-08
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2. en, it creates messages of random source data, whiwill be the information
messages to be transmied.

3. e script will try to rearrange the parity-e matrix to a concatenation of
two square matrices, A and B, with A being decomposed to LU , where L is a
lower triangular and U is upper triangular matrix.

4. Aerwards, the encoding stage takes place, during whi, the script generates
parity e bits for the binary source and encodes the message blos as
codewords.

5. e message is subsequently modulated before transmission by the Binary
phase-shi keying (BPSK) digital modulation seme using a carrier wave of
defined frequency.

6. en, the bits of the message are transmied through a noisy annel, whi
results to certain data at the output of theannel being related to the codeword
sent with random noise. First, a annel model in whi a linear addition of
white noise with a constant spectral density and a Gaussian distribution of
amplitude is simulated, whi is known as Additive White Gaussian Noise
(AWGN ). Aer this set of simulations, another set of annels experiencing
Rician and Rayleigh fading is demonstrated.

7. On the other side of the annel, the reverse process starts with demodulating
the incoming message.

8. e received blos are then decoded using one of the iterative belief propa-
gation decoding teniques presented in the previous section. e decoding
process follows the steps shown in Figure 5.2.

9. Finally, the script extracts information about the performance of ea decoding
tenique, producing graphical presentations of the bit error rates (BER)
depending on the number of iterations and Eb/N0 using MATLAB’s bit error
rate analysis tool, bertool.

e results whi are yielded by the simulation procedures of ea decoding
tenique are discussed in their corresponding following subsections.

5.2.1 Performance analysis of hard-decision (bit-flip) decoders

Hard-decision (bit-flipping) sum-product algorithm LDPC decoders are simple
to implement, since they do not employ complicated probability or log-likelihood
function. In MATLAB, decoders of this type can be simulated using the code
presented in Section A.1 of Appendix A. is code shows the operations whi are
done during the iterations of the decoding process.

e number of iterations of the decoding process, as well as the value of Eb/N0

of the transmited signal have strong impact on the performance of the decoder. e
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process is simulated in MATLAB using bertool, whi runs the specified code for
different values of Eb/N0 (0 to 8dB) and number of iterations (1 to 7) using random
messages as sources up to a total of 106 bits. For ea number of iterations, the results
of the simulation are presented in Figure 5.3.

e results clearly expose the decoder’s weakness to decode correctly for very
low values of Eb/N0. Regardless the number of iterations, for the lowest value
of Eb/N0 simulated, 0dB, the bit error rate rises over 3 · 10−1, whi means that
almost one in three bits is erroneous. However, as Eb/N0 values increase, the
decoder’s performance tends to improve gradually, with the bit error rate slightly
bordering 10−2 for Eb/N0 = 8dB. erefore, hard-decision (bit-flipping) decoders
cannot be trusted for reliable transmissions, especially when operating under noisy
annels, maybe with the exception of situations where their very simple hardware
implementation makes up for their weak performance.

5.2.2 Performance analysis of so-decision probability-domain
decoders

As opposed to the bit-flipping decoders, probability-domain sum-product algo-
rithm decoders base their decisions on the value of the probability for ea bit to
be 0 or 1 in the case of binary messages. To accomplish this, they employ more
complicated functions whi make use of the probability set of the code, effectively
increasing the implementation complexity. In return, probability-domain decoders
are expected to perform beer even for low values of Eb/N0. e simulation is
operated by the code presented in Section A.2 of Appendix A and yields the results
presented in Figure 5.4.

According to the graphical representations, the decoder’s performance is by far
superior to a bit-flipping one’s for all values of Eb/N0 and number of iterations. All
executions start with bit error rate just around 10−1 for Eb/N0 = 0dB, and this
gradually falls as Eb/N0 increases further, ultimately reaing values close to 10−6

when Eb/N0 = 8dB.
As a result, in situations where performance is maers the most, probability-

domain decoders will most likely satisfy the high needs of reliable communication.
However, this comes at the cost of raised implementation complexity. To overcome
this dilemma, different teniques have been proposed whi offer a beer trade-off
between operation performance and implementation complexity.

5.2.3 Performance analysis of log-domain decoders

Log-domain decoders share the same main steps with the probability-domain
decoders in the way they decide upon the bits of a received message, but differ in
the way they calculate that decision. Instead of probability functions, this type of
decoders use log-likelihood ratios (LLRs) as response messages between the e
and variable nodes, a method whi is computationally less intensive than the one of
their counterparts, but on the other hand, may be less accurate thus producing more
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Figure 5.3: BER analysis of a hard-decision (bit-flip) decoder under AWGN annel
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Figure 5.4: BER analysis of a probability-domain SPA decoder under AWGNannel
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erroneous bits. A decoder of this type can be simulated using the code presented in
Section A.3 of Appendix A and its performance is shown in Figure 5.5.

Like the probability-domain decoders, log-domain ones have superior perfor-
mance compared to bit-flipping decoders for all values of Eb/N0 and number of
iterations. For lower values of Eb/N0, log-domain decoders also have similar
performance curve to the probability-domain ones, as seen by the values of BER
for Eb/N0 < 3 dB. For higher values, performance increases steadily, reaing
values in the range between 10−4 (for 1 and 2 iterations) and 10−6 (for 4 iterations),
with most of them tending to end up around 10−5 for Eb/N0 = 8dB, whi is a
performance close to the performance of probability-domain decoders.

e number of iterations heavily affect the performance of this type of decoders,
since with only 1 iteration the decoder cannot surpass the limit of 10−4 BER, whi
only 2 or more iterations can. On the other hand, a big number of iterations seem
to also impair performance, instead of improve it. Best performance in terms of bit
error rate is observed for 4 iterations, while more or less iterations gradually decrease
it.

5.2.4 Performance analysis of simplified log-domain decoders

A modified version of the log-domain sum-product algorithm decoders can
be created by replacing some of their heavy computations with simpler ones.
Specifically, this type of decoders avoid calculating the logarithmic and exponential
function φ (x), and instead they use the minimum value of the log-likelihood ratio of
the exanged messages. erefore, this type of decoders are simpler to implement,
but this comes at the cost of possibly lower performance than the original log-domain
decoders. e code whi simulates a simplified log-domain decoder is presented in
Section A.4 of Appendix A and its performance analysis can be seen in Figure 5.6.

According to the plots, the performance curves of simplified log-domain decoders
are similar to the ones of the original log-domain decoders. Both types are beer
than hard-decision decoders, and start with bit error rate around 10−1, with values
gradually decreasing asEb/N0 increases. For the highest value ofEb/N0 whi was
simulated, 8dB, bit error rate usually lies between 10−5 and 10−6 as the original
log-domain decoders do.

e lowest value of BER is observed for 6 iterations, even though it is clear that
the more Eb/N0 increases, the less impact the number of iterations seem to have
on the performance of the decoder. e worst performance is observed for only 1
iteration, but this case is common to all decoding teniques.

All things concerned, the simplified log-domain decoders perform relatively well,
similar to the original log-domain decoders and close to the probability-domain ones,
even though the performance is not exactly the same as their counterparts. However,
their simpler implementation and computationally less expensive operation make up
for this possible weakness, especially when they are needed to be implemented in
small embedded systems. erefore, oosing a simplified log-domain decoder to be
implemented on a FPGA is a reasonable decision.
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Figure 5.5: BER analysis of a log-domain SPA decoder under AWGN annel
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Figure 5.6: BER analysis of a simplified log-domain SPA decoder under AWGN
annel
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5.3 Fading annels

5.3.1 Rayleigh fading

Signal impairments in a wireless annel arise not only from noise and inter-
ference, whi are common to most electromagnetic communication systems, but
also from propagating effects, whi are unique to wireless communications. e
term “fading” is used to describe this cases; it denotes variation of received signal
amplitude and phase, with respect to both time and distance. e fading results
from interaction between the propagating wavefront, themobile receiver, and nearby
objects, and for this reason it is oen modeled as a random process.

If themaximum spread of time delay (τmax) betweenmultipath signal components
is mu less than the symbol period (Ts), then relative multipath delay (fading
whi is due to multipath propagation) can be ignored. In this case all multipath
components may be regarded as one with respect to time and the condition is then
called “flat” or non-frequency-selective fading. is happens because the annel
coherence bandwidth (over whi the annel is strongly auto-correlated) is wide
(the curve is flat) compared with the signal bandwidth.

In environments where no line-of-sight (LOS) signal component is likely to
rea the receiver, scaering of the wavefront by many nearby objects is expected.
erefore, the received signal is regarded as equally probable from any direction.
is condition is termed isotropic scaering, and may be modeled using a Rayleigh
distribution, wherein the random variable R =

√
X2 + Y 2 is a function of two

independent, zero-mean, normally distributed random (Gaussian) variables X and
Y . e fading in su a system is termed “Rayleigh fading”. If there is a dominant
line-of-sight, Rician fading may be more applicable. e model behind Rician fading
is similar to that for Rayleigh fading, except that in Rician fading a strong dominant
component is present, whi is usually the line-of-sight wave.

In a flat Rayleigh fading model X and Y represent the in-phase and quadrature
components of the annel impulse response. Both are random processes, and
consequently the resultant envelope R is also a random process.

e Jakes sum-of-sinusoid method [27] was used with MATLAB to simulate
flat Rayleigh fading, and statistical properties of the simulated fading annel were
investigated. Figure 5.7 shows the envelope’s probability density function (pdf)
compared to the theoretical Rayleigh distribution using variance σ2 = 1.

Decoding performance under Rayleigh fading annel

Fading annels can cause poor performance in a communication system and
can result in a loss of signal power whi can be over some or all of the signal
bandwidth. Fading can also be a problem because it anges over time and also
varies with geographical position and radio frequency. Even though communication
systems are oen designed to adapt to su impairments, the fading can still ange
faster than the adaptations and, in these cases, the probability of experiencing a fade
on the annel becomes the limiting factor in the link’s performance.



52 Chapter 5. Performance of BPSK-modulated LDPC codes

0 0.5 1 1.5 2 2.5 3 3.5
0

0.2

0.4

0.6

0.8

1

Channel response envelope

P
ro

ba
bi

lit
y 

de
ns

ity

 

 

simulation
theory

Figure 5.7: Density of Rayleigh flat fading envelope withN = 106 and fD = 100Hz

0 5 10 15
10

−8

10
−6

10
−4

10
−2

10
0

E
b
/N

0
 (dB)

B
E

R

 

 

theoretical AWGN
theoretical Rayleigh

Figure 5.8: Performance of Rayleigh fading annels compared to AWGN annels

e impairments imposed by Rayleigh fading annels compared to those intro-
duced byAWGNannels is presented in Figure 5.8. According to this representation,
bit error rate in cases of Rayleigh annels barely falls under 10−2 when Eb/N0 =
15dB. On the contrary, decoding performance in AWGNannels can perfectly rea
10−7 bit error rate at a value of Eb/N0 = 12dB.

Hard-decision (bit-flip) decoders

Like in AWGN simulations, hard-decision decoders have shown to be the worst
performing algorithm, whi is the cost of their simple implementation. With
bit error rates starting over 3 · 10−1, whi means that out of a total 106 bits,
30% are erroneous, this type of decoders most likely cannot be trusted for reliable
communication in fading annels. is value gradually falls to almost 2 · 10−2

when Eb/N0 = 15dB. e performance curve produced in MATLAB is shown in
Figure 5.9. According to the simulation results, increasing the number of iterations
of the belief propagation algorithm does not improve performance, whi may be
due to the already big number of erroneous bits.
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Figure 5.9: BER analysis of a hard-decision (bit-flip) decoder under Rayleigh annel
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Figure 5.10: BER analysis of a probability-domain SPA decoder under Rayleigh
annel

So-decision probability-domain decoders

Probability-domain decoders start with beer bit error rates than bit-flip ones,
with starting values just under 2 · 10−1. ese values continue to fall as Eb/N0

increases, up to a point when further increases inEb/N0 do not seem to significantly
improve performance. is is clearly seen in Figure 5.10, in whi, for 7 iterations,
when Eb/N0 increases further than 8dB, bit error rate decrease is gradually lesser.
Consequently, there is a threshold in the value of Eb/N0, aer whi probability-
domain decoding performance is almost steady. is threshold is also found for 1
iteration of the decoding algorithm, but in this case it corresponds to a higher value
of Eb/N0, around 13dB. In addition, as the value of Eb/N0 increases, it seems that
the impact the number of iterations have upon the decoding performance is gradually
decreasing.

Log-domain decoders

Performance of log-domain decoders shares a similar start with probability-
domain ones, since their bit error rate starts at a lile less than 2 · 10−1 at Eb/N0 =
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Figure 5.11: BER analysis of a log-domain SPA decoder under Rayleigh annel
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Figure 5.12: BER analysis of a simplified log-domain SPA decoder under Rayleigh
annel

0dB and gradually falls as Eb/N0 increases, showing a possible threshold point at
Eb/N0 = 14dB, aer whi performance improve rate seems to decrease. e
performance curve of these decoders is presented in Figure 5.11, and according to
it, log-domain decoders can aieve bit error rate values whi are very close to
2 · 10−2 at higher values of Eb/N0.

