’ ’ ’
EOvixo Metoofio IToAvteyveLo
Zyohn Hiektpordywv Mnyovikdv kot Mnyovikdv TIToloyLotmy
Tougag Teyxvoroylag ITinpogoptkng Kot YTOAOYLOTMV

Ilepifairov Extipnong Iowdttag Aoyionikov
Baowouevo oty Avaivon Aopuk®v Kot XeOL0oTIK®OV
Yrouyeimv Tov Epyov

Avthopatikn Epyaota

™mg

Ioavvas Mapiog X. ATtopioy

Emiprenmv: Kootag Kovroyidving
Av. Kabnynmg E.M.II.

Epyaotpro Teyvoloylag AoyLouko
ABnva, Tovitog 2010

EOvik6 Metoopio Tlolvteyveio

Zyohn Hiektpordywv Miyovik®v Kot Miyavik®v YIohoylotmy
Tougag Teyvoroyiag ITAnpogpopikng koL TrTohoyLothv
Epyaompio Teyxvohoylog Aoyiouko

Ilepifparrov Extipnong Moot tag Aoyionikov
Baowouevo oty Avaivon AopK®v Kot Xy edLoTIKOV
Xroveiov Tov 'Epyov

Authopatikn Epyoota

g

Ioavvas Mapiog X. Attopioy

Emprénwv: Kootog Kovroyidvvng
Av. KaOnynmg E.M.IL.

EykplOnke amd v tpLuehn eEetaotikn emvtpomn v 16" Toviiov, 2010.

Kwootag Kovroyiavvng Iwavvng Baoiheiov Tedpyrog Zrdpou
Av. Kabnynmg EMII. Kabnpynmg EMIL. Aéktop E.M.IL

ABnva, Tovitog 2010

Imavve Mopio X. AtropLoy
Aumhopatovyog Hiektpordyog Miyovikog ko Mnyavikog Yroloywotdv E.MLIT.
© 2010-- All rights reserved

EOvik6 Metoopio Tlolvteyveio

Zyohn Hiektpohoywv Miyavikdv kaw Mnyovikov YToAoylotmv
Tougag Teyvoroyiag ITAnpogpopikng koL TrTohoyLothv
Epyaompio Teyxvohoylog Aoyiouko

Copyright © -- All rights reserved Iwavva Mopta X. Attapiav, 2010.
Me emgpOAaEn TavTog SIKOLOUOTOC.

Astoryopedeton 1) aviypagy), arodNKevon Kot SLvouT| Te TapoV00g EPYAOLAGS, EE OMOKAN POV
1 TUNUOTOG QUTNG, YLOL EWTTOPLKO 0K0TT0. EFTpEmeToL 1) ovatisiwon), atofnKevon Ko Stovoun)
VL0 OKOTTO (1] KEPOOOKOTLKO, EKTTOLOEVTIKNG 1) EPEVVIITIKNG UONG, VL0 TNV Tpoitdeon va.
AVOPEPETOL 1) TTYY TTPOELEVONG KOL VO SLATNPELTAL TO TaPOV unvouc. Epothuata mov ago-
POUV TN XPNON TNG EPYUOLOG VL0 KEPOOTKOTLKO KOO TPETTEL VO, 0TTeEVOVVOVTOL TPOG TOV VY-

YPOAPEQ.

Evyoplotieg

©a NOela, apyLKa, Vo eVYoPLOTNOW Oepud Tov ePAETOVTA ov Avastdnpoti Kabnynm
E.M.II. kUpro Khota Kovrtoyiavvn o omolo vanp&e ohvtun fondsia yio péva. Me Tig ovp-
BOULEG TOV KaL TIG ETLONUAVOELS TOV, e KOOOdNYNOE 0e OMN TNV TOPELD KATA TN SLAPKELD.
EKTTOVIONG TG TTOPOVOUG SITAMUOTIKNG EPYAOLAC. MOV HETESMOE TAPA TOAAES KOL YPTOLUES
YVOOELS YOPw atd Tov Touga TG Teyvohoylag AOYLOWKOU 0 0TT0L0G NTAY OKOUA TTOAD Gyvm-
0TOG YLOL EUEVE. KOLL 1] OLOTELPEVTY SLAOEOT TOU Y10 SOULELDL KOIL TO OLOTAUATITO EPEVVITIKO TOU
EVOLALPEPOV VTNPEAY TO EVOUOUA KOL YLOL LEVOL VO LOYOAOM EpeVVITLKG e Tov Toua TG Te-
YvoroyLaG AoyLoukov. Tov evyaploT® Tdpo. TOAD Yo, OAN) TV VITOUOVY] KOL THV TPOOTAOELd
TOU VO, ue SIOAEEL KOl VO, LOLPALOTEL TLG YVIOELS TOV Ol PO,

Oo. NOeLa, ETLONG, VO EVYOPLOTNOW TOVG PLAOVG KO CUIPOLTITEG LOU OL OTTOLOL, KATA. TC,
névie ypovia otadodpouiag wov oto E.MLIL, vinpEav ompryno Kar ovvodnmopol wov. Le-
AMaoope, dtavdoaue Suokolieg, Sovdépaue Lol KoL, TPOTAVTOV, nabaue TOAG 0 £Vag amd
TOV AMOV HECT aTtd TLG GUENTIOELS oG KOL TNV OVOVTOAAAYY ATOPEWV, KOO KOl 0Tt0 TLG
avudikieg pog. Toug evyapLoT® TOAD, AOLTOV, Kat TOUG EVYOUOL KOAT 0TASL0dpoULe 0rtd £dM
KO TTEPCL, VOL ETUTVYOVV KADE TOUG 0TOYO KOL VOL 1) OTAUOTI|OOUV VO, ETULOLMKOUV TTAVTA VO, [L0L-
Balvouv 0std Toug AvOp®ITOUG YOPW TOUG OTTMG KAVOUE O EVOG ATTO TOV GALOV OUTA TA YPOVLO.

Oa. NBeL, TELOG, VAL EVYAPLOTNOM TOAD TOUG YOVELG wov kabmg ko Tv Kikn kow o Ba-
OLAY TTOV e UEYAAWOOY e 0ryGTTn KOl VITOROV) YiaL vo. Bpefd onuepa edd mou eipat. TanpEav
OTNAOBATEG YLOL LEVOL OTLG TTLO KPLOWES OTLYUEG TNG LONG Hov TG omoleg we fondnoav va Ee-
TEPAOW, KOL NTOV TOPOVTEG 08 KADE YapoUUEVT OTLyUn] TG CONg HOU vau e ovyyopotv. Toug
ELILOLL EVYVAOIMY Y10 OACL 00T OV TTPOTPEPOLY CUTA TOL YPOVLOL KO Y10 OAC OG0T, LoV Epaday.

Ilepiinyn

ST ONUEPLVY ETTOYT], OTOV TOUED TOV ZVoThudTwv Epapuoydv Aoyloukol moapatnpeltol
ovveyNg abENOT TOV ATALTNOEMY VL0 UEYOAVTEPT] AELTOUPYLKOTITO KOL, GPC, TO. GUOTHUCLTO,
AOYLOWLKOD YIVOVTOL PEYOAITEPE. Kol TOAVTAOKOTEPQ. EEQULTIOG cuTol TOv YeEYovOTOg Kow Koi-
G M ayopd YiveTow OAO KoL TEPLOOOTEPO AVTOLYWVLOTLKT), OVAKUITTEL 1] OVAYKY TOV SLOLyEL-
PLOTWV CVOTNUATWV KOL TOV ETKEPUADY OUAOMY VO OTTOKTIOOVV O TEPLOCOTEPO OMOTLKT)
OTTTLKY] KOLL ETTOTTTELD TG KATAOTOONG TOU GUOTIUATOG TOUG KOL VO, OVayVPLLOVY EK TV TTPO-
TEPOV SUVNTIKOUG KIVOUVOUG KOl EACTTOUATA TTOV UTOPEL VO AVILUETOTLOOVY. OL EPEVVNTEG
KO 0L 0KadMUaiKol eEL0OV, EYOUV OVAYVMPLOEL TV OVAYKTY EVPEONG VEMV TEXVIKMV TTOV 0TOYO
00 £xouv TN OTNPLEN TWV AELTOVPYLOV ALOELPLONG AOYLOULKOD VL0 UEYAAC GUOTIUOTO AOYL-
OULKOU TTOPUOETOVTOG KATOLAG LOPQPNG TTPOPBAEYT KIVOUVOV Kai TTOLOTNTOG UE XPNOT| KOTOA-
MA@V QUTOROTOTTOMUEVDY epYaAelnv. O KUPLOg 0TOY0G TG SLTAMUOTIKNG EPYAOLOG ELVOL 1)
depethivnon puebodwv moTe vo. Yivel emeEepyoota Kot ovaAvoT SESOUEVWV TPOEPYOUEVWV ALTTO
OrokAnpwuéva AvasrttuElakd MeptBallovo Kow G epYAAELR ALOYELPLONG ZVOTHUATOV UE
OKOTTO OL SLAYELPLOTES GUOTIUATMV KL OL TTPOYPOLUUATIOTES VO OTTOKTOUV (oL Ak PLBT| EKTLUN O
™G TPOOSOV EVOC CVOTNUATOG AOYLOWKOU KOl VO AAUPBAVOUV EUTEPLOTATOUEVEG OTTOQPAOELG
AVOPOPLKE UE TO GVOTNUE TTOV OVATTTOO00VV, OYETIKEG UE TO KOOTOG Kat TV sotdtta. [pog
vtV TV KatevBuvon, 1 KOpLa 1d€a elval vo avasttuy el £va auTtopoto TepLBAllov - TAALOLO
TO OTTOLO VOL LOVTENOTTOLEL TTOATUKES SLAYELPLONG KO KLVOUVOUG [LE TPOTTO EVEMKTO KO EVKOMO
KO VO EPOPUOTEL (0L TTPOPBAETTTIKT] 0VAAVOT AAUBAVOVTOG VITOYNV TTANPOQOPLA TTPOEPYOUEVN
amd Olokinpwueva AvamtuEloka MepiBdirhova, epyareia Alayelptong Zvotnudtov Aoyi-
OpLKOU Ko aofnKeg SeSOUEVWV.

AgEaig Kherdra

CLPYLTEKTOVIKT] VITNPECLOKEVIPLKDY GUOTNUATWYV, WYOVIKT) 09NYOUUEVT] 0Td 0TOYO, TPO-
BAeYN 0paAUOTOG, ToONKN dedouevmv, dvEpo otoYwV, MapKkofLovd Aoyikd AlKTuo

Abstract

As software applications increase in size, complexity and functionality, so does the complexity
of the corresponding specification, design, implementation and, testing efforts. Furthermore, as the
software market becomes more and more competitive, and time to market schedules shrink, the
need arises for project managers and team leaders to obtain a more holistic view and perspective
of the status of their project and to early identify potential risks, flaws, and quality issues that may
arise during each stage of the software project life cycle. In this respect, practitioners and academics
alike have recognized the need for the development of new techniques aiming to support software
management operations for large software projects by providing some form of risk and quality prediction
utilizing appropriate automated tools. The main goal of this diploma thesis is the design of a framework
in terms of a reference architecture and supporting tools to process and analyze data obtained from
IDEs and other project management tools so that, project managers and developers can obtain an
accurate assessment on the progress of a software project and make educated cost and quality related
decisions on their projects. More specifically, the thesis presents a reference Blackboard architecture
for such project analysis and evaluation systems and techniques that allow for information obtained
from various tools to be modeled and stored in a centralized data repository, for management policies
and risks to be modeled as Goal Trees, and for reasoning techniques to be applied so that policies
and risks can be verified or denied with a level of confidence or probability assessment. The proposed
environment has been applied for the evaluation of the quality of a system according to the ISO 9126
standard.

Keywords

service oriented architecture, goal driven engineering, fault prediction, data warehouse, goal tree,
Markov logic network

Iepreyoueva

Evyopiotieg

Iepidnym

Abstract

IMepreyoneva
Koatdroyog oynuatmv

1 Introduction

1.1 Problem Description e
1.2 Thesis Contribution e e e e
1.3 Outlineofthe Thesis e

2 Related Work

2.1 MOF/XMI

2.2 Quality Assessment Standards Lo
2.2.1 ISOInternational Standards,
222 CMMI. . . . e
2.3 Reasoning Frameworks,
2.3.1 Markov Logic Networks,

2.3.2 Dempster - Shafer theory of Evidence

2.4 Goal Trees

3 System Architecture

3.1 Architecture Description
3.1.1 General Overview oL e e e

3.1.2 Component Description,
3.1.2.1 Warehouse Module

3.122 ModelingModule L.

3.1.2.3 Hypothesis Generator Module

3124 UlModule

3.1.2.5 VerificationModule

3126 BlackBoard.

3.1.3 Sequence Diagram of the Functionality of the System

7

12

13
14
15
15

17
17
18
18
18
19
19
21
21

8 Teoieyoueva
4 Domain Models 35
4.1 Warehouse Domain Model 35
4.1.1 Warehouse Class e 35

4.1.2 ProjectClass e e 36

4.1.3 ProjectEntity Class 36

414 IDECIass o i e e e e e 37

415 Warehouse DataClass. 37

4.1.6 Property Class e 38

4.1.77 Feature Class e 38

4.1.8 Interpretation LogicClass, 38

4.1.9 Grounded Logic ExpressionClass 38
4.1.10 MLNCIass v vt e e e e e e e e e e e e e e 39

4.2 Hypothesis Domain Model, . 39
42.1 HypoCategory Class 40

422 HypoTypeClass o i e 40

423 HypothesisClass 40

424 HypoPathClass 40

425 Tterator Class o o 41

426 CNEExprClass ittt ittt 41

427 MLNCIass e e e 41

428 VerifierClass e e 42

429 GoalTree Class i i e e e e e e e 42
4210 GoalNode Class v i i i it e e e 42
4211 AtomicGoal Class e 42
4.2.12 DecompositionGoal Class 43
4213 ExprProducer Class 43
4214 Strategy Class e e 43
4215 VerifierAClass e e 43
42.16 VisitorCreator Class i ittt 43
4217 VisitorClass e e 44
4.2.18 AnnotationContainer Class 44
42.19 AnnotationClass 44

5 Hypothesis Analysis Algorithms 45
5.1 Global Hypothesis Formation 45
5.1.1 Hypothesis Domain XMI Population and Storage 46

