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Hepidnyn

YK0mOG TNG TAPOLGAG SITAWIATIKNG EPYATLOG elval 1) HEAETN TV TEXVIK®OV
KwdLKoToinong SLadAoL TOL X PNCLHOTOLOVVTAL OTLS YNPLOKEG ETTLKOLVWVIES KoL
Twv vAomotoewv tovg. EEautiog tov BopVPov ctov omoio eivon exteBeipéveg
Ol ETLKOLVOVIEG, KL O OTOLOG HITOPEL Vo €LGAYEL COAMIATO OTOL PNVOHATAL TTOV
petadidovtol amd Tov TOUTTO GTO SEKTT), OL TEXVIKEG AULTES TTEPLACPAVOLY TPOTOVG
aviyvevong kot d0pOlwong COEUALATWY OV EMULTPETOLY TNV AVAKXTACKELT] TV
aApXLK®OV SedOpEVWOV.

Ot k®dikeg LDPC (Low-Density Parity-Check) ocvpmepilopfdvovtar otoug
o duvatovg Ypapplkotg Kodikeg dopBwong cealpdtwv, kabng emiTpémovy
emOOGELS KOVTQ GTO OPLO TNG XWPNTKOTNTOS TOL Kovodod. T To Adyo awtd
elval TOAD Siadedopévol kol apkeTd Kovouplo TPOTLITAL YNPLUKDV ETTLKOLVWVLOV
Bacilovtal oe avtovg, OTWwG To TPOTPATo TPWwTOKoAA0 DVB-S2 yia Tig Sopugopt-
KéG peTadOoelg TG YneLokng tnAedpaocnc.

H amokwdikomoinon tov kwdikwv LDPC eival o emavainmtikn dodikacio
mov xpnoipornolel Tov alyopiBpo belief-propagation, o omoiog eivar piar teyvikn
HETADOGTG HNVUHAT®OV TPAYHATIKOV TIHOV AVAHECH OTIG KPEG EVOG YPAPOL TOV
kodwka. Emeldn vAomowoelg vPnAng moAvmAokotntog ko Aettovpyior LYMARG
KOTOVAAWGOTG AVTIKELVTOL GTOVG QITOKWILKOTTOLNTEG LYNANG TarXOTNTOG, TPOTEL-
VOVTOL ETLITAEOV HEPLKES ALTTAOTIOLOELS KOl BEATIOTOTTOLNOELS.

Téooeplg dLaQOpPeTIKEG TEXVIKES SOKLHAGTNKAY Ylot TNV €Tid0CT) TOVG O€ Kot-
vl BopvPou Emelta amtd TNV TPOGOHOLWGT] TOVG He HNVOHATH SLAPOPPWHIEVA
kata Binary Phase-shift keying (BPSK) ko petadidopeva péow kavalldv Aevko
abpoiotikot BopvPov (AWGN), Rician kot Rayleigh fading.

Y10 Televtaio oTadlo, 1) TEXVIKA He TNV KaALTEPN avadoyia emidoong mTpog
molvmAokotnTa emAéyOnke yioo Tnv vAomoinon evog LDPC mopmodéktn oe éva
FPGA tng owoyévelag Spartan-3E tng Xilinx. To teAkd oyxédio avoldeton Ae-
TTOUEPWG, TEPLYPAPOVTAG TO CUGTATIKA TOU KoL TN AELTOLPYIX TOUG, EV® GTO
TENOG OXOALALETOL TO TTOGOGTO XPNGLLOTOINGTG TOV VALKOD TNG TAATPOPHAG TTOV
amolteital.

AéEerg xAewdra: Ynelokég emkolvwvieg, kwdikomoinaor StadAov, TOPTOSEKTNG,
Kwdkomon g, aokwdikomotntrg, block codes, aviyvevon cpaipdtwv, dSitopbwon
ocparuatov, fading channels, low-density parity-check codes, belief propagation,
ETOVALANTITIKT] OTOK®ALKOTTOIN G, TTPpodLpog Teppatiopoc, VHDL, FPGA






Abstract

The purpose of this diploma thesis is the study of the digital communications
channel code decoding schemes and their hardware implementations. Since many
communication channels are subject to channel noise, and thus errors may be
introduced during transmission from the source to the receiver, these schemes include
error detection and correction techniques which enable reconstruction of the original
data.

The Low-Density Parity-Check (LDPC) codes are among the most powerful linear
error correcting codes, since they enable performance near the limits of the channel
capacity. As a result, they have received a lot of attention and several new digital
communication standards have adopted them, such as the recent DVB-S2 standard
for the satellite transmission of digital television.

The decoding of LDPC codes is an iterative process which uses the belief-
propagation algorithm, a message passing technique which defines real-valued mes-
sages passing along edges in a code graph. Since high complexity implementations
and high power operation are inappropriate for high-speed LDPC decoders, several
proposals for optimization and simplifications are also described.

Four different decoding techniques have been tried and tested for their perfor-
mance under noisy channel by computer-based simulations of messages modulated
under the Binary Phase-shift keying (BPSK) modulation scheme and transmitted
through Additive White Gaussian Noise (AWGN), Rician and Rayleigh fading
channel models.

Finally, the algorithm with the best ratio of performance versus complexity is
chosen as the decoding scheme of an LDPC transceiver implemented on a FPGA
platform of the Xilinx Spartan-3E family. The design is analyzed in detail, describing
its components and their operation and, ultimately, the device utilization required.

Keywords: digital communication, channel coding, transceiver, encoder, decoder,
block codes, error detection, error correction, fading channels, low-density parity-
check codes, belief propagation, iterative decoding, early termination, VHDL, FPGA
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Chapter 1
Introduction

Overview:

The first chapter outlines the field of interest of this thesis by introducing
the main keywords and notations which are used in the text. First,
the concept of telecommunication systems is presented, followed by the
piece of information they transfer and exchange, signals. Afterwards,
the definition of the transceivers is presented, succeeded by one of the
available error correcting codes they use, the Low-Density Parity-Check
coding scheme. Finally, the integrated circuits which will be used to
implement this application, the Field-Programmable Gate Arrays, are
also discussed.

1.1 Telecommunication systems

In today’s modern society, the term communication enters people’s lifestyle in
many different and various ways, making it difficult to observe the diversity of its
forms. Whether at job or at leisure, people come across various modern means of
telecommunication and digital communication systems, such as the radio, telephone,
television and the Internet. Aided by these means and systems of communication,
people are able to instantaneously contact others, however far they maybe, stay
informed about whatever happens everywhere, commit everyday transactions and,
of course, entertain. It has nowadays become impossible to imagine a world without
these means, even though most of them were only invented during the previous
century.

The piece of information exchanged by the communication systems also varies,
as its form can be visual, audio, text, or a mixture of them. However, regardless
the kind of information, it can generally be considered as, simply, a signal. The
telecommunication systems viewpoint adopted in this text will focus on the attributes
and various possible manipulations of the electrical signals that characterize these
systems.
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1.2 Signals

In the fields of communications, in signal processing and generally in electrical
engineering, a signal is any time-varying or spatial-varying quantity that carries
a certain amount of information. In the physical world, any quantity measurable
through time or over space is actually a signal, supposed that it contains some piece
of useful or usable information (otherwise it is considered as noise). Signals used
in telecommunication systems are usually time-variable, therefore their independent
variable is usually time.

Communication signals (taken to be a function of time) are usually easier to
handle when represented over frequency. Information represented in the time
domain describes when something occurs and what the amplitude of the occurrence
is. In contrast, information represented in the frequency domain is more indirect; by
measuring the frequency, phase, and amplitude of a signal showing periodic motion,
information can often be obtained about the system producing the motion. The
representation over time or frequency can be achieved by means of signal processing,
which is the area of applied mathematics that deals with analyzing signals, in either
discrete or continuous time in order to perform useful operations on them.

The complete range of frequencies of a system or signal, from the lowest to the
highest, is its frequency spectrum. Specifically, signals and systems whose range
of frequencies is measured from zero to a maximum bandwidth (or highest signal
frequency) are described as baseband.

1.3 Transceivers

Mainly used in wireless communications, a transceiver is a combined transmit-
ter/receiver in a single package. It is, therefore, a device capable of both transmitting
and receiving analog or digital signals, and this ability is extensively used in cellular
telephones or two-way radios for instance. If the transmit and receive functions
do not share common circuitry or a single housing, the device is referred to as
a transmitter-receiver instead. Physical layer (PHY) transceivers are commonly
used for sending and receiving network signals over various types of channels,
like telephone lines, optic fiber, or the air. When the receiver is silenced while
transmitting, the transceiver is in half-duplex mode; on the contrary, when allowing
reception of signals during transmission periods, the transceiver is in full-duplex
mode.

Transceivers are able to perform consistency checking in the background while
operating. Use of an optimal error correcting code allows data transmission at rates
near the channel capacity with arbitrarily low probability of error.
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1.4 Low-Density Parity-Check (LDPC) codes

In information theory, Low-Density Parity-Check codes are a sub-class of linear
error correcting coding schemes, which are methods of transmitting messages over
noisy transmission channels. LDPC codes can be described as the null space of
a sparse {0, 1}-valued parity-check matrix as well as by a bipartite graph, Tanner
graph, which represents the rows and columns of the parity-check matrix.

LDPC codes, originally developed in 1963 by Robert Gallager but long time
ignored due to impractical implementation, have now become more popular in
modern communication systems with advanced VLSI technology. Several new
digital communication standards have adopted LDPC codes due to the excellent error
correction performance they feature, their inherently-parallel decoding algorithm
and freedom from patent protection. Thus, LDPC decoders appear to be the best
solution for future communication applications that demand performance near the
limits of the channel capacity by transmitting close to the theoretical limit (Shannon
limit).

1.5 Field-Programmable Gate Arrays (FPGAs)

It has been a recent trend to implement modern communication applications,
such as digital signal processing, radio, aerospace and defense systems, on integrated
circuits designed to be configured by the customer or designer after manufacturing
(hence field-programmable gate arrays — FPGAs). Though FPGAs can be used to
implement any logical function, they especially find applications in any area or
algorithm that can make use of the massive parallelism offered by their architecture.

FPGAs consist of an array of programmable logic components, called logic blocks,
and a hierarchy of reconfigurable interconnects (routing channels) that allow the
blocks to be wired together. Most FPGAs include memory elements, which may be
simple flip-flops or more complete blocks of memory.

The behavior of the FPGA is defined by a schematic design or a hardware
description language (HDL), the most common being VHDL and Verilog. Then, using
an electronic design automation tool, a technology-mapped netlist is generated that
can be fitted to the actual FPGA architecture, finally (re)configuring the FPGA to a
specific application.

The Spartan-3E family, which will be used to implement a transceiver as part of
this thesis, is a high-performance FPGA family fabricated by Xilinx. Each platform
offers a variety of features to address the needs of a wide variety of advanced logic
designs.

1.6 Motivation and objectives

Traditionally, the study of the digital communication systems has been increas-
ingly attractive, as a result of the ever-growing demand of data communication and
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the digital processing options and flexibilities which are not available with analog
transmission. Since digital circuits are less subject to distortion and interference than
their analog counterparts, they have been used in almost all recent communication
applications and this trend does not seem to fade in the future.

Communication involves sending data over noisy channels, which results in
introducing erroneous samples during transmission from the source to the receiver.
In order to overcome this and achieve reliable transmission, error detection and
correction techniques are utilized, which enable reconstruction of the original data.
Such techniques are typically adopted in every communication scheme nowadays;
therefore, research is constantly focused on inventing increasingly better performing
schemes, with an ambition to ultimately approach the channel capacity (Shannon
limit).

The invention of LDPC codes has had a major impact on telecommunication
systems due to their ability to perform close to the Shanon limit by using an iterative
algorithm. For this reason, several new digital communication standards have
adopted them as the coding scheme of their choice. In addition, the fact that several
research groups have recently developed LDPC decoders running on FPGAs, has
made LDPC codes more popular in advanced communication systems, such as Mobile
WiMAX, with advanced VLSI technology.

The aim of this thesis is to review the concepts of digital communication, study
the effect of the decoding schemes on the performance of the LDPC codes, compare
and contrast their strong and weak points under several channels, and finally
implement a generic LDPC transceiver which utilizes the best performing decoding
technique.

1.7 Document structure

In order to present the work provided in this thesis, the document is organized in
the following way:

Chapter 2 initially presents the classical communication scheme and discusses the
optimal code decoding of transmitted information. Then, the decoding of
linear block codes is also discussed and it is finally shown that optimal code
decoding is possible using an iterative algorithm.

Chapter 3 introduces the concept of LDPC codes, first by briefly reviewing their
history and then by defining their operation. Afterwards, the construction of
LDPC codes is described. The chapter also discusses the encoding and decoding
of LDPC codes, focusing on their performance.

Chapter 4 investigates hardware architectures for LDPC decoders amenable to low-
complexity implementation as well as low-voltage and low-power operation. It
is shown that increased parallelism coupled with reduced supply voltage is an
effective technique to reduce the power consumption of LDPC decoders, which
have inherent parallelism. In addition, a scheme to efficiently terminate the
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iterative decoding earlier, when convergence has been detected, is proposed
to further reduce the power consumption. Finally, the chapter describes a
quantization scheme, which can be used to increase the memory efficiency
while decreasing the hardware complexity of the implementation, at the cost
of storing slightly inaccurate information.

Chapter 5 presents a performance analysis of four different LDPC codes decoding
techniques. It describes the operation of hard-decision (bit-flip), probability-
domain and log-domain decoders, along with a simplified version of the log-
domain decoding algorithm. In addition, it presents the results of a computer-
based simulation in order to describe the performance, in terms of bit error
rate, versus implementation cost trade-off imposed by each technique. The
decoders are simulated under Additive White Gaussian Noise (AWGN) and
fading channels and the results of the simulations offer graphic comparison
between them.

Chapter 6 presents the implementation of an LDPC transceiver on a Xilinx Spartan-
3E FPGA. The chapter initially presents an overview of the whole design
and afterwards analyzes each entity of it in detail. This is done firstly by
describing the operation of each entity and the components used by them, then,
by presenting the operation stages of the encoding and decoding procedures
and finally, by verifying the correct operation of each entity by run-time
simulations of the implemented design.

Chapter 7 offers an overall discussion over the work covered in this thesis, present-
ing the final remarks and future perspectives of the designed LDPC transceiver.

In addition, two appendices are included to present the source codes which
have been used to simulate the different decoding techniques and implement the
transceiver on a FPGA.






Chapter 2
The communication model

Overview:

In this chapter the classical communication scheme is initially reviewed.
Then the optimal code decoding is discussed, preceded by the theorems
which affect its operation. Finally, the decoding of linear block codes
is discussed and it is shown that, under the cycle-free hypothesis, the
optimal code decoding is possible using a simple iterative algorithm.

2.1 The classical communication scheme

The basic scheme for channel code encoding and decoding is depicted in Figure
2.1. The typical communication model consists of the source block which delivers
information, the encoder block which delivers a coded version of the originally sent
message, the channel over which the message is transmitted and, finally, the decoder
block, which in Figure 2.1 may be one of two possible types.

Information derived from the source block is delivered by the mean of sequences
of row vectors z of length K. These sequences pass through the encoder block, thus
producing a codeword, which is the coded version of z. The encoding process delivers
a codeword, a row vector c of length /V, based on the encoding scheme used in the
communication system. The code rate of the selected encoder is defined by the ratio:

K
R= (2.1)

The codeword c is then sent over a, usually noisy, channel, which is the medium
the message is transmitted through. Therefore, a new vector y is created, which is

A

T
Decoder1 ————

Source Encoder Channel

Decoder 2 ———

Figure 2.1: Basic communication model
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then received by the decoder. Vector y is a distorted version of ¢, provided that
the channel is not ideal, so its length is also /V elements. The channel is a non-
deterministic mapper between its input c and its output y. We make two assumptions:
first, that y depends on ¢ via a conditional probability density function (PDF), p(y|c);

N
and second, that the channel is memoryless, therefore p(y|c) = H P(Ynlcn)-
n=1

Figure 2.1 depicts two possible types of decoder: type 1 decoders try to compute
the best estimation Z of the source word z, while type 2 decoders aim at computing
the best estimation ¢ of the sent codeword c derived from the encoder. The latter
type of decoders then post process ¢, extracting & by a reverse process of encoding,
when the code is non-systematic'.

Both types of decoder can perform two methods of decoding: soft decoding,
during which the output samples v, of the channel are not decided, and hard
decoding, during which the output samples y,, are decided. Soft decoders use the
channel specifications to compute the probability for each ¥,, to be each one of the
code-alphabet element denoted y,, € Ac : {Pr(y, = v4,),0 < i < |C|}, and then
decide upon the value of this probability. The output of soft decoders includes both
the decided word yg = (Yay,- -, Ydy);Ya, € Ac, where Ae denotes the alphabet
of the code symbols, and the probability of each decided symbol Pr(y, = ya,)
On the other hand, hard decoders decide without using the knowledge of the
probability set, since each of the output samples ¥,, of the channel is associated with
the most probable code-alphabet element, followed by a processing performed on
Ya = (Ydy, - - - Ydy) trying to detect and correct the transmission errors.

2.2 Optimal code decoding

2.2.1 The Shannon—-Hartley theorem

Optimal channel coding refers to establishing a communication link, transmitting
the maximum amount of error-free digital data (information) that can be transmitted
with a specified bandwidth in the presence of the noise interference, under the
assumption that the signal power is bounded and the Gaussian noise process is
characterized by a known power or power spectral density. The famous channel
coding theorem, as demonstrated by Claude E. Shannon and Ralph V. L. Hartley [1],
states that below a maximum rate R equal to the capacity C' of the channel, it is
possible to find error correction codes to achieve any given probability of error:

Shannon theorem for channel coding. Let a discrete channel have the capacity C
and a discrete source the entropy per second H. If H < C there exists a coding
system such that the output of the source can be transmitted over the channel with an

'In coding theory, a systematic code is one in which the input data are embedded in the encoded
output, hence adding redundant information to data (e.g. transmitting data with a checksum). On the
contrary, a non-systematic code is one in which the output does not contain the input bits.
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arbitrarily small frequency of errors (or an arbitrarily small equivocation). If H > C
it is possible to encode the source so that the equivocation is less than H.

When comparing different coding schemes, their performance is measured by
their gap to the capacity. The Shannon capacity of the band-limited AWGN channel
is given by

C = Blog, (1 + SNR) [bit/s] (2.2)

where B refers to the channel bandwidth and SNR is the sound-to-noise ratio:

Pg
SNR = — 2.3
B )
where Pg is the transmitted signal power and Py the channel noise power. In

addition we have:
Py = NoB (2.4)

Ps = R;E, (2.5)

where N, is the one sided noise power spectrum density, £} is the energy per
information bit and R; is the information rate, defined by:

_ Rlog,M

R; T,

[bit/s] (2.6)
where R is the code rate, M is the size of the constellation of the modulation, while
T is the symbol time duration.

Combining equations 2.4, 2.5 with 2.3 we have that:

RiEy Ey
- = — 2.
SNR= TN, ”(M) @7

where Ej/N, is the normalized signal-to-noise ratio (SNR) measure (sometimes
called the “signal-to-noise ratio per information bit”), and 7 is the spectral efficiency,
defined as the ratio of information rate to channel bandwidth:

R

5 (2.8)

By definition, the maximal information rate is equal to the capacity, therefore we get
the following equations:

R; C
maxy = ——— = — 2.9
1 B 3 (2.9)
using the definition of 7 as shown in equation 2.8, which, using equation 2.2, yields
to:
E
leax = B10g2 (1 + nmax (_b)) (2.10)
No

thus giving:

Ey
Nmax = l0g, (1 + Nmax (ﬁo)) (2.11)
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finally giving the Shannon bound as:

Eb) o _ ]
— = — 2.12
(NO min TImax ( )
or
Eb) 2m —1
2 > (2.13)
(No n

Notice that the Shannon limit on £}/ Ny is a monotonic function of 7. Forn = 2,
it is equal to 3/2 (1.76 dB), for n = 1, it is equal to 1 (0 dB) and as n — 0, it
approaches In2 ~ 0.69 (—1.59 dB), which is called the ultimate Shannon limit [2]
on Eb/No.

Summing up, the Shannon theorem can be summarized as a conditional check
of the information rate’s relation to the channel capacity: reliable communications
require that R; < C whereas R; > ('leads to unreliability. The limit of reliable data
rate of a channel depends on bandwidth and signal-to-noise ratio (SNR) according
to equation 2.2, which can be solved to get the Shannon-limit bound on Ej,/Nj as in
equation 2.12.

2.2.2 The Nyquist-Shannon sampling theorem

According to the the Nyquist-Shannon sampling theorem [1], also known as the
Cardinal Theorem of Interpolation Theory, a real bandlimited analog signal which has
a bandwidth B and has been sampled can be perfectly reconstructed from an infinite
sequence of samples if the sampling rate exceeds 2B samples per second without any
inter-symbol interference:

Nyquist sampling theorem. If a function x(t) contains no frequencies higher than
B hertz, it is completely determined by giving its ordinates at a series of points spaced
1/(2B) seconds apart.