Simplified log-domain decoders

e modified version of log-domain decoders presented in subsection 5.2.4 has a
similar performance curve to its original counterparts as seen in Figure 5.12. With
a starting value of BER close to 2 · 10−1 for 1 iteration of the decoding algorithm
(whi falls to 1, 8 · 10−1 for 7 iterations), performance of this type of decoders
constantly falls throughout the simulation runtime, without showing any thresholds
of decreasing performance rate as probability-domain decoders do. At higher values
ofEb/N0, simplified log-domain decoders decrease their bit error rate to values close
or even less than 10−2 (when Eb/N0 = 15dB), whi is very close to the values of
the theoretical performance curve presented in Figure 5.8, especially as the number
of iterations increases.
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5.3.2 Rician fading

emodel behind Rician fading is similar to that for Rayleigh fading, except that
in Rician fading a strong dominant component is present. is dominant component
is typically the line-of-sight wave. On the contrary, in Rayleigh fading there is no
line-of-sight signal, and for this reason it is sometimes considered as a special case
of the more generalized concept of Rician fading.

e Rician K-factor is defined as the ratio of signal power in dominant compo-
nent over the (local-mean) scaered power. In the expression for the received signal,
the power in the line-of-sight equals C2

2
, where C is the amplitude of the line-of-

sight component. For example, in indoorannels with an unobstructed line-of-sight
between transmit and receive antenna the K-factor is usually between 4 and 12dB.
Rayleigh fading is recovered forK = 0, whi corresponds to −∞dB.

Decoding performance under Rician fading annel

Like all fading annels, Rician fading imposes degradation to the decoding
performance of messages transmied through su annel. e theoretical per-
formance of Rician fading annels compared to AWGN and Rayleigh fading is
depicted in Figure 5.13. According to this, performance of Rayleigh fading equals
Rician when K = 0, since in this case the two annels are equivalent. As K
increases, so does performance, since stronger dominant components favor more
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error-free transmissions. In fact, when K gets a quite big value, like K = 50, the
impairments imposed by fading can almost be absorbed by the Gaussian annel,
and the performance curve in this case tends to follow the theoretical AWGN curve
very closely. erefore, performance of Rician fading annels is upper bounded by
AWGN and lower bounded by Rayleigh annels.

Hard-decision (bit-flip) decoders

Mediocre performance has been a typical aracteristic of hard-decision de-
coders, whi is also proved in Rician annels. Bit error rates of bit-flip decoders
are at higher levels than the rest of the decoding algorithms, mainly due to their
simple implementation. According to their performance curves, whi are presented
in Figure 5.14, bit error rate lies between 10−1 and 10−2 forK = 2 and for the values
of Eb/N0 ≥ 6dB. As K increases, so does performance, whi lays between 10−2

and 10−3 forK = 5 and between 10−3 and 10−4 forK = 10, whenEb/N0 is greater
than 10dB. In addition, once again, increasing the number of iterations of the belief
propagation algorithm does not seem to improve performance, whi has also been
observed in Rayleigh fading annel simulations.

So-decision probability-domain decoders

Probability-domain decoders have beer performance compared to bit-flip de-
coders, due to the fact that they utilize more complex calculations during the
decoding process. Bit error rates start with values around 10−1 in all cases whi
have been simulated. However, these values gradually fall asEb/N0 andK increase,
reaing values close to 10−2 for K = 2, 10−3 for K = 5 and 10−4 for K = 10. In
addition, there is a threshold in the values of Eb/N0, aer whi performance seem
to improve with gradually lower rates, as shown in Figure 5.15. is behavior has
been observed in Rayleigh fading annels as well, whi is expected, since Rayleigh
fading annels can be considered a special case of Rician annels. Once again,
increasing the number of iterations of the decoding process does not seem to improve
performance, whi has also been observed in Rayleigh annels.

Log-domain decoders

Simulation of log-domain decoders under Rician fading annel shows the best
results in performance compared to all other teniques. As shown in Figure 5.16,
bit error rate for log-domain decoders starts around 10−1 at Eb/N0 = 0dB for all
values of K , and it gradually falls as Eb/N0 and K increase. For higher values
of Eb/N0, bit error rate falls under 10−2 for K = 2, 10−3 for K = 5 and 10−4

for K = 10 respectively, whi is very close to the theoretical performance curve
depicted in Figure 5.13. Increasing the number of iterations seems to slightly improve
performance.
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Simplified log-domain decoders

e last decoding tenique whi has been simulated, the simplified log-domain
decoders, perform quite similarly to the original log-domain ones. According to
Figure 5.17, their performance curves are very close to their original counterparts,
whi are also very close to the theoretical performance curves. For higher values of
Eb/N0, bit error rate has values between 10−2 and 10−3 for K = 2, between 10−3

and 10−4 for K = 5 and it can even approa 10−5 when K = 10. Similarly to
log-domain decoders, their simplified version seems to improve in performance as
the number of iterations increases.

Consequently, aer observing the decoding performance of all types of decoders
under both AWGN and fading annels, it is reasonable to oose the simplified
form of log-domain decoders to implement on FPGA, since they mat the good
performance of log-domain decoders with the simpler implementation and computa-
tionally less expensive operation. e values of bit error rates for a sensible number
of iterations, su as 7 iterations, under all simulated annels of transmission is
presented in Figure 5.18. According to this, in order to aieve bit error rates lower
than 10−2, or 1%, a Gaussian annel requires messages with Eb/N0 values greater
than 3dB. On the other hand, fading annels require mu more energy per bit to
aieve these rates, since a Rician annel withK-factor of 7dB, i.e. 5 in linear scale,
requires that Eb/N0 is over 7dB, while under Rayleigh annel this value must be
even greater, requiring normalized signal-to-noise ratios of over 15dB. However, in
applications where reliability is not very critical, all annels can perform similarly
well for very low values ofEb/N0, bounded between 0−3dB, even without the need
of an increased number of iterations.

e implementation of the simplified log-domain decoder, alongwith the encoder
of the LDPC transceiver, is described in the next apter. In the end, the implemented
system will be eed to verify that its performance meets the bit error rate values
expressed in this apter.
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Figure 5.14: BER analysis of a hard-decision (bit-flip) decoder under Rician annel
for: (a)K = 2, (b)K = 5 and (c)K = 10.
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Figure 5.15: BER analysis of a probability-domain SPA decoder under Rician annel
for: (a)K = 2, (b)K = 5 and (c)K = 10.
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Figure 5.16: BER analysis of a log-domain SPA decoder under Rician annel for: (a)
K = 2, (b)K = 5 and (c)K = 10.
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Figure 5.17: BER analysis of a simplified log-domain SPA decoder under Rician
annel for: (a)K = 2, (b)K = 5 and (c)K = 10.
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Figure 5.18: BER performance of a simplified log-domain SPA decoder operating for
7 iterations under AWGN, Rician and Rayleigh fading annels



Chapter 6

Implementation of an LDPC
transceiver

Overview:

is apter presents the implementation of an LDPC transceiver on a
Xilinx Spartan-3E FPGA. Aer an overview of the whole design, ea
entity of it is analyzed in detail. is is done firstly by describing
ea entity’s function and the components used by them. en, the
operation stages are presented, whi show a more in-depth step-by-
step view of the encoding and decoding procedures. Finally, the correct
operation of ea entity has been verified by run-time simulations and
some snapshots are included depicting this.

6.1 Design Summary

e final part of this work deals with the implementation of a transceiver on
an embedded system. e transceiver has defined specifications and is designed
to be implemented on a FPGA of the Xilinx Spartan-3E family [28]. Its operation
includes all steps of LDPC codes transmissions and the designed transceiver has the
capabilities of both transmiers and receivers. erefore, the transceiver is able to
read source data from its input and encode them, and aer being modulated and
transmied over a noisy annel, the transceiver can follow the reverse procedure,
i.e. receive the encodedmessages, demodulate and decode them, ultimately exporting
them through its output port. e decoding tenique whi will be used by the
decoder is the simplified form of the log-domain decoding algorithm described in
subsection 5.1.3. In addition, for testing purposes, the input and output data of the
transceiver will be monitored in order to extract information about errors in data
decoding (bit error rate), concluding in observations abouts its efficiency.

e design includes two entities, whi are the encoder and the decoder of the
transceiver. e operation of both entities is described in VHSIC (very-high-speed
integrated circuit) hardware description language (VHDL) in a total of more than
1.400 source lines of code (SLOC). e language statements of the entities are then

63



64 Chapter 6. Implementation of an LDPC transceiver

Language VHDL
Platform Xilinx Spartan-3E
Model XC3S250E FT256-5
Simulator Xilinx ISim 11.5
Synthesizer Xilinx XST 11.5 & Leonardo Spectrum 2009
Testing Testcases with random input sources for various values of Eb/N0

Verification MATLAB simulations results

Table 6.1: Tools used for the implementation of the transceiver

.

.

.Source
.Generator

.

.LDPC
.Encoder

.

.BPSK/QAM
.Modulator

..Channel

.Received
.Data

.

.LDPC
.Decoder

.

.BPSK/QAM
.Demodulator

..BER

Figure 6.1: Transceiver’s FPGA implementation blo diagram

transformed into hardware logic operations, whi in turn produce an equivalent
netlist of generic hardware primitives to implement their specified behavior [29].
In addition, their operation is verified by means of simulation, both in the field of
implementation and in the algorithmic field. Table 6.1 lists all the tools whi are
used in the design to carry out the above tasks.

e encoder and the decoder are parts of a greater design whi describes the
complete implementation of the transceiver on the FPGA, and whi is presented in
the blo diagram of Figure 6.1. In this model, the implemented parts are shown in
thier outline than the rest of the system. is complete model can, ultimately, be
used to verify its operation under a standardized protocol carrying out wireless local
area network (WLAN) computer communication in the 5 GHz frequency band, whi
has been created and maintained by the IEEE LAN/MAN Standards Commiee,
under the family name IEEE 802.11 [30].
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..Encoder

.source(M-1:0)

.clk

.reset

.enc(N-1:0)

Figure 6.2: Encoder tenology sematic top view; the input ports are at the le side,
the output at the right.

6.2 Encoder implementation

6.2.1 Description

e purpose of the encoder is to read source data from its input and then encode
them, exporting valid codewords for its parity-ematrix. is procedure includes
the following steps:

1. Read source data: First, the encoder reads its input information in frames of k
bits (messages).

2. Encode: en, it maps the k bits of the source messages to n bits codewords
using its parity-ematrixH , whi is anM×N matrix, whereN = n and
M = n− k. For rate-1

2
applications, it isN = n andM = k = n

2
. e parity-

e matrix can be separated into two square matrices A and B of order M
as: H = [A|B]. e codewords whi are produced by the encoder include
the source message bits preceded by the parity-e bits for this frame, as:
x = [c|s], where x is the output codewords, c the computed M parity-e
bits and s the original input message of k bits. e codewords are valid, whi
means that they satisfy all parity es on the source message, if:

H · x = 0⇒ A · c+B · s = 0⇒ c = A−1 ·B · s (6.1)

where A−1 is the inverse of the square matrix A.

3. Transmit: Finally, the encoded message becomes BPSK modulated and is
transmied by the encoder through a noisy annel.

e encoder uses signals to read, manipulate, exange and, finally, output
information. e input and output ports of the system can be seen in the top view of
the tenology sematic shown in Figure 6.2: signals clk, reset and source are
inputs, whereas enc refers to the output. e encoder also utilizes internal signals in
order to proceed to the different states of the encoding process. A summary of the
main signals whi control the operation of the encoder is the following:

clk (input signal): Signal indicating the clo tis of the system. e clo period
is defined by the implementation.
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reset (input signal): Signal indicating state of system initialization. During initial-
ization any source message to the input port of the encoder is not processed
and the system does not produce any output.

source (input signal): Source message to be encoded, whi is a logic vector ofM
bits. e design is described using generics, and in this implementation source
messages are set to be logic vectors of 8 bits, but can be anything set by the
designer at design time.

enc (output signal): Encoded version of the source message; the output of the
system. e output messages are logic vectors of N bits. For any rate-
1
2
encoder, the output messages are vectors of N = 2 · M bits. In this

implementation the produced codewords are 16 bits long.

clk_period (internal signal): Internal signal of the simulation testben indicat-
ing the clo period of the system. In the following simulations this signal is
set to represent 1ns clo period.

state (internal signal): Internal signal of the encoder (Unit-Under-Test (UUT )
during the simulation testben) indicating its state of operation. e encoding
process completes in a total of 6 states. During state 0 the encoder is practically
inactive since its only action on every clo ti is to e whether the source
of the system has anged (indicating a new source message) and if it has,
then it continues to the encoding process of the new source message. During
the next states the calculation of the parity-e bits takes place, and, finally,
during state 5 the encoded message is exported to the system’s output in the
form of:

encoded message = [parity-e bits|source] (6.2)

6.2.2 Implementation

e encoder is implemented using VHDL to describe its operation, whi can
be found in subsection B.2.1 of Appendix B. e encoder’s operation is divided in a
total of 6 states operated by a finite state maine (FSM)¹. e entity is controlled by
a process, whi is triggered by clo events and reset buon events. When the reset
buon is pressed (the reset signal gets a “1” value) the system is initialized, i.e. all
actions are stopped and the operation state is reset to 0. Otherwise, on ea positive
clo ti, the system es its state and acts accordingly. When one state has
finished its function, the systemmoves to the next state up until state 5, during whi
the encoder outputs the encoded message through its output port and aerwards
restarts to state 0.

¹A finite-statemaine (FSM) is a behaviormodel composed of a finite number of states, transitions
and actions between those states. Its operation begins from one of the states (start state), goes through
transitions depending on input to different states and ends in any of those available final states.
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During its operation, the encoder moves through 4 different main stages whi
either focus on arithmetic calculations or detecting anges in the encoder’s envi-
ronment. ese stages are described next.