5.1.2 Strategy and Category definition 47

5.1.3 Hypothesis Domain XMI Load and Parsing 48

5.14 AND/OR Goal Tree Creation 48

5.1.5 Goal Tree Node Annotations Creation 48

5.1.6 Goal Tree Traversal and Predicates Construction 49

5.2 Dataand Fact Gathering 50
5.2.1 Warehouse Domain XMI and Configuration XMI Population and Storage . 50

5.2.2 Verification Process Start, 51

5.2.3 Isolation of Features and Thresholds 51

5.2.4 Predicates Constructiono 51

5.3 Markov Logic Network Based Reasoning 52

Ieoieyoueva

6 Case Studies
6.1 Example 1 .
6.2 Example 2 .
6.3 Example 3 .

7 Conclusion
7.1 Future Work

Biphoypagio

57
60
62
64

73
74

76

Kotaioyog oynuatmv

2.1

3.1
32
33
34
3.5

4.1
4.2

5.1
5.2
53
54
55
5.6
5.7
5.8
5.9

6.1
6.2
6.3
6.4
6.5
6.6
6.7
6.8
6.9
6.10
6.11
6.12
6.13
6.14
6.15
6.16
6.17
6.18

Simple AND/OR Goal Tree Example 23
Block Diagram of the System Architecture 25
Component Diagram of the System Architecture 27
Layered architecture of Modeling Module 29
Layered architecture of ULModule 30
Functionality Sequence Diagram of the system 32
Warehouse Domain Model, 36
Hypothesis Domain Model, 39
Simple XMI Example 47
Simple AND/OR Goal Tree Predicates 49
Simple Data Warehouse Predicates 52
Example of a .mlninputfile L o 53
Exampleof a.dbinputfile 53
WalkSAT algorithm 54
MaxWalkSAT e 54
Ground Network Construction Algorithm 54
MCMC : Gibbs sampling Algorithm 55
Hypothesis Domain XMI forexample 1 61
AND/OR Goal Tree of figure 6.1 XMIdocument 61
hypoth.mln file forexample 1 62
Warehouse Domain XMI forexample 1 63
Configuration XMI file forexample 1 64
entity0.db file forexample 1 oo 64
Alchemy output forexample 1. oL 64
Hypothesis Domain XMI forexample 2 65
AND/OR Goal Tree of figure 6.8 XMIdocument 65
hypoth.min file forexample 2 66
Warehouse Domain XMI forexample 2 67
Configuration XMl file forexample 2, 68
entity0.db file forexample 2 68
Alchemy output forexample 2. 68
Hypothesis Domain XMl forexample3 69
AND/OR Goal Tree of figure 6.16 XMIdocument 69
hypoth.min file forexample 3 69
Warehouse Domain XMI forexample 3, 70

11

12

Katdloyog oynudrwv

6.19 Configuration XMI file forexample 3

6.20 entity(.db file for example 3 .
6.21 Alchemy output for example 3

Kegaloto 1

Introduction

During the past recent years, one of the focal areas in Software Engineering is to provide techniques,
methods and tools to support the specification, design, implementation and testing of complex software
systems. This has led to the production of integrated development environments (IDE) and Software
Project Management tools. This has caused changes thoughout all the phases of the life cycle of large
scale software projects. More precisely it has affected :

Initiation/Planning : Due to the constant increase of users' demands, developers are challenged to
complete projects that fulfill more high - level goals. Thus, the initiation and planning of projects tends
to become more time consuming and complex since it has to be in consideration of more parameters.

Requirements Gathering and Analysis : As a result of the above, the project development
requires more sources. In addition to this, the analysis, that is the process of identifying faults in
order to fix them, becomes more difficult since the source code fulfills more requirements and is
more extensive.

Design : In the design phase where the functions and operations of the project are specified in
detail using models, business rules, screen layouts and other documentation, it is evident that the
models entail functions that relate to a larger and more complex number of operations.

Build/Coding : The build/coding phase also becomes more demanding since models which stem
from a synthesis of many requirements and goals can be harder to develop correctly.

Testing : Taking all of the above into consideration, it is clear that the testing phase as well has
become even more demanding. In order to test successfully larger volume of source code, resources
and entities such as testers and test cases will have to be raised in size and complexity, a fact that also
produces a significant rise in cost and time consumption.

Maintenance : A larger amount of high - level source code is more fault prone and can raise more
difficulties in maintaining its flawless operability and may require more economic funds and human
resources to ensure it.

Thus, as explained above, this increase in demands and complexity has negative results such as
simultaneous increase in cost and time acquired to conclude development. This fact raises the need
of fault prediction, as it can also be seen in [13, 12]. It can be easily understood that the development
of a framework which can provide information whether a module or component of a project has high
probability to present a certain type of error or fault can provide significant assistance to the developer

13

14 Kepddawo 1. Introduction

towards preventing the occurrence of failures ([1]). This can eventually lead to cost reduction since
the developer will be given the opportunity to reduce the probability of faults. It can also assist
throughout all the phases of the life cycle by detecting possible modeling and planning flaws at each
phase separately which also ensures the maximization of project management granularity.

1.1 Problem Description

The problem which this diploma thesis is attempting to propose a solution to, concerns the
prediction modeling, planning and design of faults and flaws that may occur during the specification
and implementation of a large software project. Due to the increased level of demands and considering
that the market continues to grow more and more in a competitive manner, the need of a way to
effectively run some risk and product quality prediction analysis so as to assist project managers in
making correct decisions in order to prevent possible threats, is useful.

To this direction, we propose a framework whereby we assume hypotheses which can correspond
to actual problems that can appear in projects. Consequently, the framework is used to validate or deny
each hypothesis utilizing statistical reasoning. The idea of building hypotheses scenaria over probable
risks and faults that can occur during the development and coding of large integrated systems, can
provide a very useful concept towards a possible solution to the prediction analysis ([5]).

It would be also interesting to consider whether there is a way of modeling those hypotheses in a
formal manner, as it was also introduced in [4]. In the field of Software Engineering, the requirements
specification plays an important part in the development of a software project. Therefore, the hypothesis
modeling should be also accomplished in a flexible manner which would be easily handled and
extended in order to provide more flexibility to the developers by allowing them to set their own
configurations according to their requirements and objectives.

Next, it would be wise to consider whether a way of verifying the hypotheses can be found so
that each hypothesis can be valid with some percentage of certainty. It can be easily understood that
developing a procedure which would result to an affirmative or negative answer on the matter of some
risk occurring, can be rigid and error prone since no flaw can possibly be predicted with complete
certainty.

Finally, it should be searched whether the results of the above procedure, if such can be found,
reflect accurately scenaria of real cases of errors and flaws that can be detected in software projects
using data provided by various sources and repositories such as Data Warehouses which have become
and continue to be more and more common in the field of Data Mining ([21]). The invention of
such procedure would only be useful if and only if it corresponds to real paradigms so that project
managers and team leaders can utilize it as a tool to perform quality checks and obtain status progress
reports on their projects which would be critical information in order to make correct decisions on
the continuation of the development.

This diploma thesis examines whether the above points can be fulfilled and proposes a structure
of a framework which can give a solution to this problem to some extent.

1.2 Thesis Contribution 15

1.2 Thesis Contribution

This diploma thesis is presenting a framework which aims to conduct fault and quality prediction
in large software projects. More specifically, the thesis proposes the :

 Definition of a Blackboard architecture which has the ability to validate fault hypotheses with a
probabilistic measure depending on the project data it will receive. The BlackBoard architecture
consists of a core component which collects all the updates and alterations occurring during
the execution of the framework. It gathers all the data produced during the procedure or added
externally by the user and are required for the current analysis in order to transfer to other
components that request them. It also receives updates from all modules with the status of the
system at all times in order to notify the appropriate modules and trigger the execution of their
operation.

* Definition of a hypothesis domain model in order to define hypotheses which belong to various
hypothesis categories and types and construct the corresponding AND/OR goal trees with
the appropriate goal tree node annotations using the Goal Tree Domain Model which is a
tool of Requirements Engineering. The AND/OR Goal Tree Model has already been used by
the research community in modeling requirement specifications and provides a flexible and
extensible means of representation of the hypotheses, therefore chosen for the purposes of this
diploma thesis.

» Representation of the goal trees by projection to the first - order logic world which enables the
use of Markov Logic Networks as a probabilistic validation method. The AND/OR Goal Trees
are easily projected into first - order logic predicates that simulate the world in effect, due to their
structure which already connects the subgoals by conjuctive and disjunctive relationships. This
benefit of the AND/OR Goal Tree structure provides a straightforward way of transforming
the goals and subgoals that constitute a hypothesis, into logical expressions based on Boole
Algebra and, next, into conjuctive normal form which is also required for the construction of
the appropriate for the hypothesis, Markov Logic Network.

1.3 Outline of the Thesis

The text of the diploma thesis will be structured as follows :

Chapter 2 : In this chapter, a list of the related work is presented. More specifically, the relative
subjects covered in chapter 2 which were very useful for the conduction of this diploma thesis, are the
MOF (Meta - Object Facility) and XMI (XML Metadata Interchange) for the definition of the domain
models and the parsing of the input files to the system respectively, the ISO standards ISO/IEC TR
9126 - 2 and ISO/IEC TR 9126 - 3 for the definition of the appropriate quality measures that a module
needs to have in order to be accepted as fault free, the Markov Logic Network theory for the the
probabilistic validation of each hypothesis, the Goal Tree Domain Model theory for the hypotheses
modeling, as well as other subjects of Business Intelligence and Analytics.

Chapter 3 : In this chapter, the system architecture is presented. Specifically, the different architecture
styles which are used in various parts of the system are explained and the architecture is described
thoroughly for each component in terms of interfaces, offered services and functionality. Finally, a
sequence diagram of the system is given.

Chapter 4 : In this chapter, the three domain models defined for the purposes of this diploma
thesis, the Hypothesis Domain Model, the Warehouse Domain Model and the Goal Tree Domain

16 Kepddawo 1. Introduction

Model, are described in detail and each class is explained in terms of its attributes, operations and
functionality.

Chapter 5 : In this chapter, the hypothesis analysis algorithms which were implemented, are
described. Specifically, details are given for the Hypothesis Selection algorithm, the Hypothesis
Verification algorithm and the Markov Logic Network based analysis.

Kegaiowo 2

Related Work

The work presented in this diploma thesis, touches upon a number of fields in the area of Software
Engineering. First, it utilizes work performed in modeling and in particular the Meta - Object Facility
and XMI. Second, it touches upon the area of Quality Assessment and in particular the ISO Standard
9126. Finally, it touches upon the area of reasoning and in particular the area of statistical reasoning
and Markov Logic Networks. In the following sections we will discuss these areas of related work.

2.1 MOF/XMI

The Meta - Object Facility (MOF) [15] is the core Object Management Group (OMG) standard
for model - driven engineering. MOF was concluded by the need for a meta modeling language and
yields a taxonomy of models divided into four layers. The M3 level is at the top of the hierarchy and
is the language MOF. This layer can be used to describe M2 - models such as UML itself. The M2 -
models can be used to denote M1 - models. In the UML case, a particular UML class domain model
would belong to the M1 - level. At the bottom of the hierarchy is the MO - level which consists of the
data, that is the actual instances of the M1 - level model. The MOF standard is a useful environment
for developing models and schemas since it offers flexibility to the developer. Specifically, it provides
portability and extensibility to the developed models since it allows models to be easily exported from
one application, imported into others, transferred through a network, stored in and retrieved from a
repository or transformed into different formats such as XMI.

The XML Metadata Interchange (XMI) [16] is the Object Management Group (OMG) standard
format for model metadata transmission and storage through Extensible Markup Language (XML).
According to OMG, data can be classified into two categories, abstract models and concrete models.
The abstract models represent the semantic information where the concrete models represent the
visual diagrams. From this classification, abstract models are the most useful since they are instances
of MOF - based modeling languages like UML. The XMI format is often used to exchange metadata
between UML - based modeling tools and MOF - based metadata repositories in distributed heterogeneous
environments. It is also often used as a means of passing models from modeling tools to source code
generation tools.

For the purposes of this diploma thesis, the MOF standard was used so as to define the hypothesis,
warehouse and goal tree domain models. In order to accomplish that, the Magic Draw tool was
utilized. The MOF diagrams were then exported in XMI format compatible with the Eclipse Modeling
Framework (EMF) meta model (Ecore) [7]. The produced XMI files were imported into EMF where
automated code generation was applied to the model. Exemplary population of the models was done

17

18 KepdAdawo 2. Related Work

using the runtime environment provided by EMF.

2.2 Quality Assessment Standards

A crucial point to the work elaborated for the purposes of this diploma thesis, was the choice of
the appropriate criteria ([2]) in order to ensure that the quality prediction and verification analysis
would be held in respect with widely accepted and applied quality standards and features. Two of
the most known Quality Standards are the ISO International Standards and the Capability Maturity
Model Integration (CMMI) Standards. These are discussed below in more detail.

2.2.1 1ISO International Standards

The International Organization for Standardization (ISO) is an international stardard setting organization
which utilizes representatives from various national standardization organizations. Although it is
considered a non - governmental organization, it has the ability of setting standards that become
technical recommendations in various countries through treaties or national standards. Among ISO's
main products are the International Process and Product Quality Standards. The purpose of these
International Standards is to assist entreprises to ensure the quality of their products and the integration
of the operation environment.

This diploma thesis focused on more at two ISO quality standards and specifically, the ISO/IEC
TR 9126 - 2 [17] and ISO/IEC TR 9126 - 3 [18]. There are also other studies focusing on the same
subject, that were based on the ISO Standards ([19]). These ISO standars were useful to draft the
logic by which a process or a product is validated for its quality in the proposed framework. T

2.2.2 CMMI

Another commonly used and acknowledged set of Quality Standards is the Capability Maturity
Model Integration (CMMI) ([24]). CMMI constitutes a process improvement approach providing the
essential elements for enhancing the qualities of processes. CMMI Standards, like the ISO Standards
described above, can be utilized in order to conduct process improvement across a project, a division
or an entire organization. They assist towards integration of traditionally separate organizational
functions, setting process improvement goals and priorities, providing guidance for quality processes
and, finally, providing reference points for assessing and appraising current processes.

The CMMI contains directives concerning three areas of interest, the CMMI for Development
model which concerns product and service development, the CMMI for Services model concerning
service establishment, management and delivery, and the CMMI for Acquisition model which has to
do with product and service acquisition.

The above CMMI models are collections of best practices that can be compared to the features
and results of a project and suggest ways of improvement for its processes. A formal comparison of
a CMMI model to the processes of a project is called an appraisal. The Standard CMMI Appraisal
Method for Process Improvement (SCAMPI) incorporates the best ideas of several process improvement
appraisal methods.

2.3 Reasoning Frameworks 19

2.3 Reasoning Frameworks

Reasoning Frameworks refer to all those theories that can provide logical deductions often with a
sense of probability measurement, through a generalized method for logic application. Two reasoning
frameworks studied in this diploma thesis, are the Markov Logic Networks theory and the Dempster -
Shafer theory of Evidence. Other reasoning frameworks have also been applied for the development of
decision support systems such as Fuzzy Inference ([23]), Function Point Analysis ([9]), Fuzzy Delphi
([9]), Fuzzy Nonlinear Regression Modeling ([26]), Artificial Neural Networks ([6]) and Support
Vector Machines ([6]). The Markov Logic Networks theory was the one utilized in this work.