The 2B samples are then independent and they are carried on 2B signal
dimensions [dim] per second.

2.2.3 Optimal word decoding

As mentioned previously, the decoder tries to find the codeword ¢ which is the
most probable to have been sent over the channel, based on the channel output y and
on the knowledge of the code:

¢ = argmax Pr (¢ = '|y) (2.14)
cdeC
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This is the word maximum a posteriori® (W-MAP) decoder. If the a priori probabilities
Pr (c) are identical, therefore the source is equally probable, this can be expressed as:

¢ = argmax Pr (y|c = ) (2.15)

cdeC
This is named word maximum likelihood (W-ML) decoding. The W-MAP and W-ML
decoders are two equivalent and optimal decoders if the source is equally probable.

The only way to achieve an optimal W-MAP decoder is by testing each codeword
(2% for a binary source).

2.2.4 Optimal symbol decoding

Similarly to above, but if the symbol (or bit) error rate is concerned, the bit
maximum a posteriori (B-MAP) decoder and the bit maximum likelihood (B-ML)
decoders give an estimation of the codeword symbols c,,:

¢, = argmax Pr (¢, = c'|y) (2.16)
ceAe

¢, = arg max Pr (y|c, = ¢) (2.17)
cdeAe

2.3 Linear block codes decoding

2.3.1 Binary block codes

Let u be a k-bit information sequence and v be the corresponding n-bit codeword.
Then, a total of 2* n-bit codewords constitute a (n, k) code. A linear code of length
n and rank £ is a linear subspace C with dimension k of the vector space 7', where
[F, is the finite field (or Galois field)® with ¢ elements. Such a code with parameter ¢
is called a g-ary code, e.g., when ¢ = 5, the code is a 5-ary code. If ¢ = 2 the code is
described as a binary code, while if ¢ = 3 it is called a ternary code.

The code C can be defined by the list of all the codewords as:

c={cie{o0,...,2"-1}} (2.18)

This representation is, of course, unique. For example, a (6,3) code is C =
{000000, 100110, 010101,001011, 110011, 101101,011110, 111000}

Alternatively, the code can also be defined by a vector base B¢ of k independent
codewords as {c(i),i €e{0,....k— 1}}, which is not unique. The vector base B,
however, has some useful equivalent representations:

?According to Bayes’ rule, the posterior probabilities Pr (¢ = ¢'|y) are expressed by:

PP p(lePr(o)
) = T T S p WO Pr (O

°In abstract algebra, a finite field is a field that contains only finitely many elements. It is also
named Galois field in honor of Evariste Galois [3].
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Generator matrix: If we arrange the & codewords into a £ x n matrix GG, whose
rows are the vectors of the base B¢, GG is called a generator matrix for for C:
letu = (ug,uy, ..., ux_1), whereu;, € F,. ThenC = (cg, c1, ..., Ch1) = uG.
The rows of GG are linearly independent, since G is assumed to have rank k.

Parity-check matrix: A (n, k) linear code can also be specified by a (n — k) x n
matrix H with elements in F, as C = {c?/c¥ - HT =0}. H is called a
parity-check matrix: each row of H is a parity-check equation on some bits of
the codeword. Note that for any given matrix G, many solutions for H are
possible.

Tanner graph: Code C with parity matrix H can also be described by a bipartite
graph*, or Tanner graph [4], with vertex set V' = V; U V5, which has one
vertex in V] for each row of H and one vertex in V5 for each column of H, and
there is an edge between two vertices ¢ and j exactly when h;; # 0. Therefore,
the elements of V) are the variable nodes, denoted by vn,,,, and the elements of
Vj; are the check nodes, denoted by cn,,,. Each variable node vn,, is associated
with one code symbol ¢, and each check node cn,, is associated with the m-
th parity-check constraint (row) of . The Tanner graph representation of
error correcting codes is useful in explaining their decoding algorithms by the
exchange of information along the edges of these graphs.

Figure 2.2 displays an example of the different ways of describing a (6, 3) linear
code in [Fy.

Short cycles of Tanner graphs have negative impact on decoding. Cycles
necessarily have even length, however length 2 is not possible. The requirement that
a Tanner graph should not have short cycles is an intricate part in the construction of
efficient LDPC codes. Note that, however, the degrading effect of short-length cycles
diminishes as the code length increases and is strongly reduced with length greater
than 1.000 bits.

2.3.2 Decoding of binary block codes

Using equation 2.16 for binary block codes, so that the symbols will equivalently
be named bits, we get that:

0, if Pr(c, =0ly) >Pr(c,=1
¢ = )0 i Pric, =0ly) > Pr(c, =1ly) (2.19)
1, if Pr(c, =0ly) < Pr(c, = 1|y)
The decoder receives the word y = (41, . . ., yn ) which can be split into two sets, y,,

and Yy, »,. Then, as c,, ¥y, are independent of y,,+,,, the above probabilities can be

“In the mathematical field of graph theory, a bipartite graph, or bigraph, is a graph whose vertices
can be divided into two disjoint sets such that every edge connects a vertex in the first set to one in
the second. Such graph, equivalently, does not contain any odd-length cycles.
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(2)
C = {000000, 011001, 110010, 101011,
111100, 100101, 001110, 010111}
(b)
100101
G=|010[1 11
001[1 10
(c)
111100
H=|01 1010
1 10(00 1
(d)

Chnq Cho Cg

Figure 2.2: Example of a (6, 3) linear code in Fs: (a) the code C can be defined by
the list of all the codewords; (b) generator matrix GG can be obtained as G = [I;,| P],
where [}, is the k£ X k identity matrix and P is a k x (n — k) matrix; (c) the parity-
check matrix H can be put into the form [—PT\In,k] (noting that in this special case
of being a binary code P = — P); (d) the Tanner graph can be designed based on the
parity check H.
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expressed as:

Pr(cnly) = Pr (Cnlyn, Ynr2n)
_ P (CnYn) Ynrgn)
p (ym yn’sﬁn)
_ p (ynlcnv yn’sﬁn) p (Cn’yn’?fn)
P (YnlYnzn) P (Ynr2n)
_p (Ynlcn) Pr (Cn’yn’?fn)

(2.20)
p (?/n|yn’7én>
In addition, from equation 2.19 derives that:

) Pr (¢, = Oly) Pr(c, = Oly)
L =0=—" "V S 1=log— 25 2.21
‘ Prica—1ly) ' Pr(c,—1ly) (221

P n P n —

Cn=1= r(c ‘y><1:>10gM<0 (2.22)

r(cn = 1ly) Pr(c, = 1|y)

Using the above formulas it is obvious that an equivalent way to decide for optimal
bit error rate (BER) for binary block codes is to calculate the sign of:

Pr(c, =0
log Pr (e = Oly) (2.23)
Pr (Cn - 1|y)
which, using equation 2.20 gives:
log Pr (Cn = O|y) — logp (yn|cn = O) +10g Pr (Cn = O|yn/7én) (2 24>
o Pr(c, = 1|y)1 P (Ynlcn = 1)} . Pr(c, = 1|yn’7ﬁn)/
T I En

where:

« T, is the overall information of the bit n, and it is related to the two a posteriori
probabilities on the bit n. The sign of 7T,, enables estimation of ¢, and the
magnitude of 7}, |T},|, is the reliability of the decision.

« I, is the intrinsic information of the bit n, and it is related to the received
symbol y,, and to the channel parameters c,,.

« I, is the extrinsic information of the bit n. It shows the improvement
of information gained when the coded symbols respect the parity-check
constraints. However, this improvement does not necessarily mean an increase
of the reliability expressed by |T,,|.
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Figure 2.3: An example of a cycle free bipartite graph of a code C

2.3.3 Belief propagation

Optimal decoding of error correcting codes is feasible using a simple iterative
message passing algorithm called belief propagation®. An important hypothesis
related to the Tanner graph representation is required, however, which is known
as the cycle-free graph hypothesis:

Cycle-free graph hypothesis. The bipartite graph (or Tanner graph) of the code C
is cycle-free. A graph is cycle-free if it contains no path which begins and ends at
the same bit node without going backwards. When the graph is not cycle-free, the
minimum cycle length is called the girth of the graph.

This hypothesis ensures that the bipartite graph of the code has a tree represen-
tation, so that each variable node v,, and each check code ¢,, appear exactly once in
the tree. Figure 2.3 shows an example of a cycle free bipartite graph of a code C.

Let 7T}, ,,, be the information which is sent by a variable node vn,, to its connected

check node cn,,. Then:
Tmm =T, — En’m (2.25)

where F,, ,, is the information given by each of the parity-check constraints on the bit
¢p. The partial results 7}, ,,, and E,, ,,, are called messages, since they are transmitted
from nodes to nodes.

In the example of Figure 2.3 the total information 77 of the bit (variable) node vn;
is calculated in 4 steps, as many as the depth between the leaves of the tree and the

*The belief propagation algorithm was first proposed by Judea Pearl in 1982 [5].
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T'=5L+E 1+ E,

o &2

Eo,=f (T2,17T3,1) cny Cno

—-——

Figure 2.4: The operations of the graph of Figure 2.3 for calculating 7}

variable node in consideration. During the calculation process, some partial results
from previous calculations are reused, while the others are not replaced by different
results, but by messages in the opposite way. Therefore, the calculation of all 7}, can
be processed in parallel as the cycle free hypothesis lets them be all independent.

Figure 2.4 shows the operations of the graph of Figure 2.3 for calculating 7} and
Figure 2.5 for T5.

During calculation, the general behavior of each node is to process all the
messages all the time: when one or more incoming messages on the variable node
vn,, (respectively check node cn,,) has changed, the variable node (resp. check
node) processes all the possible outgoing messages, in a process called check (resp.
variable) node update. However, the nodes do not have to process conditionally to
the processing of other nodes, letting them behave like independent processors.

The process is repeated until the total information 7, of each bit is computed.
Notice that each node performs a repetition of an iteration, while each processor
performs an iteration. The scheduling of the different processors does not affect the
convergence of the algorithm.

Low-density parity-check (LDPC) codes are a class of block codes which can be
decoded with the belief propagation algorithm, as described in the next chapter.
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Chapter 3

Low-Density Parity-Check (LDPC)
codes

Overview:

The third chapter introduces the LDPC codes, first by briefly reviewing
their history and followed by defining their function. Then, the two
possible ways of constructing LDPC codes are described and afterwards
different ways of encoding of LDPC codes are proposed. The chapter is
concluded by describing different ways of iterative decoding of LDPC
codes and illustrating their performance.

3.1 History

In 1962, Robert G. Gallager [6] developed an iterative decoding algorithm which
he applied to a new class of codes. Gallager named these codes Low-Density Parity-
Check (LDPC) codes’, because the parity-check matrices they used had to be sparse
in order to perform well. Since then, however, LDPC codes had been ignored
because they were impractical to implement at the time, requiring unavailable high
complexity computation.

Another class of capacity-approaching codes were discovered by C. Berrou et al.
in 1993. These turbo codes had remarkable performance, making them the coding
scheme of choice of the time, used for applications such as deep space satellite
communications, which also raised the interest toward iterative techniques.

LDPC codes were discovered again after a long time in 1995 when D. J. MacKay
and R. M. Neal set up a link between the iterative algorithm used in LDPC codes to
Pearl’s algorithm (Pearl 1988) from the artificial intelligence community (bayesian
networks). The articles of MacKay and Neal have been the kick off of great work in
the field of LDPC codes.

In 1996, M. Sipser and D. A. Spielman used the first decoding algorithm (algorithm
A) of R. G. Gallager to decode expander codes. In 1998, McEliece et al. showed that

'LDPC codes are also known as Gallager codes in honor of R. G. Gallager who developed this
coding scheme in his doctoral dissertation at MIT.

19
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turbo decoding of turbo codes is an instance of Pearl’s belief propagation algorithm.

Meanwhile, graph representation has gradually become a standard representation
of error correcting codes. Using the work of Tanner (Tanner 1981) and N. Wiberg et
al. (Wiberg 1996), F. R. Kschischang in 1998 denoted by factor graphs a class of graphs
associated with the sum-product algorithm, which aim at describing many different
algorithms by the same formalism.

Mainly inspired by two major revolutions in the channel coding community, the
graph-based code-description and the iterative decoding techniques, LDPC codes
have recently been developed past turbo codes, and have now been adopted for
several new digital communication standards due to their excellent error correction
performance, freedom from patent protection and inherently parallel decoding
algorithm. Such examples include the recent DVB-S2 standard for the satellite
transmission of digital television and 10GBase-T Ethernet, which sends data at 10
gigabits per second over twisted-pair cable [7-9].

3.2 Description of LDPC codes

3.2.1 Definition

Gallager defined a (N, j, k) LDPC code as a block code of length N having a
small fixed number j of ones in each column of the parity-check matrix H and a
small fixed number k of ones in each row of H.

This class of codes is to be decoded by the iterative algorithm described in Chapter
2. As shown, the algorithm computes exact a posteriori probabilities, under the
hypothesis that the Tanner graph of the code is cycle-free. However, LDPC codes
generally do have cycles, and for this reason the sparseness of the parity-check matrix
aims at reducing the number of cycles and at increasing the size of the cycles. In
addition, as the length NV of the code increases, the cycle-free hypothesis becomes
more realistic. The iterative algorithm performs quite well on these graphs, although
not optimally.

3.2.2 Classes of LDPC codes

A code is called regular if every column and every row of its parity-check matrix
has a fixed number of ones, 7 and £ respectively. This means that each bit is implied in
J parity-check constraints and each parity-check constraint is the exclusive-or (XOR)
of k bits. Gallager’s original LDPC code design was a regular LDPC code.

On the contrary, codes whose parity-check matrix does not have a constant
number of non-zero entries in their rows or in their columns are called irregular.
Codes of this type are specified by a the distribution degree of the bit A (x) and of
the parity constraints p (z):

Ax) = Z Nt (3.1)

=2
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Notation | Description
L, LDPC code in F, (e.g. £, are binary LDPC codes)
L,(M,N) | LDPC code in F, of length N and rate 1 — M /N
L, (N, ), p) | LDPC code in F, of length N and degree distribution defined by
A(z)and p (x)
L, (N,j, k) | regular LDPC code in F, of length N with A (z) = 27! and
p(x) =a*"

Table 3.1: Different classes of LDPC codes

p@ﬁZ}Zmﬂ* (3.2)

where )\; denotes the proportion of non-zero entries of the parity-check matrix A
which belongs to the columns of H of weight 7. Similarly, p; denotes the proportion
of non-zero entries of 4 which belongs to the rows of H of weight . By definition
itisA(1)=p(1)=1.

Table 3.1 lists some classes of the LDPC codes. Gallager’s original LDPC code
used in [6] is a regular (N = 20, j = 3,k = 4) LDPC code, which is in the class
L5(20,3,4) = Lo (20,22, 2%).

3.2.3 Code rate

The code rate R of LDPC codes is defined by R > R, = 1-— % where R is the
design code rate. Itis R = R, if the parity-check matrix has full rank. It is also shown
that as IV increases the parity-check matrix is almost sure to be full rank (Miller and
Cohen 2003), therefore in this text it will be assumed that R = R, unless otherwise
mentioned.

The rate R is linked to the other parameters of the class by:

R=1- bl

J
=1-= 3.3
Sk 69
and in general, depending on j it is:
M
=1-— 4
R N (34)
when j is odd and
M—-1
=1-—- .
R N (3.5)

when j is even.
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3.3 Construction of LDPC codes

3.3.1 Random based construction

Construction of LDPC codes implies construction of a particular parity-check
matrix H, whose design must meet the asymptotical constraints (e.g. the parameters
of the code’s class, the degree distribution or the rate) with the practical constraints
(e.g. finite dimension, size of girths). During the design process there is a compromise
that must be taken into consideration though: increasing the girth, the sparseness of
H has to be decreased, effectively reducing the code performance due to low mini-
mum distance. On the other hand, maximizing minimum distance requires that the
sparseness be increased, consequently creating low-length girth, as the dimensions of
H are finite, and thus reducing the convergence of the belief propagation algorithm.

One of the two possible techniques for constructing LDPC codes, and in fact the
first chronologically, is the random based one. The constructions of Gallager in 1962
as well as MacKay and Neal in 1995 were random.

For the random based construction, the parity-check matrix is the concatenation
and/or superposition of sub-matrices, which are created by processing some permuta-
tions on a particular sub-matrix. This sub-matrix may be random or not and usually
has a column weight of 1.

The advantage of random constructions is that they do not have many constraints
apart from the girth’s value and they can fit quite well to the parameters of any given
class. However, they do not guarantee that the girth will be small enough, so either
post-processing or additional constraints are added, increasing the complexity of the
design.

3.3.2 Deterministic based construction

The second construction technique, deterministic constructions, have been de-
veloped to deal with the girth problem, but their explicit design can lead to easier
encoding and easier hardware implementation as well. There are two branches in
combinatorial mathematics that are involved in such designs: finite geometry and
Balanced Incomplete Block Designs (BIBDs), which seem to be more efficient than
previous algebraic constructions based on expander graphs.

However, deterministic constructions lack the variety of combinations of param-
eters the random ones offer. Therefore, it may be hard to find a combination that fits
the specifications of a given system.

3.4 Encoding

3.4.1 Lower-triangle shape based encoding

The encoding process of LDPC codes is actually their weak point, due to the fact
that a sparse parity-check matrix does not necessarily have a sparse generator matrix,
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Figure 3.1: Shape of parity-check matrix for efficient encoding as proposed by
(MacKay, Wilson and Davey 1999)

and in fact, it appears to be particularly dense.

One possible encoding scheme is to create a parity-check matrix with an almost
lower-triangular shape as depicted in Figure 3.1. This was the approach of (MacKay,
Wilson and Davey 1999). The lower-triangular constraint affects the performance of
the encoding: instead of computing the product ¢ = uG", the equation H - ¢ = 0 is
solved, where c is the unknown variable.

The encoding is systematic:

{en, o yevem} = {ur, - un—ar} (3.6)

The next M, c; are recursively computed by using the lower-triangular shape of
the parity-check matrix as:

ci=—pc % (c1,...,cio0) fori € {(N—M+1,....N—M+ M} (37

The last M — M; ¢;, i € {N — M + Mj,..., N} have to be solved without
reduced complexity, thus the higher M is, the less complex the encoding will be.

Another approach was proposed by T. Richardson and R. Urbanke (Richardson
and Urbanke 2001), which is depicted in Figure 3.2. The authors also propose
some greedy algorithms which transform any given parity-check matrix H into
an equivalent H' using columns and permutations, minimizing ¢g depicted on the
picture, so that H' will still be sparse. Then, complexity of the encoding will be
O (N + ¢?), where g is a small fraction of N.

3.4.2 Low-density generator matrices

As mentioned before, one of the problems of LDPC codes is that their generator
matrices are usually not sparse, because of the inversion. An approach by (Oenning
and Moon 2001) is to construct H both sparse and systematic, and then:

H = (P, Iy) and G = (In_p, P") (3.8)

where G is a sparse generator matrix (LDGM).
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Figure 3.2: Proposal for efficient encoding of a parity-check matrix by (Richardson
and Urbanke 2001)

3.4.3 Cyclic parity-check matrices

Cyclic or pseudo-cyclic codes are the most popular codes that can be easily
encoded. A Gallager-like construction using cyclic shifts is proposed in (Okamura
2003), which enables having a cyclic-based encoder. LDPC codes constructed by
finite geometry or BIBDs are also cyclic or pseudo-cyclic (Kou, Lin and Fossorier
2001; Ammar et al. 2002; Vasic 2002).

3.4.4 Iterative encoding

A class of parity-check codes which can be iteratively encoded using the same
graph-based algorithm as the decoder was proposed in (Haley, Grant and Buetefuer
2002). However, the codes do not seem to perform as well for irregular cases as the
random ones.

3.5 Decoding

3.5.1 Scheduling

Decoding of LDPC codes is processed by applying the optimal iterative decoding
algorithm described in Chapter 2. If the graph of the code has cycles (the cycle-
free hypothesis does not apply) then the optimality is lost. In such cases, the good
performance achieved yields to use it as a good approximation. This algorithm is
called the belief propagation (BP) algorithm.

The BP algorithm is scheduled, which means that the messages of the graph of the
code are propagated in certain order. If the graph is cycle-free then the scheduling
does not affect the convergence of the algorithm. Two schedules have been proposed
for implementation purpose (Kschischang and Frey 1998):
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Two way scheduling: A serial oriented schedule, in which only the relevant mes-
sages are processed and passed.

Flooding schedule: A parallel oriented schedule, in which all the nodes of the same
type are processed and then the nodes of the other type are also all updated.
The update for the nodes of a type can be either serial (one node at a time) or
parallel without affecting the output messages.

For codes without cycle-free graph representations, the flooding schedule is used,
since the behavior of each node processor is more simplified.