Stage 1: System reset

While the reset buon is pressed and the reset signal gets a “1” value the
system stops any calculations currently doing and resets its internal components.
e encoder utilizes two blo RAMs to store the rows of the parity-e matrix
H = [A|B] and the inverse of matrix A, A−1, whi are being rewrien while
the system is reseing. erefore, the encoder re-reads the two matrices, H and
A−1 during this stage, either by an external source or by its own hardcoded values
set a-priori, and stores their values (per row) to the corresponding blo memories.
Aerwards, it sets its operation state to 0.

Stage 2: System idle

When the encoder is at state 0 and during all the time it remains in this state,
the encoder es the input port, source, for anges, whi indicate a new input
message to be encoded. If a new input is detected, the system moves on to the next
state, otherwise it remains on state 0. If the encoder anges its operation state to
encode the new message, it first clears all variables used by the encoding process
during previous runs.

Stage 3: Message encoding

e encoding process of a new message takes place during states 1 and 4. ese
states use the parity-ematrix and the input message to compute the parity-e
bits whi correspond to the combination of the two. e encoder repeats these steps
as many times as needed, the number of whi is determined by the dimensions of
the parity-e matrix, M and N . e parity-e bits are normally produced by
the multiplication of A−1 with B and the source message. However, since all these
matrices use zeroes and ones as values, the multiplications can be transformed into
simple signal value es to simplify the design, as:

-- tmpbits = B * source:
-- calculate [H(i)(N-M+j) * source(M-1-j)] by
-- replacing multiplication with signal checks
if h_dout(N-M+temp_j) = ’1’ and cur_source(M-1-temp_j) = ’1’
then

temp := temp + 1;
end if;

and then continuing to:

-- chkbits = inv_A * tmpbits
-- calculate [inv_A(i)(j) * tmpbits(M-1-j)] by
-- replacing multiplication with signal checks
if inv_a_dout(temp_j) = ’1’ and tmpbits(M-1-temp_j) = ’1’
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then
temp := temp + 1;

end if;

e temporary and final parity-e bits are then calculated by the mod of their
temp variable, ea independent to the other since they ange values at different
states, to the number 2. For binary numbers, division by 2 equals to one right shi
of the binary number, and the modulo operation of the division is then the last bit
(farthest to the right) of the number.

Stage 4: Codeword exporting

Finally, during state 5, the system sends to its output port the signal of the encoded
message, enc, whi consists of the parity-e bits followed by the original input
message. e encoder then saves the source message currently encoded in order to
compare it to the next messages received to its input port, and then moves to state 0
to repeat its operation cycle.

For a (M = 8, N = 16) application, the memory components used by the
encoder are one 8 × 16-bit blo RAM for parity-e matrix H and one 8 × 8-
bit blo RAM for the inverse matrix A−1 as shown in Figure 6.3. Ea memory
component consists of 4 input ports and 1 output port. Input port clk is synronized
to the system clo, while port we is the “write-enable” signal of the memory, whi
enables or disables writing to memory addresses: when it gets a “1” value, input
messages to the memory component will be wrien, otherwise data are only read
and input data are not stored. rough port data_in input data are received by
the memory component and when write is enabled, address indicates the address
to whi these data will be saved. On the other hand, when in read-only mode,
address will dictate where the component should recover data from. Finally, the
output port data_out exports the recovered data from the specified address, and
when in write mode, this will export the new data in a write-aer-read sequence.
e top view sematic of the memory components is presented in Figure 6.4. Signals
address, data_in and data_out are logic vectors of variable width in general, and
the encoder and decoder define explicitly their width according to the data they will
store in eamemory blo. eVHDL code of the bloRAM is presented in Section
B.1 of Appendix B.

e encoder described with this VHDL code has been implemented on a FPGA
of the Xilinx Spartan-3 family, the model XC3S250E FT256-5 of the Spartan-3E
FPGAs sub-family, whi includes 2.448 slices used for high-performance general
logic applications and hierarical memory aritecture of 216Kbits of blo RAM,
whi provides data storage in the form of 18Kbit dual-port blos. e complete
specifications list of the Spartan-3E family can be found in [28].

e implementation occupies a total of 147 slices out of the 2.448 slices, whi
means that the device utilization is 6%. is is highly affected by the simple operation
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Figure 6.3: Encoder memory utilization
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.data_out(vector)

Figure 6.4: Blo RAM component tenology sematic top view

of the encoder, whi has been further simplified by replacing multiplications with
signal es. e device utilization summary of the design is presented in Table 6.2.

e synthesis process of the encoder produces an RTL sematic describing its
operation. In the RTL design, the encoder’s behavior is defined in terms of the flow
of signals (or transfer of data) between hardware registers, and the logical operations
performed on those signals. A tenology sematic is also produced, whi shows
a representation of the design in terms of logic elements optimized to the target
device or tenology, for example, in terms of of LUTs, carry logic, I/O buffers,
and other tenology-specific components. is sematic offers a tenology-level
representation of the VHDL code optimized for a specific FPGA aritecture.

6.2.3 Simulation

Aer having been described in VHDL, the encoder is simulated to verify its
correct operation. e system is simulated in the Xilinx ISim environment using
a testben specifically created for the encoder and whi is presented in subsection
B.2.2 of Appendix B. During the simulation process, input data are read from a
specified file on the computer on whi the simulation runs and are passed to
the input port of the encoder. Aerwards, the encoding process takes place, and
when it has finished, the codewords produced in the output port of the system are
eed with the expected codewords for ea specific input message. e expected
codewords are also read from the same file the input messages have been read.
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Slice Logic Utilization Used Available Utilization
Number of Slice Flip Flops 100 4.896 2%
Number of 4 input LUTs 169 4.896 3%
Number of occupied Slices 147 2.448 6%
Number of Slices containing only related logic 147 147 100%
Number of Slices containing unrelated logic 0 0 0%

Total Number of 4 input LUTs 233 4.896 4%
Number used as logic 169
Number used as a route-thru 64

Number of bonded IOBs 26 172 15%
IOB Flip Flops 24

Number of RAMB16s 3 12 25%
Number of BUFGMUXs 1 24 4%
Average Fanout of Non-Clo Nets 2,88

Table 6.2: Device utilization summary of a (M = 8, N = 16) encoder

When all source messages of the input file have been encoded, the testben
extracts information about possible errors in the parity-e bits created by the
encoder. No erroneous bit is allowed, and su case is unacceptable since it would
cause non-deterministic behavior of the encoder. erefore, the outcome of the
testbenmust always be zero erroneous bits out of the total of both parity-e bits
calculated and the original bits of the source whi are also part of the codewords.

e following images present several snapshots of the simulation of the encoder’s
operation as suggested by ISim. is simulation has provided the encoder with 125
vectors of 8-bit inputs and has received another 125 vectors of 16-bits codewords, i.e.
a total of 1.000 input bits and 2.000 output bits. e input bits are random {0, 1}-
valued vectors created by MATLAB and the expected output bits are also produced
by a MATLAB function created for simulation purposes.

A full view of the simulation execution is shown in Figure 6.5. Two more specific
views of the initialization and the first execution of the simulation are shown in
Figures 6.6 and 6.7. e next figures focus on the states of the encoder during
the encoding process of a source message and during consecutive source messages
(Figures 6.8 and 6.9). Finally, the bit error e, whi is done aer the encoder has
finished encoding all input messages, is shown in Figure 6.10.
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..Decoder

.source(N-1:0)

.clk

.reset

.iter(natural)

.dec(M-1:0)

Figure 6.11: Decoder tenology sematic top view

6.3 Decoder implementation

6.3.1 Description

LDPC codes are decoded at the receiver’s side using one decoding algorithm,
su as the ones described in the previous apter, aiming at retrieving the original
information sent by the transmier. Having tried and compared different approaes
of decoding teniques, this implementation has adopted the simplified log-domain
message passing algorithm described in subsection 5.1.3 (page 40) and whi was
simulated with bertool using the code presented in Section A.4 of Appendix A
(page 100) to decode the codewords received at the decoder’s input port. is process
exanges so-information iteratively between the variable and e nodes created
by the parity-e matrix, in the form of messages describing log-likelihood ratios
(LLRs), and, in the end, it produces the decoded version of its input message, whi,
ideally, should be exactly the same as the originally sent message. e procedure
includes the following steps:

1. Read encoded source data: e decoder receives encoded data from its input
port in frames of n bits. ese messages are naturally distorted by annel
noise.

2. Decode: Ea frame is, then, decoded trying to produce the originally sent
message by the source. e decoder initially produces messages of n bits, the
first n−k of whi are parity-e bits and the last k bits compose the original
message. ese messages are ideally the same as the output of the encoder
whi encoded the source message, i.e. the produced codeword. e decoding
process is repeated several times, the maximum number of whi is defined by
the user at run time using an extra input port to the decoder.

3. Extract original message: Aer decoding the input codeword, the decoder
finally extracts the bits of the originally sent message by keeping the last k
bits of the decoded message.

e top view of the decoder’s tenology sematic is presented in Figure 6.11.
As seen in it, the decoder equips 4 input ports (whi define signals clk, reset,
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. .

.Decoder blo

.Decoder .antizer

Figure 6.12: antizer in the decoder blo

enc and iter) and 1 output port (defining signal dec). e decoder also utilizes
internal signals used during the states of the decoding process. A summary of the
main signals is presented below:

clk (input signal): Signal indicating the clo tis of the system. e clo period
is defined by the implementation.

reset (input signal): Signal indicating state of system initialization. During initial-
ization the source message is not processed and the decoder does not produce
any output.

source (input signal): Encoded version of the source message initially sent by the
source generator. Originally sent source messages are logic vectors of M
bits and the encoded version of them are logic vectors of N bits. ese
N bits however, aer being transmied through a noisy annel have their
values altered, resulting in being mapped to vectors of real numbers instead
of bits. Real numbers are hard to handle by an embedded system; for this
reason a quantizer is equipped to represent the real data to signed fixed point
notation, whi can in turn be easily translated into logic vectors of fixed
length. erefore, this implementation equips an additional blo preceding
the decoder, whi maps the vectors of real data received by the annel to an
array of logic vectors of fixed length and whi is shown in Figure 6.12. In this
way, the input port of the decoder accepts streams of N logic vectors whi
represent N fixed point numbers. Using generics, the value of N is set to 16,
but this can be set to any value decided at design time.

iter (input signal): Signal indicating the maximum number of iterations of the
belief propagation decoding algorithm. is design implements a decoder
whi utilizes the early termination seme described in Section 4.3; thus the
number of iterations actually implemented by the decoder at run time may be
less than the maximum number set at design time if the decoder detects that it
has converged to its final output before exhausting that maximum number
allowed by design. is signal is described in integer format, and in the
implementation this is translated into a logic vector of length proportionate
to the range of the numbers allowed.

dec (output signal): Decoded version of the encoded input message; the output of
the decoder. e output messages are logic vectors of M bits, same length as



76 Chapter 6. Implementation of an LDPC transceiver

the input messages originally sent to the encoder. e decoded output should
be as identical as possible to the message originally transmied, and ideally is
bit-by-bit the same. For this implementation, generics dictate that the output
messages are of 8 bits length.

clk_period (internal signal): Internal signal of the simulation testben indicat-
ing the clo period for the simulation; in the following simulations this signal
is set to represent 1ns clo period.

state (internal signal): Internal signal of the decoder (Unit-Under-Test (UUT )
during the simulation testben) indicating its state of operation. e decoding
process completes in a total of 26 states. Similarly to the encoding process,
during state 0 the decoder es on every clo ti whether the source of
the system has anged (indicating a new input message) and if it has, then
it moves through the next states of the decoding process of the new input
message. Finally, the output of the decoded message is exported during the
final state.

6.3.2 Implementation

e operation of the decoder is described in VHDL using the code presented in
subsection B.3.1 of Appendix B and it is divided into 26 states operated by a finite state
maine (FSM). In a way similar to the encoder, the decoder’s operation is controlled
by a process, whi is triggered by clo events and reset buon events. If the reset
signal gets the value “1” (indicating the reset buon is pressed), then the system is
initialized, stopping all actions and reseing the operation state to 0. Else, on ea
positive clo ti, the system es the state of its state and functions according
to it. In this way, the system moves gradually to the next states up until the final
state, during whi the decoder produces the decoded version of the input codeword
through its output port and aerwards restarts to state 0.

e decoder utilizes 7 blo RAMs to save data used and calculated during the
decoding process. e implementation of the RAMs is the same as those used by the
encoder. For this (8, 16) decoder the storage requirements are the following:

• one 8 × 16-bit memory to store the parity-e matrix H of the same
dimensions. Ea address of the memory points to a line ofH .

• two 128 × 16-bit memories to store the e nodes and variable nodes
locations whi exange messages during the decoding process. In ea
address of these memories the decoder saves the location of the nodes in binary
format. e memories are divided in banks of 8 and 16 cells respectively,
indicating the connected variable nodes ea e node has and vice versa.

• one 128× 1-bit memory to store the values of the aij matrix produced during
the decoding process. is matrix saves the signs of the log-likelihood ratios of
the variable-to-e messages in the form of “1” in case of negative number
and “0” when positive or zero.
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Figure 6.13: Decoder memory utilization; l is the length of the bit vectors of the input
numbers’ signed fixed point representation.