2.3.1 Markov Logic Networks

The Markov Logic Networks theory combines the benefits of Markov Netwoks along with the
benefits of first order logic. As discussed in [11], Markov Network or Markov Random Field is a
model of the joint distribution of a n - set of variables X = (X1, X2, ..., X;,). It is composed of an
undirected graph G and a series of potential functions ¢y, . Each node of the graph corresponds to
one variable of the set X and there is one function ¢y, for each clique in the graph. The potentials
functions are non - negative real - valued and each represents the state of the corresponding clique.
Taking the above into account, the resulting joint distribution is :

P(X =) = % [[exlar)
;

where xj, is the state of the variables appearing in the & - clique and Z is the partition function :

Z=> 1 era)

zeX k

Markov Networks are often represented as log - linear models. In this case the potential functions
are replaced by an exponentiated weighted sum of features of the state. A feature may be any real -
valued function of the state. Thus, the joint distribution takes the form :

P(X =z)= %exp(z wj fi(z))

A first - order logic knowledge base is a set of first order logic sentences or formulas. These consist
of constants, variables, functions and predicates. Constants represent instance objects in the domain.
Variables range over the objects in the domain. Functions represent mappings from object tuples to
objects. Predicates represent relations between objects in the domain or attributes of objects. Apart
from the above, the following are also defined :

* An interpretation is the definition of the symbolic representation of all the above elements of
the first order logic.

* A term is any expression representing an object in the domain like a constant, a variable or a
function applied to a tuple of terms.

* An atomic formula or atom is a predicate symbol applied to a tuple of terms.

* A formula is constructed through recursion of atomic formulas and logical connectives and
quantifiers.

* A ground term is a term that does not contain variables. A ground atom or ground predicate is
an atomic formula that consists only of ground terms. The ground term and ground atom or

20 KepdAdawo 2. Related Work

predicate were of significance throughout the conduction of this diploma thesis.

The Markov Logic Network (MLN) theory combines the ease of representation provided by the
use of a first - order logic knowledge base along with the flexibility of the probabilistic methods of
Markov Networks. More specifically, a first - order logic knowledge base can be viewed as a set of
hard constraints which define a possible world. Thus, if a world does not satisfy at least one of them,
then it has zero probability of being valid. The Markov Logic Network theory attempts to soften
those constraints. In this case, a world which fails one or more constraints of the first - order logic
knowledge base is considered to be more improbable but not impossible. The less constraints a world
violates the more probable it is considered to be. Each formula of the first - order KB is assigned a
weight which indicates the strength of the constraint. According to this, the higher the weight, the
greater the difference in log probability between a world that satisfies the formula and another that
does not, other things being identical. Let it be noted that for the purposes of this diploma thesis,
all formulas and constraits were assumed of equal strength. We give a formal definition of a Markov
Logic Network :

A Markov Logic Network L is a set of pairs (F}, w;), where F; is a formula in first - order and
wj is a real number. Together with a finite set of constants C' = {cy, ca, ..., | }, it defines a Markov
network M7, ¢ as follows :

1. M, ¢ contains one binary node for each possible grounding of each predicate appearing in L.
The value of the node is 1 if the ground atom is true, and O otherwise.

2. M7, ¢ contains one feature for each possible grounding of each formula F; in L. The value of
this feature is 1 if the ground formula is true, and O otherwise. The weight of the feature is the
w; associated with F; in L.

An MLN can produce different networks given different sets of constants. These networks which
are called ground Markov networks, widely vary sizewise but all share some regularities in structure
and parameters given by the MLN. Thus, the probability distributions over all x specified by the
ground Markov network M, ¢, take the following form :

P(X=1)= eXP(Z win;(x)) = ;H @i ()" @)

where n;(x) is the number of true groundings of F; in z, x; is the state of the atoms appearing
in F;, and @;(z;) = e"i.

There are two operations which can be executed via MLNSs :

* Learning : Via this procedure, we can learn MLN weights from one or more relational databases
after having assumed a closed world and, therefore, that every ground atom that does not exist
in the database is false. The Learning procedure will not be of any concern within this diploma
thesis.

* Inference : A basic use of MLNs is their capability of providing answers to queries concerning
the probability of one formula F being true given that a second probability F5 holds. Therefore,
if F1 and F5 are two formulas in first - order logic, C' is the set of constants of the world and
L is an MLN, then the resulting probability would be :

2.4 Goal Trees 21

_ _ P(RIAR)|Mpc) | 2weXp nXp, D(X=2lML0)
PORF, L, C) = PURIF M10) = ZRRiLe) T =~ Toex, POT0)

where X, is the set of worlds where F; holds.

2.3.2 Dempster - Shafer theory of Evidence

The Dempster - Shafer theory, as it is analysed in [10], has the advantage of being able to model
the narrowing of the hypothesis set with the accumulation of evidence which can be applied to succeed
expert reasoning in various fields. It is often that an expert shall use evidence that do not bear on
a single hypothesis of the hypothesis set but rather a larger set of the original set. Therefore, the
Dempster - Shafer theory, supplied with functions and combining rules, can be very suited to represent
this type of evidence and its aggregation.

One more advantage of the theory is that, unlike many previous theories like the Bayesian for
which one can understand more about its applications in Software Engineering by looking into [3]
, it lifts the constraint according to which the belief of one hypothesis implies the remaining belief
corresponds necessarily to the negation of the same hypothesis. The fact that, in many cases, evidence
supporting partially one hypothesis should not be accounted automatically as evidence partially against
the negation of the hypothesis, reflects probably more the reality. Thus, in the Dempster - Shafer
theory the beliefs in each hypothesis are allowed to sum up to a number less than or equal to 1.

The Dempster - Shafer theory assigns one number in the range [0, 1] to indicate the belief in each
hypothesis provided a piece of evidence. This constitutes a degree to which the evidence supports
the hypothesis. The impact of each distinct piece of evidence on the subsets of ©, where O is the
hypothesis set, is represented by a function called a Basic Probability Assignment (BPA). A BPA is a
generalization of the traditional Probability Density Function. Next, belief functions denoted as Bel,
are defined for each BPA, m, and assign to every subset A of © the sum of the beliefs commited
exactly to every subset of A by m.

The Dempster - Shafer theory, as briefly discussed, provides many advantages and, therefore, is
firmly considered for the extension of the work projected in this diploma thesis.

2.4 Goal Trees

In the field of Software Engineering, a role of great significance for the development of a project is
played by the operational requirement specifications. That is, the developer must specify the requirements
of the project so that, under a certain input, its behavior considering the output, will be as expected.

One of the many methods proposed for the specification and modeling of a system's functional
and non - functional requirements is the Goal Tree model.

The Goal Tree model is based on the top - down decomposition to which the operational requirements
of a system can be modeled through the definition of specific goals to be satisfied. Those goals can be
segmented further into subgoals whose validation will ensure that the original goals are satisfied. One
type of Goal Trees that has been accepted by the research community and has been used in Software
Requirements Engineering, is the AND/OR Goal Tree Model, [22]. According to this model, a goal
can be divided into subgoals which are represented as the children of the first. The same applies
for each subgoal iteratively. Therefore, it can be easily seen that in this way, a tree form of goals is

22 KepdAdawo 2. Related Work

constructed. A specific goal, that is a goal tree node, can be of type AND which implies that the
children of the goal are connected by logical conjunction. Thus, the goal is fulfilled if and only if
all his subgoals, i.e. his children nodes, are also satisfied. These are noted as hard goals since they
demand all of their subgoals to be fulfilled in order to be satisfied. There are also goals of type OR.
This implies that the children nodes of such goals, that is their subgoals, are connected by logical
disjunction. Therefore, if at least one of the subgoals is fulfiled, that leads to their parent goal to be
considered as been satisfied as well. These goals are called soft goals since they do not require that
all of their subgoals are satisfied in order to validate as true, but even one of their subgoals is enough
to prove them.

The AND/OR Goal Trees offer a convenient means of representation of goals which was very
useful for the modeling of the hypotheses within this diploma thesis. They can easily be constructed
and traversed in order to produce the necessary output. Their direct junction with the field of Boolean
Algebra and first - order logic, [25], also makes them very appealing since this is the base for the
construction of the Markov Logic Networks required for the verification of a potential risk hypothesis.
Their straightforward traversal and interpretation into logical expressions that can easily be transformed
into conjuctive normal form and given as input to the Alchemy tool for the definition of the appropriate
MLN for each case in order to verify the validity of the goal tree root, has made them more preferable
and a more viable choice for the modeling demands of this diploma thesis. In addition, they offer a
great level of extensibility since with the annotations built and linked to each goal tree node, that is
each subgoal, it can be understood there there is no limitation on the type of information that can be
stored in an AND/OR Goal Tree. This allows more freedom to the developer in order to use such
Goal Trees for other applications as well by altering the annotations according to his demands.

An example of an AND/OR Goal Tree can be seen in figure 2.1 below :

2.4 Goal Trees

23

Tymuo 2.1: Simple AND/OR Goal Tree Example

Kegaiowo 3

System Architecture

3.1 Architecture Description

3.1.1 General Overview

In this chapter, we describe the architecture of the proposed framework.

In the field of Software Architecture it is common that the best suitable architecture for an
application is not always one individual architecture style but rather a mixture of different architecture
styles combined in order to achieve optimal cohesion and coupling properties. The proposed system
is based primarily on a BlackBoard style architecture with elements of Pub/Sub, Active DB, Layered
and Multi - tier architecture styles. The modules of the system can be viewed at the following block
diagram in figure 3.1 :

Verification
Madule
T
Hypothesis
Generator
Module
L
Modeling e
Module o BlackBoard e—
Warehouse
Maodule
b
Ul Module

Zynua 3.1: Block Diagram of the System Architecture

As it is shown in the above diagram, the architecture consists of six basic modules. A brief
description of the functionality of those modules is discussed below :

25

26 Kepddawo 3. System Architecture

BlackBoard : This is the main module which stores the state of the operation or the system and
all events generated by all other modules. Its functionality concerns mostly receiving and sending
notifications from and to all other modules of the system. That is, whenever a module finishes an
operation and declares a state change, it reports this to the BlackBoard where all changes are logged
and published to all modules which subscribe to a particular change notification so as to initiate
through implicit invocation their operations as well.

Warehouse Module : This is the module which provides the necessary information provided by
IDEs, case tools and Project Management tools which is required in order for the system to run the
fault prediction process. It consists of an IDE Container with the IDEs from which data are extracted,
a Mediator, an Extractor, a Selector and a Data Pool which contains the extracted data from the IDEs
of the IDE Container.

Modeling Module : This is the module which models the hypotheses. That is, the modeling
module requests information from the user for each hypothesis so as to model the hypothesis correctly.
The user is asked to give the necessary thresholds and acceptable values for each property feature that
plays a role in each hypothesis to be tested for validation. It consists of an Editor which provides the
user the means to edit the hypothesis model, and the Hypothesis Modeler which adjusts the model
parameters according to the user's choices.

Hypothesis Generator Module : This is the module which generates the hypotheses to be
checked for validation. The hypothesis generator module represents each hypothesis based on an
AND/OR goal tree model. It consists of the Hypothesis Generator which generates the hypotheses
goal trees and the Hypothesis DB Server which plays the role of the Hypothesis Pool, that is, it contains
all the hypothesis scenaria that can possibly hold.

Verification Module : This is the module which runs the verification procedure over the produced
goal trees. It consists of a Verification Pool which contains all the possible verification strategies
that can be imposed i.e. first - order logic, MLNSs, e.t.c., a Subscriber which receives the generated
goal trees, a Publisher which publishes the subscription, and a Controller which ensures the correct
synchronization between the various components of the verification module described.

UI Module : This is the module which controls the communication between the user and the
system. It consists of a User Interface through which the user can choose to insert the required
information by the modeler so as to be applied to the analysis, or choose to store the results of the
analysis held under certain parameters of his interest. It also consists of a Persistance Storage DB
which is used to store the analysis results via the UI if the user desires so.

3.1.2 Component Description

In this section, we provide an overview of the architecture and discuss in more detail each component
and its functionality along with the interfaces it provides and the services it offers. The component
diagram of the system is illustrated in figure 3.2.

3.1.2.1 Warehouse Module

The Warehouse Module is represented by the Warehouse component in figure 3.2. As it can be
seen, the Warehouse component is composite and contains the IDE Container, the Mediator, the

3.1 Architecture Description 27
|/ '
i
Bacrargorarihe
szonopa vk [Ntk en
m 3 Corum bar .
| - Aszrgorad
WHH“
- [rve——— = e
:Eﬁ;; S Bt - Bamoapaerdis
Bearraprns i Beipcarmp i ww Yartiat
. - Varthall
paldlr
- S
—Huilc.
- Dats
s Boscommpannis
|.|:|I;-|: T e— [T ee—
-~ D Beivoarapaines 8=
~Hypih
HypGan
1] _{.
T |
. Rsrompara i
II g e D61 S e
Iﬂm’;
™ fa
ek wcrilfie
I
oot gk hsamoard oot paad
Deaal unl = Salecior I —
h-nl'r&l IIIII"-ITE-I
Besrrparaar s .
Od Camsine
[- = m— X e AT TA
= [[e =
el D
\\‘ Barrerpasniie

L e

= -
hecorspraanid T |
1= 1]

Synua 3.2: Component Diagram of the System Architecture

Selector, the Extractor and the Data Pool. The interfaces and services provided by the composite
component and its components are explained below :

Interfaces/Services :

supplyData() : The IDE Container contains a number of IDEs for which the analysis will be
held. The IDE Container is populated by the developers with the IDEs of their interest over which the
analysis will be run. For this purpose, the Mediator provides this interface to the IDE Container in
order to communicate and retract the information that needs to be mediated. Therefore, the interface

28 Kepddawo 3. System Architecture

supplyData is used by the IDE Container to supply the Mediator with the appropriate data.

mediateData() : The Mediator receives information provided by the IDE Container in order to
mediate it to the Extractor for the extraction of the useful for the fault prediction analysis, data out of
the raw data. This interface is provided by the Mediator exactly to satisfy this need of data transition
to the Extractor. The Extractor, then, uses this interface in order to receive the appropriate data that
it has to process so as to extract the appropriate information.

transferData() : The Selector is used to select the useful data for the analysis out of the data sent
by the Extractor according to the user's demands, that is, depending on which type of hypothesis the
user wishes to run the testing for. This interface is provided by the Extractor in order to permit to the
Selector to select the data needed to run the analysis for the parameters set by the user.

insertData() : After it has selected the appropriate data, the Selector stores them into the Data
Pool from where the data is now visible to the component's environment i.e. the other components
of the system. This interface provided by the Selector allows the data storage to the Data Pool.

Concerning the architecture of the Warehouse Module, it needs to be noted that this part of the
system is based on a 3 - tier architectural style.
The IDE Container plays the role of the back - end of the 3 - tier architecture as illustrated in figure 3.2.
The IDE Container being the back - end of the multi - tier architecture, has the benefits of providing
centralized data management, ensuring data integrity and security along with database consistency,
and enabling concurrent operations of simultaneous requests from various clients.
The offered interface provideData which will be explained in detail under the BlackBoard subsection,
plays the role of the front - end service of the 3 - tier architecture since it makes possible the communication
of the back - end of the 3 - tier architecture (IDE Container) with the component environment, that
is the other components of the system. This interface being the front - end of the 3 - tier architecture,
has the benefits of flexibility in customization and that of simple front - end processing of the data
sent by the back - end as a result of a client request.