Mao and Banihashemi described a probabilistic schedule, with the idea of
avoiding the auto-confirmation messages induced by the cycles of the graph. Their
propagation would be avoided by sometimes not activating the node processors that
should be in the flooding schedule (Mao and Banihashemi 2001):

Probabilistic schedule: Let g,, be the girth of the variable node vn,,. Also, let gy« be
the maximum size of girths g,,, n € {1,..., N}. Then, the smallest number of
iterations avoiding the auto-confirmation of information of the variable node
vny, onitself is £*, since one iteration is a data path of 2 edges long. Therefore,
each variable node vn,, should be updated only as long as iteration i < £, and
afterwards it is idled. When more than % iterations have to be processed, the
variable nodes are all updated at iterations kng"‘x, where £ is an integer. Then
the same activation rule applies on vn,, by comparing ¢ mod (%) to £

Other scheduling techniques have been proposed as well. The authors of (Zhang
and Fossorier 2002) proposed a shuffle BP algorithm which converges faster than
the standard BP algorithm, by updating the information as soon as it has been
computed, so that the next node processor to be updated could use a more up-to-
date information. The authors of (Yeo, Nikoli¢ and Anantharam 2001) proposed in
a serialized architecture a staggered architecture which consist of processing serially
the parity-check processors: information sent to the check node under process takes
into account information of the previous iteration as well as information of the
current iteration which has been updated by all the previous check nodes.

3.5.2 Performance

The error rate of iterative decoding algorithms has a typical curve, which is shown
in Figure 3.3. There are three regions that can be distinguished on the solid line curve:

« the first region, below the convergence threshold, where the code is not very
efficient. While in this region, even if the number of iterations is increased, the
performance is not improved.

« the waterfall region, where the error rate has a huge negative slope which
increases as the number of iterations increases.
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Figure 3.3: Typical error probability curve of iterative decoding algorithms. The
dashed curve illustrates the trade-off between the waterfall and the error floor region,
since the lower error floor comes at the expense of a higher convergence threshold.

« the error floor region, where the error rate slope is lower than the one of the
waterfall region. The error floor is due to the minimum hamming distance of
the code, and for LDPC codes it is also caused by near codewords (also called
pseudo-codewords).



Chapter 4

Low-power and memory-efficient
LDPC decoding

Overview:

This chapter investigates hardware architectures for LDPC decoders
amenable to low-complexity implementation as well as low-voltage and
low-power operation. First, a type of iterative message-passing decoding
is described. Afterwards, the increased parallelism coupled with reduced
supply voltage is proposed as an effective technique to reduce the
power consumption of LDPC decoders, which have inherent parallelism.
Therefore, a partially-parallel and fully-parallel decoder architecture is
described. ‘Then, a scheme to efficiently early terminate the iterative
decoding, under certain conditions, is proposed to further reduce the
power consumption. Finally, a quantization scheme is described, which
can be used to increase the memory efficiency while decreasing the
hardware complexity of the implementation, at the cost of storing slightly
inaccurate information.

4.1 Min-sum decoding

A generic LDPC decoder architecture is shown in Figure 4.1. It comprises
K, shared variable nodes units (VNUs), K. shared check nodes units (CNUs) and
a shared memory fabric used to communicate messages between the VNUs and
CNUs. The outputs of VNUs fetched from the memory are the inputs to each CNU,
whose outputs, after some computations, are written back into the extrinsic memory.
Similarly, inputs to each VNU arrive from the channel and several CNUs via the
memory, and after performing the message update, the outputs of the VNUs are also
written back into the extrinsic memory for use by the CNUs in the next decoding
iteration. The process continues with all CNUs and VNUs alternately performing
their computations for a fixed number of iterations before the decoded bits are
obtained from one final computation performed by the VNUs.

27
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Figure 4.1: A partially-parallel LDPC decoder

The computing operations taking place in each iteration are part of the min-sum
decoding [10] algorithm, which is a type of iterative message-passing decoding, also
proposed as an approximation to the belief propagation (BP) algorithm. It is also
referred to as the BP-based algorithm. The min-sum algorithm is a soft-decision,
iterative algorithm for decoding binary-LDPC codes and is commonly used due to
its simplicity and good BER performance.

During the process, each decoding iteration consists of updating and transferring
extrinsic messages between neighboring variable nodes and check nodes. The
messages state a belief about the value of the corresponding received bit expressed in
the form of log likelihood ratio (LLR). At the beginning of the decoding process, the
variable nodes pass the LLR value of the received symbols, i.e. the intrinsic message,
to all the neighboring check nodes. Then, in each iteration, a check node update is
followed by a variable node update. In the check node update phase the outgoing
message on each edge of a check node has the sign of the parity of the signs of
the incoming messages from all other edges and its magnitude calculated as the
minimum of the magnitudes of the incoming messages. In the variable node update
phase the outgoing message on each edge of a variable node is calculated as the sum
of all the incoming messages from all other edges plus the intrinsic message from the
channel.

4.2 Low power parallel decoders

4.2.1 Partially-parallel decoders

The decoder presented in Figure 4.1 will be able to perform more computations
in parallel if the number of VNUs and CNUs is increased. With such increased
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Figure 4.2: Supply voltage reduction obtainable by increased parallelism

parallelism, when operated from a fixed supply voltage, the decoder may achieve
higher throughput, with attendant increases in power and area.

However, increased parallelism can also permit a system to operate from a
lower supply voltage with constant throughput, therefore greatly decreasing power
consumption [11]. In addition, the advantages offered by parallelism in power
consumption are mitigated by the overhead associated with multiplexing and de-
multiplexing the inputs and outputs amongst several parallel computing units.

The iterative decoding of LDPC codes has inherent parallelism: all of the signals
required for each iteration are already available in parallel in the extrinsic memory.
Therefore, the iterative decoding of LDPC codes is well suited to implementation with
a low supply voltage. The reduced supply voltage obtained by increasing parallelism
is described qualitatively in Figure 4.2.

As shown in Figure 4.2, there is a practical limit to the power savings obtained
by the decoder’s parallelism when the number of VNUs and CNUs equal the total
number of variable and check node computations required in each iteration. Further
increases of K, or K, are not straightforwardly possible, because the required input
messages are not available in the memory. The figure also shows that, unless the
targeted throughput is low, the supply voltage will remain significantly higher than
the MOS threshold voltage. However, sub-threshold circuits, although seemingly
energy-efficient, they are mostly suitable for low-to-mid performance systems with
relaxed constraints on throughput [12].

The benefits that high parallelism induces can be proved mathematically by
comparing a reference decoder with K, VNUs and K. CNUs (decoder A) versus
one with increased parallelism having & - K, VNUs and k - K. CNUs, where k£ > 1
(decoder B) [13].
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Power consumption

The dynamic power consumption of both decoders, operated at a clock frequency
f from a supply voltage V, is:

P = fCaVi, (4.1)

where Ceg is the effective capacitance of each decoder including an activity factor.
However, since the total number of messages stored in each iteration is constant, the
memory size is the same for both decoders. Therefore, only the effective capacitance
of the VNUs and CNUs are scaled by increasing parallelism.

Effective capacitance

Let (3 be the fraction of the reference decoder’s (A) total effectiveness that scales
with increasing parallelism, i.e. k. Also let C'y; be the effective capacitance associated
with the memory and Cy be the total effective capacitance of the reference design.

Then:
Oy —Cy

Ca
Since C'y; does not scale with k, the effective capacitance of the decoder with
increased parallelism (B) is:

p (4.2)

Cp=(1+p(k-1))Ca (4.3)

Supply voltage

Let f4 be the clock frequency the reference design operates and fp the one of
decoder B, that is £ times lower than the reference’s while maintaining the same
throughput:

fa
fe ="
Since the aim is low-power operation, it can be supposed that each decoder operates
from the lowest supply voltage possible that will support its targeted clock frequency.
Hence, if Vjq4, is the supply voltage of the reference design, then the decoder with
increased parallelism can be operated from a lower supply voltage V;4,, which is
analyzed as [14]:

(4.4)

V;idB = uscv;idA (4.5)
where:
2
1 —m)? 1—m)?

usczm—l—%%— (m—i—%) —m? (4.6)

is the normalized voltage and

Vi

m = (4.7)




4.2. Low power parallel decoders 31

From channel

VNU; | [T ]| oNuy
Intrinsic | - < o
memory 2 1,'; ~
VNU, S BR CNU,
=g
Sy
Output 8= S\])
buffer =
VNUy || || CNUg
Decoded bits ‘ k
Control

Figure 4.3: The fully-parallel iterative LDPC decoder architecture

Power savings

With the preceding analysis, the power savings offered by the decoder with
increasing parallelism is:

2
Py === (1+ 3 (k—1)) Pa = nPa (4.8)

4.2.2 Fully-parallel decoders

A fully-parallel architecture can be implemented by having a separate VNU or
CNU designated for each variable node or check node in the Tanner graph of the code.
A high-level fully-parallel iterative decoder architecture, based on a (4, 15)-regular
LDPC code with 660 variable nodes and 176 check nodes (V' and C respectively)
is shown in Figure 4.3. In this architecture, each extrinsic message is only written
by one VNU or CNU, therefore the extrinsic memory can be distributed among
VNUs and CNUs and no address generation is needed. Hence, the extrinsic memory
block of Figure 4.1 has been replaced with the interconnections and Control/Address
Generation block has been replaced with a simple Control block.

The advantage of the fully-parallel architecture is that it can be applied to
irregular codes with no constraint on the code structure, unlike most partially-
parallel decoders that are based on a particular code construction, such as the (3, k)-
regular construction in [15], or the Architecture-Aware code construction in [16].
The implementation of irregular codes is possible simply by instantiating the VNUs
and CNUs of the desired degree and connecting them based on the graph of the code.
However, the timing performance of the decoder for irregular codes will be typically
limited by a critical path through the nodes with the highest degree.
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In addition, the major challenge the implementation of high-parallel decoders
has, is the large area and the overhead effects, such as the routing complexity [17]. In
order to reduce the effect of routing complexity, a proposal to use a bit-serial message-
passing scheme, where multi-bit messages are communicated between the nodes over
multiple clock cycles has been made in [18]. The bit-serial message-passing also
requires less logic to perform the min-sum decoding algorithm, since both the “min”
and the “sum” operations are inherently bit-serial, and therefore bit-serial VNUs and
CNUs can be efficiently implemented to generate only partial 1-bit extrinsic messages
every clock cycle.

The use of bit-serial message-passing pushes the practical code length limit to
higher values, and for this reason it is able to implement fully-parallel decoders for
cutting-edge high-speed standards, such as 10GBase-T or Mobile WiMAX, which
specify code lengths of 2048 and 2304 respectively. However, the maximum length
of the LDPC codes that can be implemented in a bit-serial fully-parallel decoder will
be eventually limited by the routing complexity.

4.3 Early termination

4.3.1 Description

The concept of early termination is to eliminate iterations of the decoding process
which provide diminishing incremental improvements in decoder performance. The
general decoder design implements a fixed, a-priori determined number of iterations,
which are usually based on worst-case simulations. On the contrary, since most bit
errors will have generally been corrected within the first few decoding iterations, the
decoder may continue performing iterations even though it will usually converge to
its final output much sooner.

The idea is to create a decoder which can automatically detect when it has
converged to its final output and when it does, it will shut down all VNUs and CNUs
for the remainder of each frame, saving power.

An approach in this area is to focus on identifying particular bits within each
frame that appear likely to have converged, and then stop updating extrinsic
messages for those reliable bits, while other unreliable bits are still being decoded
[19,20]. However, these bits are sometimes incorrectly identified, so the decoder’s
performance suffers, unless an additional post-processing decoder is used in order
to mitigate this performance degradation [21]. There is, however, an overhead
associated with identifying the reliable bits and with the post-processing decoder
that reduces the power savings of this approach.

Another approach, instead of trying to identify individual bits that appear to have
converged early, is to monitor the entire frame to determine when the decoder has
converged to a valid codeword, and then deactivate the entire decoder for the rest of
the iterations in order to save power [13].
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4.3.2 Implementation

A general approach to implement the detection the decoder’s convergence to a
correct codeword is the syndrome checking: it refers to making final decisions in
each VNU at the end of each iteration and then checking if all parity constraints
are satisfied. This approach, although straightforward, introduces a considerable
hardware cost to the design, since it requires additional hardware to enable the
VNUs to make the hard decisions at the end of each iteration, and it must also
distribute those hard decisions to the destination check nodes in every iteration where
syndrome checking can be performed.

The distribution of the VNUs’ hard decisions to the check nodes can be done
either by using additional hard wires from VNUs to the neighboring CNUs or by
using the same wires that are used for transferring extrinsic messages in a bit-serial
time multiplexed way. Both approaches, however, are inefficient because they either
increase the routing complexity by adding extra global wires or decrease the decoding
throughput by increasing the number of clock cycles per iteration, respectively.

An alternative approach is to check the parity of the normal variable-to-check
messages that are already required by the decoding iterations: if the parity of all
these messages are satisfied, the decoding for that frame can be stopped and the
final hard decision can be computed at the beginning of the next iteration. This
method, however, on average requires one extra iteration to terminate, compared to
the conventional syndrome checking approach, but on the other hand, it does not
increase the number of VNU-to-CNU wires, and it also does not require extra clock
cycles per iteration to distribute the results of hard decisions to the CNUs. In addition,
this approach induces less hardware overhead, since most of the calculations are
already part of the normal VNU and CNU operations.

4.4 Quantization

4.4.1 Description

The standard belief propagation scheme uses real-valued messages which pass
along edges in the code’s graph and which are typically stored and updated in a very
accurate representation, such as floating numbers. Computing and storing such an
accurate representation, however, imposes high complexity, which, for high-speed
LDPC decoders, should be avoided to reduce degradation of performance. For this
reason, a low-complexity LDPC quantization scheme has been proposed to make
efficient hardware implementation possible [22].

With quantization, the memory needed to store messages passing along edges in
a code graph scales with the n-bit quantization as O (n). In addition, the number
of interconnect wires to connect variable nodes and check nodes is also proportional
to the n-bit quantization and the complexity of interconnect routing scales at least
linearly with n. Therefore, a smaller n-bit quantization is generally a good idea
as it makes the message update process easier for the variable and check nodes,
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whose logic complexity are often more than linear with the n-bit quantization. In
fact, the worst case imposes an n-bit-input n-bit-output look-up table to have logic
complexity O (2").

Memory efficiency is highly considered when implementing LDPC decoders on
FPGAs', even though newer generations of FPGA chips, such as Xilinx Virtex-II and
Virtex-4, are equipped with high-capacity on-board memory for storage-demanding
applications of signal processing (DSP). The memory block division of these devices
imposes a practical constraint that also needs to be taken into consideration: the
block memory is only divisible into fixed bit length, such as 4-bit wide, or high-
resolution, such as 9-bit, 18-bit and 36-bit [25, 26], hence, to efficiently utilize the
available memory, the n-bit quantization scheme applied should be compatible to the
block memory division. The trade-off in this case is that higher bit length provides
good resolution at the cost of limiting the size of the code the device can implement,
as well as significantly increasing the amounts of power required to consume. On
the contrary, an efficient low bit length quantization scheme can allow decoding of
larger codes, and it is also very attractive if it can achieve small quantization loss.

4.4.2 Function

The decoding process that takes place is a quantized belief propagation algorithm,
a message passing rule similar to the default algorithm described in previous chapters,
but with the difference that the messages representing the likelihood ratios are
compressed by each variable or check node before being transmitted to the adjacent
nodes. The operation of each variable node occurs in the log-likelihood ratio (LLR)
domain, or ‘reliability” domain. On the contrary, for check nodes, the domain
is called “unreliability” domain. By domain, we mean the environment where
updates can be performed through simple additions and subtractions, and where the
values are typically represented by more bits than are required to transmit and store
internode messages.

Two functions, (), and ()., are utilized to quantize the messages in the reliability
and unreliability domains respectively into n-bit compressed messages. Complimen-
tary to these functions are also ¢, and ¢., whose purpose is to restore the n-bit
compressed messages into the reliability and unreliability domains for variable and
check nodes respectively. A message that is compressed from one domain (e.g. the
reliability domain) can always be restored into the other domain (the unreliability
domain in this example) and vice-versa, since variable nodes always send messages
to check nodes and vice-versa.

The process begins with a channel quantizer, ()., that captures and quantizes the
channel’s information, takes real-valued log-likelihood ratios, and finally produces
a quantized representation. A reconstruction function, ¢.5, is implemented to take
a message produced by the channel quantizer and output a value to be used by the
variable node. Then, the process goes as follows:

Proposals for implementation of LDPC code decoders on Xilinx FPGA devices can be found in
[23,24].
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« At each iteration, the variable node produces the variable-to-check messages
v;_j, which for the first iteration (0) are given by:

Vi; (0) = Qe (channel;), 7 € {1,...,n} (4.9)

. At each next iteration, let it be the &™ iteration, the parity check phase occurs
first. All CNUs read the variable-to-check messages v;_,; from some edge
memory connecting the i variable node to the j™ check node in the code
graph, and update the message by:

Uj—i (k) = Qc (Z ¢c (Ui’—>j (k - 1))) ) ] € {17 s >T} (4~10)

il i

where i’ ranges over all edges connected to the j™ check node excluding 4, Q..
is the quantization rule for the check-to-variable message u;_,; and ¢, is the
reconstruction function for the variable-to-check message v;_,;. Finally, they
write the resulting check-to-variable messages, u;_,;, back to the edge memory
according to the code graph connections.

« Afterwards, the variable phase occurs, when n VNUs read the check-to-
variable messages u;_,; from edge memory and update the message by:

Vi (k) = Qy (gzﬁch (Qcn (channel;)) + Z Go (W) (k:))) ,i1e{l,...,n}
J'#i

(4.11)
where j’ ranges over all edges connected to the j™ node excluding j, @,
is the quantization rule for the variable-to-check message v;_,;, ¢, is the
reconstruction function for the check-to-variable message u;_,; and ¢, is
the reconstruction function for the channel message Q). (channel;). Finally,
they write the resulting variable-to-check message v;_,; back to edge memory
according to the code graph connections.

« At the final iteration, let it be the K™ iteration, the variable nodes make hard
decisions X as:

(4.12)

’ 1, if ZJUJ%Z(K><O






Chapter 5

Performance of BPSK-modulated
LDPC codes

Overview:

This chapter presents a performance analysis of several standard LDPC
codes decoding techniques. At first, the algorithm behind each technique
is presented, and afterwards a computer-based simulation is suggested
in order to describe the performance versus implementation cost trade-
off imposed. The simulation extracts information about the bit error rate
(BER) of each technique, offering a graphic comparison between them.
In the end, the best performing decoding technique will be chosen to
implement on a FPGA.

5.1 Decoding techniques for LDPC codes

LDPC codes can be decoded using iterative decoding algorithms, in order
to improve the code’s performance. These algorithms generally perform local
calculations and pass the local results via messages. This step is typically repeated
several times during the decoding process. Different proposals have been made
for decoding messages, which include both hard-decision and soft-decision belief
propagation or sum-product algorithm (SPA) techniques. For messages which
are BPSK modulated under Additive White Gaussian Noise (AWGN) and fading
channels, some such proposals will be discussed.

5.1.1 Hard-decision (bit-flip) decoders

With this technique, the bits of a binary message will be decoded as 1 in a
variable node if the majority of the incoming bits (from the source and the check
nodes connected to the variable node) is 1, otherwise it will be decoded as 0.

More specifically, the procedure begins with all variable nodes vn; sending a
message to their connected check nodes cn; containing the bit they believe to be the
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correct one for them. At this (first) stage, the only information a variable node has,
is the corresponding received i bit of the source codeword c, let it be y;.

Then, every check node cn; calculates a response to every connected variable
node vn;. The response message contains the bit that the check node believes to
be the correct one for this variable node, assuming that the other variable nodes
connected to the check node are correct. Therefore, at this step, a check node looks
at the message received from its connected variable nodes and calculates the bit that
each other connected variable node should have in order to fulfill the parity check
equation. Note that this might also be the point at which the decoding algorithm
terminates. This will be the case if all check equations are fulfilled. Techniques, such
as early termination, can be used in cases that the decoding algorithm contains a
loop, in order to stop the process when a threshold for the amount of loops has been
reached.

The final step requires the variable nodes to receive the messages from the check
nodes and use this additional information to decide if their originally received bit is
correct. A simple way to do this is to decide upon the majority of their incoming
information. Specifically, each variable node in this step has the source (original)
information concerning its bit, as well as the suggestions from the check nodes. Upon
deciding, the variable nodes can send another message with their (hard) decision for
the correct value to the check nodes.

This type of decoders are usually simple to implement, since they do not employ
complicated probability or log-likelihood function. This, however, may result in
inferior performance compared to other decoders for very low values of Ej,/ Nj.

5.1.2 Soft-decision probability-domain SPA decoders

Contrary to hard-decision decoding, which is made without using the knowledge
of the probability set, soft-decision decoding of LDPC codes is based on the concept
of belief propagation with the decoding process basing its decisions on the value of
the probability for each bit to be 0 or 1 (for binary messages). The underlying idea
for updating node information, however, is the same as in hard-decision decoding.