• three 128× 8-bit memories to store the valus of the bij matrix produced at the
same time as the aij matrix, as well as the values of the LLRs of the variable-
to-e messages L (vi→j) and e-to-variable messages L (uj→i). ese
memories save a number in signed fixed point notation in ea address in the
form of logic vectors of 8 bits.

e way these blo RAMs are implemented on the FPGA is presented in Figure
6.13 and the way these RAMs are divided into smaller memory banks is shown in
Figure 6.14.

During its operation, the decoder moves through 6 different main stages, ea of
whi serves a specific role in the decoding process. ese stages are described next.

Stage 1: System reset

A value of “1” to the signal reset indicates that the reset buon is pressed, and
when this case is detected, the system stops any calculations initiated by the decoding
process of an input codeword and resets its connected component whi is needed
a-priori for decoding and is not calculated during the process. is is the parity-
e matrix,H , whi is stored as an (M ×N -bits) array to a blo RAM. In order
to (re)write the values of the parity-e matrix to the memory, the “write-enable”
signal is set to “1” during this stage, and all memory addresses are filled with the
values of ea row ofH in succession. When the writing is complete, the system sets
its operation state to 0.
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Stage 2: System idle

During the time aer decoding an input codeword and before receiving a new
one, the decoder remains at state 0. When in this state, the decoder es its input
port, source, to detect anges, indicating a new input codeword to be decoded.
If a new codeword is detected, the system moves on to state 1 and successively to
the following states of the decoding procedure, otherwise it remains on state 0 and
repeats the e at every positive clo ti. Before moving to the first decoding
state, the system sets the “write-enable” signal of the blo RAMs cns and vns to
“1”, because these matrices will be calculated and stored in the following state. e
system also stops any writing to the parity-ematrix by seing the “write-enable”
signal of its corresponding memory blo to “0”.

Stage 3: Message decoding — (i) Che and variable nodes detection

e first stage of the decoding process includes the initial steps aer a new input
has been received for decoding. During states 1 to 3 the decoder initially finds the
connected e nodes and variable nodes of the parity-e matrix H and then
associates the input codeword with the non-zero elements ofH , in order to produce
the first variable-to-e LLR messages, L (vi→j). e e and variable nodes are
stored in two separate blo RAMs in the way whi is presented in Figure 6.14. In
ea memory address the location of the connected e node or variable node is
stored, starting from zero, and the last row of ea bank stores the total number of
connected nodes to the corresponding node of ea bank, also starting from zero.

For example, for a specific application, the connected variable nodes to e
node 0, cn0, are the variable nodes 2 and 8, notated as vn2 and vn8 respectively. For
this application, the e nodes memory bank will have the value 0010 (number 2
in the decimal numeral system) in address 0000 and value 1000 (decimal number 8)
in address 0001, for an implementation whi uses 4 bits to store data to the memory
blos and 4 bits for the address index. In addition, the value 0001 will be stored in
address 1111 (or 15), indicating that the first e node has 2 (0001 + 1) connected
variable nodes, whi can be found in the cells cn0 (0) and cn0 (1). is procedure
continues for the rest of the e nodes and is likewise repeated for the variable
nodes blo memory.

Aer this stage the decoding process is ready to begin the iterations of the belief
propagation algorithm at the following states.

Stage 4: Message decoding — (ii) Horizontal step, e nodes update

At state 4 the iterations of the decoding process begin and the following states
up to the final one are repeated for as many times as either the maximum number of
iterations indicate or until the decoder has detected that its output has converged.

At first, during state 4, the LLRs of the variable-to-e messages are separated
to the sign (aij) and absolute value (bij) of them, whi are both stored to two separate
memory blos. e blo RAM of aij is has dimensions ((M ×N)× 1-bit), since
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.Address .Value

.0
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.127

.cn0 (0)

.· · ·

.cn0 (7)

.cn1 (0)

.· · ·

.cn1 (7)

.cn2 (0)

.· · ·

.cn2 (7)

.· · ·

.cn15 (0)

.· · ·

.cn15 (7)

.

.Address .Value
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.127

.vn0 (0)

.· · ·

.vn0 (15)

.· · ·
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.· · ·
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Figure 6.14: Division of the bloRAMs utilized by the decoder into smaller banks; on
the le side is the e nodes memory blo, on the right side is the variable nodes
memory blo of a (M = 8, N = 16) LDPC decoder. Similarly, all blo RAMs are
divided into memory banks corresponding to the rows of their respective matrices.
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(M ×N) items of 1 bit ea are stored there. e bit gets a zero value for positive
sign or zero number, and on the other hand, a value of one for negative numbers.
e blo RAM of bij is has dimensions ((M ×N)× l-bits), because it will store
(M ×N) items of l-bit length signed fixed point numbers.

e horizontal step of the decoding process takes place during states 5 to 16, and
during these states the e nodes update their estimations and send their response
e-to-variable LLRs to their connected variable nodes.

ese steps are repeated per row for ea e node of the application. Initially,
eae node gathers information from all connected variable nodes in the form of
LLRmessages during state 6. en, it continues to find theminimum value of bij from
those received by their connected variable nodes, and aerwards, the multiplication
of the aij values of the connected nodes takes place. In a way similar to the encoder,
themultiplication is replaced by signales in order to reduce the implementation’s
complexity:

-- calculate product of a_i’j which can be either 1
-- or -1, therefore only counting the number of -1s
-- is necessary to calculate the value of the product
if a_ij_dout = ”1” then

neg_a_ij := neg_a_ij + 1;
end if;

and then the sign of the multiplication can be found by eing the parity of the
total number of −1s; an even count leads to positive product whereas an odd one
leads to negative product, whi is represented using the two’s complement of the
currently minimum binary number:

-- response check -to-variable LLRs
if neg_a_ij mod 2 = 0 then

-- positive product
L_u_ji_din <= cur_min;

else
-- negative product
L_u_ji_din <= (not cur_min) + ’1’;

end if;

Aer the last step, the response e-to-variable messages have been calculated
and they are stored to a separatememory blowith dimensions ((M ×N)× l-bits),
since (M ×N) l-bit length signed fixed point numbers will be stored there. When
this is complete, the decoder moves on to the following stage.

Stage 5: Message decoding — (iii) Vertical step, variable nodes update

In the next stage, the variable nodes update phase takes place (vertical step) and
the variable nodes calculate their response variable-to-e LLRs to send to their
connected e nodes. is process starts at state 17 and completes at state 23.
During this period the variable nodes gather information from all their connected
e nodes in the form of LLR messages and update their response variable-to-
e messages by the summation of the received L (vi→j) messages successively
per column.
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e calculated variable-to-e messages are then stored to their own memory
blo, also sized ((M ×N)× l-bits) as it will store similar items to the e-to-
variable messages memory blo, in order to be used by their connected e nodes
in the following iteration of the decoding algorithm.

During the following states, 24 and 25, the variable nodes also decide upon the
value of the decoded bits; however, this decision will be used only if its taken on the
last iteration of the process. Aer state 25, the system returns to state 17 and es
if there are more variable nodes yet to calculate their response messages, and if there
are, it repeats the variable nodes update for these nodes, otherwise both horizontal
and vertical step have finished and the decoding process of the current iteration is
complete. e decoder utilizes an implementation of the early-termination seme:
at the end of ea iteration it es whether the decoded bits of the current iteration
equal the decoded bits of the previous iteration, and if they do then the decoder
detects that it has most likely converged to its final output and proceeds to the
exporting of these bits in state 26. On the other hand, if the decoder has not converged
yet, it will return to state 4 of the horizontal step to repeat the procedure for the next
iteration, up to the maximum number of iterations defined by the corresponding
input port:
-- early termination check:
-- if the decoded output of this iteration equals
-- the output of the previous iteration then stop
if cur_iter < iter and dec_pre /= dec_temp then

cur_iter <= cur_iter + 1;
temp_i := 0;
temp_j := 0;
L_v_ij_add <= L_v_ij_add + ’1’;
dec_pre <= dec_temp;
stage <= 4;

else
stage <= 26;

end if;

Stage 6: Decoded bits exporting

Finally, when the decoder reaes state 26, the input codeword has been decoded
and the bits have been decided. e decoder sends the decoded bits to the output of
the system and resets its operation state to 0. is step also includes the removing of
the preceding parity-e bits, as only the last M bits of the decoded message will
be exported, since they are the ones whi correspond to the bits of the originally
sent message.

Using the VHDL code whi describes the operation of a generic (M,N) LDPC
decoder, a specific implementation for (M = 8, N = 16) codes has been made. e
design is also intended for a Xilinx Spartan-3E FPGA, the same model 3S250E FT256-
5 as the one used for the encoder.
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Slice Logic Utilization Used Available Utilization
Number of Slice Flip Flops 938 4.896 19%
Number of 4 input LUTs 1.799 4.896 36%
Number of occupied Slices 1.169 2.448 47%
Number of Slices containing only related logic 1.169 1.169 100%
Number of Slices containing unrelated logic 0 0 0%

Total Number of 4 input LUTs 2.032 4.896 41%
Number used as logic 1.799
Number used as a route-thru 233

Number of bonded IOBs 142 172 82%
IOB Flip Flops 136

Number of RAMB16s 5 12 41%
Number of BUFGMUXs 1 24 4%
Average Fanout of Non-Clo Nets 3,41

Table 6.3: Device utilization summary of a (M = 8, N = 16) decoder

e implementation of the decoder is a lot more complex than that of the encoder
since it requires more computations, use of larger arrays of data and the storing
of these data to more memory blos. However, using some simplifications like
those described previously, the device utilization is kept at reasonable rates, whi
is a crucial part of area-restricted applications, su as the implementation on an
embedded system.

e decoder occupies a total of 1.169 slices out of the 2.448 slices available on the
FPGA, meaning that the device utilization is at 47% in terms of occupied slices. e
device utilization summary of the design is presented in Table 6.3.

e synthesis process of the decoder also produces an RTL sematic whi
describes its operation in terms of the flow of signals (or transfer of data) between
hardware registers, and the logical operations performed on those signals. In
addition, a tenology sematic is produced, whi describes the design in terms
of logic elements optimized to the target device or tenology, su as LUTs, carry
logic, I/O buffers, and other tenology-specific components.

6.3.3 Simulation

e decoder has also been simulated to verify that it functions correctly using
the Xilinx ISim environment and a testben specifically created for it, whi can be
found in subsection B.3.2 of Appendix B. Like the simulation process for the encoder,
during the decoder’s simulation, input data are read from a specified file and are
passed to the input port of the decoder. Input data represent distorted versions of the
codewords sent by the encoder, and the level of distortion depends on the normalized
signal-to-noise ratio (Eb/N0). e representation of the input data is in signed fixed
point number format, with 1 bit used for the sign, 3 bits for the integer part and 4
bits for the decimal part, therefore the input data is a stream of 16 8-bit logic vectors,
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representing 16 real numbers (codewords). Aerwards, these input codewords are
decoded, and when the process has finished, the decoded bits exported to the output
port of the system are eed with the initially sent codewords, whi are also read
from the same file the input messages have been read.

Once all source messages of the input file have been decoded, the testben
extracts information about the number of the erroneous bits and the bit error rate
(BER) of the decodedmessages. e bit error rate is expected to have values similar to
those extracted by theMATLAB simulations using bertool for all different values of
Eb/N0 and maximum number of iterations (whi have been presented, for example,
in Figure 5.6 for an AWGN annel). In some cases, a minor increase in BER is
allowed, due to the penalty imposed to accuracy by the representation of the input
real numbers to fixed point notation, whi can result in loss of information.

e simulation has provided the decoder with 250 vectors of 16-bit inputs, whi
are distorted versions of codewords produced by the encoder in MATLAB, therefore
receiving a total of 4.000 bits. e decoder decodes all these bits, as part of the
decoding process, however, it extracts only half of them, whi are the bits whi
correspond to the originally sent messages without the parity-e bits. erefore,
the bits eed for correctness are the 2.000 output bits the decoder extracts.

In the following images several snapshots of the simulation of the decoder’s
operation as produced by ISim are presented. e simulation runs for Eb/N0 = 5dB
and amaximum of 7 iterations. First, a full view of the simulation execution is shown
in Figure 6.15. en, the initialization and the first execution of the simulation are
shown in Figure 6.16. Aerwards, a full view of the states of the decoding process
is presented in Figure 6.17 and the time required to complete the decoding process
is shown in Figure 6.18. Finally, Figure 6.19 shows the representation of the input
values the decoder expects and Figure 6.20 shows the bit error rate extraction on the
exported bits whi is used in order to verify the decoder’s correct operation.
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Chapter 7

Conclusion and future perspectives

Overview:

e final apter offers an overall review of the work covered in this
thesis, presenting the final remarks and future perspectives of the
designed LDPC transceiver.

e ever-growing communication needs of today’s modern society has led to the
rediscovery of the largely forgoen Low-Density Parity-Che (LDPC) codes, whi
were invented in 1962 by Robert G. Gallager. Along with turbo codes, LDPC codes
are currently considered as the best performing annel codes, since they are capable
of approaing very close to the Shannon limit.

LDPC codes are members of a large family of error correcting codes, the linear
error correcting codes, whi are methods of transmiing messages over noisy
transmission annels. LDPC codes are defined by a sparse parity-e matrix and
are controlled by a wide variety of parameters. As a result, LDPC codes offer a
wide versatility whi enables them to optimize their performance to a variety of
applications and fit various different annel specifications.