3.1.2.2 Modeling Module

The Modeling Module is represented by the Modeler component in figure 3.2. The Modeler component
is composed by the Hypothesis Modeler component and the Editor component. The interfaces and
services provided by this module, are :

Interfaces/Services :

editHypoModel() : The Hypothesis Modeler is assigned to communicate with the Editor through
the dependency that can be seen in figure 3.2, in order to accept the user's preferences concerning
thresholds and indicative values for the property features tied to the hypotheses which were chosen
to be tested, or even insert new hypotheses according to his demands and edit existing ones. Thus,
the Modeler Module provides an interface to the User Interface of the UI Module in order to allow to
the user through the User Interface to use the Editor and edit the hypothesis model by inserting new
parameters to the system.

storeHypo() : The Hypothesis Modeler communicates through this interface with the Hypothesis
DB Server in order to retrieve information on the hypotheses, the properties and the features to

3.1 Architecture Description 29

which the data inserted by the user, correspond and update the database with the new parameters and
information added or altered by the user.

Concerning the architecture style of the Modeling Module, it is based on a Layered architecture
style. The layers of the Modeling Module are shown in figure 3.3 below :

Hypothesis |Hypothesis
Modeler DB Server

Ul

Zymuo. 3.3: Layered architecture of Modeling Module

This choice of architecture style offers the benefits of enabling the segmentation of the module
in services belonging to different levels of abstraction and permitting the easier maintenance of the
module.

3.1.2.3 Hypothesis Generator Module

The Hypothesis Generator Module consists of the Hypothesis Generator component as illustrated
in figure 3.2. The Hypothesis Generator component is a composite component and contains the
HypoGen component and the Hypothesis DB Server component. The interfaces and services provided
by those components, are explained below :

Interfaces/Services :

loadHypothesis() : As discussed above, the HypoGen component is the main component which
generates the hypothesis that will be tested for validation during the current session, and its corresponding
goal tree. The Hypothesis DB Server is the database containing all possible effective hypotheses, that
need be verified. This interface is provided by the Hypothesis DB Server in order to communicate
with the HypoGen component and supply the latter with hypotheses information necessary for the
construction of the goal trees.

genHypothesis() : After constructing the goal trees for the hypotheses which will be tested during
the session according to the user's requests, the Hypothesis Generator Module is assigned to notify
the Controller of the Verification Module about the event of goal tree construction completion so
as to trigger the start of the verification process. This interface offered by the Hypothesis Generator
Module implements the interaction between the Hypothesis Generator Module and the Controller of
the Verification Module in order for the generated hypotheses to be transfered to the Verification
Module for validation.

The architecture style on which this module's design is based on, is the Active DB style. An
active database extends the idea of a regular database by including active rules and rule processing
capabilities, thus providing a flexible and efficient mechanism useful to a large number of applications
such as knowledge - based systems which is the case here. The Hypothesis DB Server plays the role
of the active database which encapsulates active rules and constraints for the hypothesis properties
and features. The HypoGen component communicates with it in order to extract the necessary rules

30 Kepddawo 3. System Architecture

and constraints of the hypothesis it processes during each active validation session. Therefore, it can
be seen that the Active DB architecture style design is the most viable choice.

3.1.2.4 Ul Module

The Ul Module consists of the UI component and the Persistance Storage DB as they are depicted
in figure 3.2. The interfaces and services provided by these components, are the following :

Interfaces/Services :

applyAnalysis() : Through this interface provided by the Controller component of the Verification
Module, the user is permitted to set the desired verification strategy to be applied during the analysis.
Different verification techniques can include first - order logic resolutions, MLNs, Dempster - Shafer
e.t.c. For the purposes of this diploma thesis, we focus on the use of the Markov Logic Networks
theory. The user must, also, specify some configuration settings essential for the verification process,
such as threshold and acceptable values for properties and features tied to the hypothesis to be
validated. As soon as the user defines the preferred verification strategy and configurations via the
UI, the Controller is notified of this event.

loadFromDB() : This is the interface used by the BlackBoard to load data from the Persistance
Storage DB. The Persistance Storage DB is a database used to store the results of verification simulations
already executed for specific hypotheses and with certain parameters in order to avoid re - execution
of identical simulations. Thus, the BlackBoard uses the interface to answer to clients' requests for
retrieval of results of previously ran analyses, by loading the data from the Persistance Storage DB.

storeToDB() : This is the interface used by the BlackBoard to store data to the Persistance Storage
DB. After the conclusion of a verification process, the results are stored by the BlackBoard to the
Persistance Storage DB in order to populate a log of previously executed verification analyses for the
user to refer to before runnning a new analysis in case it has already been executed.

The UI Module is, as well, based on the Layered architecture style design. The layers of its
architecture are shown in figure 3.4.

Ul Persistance
Storage DB

Controller

Zynua 3.4: Layered architecture of UT Module

This choice of architecture style denotes the module in different levels of abstraction enabling thus
a more flexible decomposition of services across layers and, therefore, results in a more extensible
and maintainable system.

3.1.2.5 Verification Module

The Verification Module consists of the Controller component, the PubSub component and the
Verification component. The PubSub component is composite and consists of the Publisher and Subscriber

3.1 Architecture Description 31

components. The Verification component is also composite and consists of a number of Verifier components.
For example in figure 3.2 three different verifier components are depicted. The interfaces and services
provided by these components, are :

Interfaces/Services :

notify() : After it has received the user's request on which verification strategy to apply during the
validation process, the Controller communicates with the Subscriber through this interface in order
to pass the verification strategy request so as to be set accordingly.

subscribe() : The Subscriber receives the user's requested strategy to be applied from the Controller
and, therefore, is assigned to tie the appropriate Verifier component from the verification pool of the
Verification component supported by this interface.

publishSub() : The Subscriber publishes back to the Controller the successful binding of the
appropriate Verifier component. This event notification schema is possible through the existence of
this interface.

verify() : The Controller is, also, responsible to transfer the command to the Verification component
to commence the verification process after all the initializations and bindings have been successfully
concluded through the verify interface.

publish() : --State --Notific. --Data : The Publisher component at each phase of the process,
publishes through this interface, to the Controller the state of the verification procedure, any event
notifications on results as well as the actual results of the analysis when the latter is concluded.

The design of the Verification Module is based on the Publish/Subscribe architecture style. This
choice has the advantage of independency between the Publisher and the Subscriber since both do
not need to be aware of each other's existence in order to operate. Therefore, the scaleability of the
module can be increased since a certain amount of parallelization can be added to the verification
process.

3.1.2.6 BlackBoard

The BlackBoard is an individual component and plays a very important role in the system's
operation. The interfaces provided or used by the BlackBoard, are :

Interfaces/Services :

provideData() : This interface connects the BlackBoard with the Data Pool so as to retrieve the
necessary data for the validation of the hypothesis of the current session. The BlackBoard, afterwards,
is assigned to forward these data to the other components which will be processing the data.

send() : --Data --State : Via this interface, the Publisher publishes supplementary data occurring
during the analysis along with the state of the process, to the BlackBoard in order for the latter to

notify other components and to synchronize the various modules.

update() : --Data --Hypoth. --State : Apart from this interface controlling the verification procedure,

32 Kepddawo 3. System Architecture

the Controller is also assigned through this interface to update the BlackBoard with the resulting data,
the hypothesis tied to the resulting data sent, and the state of the process.

This is the core component that implements the BlackBoard architecture style of the proposed
system. According to the BlackBoard architecture style ([8]), the BlackBoard component is an information
base updated iteratively and incrementally by a set of various specialist knowledge sources, starting
with a problem definition and ending with a solution. In our paradigm, the role of the information
sources is played by the participating tools and verifier modules of the system. The BlackBoard is
updated denoting a partial solution and, therefore, enables the synchronization of the modules of the
system in order to make possible a seamless collaboration towards devising a solution.

3.1.3 Sequence Diagram of the Functionality of the System

As it can be understood from the above, the system is complex and contains many different
components which have various operations and attributes. This fact raises the complexity level of the
functionality of the system. A main Sequence Diagram of the overall functionality of the system, can
be seen in figure 3.5.

(L] T ntral et | Hypaibmz i Hypoitez iz -1==4.1-~T1-] Hypoibeziz Ferilier (== =] Ak by
B . Garm mior OB Zerenr - B ol or s . Wore houze -
(BE -
. . =l
2: mppfpinekain L
[| 4 camaloalTms -
] 1 rrparas

9 receralirm

T cmnlin-cl
'_ A: retureleasiTres

M mioratEcteal
;

11: ms'dmaify

1l Warelore
! s =

L 13 recdinrmlora
4 ey

19 cpdwsPaniis

18 indarkiL H

1 uzcninpil Krea ks

14 Zispleg™ea s

Tymua 3.5: Functionality Sequence Diagram of the system

Therefore, the functionality of the system can be segmented to the following steps :

3.1 Architecture Description 33

1. edit : Through the User Interface of the UI Module the user/developer can edit the parameters
of already existing simulations through the Hypothesis Modeler, in order to re-execute the
simulation with different parameters.

2. storeHypothesis : After edits have been made to existing simulations by the user, the Hypothesis
DB Server should be updated with the new data and changes. Thus, the Hypothesis Modeler
is assigned to update the hypotheses stored into the Hypothesis DB Server.

3. applyAnalysis : Through the User Interface of the Ul Module the user/developer has the ability
to apply the preferred analysis parameters to the Controller in order to initialize the verification
simulation with his/her own configurations and settings according to his/her demands. The
user can, thus, select the hypothesis to be tested, apply the desired verification strategy to be
followed, that is MLNS, first - order logic, OCL e.t.c., as well as set the acceptable values and
thersholds for the features connected to the hypothesis selected.

4. createGoalTree : When it receives the simulation parameters, the Controller notifies the Hypothesis
Generator in order to start the creation of the appropriate Goal Tree according to the configurations
set by the user.

5. requestData : In order to construct the Goal Tree, the Hypothesis Generator needs to retrieve
the necessary data for the specific hypothesis type, i.e. the properties and features tied to this
hypothesis type along with the AND/OR relationships between them, from the Hypothesis DB
Server.

6. receiveData : This is where the data from the Hypothesis DB Server are returned to the Hypothesis
Generator which requested them.

7. createAnnot : This is an internal operation of the Hypothesis Generator. At this step of the
procedure, the Hypothesis Generator adds the appropriate annotations at each node of the goal
tree.

8. returnGoalTree : After it has concluded with the goal tree construction along with the definition
of the node annotations, the Hypothesis Generator notifies the Controller about this completion.

9. updateHypothesis : At a next step, the Controller is assigned to update the BlackBoard over the
constructed goal tree and the hypothesis.

10. regVerify : The next step of the simulation is for the Controller to trigger the verification process.
Therefore, the Controller notifies the Verifier that the system state is ready for the beginning
of the verification procedure.

11. reqWareData : In order for the Verifier to execute the verification process, the appropriate
Warehouse data need to be retrieved. Thus, the Verifier is obliged to request the necessary data
from the Data Warehouse.

12. recvWareData : After the Verifier's request, the Data Warehouse returns the data needed by
the Verifier.

13. recvVerify : After the completion of the verification procedure, the Verifier updates the Controller
with the results of the validation.

34

Kepddawo 3. System Architecture

14.

15.

16.

17.

updateResults : The BlackBoard needs to be updated with the validation results right after they
are concluded and transferred to the Controller.

inferMLN : The BlackBoard, then, uses the resulting predicates of the hypothesis generation
and the verification process in order to set them as input to Alchemy which is the MLN tool
that will infer the MLN.

updateMLNResults : The Alchemy tool must update the BlackBoard component with the resulting
validation percentages of the MLN inference.

displayResults : At last, the BlackBoard formats the resulting percentages and conclusions and
sends them to the User Interface in order for them to be displayed to the user/developer for
reporting and action planning.

Kegaloro 4

Domain Models

In this chapter the domain models developed for the purposes of this framework, are being
described in terms of MOF class.

4.1 Warehouse Domain Model

The first domain model that was developed, is the Warehouse Domain Model. The Warehouse
serves the purpose of storing exemplary data concerning IDEs and/or their individual modules. These
data are ideally provided by developers and are related with code, structure or development issues.
Within this diploma thesis, the type of data included into the Data Warehouse Model as well as the type
of properties of the hypotheses included into the Hypothesis Model, conform to the ISO Standards
as it was mentioned earlier.

An overview of the Warehouse Domain Model can be seen in figure 4.1 below.

Continuing, let us describe the Warehouse Domain Model and the classes included in the model.

4.1.1 Warehouse Class

The Warehouse class represents the Warehouse entity, that is the Data Pool. It is the main class
which contains all the data that developers have added concerning projects and IDEs for which they
desire to execute the verification analysis. The Warehouse class owns an attribute under the name
Name and of type String so that each instance of the Warehouse class will have a unique identifier
to differentiate it from all the other instances of the same class. As it can be seen in figure 4.1, the
Warehouse has a composition relationship under the identifier +project of type Project with the
Project class, that is each instance of the Warehouse class will contain one instance of the Project class
which will be explained next. It should be noted that an instance of the Warehouse class can contain
one sole instance of the Project class since it is assumed that a discrete warehouse will be constructed
by the developer for each project he is working on. The Warehouse class is also associated with the
Warehouse Data class. More precisely, it owns a +warehousedata attribute of type Warehouse Data
with multiplicity 0..x which indicates that each instance of the Warehouse class can associate with zero
or many instances of the Warehouse Data class.

35

36 Kepddawo 4. Domain Models

s [[=']
o- e Siring
T
vy |1
vprcjeci |__Lrodeed varvty [Project Entky
—wdfiwra - Skisg ™, ' "“:“ S o
L TE
1
¥ vty |1
e - Cods Enity Specilicaiian
e : Siing -_IM“M‘“ =1 Wmrsh ouze &
a0 A ey Cais 'I.I.u.1
—— vibraparcs doaze K |
a Suhryziam [
- Dezign [y pe——— Tazing
r T Eril by Eniity Ervithy
.:.
Clazz Canpoaiie
lmqﬁulTll . aria
Foaiurs * gl Property ninpretaian Erln_uqull:d MLF
=l s : STing Legic
I - " P ryHams : Sring ! 3 Expresd on
iastursVales : dabie o." 1 = prEoparyLogFome : Sidng 1 i 1 1 1 1
L] B e ey .
Inksprl_ogic
T ! el oglaze
Msirics] Loge
Formuls
12
CHF Expresdon

Zymua 4.1: Warehouse Domain Model

4.1.2 Project Class

The Project class represents the project that the user is developing and, thus, desires to run the
analysis on. As it was mentioned previously, it is reminded that one warehouse corresponds to a
specific project. Therefore, the data within the instance of the Warehouse class which contains the
instance of the Project class will concern solely this individual project. The Project class owns an
attribute named Name of type String which plays the role of the key identifier of different instances of
the Project class. It is advised to initialize the Name attribute of each instance of the Project class with
the name of the actual project it is referring to so as to avoid any cohesions. The Project class has a
composition relationship with the Project Entity class of multiplicity 0..x, that is each instance of the
Project class contains zero or many instances of the Project Entity class. From this relationship one
more attribute is added to the Project class, the +-entity attribute of type Project Entity. The Project
class is also associated with the Warehouse Data class with multiplicity 0..x. This adds an attribute
named +data of type Warehouse Data to the Project class. It is obvious that each instance of the
Project class can be associated with many instances of the Warehouse Data class since a warehouse
can contain a lot of information for a project about various fields.