In the first step of the decoding process all variable nodes vn; send their variable-
to-check messages v;_; to their connected check nodes cn;. Every variable-to-check
message contains contains always the pair v;_,; (0) and v;_,; (1) which stands for the
amount of belief that y; is 0 or 1 respectively. Since no other information is available
at this step, v;_,; (1) = P; and v;_,; (0) = 1 — P;, where P, = Pr (¢; = 1]y;).

In the following step, the check nodes calculate their response check-to-variable
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messages U;_,; as':

il i
and
uji (1) =1 —uj;(0) (5.3)

In this way, the check nodes calculate the probability that there is an even number
of 1s among the variable nodes except vn; (as ¢’ spans all nodes except 7). This
probability is equal to the probability u;_,; (0) that vn; is a 0.

Afterwards, the variable nodes update their response variable-to-check messages
Vj—; aS:

ving (0) = Ko (1= P) [ [ wyi (0) (5.4)
J'#7
and
Visj (1) = K P, H Ui (1) (5.5)
J'#]

where the constants /;; are chosen to ensure that v;_,; (0) + v,; (1) = 1.
In the final step, the variable nodes update their current estimation ¢; of their
variable ¢; by calculating the probabilities for 0 and 1 as:

Qi (0)=K;(1—P) H ;i (0) (5.6)

and

Qi (1) = K;P; H ujyi (1) (5.7)

J

and then voting for the bigger one:

. {o, if Q; (0) > Qi (1) 65)

T iQi(0) < Qi(1)

If the current estimated codeword fulfills the parity check equations the algorithm
may terminate. Otherwise, the process must continue and termination may be
ensured through a maximum number of iterations.

'Equation 5.2 uses the result from Gallager that for a sequence of M independent binary digits a;
with a probability of p; for a; = 1, the probability that the whole sequence contains an even number

of 1s is then:
M

1
+ 51—[(1_2101') (5.1)

i=1
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5.1.3 Log-domain SPA decoders

The probabilistic type of soft-decision decoders has better performance than hard-
decision decoders, since they use probability function for deciding, even though there
are still some performance issues, such as numerical stability problems, due to the
many multiplications of probabilities. In addition, an important issue is that for large
block lengths the results will come very close to zero. In order to prevent this, it is
possible to change into the log-domain and doing additions instead of multiplications.
The result is a more stable algorithm that even has performance advantages since
additions are computationally less expensive.

Before presenting the algorithm, some notations are introduced. First, for a
Binary Symmetric Channel (BSC) with error probability p;, the log-likelihood ratio
(LLR) in favor of a 1 bit is defined as:

L —pi

L(c) 2 log (5.9)
Di
for each variable ¢; and:
A Vi—j (O)
L(vi;)=1lo 5.10)
for each variable-to-check message v; ;.
The most frequently involved computation in the process can be defined as:
1 e’ +1
¢ (r) = —logtanh (556) = log g (5.11)
which has the property of:
¢ (x) = (x), forz >0 (5.12)

Finally, the log-likelihood ratio for variable-to-check messages can be separated

as:
L (visj) = i By (5.13)
where:
QG = Sigl’l (L (Ui‘)j)) (5.14)
and
ﬁij = abs (L (’Uiéj)) (515)

In the first step of the log-domain decoding algorithm, all variable nodes send
their variable-to-checks message to their connected check nodes as:

L (visj) = 2y;/0* (5.16)

for an Additive White Gaussian Noise (AWGN) channel with noise standard devia-
tion o.
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In the following step, the check nodes calculate their response check-to-variable

L(uj) = [Jews - ¢ [Z ¢ (51’;’)] (5.17)

il i il i

Then, the variable nodes update their response variable-to-check messages as:

L(vinj) = L(ci) + Y L () (5.18)
J'#7

In the final step of the iteration, the variable nodes update their current estimation
¢; of their variable c; by calculating its log-likelihood ratio as:

L(Qi) = L)+ 3 L(uj) (5.19)
J
and then deciding upon the sign of the LLR:

(5.20)

o]0 i L(@Q) >0
)1, ifL(Q) <0

A modified version of log-domain SPA decoder can also been proposed: this type
of decoding process replaces probabilities P; with min;. For further simplification,
log-likelihood function can be replaced with incoming signal waveform directly,
hence simplified log-domain decoder does not need noise variance information.

5.2 Bit error rate analysis

The main challenge when implementing an LDPC decoder is to choose the most
preferred decoding technique regarding the possibly specific type of messages the
decoder will handle. For this reason, the techniques discussed in this section have
been simulated on PC by a MATLAB script®. The script includes all steps of LDPC
transmissions and its operation flowchart can be seen in Figure 5.1. According to
this, the script operates as follows:

1. First, it creates an LDPC matrix for a code, with specific parameters for the
number of rows and columns, as well as an option for eliminating cycles of
length four in the factor graph of the parity-check matrix and the distribution
of the user-defined number of 1s in the columns and rows of the matrix.

*MATLAB (http://www.mathworks.com/products/matlab) is a numerical computing
environment which allows matrix manipulation, plotting of functions and data, implementation
of algorithms, creation of user interfaces, and interfacing with programs in other languages.
The script used for simulation is based on Radford M. Neal’s programs collection written in C
programming language, which are available at http://www.cs.toronto.edu/ radford/ftp/
LDPC-2006-02-08.


http://www.mathworks.com/products/matlab
http://www.cs.toronto.edu/~radford/ftp/LDPC-2006-02-08
http://www.cs.toronto.edu/~radford/ftp/LDPC-2006-02-08
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Figure 5.1: MATLAB simulation flowchart of an LDPC transceiver
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2. Then, it creates messages of random source data, which will be the information
messages to be transmitted.

3. The script will try to rearrange the parity-check matrix to a concatenation of
two square matrices, A and B, with A being decomposed to LU, where L is a
lower triangular and U is upper triangular matrix.

4. Afterwards, the encoding stage takes place, during which, the script generates
parity check bits for the binary source and encodes the message blocks as
codewords.

5. The message is subsequently modulated before transmission by the Binary
phase-shift keying (BPSK) digital modulation scheme using a carrier wave of
defined frequency.

6. Then, the bits of the message are transmitted through a noisy channel, which
results to certain data at the output of the channel being related to the codeword
sent with random noise. First, a channel model in which a linear addition of
white noise with a constant spectral density and a Gaussian distribution of
amplitude is simulated, which is known as Additive White Gaussian Noise
(AWGN). After this set of simulations, another set of channels experiencing
Rician and Rayleigh fading is demonstrated.

7. On the other side of the channel, the reverse process starts with demodulating
the incoming message.

8. The received blocks are then decoded using one of the iterative belief propa-
gation decoding techniques presented in the previous section. The decoding
process follows the steps shown in Figure 5.2.

9. Finally, the script extracts information about the performance of each decoding
technique, producing graphical presentations of the bit error rates (BER)
depending on the number of iterations and £,/ Ny using MATLAB’s bit error
rate analysis tool, bertool.

The results which are yielded by the simulation procedures of each decoding
technique are discussed in their corresponding following subsections.

5.2.1 Performance analysis of hard-decision (bit-flip) decoders

Hard-decision (bit-flipping) sum-product algorithm LDPC decoders are simple
to implement, since they do not employ complicated probability or log-likelihood
function. In MATLAB, decoders of this type can be simulated using the code
presented in Section A.1 of Appendix A. This code shows the operations which are
done during the iterations of the decoding process.

The number of iterations of the decoding process, as well as the value of E},/ Ny
of the transmited signal have strong impact on the performance of the decoder. The
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process is simulated in MATLAB using bertool, which runs the specified code for
different values of E},/ Ny (0 to 8dB) and number of iterations (1 to 7) using random
messages as sources up to a total of 10 bits. For each number of iterations, the results
of the simulation are presented in Figure 5.3.

The results clearly expose the decoder’s weakness to decode correctly for very
low values of E,/Ny. Regardless the number of iterations, for the lowest value
of Ej,/Ny simulated, 0dB, the bit error rate rises over 3 - 10!, which means that
almost one in three bits is erroneous. However, as £,/ values increase, the
decoder’s performance tends to improve gradually, with the bit error rate slightly
bordering 1072 for Ej/N, = 8dB. Therefore, hard-decision (bit-flipping) decoders
cannot be trusted for reliable transmissions, especially when operating under noisy
channels, maybe with the exception of situations where their very simple hardware
implementation makes up for their weak performance.

5.2.2 Performance analysis of soft-decision probability-domain
decoders

As opposed to the bit-flipping decoders, probability-domain sum-product algo-
rithm decoders base their decisions on the value of the probability for each bit to
be 0 or 1 in the case of binary messages. To accomplish this, they employ more
complicated functions which make use of the probability set of the code, effectively
increasing the implementation complexity. In return, probability-domain decoders
are expected to perform better even for low values of E,/Ny. The simulation is
operated by the code presented in Section A.2 of Appendix A and yields the results
presented in Figure 5.4.

According to the graphical representations, the decoder’s performance is by far
superior to a bit-flipping one’s for all values of /Ny and number of iterations. All
executions start with bit error rate just around 107! for E, /Ny = 0dB, and this
gradually falls as E},/ Ny increases further, ultimately reaching values close to 107°
when E, /Ny = 8dB.

As a result, in situations where performance is matters the most, probability-
domain decoders will most likely satisfy the high needs of reliable communication.
However, this comes at the cost of raised implementation complexity. To overcome
this dilemma, different techniques have been proposed which offer a better trade-off
between operation performance and implementation complexity.

5.2.3 Performance analysis of log-domain decoders

Log-domain decoders share the same main steps with the probability-domain
decoders in the way they decide upon the bits of a received message, but differ in
the way they calculate that decision. Instead of probability functions, this type of
decoders use log-likelihood ratios (LLRs) as response messages between the check
and variable nodes, a method which is computationally less intensive than the one of
their counterparts, but on the other hand, may be less accurate thus producing more



46 Chapter 5. Performance of BPSK-modulated LDPC codes

Iterations: 1

4
E,/N, (dB)

Iterations: 3

10° ‘ ‘

0 N (@
E,/N, (dB)
o Iterations: 5
10° ¢
L
o107}
107 ‘
0 2 4
E,/N, (dB)
10° ¢
[
10t
107

Figure 5.3: BER analysis of a hard-decision (bit-flip) decoder under AWGN channel

o Iterations: 2
10" ¢
L
107t
107
0 4 6 8
E /N, (dB)
o Iterations: 4
10" ¢
L
10"
10_2 L L i
0 E, /N4 dB 6 8
/N, (dB)
0 Iterations: 6
10 ¢
L
107t
1072 ;
0 4 6 8
E/N, (dB)
Iterations: 7
4
E,/N, (dB)



5.2. Bit error rate analysis

47

Iterations: 1

Iterations: 2

4
E,/N, (dB)

Iterations: 3

4
E,/N, (dB)

Iterations: 4

N (@
E,/N, (dB)

Iterations: 5

N
E,/N, (@B)

Iterations: 6

4
E,/N, (dB)

10° ¢

1078

-2

10 "¢

-3

X
410 "¢
n

—4

10 ¢

-5

10 "¢

Iterations: 7

10°

0 2

4
E/N, (dB)

4
E,/N, (dB)

Figure 5.4: BER analysis of a probability-domain SPA decoder under AWGN channel



48 Chapter 5. Performance of BPSK-modulated LDPC codes

erroneous bits. A decoder of this type can be simulated using the code presented in
Section A.3 of Appendix A and its performance is shown in Figure 5.5.

Like the probability-domain decoders, log-domain ones have superior perfor-
mance compared to bit-flipping decoders for all values of Fj/Ny and number of
iterations. For lower values of Ej,/N,, log-domain decoders also have similar
performance curve to the probability-domain ones, as seen by the values of BER
for E,/Ny < 3 dB. For higher values, performance increases steadily, reaching
values in the range between 10~ (for 1 and 2 iterations) and 10~ (for 4 iterations),
with most of them tending to end up around 10~° for Ej/N, = 8dB, which is a
performance close to the performance of probability-domain decoders.

The number of iterations heavily affect the performance of this type of decoders,
since with only 1 iteration the decoder cannot surpass the limit of 10~* BER, which
only 2 or more iterations can. On the other hand, a big number of iterations seem
to also impair performance, instead of improve it. Best performance in terms of bit
error rate is observed for 4 iterations, while more or less iterations gradually decrease
it.

5.2.4 Performance analysis of simplified log-domain decoders

A modified version of the log-domain sum-product algorithm decoders can
be created by replacing some of their heavy computations with simpler ones.
Specifically, this type of decoders avoid calculating the logarithmic and exponential
function ¢ (x), and instead they use the minimum value of the log-likelihood ratio of
the exchanged messages. Therefore, this type of decoders are simpler to implement,
but this comes at the cost of possibly lower performance than the original log-domain
decoders. The code which simulates a simplified log-domain decoder is presented in
Section A.4 of Appendix A and its performance analysis can be seen in Figure 5.6.

According to the plots, the performance curves of simplified log-domain decoders
are similar to the ones of the original log-domain decoders. Both types are better
than hard-decision decoders, and start with bit error rate around 10!, with values
gradually decreasing as Fj,/ Ny increases. For the highest value of Ej,/ Ny which was
simulated, 8dB, bit error rate usually lies between 107° and 107° as the original
log-domain decoders do.

The lowest value of BER is observed for 6 iterations, even though it is clear that
the more Ej,/ Ny increases, the less impact the number of iterations seem to have
on the performance of the decoder. The worst performance is observed for only 1
iteration, but this case is common to all decoding techniques.

All things concerned, the simplified log-domain decoders perform relatively well,
similar to the original log-domain decoders and close to the probability-domain ones,
even though the performance is not exactly the same as their counterparts. However,
their simpler implementation and computationally less expensive operation make up
for this possible weakness, especially when they are needed to be implemented in
small embedded systems. Therefore, choosing a simplified log-domain decoder to be
implemented on a FPGA is a reasonable decision.
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5.3 Fading channels

5.3.1 Rayleigh fading

Signal impairments in a wireless channel arise not only from noise and inter-
ference, which are common to most electromagnetic communication systems, but
also from propagating effects, which are unique to wireless communications. The
term “fading” is used to describe this cases; it denotes variation of received signal
amplitude and phase, with respect to both time and distance. The fading results
from interaction between the propagating wavefront, the mobile receiver, and nearby
objects, and for this reason it is often modeled as a random process.

If the maximum spread of time delay (7;,,,) between multipath signal components
is much less than the symbol period (7}), then relative multipath delay (fading
which is due to multipath propagation) can be ignored. In this case all multipath
components may be regarded as one with respect to time and the condition is then
called “flat” or non-frequency-selective fading. This happens because the channel
coherence bandwidth (over which the channel is strongly auto-correlated) is wide
(the curve is flat) compared with the signal bandwidth.

In environments where no line-of-sight (LOS) signal component is likely to
reach the receiver, scattering of the wavefront by many nearby objects is expected.
Therefore, the received signal is regarded as equally probable from any direction.
This condition is termed isotropic scattering, and may be modeled using a Rayleigh
distribution, wherein the random variable R = X2+ Y2 is a function of two
independent, zero-mean, normally distributed random (Gaussian) variables X and
Y. The fading in such a system is termed “Rayleigh fading”. If there is a dominant
line-of-sight, Rician fading may be more applicable. The model behind Rician fading
is similar to that for Rayleigh fading, except that in Rician fading a strong dominant
component is present, which is usually the line-of-sight wave.

In a flat Rayleigh fading model X and Y represent the in-phase and quadrature
components of the channel impulse response. Both are random processes, and
consequently the resultant envelope R is also a random process.

The Jakes sum-of-sinusoid method [27] was used with MATLAB to simulate
flat Rayleigh fading, and statistical properties of the simulated fading channel were
investigated. Figure 5.7 shows the envelope’s probability density function (pdf)
compared to the theoretical Rayleigh distribution using variance o2 = 1.

Decoding performance under Rayleigh fading channel

Fading channels can cause poor performance in a communication system and
can result in a loss of signal power which can be over some or all of the signal
bandwidth. Fading can also be a problem because it changes over time and also
varies with geographical position and radio frequency. Even though communication
systems are often designed to adapt to such impairments, the fading can still change
faster than the adaptations and, in these cases, the probability of experiencing a fade
on the channel becomes the limiting factor in the link’s performance.
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The impairments imposed by Rayleigh fading channels compared to those intro-
duced by AWGN channels is presented in Figure 5.8. According to this representation,
bit error rate in cases of Rayleigh channels barely falls under 1072 when Ej, /N, =
15dB. On the contrary, decoding performance in AWGN channels can perfectly reach
1077 bit error rate at a value of £}/ Ny = 12dB.

Hard-decision (bit-flip) decoders

Like in AWGN simulations, hard-decision decoders have shown to be the worst
performing algorithm, which is the cost of their simple implementation. With
bit error rates starting over 3 - 10!, which means that out of a total 10° bits,
30% are erroneous, this type of decoders most likely cannot be trusted for reliable
communication in fading channels. This value gradually falls to almost 2 - 1072
when E,/Ny = 15dB. The performance curve produced in MATLAB is shown in
Figure 5.9. According to the simulation results, increasing the number of iterations
of the belief propagation algorithm does not improve performance, which may be
due to the already big number of erroneous bits.
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Soft-decision probability-domain decoders

Probability-domain decoders start with better bit error rates than bit-flip ones,
with starting values just under 2 - 107!, These values continue to fall as Ej,/ N,
increases, up to a point when further increases in £}/ Ny do not seem to significantly
improve performance. This is clearly seen in Figure 5.10, in which, for 7 iterations,
when FEj,/ Ny increases further than 8dB, bit error rate decrease is gradually lesser.
Consequently, there is a threshold in the value of E}/N,, after which probability-
domain decoding performance is almost steady. This threshold is also found for 1
iteration of the decoding algorithm, but in this case it corresponds to a higher value
of £,/ Ny, around 13dB. In addition, as the value of E}/ N, increases, it seems that
the impact the number of iterations have upon the decoding performance is gradually
decreasing.

Log-domain decoders

Performance of log-domain decoders shares a similar start with probability-
domain ones, since their bit error rate starts at a little less than 2 - 10! at E},/ Ny =
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Figure 5.12: BER analysis of a simplified log-domain SPA decoder under Rayleigh

channel

0dB and gradually falls as Ej,/ N, increases, showing a possible threshold point at
Ey/Ny = 14dB, after which performance improve rate seems to decrease. The
performance curve of these decoders is presented in Figure 5.11, and according to
it, log-domain decoders can achieve bit error rate values which are very close to
2 - 1072 at higher values of Ej,/Nj.

Simplified log-domain decoders

The modified version of log-domain decoders presented in subsection 5.2.4 has a
similar performance curve to its original counterparts as seen in Figure 5.12. With
a starting value of BER close to 2 - 107! for 1 iteration of the decoding algorithm
(which falls to 1,8 - 10~! for 7 iterations), performance of this type of decoders
constantly falls throughout the simulation runtime, without showing any thresholds
of decreasing performance rate as probability-domain decoders do. At higher values
of E,/ Ny, simplified log-domain decoders decrease their bit error rate to values close
or even less than 1072 (when E,/N, = 15dB), which is very close to the values of
the theoretical performance curve presented in Figure 5.8, especially as the number
of iterations increases.
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Figure 5.13: Performance of Rician fading channels compared to AWGN and Rayleigh
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5.3.2 Rician fading

The model behind Rician fading is similar to that for Rayleigh fading, except that
in Rician fading a strong dominant component is present. This dominant component
is typically the line-of-sight wave. On the contrary, in Rayleigh fading there is no
line-of-sight signal, and for this reason it is sometimes considered as a special case
of the more generalized concept of Rician fading.

The Rician K -factor is defined as the ratio of signal power in dominant compo-
nent over the (local-mean) scattered power. In the expression for the received signal,
the power in the line-of-sight equals %2, where C' is the amplitude of the line-of-
sight component. For example, in indoor channels with an unobstructed line-of-sight
between transmit and receive antenna the /K -factor is usually between 4 and 12dB.
Rayleigh fading is recovered for K = 0, which corresponds to —oodB.

Decoding performance under Rician fading channel

Like all fading channels, Rician fading imposes degradation to the decoding
performance of messages transmitted through such channel. The theoretical per-
formance of Rician fading channels compared to AWGN and Rayleigh fading is
depicted in Figure 5.13. According to this, performance of Rayleigh fading equals
Rician when K = 0, since in this case the two channels are equivalent. As K
increases, so does performance, since stronger dominant components favor more
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error-free transmissions. In fact, when K gets a quite big value, like ' = 50, the
impairments imposed by fading can almost be absorbed by the Gaussian channel,
and the performance curve in this case tends to follow the theoretical AWGN curve
very closely. Therefore, performance of Rician fading channels is upper bounded by
AWGN and lower bounded by Rayleigh channels.