Recent examples of LDPC codes utilization include optical communications,
magnetic storage and satellite transmissions. Several new digital communication
standards have adopted LDPC codes, su as the new DVB-S2 standard for the
satellite transmission of digital television and 10GBase-T Ethernet, whi sends data
at 10 gigabits per second over twisted-pair cable. Nowadays, the implementation
of LDPC codes is a hot topic in the field of digital communication, with researers
constantly conceiving new decoding teniques in an aempt to gradually improve
performance and rea the ultimate limit of message transmission, the annel
capacity.

is thesis focused on reviewing the concepts of digital communication whi
include encoding and decoding of binary messages transmied through noisy
annels and dealt specifically with the LDPC coding seme. ree pillars support
the work of the thesis:
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Description of the communication seme and LDPC codes

efirst goal was to describe the communication seme, whi is used inmodern
telecommunications, and explore the options, capabilities but also the limitations
offered by it. It has been shown that optimal code decoding is possible using a simple
iterative algorithm, whi is employed in LDPC codes. It has also been shown that
performance of LDPC codes, as members of the iterative decoding algorithms, has a
typical waterfall-like curve, whi allows big improvements on the error probability
rates between specific values of signal to noise ratios. In addition, several available
teniques to further improve performance and implementation of LDPC codes have
been presented; these teniques aim at reducing the required supply voltage and
power consumption of an LDPC decoder, as well as increasing memory efficiency.

Comparison of different decoding algorithms

e second goal was to compare and contrast the effect of the decoding semes
on the performance of the LDPC codes. Four different algorithms have been observed
for their performance, in terms of bit error rates, under Additive White Gaussian
Noise (AWGN) annels, as well as Rician and Rayleigh fading annels. e results
produced in this work suggest that the bit error rate is heavily affected by the
osen decoding tenique and that it is inversely proportional to the implementation
complexity. As a result, the allenge when designing an LDPC decoder is to oose
the tenique whi offers the best trade-off between performance and complexity.
In addition, the simulations clearly show the limitations imposed in performance
by the transmission annels, whi must also be taken into consideration when
designing a decoder for a specific application; as amaer of fact, the figures show that
performance under fading annels is degraded by many decades on the logarithmic
scale compared to AWGN annels.

Implementation of an LDPC transceiver

e third goal was to oose the decoding tenique with the best ratio of
performance versus implementation complexity and utilize it on an LDPC transceiver
designed for a FPGA of the Xilinx Spartan-3E family. e fact that the Spartan
family belongs to the lower level platforms produced by Xilinx limits the hardware
components available to the transceiver; therefore an efficient and less hardware
demanding design had to be made. e decoder of the transceiver utilizes several
optimization teniques, from the ones whi have been described in previous
sections, in order to aieve this.

e contribution of this thesis will be to offer a unified framework to the
various decoding teniques described in it, in terms of operation performance and
implementation complexity. In addition, it offers a generic aritecture for LDPC
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transceivers whi can be used to implement on FPGA platforms. e design
parameters can be set independently ea time the transceiver is implemented (hence
the term generic), enabling the transceiver to fit a wide variety of application and
implementation specifications.

In the future, additional components can be added into the proposed transceiver
in order to further improve its performance, reduce its hardware requirements, or
enhance its operation by enabling different functions as well. e design is available
to anyone interested to work in the field of LDPC codes and can also be used
as an efficient tool to study the operation of LDPC codes and the way they are
implemented on hardwareips. e simulation codes are provided as well, enabling
experimentation with the different decoding teniques of LDPC codes.





Appendix A

MATLAB simulations source codes

Overview:

efirst appendix includes the source codes whi simulate the operation
of the four different decoders discussed in this thesis. e codes are
simulated in MATLAB and are implemented as functions, whi are
called by a main program according to the desired decoding tenique.
e following listings include the steps of the iterations of the decoding
process for ea decoding algorithm.

A.1 Hard-decision (bit-flip) decoder

1 % Iteration steps during the decoding process
2 % of a hard-decision (bit-flip) decoder
3 %
4 % in_msg: incoming message
5 % H: parity -check matrix
6 % iter: number of iterations of the decoding process
7
8 for n = 1:iter
9
10 % horizontal step (check nodes update)
11 for i = 1:M
12
13 % connected variable nodes
14 vns = find(H(i, :));
15
16 % collect information from all connected
17 % variable nodes
18 for k = 1:length(vns)
19 u_ji(i, vns(k)) = mod(sum(v_ij(i, vns))...
20 + v_ij(i, vns(k)), 2);
21 end
22
23 end % horizontal step
24
25 % vertical step (variable nodes update)
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26 for j = 1:N
27
28 % connected check nodes
29 cns = find(H(:, j));
30
31 % ones from connected check nodes
32 cns_ones = length(find(u_ji(cns, j)));
33
34 for k = 1:length(cns)
35 % update v_ij based on the majority of incoming
36 % information from connected check nodes
37 % and input source
38 if cns_ones + in_msg(j) >= length(cns)...
39 - cns_ones + u_ji(cns(k), j)
40 v_ij(cns(k), j) = 1;
41 else
42 v_ij(cns(k), j) = 0;
43 end
44 end
45
46 % hard decision on bit decoding
47 if cns_ones + in_msg(j) >= length(cns) - cns_ones
48 dec(j) = 1;
49 else
50 dec(j) = 0;
51 end
52
53 end % vertical step
54
55 end % iterations

Listing A.1: Hard-decision (bit-flip) decoder MATLAB code

A.2 Probability-domain SPA decoder

1 % Iteration steps during the decoding process
2 % of a probability -domain sum-product algorithm decoder
3 %
4 % in_msg: incoming message
5 % H: parity -check matrix
6 % iter: number of iterations of the decoding process
7
8 for n = 1:iter
9
10 % horizontal step (check nodes update)
11 for i = 1:M
12
13 % connected variable nodes
14 vns = find(H(i, :));
15
16 % collect information from all connected
17 % variable nodes
18 for k = 1:length(vns)
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19
20 % column products
21 u_ji_temp = 1;
22 for l = 1:length(vns)
23 if l ~= k
24 u_ji_temp = u_ji_temp * (v_ij_0(i, vns(l))...
25 - v_ij_1(i, vns(l)));
26 end
27 end
28
29 % response check -to-variable messages
30 u_ji_0(i, vns(k)) = (1 + u_ji_temp) / 2;
31 u_ji_1(i, vns(k)) = (1 - u_ji_temp) / 2;
32
33 end
34
35 end % horizontal step
36
37 % vertical step (variable nodes update)
38 for j = 1:N
39
40 % connected check nodes
41 cns = find(H(:, j));
42
43 % update v_ij
44 for k = 1:length(cns)
45
46 % row products
47 prod_u_ji_0 = 1;
48 prod_u_ji_1 = 1;
49 for l = 1:length(cns)
50 if l ~= k
51 prod_u_ji_0 = prod_u_ji_0 * u_ji_0(cns(l), j);
52 prod_u_ji_1 = prod_u_ji_1 * u_ji_1(cns(l), j);
53 end
54 end
55
56 % update constants K_ij
57 K_ij_0(cns(k), j) = P_0(j) * prod_u_ji_0;
58 K_ij_1(cns(k), j) = P_1(j) * prod_u_ji_1;
59
60 % response variable -to-check messages
61 v_ij_0(cns(k), j) = K_ij_0(cns(k), j)...
62 ./(K_ij_0(cns(k), j) + K_ij_1(cns(k), j));
63 v_ij_1(cns(k), j) = K_ij_1(cns(k), j)...
64 ./(K_ij_0(cns(k), j) + K_ij_1(cns(k), j));
65 end
66
67 % update constants K_i
68 K_i_0 = P_0(j) * prod(u_ji_0(cns, j));
69 K_i_1 = P_1(j) * prod(u_ji_1(cns, j));
70
71 % calculate Q_i
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72 Q_i_0 = K_i_0/(K_i_0 + K_i_1);
73 Q_i_1 = K_i_1/(K_i_0 + K_i_1);
74
75 % soft-decision on bit decoding depending
76 % on the bigger one of the Q_i’s
77 if Q_i_1 > Q_i_0
78 dec(j) = 1;
79 else
80 dec(j) = 0;
81 end
82
83 end % vertical step
84
85 end % iterations

Listing A.2: Probability-domain SPA decoder MATLAB code

A.3 Log-domain SPA decoder

1 % Iteration steps during the decoding process
2 % of a log-domain sum-product algorithm decoder
3 %
4 % in_msg: incoming message
5 % H: parity -check matrix
6 % iter: number of iterations of the decoding process
7
8 % find variable and check nodes
9 [H_rows, H_cols] = find(H);
10
11 for n = 1:iter
12
13 % the LLR of variable -to-check messages is separated as:
14 a_ij = sign(L_v_ij);
15 b_ij = abs(L_v_ij);
16
17 % calculate phi function
18 for l = 1:length(H_rows)
19 phi_b_ij(H_rows(l), H_cols(l)) = ...
20 log((exp(b_ij(H_rows(l), H_cols(l))) + 1) / ...
21 (exp(b_ij(H_rows(l), H_cols(l))) - 1));
22 end
23
24 % horizontal step (check nodes update)
25 for i = 1:M
26
27 % connected variable nodes
28 vns = find(H(i, :));
29
30 % collect information from all connected
31 % variable nodes
32 for k = 1:length(vns)
33
34 % sum of phi(b_i’j)
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35 sum_phi_b_ij = sum(phi_b_ij(i, vns)) ...
36 - phi_b_ij(i, vns(k));
37
38 % in order to avoid division by zero (or extremely
39 % small number) set a minimum limit to the value
40 % of the sums
41 if sum_phi_b_ij < 1e-10
42 sum_phi_b_ij = 1e-10;
43 end
44
45 % calculate phi(sum(phi(b_ij)))
46 phi_sum_phi_b_ij = log((exp(sum_phi_b_ij) + 1) / ...
47 (exp(sum_phi_b_ij) - 1));
48
49 % calculate product of a_i’j
50 prod_a_ij = prod(a_ij(i, vns)) * a_ij(i, vns(k));
51
52 % response check -to-variable LLRs
53 L_u_ji(i, vns(k)) = prod_a_ij * phi_sum_phi_b_ij;
54
55 end
56
57 end % horizontal step
58
59 % vertical step (variable nodes update)
60 for j = 1:N
61
62 % connected check nodes
63 cns = find(H(:, j));
64
65 % response variable -to-check LLRs
66 for k = 1:length(cns)
67 L_v_ij(cns(k), j) = L_c_i(j) + sum(L_u_ji(cns, j)) ...
68 - L_u_ji(cns(k), j);
69 end
70
71 % calculate L_Q_i
72 L_Q_i = L_c_i(j) + sum(L_u_ji(cns, j));
73
74 % decide upon the sign of the LLR
75 if L_Q_i < 0
76 dec(j) = 1;
77 else
78 dec(j) = 0;
79 end
80
81 end % vertical step
82
83 end % iterations

Listing A.3: Log-domain SPA decoder MATLAB code
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A.4 Simplified log-domain SPA decoder

1 % Iteration steps during the decoding process
2 % of a simplified log-domain sum-product algorithm decoder
3 %
4 % in_msg: incoming message
5 % H: parity -check matrix
6 % iter: number of iterations of the decoding process
7
8 for n = 1:iter
9
10 % the LLR of variable -to-check messages is separated as:
11 a_ij = sign(L_v_ij);
12 b_ij = abs(L_v_ij);
13
14 % horizontal step (check nodes update)
15 for i = 1:M
16
17 % connected variable nodes
18 vns = find(H(i, :));
19
20 % collect information from all connected
21 % variable nodes
22 for k = 1:length(vns)
23
24 % get the minimum value of b_ij
25 min_b_ij = realmax;
26 for l = 1:length(vns)
27 if l ~= k
28 if b_ij(i, vns(l)) < min_b_ij
29 min_b_ij = b_ij(i, vns(l));
30 end
31 end
32 end
33
34 % calculate product of a_i’j
35 prod_a_ij = prod(a_ij(i, vns)) * a_ij(i, vns(k));
36
37 % response check -to-variable LLRs
38 L_u_ji(i, vns(k)) = prod_a_ij * min_b_ij;
39
40 end
41
42 end % horizontal step
43
44 % vertical step (variable nodes update)
45 for j = 1:N
46
47 % connected check nodes
48 cns = find(H(:, j));
49
50 % response variable -to-check LLRs
51 for k = 1:length(cns)
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52 L_v_ij(cns(k), j) = L_c_i(j) + sum(L_u_ji(cns, j)) ...
53 - L_u_ji(cns(k), j);
54 end
55
56 % calculate L_Q_i
57 L_Q_i = L_c_i(j) + sum(L_u_ji(cns, j));
58
59 % decide upon the sign of the LLR
60 if L_Q_i < 0
61 dec(j) = 1;
62 else
63 dec(j) = 0;
64 end
65
66 end % vertical step
67
68 end % iterations

Listing A.4: Simplified log-domain SPA decoder MATLAB code
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Implementation source codes

Overview:

e second appendix includes the source codes whi describe the
transceiver’s implementation on a Xilinx FPGA. e codes are wrien
in VHDL and are separated into the two entities of the transceiver, the
encoder and the decoder, as well as the blo RAM module they both
utilize. Ea implementation is succeeded by its simulation testben
whi has been used in order to verify correct operation.