4.1.3 Project Entity Class

The Project Entity class represents each individual part of a project on which we can obtain
discrete data, independent from other entities. This class has an attribute named IDName of type
String which is the primary key to discriminate instances of the class. As it is shown in figure 4.1, the

4.1 Warehouse Domain Model 37

Project Entity class has a composition relationship with the IDE class of multiplicity O..x. That is, one
instance of the Project Entity class can be associated with zero or more IDEs regarding that different
IDEs can display partial similarities. This relationship is useful in order to present the direct linkage of
each project entity with certain IDEs and, therefore, adds an attribute named +ide of type IDE with
multiplicity 0..x to the Project Entity class. The relationship of the Project Entity class with the Project
class described previously also adds the attribute +project of type Project with multiplicity 1 since
various instances of the Project Entity class can be contained by the same instance of the Project
class. The Project Entity class, also, has a composition relationship with the Warehouse Data class
since data are added in the warehouse for each project entity individualy. This relationship adds an
attribute +data of type Warehouse Data and multiplicity O..x to the Project Entity class. The Project
Entity class displays dependencies with the classes Code Entity and Specification Entity which inherit
the first. A Project Entity can either be a Code Entity or a Specification Entity. A Code Entity concerns
an actual code segment of a project. A Specification Entity refers to non code related information on
the project but rather refers to design, requirements and testing models. The Code Entity class has one
subclass which inherits it, the Subsystem class. The Subsystem class has two subclasses that inherit it,
the Class class and the Composite class. This means that a code entity can be a subsystem and each
subsystem can be an individual class of the project or a composite which, as shown in figure 4.1, can
be an aggregation of one or more classes and other composites iteratively. Therefore, the code entity
can be an individual class or a more complex segment consisting of many classes. The Specification
Entity class has three subclasses which inherit the first, the Design Entity class, the Requirements
Entity class and the Testing Entity class. The Design Entity class is an entity of a project concerning
its desing method, architecture e.t.c. The Requirements Entity class is an entity of a project concerning
the requirements of the project. Finally, the Testing Entity class is an entity of a project concerning
anything related to the testing process of the project.

4.1.4 1IDE Class

The IDE class represents all the IDEs for which the warehouse can contain data. This class has
an attribute named Name of type String that is used as a key to identify the IDEs. As it can be seen in
figure 4.1, the IDE class is associated with the Project Entity class which adds an attribute +-entity
of type Project Entity and multiplicity 1, to it. The IDE class is, also, associated with the Warehouse
data class which adds another attribute +data of type Warehouse Data and multiplicity O..x. This is
interpreted as that one instance of the IDE class can be tied with multiple instances of the Warehouse
Data class since for one IDE there can exist various data added within the Data Warehouse.

4.1.5 Warehouse Data Class

The Warehouse Data class represents the actual data within the Warehouse. This class has an
attribute under the name fimeperiod of type Double which is useful in the comparison of faults given
their time period of appearance considering that it is more accurate to compare the number of faults
within a period of time than the absolute number of faults. In addition, the Warehouse Data class
is associated with the IDE class and, therefore, from this relationship it has gained another attribute
+ide of type IDE and multiplicity O..x which is expected considering that the Warehouse data can
correspond to multiple IDEs. The Warehouse Data class, also, is associated with the Warehouse class
and, because of this, has the attribute +warehouse of type Warehouse and multiplicity 1 since some
instance of the Warehouse Data class can only belong to one instance of the Warehouse class. It is,
also, associated with the Project class from which it gained another attribute to which was not of
great significance to the further analysis, to assign a name. As mentioned previously, the Warehouse
Data class has a composition relationship with the Project Entity class and, thus, the attribute gained

38 Kepddawo 4. Domain Models

is +entity of type Project Entity and multiplicity 1 which indicates to which project entity each
warehouse data belongs. Last, the Warehouse Data class has a composition association with the
Property class and, therefore, an attribute +properties of type Property and multiplicity 0..* since
one instance of the Warehouse Data class can be tied with zero or many instances of the Property
class.

4.1.6 Property Class

The Property class represents each property that can appear referring to a warehouse datum. This
class has two attributes under the names propertyName and propertyLogForm of type String. The first
plays the role of the primary key to differentiate each property and the second is the logical form of
the property. Each instance of the class can be linked to zero or multiple instances of the Warehouse
Data class. At the same time, the class has a composition association with the Feature class which
attaches another attribute to it, the attribute + features of type Feature and multiplicity 0..x which
represents all the features that can belong to each property. The Property class is associated, also, with
the Interpretation Logic class which adds one more attribute +InterprLogic of type Interpretation
Logic and multiplicity 1. It must be noted that the Property class has two subclasses which inherit the
first, the Metrics class and the Logic Formula class. The Metrics class refers to the metrics defined by
the features tied with each property. An example of such a metric would be the ratio of two features
connected to a particular property. The Logic Formula class includes the logic formulas defined by the
property name and each feature name. The Logic Formula class also has a subclass which inherits the
first, the CNF Expression class, which represents all the logic formulas that are given in a conjuctive
normal form expression.

4.1.7 Feature Class

The Feature class represents each feature that can appear to belong to some property of a warehouse
datum. This class has two attributes by names featureName of type String and featureValue of type
Double. This first is the key to discriminate the different features and the second is the value for
the specific instance of the class. In addition, the Feature class has a composition association with
the Property class and, therefore, gains the attribute +property of type Property and multiplicity 1
which indicates the property to which each feature belongs.

4.1.8 Interpretation Logic Class

The Interpretation Logic class represents the means of interpreting each property. For each property
there exists only one way of interpretation and, thus, the class obtains one attribute +property of
type String and multiplicity 1. The Interpretation Logic class is also associated with the Grounded
Logid Expression class which explains the existence of the attribute +groundLogicExpr of type
Grounded Logic Expression and multiplicity 1 since one grounded logic expression can occur from a
certain interpretation logic.

4.1.9 Grounded Logic Expression Class

The Grounded Logic Expression class represents the grounded first - order logic predicate which
will be used finally as input to Alchemy for the MLN inference. It is associated with the Interpretation
Logic class which explains the gained attribute +interpr Log of type Interpretation Logic and multiplicity
1 and, also, with the MLN class which explains the second gained attribute +m/in of type MLN and
multiplicity 1.

4.2 Hypothesis Domain Model 39

HepuCalepur,
M Ay
]
aabingy [1
F=
HepuType
FrPFr—— i TR ek |gdis
PR TRTT
] e
i |
s Segays 1
- 1 e | i
P i - [— - e Sl Hypalalh _—
bl e Sl y B =y e ™ ' ——
HiED - sk]
* - st
¥ Ii- \
st . sl [
+
I8
- I'\.l?ll.lr'v'
Bamaladian
Camlalmer
EXCTETEI |
APl T Bhuarda 8 b e
...... L
Brrmlaln
-L e Blnn i
Halln: [
o) "
[r——] T
Fasmtrerer Ly il
1 _ mkr Baprisden |
bl i gl wa bk iy e
ar
Abrpin [T—
Bap s sl | eviv fomtell

Tynua 4.2: Hypothesis Domain Model

4.1.10 MLN Class

The MLN class represents the inferred MLN by the Alchemy tool. Each grounded logic expression
associates with one MLN, therefore their one - to - one correspondence that can be seen in figure 4.1, is
justified. From this association, the class has as attribute the +gle of type Grounded Logic Expression
and multiplicity 1.

4.2 Hypothesis Domain Model

The second domain model that was built for the development of these framework, was the
Hypothesis Domain Model. The Hypothesis Domain Model is used in order to model the different
hypotheses into the form of a AND/OR Goal Tree. The AND/OR Goal Tree was the form of
hypothesis representation utilized within the bounds of this diploma thesis because of the benefits
it offers. First, it is a very flexible means of representation which makes it easier to traverse. Second,
the AND/OR relationships between the nodes of the goal tree permit the direct and straightforward
interpretation and translation of the nodes into first - order logic predicates which is the target of the
Goal Tree traversal in order to feed the results to Alchemy as input to the MLN inference.

An overview of the Hypothesis Domain Model can be seen in figure 4.2 below.
Next, let us describe the Hypothesis Domain Model and the classes included in the model.

40 Kepddawo 4. Domain Models

4.2.1 HypoCategory Class

The HypoCategory class represents the hypothesis category in which the hypothesis falls into.
The HypoCategory class has one attribute Name of type String that plays the role of the primary key
in order to discriminize each instance of the class. The HypoCategory class presents a composition
relationship with the HypoType class. Thus, the class gains one more attribute from this relationship,
the +type of type HypoType and multiplicity 1..x which is expected since we have defined that each
hypothesis category has various hypothesis types. An example of a hypothesis category would be
Fault Tolerance and some hypothesis types corresponding to it would be Failure Avoidance, Incorrect
Operation Avoidance and Break Down Avoidance.

4.2.2 HypoType Class

The HypoType class represents the hypothesis type to which each hypothesis corresponds provided
that the specific type falls into the category into which the hypothesis was placed. The attribute
Name of type String belonging to the HypoType class is used so as to differentiate each instance
of the class. The HypoType class displays a composition association with the HypoCategory class, as
mentioned above, which provides it with one more attribute, the +category of type HypoCategory
and multiplicity 1 since it is obligatory that every instance of the HypoType class belongs to only one
instance of the HypoCategory class. The HypoType class is, also, linked with many hypotheses via
its association with the Hypothesis class with one - to - many correspondence. This fact enriches it
with the attribute +hypothesis of type Hypothesis and multiplicity 1..x. Last, each instance of the
HypoType class contains only one Goal Tree due to its composition association with the GoalTree
class, a relationship which results directly from the fact that the target of the framework is to validate
a hypothesis type through their representation in AND/OR Goal Trees. Thus, it is vital that only one
Goal Tree will correspond to one hypothesis type.

4.2.3 Hypothesis Class

Each instance of the Hypothesis class represents each hypothesis included into the hypothesis
type and category for validation. It is separated from other hypotheses via the attribute Name of type
String which plays the part of a primary key for the class. Through its association with the HypoType
class, as described above, it gains the attribute +¢ype of type HypoType and multiplicity 1 which is
an indicator of the type that corresponds to the instance of the Hypothesis class. The Hypothesis class
has, also, a composition relationship with the HypoPath since each path in the goal tree corresponds
to one different hypothesis. This gives one more attribute to the class named +hypopath of type
HypoPath and multiplicity 1 and indicates the hypothesis path that reflects the specific hypothesis.
Finally, the class is associated with the MLN class via a one - to - one correspondence since for each
hypothesis one different MLN is produced. Thus, the class obtains the attribute +mlin of type MLN
and multiplicity 1 in order to indicate this association.

4.2.4 HypoPath Class

The HypoPath class represents the hypothesis paths in a goal tree. More precisely, each goal tree
root can be considered as satisfied if one path of the goal tree leading to it, is validated. Therefore,
the goal tree root can be satisfied using any appropriate path in the goal tree. Each hypothesis path
is interpreted into a certain goal tree and this explains the composition association shown in figure
4.1 of this class with the GoalTree class from which derives the attribute +goaltree of the class of
type GoalTree and multiplicity 1. Each hypothesis path, also, contains one hypothesis and, therefore,
the composition association of the class with the Hypothesis class is explained. The attribute of

4.2 Hypothesis Domain Model 41

the HypoPath class gained by this association is named +hypoth and is of type Hypothesis and
multiplicity 1. In addition, the HypoPath class has a composition association with the CNFExpr class
considering that each hypothesis path during the verification process finally has to be expressed into
one conjuctive normal form in order for the validation to be concluded. The association is manifested
via the attribute +cn f of type CNFExpr and multiplicity 1. In addition, the HypoPath class has a one
- to - many composition association with the GoalNode class through the attribute +node of type
GoalNode and multiplicity 1..x which is expected since, as it was mentioned earlier, each hypothesis
path is a path within the corresponding goal tree and, therefore, consists of goal nodes. Finally, the
HypoPath class is associated in one - to one correspondance with the lterator class which adds the
+iterator attribute of type Iterator and multiplicity 1.

4.2.5 Iterator Class

The Iterator class is a class helpful mostly to the implementation of the hypothesis verification
algorithm and, therefore, will be covered more thouroughly in the next chapter. However, it can be
seen that the class owns five operations, the first() operation that returns the first node of the object
over which the iteration will be held, the next() operation that returns the next node to be traversed, the
currentnode() operation which returns the current node that is being visited, the isDone() operation
which returns a boolean value true or false if the iteration has reached the end of the object type
that is being iterated or not respectively. The Iterator class also owns an attribute under the name
+hypopath of type HypoPath and multiplicity 1 in order to indicate the connection between the two
classes.

4.2.6 CNFExpr Class

The CNFExpr class represents the conjuctive normal form in which the hypothesis path is transformed
in order for the verification to be held. This is the reason for the composition association between the
two classes which adds the attribute +path of type HypoPath and multiplicity 1, to the CNFExpr
class. The CNFExpr class also presents a containment association with the Logical Expression class
which is expected since, according to the first - order logic theory, an expression in conjuctive normal
form is constituated by logical expressions. The CNFExpr also has an attribute +min of type MLN
and multiplicity 1 due to the convert association with the MLN class which is explained by the fact
that each CNF expression raises the construction of one unique MLN. Finally, the class owns one
operation named convertToCNF which is assigned to make the conversion of the hypothesis path and
its corresponding logical expression into a conjective normal form expression.

4.27 MLN Class

The MLN class respresents the MLN built by Alchemy in order to validate the hypothesis. Thus,
the class owns the operation constructMLN which builds the appropriate MLN for the CNF expression
it receives as input. Therefore, the class is associated with the CNFExpr class through the attribute
+cn f of type CNFExpr and multiplicity 1. The class is also connected to the Hypothesis class since it
has already been mentioned that each instance of the Hypothesis class corresponds to an instance of
the HypoPath class and, finally, is represented by a logical expression which is converted to CN form.
In addition to the previous, the class is tied with the Verifier class via the +veri fierType attribute
of type Verifier and multiplicity 1, gained by the verify association. That is, each MLN is identified
by one verifier that will use the MLN produced in order to finish the verification procedure.

42 Kepddawo 4. Domain Models

4.2.8 Verifier Class

The Verifier class represents the verifier which utilizes the MLN produced during the verification
process in order to conclude it. It is connected through the verify association with the MLN class via
the attribute +mlin of type MLN and multiplicity 1, and, also owns an operation verifyHyp() which
runs the validation of the hypothesis given to it by the produced MLN.