Hard-decision (bit-flip) decoders

Mediocre performance has been a typical characteristic of hard-decision de-
coders, which is also proved in Rician channels. Bit error rates of bit-flip decoders
are at higher levels than the rest of the decoding algorithms, mainly due to their
simple implementation. According to their performance curves, which are presented
in Figure 5.14, bit error rate lies between 10~ ' and 1072 for K = 2 and for the values
of £,/ Ny > 6dB. As K increases, so does performance, which lays between 1072
and 1073 for K = 5 and between 1072 and 10~ for K = 10, when £}/ N, is greater
than 10dB. In addition, once again, increasing the number of iterations of the belief
propagation algorithm does not seem to improve performance, which has also been
observed in Rayleigh fading channel simulations.

Soft-decision probability-domain decoders

Probability-domain decoders have better performance compared to bit-flip de-
coders, due to the fact that they utilize more complex calculations during the
decoding process. Bit error rates start with values around 10~! in all cases which
have been simulated. However, these values gradually fall as F},/ Ny and K increase,
reaching values close to 1072 for K = 2, 1073 for K = 5 and 10~* for K = 10. In
addition, there is a threshold in the values of Ej, /N, after which performance seem
to improve with gradually lower rates, as shown in Figure 5.15. This behavior has
been observed in Rayleigh fading channels as well, which is expected, since Rayleigh
fading channels can be considered a special case of Rician channels. Once again,
increasing the number of iterations of the decoding process does not seem to improve
performance, which has also been observed in Rayleigh channels.

Log-domain decoders

Simulation of log-domain decoders under Rician fading channel shows the best
results in performance compared to all other techniques. As shown in Figure 5.16,
bit error rate for log-domain decoders starts around 10~! at F,/Ny = 0dB for all
values of K, and it gradually falls as E},/N, and K increase. For higher values
of Ej/ Ny, bit error rate falls under 1072 for K = 2, 1073 for K = 5 and 1074
for k' = 10 respectively, which is very close to the theoretical performance curve
depicted in Figure 5.13. Increasing the number of iterations seems to slightly improve
performance.
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Simplified log-domain decoders

The last decoding technique which has been simulated, the simplified log-domain
decoders, perform quite similarly to the original log-domain ones. According to
Figure 5.17, their performance curves are very close to their original counterparts,
which are also very close to the theoretical performance curves. For higher values of
E}/ Ny, bit error rate has values between 1072 and 1073 for K = 2, between 1073
and 107 for K = 5 and it can even approach 10~® when K = 10. Similarly to
log-domain decoders, their simplified version seems to improve in performance as
the number of iterations increases.

Consequently, after observing the decoding performance of all types of decoders
under both AWGN and fading channels, it is reasonable to choose the simplified
form of log-domain decoders to implement on FPGA, since they match the good
performance of log-domain decoders with the simpler implementation and computa-
tionally less expensive operation. The values of bit error rates for a sensible number
of iterations, such as 7 iterations, under all simulated channels of transmission is
presented in Figure 5.18. According to this, in order to achieve bit error rates lower
than 1072, or 1%, a Gaussian channel requires messages with £}/ N, values greater
than 3dB. On the other hand, fading channels require much more energy per bit to
achieve these rates, since a Rician channel with K -factor of 7dB, i.e. 5 in linear scale,
requires that £,/ Ny is over 7dB, while under Rayleigh channel this value must be
even greater, requiring normalized signal-to-noise ratios of over 15dB. However, in
applications where reliability is not very critical, all channels can perform similarly
well for very low values of Ej,/ Ny, bounded between 0 — 3dB, even without the need
of an increased number of iterations.

The implementation of the simplified log-domain decoder, along with the encoder
of the LDPC transceiver, is described in the next chapter. In the end, the implemented
system will be checked to verify that its performance meets the bit error rate values
expressed in this chapter.
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Figure 5.14: BER analysis of a hard-decision (bit-flip) decoder under Rician channel

for: (a) K = 2, (b) K =5 and (c) K = 10.
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Chapter 6

Implementation of an LDPC
transceiver

Overview:

This chapter presents the implementation of an LDPC transceiver on a
Xilinx Spartan-3E FPGA. After an overview of the whole design, each
entity of it is analyzed in detail. This is done firstly by describing
each entity’s function and the components used by them. Then, the
operation stages are presented, which show a more in-depth step-by-
step view of the encoding and decoding procedures. Finally, the correct
operation of each entity has been verified by run-time simulations and
some snapshots are included depicting this.

6.1 Design Summary

The final part of this work deals with the implementation of a transceiver on
an embedded system. The transceiver has defined specifications and is designed
to be implemented on a FPGA of the Xilinx Spartan-3E family [28]. Its operation
includes all steps of LDPC codes transmissions and the designed transceiver has the
capabilities of both transmitters and receivers. Therefore, the transceiver is able to
read source data from its input and encode them, and after being modulated and
transmitted over a noisy channel, the transceiver can follow the reverse procedure,
i.e. receive the encoded messages, demodulate and decode them, ultimately exporting
them through its output port. The decoding technique which will be used by the
decoder is the simplified form of the log-domain decoding algorithm described in
subsection 5.1.3. In addition, for testing purposes, the input and output data of the
transceiver will be monitored in order to extract information about errors in data
decoding (bit error rate), concluding in observations abouts its efficiency.

The design includes two entities, which are the encoder and the decoder of the
transceiver. The operation of both entities is described in VHSIC (very-high-speed
integrated circuit) hardware description language (VHDL) in a total of more than
1.400 source lines of code (SLOC). The language statements of the entities are then
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Language VHDL

Platform Xilinx Spartan-3E

Model XC3S5250E FT256-5

Simulator Xilinx ISim 11.5

Synthesizer | Xilinx XST 11.5 & Leonardo Spectrum 2009

Testing Testcases with random input sources for various values of £,/ Ny
Verification | MATLAB simulations results

Table 6.1: Tools used for the implementation of the transceiver

Source LDPC BPSK/QAM
Generator Encoder Modulator
BER Channel

i

Received LDPC BPSK/QAM
Data Decoder Demodulator

Figure 6.1: Transceiver’s FPGA implementation block diagram

transformed into hardware logic operations, which in turn produce an equivalent
netlist of generic hardware primitives to implement their specified behavior [29].
In addition, their operation is verified by means of simulation, both in the field of
implementation and in the algorithmic field. Table 6.1 lists all the tools which are
used in the design to carry out the above tasks.

The encoder and the decoder are parts of a greater design which describes the
complete implementation of the transceiver on the FPGA, and which is presented in
the block diagram of Figure 6.1. In this model, the implemented parts are shown in
thicker outline than the rest of the system. This complete model can, ultimately, be
used to verify its operation under a standardized protocol carrying out wireless local
area network (WLAN) computer communication in the 5 GHz frequency band, which
has been created and maintained by the IEEE LAN/MAN Standards Committee,
under the family name [EEE 802.11 [30].
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source(M-1:0) ——

clk —— Encoder —t— enc(N-1:0)

reset ———

Figure 6.2: Encoder technology schematic top view; the input ports are at the left side,
the output at the right.

6.2 Encoder implementation

6.2.1 Description

The purpose of the encoder is to read source data from its input and then encode
them, exporting valid codewords for its parity-check matrix. This procedure includes
the following steps:

1. Read source data: First, the encoder reads its input information in frames of k
bits (messages).

2. Encode: Then, it maps the k bits of the source messages to n bits codewords
using its parity-check matrix H, which is an M x N matrix, where N = n and
M = n — k. For rate-; applications, it is N = nand M = k = %. The parity-
check matrix can be separated into two square matrices A and B of order M
as: H = [A|B]. The codewords which are produced by the encoder include
the source message bits preceded by the parity-check bits for this frame, as:
x = [c|s], where x is the output codewords, ¢ the computed M parity-check
bits and s the original input message of k bits. The codewords are valid, which
means that they satisfy all parity checks on the source message, if:

H2x2=0=>A.c+B-s=0=c=A"B-s (6.1)
where A™! is the inverse of the square matrix A.

3. Transmit: Finally, the encoded message becomes BPSK modulated and is
transmitted by the encoder through a noisy channel.

The encoder uses signals to read, manipulate, exchange and, finally, output
information. The input and output ports of the system can be seen in the top view of
the technology schematic shown in Figure 6.2: signals clk, reset and source are
inputs, whereas enc refers to the output. The encoder also utilizes internal signals in
order to proceed to the different states of the encoding process. A summary of the
main signals which control the operation of the encoder is the following:

clk (input signal): Signal indicating the clock ticks of the system. The clock period
is defined by the implementation.
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reset (input signal): Signal indicating state of system initialization. During initial-
ization any source message to the input port of the encoder is not processed
and the system does not produce any output.

source (input signal): Source message to be encoded, which is a logic vector of M
bits. The design is described using generics, and in this implementation source
messages are set to be logic vectors of 8 bits, but can be anything set by the
designer at design time.

enc (output signal): Encoded version of the source message; the output of the
system. The output messages are logic vectors of N bits. For any rate-

1

5 encoder, the output messages are vectors of N = 2 - M bits. In this

implementation the produced codewords are 16 bits long.

clk_period (internal signal): Internal signal of the simulation testbench indicat-
ing the clock period of the system. In the following simulations this signal is
set to represent 1ns clock period.

state (internal signal): Internal signal of the encoder (Unit-Under-Test (UUT)
during the simulation testbench) indicating its state of operation. The encoding
process completes in a total of 6 states. During state 0 the encoder is practically
inactive since its only action on every clock tick is to check whether the source
of the system has changed (indicating a new source message) and if it has,
then it continues to the encoding process of the new source message. During
the next states the calculation of the parity-check bits takes place, and, finally,
during state 5 the encoded message is exported to the system’s output in the
form of:

encoded message = [parity-check bits|source] (6.2)

6.2.2 Implementation

The encoder is implemented using VHDL to describe its operation, which can
be found in subsection B.2.1 of Appendix B. The encoder’s operation is divided in a
total of 6 states operated by a finite state machine (FSM)'. The entity is controlled by
a process, which is triggered by clock events and reset button events. When the reset
button is pressed (the reset signal gets a “1” value) the system is initialized, i.e. all
actions are stopped and the operation state is reset to 0. Otherwise, on each positive
clock tick, the system checks its state and acts accordingly. When one state has
finished its function, the system moves to the next state up until state 5, during which
the encoder outputs the encoded message through its output port and afterwards
restarts to state 0.

'A finite-state machine (FSM) is a behavior model composed of a finite number of states, transitions
and actions between those states. Its operation begins from one of the states (start state), goes through
transitions depending on input to different states and ends in any of those available final states.
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During its operation, the encoder moves through 4 different main stages which
either focus on arithmetic calculations or detecting changes in the encoder’s envi-
ronment. These stages are described next.

Stage 1: System reset

While the reset button is pressed and the reset signal gets a “1” value the
system stops any calculations currently doing and resets its internal components.
The encoder utilizes two block RAMs to store the rows of the parity-check matrix
H = [A|B] and the inverse of matrix A, A~!, which are being rewritten while
the system is resetting. Therefore, the encoder re-reads the two matrices, /' and
A~! during this stage, either by an external source or by its own hardcoded values
set a-priori, and stores their values (per row) to the corresponding block memories.
Afterwards, it sets its operation state to 0.

Stage 2: System idle

When the encoder is at state 0 and during all the time it remains in this state,
the encoder checks the input port, source, for changes, which indicate a new input
message to be encoded. If a new input is detected, the system moves on to the next
state, otherwise it remains on state 0. If the encoder changes its operation state to
encode the new message, it first clears all variables used by the encoding process
during previous runs.

Stage 3: Message encoding

The encoding process of a new message takes place during states 1 and 4. These
states use the parity-check matrix and the input message to compute the parity-check
bits which correspond to the combination of the two. The encoder repeats these steps
as many times as needed, the number of which is determined by the dimensions of
the parity-check matrix, M and N. The parity-check bits are normally produced by
the multiplication of A~! with B and the source message. However, since all these
matrices use zeroes and ones as values, the multiplications can be transformed into
simple signal value checks to simplify the design, as:

-- tmpbits = B * source:

-- calculate [H(%)(N-M+5) * source(M-1-7)] by
-- replacing multiplication with signal checks

if h_dout (N-M+temp_j) = ’1’ and cur_source(M-1-temp_j) = ’1°
then

temp := temp + 1;
end if;

and then continuing to:

-- chkbits = inv_4 * tmpbits

-- calculate [inv_A(%)(7) * tmpbits(M-1-7)] by

-- replacing multiplication with signal checks

if inv_a_dout(temp_j) = ’1’ and tmpbits(M-1-temp_j) = ’1°
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then
temp := temp + 1;
end if;

The temporary and final parity-check bits are then calculated by the mod of their
temp variable, each independent to the other since they change values at different
states, to the number 2. For binary numbers, division by 2 equals to one right shift
of the binary number, and the modulo operation of the division is then the last bit
(farthest to the right) of the number.

Stage 4: Codeword exporting

Finally, during state 5, the system sends to its output port the signal of the encoded
message, enc, which consists of the parity-check bits followed by the original input
message. The encoder then saves the source message currently encoded in order to
compare it to the next messages received to its input port, and then moves to state 0
to repeat its operation cycle.

For a (M =8, N = 16) application, the memory components used by the
encoder are one 8 x 16-bit block RAM for parity-check matrix H and one 8 x 8-
bit block RAM for the inverse matrix A~! as shown in Figure 6.3. Each memory
component consists of 4 input ports and 1 output port. Input port c1k is synchronized
to the system clock, while port we is the “write-enable” signal of the memory, which
enables or disables writing to memory addresses: when it gets a “1” value, input
messages to the memory component will be written, otherwise data are only read
and input data are not stored. Through port data_in input data are received by
the memory component and when write is enabled, address indicates the address
to which these data will be saved. On the other hand, when in read-only mode,
address will dictate where the component should recover data from. Finally, the
output port data_out exports the recovered data from the specified address, and
when in write mode, this will export the new data in a write-after-read sequence.
The top view schematic of the memory components is presented in Figure 6.4. Signals
address, data_inand data_out are logic vectors of variable width in general, and
the encoder and decoder define explicitly their width according to the data they will
store in each memory block. The VHDL code of the block RAM is presented in Section
B.1 of Appendix B.

The encoder described with this VHDL code has been implemented on a FPGA
of the Xilinx Spartan-3 family, the model XC3S250E FT256-5 of the Spartan-3E
FPGAs sub-family, which includes 2.448 slices used for high-performance general
logic applications and hierarchical memory architecture of 216Kbits of block RAM,
which provides data storage in the form of 18Kbit dual-port blocks. The complete
specifications list of the Spartan-3E family can be found in [28].

The implementation occupies a total of 147 slices out of the 2.448 slices, which
means that the device utilization is 6%. This is highly affected by the simple operation
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/
Encoder (M X N—bits)
\

A—l

(M x (N — M) -bits)

Figure 6.3: Encoder memory utilization

clk ——

we ——
Block | data_out (vector)

address(vector) ——

data_in(vector) ——

Figure 6.4: Block RAM component technology schematic top view

of the encoder, which has been further simplified by replacing multiplications with
signal checks. The device utilization summary of the design is presented in Table 6.2.
The synthesis process of the encoder produces an RTL schematic describing its
operation. In the RTL design, the encoder’s behavior is defined in terms of the flow
of signals (or transfer of data) between hardware registers, and the logical operations
performed on those signals. A technology schematic is also produced, which shows
a representation of the design in terms of logic elements optimized to the target
device or technology, for example, in terms of of LUTs, carry logic, I/O buffers,
and other technology-specific components. This schematic offers a technology-level
representation of the VHDL code optimized for a specific FPGA architecture.

6.2.3 Simulation

After having been described in VHDL, the encoder is simulated to verify its
correct operation. The system is simulated in the Xilinx ISim environment using
a testbench specifically created for the encoder and which is presented in subsection
B.2.2 of Appendix B. During the simulation process, input data are read from a
specified file on the computer on which the simulation runs and are passed to
the input port of the encoder. Afterwards, the encoding process takes place, and
when it has finished, the codewords produced in the output port of the system are
checked with the expected codewords for each specific input message. The expected
codewords are also read from the same file the input messages have been read.
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Slice Logic Utilization Used | Available | Utilization
Number of Slice Flip Flops 100 4.896 2%
Number of 4 input LUTs 169 4.896 3%
Number of occupied Slices 147 2.448 6%
Number of Slices containing only related logic | 147 147 100%
Number of Slices containing unrelated logic 0 0 0%
Total Number of 4 input LUTs 233 4.896 4%
Number used as logic 169
Number used as a route-thru 64
Number of bonded IOBs 26 172 15%
IOB Flip Flops 24
Number of RAMB16s 3 12 25%
Number of BUFGMUXs 1 24 4%
Average Fanout of Non-Clock Nets 2,88

Table 6.2: Device utilization summary of a (M = 8, N = 16) encoder

When all source messages of the input file have been encoded, the testbench
extracts information about possible errors in the parity-check bits created by the
encoder. No erroneous bit is allowed, and such case is unacceptable since it would
cause non-deterministic behavior of the encoder. Therefore, the outcome of the
testbench must always be zero erroneous bits out of the total of both parity-check bits
calculated and the original bits of the source which are also part of the codewords.

The following images present several snapshots of the simulation of the encoder’s
operation as suggested by ISim. This simulation has provided the encoder with 125
vectors of 8-bit inputs and has received another 125 vectors of 16-bits codewords, i.e.
a total of 1.000 input bits and 2.000 output bits. The input bits are random {0, 1}-
valued vectors created by MATLAB and the expected output bits are also produced
by a MATLAB function created for simulation purposes.

A full view of the simulation execution is shown in Figure 6.5. Two more specific
views of the initialization and the first execution of the simulation are shown in
Figures 6.6 and 6.7. The next figures focus on the states of the encoder during
the encoding process of a source message and during consecutive source messages
(Figures 6.8 and 6.9). Finally, the bit error check, which is done after the encoder has
finished encoding all input messages, is shown in Figure 6.10.
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source(N-1:0) ——
clk ——

Decoder —— dec(M-1:0)
reset ———

iter (natural) ———

Figure 6.11: Decoder technology schematic top view

6.3 Decoder implementation

6.3.1 Description

LDPC codes are decoded at the receiver’s side using one decoding algorithm,
such as the ones described in the previous chapter, aiming at retrieving the original
information sent by the transmitter. Having tried and compared different approaches
of decoding techniques, this implementation has adopted the simplified log-domain
message passing algorithm described in subsection 5.1.3 (page 40) and which was
simulated with bertool using the code presented in Section A.4 of Appendix A
(page 100) to decode the codewords received at the decoder’s input port. This process
exchanges soft-information iteratively between the variable and check nodes created
by the parity-check matrix, in the form of messages describing log-likelihood ratios
(LLRs), and, in the end, it produces the decoded version of its input message, which,
ideally, should be exactly the same as the originally sent message. The procedure
includes the following steps:

1. Read encoded source data: The decoder receives encoded data from its input
port in frames of n bits. These messages are naturally distorted by channel
noise.

2. Decode: Each frame is, then, decoded trying to produce the originally sent
message by the source. The decoder initially produces messages of n bits, the
first n —k of which are parity-check bits and the last £ bits compose the original
message. These messages are ideally the same as the output of the encoder
which encoded the source message, i.e. the produced codeword. The decoding
process is repeated several times, the maximum number of which is defined by
the user at run time using an extra input port to the decoder.

3. Extract original message: After decoding the input codeword, the decoder
finally extracts the bits of the originally sent message by keeping the last k
bits of the decoded message.

The top view of the decoder’s technology schematic is presented in Figure 6.11.
As seen in it, the decoder equips 4 input ports (which define signals clk, reset,
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Quantizer

A
A

~ Decoder

Decoder block

Figure 6.12: Quantizer in the decoder block

enc and iter) and 1 output port (defining signal dec). The decoder also utilizes
internal signals used during the states of the decoding process. A summary of the
main signals is presented below:

clk (input signal): Signal indicating the clock ticks of the system. The clock period
is defined by the implementation.

reset (input signal): Signal indicating state of system initialization. During initial-
ization the source message is not processed and the decoder does not produce
any output.

source (input signal): Encoded version of the source message initially sent by the
source generator. Originally sent source messages are logic vectors of M
bits and the encoded version of them are logic vectors of /N bits. These
N bits however, after being transmitted through a noisy channel have their
values altered, resulting in being mapped to vectors of real numbers instead
of bits. Real numbers are hard to handle by an embedded system; for this
reason a quantizer is equipped to represent the real data to signed fixed point
notation, which can in turn be easily translated into logic vectors of fixed
length. Therefore, this implementation equips an additional block preceding
the decoder, which maps the vectors of real data received by the channel to an
array of logic vectors of fixed length and which is shown in Figure 6.12. In this
way, the input port of the decoder accepts streams of N logic vectors which
represent N fixed point numbers. Using generics, the value of NV is set to 16,
but this can be set to any value decided at design time.

iter (input signal): Signal indicating the maximum number of iterations of the
belief propagation decoding algorithm. This design implements a decoder
which utilizes the early termination scheme described in Section 4.3; thus the
number of iterations actually implemented by the decoder at run time may be
less than the maximum number set at design time if the decoder detects that it
has converged to its final output before exhausting that maximum number
allowed by design. This signal is described in integer format, and in the
implementation this is translated into a logic vector of length proportionate
to the range of the numbers allowed.

dec (output signal): Decoded version of the encoded input message; the output of
the decoder. The output messages are logic vectors of M bits, same length as
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the input messages originally sent to the encoder. The decoded output should
be as identical as possible to the message originally transmitted, and ideally is
bit-by-bit the same. For this implementation, generics dictate that the output
messages are of 8 bits length.

clk_period (internal signal): Internal signal of the simulation testbench indicat-
ing the clock period for the simulation; in the following simulations this signal
is set to represent 1ns clock period.

state (internal signal): Internal signal of the decoder (Unit-Under-Test (UUT)
during the simulation testbench) indicating its state of operation. The decoding
process completes in a total of 26 states. Similarly to the encoding process,
during state 0 the decoder checks on every clock tick whether the source of
the system has changed (indicating a new input message) and if it has, then
it moves through the next states of the decoding process of the new input
message. Finally, the output of the decoded message is exported during the
final state.