B.1 Blo RAM VHDL source code

1 -- Write -after -read block RAM implementation
2 -- synchronized to system clock and operated
3 -- by write enable signal.
4
5 library ieee;
6 use ieee.std_logic_1164.all;
7 use ieee.std_logic_arith.all;
8 use ieee.std_logic_unsigned.all;
9
10 entity sync_ram is
11 port (
12 clk : in std_logic;
13 we : in std_logic;
14 address : in std_logic_vector;
15 data_in : in std_logic_vector;
16 data_out : out std_logic_vector);
17 end sync_ram;
18
19
20 architecture rtl of sync_ram is
21
22 type ram_type is array (0 to (2**address’length)-1) of

std_logic_vector(data_in’range);
23 signal ram : ram_type;
24 signal read_address : std_logic_vector(address’range);
25
26 begin
27
28 process(clk)
29
30 begin

103
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31
32 if rising_edge(clk) then
33
34 if we = ’1’ then
35 ram(conv_integer(unsigned(address))) <= data_in;
36 end if;
37
38 read_address <= address;
39
40 end if;
41
42 end process;
43
44 data_out <= ram(conv_integer(unsigned(read_address)));
45
46 end architecture rtl;

Listing B.1: Synronous write-aer-read blo RAM

B.2 Encoder VHDL source codes

B.2.1 Encoder implementation

1 -- Low-density parity -check codes encoder
2 -- for rate -1/2 applications.
3
4 library ieee;
5 use ieee.std_logic_1164.all;
6 use ieee.std_logic_arith.all;
7 use ieee.std_logic_unsigned.all;
8
9
10 entity encoder is
11
12 generic (
13 M : natural := 8;
14 N : natural := 16);
15
16 port (
17 clk : in std_logic;
18 reset : in std_logic;
19 source : in std_logic_vector(M-1 downto 0);
20 enc : out std_logic_vector(N-1 downto 0));
21
22 end encoder;
23
24
25 architecture behavioral of encoder is
26
27 -- block ram component description
28 component sync_ram
29 port (
30 clk : in std_logic;
31 we : in std_logic;
32 address : in std_logic_vector;
33 data_in : in std_logic_vector;
34 data_out : out std_logic_vector);
35 end component;
36
37 -- signals declaration
38 signal state : natural range 0 to 5;
39 signal cur_source : std_logic_vector(M-1 downto 0);
40 signal pre_source : std_logic_vector(M-1 downto 0);
41 signal tmpbits : std_logic_vector(M-1 downto 0);
42 signal chkbits : std_logic_vector(M-1 downto 0);
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43
44 -- parity -check matrix ram signals
45 signal h_we : std_logic;
46 signal h_add : std_logic_vector(2 downto 0);
47 signal h_din : std_logic_vector(0 to N-1);
48 signal h_dout : std_logic_vector(0 to N-1);
49
50 -- inverse parity -check matrix ram signals
51 signal inv_a_we : std_logic;
52 signal inv_a_add : std_logic_vector(2 downto 0);
53 signal inv_a_din : std_logic_vector(0 to M-1);
54 signal inv_a_dout : std_logic_vector(0 to M-1);
55
56 begin
57
58 -- component associations
59 H_ram : sync_ram port map (clk, h_we, h_add, h_din, h_dout);
60 inv_A_ram : sync_ram port map (clk, inv_a_we, inv_a_add , inv_a_din ,

inv_a_dout);
61
62 process(clk, reset)
63
64 -- variable declarations
65 variable temp : natural;
66 variable temp_i : natural;
67 variable temp_j : natural;
68
69 begin
70
71 if clk’event and clk = ’1’ then
72
73 if reset = ’1’ then
74
75 -- predefined [8x16] parity -check matrix
76 -- H = [A B] and the inverse matrix of A
77 -- (inv_A) stored to memory
78 h_we <= ’1’;
79 h_add <= ”000”;
80 h_din <= ”1000000010110000”;
81
82 inv_a_we <= ’1’;
83 inv_a_add <= ”000”;
84 inv_a_din <= ”10000000”;
85
86 case h_add is
87
88 when ”000” =>
89 h_add <= h_add + ’1’;
90 h_din <= ”0100001001000100”;
91 inv_a_add <= inv_a_add + ’1’;
92 inv_a_din <= ”11010011”;
93
94 when ”001” =>
95 h_add <= h_add + ’1’;
96 h_din <= ”0010000000010100”;
97 inv_a_add <= inv_a_add + ’1’;
98 inv_a_din <= ”00100000”;
99

100 when ”010” =>
101 h_add <= h_add + ’1’;
102 h_din <= ”1001000000000001”;
103 inv_a_add <= inv_a_add + ’1’;
104 inv_a_din <= ”10010000”;
105
106 when ”011” =>
107 h_add <= h_add + ’1’;
108 h_din <= ”0000100011001000”;
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109 inv_a_add <= inv_a_add + ’1’;
110 inv_a_din <= ”00001000”;
111
112 when ”100” =>
113 h_add <= h_add + ’1’;
114 h_din <= ”0010110000100011”;
115 inv_a_add <= inv_a_add + ’1’;
116 inv_a_din <= ”00101100”;
117
118 when ”101” =>
119 h_add <= h_add + ’1’;
120 h_din <= ”0001001110000010”;
121 inv_a_add <= inv_a_add + ’1’;
122 inv_a_din <= ”10010011”;
123
124 when ”110” =>
125 h_add <= h_add + ’1’;
126 h_din <= ”0000000100001101”;
127 inv_a_add <= inv_a_add + ’1’;
128 inv_a_din <= ”00000001”;
129
130 when ”111” =>
131 -- initialization
132 state <= 0;
133
134 when others =>
135 null;
136
137 end case;
138
139
140 else
141
142 case state is
143
144 when 0 =>
145
146 -- main process has started
147 -- stopping any writing to parity -check matrix
148 -- and inverse A initialized by reset button
149 h_we <= ’0’;
150 inv_a_we <= ’0’;
151
152 if source /= pre_source then
153
154 cur_source <= source;
155
156 -- read first rows of H and inv_A
157 h_add <= ”000”;
158 inv_a_add <= ”000”;
159
160 -- continue to next state
161 temp := 0;
162 temp_i := 0;
163 temp_j := 0;
164 state <= 1;
165
166 else
167
168 state <= 0;
169
170 end if;
171
172
173 when 1 =>
174
175 state <= 2;
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176
177
178 -- start of encoding process:
179 -- chkbits = inv_A * B * source
180 when 2 =>
181
182 -- tmpbits = B * source
183 if temp_i < M then
184
185 if temp_j < M then
186
187 -- calculate [H(i)(N-M+j) * source(M-1-j)] by
188 -- replacing multiplication with signal checks
189 if h_dout(N-M+temp_j) = ’1’ and cur_source(M-1-temp_j) =

’1’ then
190 temp := temp + 1;
191 end if;
192
193 temp_j := temp_j + 1;
194
195 else
196
197 -- calculate temporary bits
198 if temp mod 2 = 1 then
199 tmpbits(M-1-temp_i) <= ’1’;
200 else
201 tmpbits(M-1-temp_i) <= ’0’;
202 end if;
203
204 -- repeat for next row of H
205 temp := 0;
206 temp_i := temp_i + 1;
207 temp_j := 0;
208 h_add <= h_add + ’1’;
209 state <= 1;
210
211 end if;
212
213 else
214
215 -- continue to next state
216 temp := 0;
217 temp_i := 0;
218 temp_j := 0;
219 state <= 3;
220
221 end if;
222
223
224 when 3 =>
225
226 -- chkbits = inv_A * tmpbits
227 if temp_i < M then
228
229 if temp_j < M then
230
231 -- calculate [inv_A(i)(j) * tmpbits(M-1-j)] by
232 -- replacing multiplication with signal checks
233 if inv_a_dout(temp_j) = ’1’ and tmpbits(M-1-temp_j) = ’1’

then
234 temp := temp + 1;
235 end if;
236
237 temp_j := temp_j + 1;
238
239 else
240
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241 -- calculate check bits
242 if temp mod 2 = 1 then
243 chkbits(M-1-temp_i) <= ’1’;
244 else
245 chkbits(M-1-temp_i) <= ’0’;
246 end if;
247
248 -- repeat for next row of H
249 temp := 0;
250 temp_i := temp_i + 1;
251 temp_j := 0;
252 inv_a_add <= inv_a_add + ’1’;
253 state <= 4;
254
255 end if;
256
257 else
258
259 -- check bits have been calculated;
260 -- continue to final state
261 state <= 5;
262
263 end if;
264
265
266 when 4 =>
267
268 state <= 3;
269
270
271 when 5 =>
272
273 -- output encoded data: enc = [chkbits source]
274 enc(N-1 downto M) <= chkbits;
275 enc(M-1 downto 0) <= cur_source;
276
277 -- restart
278 state <= 0;
279 pre_source <= cur_source;
280
281
282 when others =>
283
284 null;
285
286 end case;
287
288 end if; -- reset = ’1’
289
290 end if; -- clk’event & clk = ’1’
291
292 end process;
293
294 end behavioral;

Listing B.2: LDPC codes encoder for rate-1
2
applications

B.2.2 Encoder simulation testben
1 -- Simulation testbench for the
2 -- low-density parity -check codes encoder.
3
4 library ieee;
5 use ieee.std_logic_1164.all;
6 use ieee.std_logic_arith.all;
7 use ieee.std_logic_unsigned.all;
8 use std.textio.all;
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9
10 entity enc_testbench is
11 generic (
12 M : integer := 8;
13 N : integer := 16);
14 end enc_testbench;
15
16
17 architecture behavior of enc_testbench is
18
19 file source_vectors : text open read_mode is ”source_vectors.txt”;
20 type array_of_bit_N is array(N-1 downto 0) of bit;
21 type array_of_bit_M is array(M-1 downto 0) of bit;
22
23 -- component declaration for the Unit Under Test (UUT)
24 component encoder
25 port (
26 clk : in std_logic;
27 reset : in std_logic;
28 source : in std_logic_vector(M-1 downto 0);
29 enc : out std_logic_vector(N-1 downto 0));
30 end component;
31
32 -- inputs
33 signal clk : std_logic := ’0’;
34 signal reset : std_logic := ’1’;
35 signal source : std_logic_vector(M-1 downto 0);
36
37 -- outputs
38 signal enc : std_logic_vector(N-1 downto 0);
39
40 -- clock period definitions
41 constant clk_period : time := 1 ns;
42
43 -- verification signal
44 signal enc_check : std_logic_vector(N-1 downto 0);
45
46 begin
47
48 -- instantiate the Unit Under Test (UUT)
49 uut: encoder port map (
50 clk => clk,
51 reset => reset,
52 source => source,
53 enc => enc);
54
55
56 -- clock process
57 clk_process: process
58
59 begin
60 clk <= ’0’;
61 wait for clk_period/2;
62 clk <= ’1’;
63 wait for clk_period/2;
64 end process;
65
66
67 -- stimulus process
68 stim_proc: process
69
70 -- I/O variable declarations
71 variable source_buf : line;
72 variable enc_buf : line;
73 variable source_var : array_of_bit_M;
74 variable enc_var : array_of_bit_N;
75



110 Appendix B. Implementation source codes

76 -- error check variable declarations
77 variable tot_errors : integer;
78 variable tot_bits : integer;
79
80 -- wait time between consecutive inputs
81 -- variable declaration
82 variable wait_time : integer;
83
84 begin
85
86 -- reset the system
87 wait for clk_period * 10;
88 reset <= ’0’;
89
90 -- start decoding simulation
91 report ”Starting simulation”;
92 tot_errors := 0;
93 tot_bits := 0;
94
95 -- set wait time
96 wait_time := 230;
97
98 -- read data from file
99 while not endfile(source_vectors) loop

100
101 -- read source vectors to be encoded
102 readline(source_vectors , source_buf);
103
104 for i in M-1 downto 0 loop
105 read(source_buf , source_var(i));
106 end loop;
107
108 -- convert input message
109 -- to std_logic format
110 for i in M-1 downto 0 loop
111 if source_var(i) = ’1’ then
112 source(i) <= ’1’;
113 else
114 source(i) <= ’0’;
115 end if;
116 end loop;
117
118 -- read expected encoded output
119 readline(source_vectors , enc_buf);
120
121 for i in N-1 downto 0 loop
122 read(enc_buf, enc_var(i));
123 end loop;
124
125 -- convert expected encoded output
126 -- to std_logic format
127 for i in N-1 downto 0 loop
128 if enc_var(i) = ’1’ then
129 enc_check(i) <= ’1’;
130 else
131 enc_check(i) <= ’0’;
132 end if;
133 end loop;
134
135 -- wait until decoding has finished
136 wait for wait_time * 1ns;
137
138 -- check output with the expected one
139 -- and calculate erroneous bits
140 for i in N-1 downto 0 loop
141 if enc(i) /= enc_check(i) then
142 tot_errors := tot_errors + 1;
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143 end if;
144 end loop;
145
146 -- increase total number of decoded bits
147 tot_bits := tot_bits + N;
148
149 -- wait before sending next input message
150 wait for clk_period * 2;
151
152 end loop;
153
154 -- when all messages have been encoded
155 -- the simulation prints the total number
156 -- of erroneous encoded bits to the console
157 report ”Err. bits: ” & integer’image(tot_errors) & ” / ” &

integer’image(tot_bits);
158 report ”Simulation ended.”;
159
160 wait;
161
162 end process;
163
164 end;