4.2.9 GoalTree Class

The GoalTree class represents the goal tree structure which is the main structure used to model the
hypothesis in a flexible way. This class has an attribute idname of type String that acts as a primary key
to separate the various instances of the class. The GoalTree class, also, has a composition relationship
with the HypoType class through the +typeroot attribute of type HypoType and multiplicity 1 which
assigns the hypothesis type to be validated, with the goal tree that was built. In addition, the class is
associated with the HypoPath class via the +hypopath attribute of type HypoPath and multiplicity
1..x which indicates that a goal tree can be consisted of many hypothesis paths and, more specifically,
of equal number to the leaves of the tree.

4.2.10 GoalNode Class

The GoalNode class represents the goal nodes of the AND/OR goal tree structure. The GoalNode
class has two attributes, the Name of type String and the ID of type Integer. The first is the name of
the goal node which is also used for the construction of the predicates while the second is used as a
secure primary key to separate the different goal nodes and prevent any goal node name aliases within
different goal trees. The GoalNode class presents a composition association with the GoalTree class
which is shown through its attribute +-tree of type GoalTree and multiplicity 1, that defines for each
goal node to which goal tree it belongs. The class has a supplementary attribute +parent of type
GoalNode and multiplicity 1 which stores for each goal node its parent node. As mentioned earlier,
each goal node is also contained into some hypothesis path and, thus, explains the attribute +path
of type HypoPath and multiplicity 1. Furthermore, the class presents an attribute +visitorcreator
of type VisitorCreator and multiplicity 1 due to its association with the VisitorCreator class which is
assigned to create a visitor object in order to process each goal node during the goal tree traversal.
Finally, the GoalNode class shows a composition relationship with the Annotation Container class
which adds to the class the attribute +annotContainer of type Annotation Container and multiplicity
1 since each goal node is obliged to own an annotation container in order to store the necessary
information for the construction of the appropriate predicates. It is noted that, as it can be seen in figure
4.1, the GoalNode class appears to have inheritance relationships with the classes AfomicGoal and
DecompositionGoal that will be explained below. The GoalNode class, finally, has an +exprproducer
attribute of type ExprProducer which is justified by the association of the class with the ExprProducer
class.

4.2.11 AtomicGoal Class

The AtomicGoal class is a subclass of the GoalNode class and, thus, inherits the properties and
operations of the GoalNode super class apart from its own. The AtomicGoal class represents the
atomic goals that can be met in a goal tree i.e. those goal nodes that cannot be further analysed into
simpler logical expressions. These are the leaves of the goal tree which do not have any children.

4.2 Hypothesis Domain Model 43

4.2.12 DecompositionGoal Class

The DecompositionGoal class is the second subclass of the GoalNode class and also inherits
all its properties and operations. The DecompositionGoal class represents all the instances of the
GoalNode class that are composite goals i.e. the goals that have children which present AND -
relationships between one another and the goals that have children which present OR - relationships
between one another. This is the reason why the DecompositionGoal class has two subclasses, the
ANDDecomposition class and the ORDecomposition class in order to separate the two cases of composite
goal nodes and thus permitting the individual and separate manipulation of each type of goal node.

4.2.13 ExprProducer Class

The ExprProducer class plays the most significant role to the implementation of the hypothesis
verification algorithm. It is the main class that composes the BlackBoard component and, thus, controls
the validation process. The class owns two operations :

constructpath() : This operation is used in order to construct the paths of the goal tree that validate
one common hypothesis type, and traverse them so as to conclude to a set of predicates for the first
- order logic world that will be used to build the appropriate MLN.

attarchstrategy() : This operation is used in order to infer the attachment of the desired strategy to
the process i.e. MLN, first - order logic e.t.c., and the extraction and interpretation of the necessary
data deriving from the Data Warehouse.

The class also presents an aggregation association with the Strategy class.

4.2.14 Strategy Class

The Strategy class represents the strategy to be attached to the procedure i.e. MLN, first - order
logic e.t.c. It owns one verify() procedure which runs the verification. The Strategy class has different
Verifier classes as subclasses which present inheritance from it. In figure 4.2 three can be seen as
an example. The VerifierA class is the one corresponding to the MLN verification strategy for the
purposes of this diploma thesis.

4.2.15 VerifierA Class

The VerifierA class represents the MLN strategy. It is assigned to execute the check between the
accepted thresholds deriving from the configurations of the simulation, and the data deriving from the
Data Warehouse. If the data are within configuration boundaries, a predicate is constructed.

4.2.16 VisitorCreator Class

The VisitorCreator class is connected to the GoalNode class via the +goalnode attribute of type
GoalNode and multiplicity 1 since one instance of the class is being assigned to each instance of
the GoalNode class in order to create the appropriate type of instance of the Visitor class among
its three subclasses. The VisitorCreator class owns the visitorFactoryMethod() operation in order to
have the ability to create the appropriate type of Visitor for each node. In addition, the class has a
dependency relationship visitor with the Visifor class. More specifically, each node, according to its
type (Atomic, AND Decomposition, OR Decomposition), infers the building of one instance of the
corresponding subclass of VisitorCreator i.e. one of the ANDVisitorCreator, ORVisitorCreator and

44 Kepddawo 4. Domain Models

AtomicVisitorCreator. The three types of creators, according to their type, are assigned to construct

one instance of the appropriate Visitor, that is one of its subclasses : ANDVisitor, ORVisitor or Atomic Visitor.
It is necessary to note that the most important benefit of this design choice, is that the client does not
need to know any details of the type of goal nodes, visitor creators or visitors built which adds more
flexibility to the implementation since the traversal of the goal tree becomes a black box procedure.

4.2.17 Visitor Class

The Visitor class is dependent by the VisitorCreator class and instances of the first are created
by the latter. According to the type of the creator that has been instanciated at any time point,
the corresponding visitor will be built and inferred. This is the reason for the existence of three
subclasses of the Visitor class, ANDVisitor, ORVisitor and Atomic Visitor. The Visitor class is assigned
an operation under the name visif() which processes the goal node that is being traversed who also
built a creator resulting to the particular visitor. Since the three different types of goal nodes request
specific manipulation, the operation visif() is individually implemented for each one and overrides the
operation of the parent class.

4.2.18 AnnotationContainer Class

The AnnotationContainer class provides a container of annotations for each goal tree node in
order to store the necessary data to construct the appropriate predicates. The class presents a composition
relationship with the GoalNode class through the +goalnode attribute of type GoalNode and multiplicity
1. The AnnotationContainer class has also a composition relationship with the Annotation class and,
thus, obtains one more attribute under the name +annotation of type Annotation and multiplicity
1..x.

4.2.19 Annotation Class

The Annotation class represents the general means of attaching the necessary information for
constructing the appropriate predicate for each goal node. The instances of the class are contained
into one instance of the AnnotationContainer class so, therefore, the class owns one more attribute
named +annotcontainer of type AnnotationContainer and multiplicity 1. The annotations can be
of many types but the one subcategory of them can be assistance to the process. This is the subclass
Verifiable Annotation of the Annotation class since only those annotations that can be verified, are of
interest. A subclass of the Verifiable Annotation class is the Logical Expression class since the only
type of annotations needed during the goal tree traversal, are the logical expressions. This class has
one attribute named +predicate of type String which stands for the predicate to be constructed.
The Logical Expression class has two subclasses that inherit from it, the Simple Expression class
and the Composite Expression class. The Composite Expression class has an aggregation relationship
contain with the Logical Expression class since a composite logical expression consists of many
logical expressions, simple or composite. Thus, the Composite Expression class has one attribute
+logical Expr of type Logical Expression and multiplicity 1..x.

Kegaloto 5

Hypothesis Analysis Algorithms

Apart from the architecture and the domain models of the system described in the previous
chapters, of great significance to the project were the algorithms implemented in order to accomplish
the desired hypothesis verification and which we are about to explain in this section. The basic
algorithms used were :

* Global Hypothesis Formation : This algorithm includes all the steps followed towards selecting
the hypothesis type to be verified and its modeling into the appropriate AND/OR Goal Tree.
It also encapsulates the traversal of the generated goal tree for the creation of the predicates.

* Data and Fact Gathering : This algorithm includes all the subprocedures to be completed in
order to extract the necessary data from the Data Warehouse and the configuration file, and
utilize them to produce the evidence predicates.

* Markov Logic Network Based Reasoning : This algorithm includes the final verification of
the hypothesis through the use of the predicate files as input to the Alchemy tool for MLN
construction and evaluation of the appropriate probabilities.

It is also noted that the above algorithms - procedure are executed by this order.

5.1 Global Hypothesis Formation

The first stage of the procedure is the Global Hypothesis Formation. The Global Hypothesis
Formation algorithm presents the following steps :

Step 1 : Hypothesis Domain XMI Population and Storage. In this first step of the algorithm,
the Hypothesis Domain Model is being populated with all the goals and their subgoals that, if
satisfied, then verify the root goal which is the hypothesis type. This model population is then
stored in XMI format which provides flexibility and portability between different hardware and
constitutes an easy to process file format.

Step 2 : Strategy and Category definition. In this second step of the algorithm, the user/developer
defines the type of strategy that will be applied such as first - order logic constraints, Markov
Logic Networks, OCL constraints e.t.c., and also the hypothesis category for which he or she
desires to run the simulation.

45

46 Kepdiaio 5. Hypothesis Analysis Algorithms

Step 3 : Hypothesis Domain XMI Load and Parsing. In this third step of the algorithm, the
Hypothesis Domain XMI file created in Step 1, is loaded and parsed in order to transform
the data included into form suitable for further processing according to the object - oriented
programming direction since the development was elaborated with the use of the Java Eclipse
framework.

Step 4 : AND/OR Goal Tree Creation. In this fourth step of the algorithm, the data extracted from
the populated Hypothesis Domain XMI in step 3 is transformed into the appropriate AND/OR
Goal Tree which is useful in the depiction of the AND/OR relationships between the various
subgoals.

Step 5: Goal Tree Node Annotations Creation. In the fifth step of the algorithm, the Goal Tree
that was constructed in Step 4, is enriched with annotations for each goal tree node. Those
annotations are used to store the necessary informantion for the construction of the corresponding
predicate each goal node of the tree.

Step 6 : Goal Tree Traversal and Predicates Construction. In this sixth step of the algorithm,
the Goal Tree is traversed and for each node that is visited, a predicate or a composite logical
expression are constructed always in compliance to the demands of the Alchemy tool to which
the file will be set as input for the verification of the hypothesis through a Markov Logic
Network.

5.1.1 Hypothesis Domain XMI Population and Storage

For the selection of the hypothesis to verify, the user needs to insert the necessary information for
the properties that, if validated, ensure the hypothesis verification. The user inserts this information
into the Hypothesis Modeler through the Editor of the Hypothesis Modeler Module which is accessed
through the UI Module, as formentioned, in accordance to his or her preferences and, also, in compliance
with the means of their representation within the warehouse XMI. That is, if some property mentioned
into the Data Warehouse XMI is referred to under the name Failure Avoidance, the same property
should be referred to under the same name within the Hypothesis XMI inserted by the user through
the Editor and UI Module. The population of the Hypothesis Domain Model is exactly the process
where the user populates the model with his own data over the hypothesis for which the simulation will
be executed. The populated instance of the Hypothesis Domain Model is, then, transformed into the
Hypothesis Domain XMI document by the Hypothesis Modeler and stored into the Hypothesis DB
Server of the Hypothesis Generator component. The storage of the Hypothesis Domain XMI into
the Hypothesis DB Server is obligatory since the user can retrieve information on past hypotheses
simulations and hypotheses parameters as well as edit them to suit his or her new demands.

For the purposes of this diploma thesis, an appropriate Editor and User Interface were not developed
but their task was simulated via the Eclipse runtime environment. More specifically, after the construction
of the UML MOF class diagram using the MagicDraw UML Design tool, the diagram was exported in
XMI E-core compliant form and imported into Eclipse where the corresponding Java code was auto
- generated for the model as well as for the model editor. Continuing, the model editor was executed
as an autonomous Eclipse application. This allowed us to insert exemplary data into the Hypothesis
Domain Model and create an XMI suitable to simulate the afformentioned procedure.

An example of an XMI document can be seen in figure 5.1.

5.1 Global Hypothesis Formation 47

<Pl wergion="1.0" encading="LUTF-8"7»
<ConlFile:HypeCalapory ximiversan="2.0" <rmles <= hip:tfaoee omg orp AT cmins: ConlFiles"hilp o ConlFile. scon®
Marma="Fgull Tolarance =
iy Names"Break Dawn Avoidan e
wpraperly Mamas"Adequate Faull Tolerance in Todal Production Ervitanmenl™
<lealure Marmea="Faull Tolerance Metrc™ Threshold="= 067>

-\.'|'|'_'||ﬂ|'_'|-|=_-||',-:‘-
=praperly Marme="High Back Up Liililies®=

<fealure Marme="Back Up Liiliies Ratio” Threshoki="= 0.5%=
-\.'|'|'_'||q"_“.|'_'|-|=_l-|r§|l:‘|-
=praperly Marme="High Applications Redundancy ™=

<lealure Mamas="Ralia High Apps Redurdancy” Thresholds"x 0,170
-\.'|'|'_'||ﬂ.|'_'r|=_l-|r§|l:‘|-
“praperly Mamea="High Hardwane Redundancy™

clealune Marma="Ralic High Hardware Redundancy” Thresholkds"s= 0.1%=

ity
“Hypes
</CaniFik: Hy poC akegor:

Zynua 5.1: Simple XMI Example

5.1.2 Strategy and Category definition

At a next step, it is demanded that the user selects the hypothesis category that will be checked
for validation as well as the verification strategy that the system will apply on the data. This is
accomplished again throuth the User Interface via the applyAnalysis interface and the service it
provides. The strategy and the hypothesis category selected, are parameters the user sets in the
Controller of the Verification Module through the Subscriber component. The strategy can be based
on the first - order logic theory, on the MLN theory, on OCL constraints ([14]) use e.t.c. As for the
hypothesis category, the user can select any category from the ones displayed to him or her in a list
by the User Interface which are the ones already existant within the Hypothesis DB Server, from
previous executions of the framework. In the opposite case that the hypothesis category selected is
not already existant in the database, the user is anticipated to insert information on the hypothesis
types included into this category, the properties that constitute each type and the AND/OR relations
between them.

As it was noted above, for the purposes of this diploma thesis such an Editor and User Interface
were not constructed. Therefore, this step of the procedure was encoded within the implementation.
More specifically, the category and strategy that were set statically, are :

a) The hypothesis category Name was defined during the initialization of the execution according to
the desired current test case.

b) The strategy applied, was also defined during the initialization of the execution by invoking a new
instance of the appropriate Strategy subclass which handles the strategy desired. In our case,
an instance of the VerifierA class was invoked since this was the subclass of the Strategy class
designed to handle MLN verification.

The initializations are held within the Test class of the source code implementation package that
includes the main function from which the program control flow starts. This class is also the one that

48 Kepdiaio 5. Hypothesis Analysis Algorithms

is notified after the conclusion of the state and data changes during the verification procedure and,
therefore, plays the role of the BlackBoard.