6.3.2 Implementation

The operation of the decoder is described in VHDL using the code presented in
subsection B.3.1 of Appendix B and it is divided into 26 states operated by a finite state
machine (FSM). In a way similar to the encoder, the decoder’s operation is controlled
by a process, which is triggered by clock events and reset button events. If the reset
signal gets the value “1” (indicating the reset button is pressed), then the system is
initialized, stopping all actions and resetting the operation state to 0. Else, on each
positive clock tick, the system checks the state of its state and functions according
to it. In this way, the system moves gradually to the next states up until the final
state, during which the decoder produces the decoded version of the input codeword
through its output port and afterwards restarts to state 0.

The decoder utilizes 7 block RAMs to save data used and calculated during the
decoding process. The implementation of the RAMs is the same as those used by the
encoder. For this (8, 16) decoder the storage requirements are the following:

« one 8 X 16-bit memory to store the parity-check matrix A of the same
dimensions. Each address of the memory points to a line of H.

« two 128 X 16-bit memories to store the check nodes and variable nodes
locations which exchange messages during the decoding process. In each
address of these memories the decoder saves the location of the nodes in binary
format. The memories are divided in banks of 8 and 16 cells respectively,
indicating the connected variable nodes each check node has and vice versa.

« one 128 x 1-bit memory to store the values of the a;; matrix produced during
the decoding process. This matrix saves the signs of the log-likelihood ratios of
the variable-to-check messages in the form of “1” in case of negative number
and “0” when positive or zero.
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cns
— H ((M x N) x N-bits)
(M x N—bits)\* uns
Decoder ((N x M) x N-bits)
LN

o L(ving) | (M x N)x 1-bit) | L (u;)

/

((N x M) x I-bits) bi; 4N x M) x I-bits)

(N x M) x I-bits)

Figure 6.13: Decoder memory utilization; [ is the length of the bit vectors of the input
numbers’ signed fixed point representation.

« three 128 x 8-bit memories to store the valus of the b;; matrix produced at the
same time as the a,; matrix, as well as the values of the LLRs of the variable-
to-check messages L (v;_,;) and check-to-variable messages L (u;_,;). These
memories save a number in signed fixed point notation in each address in the
form of logic vectors of 8 bits.

The way these block RAMs are implemented on the FPGA is presented in Figure
6.13 and the way these RAMs are divided into smaller memory banks is shown in
Figure 6.14.

During its operation, the decoder moves through 6 different main stages, each of
which serves a specific role in the decoding process. These stages are described next.

Stage 1: System reset

A value of “1” to the signal reset indicates that the reset button is pressed, and
when this case is detected, the system stops any calculations initiated by the decoding
process of an input codeword and resets its connected component which is needed
a-priori for decoding and is not calculated during the process. This is the parity-
check matrix, H, which is stored as an (M x N-bits) array to a block RAM. In order
to (re)write the values of the parity-check matrix to the memory, the “write-enable”
signal is set to “1” during this stage, and all memory addresses are filled with the
values of each row of H in succession. When the writing is complete, the system sets
its operation state to 0.
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Stage 2: System idle

During the time after decoding an input codeword and before receiving a new
one, the decoder remains at state 0. When in this state, the decoder checks its input
port, source, to detect changes, indicating a new input codeword to be decoded.
If a new codeword is detected, the system moves on to state 1 and successively to
the following states of the decoding procedure, otherwise it remains on state 0 and
repeats the check at every positive clock tick. Before moving to the first decoding
state, the system sets the “write-enable” signal of the block RAMs cns and vns to
“1”, because these matrices will be calculated and stored in the following state. The
system also stops any writing to the parity-check matrix by setting the “write-enable”
signal of its corresponding memory block to “0”.

Stage 3: Message decoding — (i) Check and variable nodes detection

The first stage of the decoding process includes the initial steps after a new input
has been received for decoding. During states 1 to 3 the decoder initially finds the
connected check nodes and variable nodes of the parity-check matrix H and then
associates the input codeword with the non-zero elements of H, in order to produce
the first variable-to-check LLR messages, L (v;_,;). The check and variable nodes are
stored in two separate block RAMs in the way which is presented in Figure 6.14. In
each memory address the location of the connected check node or variable node is
stored, starting from zero, and the last row of each bank stores the total number of
connected nodes to the corresponding node of each bank, also starting from zero.

For example, for a specific application, the connected variable nodes to check
node 0, cng, are the variable nodes 2 and 8, notated as vn, and vng respectively. For
this application, the check nodes memory bank will have the value 0010 (number 2
in the decimal numeral system) in address 0000 and value 1000 (decimal number 8)
in address 0001, for an implementation which uses 4 bits to store data to the memory
blocks and 4 bits for the address index. In addition, the value 0001 will be stored in
address 1111 (or 15), indicating that the first check node has 2 (0001 + 1) connected
variable nodes, which can be found in the cells cng (0) and cng (1). This procedure
continues for the rest of the check nodes and is likewise repeated for the variable
nodes block memory.

After this stage the decoding process is ready to begin the iterations of the belief
propagation algorithm at the following states.

Stage 4: Message decoding — (ii) Horizontal step, check nodes update

At state 4 the iterations of the decoding process begin and the following states
up to the final one are repeated for as many times as either the maximum number of
iterations indicate or until the decoder has detected that its output has converged.

At first, during state 4, the LLRs of the variable-to-check messages are separated
to the sign (a;;) and absolute value (b;;) of them, which are both stored to two separate
memory blocks. The block RAM of a;; is has dimensions ((M x N) x 1-bit), since
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Address Value Address Value
0 cng (0) 0 vng (0)
7 Cnyo (7)
8 Ch (0)
15 cny (7) 15 vng (15)
16 cny (0)
23 cny (7)
112 vnyz (0)
120 cnys (0)
127 cnqs (7) 127 vny (15)

Figure 6.14: Division of the block RAMs utilized by the decoder into smaller banks; on
the left side is the check nodes memory block, on the right side is the variable nodes
memory block of a (M = 8, N = 16) LDPC decoder. Similarly, all block RAMs are
divided into memory banks corresponding to the rows of their respective matrices.
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(M x N) items of 1 bit each are stored there. The bit gets a zero value for positive
sign or zero number, and on the other hand, a value of one for negative numbers.
The block RAM of b;; is has dimensions ((M x N) X [-bits), because it will store
(M x N) items of [-bit length signed fixed point numbers.

The horizontal step of the decoding process takes place during states 5 to 16, and
during these states the check nodes update their estimations and send their response
check-to-variable LLRs to their connected variable nodes.

These steps are repeated per row for each check node of the application. Initially,
each check node gathers information from all connected variable nodes in the form of
LLR messages during state 6. Then, it continues to find the minimum value of b;; from
those received by their connected variable nodes, and afterwards, the multiplication
of the a;; values of the connected nodes takes place. In a way similar to the encoder,
the multiplication is replaced by signal checks in order to reduce the implementation’s
complexity:

-- calculate product of a_%1’j which can be either 1

-- or -1, therefore only counting the number of -1s
-- %25 mnecessary to calculate the wvalue of the product

if a_ij_dout = ’’1”° then
neg_a_ij := mneg_a_ij + 1;
end if;

and then the sign of the multiplication can be found by checking the parity of the
total number of —1s; an even count leads to positive product whereas an odd one
leads to negative product, which is represented using the two’s complement of the
currently minimum binary number:

-- response check-to-variable LLRs

if neg_a_ij mod 2 = 0 then

-- postitive product

L_u_ji_din <= cur_min;
else

-- negative product

L_u_ji_din <= (not cur_min) + ’17;
end if;

After the last step, the response check-to-variable messages have been calculated
and they are stored to a separate memory block with dimensions ((M x N) x [-bits),
since (M x N) I-bit length signed fixed point numbers will be stored there. When
this is complete, the decoder moves on to the following stage.

Stage 5: Message decoding — (iii) Vertical step, variable nodes update

In the next stage, the variable nodes update phase takes place (vertical step) and
the variable nodes calculate their response variable-to-check LLRs to send to their
connected check nodes. This process starts at state 17 and completes at state 23.
During this period the variable nodes gather information from all their connected
check nodes in the form of LLR messages and update their response variable-to-
check messages by the summation of the received L (v;_,;) messages successively
per column.
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The calculated variable-to-check messages are then stored to their own memory
block, also sized ((M x N) x [-bits) as it will store similar items to the check-to-
variable messages memory block, in order to be used by their connected check nodes
in the following iteration of the decoding algorithm.

During the following states, 24 and 25, the variable nodes also decide upon the
value of the decoded bits; however, this decision will be used only if its taken on the
last iteration of the process. After state 25, the system returns to state 17 and checks
if there are more variable nodes yet to calculate their response messages, and if there
are, it repeats the variable nodes update for these nodes, otherwise both horizontal
and vertical step have finished and the decoding process of the current iteration is
complete. The decoder utilizes an implementation of the early-termination scheme:
at the end of each iteration it checks whether the decoded bits of the current iteration
equal the decoded bits of the previous iteration, and if they do then the decoder
detects that it has most likely converged to its final output and proceeds to the
exporting of these bits in state 26. On the other hand, if the decoder has not converged
yet, it will return to state 4 of the horizontal step to repeat the procedure for the next
iteration, up to the maximum number of iterations defined by the corresponding
input port:

-- early termination check:

-- 2f the decoded output of this iteration equals
-- the output of the previous iteration then stop
if cur_iter < iter and dec_pre /= dec_temp then

cur_iter <= cur_iter + 1;

temp_i := 0;

temp_j := 0;

L_v_ij_add <= L_v_ij_add + ’1°;

dec_pre <= dec_temp;

stage <= 4;
else

stage <= 26;
end if;

Stage 6: Decoded bits exporting

Finally, when the decoder reaches state 26, the input codeword has been decoded
and the bits have been decided. The decoder sends the decoded bits to the output of
the system and resets its operation state to 0. This step also includes the removing of
the preceding parity-check bits, as only the last M bits of the decoded message will
be exported, since they are the ones which correspond to the bits of the originally
sent message.

Using the VHDL code which describes the operation of a generic (M, N) LDPC
decoder, a specific implementation for (M = 8, N = 16) codes has been made. The
design is also intended for a Xilinx Spartan-3E FPGA, the same model 3S250E FT256-
5 as the one used for the encoder.
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Slice Logic Utilization Used | Available | Utilization
Number of Slice Flip Flops 938 4.896 19%
Number of 4 input LUTs 1.799 4.896 36%
Number of occupied Slices 1.169 2.448 47%
Number of Slices containing only related logic | 1.169 1.169 100%
Number of Slices containing unrelated logic 0 0 0%
Total Number of 4 input LUTs 2.032 4.896 41%
Number used as logic 1.799
Number used as a route-thru 233
Number of bonded IOBs 142 172 82%
IOB Flip Flops 136
Number of RAMB16s 5 12 41%
Number of BUFGMUXs 1 24 4%
Average Fanout of Non-Clock Nets 3,41

Table 6.3: Device utilization summary of a (M = 8, N = 16) decoder

The implementation of the decoder is a lot more complex than that of the encoder
since it requires more computations, use of larger arrays of data and the storing
of these data to more memory blocks. However, using some simplifications like
those described previously, the device utilization is kept at reasonable rates, which
is a crucial part of area-restricted applications, such as the implementation on an
embedded system.

The decoder occupies a total of 1.169 slices out of the 2.448 slices available on the
FPGA, meaning that the device utilization is at 47% in terms of occupied slices. The
device utilization summary of the design is presented in Table 6.3.

The synthesis process of the decoder also produces an RTL schematic which
describes its operation in terms of the flow of signals (or transfer of data) between
hardware registers, and the logical operations performed on those signals. In
addition, a technology schematic is produced, which describes the design in terms
of logic elements optimized to the target device or technology, such as LUTs, carry
logic, I/O buffers, and other technology-specific components.

6.3.3 Simulation

The decoder has also been simulated to verify that it functions correctly using
the Xilinx ISim environment and a testbench specifically created for it, which can be
found in subsection B.3.2 of Appendix B. Like the simulation process for the encoder,
during the decoder’s simulation, input data are read from a specified file and are
passed to the input port of the decoder. Input data represent distorted versions of the
codewords sent by the encoder, and the level of distortion depends on the normalized
signal-to-noise ratio (Fj/Ny). The representation of the input data is in signed fixed
point number format, with 1 bit used for the sign, 3 bits for the integer part and 4
bits for the decimal part, therefore the input data is a stream of 16 8-bit logic vectors,
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representing 16 real numbers (codewords). Afterwards, these input codewords are
decoded, and when the process has finished, the decoded bits exported to the output
port of the system are checked with the initially sent codewords, which are also read
from the same file the input messages have been read.

Once all source messages of the input file have been decoded, the testbench
extracts information about the number of the erroneous bits and the bit error rate
(BER) of the decoded messages. The bit error rate is expected to have values similar to
those extracted by the MATLAB simulations using bertool for all different values of
E}/ Ny and maximum number of iterations (which have been presented, for example,
in Figure 5.6 for an AWGN channel). In some cases, a minor increase in BER is
allowed, due to the penalty imposed to accuracy by the representation of the input
real numbers to fixed point notation, which can result in loss of information.

The simulation has provided the decoder with 250 vectors of 16-bit inputs, which
are distorted versions of codewords produced by the encoder in MATLAB, therefore
receiving a total of 4.000 bits. The decoder decodes all these bits, as part of the
decoding process, however, it extracts only half of them, which are the bits which
correspond to the originally sent messages without the parity-check bits. Therefore,
the bits checked for correctness are the 2.000 output bits the decoder extracts.

In the following images several snapshots of the simulation of the decoder’s
operation as produced by ISim are presented. The simulation runs for £,/ Ny = 5dB
and a maximum of 7 iterations. First, a full view of the simulation execution is shown
in Figure 6.15. Then, the initialization and the first execution of the simulation are
shown in Figure 6.16. Afterwards, a full view of the states of the decoding process
is presented in Figure 6.17 and the time required to complete the decoding process
is shown in Figure 6.18. Finally, Figure 6.19 shows the representation of the input
values the decoder expects and Figure 6.20 shows the bit error rate extraction on the
exported bits which is used in order to verify the decoder’s correct operation.
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6.3. Decoder implementation
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Chapter 7

Conclusion and future perspectives

Overview:

The final chapter offers an overall review of the work covered in this
thesis, presenting the final remarks and future perspectives of the
designed LDPC transceiver.

The ever-growing communication needs of today’s modern society has led to the
rediscovery of the largely forgotten Low-Density Parity-Check (LDPC) codes, which
were invented in 1962 by Robert G. Gallager. Along with turbo codes, LDPC codes
are currently considered as the best performing channel codes, since they are capable
of approaching very close to the Shannon limit.

LDPC codes are members of a large family of error correcting codes, the linear
error correcting codes, which are methods of transmitting messages over noisy
transmission channels. LDPC codes are defined by a sparse parity-check matrix and
are controlled by a wide variety of parameters. As a result, LDPC codes offer a
wide versatility which enables them to optimize their performance to a variety of
applications and fit various different channel specifications.

Recent examples of LDPC codes utilization include optical communications,
magnetic storage and satellite transmissions. Several new digital communication
standards have adopted LDPC codes, such as the new DVB-S2 standard for the
satellite transmission of digital television and 10GBase-T Ethernet, which sends data
at 10 gigabits per second over twisted-pair cable. Nowadays, the implementation
of LDPC codes is a hot topic in the field of digital communication, with researchers
constantly conceiving new decoding techniques in an attempt to gradually improve
performance and reach the ultimate limit of message transmission, the channel
capacity.

This thesis focused on reviewing the concepts of digital communication which
include encoding and decoding of binary messages transmitted through noisy
channels and dealt specifically with the LDPC coding scheme. Three pillars support
the work of the thesis:
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Description of the communication scheme and LDPC codes

The first goal was to describe the communication scheme, which is used in modern
telecommunications, and explore the options, capabilities but also the limitations
offered by it. It has been shown that optimal code decoding is possible using a simple
iterative algorithm, which is employed in LDPC codes. It has also been shown that
performance of LDPC codes, as members of the iterative decoding algorithms, has a
typical waterfall-like curve, which allows big improvements on the error probability
rates between specific values of signal to noise ratios. In addition, several available
techniques to further improve performance and implementation of LDPC codes have
been presented; these techniques aim at reducing the required supply voltage and
power consumption of an LDPC decoder, as well as increasing memory efficiency.

Comparison of different decoding algorithms

The second goal was to compare and contrast the effect of the decoding schemes
on the performance of the LDPC codes. Four different algorithms have been observed
for their performance, in terms of bit error rates, under Additive White Gaussian
Noise (AWGN) channels, as well as Rician and Rayleigh fading channels. The results
produced in this work suggest that the bit error rate is heavily affected by the
chosen decoding technique and that it is inversely proportional to the implementation
complexity. As a result, the challenge when designing an LDPC decoder is to choose
the technique which offers the best trade-off between performance and complexity.
In addition, the simulations clearly show the limitations imposed in performance
by the transmission channels, which must also be taken into consideration when
designing a decoder for a specific application; as a matter of fact, the figures show that
performance under fading channels is degraded by many decades on the logarithmic
scale compared to AWGN channels.

Implementation of an LDPC transceiver

The third goal was to choose the decoding technique with the best ratio of
performance versus implementation complexity and utilize it on an LDPC transceiver
designed for a FPGA of the Xilinx Spartan-3E family. The fact that the Spartan
family belongs to the lower level platforms produced by Xilinx limits the hardware
components available to the transceiver; therefore an efficient and less hardware
demanding design had to be made. The decoder of the transceiver utilizes several
optimization techniques, from the ones which have been described in previous
sections, in order to achieve this.

The contribution of this thesis will be to offer a unified framework to the
various decoding techniques described in it, in terms of operation performance and
implementation complexity. In addition, it offers a generic architecture for LDPC
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transceivers which can be used to implement on FPGA platforms. The design
parameters can be set independently each time the transceiver is implemented (hence
the term generic), enabling the transceiver to fit a wide variety of application and
implementation specifications.

In the future, additional components can be added into the proposed transceiver
in order to further improve its performance, reduce its hardware requirements, or
enhance its operation by enabling different functions as well. The design is available
to anyone interested to work in the field of LDPC codes and can also be used
as an efficient tool to study the operation of LDPC codes and the way they are
implemented on hardware chips. The simulation codes are provided as well, enabling
experimentation with the different decoding techniques of LDPC codes.
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Appendix A
MATLAB simulations source codes

Overview:

The first appendix includes the source codes which simulate the operation
of the four different decoders discussed in this thesis. The codes are
simulated in MATLAB and are implemented as functions, which are
called by a main program according to the desired decoding technique.
The following listings include the steps of the iterations of the decoding
process for each decoding algorithm.