Listing B.3: Simulation testben for the LDPC codes encoder

B.3 Decoder VHDL source codes

B.3.1 Decoder implementation

1 -- Low-density parity -check codes simplified
2 -- log-domain sum-product algorithm decoder
3 -- for rate -1/2 applications including early
4 -- termination scheme and input quantization
5 -- to signed fixed point format.
6
7 library ieee;
8 use ieee.std_logic_1164.all;
9 use ieee.std_logic_arith.all;
10 use ieee.std_logic_unsigned.all;
11
12 -- input message type description
13 package dec_pkg is
14 type input_array is array(0 to 15) of std_logic_vector(7 downto 0);
15 end dec_pkg;
16
17 library ieee;
18 use ieee.std_logic_1164.all;
19 use ieee.std_logic_arith.all;
20 use ieee.std_logic_unsigned.all;
21 use work.dec_pkg.all;
22
23 entity decoder is
24
25 generic (
26 M : natural := 8;
27 N : natural := 16;
28 add_length : natural := 7;
29 sfixed_length : natural := 8);
30
31 port (
32 clk : in std_logic;
33 reset : in std_logic;
34 source : in input_array;
35 iter : in natural range 1 to 10;
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36 dec : out std_logic_vector(M-1 downto 0));
37
38 end decoder;
39
40
41 architecture behavioral of decoder is
42
43 -- block ram component description
44 component sync_ram
45 port (
46 clk : in std_logic;
47 we : in std_logic;
48 address : in std_logic_vector;
49 data_in : in std_logic_vector;
50 data_out : out std_logic_vector);
51 end component;
52
53 type temp_cns_array is array(0 to N-1) of natural;
54
55 -- signals declaration
56 signal state : natural range 0 to 26;
57 signal cur_iter : natural; -- range 0 to 11;
58 signal cur_source : input_array;
59 signal pre_source : input_array;
60 signal L_c_i : input_array;
61 signal dec_temp : std_logic_vector(0 to N-1);
62 signal dec_pre : std_logic_vector(0 to N-1);
63
64 -- parity -check matrix ram signals
65 signal h_we : std_logic;
66 signal h_add : std_logic_vector(2 downto 0);
67 signal h_din : std_logic_vector(0 to N-1);
68 signal h_dout : std_logic_vector(0 to N-1);
69
70 -- a_ij matrix ram signals
71 signal a_ij_we : std_logic;
72 signal a_ij_add : std_logic_vector(add_length -1 downto 0);
73 signal a_ij_din : std_logic_vector(0 to 0); -- bit
74 signal a_ij_dout : std_logic_vector(0 to 0); -- bit
75
76 -- b_ij matrix ram signals
77 signal b_ij_we : std_logic;
78 signal b_ij_add : std_logic_vector(add_length -1 downto 0);
79 signal b_ij_din : std_logic_vector(sfixed_length -1 downto 0);
80 signal b_ij_dout : std_logic_vector(sfixed_length -1 downto 0);
81
82 -- vns matrix ram signals
83 signal vns_we : std_logic;
84 signal vns_add : std_logic_vector(add_length -1 downto 0);
85 signal vns_din : std_logic_vector(0 to N-1);
86 signal vns_dout : std_logic_vector(0 to N-1);
87
88 -- cns matrix ram signals
89 signal cns_we : std_logic;
90 signal cns_add : std_logic_vector(add_length -1 downto 0);
91 signal cns_din : std_logic_vector(0 to N-1);
92 signal cns_dout : std_logic_vector(0 to N-1);
93
94 -- L_v_ij matrix ram signals
95 signal L_v_ij_we : std_logic;
96 signal L_v_ij_add : std_logic_vector(add_length -1 downto 0);
97 signal L_v_ij_din : std_logic_vector(sfixed_length -1 downto 0);
98 signal L_v_ij_dout : std_logic_vector(sfixed_length -1 downto 0);
99

100 -- L_u_ji matrix ram signals
101 signal L_u_ji_we : std_logic;
102 signal L_u_ji_add : std_logic_vector(add_length -1 downto 0);
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103 signal L_u_ji_din : std_logic_vector(sfixed_length -1 downto 0);
104 signal L_u_ji_dout : std_logic_vector(sfixed_length -1 downto 0);
105
106 begin
107
108 -- component associations
109 H_ram : sync_ram port map (clk, h_we, h_add, h_din, h_dout);
110 vns_ram : sync_ram port map (clk, vns_we, vns_add, vns_din, vns_dout);
111 cns_ram : sync_ram port map (clk, cns_we, cns_add, cns_din, cns_dout);
112 a_ij_ram : sync_ram port map (clk, a_ij_we, a_ij_add, a_ij_din, a_ij_dout);
113 b_ij_ram : sync_ram port map (clk, b_ij_we, b_ij_add, b_ij_din, b_ij_dout);
114 L_v_ij_ram : sync_ram port map (clk, L_v_ij_we , L_v_ij_add , L_v_ij_din ,

L_v_ij_dout);
115 L_u_ji_ram : sync_ram port map (clk, L_u_ji_we , L_u_ji_add , L_u_ji_din ,

L_u_ji_dout);
116
117 process(clk, reset)
118
119 -- variable declarations
120 variable temp_i : natural;
121 variable temp_j : natural;
122 variable temp_k : natural;
123 variable temp_l : natural;
124
125 variable temp_cns : temp_cns_array;
126 variable temp_vns : natural;
127 variable temp_cns_i : natural;
128
129 variable vns_temp : natural;
130 variable cns_temp : natural;
131
132 variable cur_min : std_logic_vector(M-1 downto 0);
133 variable neg_a_ij : natural;
134 variable sum_L_u_ji : std_logic_vector(M-1 downto 0);
135 variable L_Q_i : std_logic_vector(M-1 downto 0);
136
137 begin
138
139 if clk’event and clk = ’1’ then
140
141 if reset = ’1’ then
142
143 -- predefined [8x16] parity -check matrix H to memory
144 h_we <= ’1’;
145 h_add <= ”000”;
146 h_din <= ”1000000010110000”;
147
148 case h_add is
149
150 when ”000” =>
151 h_add <= h_add + ’1’;
152 h_din <= ”0100001001000100”;
153
154 when ”001” =>
155 h_add <= h_add + ’1’;
156 h_din <= ”0010000000010100”;
157
158 when ”010” =>
159 h_add <= h_add + ’1’;
160 h_din <= ”1001000000000001”;
161
162 when ”011” =>
163 h_add <= h_add + ’1’;
164 h_din <= ”0000100011001000”;
165
166 when ”100” =>
167 h_add <= h_add + ’1’;
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168 h_din <= ”0010110000100011”;
169
170 when ”101” =>
171 h_add <= h_add + ’1’;
172 h_din <= ”0001001110000010”;
173
174 when ”110” =>
175 h_add <= h_add + ’1’;
176 h_din <= ”0000000100001101”;
177
178 when ”111” =>
179 -- initialization
180 state <= 0;
181
182 when others =>
183 null;
184
185 end case;
186
187
188 else
189
190 case state is
191
192 when 0 =>
193
194 -- main process has started
195 -- stopping any writing to parity -check matrix
196 -- initialized by reset button
197 h_we <= ’0’;
198
199 if source /= pre_source then
200
201 cur_source <= source;
202 cur_iter <= 0;
203
204 vns_we <= ’1’;
205 vns_add <= conv_std_logic_vector(0, add_length);
206 vns_din <= conv_std_logic_vector(0, N);
207
208 cns_we <= ’1’;
209 cns_add <= conv_std_logic_vector(0, add_length);
210 cns_din <= conv_std_logic_vector(0, N);
211
212 L_v_ij_we <= ’1’;
213 L_v_ij_add <= conv_std_logic_vector(0, add_length);
214 L_v_ij_din <= conv_std_logic_vector(0, sfixed_length);
215
216 -- read first row of H
217 h_add <= ”000”;
218 h_we <= ’0’;
219
220 state <= 1;
221
222 else
223
224 state <= 0;
225
226 end if;
227
228
229 -- start of decoding process
230 when 1 =>
231
232 -- initializations of the decoding process
233 for i in 0 to N-1 loop
234 L_c_i(i) <= not(cur_source(i)) + ’1’;
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235 temp_cns(i) := 0;
236 end loop;
237
238 vns_we <= ’0’;
239 cns_we <= ’0’;
240
241 -- continue to next state
242 temp_i := 0;
243 temp_j := 0;
244 temp_cns_i := 0;
245 temp_vns := 0;
246 state <= 2;
247
248
249 when 2 =>
250
251 -- initially associate the L_c_i matrix
252 -- with non-zero elements of H and find
253 -- connected check and variable nodes
254 if temp_j < N then
255
256 if H_dout(temp_j) /= ’0’ then
257
258 L_v_ij_we <= ’1’;
259 L_v_ij_add <= conv_std_logic_vector(temp_i*N + temp_j,

add_length);
260 L_v_ij_din <= L_c_i(temp_j);
261
262 vns_we <= ’1’;
263 vns_add <= conv_std_logic_vector(temp_i*N + temp_vns,

add_length);
264 vns_din <= conv_std_logic_vector(temp_j, N);
265 temp_vns := temp_vns + 1;
266
267 cns_we <= ’1’;
268 cns_add <= conv_std_logic_vector(temp_j*M +

temp_cns(temp_j), add_length);
269 cns_din <= conv_std_logic_vector(temp_i, N);
270 temp_cns(temp_j) := temp_cns(temp_j) + 1;
271
272 else
273
274 L_v_ij_we <= ’1’;
275 L_v_ij_add <= conv_std_logic_vector(temp_i*N + temp_j,

add_length);
276 L_v_ij_din <= conv_std_logic_vector(0, sfixed_length);
277
278 end if;
279
280 temp_j := temp_j + 1;
281
282 if temp_j = N-1 then
283 h_add <= h_add + ’1’;
284 end if;
285
286 state <= 2;
287
288 else
289
290 -- connected variable nodes
291 vns_add <= conv_std_logic_vector(temp_i*N + N-1, add_length);
292 vns_din <= conv_std_logic_vector(temp_vns - 1, N);
293
294 -- continue to next row
295 temp_i := temp_i + 1;
296
297 -- repeat if necessary
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298 if temp_i < M then
299
300 -- repeat for the next row of H
301 temp_j := 0;
302 temp_vns := 0;
303 state <= 2;
304
305 else
306
307 -- proceed to next state
308 L_v_ij_we <= ’0’;
309 L_v_ij_add <= conv_std_logic_vector(0, add_length);
310 state <= 3;
311
312 end if;
313
314 end if;
315
316
317 when 3 =>
318
319 if temp_cns_i < N then
320
321 -- connected check nodes
322 cns_add <= conv_std_logic_vector(temp_cns_i*M + M-1,

add_length);
323 cns_din <= conv_std_logic_vector(temp_cns(temp_cns_i) - 1,

N);
324
325 -- repeat for the next column of cns
326 temp_cns_i := temp_cns_i + 1;
327 state <= 3;
328
329 else
330
331 -- proceed to next state
332 temp_i := 0;
333 temp_j := 0;
334 vns_we <= ’0’;
335 cns_we <= ’0’;
336 L_v_ij_add <= conv_std_logic_vector(1, add_length);
337 -- prefetch number of connected check nodes for the
338 -- first variable node [vn matrix (0)(N-1)]
339 vns_add <= conv_std_logic_vector(N-1, add_length);
340 cur_iter <= 1;
341 state <= 4;
342
343 end if;
344
345
346 when 4 =>
347
348 -- repeat the process for the number of iterations
349 if cur_iter < iter+1 then
350
351 L_v_ij_add <= L_v_ij_add + ’1’;
352
353 -- the LLR of variable -to-check messages is separated:
354 -- a_ij = 1 if sign(L_v_ij) = -1
355 -- b_ij = abs(L_v_ij)
356 if temp_i < M then
357
358 a_ij_we <= ’1’;
359 a_ij_add <= conv_std_logic_vector(temp_i*N + temp_j,

add_length);
360 b_ij_we <= ’1’;
361 b_ij_add <= conv_std_logic_vector(temp_i*N + temp_j,
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add_length);
362
363 if L_v_ij_dout(M-1) = ’0’ then
364
365 -- positive number or zero
366 a_ij_din <= ”0”;
367 b_ij_din <= L_v_ij_dout;
368
369 else
370
371 -- negative number
372 a_ij_din <= ”1”;
373 b_ij_din <= (not L_v_ij_dout) + ’1’;
374
375 end if;
376
377 temp_j := temp_j + 1;
378
379 if temp_j = N then
380
381 -- repeat for the next row
382 temp_j := 0;
383 temp_i := temp_i + 1;
384 state <= 4;
385
386 end if;
387
388 else
389
390 -- proceed to next state
391 temp_i := 0;
392 temp_j := 0;
393 temp_k := 0;
394 temp_l := 0;
395 a_ij_we <= ’0’;
396 b_ij_we <= ’0’;
397 L_v_ij_add <= conv_std_logic_vector(0, add_length);
398
399 -- initially maximum possible number
400 cur_min := ”01111111”;
401
402 -- sign of a_ij’s multiplication
403 neg_a_ij := 0;
404
405 state <= 5;
406
407 end if;
408
409 else
410
411 -- done with decoding;
412 -- proceed to next state
413 a_ij_we <= ’0’;
414 b_ij_we <= ’0’;
415 L_v_ij_add <= conv_std_logic_vector(0, add_length);
416 state <= 26;
417
418 end if;
419
420
421 when 5 =>
422
423 -- horizontal step (check nodes update)
424 if temp_i < M then
425
426 vns_add <= conv_std_logic_vector(temp_i*N + temp_k,