5.1.3 Hypothesis Domain XMI Load and Parsing

At the third step, the Test class, creates one instance of the ExprProducer class which encapsulates
the main operations that expedite the majority of the full verification process body. It is, thus, seen
that the ExprProducer class corresponds to the Controller component that invokes the hypothesis
generation process by notifying the Hypothesis Generator component via publishing an event through
the Publisher component, renews the BlackBoard condition when the generation is concluded with the
hypothesis generation results, invokes the appropriate verifier from the Verifier component through
the Subscriber component and updates the BlackBoard with the results of the verification process
when the latter is concluded.

At this point, the ExprProducer class notifies the Hypothesis Generator component which is
simulated by the constructpath procedure of the class. Within its body, the Hypothesis Domain XMI
that was constructed earlier, is being loaded and parsed using DOM. The Document Object Model
(DOM) is a cross-platform and language-independent convention for representing and interacting
with objects in HTML, XHTML and XML documents. The Java programming language provides
very useful libraries for the implementation of DOM in order to parse the desired XMI document.

5.1.4 AND/OR Goal Tree Creation

At this fourth step of the algorithm, the hypothesis category and type requested by the user
for verification, is being selected from the parsed Hypothesis Domain XMI document in order to
create the appropriate AND/OR Goal Tree. For this purpose, the child nodes of the desired type
within the XMI document are being read one by one and, according to their goal node type, i.e.
ANDDecomposition, ORDecomposition, AtomicGoal, the corresponding goal node type is being
instantiated with the name of the child node read. The type of a goal node indicates whether its
children nodes in the AND/OR Goal Tree, if existant, are connected as a conjunction or as a disjunction.
Finally, for each node its parent and children fields are filled with the appropriate goal nodes in order
to complete the AND/OR Goal Tree construction.

It should also be mentioned that the name of each node can correspond to an existing property
of the specific hypothesis type within the Data Warehouse. For the purposes of this diploma thesis in
order to simplify the process, it was assumed that only nodes of type AfomicGoal which are the
leaves of the tree, can correspond to properties of the Data Warehouse while the nodes of type
DecompositionGoal are iteratively defined as conjunctions or disjunctions of their children nodes.

5.1.5 Goal Tree Node Annotations Creation

At the fifth step, the Goal Tree is enriched with annotations for each node. Therefore, one
annotation container is instantiated for each node and the configuration file entered by the user, is
loaded and parsed again with DOM usage. Every time an atomic goal node is met, the configuration
file is traversed and the name of the feature along with its threshold or accepted value that corresponds
to the property defined by the atomic goal node name, are extracted and stored into a new instance
of the Annotation class. Next, this instance of the Annotation class is attached to the current node.
When an ANDDecomposition goal node or an ORDecomposition goal node are met, the annotations
attached to the children nodes, are read, transformed into an appropriate form and stored into a new

5.1 Global Hypothesis Formation 49

Braak_Doam_fvscidanos|y)

Adequale_Fauk_Tolerance_in_Taolal_Praductian_Erwiranmendiz, v}

High_Rato_afl_Exiernal_Awvaidance]{y|

Hgh_Back_Up_Utikties|z,)

Hgh_Redundancyiy}

High_applicatons_Redundancy(z,)

Hign_Hardware Redundancy(z,)

Adequale_Fauk_Tolerance_in_Taolal_Praductian_Erwiranmengip, @1} * High_Ratia_of Extemal_Awoidanceds 1} == Braak_Down_fescidanos{xi)
Hiigh_Back_Up_Utitties|p, 23} * High_Redundancy|x3) == High_Ralia_of_Extamal_fwoidanosixd)

High_applicatons_Redundancy(p, 355 * High_Hardware_Redundancy{p, =8} => High_Redundancy(x)

Synua 5.2: Simple AND/OR Goal Tree Predicates

instance of the Annotation class. This new annotation is again attached to the current node. This step
is concluded as soon as all the nodes have been enhanced with an annotation container containing
the correct annotations.

5.1.6 Goal Tree Traversal and Predicates Construction

At this sixth and final step of the algorithm, the Goal Tree is traversed in order to construct the
predicates that will compose the first - order logic world on which the MLN construction will be based
later on. In order for the traversal of the Goal Tree to be held, a new instance of the Iterator class is
generated which iterates over all the nodes of the Goal Tree. When it has reached a new node, the
iterator calls the operation accept() which is defined for the GoalNode class and is overriden by the
individual definitions of the same operation within the AtomicGoal class, the ANDDecomposition
class and the ORDecomposition class.

Each individual operation accept() within each of the above classes creates a new instance of the
appropriate subclass of the VisitorCreator class according to the type of the goal node. The visitor
creator built, invokes the visitorFactoryMethod() which is defined within its class implementation in
order to create an instance of the appropriate subclass of the Visitor class again according to the goal
node type. The visitor created, is attached to the current node that is visited and the accept() operation
returns the result of the visit() operation of the visitor instance.

The visit() operation of each type of visitor instance, is assigned to read the annotations within
the annotation container of the current node, transform the information read into the predicate form
and return a list of predicates that correspond to this node. The resulting list is returned to the iterator
instance which adds the contents of the list to a universal list of predicates that will be returned to the
Controller, that is the instance of the ExprProducer class, for printing.

Finally, the instance of the ExprProducer class initializes a file with the .min extension which
is the extension of the first - order logic world file expected from the Alchemy tool, and prints the
predicates contained in the list.

A simple example of the predicates form that correspond to an AND/OR Goal Tree, can be seen
in figure 5.2 below :

50 Kepdiaio 5. Hypothesis Analysis Algorithms

5.2 Data and Fact Gathering

The second stage of the procedure is the Data and Fact Gathering. The Data and Fact Gathering
algorithm presents the following steps :

Step 1 : Warehouse Domain XMI and Configuration Population and Storage. In this first step
of the algorithm, the Warehouse Domain Model is being populated with test data, that is
properties and features of project modules along with their feature values. The properties are
in compliance with the goal node names appearing in the hypothesis AND/OR Goal Tree in
order to identify them as the same property by applying pattern matching on the names, and,
therefore, make the verification procedure possible. This model population is then stored in
XMI format in order to be used as a sample input file to the framework developed.

Step 2 : Verification Process Start. In this second step of the algorithm, after the BlackBoard component
which synchronizes the procedures of the different framework components, sends a message
to the Contoller of the Verification Module, the latter triggers the beggining of the verification
process.

Step 3 : Isolation of Features and Thresholds. In the third step of the algorithm, the features along
with their values are isolated from the populated Data Warehouse Domain XMI file. The
corresponding thresholds for each feature are also extracted from the Configuration XMI file.

Step 4 : Predicates Construction. In the fourth step of the algorithm, the evidence predicates based
on the data deriving from the Data Warehouse, are produced and printed into a file in order to
be fed to the Alchemy tool.

5.2.1 Warehouse Domain XMI and Configuration XMI Population and Storage

In order for the verification to take place, it is a precondition that the Data Warehouse is populated
with properties, features and feature values. The data within the Data Warehouse originally derive
from the information given by developers on IDEs and projects that are of interest to them. This stage
is represented in the system architecture by the IDEContainer component. Next, the data pass through
the Mediator, Extractor and Selector components in order to reach a form suitable to the analysis i.e.
suitable to the kind of input the Verifier component expects and considers usable, and, consequently,
be stored into the Data Pool component as an XMI compliant document form. At this stage of the
procedure, the configuration file set by the user before the execution of the system, will be needed.

For the purposes of this diploma thesis, we used simulated data and, therefore, exemplary Warehouse
Domain XMI files were populated through the use of the Eclipse runtime environment as it was
described for the Hypothesis Domain XMI population step respectively. The data added into the
Warehouse Domain XMI conform to the constraint mentioned above according to which, the properties
within the Data Warehouse must correspond by name, to the properties stated into the Hypothesis
Domain XMI in order to associate a property validating our hypothesis type appearing at the AND/OR
Goal Tree, with the features within the Data Warehouse, appearing under the property with the same
name. As for the Configuration XMI file, since it is already noted that an appropriate User Interface
and Editor was not implemented, its population was again done manually through the use of the
Eclipse runtime environment like the two previous XMI files needed, and thresholds were assigned
for the features appearing into the Data Warehouse sample constructed.

5.2 Data and Fact Gathering 51

5.2.2 Verification Process Start

After the conclusion of the Global Hypothesis Formation algorithm, the BlackBoard, i.e. the
instance of the Test class, is notified of this event and sends a message to the Controller of the
Verification Module, i.e. the instance of the ExprProducer class running, that the verification is ready
to begin by invoking the attachstrategy() operation which is defined within the class implementation
body of the latter. This operation ultimately returns the predicates deriving from the Data Warehouse
that correspond to features with acceptable values according to the thresholds read by the configuration
file. The invocation of the attachstrategy() operation simulates the subscribe() service provided to the
Subscriber component and the operation itself simulates the Subscriber and Publisher components of
the system architecture.

5.2.3 Isolation of Features and Thresholds

In this next step of the procedure, the target is to isolate the features of the properties appearing
into Data Warehouse along with their values, and also extract the thresholds and acceptable values
of those features which are provided by the Configuration XMI file. Therefore, the instance of the
ExprProducer class begins the execution of the attachstrategy() operation body by loading and parsing
the Warehouse Domain XMI and Configuration XMI documents using the DOM library provided by
the Java programming language.

Continuing the execution, for each property into the Warehouse XMI, the features are isolated.
For every feature, the Configuration XMI file is searched and, when the feature is found, its threshold
or acceptable value is extracted. Finally, all the properties with their feautures, values and thresholds
are stored temporarily for the next step of the algorithm to take place.

5.2.4 Predicates Construction

At this final step of the algorithm, the target is to print the correct predicates according to the
information extracted by the Data Warehouse. In order to accomplish this, for each feature the
Subscriber simulation, i.e. the attachstrategy() operation, invokes the verify() operation defined into
the Strategy class implementation and, more precisely, invokes the verify() operation defined into the
VerifierA class implementation which overrides the one defined into its parent class Strategy, since
this is the subclass that handles the MLN verification in our case.

The verify() operation of the VerifierA class checks whether the feature value is within the boundaries
set by the corresponding threshold and, if so, constructs the appropriate predicate and returns it to the
Controller instance of the ExprProducer class or else it returns null. This is executed for each feature
individually. Every time it receives a predicate, the Controller adds it to a list of predicates. When the
features are all processed and the valid predicates are added to the universal list, the Controller prints
the predicates into a file with the extension .db which is the extension expected by the Alchemy tool for
the input database file including all the predicates that are assigned a true boolean value. Finally, the
Controller notifies and updates the BlackBoard, i.e. our Test class, when the attachstrategy() operation
returns.

An example of the predicates form that are produced using data from the Data Warehouse, can
be seen in figure 5.3.

52 Kepdiaio 5. Hypothesis Analysis Algorithms

Adequate Fault Tolerance in_Total Production_ Environment(Fault_Tolerance Metnc, D1)
High_Back_Up_Utilities(Back_Up_|Milities_Ratio, D2)
High_Applications_Redundancy(Ratio_High_Apps_Redundancy, D3)
High_Hardware_Redundancy(Ratio_High_Hardware_Redundancy, D4)

Symua 5.3: Simple Data Warehouse Predicates

5.3 Markov Logic Network Based Reasoning

On this last part of the process, the two files produced by the Global Hypothesis Formation and
the Data and Fact Gathering algorithms are given as input to the Alchemy tool in order for it to execute
an inference procedure on the MLN it first has to construct.

An example of a first - order logic world given as the .mln input to Alchemy, can be seen in figure
5.4 below.

An example of a database of first - order logic predicates given as the evidence .db input file to
Alchemy, can be seen in figure 5.5 below.

The Inference algorithm implemented within the Alchemy tool, solves the problem of finding
the most likely state of world given evidence. In a nutshell, the algorithm evaluates the maximum
probability for a formula y to hold given x, as follows :

1
P == . 3
rnyax (y | x) myax : exp(g wini(z,y))

7
where Z, is the partition function as mentioned and given in chapter 2.

This problem is the weighted MaxSAT problem and, thus, solved by using a weighted SAT solver
e.g. the MaxWalkSAT. The WalkSAT algorithm in pseudocode, can be seen in figure 5.6 below :

The MaxWalkSAT algorithm differs a little from the WalkSAT algorithm. This algorithm in
pseudocode, can be seen in figure 5.7 below :

In order to compute the probability of a formula given the MLN and the set of constraints
C, P(formula | MLN,C'), the operation uses the MCMC algorithm and, therefore, constructs
sample worlds and checks if the formula holds. In order to compute the probability P(formulal |
formula2, MLN, C), if the formula2 is a conjuction of ground atoms, first it constructs a minimum
subset of the network necessary to answer the query and afterwards apply the MCMC algorithm.

The algorithm for the construction of the Gound Network in pseudocode, can be seen in figure
5.8 below :

Similarly, the MCMC (Gibbs sampling) algorithm in pseudocode, can be seen in figure 5.9.
Finally, the output of the Alchemy tool is a set of percentages, one for each atomic goal node,

i.e. leaf of the goal tree, to indicate the probability of the path starting from this atomic goal node, to
occur.

5.3 Markov Logic Network Based Reasoning

53

Hpredicate declarations
professoriperson)
student{person)
advisedBy(person, person)
publication(title, person)
inPhase|person, phase)
hasPosition(person, position)

fformulas
professor(p) <= lstudent(p).

advisedBy(s.p) => student(s) * professor(p).
inPhase(s, +ph) ==> student(s).
hasPosition(p, +pos) == professor(p).

publication(t,p) * publication(t.s) * professonp) * student{s) * }{s = p) ==
advisedBy(s,p).

advisedBy(s.p) * hasPosition(p,+q) == inPhase(s, +r).
“inPhase(s, Pre_CQuals) v “inPhase(s, Post_Cuals).
Jreasevssssarsiatanes ore eyamplag teeeseessessseaa
P

Ifyou can specify a prior weight for a formula
1.23 professor(p) == !student(p)

{fyou can specify a hard formula by terminating it with a period
professor(p) == Istudent{p).

Hbut you CANNOT specify both a weight and period
11.23 professor{p) == Istudent{p).