A.1 Hard-decision (bit-flip) decoder

4 Iteration steps during the decoding process

4 of a hard-dectiston (bit-flip) decoder

A

A in_msg: incoming message

A H: parity-check matriz

A iter: number of iterations of the decoding process
for n = 1:iter

4 horizontal step (check modes update)
for i = 1:M

J connected wariable nodes
vns = find(H(i, :));

4 collect information from all connected
/ variable nodes
for k = 1l:length(vns)
u_ji(i, vns(k)) = mod(sum(v_ij(i, wvns))...
+ v_ij (i, vns(k)), 2);
end

end / hortizontal step

4 vertical step (vartable nodes update)
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96 Appendix A. MATLAB simulations source codes

for j = 1:N

/ connected check nodes
cns = find(H(:, j));

/4 ones from connected check nodes
cns_ones = length(find(u_ji(cns, j)));

for k = 1:length(cns)
/4 update v_tj based on the majority of incoming
4 information from connected check mnodes
4 and input source
if cns_ones + in_msg(j) >= length(cmns)...
- cns_ones + u_ji(cns(k), j)
v_ij(ens(k), j) = 1;
else
v_ij(cns(k), j) = 0;
end
end

4 hard decision on bit decoding

if cns_ones + in_msg(j) >= length(cns) - cns_ones
dec(j) = 1;

else
dec(j) = 0;

end

end / wvertical step

end / iterations

Listing A.1: Hard-decision (bit-flip) decoder MATLAB code

A.2 Probability-domain SPA decoder

4 Iteration steps during the decoding process
# of a probability-domain sum-product algorithm decoder

A in_msg: imcoming message

) H: parity-check matriz

A iter: number of t1terations of the decoding process
for n = 1l:iter

4 horizontal step (check modes wupdate)
for i = 1:M

/ conmected wariable modes
vns = find(H(i, :));

4 collect information from all connected
/4 wvariable nodes
for k = 1:length(vns)
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/4 column products
u_ji_temp = 1;
for 1 = 1:length(vns)

if 1 "=k

u_ji_temp = u_ji_temp * (v_ij_0(i, vmns(1))...
- v_ij_1(i, vns(1)));

end

end

/4 response check-to-variable messages
u_ji_0(i, vns(k)) = (1 + u_ji_temp) / 2;
u_ji_1(i, vns(k)) = (1 - u_ji_temp) / 2;

end
end / horizontal step

4 vertical step (vartable nodes update)
for j = 1:N

/ connected check nodes
cns = find(H(:, j));

/4 update v_1tj
for k = 1:length(cns)

4 row products
prod_u_ji_0 = 1;
prod_u_ji_1 = 1;
for 1 = 1:length(cns)
if 1 "=k
prod_u_ji_0 = prod_u_ji_0 * u_ji_0(Ccns(l), j);
prod_u_ji_1 = prod_u_ji_1 * u_ji_1(cns(1l), j);
end
end

/4 update constants K_ij
K_ij_0(cns(k), j) = P_0(j) * prod_u_ji_0;
K_ij_1(cns(k), j) P_1(j) * prod_u_ji_1;

/4 response wvariable-to-check messages
v_ij_0(cns(k), j) = K_ij_O(Ccmns(k), j)...
./(K_ij_0(cns(k), j) + K_ij_1(cns(k), j));
v_ij_1(ecns(k), j) = K_ij_1(cmns(k), j)...
./(K_ij_0C(cns(k), j) + K_ij_1(ecns(k), j));
end

/4 update constants K_3
K_i_0 = P_0(j) * prod(u_ji_OC(cns, j));
K_i_1 = P_1(j) * prod(u_ji_1(cns, j));

/ calculate §_1



72
73
74
75
76
7
78
79
80
81
82
83
84
85

© 00 N O WN -

=
= O

12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34

98 Appendix A. MATLAB simulations source codes

K_i_0/(K_i_0 + K_i_1);

Q_i_0
Q_i_1 K_i_1/(K_i_0 + K_i_1);

4 soft-decision on bit decoding depending
4 on the bigger one of the {_i’s
if Q_i_1 > Q_1i_0

dec(j) = 1;
else

dec(j) = 0;
end

end / wvertical step

end / iterations

Listing A.2: Probability-domain SPA decoder MATLAB code

A.3 Log-domain SPA decoder

4 Iteration steps during the decoding process

A of a log-domain sum-product algorithm decoder

2

A in_msg: tmcoming message

I H: parity-check matriz

A iter: number of t1terations of the decoding process

4 find wvariable and check nodes
[H_rows, H_cols] = find(H);

for n = 1:iter

# the LLR of wariable-to-check messages ts separated as:
a_ij = sign(L_v_ij);
b_ij = abs(L_v_ij);

/4 calculate pht function
for 1 = 1:length(H_rows)
phi_b_ij(H_rows(1l), H_cols(1l)) =
log((exp(b_ij(H_rows(l), H_cols(1))) + 1) /
(exp(b_ij(H_rows(1l), H_cols(1l))) - 1));
end

/4 horizontal step (check nodes update)
for i = 1:M

/ connected wariable mnodes
vns = find(H(i, :));

4 collect information from all connected
/4 wvariable nodes

for k = 1:length(vns)

4 sum of phi(b_t’7)
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end
end /

/ wvert
for j

sum_phi_b_ij = sum(phi_b_ij (i, vns))
- phi_b_ij(i, vns(k));

4 in order to avoid diviston by zero (or extremely
4 small number) set a minimum limit to the walue
A of the sums
if sum_phi_b_ij < 1le-10
sum_phi_b_ij = 1e-10;
end

4 calculate phi (sum(phi(b_%5)))
phi_sum_phi_b_ij = log((exp(sum_phi_b_ij) + 1) /
(exp(sum_phi_b_ij) - 1));

4 calculate product of a_i’j
prod_a_ij = prod(a_ij(i, vns)) * a_ij(i, vmns(k));

¥4 response check-to-variable LLRs
L_u_ji(i, vns(k)) = prod_a_ij * phi_sum_phi_b_ij;

hortzontal step

ical step (vartable nodes update)
= 1:N

/ connected check nodes

cns

= find(H(:, j));

/4 response wvartiable-to-check LLRs

for

end

k = 1:length(cns)
L_v_ij(cns(k), j) = L_c_i(j) + sum(L_u_ji(cns, j))
- L_u_ji(cns(k), j);

/ calculate L_G_1

L_Q

i =1L_c_i(j) + sum(L_u_ji(cns, j));

/4 decide upon the sign of the LLR

if

els

end

end /

L.Q_i <0
dec(j)
e

dec(j) = 0;

1;

vertical step

end / iterations

Listing A.3: Log-domain SPA decoder MATLAB code
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100 Appendix A. MATLAB simulations source codes

A.4 Simplified log-domain SPA decoder

4 Iteration steps during the decoding process

A of a simplified log-domain sum-product algorithm decoder
A

A in_msg: imcoming message

A H: parity-check matriz

A iter: number of i1terations of the decoding process
for n = 1l:iter

4 the LLR of wartable-to-check messages is separated as:

a_ij = sign(L_v_ij);
b_ij = abs(L_v_ij);

4 horizontal step (check modes update)
for i = 1:M

/ connected wariable mnodes
vns = find(H(i, :));

4 collect information from all connected
/4 wvariable nodes

for k = 1:length(vns)

/4 get the minimum wvalue of b_17

min_b_ij = realmax;
for 1 = 1:length(vns)
if 1 "=k

if b_ij(i, vns(l)) < min_b_ij
min_b_ij = b_ij (i, vns(1));
end
end
end

/4 calculate product of a_i’j

prod_a_ij = prod(a_ij(i, vns)) * a_ij(i, vmns(k));

4 response check-to-variable LLRs
L_u_ji(i, vns(k)) = prod_a_ij * min_b_ij;

end
end / hortizontal step

4 vertical step (vartable nodes update)
for j = 1:N

/ connected check nodes
cns = find(H(:, j));

/4 response wvartable-to-check LLRs
for k = 1:length(cns)
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L_v_ij(cns(k), j) = L_c_i(j) + sum(L_u_ji(cns, j))
- L_u_ji(cns(k), j);
end

/ calculate L_G_1
L_Q_i = L_c_i(j) + sum(L_u_ji(cns, j));

/4 decide upon the sign of the LLR
if L_Q_1 < O
dec(j) = 1;
else
dec(j) = 0;
end

end / wvertical step

end / iterations

Listing A.4: Simplified log-domain SPA decoder MATLAB code
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Appendix B

Implementation source codes

Overview:

The second appendix includes the source codes which describe the
transceiver’s implementation on a Xilinx FPGA. The codes are written
in VHDL and are separated into the two entities of the transceiver, the
encoder and the decoder, as well as the block RAM module they both
utilize. Each implementation is succeeded by its simulation testbench
which has been used in order to verify correct operation.

B.1 Block RAM VHDL source code

-- Write-after-read block RAM implementation
-- synchronized to system clock and operated
-- by write enable signal.

library ieee;

use ieee.std_logic_1164.all;

use ieee.std_logic_arith.all;
use jeee.std_logic_unsigned.all;

entity sync_ram is

port (
clk : in std_logic;
we : in  std_logic;
address : in std_logic_vector;
data_in : in std_logic_vector;
data_out : out std_logic_vector);

end sync_ram;

architecture rtl of sync_ram is

type ram_type is array (0 to (2xxaddress’length)-1) of
std_logic_vector(data_in’range);
signal ram . ram_type;
signal read_address : std_logic_vector (address’range);
begin

process (clk)

begin

103
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if rising_edge(clk) then

if

we = 21’ then

ram(conv_integer (unsigned (address))) <= data_in;
end if;

read_address <=

end if

end proce

>

ss;

address;

data_out <= ram(conv_integer (unsigned(read_address)));

end architec

ture rtl;

Listing B.1: Synchronous write-after-read block RAM

B.2 Encoder VHDL source codes

B.2.1 Encoder implementation

-- Low-density parity-check codes encoder
-- for rate-1/2 applications.

library ieee

>

use ieee.std_logic_1164.all;
use jeee.std_logic_arith.all;
use ieee.std_logic_unsigned.all;

entity encoder is

generic (

port (

end encoder;

M
N

clk
reset
source
enc

natural := 8;

natural

in
in
in
out

16) ;

std_logic;
std_logic;
std_logic_vector (M-1 downto 0);
std_logic_vector(N-1 downto 0));

architecture behavioral of encoder is

-- block ram component description

component
port (

end compo

-- signal
signal
signal
signal
signal
signal

sync_ram
clk

we
address
data_in
data_out
nent ;

s declaration
state
cur_source
pre_source
tmpbits
chkbits

in
in
in
in
out

std_logic;
std_logic;
std_logic_vector;
std_logic_vector;
std_logic_vector);

natural range 0 to 5;

std_logic_vector(M-1 downto 0);
std_logic_vector (M-1 downto 0);
std_logic_vector (M-1 downto 0);
std_logic_vector (M-1 downto 0);
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-- partty-check matriz ram signals

signal h_we std_logic;
signal h_add std_logic_vector (2 downto 0);
signal h_din std_logic_vector (0 to N-1);
signal h_dout std_logic_vector(0 to N-1);
-- inverse parity-check matrixz ram signals
signal inv_a_we std_logic;
signal inv_a_add std_logic_vector (2 downto 0);
signal inv_a_din std_logic_vector (0 to M-1);
signal inv_a_dout std_logic_vector (0 to M-1);
begin
-- component associations
H_ram sync_ram port map (clk, h_we, h_add, h_din,
inv_A_ram sync_ram port map (clk, inv_a_we, inv_a_add,
inv_a_dout) ;

process (clk, reset)

-- wariable declarations

variable temp natural;

variable temp_i natural;

variable temp_j natural;
begin

if clk’event and clk = ’1’ then

if reset = ’1’ then

-- predefined [8z16]
-- H = [A4 B] and the
-- (inv_4) stored to
h_we <= ’17;

h_add <= ’°000°’;
h_din <= ’?1000000010110000”’;

parity-check

memory

inv_a_we <= ’17;
inv_a_add <= ’000”’;
inv_a_din <= ’’10000000°’;

case h_add is

when °000” =>
h_add <= h_add + ’1°;
h_din <= ’°0100001001000100°’;
inv_a_add <=
inv_a_din <= ”’11010011°%;

when 2’001 =>
h_add <= h_add + ’17;
h_din <= ’’0010000000010100°;
inv_a_add <=
inv_a_din <= ’°00100000°’;

when °010” =>
h_add <= h_add + ’17;
h_din <= °71001000000000001°’;

inv_a_add <=
inv_a_din <= ’’10010000°’;

when ’°011” =>
h_add <= h_add + ’17;
h_din <= ’’0000100011001000°;

inv_a_add + ’17;

inv_a_add + ’1°7;

inv_a_add + ’1°;

matric

inverse matriz of A

>

>

>

h_dout) ;
inv_a_din,
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inv_a_add <= inv_a_add + ’17;
inv_a_din <= *°00001000°’;

when °100” =>
h_add <= h_add + ’1°’;
h_din <= *°0010110000100011°%;
inv_a_add <= inv_a_add + ’17;
inv_a_din <= °00101100°’;

when ’101” =>
h_add <= h_add + ’1°;
h_din <= °’0001001110000010°’;
inv_a_add <= inv_a_add + ’17;
inv_a_din <= *’10010011°%;

when °110” =>
h_add <= h_add + ’1°’;
h_din <= ’’0000000100001101°%;
inv_a_add <= inv_a_add + ’17;
inv_a_din <= ’°00000001°’;

when 7’111 =>
-- inttialization

state <= 0;

when others =>
null;

end case;

else
case state is
when 0 =>
-- main process has started
-- stopping any writing to parity-check matriz
-- and inverse 4 initialized by reset button
h_we <= ’07;
inv_a_we <= ’07;
if source /= pre_source then
cur_source <= source;
-- read first rows of H and inv_A4
h_add <= ’000”’;
inv_a_add <= ’’000”’;
-- continue to next state
temp := O;
temp_i := 0;
temp_j := 0;
state <= 1;
else

state <= 0;

end if;

when 1 =>

state <= 2;
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start of encoding process:
chkbits = inv_A * B * source

when 2 =>

tmpbits = B * source
if temp_i < M then

if temp_j < M then
-- calculate [H(i)(N-M+7)
if h_dout (N-M+temp_j) =
’1’ then
temp := temp + 1;
end if;

temp_j := temp_j + 1;

else
-- calculate temporary
if temp mod 2 = 1 then
tmpbits (M-1-temp_i)
else
tmpbits (M-1-temp_i)
end if;
-- repeat for mnext Tow
temp := O;
temp_i := temp_i + 1;
temp_j := 0;
h_add <= h_add +
state <= 1;

117;

end if;
else

-- continue to next state
temp := 0;
temp_1i :=
temp_j :=
state <= 3;

0;
0

5

end if;

when 3 =>

chkbits = dinv_A4 * tmpbats
if temp_i < M then

if temp_j < M then

calculate [inv_4(3i)(7)

inv_a_dout (temp_j) =
then

temp :=
end if;

temp + 1;

temp_j := temp_j + 1;

else

* source(M-1-7)] by

replacing multiplication with signal checks
)17

and cur_source (M-1-temp_j)

* tmpbits (M-1-37)] by

replacing multiplication with signal checks
’1’ and tmpbits(M-1-temp_j) =

b
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-- calculate check bits
if temp mod 2 = 1 then
chkbits(M-1-temp_i) <= ’17;
else
chkbits(M-1-temp_i) <= ’07;
end if;

-- repeat for next rTow of H

temp := O0;
temp_i := temp_i + 1;
temp_j := 0;

inv_a_add <= inv_a_add + ’1°’;
state <= 4;

end if;

else
-- check bits have been calculated;
-- continue to final state

state <= 5;

end if;

when 4 =>

state <= 3;

when 5 =>
-- output encoded data: enc = [chkbits source]
enc(N-1 downto M) <= chkbits;
enc(M-1 downto 0) <= cur_source;
-- restart
state <= 0;
pre_source <= cur_source;

when others =>
null;

end case;

end if; -- reset = 717

end if; -- clk’event & clk = ’1°

end process;

end

behavioral;

Listing B.2: LDPC codes encoder for rate-% applications

B.2.2 Encoder simulation testbench

Simulation testbench for the
low-density parity-check codes encoder.

library ieee;

use
use
use
use

ieee.std_logic_1164.all;
ieee.std_logic_arith.all;
ieee.std_logic_unsigned.all;
std.textio.all;
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entity enc_testbench is
generic (
M :  integer
N : integer
end enc_testbench;

= 16

);

architecture behavior of enc_testbench is

file source_vectors : text open read_mode is ’’source_vectors.txt’’;
type array_of_bit_N is array(N-1 downto 0) of bit;
type array_of_bit_M is array(M-1 downto 0) of bit;

-- component declaration for the Unit Under Test (UUT)

component encoder

port (
clk : in std_logic;
reset : in std_logic;
source : in std_logic_vector(M-1 downto 0);
enc : out std_logic_vector(N-1 downto 0));

end component;

-- inputs

signal clk : std_logic := ’07;

signal reset : std_logic : 17

signal source : std_logic_vector (M-1 downto 0);
-- outputs

signal enc : std_logic_vector (N-1 downto 0);

-- clock period defintitions
constant clk_period : time :=

-- verification signal
signal enc_check

begin

1 ns;

std_logic_vector (N-1 downto 0);

-- instantiate the Unit Under Test (UUT)

uut: encoder port map (

clk => clk,
reset => reset,
source => source,
enc => enc);

-- clock process
clk_process: process

begin
clk <= ’07;
wait for clk_period/2;
clk <= ’17;
wait for clk_period/2;
end process;

-- stimulus process
stim_proc: process

-- I/0 wvariable declarations

variable source_buf : line;
variable enc_buf : line;
variable source_var : array_of_bit_M;
variable enc_var : array_of_bit_N;
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76 -- error check wvariable declarations
7 variable tot_errors : integer;

78 variable tot_bits : integer;

79

80 -- wait time between comnsecutive inputs
81 -- wariable declaration

82 variable wait_time : integer;

83

84 begin

85

86 -- reset the system

87 wait for clk_period * 10;

88 reset <= ’07;

89

90 -- start decoding simulation

91 report ’Starting simulation’’;

92 tot_errors := 0;

93 tot_bits := 0;

94

95 -- set wait time

96 wait_time := 230;

97

98 -- read data from file

99 while not endfile(source_vectors) loop
100

101 -- read source wvectors to be encoded
102 readline (source_vectors, source_buf);
103

104 for i in M-1 downto O loop

105 read (source_buf, source_var(i));
106 end loop;

107

108 -- convert input message

109 -- to std_logic format

110 for i in M-1 downto O loop

111 if source_var(i) = ’1’ then

112 source (i) <= ’17;

113 else

114 source(i) <= ’07;

115 end if;

116 end loop;

117

118 -- read ezpected encoded output

119 readline (source_vectors, enc_buf);
120

121 for i in N-1 downto O loop

122 read (enc_buf, enc_var(i));

123 end loop;

124

125 -- convert ezpected encoded output
126 -- to std_logic format

127 for i in N-1 downto O loop

128 if enc_var(i) = 1’ then

129 enc_check (i) <= ’17;

130 else

131 enc_check (i) <= ’0’;

132 end if;

133 end loop;

134

135 -- wait until decoding has finished
136 wait for wait_time * 1ns;

137

138 -- check output with the exzpected one
139 -- and calculate erroneous bits

140 for i in N-1 downto O loop

141 if enc(i) /= enc_check(i) then

142 tot_errors := tot_errors + 1;
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end if;
end loop;

-- 1increase total number of decoded bits
tot_bits := tot_bits + N;

-- wait before sending next input message
wait for clk_period * 2;

end loop;

-- when all messages have been encoded

-- the simulation prints the total number

-- of erroneous encoded bits to the console

report Err. bits: ’’ & integer’image(tot_errors) & >’ / &
integer’image (tot_bits);

report ’’Simulation ended.’’;

wait;
end process;

end;

Listing B.3: Simulation testbench for the LDPC codes encoder
B.3 Decoder VHDL source codes

B.3.1 Decoder implementation

-- Low-density parity-check codes simplified
-- log-domain sum-product algorithm decoder
-- for rate-1/2 applications including early
-- termination scheme and input quantization
-- to signed fized point format.

library ieee;

use ieee.std_logic_1164.all;

use ieee.std_logic_arith.all;
use jeee.std_logic_unsigned.all;

-- input message type description
package dec_pkg is

type input_array is array(0 to 15) of std_logic_vector (7 downto 0);
end dec_pkg;

library ieee;

use ieee.std_logic_1164.all;

use jeee.std_logic_arith.all;
use ieee.std_logic_unsigned.all;
use work.dec_pkg.all;

entity decoder is

generic (

M :  natural := 8;
N :  mnatural := 16;
add_length :  natural := 7;
sfixed_length : mnatural := 8);
port (
clk : in std_logic;
reset : in std_logic;
source : in input_array;

iter :  in natural range 1 to 10;
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dec

end decoder;

out std_logic_vector(M-1 downto 0));

architecture behavioral of decoder is

-- block ram component description

component sync_ram
port (
clk
we
address
data_in
data_out
end component;

type

-- signals declarat
signal state
signal cur_iter
signal cur_source
signal pre_source
signal L_c_i
signal dec_temp
signal dec_pre

-- parity-check matriz ram

signal h_we
signal h_add
signal h_din
signal h_dout

-- a_1jJ matriz ram
signal a_ij_we
signal a_ij_add
signal a_ij_din
signal a_ij_dout
-- b_17 matriz ram
signal b_ij_we
signal b_ij_add
signal b_ij_din
signal b_ij_dout

temp_cns_array is

ion

signals

signals

-- wns matrixz rTam signals

signal vns_we

signal vns_add
signal vns_din
signal vns_dout

-- cns matriz ram signals

signal cns_we

signal cns_add
signal cns_din
signal cns_dout

in std_logic;
in std_logic;
in std_logic_vector;
in std_logic_vector;
out std_logic_vector);

array (0 to N-1) of natural;

natural range 0 to 26;
natural; -- range 0 to 11;
input_array;

input_array;

input_array;
std_logic_vector (0 to N-1);
std_logic_vector (0 to N-1);

signals

std_logic;
std_logic_vector (2
std_logic_vector (0
std_logic_vector (0

downto 0);
to N-1);
to N-1);

std_logic;

std_logic_vector (add_length-1 downto 0);
std_logic_vector(0 to 0); -- bit
std_logic_vector(0 to 0); -- bit

std_logic;

std_logic_vector (add_length-1 downto 0);
std_logic_vector(sfixed_length-1 downto 0);
std_logic_vector(sfixed_length-1 downto 0);

std_logic;

std_logic_vector(add_length-1 downto 0);
std_logic_vector (0 to N-1);
std_logic_vector (0 to N-1);

std_logic;

std_logic_vector(add_length-1 downto 0);
std_logic_vector(0 to N-1);
std_logic_vector (0 to N-1);