add_length);
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427 state <= 6;
428
429 else
430
431 temp_j := 0;
432 temp_k := 0;
433 temp_l := 0;
434 sum_L_u_ji := conv_std_logic_vector(0, sfixed_length);
435 -- prefetch number of connected variable nodes for the
436 -- first check node [cn matrix (0)(M-1)]
437 cns_add <= conv_std_logic_vector(M-1, add_length);
438 state <= 17;
439
440 end if;
441
442 L_u_ji_we <= ’0’;
443
444
445 when 6 =>
446
447 -- number of connected variable nodes
448 -- to check node i
449 vns_temp := conv_integer(vns_dout);
450
451 -- collect information from all connected
452 -- variable nodes
453 if temp_j <= vns_temp then
454
455 if temp_k <= vns_temp then
456 state <= 7;
457 else
458 if temp_l <= vns_temp then
459 vns_add <= conv_std_logic_vector(temp_i*N + temp_l,

add_length);
460 else
461 vns_add <= conv_std_logic_vector(temp_i*N + temp_j,

add_length);
462 end if;
463
464 state <= 10;
465 end if;
466
467 else
468
469 temp_i := temp_i + 1;
470 temp_j := 0;
471
472 if temp_i < M then
473 vns_add <= conv_std_logic_vector(temp_i*N + N-1,

add_length);
474 else
475 -- ready for next iteration
476 vns_add <= conv_std_logic_vector(N-1, add_length);
477 end if;
478
479 state <= 5;
480
481 end if;
482
483
484 when 7 =>
485
486 b_ij_add <= conv_std_logic_vector(temp_i*N +

conv_integer(vns_dout), add_length);
487 state <= 8;
488
489
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490 when 8 =>
491
492 state <= 9;
493
494
495 when 9 =>
496
497 -- get the minimum value of b_ij
498 if temp_k /= temp_j then
499 if b_ij_dout < cur_min then
500 cur_min := b_ij_dout;
501 end if;
502 end if;
503
504 temp_k := temp_k + 1;
505
506 vns_add <= conv_std_logic_vector(temp_i*N + N-1, add_length);
507 state <= 5;
508
509
510 when 10 =>
511
512 -- calculate product of a_i’j which can be either 1
513 -- or -1, therefore only counting the number of -1s
514 -- is necessary to calculate the value of the
515 -- product
516
517 if temp_l <= vns_temp then
518 state <= 11;
519 else
520 state <= 14;
521 end if;
522
523
524 when 11 =>
525
526 a_ij_add <= conv_std_logic_vector(temp_i*N +

conv_integer(vns_dout), add_length);
527 state <= 12;
528
529
530 when 12 =>
531
532 state <= 13;
533
534
535 when 13 =>
536
537 if a_ij_dout = ”1” then
538 neg_a_ij := neg_a_ij + 1;
539 end if;
540
541 temp_l := temp_l + 1;
542 vns_add <= conv_std_logic_vector(temp_i*N + N-1, add_length);
543 state <= 5;
544
545
546 when 14 =>
547
548 a_ij_add <= conv_std_logic_vector(temp_i*N +

conv_integer(vns_dout), add_length);
549 state <= 15;
550
551
552 when 15 =>
553
554 L_u_ji_add <= conv_std_logic_vector(temp_i*N +
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conv_integer(vns_dout), add_length);
555 state <= 16;
556
557
558 when 16 =>
559
560 if a_ij_dout = ”1” then
561 neg_a_ij := neg_a_ij + 1;
562 end if;
563
564 -- response check -to-variable LLRs
565 if neg_a_ij mod 2 = 0 then
566
567 -- positive product
568 L_u_ji_din <= cur_min;
569
570 else
571
572 -- negative product
573 L_u_ji_din <= (not cur_min) + ’1’;
574
575 end if;
576
577 L_u_ji_we <= ’1’;
578 temp_k := 0;
579 temp_l := 0;
580 temp_j := temp_j + 1;
581
582 -- cur_min = maximum possible number = ”011...11”;
583 cur_min := ”01111111”;
584
585 neg_a_ij := 0;
586 vns_add <= conv_std_logic_vector(temp_i*N + N-1, add_length);
587 state <= 5;
588
589
590 when 17 =>
591
592 L_v_ij_we <= ’0’;
593
594 -- vertical step (variable nodes update)
595 if temp_j < N then
596
597 cns_add <= conv_std_logic_vector(temp_j*M + temp_k,

add_length);
598 state <= 18;
599
600 else
601
602 -- includes early termination check:
603 -- if the decoded output of this iteration equals
604 -- the output of the previous iteration then stop
605 if cur_iter < iter and dec_pre /= dec_temp then
606 cur_iter <= cur_iter + 1;
607 temp_i := 0;
608 temp_j := 0;
609 L_v_ij_add <= L_v_ij_add + ’1’;
610 dec_pre <= dec_temp;
611 state <= 4;
612 else
613 state <= 26;
614 end if;
615
616 end if;
617
618
619 when 18 =>
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620
621 -- number of connected check nodes
622 -- to variable node i
623 cns_temp := conv_integer(cns_dout);
624
625 -- response variable -to-check LLRs
626 if temp_k <= cns_temp then
627 state <= 19;
628 else
629 cns_add <= conv_std_logic_vector(temp_j*M + temp_l,

add_length);
630 state <= 22;
631 end if;
632
633
634 when 19 =>
635
636 L_u_ji_add <= conv_std_logic_vector((conv_integer(cns_dout))*N

+ temp_j, add_length);
637 state <= 20;
638
639
640 when 20 =>
641
642 state <= 21;
643
644
645 when 21 =>
646
647 sum_L_u_ji := sum_L_u_ji + L_u_ji_dout;
648 temp_k := temp_k + 1;
649 cns_add <= conv_std_logic_vector(temp_j*M + M-1, add_length);
650 state <= 17;
651
652
653 when 22 =>
654
655 state <= 23;
656
657
658 when 23 =>
659
660 L_Q_i := L_c_i(temp_j) + sum_L_u_ji;
661 L_v_ij_add <= conv_std_logic_vector((conv_integer(cns_dout)*N +

temp_j), add_length);
662 L_u_ji_add <= conv_std_logic_vector((conv_integer(cns_dout)*N +

temp_j), add_length);
663 state <= 24;
664
665
666 when 24 =>
667
668 if temp_l <= cns_temp then
669
670 state <= 25;
671
672 else
673
674 -- decide upon the sign of the LLR
675 if L_Q_i(M-1) = ’1’ then
676 dec_temp(temp_j) <= ’1’; -- negative
677 else
678 dec_temp(temp_j) <= ’0’; -- positive
679 end if;
680
681 temp_j := temp_j + 1;
682 temp_k := 0;
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683 temp_l := 0;
684 sum_L_u_ji := conv_std_logic_vector(0, M);
685 cns_add <= conv_std_logic_vector(temp_j*M + M-1, add_length);
686 L_v_ij_add <= conv_std_logic_vector(0, add_length);
687 state <= 17;
688
689 end if;
690
691
692 when 25 =>
693
694 if temp_j >= N then
695 L_v_ij_add <= conv_std_logic_vector(0, add_length);
696 end if;
697
698 L_v_ij_we <= ’1’;
699 L_v_ij_din <= L_Q_i + ((not L_u_ji_dout) + ’1’);
700 temp_l := temp_l + 1;
701 cns_add <= conv_std_logic_vector(temp_j*M + M-1, add_length);
702 state <= 17;
703
704
705 when 26 =>
706
707 -- output decoded bits (in descending order)
708 dec(M-1 downto 0) <= dec_temp(M to N-1);
709
710 -- restart
711 pre_source <= cur_source;
712 state <= 0;
713
714
715 when others =>
716
717 null;
718
719 end case;
720
721 end if; -- reset = ’1’
722
723 end if; -- clk’event & clk = ’1’
724
725 end process;
726
727 end behavioral;

Listing B.4: LDPC codes simplified log-domain decoder for rate-1
2
applications

B.3.2 Decoder simulation testben
1 -- Simulation testbench for the
2 -- low-density parity -check codes simplified
3 -- log-domain sum-product algorithm decoder
4
5 library ieee;
6 use ieee.std_logic_1164.all;
7 use ieee.std_logic_arith.all;
8 use ieee.std_logic_unsigned.all;
9
10 -- signed fixed point format conversion
11 -- library
12 library ieee_proposed;
13 use ieee_proposed.fixed_pkg.all;
14
15 -- noisy version of input source description
16 package dec_tb_pkg is
17 type array_of_real_in is array(0 to 15) of real;
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18 end dec_tb_pkg;
19
20
21 library ieee;
22 use ieee.std_logic_1164.all;
23 use ieee.std_logic_arith.all;
24 use ieee.std_logic_unsigned.all;
25 use work.dec_pkg.all;
26 use work.dec_tb_pkg.all;
27 use std.textio.all;
28
29 library ieee_proposed;
30 use ieee_proposed.fixed_pkg.all;
31
32 entity dec_testbench is
33 generic (
34 M : integer := 8;
35 N : integer := 16);
36 end dec_testbench;
37
38
39 architecture behavior of dec_testbench is
40
41 file source_vectors : text open read_mode is ”source_vectors.txt”;
42 type array_of_bit is array(M-1 downto 0) of bit;
43 type input_sfixed is array(0 to N-1) of sfixed(3 downto -4);
44
45 -- component declaration for the Unit Under Test (UUT)
46 component decoder
47 port (
48 clk : in std_logic;
49 reset : in std_logic;
50 source : in input_array;
51 iter : in natural range 0 to 10;
52 dec : out std_logic_vector(M-1 downto 0));
53 end component;
54
55 -- inputs
56 signal clk : std_logic := ’0’;
57 signal reset : std_logic := ’1’;
58 signal source : input_array;
59 signal iter : natural range 1 to 10 := 7;
60
61 -- outputs
62 signal dec : std_logic_vector(M-1 downto 0);
63
64 -- clock period definitions
65 constant clk_period : time := 1 ns;
66
67 -- verification signal
68 signal dec_check : std_logic_vector(M-1 downto 0);
69
70 begin
71
72 -- instantiate the Unit Under Test (UUT)
73 uut: decoder port map (
74 clk => clk,
75 reset => reset,
76 source => source,
77 iter => iter,
78 dec => dec);
79
80
81 -- clock process
82 clk_process: process
83
84 begin
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85 clk <= ’0’;
86 wait for clk_period/2;
87 clk <= ’1’;
88 wait for clk_period/2;
89 end process;
90
91
92 -- stimulus process
93 stim_proc: process
94
95 -- I/O variable declarations
96 variable source_buf : line;
97 variable dec_buf : line;
98 variable source_sfixed : input_sfixed;
99 variable source_var : array_of_real_in;

100 variable dec_var : array_of_bit;
101
102 -- BER variable declarations
103 variable tot_errors : integer;
104 variable tot_bits : integer;
105 variable ber : real;
106
107 -- wait time between consecutive inputs
108 -- variable declaration
109 variable wait_time : integer;
110
111 begin
112
113 -- reset the system
114 wait for clk_period * 10;
115 reset <= ’0’;
116
117 -- start decoding simulation
118 report ”Starting simulation”;
119 tot_errors := 0;
120 tot_bits := 0;
121
122 -- set wait time
123 wait_time := 17000;
124
125 -- read data from file
126 while not endfile(source_vectors) loop
127
128 -- read source vectors to be decoded
129 readline(source_vectors , source_buf);
130
131 for i in 0 to N-1 loop
132 read(source_buf , source_var(i));
133 end loop;
134
135 -- convert real to signed fixed point format
136 for i in 0 to N-1 loop
137 source_sfixed(i) := to_sfixed(source_var(i),source_sfixed(i));
138 end loop;
139
140 -- convert sfixed to std_logic_vector
141 for i in 0 to N-1 loop
142 source(i) <= to_slv(source_sfixed(i));
143 end loop;
144
145 -- read expected decoded output
146 readline(source_vectors , dec_buf);
147
148 for i in M-1 downto 0 loop
149 read(dec_buf, dec_var(i));
150 end loop;
151
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152 -- convert expected decoded output
153 -- to std_logic format
154 for i in M-1 downto 0 loop
155 if dec_var(i) = ’1’ then
156 dec_check(i) <= ’1’;
157 else
158 dec_check(i) <= ’0’;
159 end if;
160 end loop;
161
162 -- wait until decoding has finished
163 wait for wait_time * 1ns;
164
165 -- check output with the expected one
166 -- and calculate erroneous bits
167 for i in M-1 downto 0 loop
168 if dec(i) /= dec_check(i) then
169 tot_errors := tot_errors + 1;
170 end if;
171 end loop;
172
173 -- increase total number of decoded bits
174 tot_bits := tot_bits + M;
175
176 -- wait before sending next input message
177 wait for clk_period * 2;
178
179 end loop;
180
181 -- when all messages have been decoded
182 -- the simulation calculates the stream ’s
183 -- bit error rate (BER)
184 ber := real(tot_errors)/real(tot_bits);
185
186 -- and prints the result to the console
187 report ”Err. bits: ” & integer’image(tot_errors) & ” / ” &

integer’image(tot_bits);
188 report ”BER: ” & real’image(ber);
189 report ”Simulation ended”;
190
191 wait;
192
193 end process;
194
195 end;

Listing B.5: Simulation testben for the LDPC codes simplified log-domain decoder
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