-- L_v_7j matrixz ram signals

signal L_v_ij_we

signal L_v_ij_add
signal L_v_ij_din
signal L_v_ij_dout

std_logic;

std_logic_vector (add_length-1 downto 0);
std_logic_vector(sfixed_length-1 downto 0);
std_logic_vector(sfixed_length-1 downto 0);

-- L_u_j7 matriz ram signals

signal
signal

L_u_ji_we
L_u_ji_add

std_logic;
std_logic_vector (add_length-1 downto 0);
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signal L_u_ji_din
signal L_u_ji_dout
begin

-- component associations

std_logic_vector(sfixed_length-1 downto 0);
std_logic_vector(sfixed_length-1 downto 0);

H_ram sync_ram port map (clk, h_we, h_add, h_din, h_dout);
vns_ram sync_ram port map (clk, vns_we, vns_add, vns_din, vns_dout);
cns_ram sync_ram port map (clk, cns_we, cns_add, cns_din, cns_dout);
a_ij_ram sync_ram port map (clk, a_ij_we, a_ij_add, a_ij_din, a_ij_dout);
b_ij_ram sync_ram port map (clk, b_ij_we, b_ij_add, b_ij_din, b_ij_dout);
L_v_ij_ram sync_ram port map (clk, L_v_ij_we, L_v_ij_add, L_v_ij_din,
L_v_ij_dout);
L_u_ji_ram sync_ram port map (clk, L_u_ji_we, L_u_ji_add, L_u_ji_din,
L_u_ji_dout);

process (clk, reset)

-- wariable declarations

variable temp_i natural;

variable temp_j natural;

variable temp_k natural;

variable temp_1 natural;

variable temp_cns temp_cns_array;

variable temp_vns natural;

variable temp_cns_i natural;

variable vns_temp natural;

variable cns_temp natural;

variable cur_min std_logic_vector (M-1 downto 0);

variable neg_a_ij natural;

variable sum_L_u_ji std_logic_vector (M-1 downto 0);

variable L_Q_i std_logic_vector (M-1 downto 0);
begin

if clk’event and clk = ’1’ then

if reset = ’1’ then
-- predefined [8xz16] parity-check matriz H to memory

h_we <= ’17;
h_add <= ’000°’;

h_din <= ’’1000000010110000°%;

case h_add is

when °000” =>
h_add <=

h_add +

10,

h_din <= ’’0100001001000100°;

when °001” =>
h_add <=

h_add +

10,

h_din <= ’’0010000000010100’*;

when ’°010”° =>
h_add <=

h_add +

117,

h_din <= °’1001000000000001°;

when 7’011 =>
h_add <=

h_add +

110

h_din <= ’’0000100011001000°;

when °100” =>
h_add <=

h_add +

10,
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168 h_din <= >’0010110000100011°%;

169

170 when ’’101°° =>

171 h_add <= h_add + ’1°;

172 h_din <= °’0001001110000010°’;

173

174 when *°110” =>

175 h_add <= h_add + ’1°;

176 h_din <= ’’0000000100001101°%;

177

178 when *’111”° =>

179 -- dnttialization

180 state <= 0;

181

182 when others =>

183 null;

184

185 end case;

186

187

188 else

189

190 case state is

191

192 when 0 =>

193

194 -- main process has started

195 -- stopping any writing to parity-check matric
196 -- initialized by reset button

197 h_we <= 207;

198

199 if source /= pre_source then

200

201 cur_source <= source;

202 cur_iter <= 0;

203

204 vns_we <= ’17;

205 vns_add <= conv_std_logic_vector (0, add_length);
206 vns_din <= conv_std_logic_vector(0, N);
207

208 cns_we <= ’17;

209 cns_add <= conv_std_logic_vector (0, add_length);
210 cns_din <= conv_std_logic_vector (0, N);
211

212 L_v_ij_we <= ’1°;

213 L_v_ij_add <= conv_std_logic_vector (0, add_length);
214 L_v_ij_din <= conv_std_logic_vector (0, sfixed_length);
215

216 -- read first row of H

217 h_add <= ’000”’;

218 h_we <= ’07;

219

220 state <= 1;

221

222 else

223

224 state <= 0;

225

226 end if;

227

228

229 -- start of decoding process

230 when 1 =>

231

232 -- initealizations of the decoding process
233 for i in 0 to N-1 loop

234 L_c_i(i) <= not(cur_source(i)) + ’1°7;
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temp_cns (i) := 0;
end loop;

vns_we <= ’07;
cns_we <= ’07;

-- continue to mext state

temp_i := 0;
temp_j := 0;
temp_cns_i := 0;
temp_vns := 0;

state <= 2;

when 2 =>

-- initially associate the L_c_t matric
-- wtth non-zero elements of H and find
-- connected check and wvariable nodes
if temp_j < N then

if H_dout(temp_j) /= ’0’ then

L_v_ij_we <= ’17;

L_v_ij_add <= conv_std_logic_vector(temp_i*N + temp_j,
add_length);

L_v_ij_din <= L_c_i(temp_j);

vns_we <= ’17;

vns_add <= conv_std_logic_vector(temp_i*N + temp_vns,
add_length);

vns_din <= conv_std_logic_vector(temp_j, N);

temp_vns := temp_vns + 1;

cns_we <= ’17;

cns_add <= conv_std_logic_vector (temp_j*M +
temp_cns (temp_j), add_length);

cns_din <= conv_std_logic_vector (temp_i, N);

temp_cns (temp_j) := temp_cns(temp_j) + 1;

else

L_v_ij_we <= ’17;

L_v_ij_add <= conv_std_logic_vector(temp_i*N + temp_j,
add_length);

L_v_ij_din <= conv_std_logic_vector (0, sfixed_length);

end if;

temp_j := temp_j + 1;

if temp_j = N-1 then

h_add <= h_add + ’17;

end if;

state <= 2;

else

connected wvariable nodes

vns_add <= conv_std_logic_vector(temp_i*N + N-1, add_length);
vns_din <= conv_std_logic_vector(temp_vns - 1, N);

continue to mext Tow

temp_i := temp_i + 1;

repeat if mnecessary
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if temp_i < M then

-- repeat for the nezxt row of H
temp_j := 0;

temp_vns := 0;

state <= 2;

else

-- proceed to next state

L_v_ij_we <= ’0°;

L_v_ij_add <= conv_std_logic_vector (0, add_length);
state <= 3;

end if;

end if;

when 3 =>
if temp_cns_i < N then

-- connected check nodes

cns_add <= conv_std_logic_vector (temp_cns_i*M + M-1,
add_length) ;

cns_din <= conv_std_logic_vector(temp_cns(temp_cns_i) - 1,
N);

-- repeat for the next column of cns
temp_cns_i := temp_cns_i + 1;
state <= 3;

else
-- proceed to mnext state
temp_i := 0;
temp_j := 0;

vns_we <= ’07;

cns_we <= ’07;

L_v_ij_add <= conv_std_logic_vector (1, add_length);
-- prefetch number of connected check nodes for the
-- first wvariable node [vn matriz (0)(N-1)]

vns_add <= conv_std_logic_vector(N-1, add_length);
cur_iter <= 1;

state <= 4;

end if;

when 4 =>

-- repeat the process for the number of iterations
if cur_iter < iter+1 then

L_v_ij_add <= L_v_ij_add + ’1°;

-- the LLR of wartable-to-check messages 1is separated:
-- a_ij = 1 if sign(L_v_ij5) = -1

-- b_1j = abs(L_v_i7j)

if temp_i < M then

a_ij_we <= ’17;

a_ij_add <= conv_std_logic_vector(temp_i*N + temp_j,
add_length);

b_ij_we <= 217

b_ij_add <= conv_std_logic_vector (temp_i*N + temp_j,
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add_length);
if L_v_ij_dout(M-1) = ’0’ then
-- positive number or zero
a_ij_din <= 7’07,
b_ij_din <= L_v_ij_dout;

else

-- negative number
a_ij_din <= ’1”’;

b_ij_din <= (mot L_v_ij_dout) + ’17;

end if;
temp_j := temp_j + 1;
if temp_j = N then

-- repeat for the mnexzt Tow
temp_j := 0;

temp_i := temp_i + 1;
state <= 4;

end if;
else

-- proceed to mnext state
temp_i :=
temp_j

temp_k :=
temp_1 := 0;
a_ij_we <= ’0’;
b_ij_we <= ’07;

>
>

>

[l Ne]

L_v_ij_add <= conv_std_logic_vector (0, add_length);

-- initially mazimum possible number

cur_min := ’01111111”’;

-- sign of a_i1j’s multiplication
neg_a_ij := 0;

state <= 5;
end if;
else
-- done with decoding;
-- proceed to mnext state

a_ij_we <= ’07;
b_ij_we <= ’07;

L_v_ij_add <= conv_std_logic_vector (0, add_length);

state <= 26;

end if;

when 5 =>

-- horizontal step (check nodes update)
if temp_i < M then

vns_add <= conv_std_logic_vector(temp_i*N + temp_k,

add_length);
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state <= 6;

else
temp_j 0;
temp_k := 0;
temp_1 := 0;
sum_L_u_ji := conv_std_logic_vector(0, sfixed_length);

-- prefetch number of connected wvariable nodes for the
-- first check node [cn matriz (0)(M-1)]
cns_add <= conv_std_logic_vector (M-1, add_length);

state <=
end if;

L_u_ji_we <

when 6 =>

17;

70:;

-- number of connected wvariable nodes
-- to check node =t

vns_temp :=

conv_integer (vns_dout) ;

-- collect 2nformation from all connected
-- wariable nodes
if temp_j <= vns_temp then

if temp_k <= vns_temp then
state <= 7;

else

if temp_l <= vns_temp then
vns_add <= conv_std_logic_vector(temp_i*N + temp_1,

else

add_length);

vns_add <= conv_std_logic_vector(temp_i*N + temp_j,

add_length);

end if;

state <= 10;

end if;
else

temp_i
temp_j

if temp_

= temp_i + 1;

i

0;

< M then

vns_add <= conv_std_logic_vector(temp_i*N + N-1,
add_length);

else

-- ready for next iteration
vns_add <= conv_std_logic_vector(N-1, add_length);

end if;

state <= 5;

end if;

when 7 =>

b_ij_add <= conv_std_logic_vector (temp_i*N +
conv_integer (vns_dout), add_length);

state <= 8;



490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526

527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548

549
550
551
552
553

B.3. Decoder VHDL source codes

119

when 8 =>

state <= 9;

when 9 =>

-- get the minimum value of b_17
if temp_k /= temp_j then
if b_ij_dout < cur_min then

cur_min := b_ij_dout;
end if;
end if;
temp_k := temp_k + 1;

vns_add <= conv_std_logic_vector(temp_i*N + N-1,
state <= 5;

when 10 =>

add_length);

-- calculate product of a_i’j which can be either I

-- or -1, therefore only counting the number of
-- 15 necessary to calculate the wvalue of the
-- product

if temp_l <= vns_temp then
state <= 11;
else
state <= 14;
end if;
when 11 =>
a_ij_add <= conv_std_logic_vector (temp_i*N +
conv_integer (vns_dout), add_length);
state <= 12;

when 12 =>

state <= 13;

when 13 =>

if a_ij_dout = *’1”’ then
neg_a_ij := neg_a_ij + 1;

end if;

temp_1 := temp_1l + 1;

vns_add <= conv_std_logic_vector(temp_i*N + N-1,
state <= b;
when 14 =>
a_ij_add <= conv_std_logic_vector(temp_i*N +
conv_integer (vns_dout), add_length);
state <= 15;
when 15 =>

L_u_ji_add <= conv_std_logic_vector (temp_i*N +

-1s

add_length);
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conv_integer (vns_dout), add_length);

555 state <= 16;

556

557

558 when 16 =>

559

560 if a_ij_dout = ’1”’ then

561 neg_a_ij := neg_a_ij + 1;

562 end if;

563

564 -- response check-to-vartable LLRs

565 if neg_a_ij mod 2 = O then

566

567 -- positive product

568 L_u_ji_din <= cur_min;

569

570 else

571

572 -- negative product

573 L_u_ji_din <= (mot cur_min) + ’1°;

574

575 end if;

576

577 L_u_ji_we <= ’1°;

578 temp_k := 0;

579 temp_1 := 0;

580 temp_j := temp_j + 1;

581

582 -- cur_min = mazimum possible number = 011...117;

583 cur_min := ’01111111”;

584

585 neg_a_ij := 0;

586 vns_add <= conv_std_logic_vector (temp_i*N + N-1, add_length);

587 state <= 5;

588

589

590 when 17 =>

591

592 L_v_ij_we <= ’07;

593

594 -- vertical step (variable mnodes update)

595 if temp_j < N then

596

597 cns_add <= conv_std_logic_vector (temp_j*M + temp_k,
add_length);

598 state <= 18;

599

600 else

601

602 -- dncludes early termination check:

603 -- if the decoded output of this tteration equals

604 -- the output of the previous <iteration then stop

605 if cur_iter < iter and dec_pre /= dec_temp then

606 cur_iter <= cur_iter + 1;

607 temp_i := 0;

608 temp_j := 0;

609 L_v_ij_add <= L_v_ij_add + ’1°;

610 dec_pre <= dec_temp;

611 state <= 4;

612 else

613 state <= 26;

614 end if;

615

616 end if;

617

618

619 when 18 =>
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620

621 -- number of connected check nodes

622 -- to wariable node 1%

623 cns_temp := conv_integer (cns_dout);

624

625 -- response wvariable-to-check LLRs

626 if temp_k <= cns_temp then

627 state <= 19;

628 else

629 cns_add <= conv_std_logic_vector (temp_j*M + temp_1,

add_length);

630 state <= 22;

631 end if;

632

633

634 when 19 =>

635

636 L_u_ji_add <= conv_std_logic_vector ((conv_integer (cns_dout))*N
+ temp_j, add_length);

637 state <= 20;

638

639

640 when 20 =>

641

642 state <= 21;

643

644

645 when 21 =>

646

647 sum_L_u_ji := sum_L_u_ji + L_u_ji_dout;

648 temp_k := temp_k + 1;

649 cns_add <= conv_std_logic_vector (temp_j*M + M-1, add_length);

650 state <= 17;

651

652

653 when 22 =>

654

655 state <= 23;

656

657

658 when 23 =>

659

660 L_Q_i := L_c_i(temp_j) + sum_L_u_ji;

661 L_v_ij_add <= conv_std_logic_vector ((conv_integer (cns_dout)*N +
temp_j), add_length);

662 L_u_ji_add <= conv_std_logic_vector((conv_integer (cns_dout)*N +
temp_j), add_length);

663 state <= 24;

664

665

666 when 24 =>

667

668 if temp_l <= cns_temp then

669

670 state <= 25;

671

672 else

673

674 -- decide upon the sign of the LLR

675 if L_Q_i(M-1) = ’1’ then

676 dec_temp(temp_j) <= ’1’; -- negative

677 else

678 dec_temp(temp_j) <= ’0’; -- positive

679 end if;

680

681 temp_j := temp_j + 1;

682 temp_k

0;
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temp_1 := 0;
sum_L_u_ji := conv_std_logic_vector(0, M);

cns_add <= conv_std_logic_vector (temp_j*M + M-1,
L_v_ij_add <= conv_std_logic_vector (0, add_length);

state <= 17;

end if;

when 25 =>

if temp_j >= N then

L_v_ij_add <= conv_std_logic_vector (0, add_length);

end if;

L_v_ij_we <= ’17;

L_v_ij_din <= L_Q_i + ((not L_u_ji_dout) + ’1°);

temp_1l := temp_1l + 1;

cns_add <= conv_std_logic_vector (temp_j*M + M-1, add_length);

state <= 17;

when 26 =>

-- output decoded bits (in descending order)
dec(M-1 downto 0) <= dec_temp(M to N-1);

-- restart
pre_source <= cur_source;
state <= 0;

when others =>
null;

end case;
end if; -- reset = 717
end if; -- clk’event & clk = ’1°’
end process;

end behavioral;

Listing B.4: LDPC codes simplified log-domain decoder for rate-% applications

B.3.2 Decoder simulation testbench

-- Simulation testbench for the
-- low-density parity-check codes simplified
-- log-domain sum-product algorithm decoder

library ieee;

use ieee.std_logic_1164.all;

use ieee.std_logic_arith.all;
use jeee.std_logic_unsigned.all;

-- signed fixzed point format conversion
-- library

library ieee_proposed;

use ieee_proposed.fixed_pkg.all;

-- noisy wversion of input source description
package dec_tb_pkg is
type array_of_real_in is array(0 to 15) of real;

add_length);
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end dec_tb_pkg;

library ieee;

use ieee.std_logic_1164.all;
use ieee.std_logic_arith.all;
use ieee.std_logic_unsigned.all;

use work.dec_pkg.all;
use work.dec_tb_pkg.all;
use std.textio.all;

library ieee_proposed;

use ieee_proposed.fixed_pkg.all;

entity dec_testbench is
generic (
M
N
end dec_testbench;

integer := 8;
integer := 16);

architecture behavior of dec_testbench is

file source_vectors

text open read_mode is ’’source_vectors.txt’’;

type array_of_bit is array(M-1 downto 0) of bit;
type input_sfixed is array(0 to N-1) of sfixed(3 downto -4);

-- component declaration for the Unit Under Test (UUT)

component decoder
port (
clk
reset
source
iter
dec
end component;

-- inputs
signal clk
signal reset
signal source
signal iter

-- outputs
signal dec

in std_logic;

in std_logic;

in input_array;

in natural range 0 to 10;

out std_logic_vector(M-1 downto 0));

std_logic := ’07;

std_logic := ’17;
input_array;

natural range 1 to 10 := 7;

std_logic_vector(M-1 downto 0);

-- clock period definitions

constant clk_period

-- werification signal
signal dec_check

begin

-- instantiate the Untt
uut: decoder port map (

clk =>
reset =>
source =>
iter =>
dec =>

-- clock process
clk_process: process

begin

time := 1 ns;

std_logic_vector (M-1 downto 0);

Under Test (UUT)

clk,
reset,
source,
iter,
dec) ;
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clk <= ’07;

wait for clk_period/2;

clk <= ’17;

wait for clk_period/2;

end process;

-- stimulus process
stim_proc: process

-- I/0 variable declarations

variable source_buf line;
variable dec_buf : line;
variable source_sfixed : input_sfixed;

variable source_var
variable dec_var

array_of_real_in;
array_of_bit;

-- BER wartable declarations

variable tot_errors
variable tot_bits
variable ber

integer;
integer;
real;

-- wait time between consecutive inputs
-- wariable declaration

variable wait_time
begin
-- reset the system

wait for clk_period
reset <= ’0’;

integer;

* 10;

-- start decoding simulation
report ’’Starting simulation’’;

tot_errors := 0;
tot_bits := 0;

-- set wait time
wait_time := 17000;

-- read data from file
while not endfile(source_vectors) loop

-- read source wvectors to be decoded
readline (source_vectors, source_buf);

for i in 0 to N-1 loop
read (source_buf, source_var(i));

end loop;

-- convert real to signed fized point format
for i in 0 to N-1 loop
source_sfixed(i) := to_sfixed(source_var(i),source_sfixed(i));

end loop;

-- convert sfized to std_logic_wector
for i in 0 to N-1 loop
source (i) <= to_slv(source_sfixed(i));

end loop;

-- read exzpected

decoded output

readline (source_vectors, dec_buf);

for i in M-1 downto O loop

read (dec_buf,
end loop;

dec_var(i));
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-- convert expected decoded output
-- to std_logic format
for i in M-1 downto O loop

if dec_var(i) = ’1’ then
dec_check (i) <= ’17;
else
dec_check (i) <= ’07;
end if;
end loop;

-- wait until decoding has finished
wait for wait_time * 1ns;

-- check output with the exzpected one
-- and calculate erroneous bits
for i in M-1 downto O loop
if dec(i) /= dec_check(i) then
tot_errors := tot_errors + 1;
end if;
end loop;

-- 1increase total number of decoded bits
tot_bits := tot_bits + M;

-- wait before sending next input message
wait for clk_period * 2;

end loop;

-- when all messages have been decoded

-- the simulation calculates the stream’s
-- bit error rate (BER)

ber := real(tot_errors)/real(tot_bits);

-- and prints the result to the comnsole

report “Err. bits: ’’ & integer’image(tot_errors) & > / 7 &
integer ’image (tot_bits);
report BER: »’ & real’image(ber);

report ’’Simulation ended’’;
wait;
end process;

end;

Listing B.5: Simulation testbench for the LDPC codes simplified log-domain decoder
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