EXIST s,p advisedBy(s,p)
FORALL s EXIST p advisedBy(s,p)

{fyou can use internal predicates and functions
[Zex)Mzey)==(z+2Z) < (x+y)

ifa domain for the type int must be defined

int ={1,..,10}

Hyou can declare linked-in functions

Hthe functions min and max are defined in functions.cpp
#Hinclude "functions.cpp”

int min{int, int)

int max{int, int)

/fa domain for the type int must be defined

int ={1,..,10}

min(x,y) <= max(x,y)

¥
Tynue 5.4: Example of a .mln input file

publication(Title 10, Gail)
publication{Title11, Glen}
publication(Title10, Hanna)
publication(Title11, Ivy)
inPhase{Hanna, Pre_Quals)
inPhase(lvy, Post_Quals)
hasPosition{Gail, Faculty)
hasPosition(Glen, Faculty_emeritus)

Zynua 5.5: Example of a .db input file

54 Kepdiaio 5. Hypothesis Analysis Algorithms

for i <- 1 to max - tries do
solution = random truth assignment

for j <- 1 to max - flips do
if all clauses satisfied
then return solution
¢ <- random unsatisfied clause
with probability p
flip a random variable in ¢
else
flip variable in ¢ that maximizes
number of satisfied clauses
return failure

Zynua 5.6: WalkSAT algorithm

for i <- 1 to max - tries do
solution = random truth assignment

for j <- 1 to max - flips do
if £ weights (sat.clauses) > threshold
then retumn solution
¢ <- random unsatisfied clause
with probability p
flip a random variable in ¢
else
flip variable in ¢ that maximizes
¥ weights (sat. clauses)
return failure, best solution found

Synuo. 5.7: MaxWalkSAT

network <- {}
queue <- query nodes

repeat
node <- front (queue)
remove node from queue
add node to network
if node not in evidence
then add neighbors (node) to queue
until queue = {}

Zynua 5.8: Ground Network Construction Algorithm

5.3 Markov Logic Network Based Reasoning

55

state <- random truth assignment
for i <- 1 to num - samples do
for each variable x do
sample x according to P(x | neighbors (x))
state <- state with new value of x
P (F) <- fraction of states in which F is true

Zynua 5.9: MCMC : Gibbs sampling Algorithm

Kegaloto 6

Case Studies

In the previous chapters the architecture, the domain models and the algorithms implemented for
the purposes of this framework were discussed. In this chapter, we shall look into some case studies
of the framework. More specifically, three examples will be illustrated as case studies. For all three
examples the Hypothesis Category is Fault Tolerance. In this respect, Fault Tolerance is validated
with certainty if and only if all three of its Hypothesis Types are validated. The three Hypothesis
Types that belong to the Hypothesis Category Fault Tolerance, are Failure Avoidance, Incorrect
Operation Avoidance and Break Down Avoidance. For the execution of the above test casing, an
IBM ThinkPad 1.8Ghz Pentium M and 1.5GB DDR RAM Memory running the Debian Squeeze
Linux distribution, was used. The software tools utilized for the simulation of the framework, were
the MagicDraw Enterprise edition software tool for designing UML diagrams and exporting to XMI
e - core compliant, the Eclipse Modeling Framework (EMF) version 3.5 for the code generation and
development and the Alchemy tool for the Markov Logic Networks construction and evaluation of
the hypotheses.

For better understanding, a complete list of the predicates that can be seen in the above figure, is
provided with brief explanations of the symbols :

Failure_ Avoidance(y) : This predicate denotes that the system presents properties that enable it
to avoid failure.

Internal_ Failure_ Avoidance(y) : This predicate specifies that the system can avoid internal
failure.

External_ Failure_ Avoidance(y) : This predicate denotes that the system can avoid external
failure.

High_ Ratio_ of _ Internal_ Avoidance(y) : This denotes that the system presents a high ratio
of test cases avoiding internal failure against the total number of test cases executed.

Low_ Complexity(y) : This predicate specifies that the source code and architecture of the system
present low complexity.

High_ Ratio_ of _ External_ Avoidance(y) : This predicate denotes that the system presents a
high ratio of test cases avoiding external failure against the total number of test cases executed.

Low_ Dependencies(y) : The predicate denotes that the source code of the various components,
modules or other structures of the system, present low dependencies among one another.

57

58 Kepdiaio 6. Case Studies

High_ Redundancy(y) : This predicate implies that the system has duplicates for many of its
components which assists in avoiding failure.

Incorrect_ Operation_ Avoidance(y) : This predicate denotes that the system has properties
that permit the avoidance of incorrect operations.

Internal_ Incorrect_ Operation_ Avoidance(y) : This predicate specifies that the system can
avoid internal incorrect operations.

External_ Incorrect_ Operation_ Avoidance(y) : This predicate denotes that the system can
avoid external incorrect operations.

High_ Ratio_ of _ Internal_ Operation_ Avoidance(y) : This predicate denotes that the system
has a high ratio of test cases not presenting incorrect internal operations against the total number of
test cases executed.

High_ Ratio_ of_ Internal_ Logic_ Checks(y) : This predicate denotes that the system presents
a high ratio of internal logic checks per time unit.

Break_ Down_ Avoidance(y) : This predicate indicates that the system has properties that enable
it to avoid breaking down.

Each of the above predicates resolves to a frue boolean value if the path in the goal tree starting
from the atomic goal, i.e. leaf, y, is satisfied and, therefore, the module for which the test case is

executed, will have properties defined by the name of each predicate.

High_ Ratio_ of_ Exception_ Handling(z, y) : This predicate indicates that the project presents
a high ratio of exceptions handled against the overall number of exception appearing.

Avoidance_ of_Memory_ Leaks(z, y) : This predicate denotes that the system presents avoidance
of memory leaks.

Low_ CC(z, y) : This predicate indicates that the hardware architecture of the system presents
low cyclomatic complexity.

Low_ FP(z, y) : This predicate indicates that the system presents low functional points, that is,
the system provides a low amount of business functionality to a user.

High_ Cohesion(z, y) : The predicate denotes that the system presents high cohesion, that is, the
functionality expressed by the source code of a software module, is strongly-related.

High_ Back_ Up_ Utilities(z, y) : This predicate implies that the system has a large number of
back up utilities to support its modules and components.

High_ Applications_ Redundancy(z, y) : This predicate indicates that the system has various
duplicates of its applications in order to ensure a non seizing functionality by the occurence of an error.

High_ Hardware_ Redundancy(z, y) : This predicate indicates that the system provides various

59

duplicates of its hardware components and modules in order to avoid an operation hault in case of an
error.

Low_ Coupling(z, y) : This predicate denotes that the system presents low coupling, that is, low
dependencies among its different modules and components.

Low_ Information_ Flow(z, y) : This predicate indicates that the modules and components of
the system present low need of exchanging information frequently.

High_ Ratio_ of _Incorrect_ Sequence_ of Data_ Input(z, y) : This predicate denotes that the
system presents a high ratio of incorrect sequence of data input against total number of data streams
inserted to it as input.

High_ Ratio_ of _ Incorrect_ Operation_ Patterns(z, y) : This predicate indicates that the
system presents a large number of incorrect operation patterns against the total number of its operation
patterns.

High_ Ratio_ of_ Incorrect_ Data_ Types_ as_ Parameters(z, y) : This predicate denotes the
appearance of a large number of errors related to incorrect data types set as parameters.

High_ Ratio_ of_ Incorrect_ Sequence_ of _ Operation(z, y) : This predicate denotes that the
system presents a high ratio of incorrect operation sequences per time unit.

High_ Ratio_ of_ Preconditions_ Checks(z, y) : This predicate indicates that the system runs a
high number of preconditions checks per time unit.

High_ Ratio_ of _ Postconditions_ Checks(z, y) : This predicate indicates that the system runs
a high number of postconditions checks per time unit.

High_ Ratio_ of _ Compliance_ Checks(z, y) : This predicate indicates that the system runs a
high number of compliance checks per time unit.

Correct_ Business_ Process_ Specs(z, y) : This predicate denotes that the system presents
correct business process specifications.

Correct_ Service_ Registry_ Specs(z, y) : This predicate denotes that the system presents correct
service registry specifications.

Correct_Deployment_ Description_ Specs(z, y) : This predicate denotes that the system presents
correct deployment description specifications.

Correct_ Service_ Description_ Specs(z, y) : This predicate denotes that the system presents
correct service description specifications.

Adequate_ Fault_ Tolerance_ in_ Total_ Production_ Environment(z, y) : This predicate
indicates that the system presents adequate fault tolerance within the total production environment.

Each of the above predicates resolves to a true boolean value if the variable z takes as value a
valid feature for the property described by the name of the predicate and if the path in the goal tree

60 Kepdiaio 6. Case Studies

starting from the atomic goal, i.e. leaf, y, is satisfied and, therefore, the module for which the test
case is executed, will have properties defined by the name of each predicate.

A listing of the evidence predicates deriving from the Data Warehouse, is also provided :

High_ Back_ Up_ Utilities(Back_ Up_ Utilities_ Ratio, D1)
High_ Applications_ Redundancy(Ratio_ High_ Apps_ Redundancy, D2)
High_ Hardware_ Redundancy(Ratio_ High_ Hardware_ Redundancy, D3)
Low_ Coupling(Ratio_ Low_ Coupling, D4)
High_ Ratio_ of_ Incorrect_ Sequence_ of Data_ Input(Ratio, D1)
High_ Ratio_ of _Incorrect_ Operation_ Patterns(Ratio, D2)
High_ Ratio_ of _Preconditions_ Checks(Ratio, D5)
Correct_ Service_ Description_ Specs(Ratio, D10)
Adequate_ Fault_ Tolerance_ in_ Total_ Production_ Environment(Fault_ Tolerance_ Metric,
D1)
High_ Back_ Up_ Utilities(Back_ Up_ Utilities_ Ratio, D2)
High_ Applications_ Redundancy(Ratio_ High_ Apps_ Redundancy, D3)
High_ Hardware_ Redundancy(Ratio_ High_ Hardware_ Redundancy, D4)

As it can be seen and according to the explanation for each predicate given above, the first value
to all predicates resolves to a valid feature for the property described by each predicate and the second
variable D1, D2, D3, D4, D5, D10 in the above predicates, represents a particular atomic goal, i.e.
leaf, of a goal tree by which each path to the root begins and for which the Alchemy tool will calculate
a probability of occuring within the set world of first - order logic predicates constructed by the
AND/OR Goal Tree.

6.1 Example 1

In this first example presented, the Hypothesis Type to be validated is Failure Avoidance.
After populating the Hypothesis Domain Model using the Eclipse runtime environment, the XMI
document which is also compliant to e - core, is shown in figure 6.1 below.

In order for the reader to better understand the structure of the XMI document in figure 6.1 and
how this represents an AND/OR Goal Tree, let us provide the same schema in the form of a tree in
figure 6.2.

The file hypoth.min produced by the execution of the Global Hypothesis Formation algorithm,
can be seen in figure 6.3 below.

After populating the Warehouse Domain Model using the Eclipse runtime environment, the XMI
document which is also compliant to e - core, is shown in figure 6.4 below.

In the above XMI document displaying the Data Warehouse, the properties and corresponding
features along with their values, can be seen.

After populating the Configuration Model using the Eclipse runtime environment, the XMI document
which is also compliant to e - core, is shown in figure 6.5 below.

6.1 Example 1 61

<l varsaone™1. 1 ancoding="LITF-B 7=
cHyPODoEn Hy T gony Mo s ="2. 0" i 2o =g e g o AT Sl s =" i w3 P/ 200 UKML Schama instance”
i Hegpo Domain="Tvip - \WHypoDomain oo™ Mame="Failkaa Swcidanoa ™
wiypa Mame="F alare Asdanog™
wynalived idmanme=F alune sl anid™
o s Ty Hypo Domain DR Deonmpoiion” Mame="Falue Asmidancd™ (D11
i x5 T Hypo Domain:A MDDooamps ion” Rama="Temal Folare Ausdaned” |D="F" param="ygiype noda OF
e x5 7= Hypo Domain A HDDwoampds tion” Mame="Eximal Falurs Astadance” D=3 panei=" A5
e x5 T Hypo Domain ORDwoampdsiion” Mame = High Ratio of Inmemal Asgidance” |D="4" paran="ghpe Dhocaimadnoe. 1%
e x5 T Hypo Domain:AomicGoar Hames"High Rato of Exceplicn Handing” ID="5" pamnd="Ztpe LiTpoaree Bnode 37
i x5 Tpsa=Hypo Domain:AtomicGoar Mames"tviidonsa of Mommory Laaks® |D="8" panni="Wiiiypa O @pcalrecifnods. 37
i x5 T Hypo Domain A MDDuoamps tion® Namas"High Ralic of Exiomal &eidanca” ID="T" paren OifgoainoaInoda. 27
e x5 Ty Hypo Doman:AomicGoar Hame="High Back Up L ias™ ID-'B'WI-'WM i
i x5 Tpsa=Hypo Domain:A MDDuoamps ion® Rama="High Reduandancy® ID="9" paronc="y{Tkpe Uipoaine Bnode 54
i x5 Tppsa=Hypo Domain:AomicGoar Hame="High Appicaions Recandancy® ID="10" paroni="0mee. Lo e rode. i
i x5 Tpsa=Hypo Domain:ARomicGoar Hames"Hiph Hardwar Redandancy® ID="11 parni="0{nes. Vpnd e ot ir-
i x5 T Hypo Domain ORDuCamposiion” Mamo="Low Dipandncias® ID="12" panani="Wiiypa D Epealechfno 2
i WS s Hyo DomaineARomicGoar Mames"Low Coupling” 1D="17" parni="0fnea. Wkgoaheal Snode. 1 17
e x5 g Hypo Domain A RominGoar Name="Low infemalion Fow® ID="14" panenm="\hine iEpcairsaiEnoda. 1 19
o x5 s Hypo Domain ORDuamposiion” Mamo="Low Complaxiny® |D=" 157 paroni =" lmyre. Vposhea fnode. 17>
=i WS e Hypo DemaineAomicGoar Hames"Low CO° ID=™ 5 parne="Ngiype Do dives fnoda. 14792
i w5 e Hypo DemaineAomicGoal Hames"Low FR* D=1 7 pasand="N{g e 0 i s ineds 187>
ﬁw i Ty Hypa Domain AlomicGoal” Mame="-igh Cobasion” [D="12" parnt=""Etype Do sl iBineds 19
THa™r
<y
“THypoDaraRc HypoCalgny

Zymuo 6.1: Hypothesis Domain XMI for example 1

Falure
Arecidance

Ij;d_
o

Erigrrml Fai une
s ldn noe

Imimmal Falure
Srecdmnce

High Ralio of
[=
Bescidance Coperdenc e) \
=3: 1
r |l
\ —
il o
Irricamaticn

High Raika af
Exca phicn Aaidance al
Handling _F Memarny Lk

High Hardwars
RAedurd ancy

Synuo. 6.2: AND/OR Goal Tree of figure 6.1 XMI document

The configuration XMI file, as shown in the previous figure, contains all the thresholds and
acceptable values for the features included in the Data Warehouse XMI.

The entity0.db file for Module 1 of the Data Warehouse as it appears in the datawarehouse.xml
file, is shown in figure 6.6 below.

62 Kepdiaio 6. Case Studies

Falure Btidanoaly)

Il Faiue Ascidancaly)

Exisrnal Falure Awoidancaly]

High Ralis of Inbaimad faoklancedy)

High Ralis of Exception Handinglz, y)

Avnidamoe of Mamory Laaksiz, v}

High Ralis of Exemal Asckdaniody)

High Back_Up Lhilesz, ¥

High Redundancyly]

High Applications Redundancy(z, i)

High Hardwans_Radundanoy|z, |

Lirw Capanmia noiasdy?

Lirw_ Coaphngsz, v}

Liw Indormasiom Flomz v

Ly Comsplanizg|y)

Lirw GOz, ¥

Lirw FPYz,)

High Cohecsinndr,)

Irrbermal Fadune Sysoidanon]xl) v Exiema Folure Ssoidanoo]xl) => Faleo Setiiomsedi |.

High Ralic of Inbaimal fvokiancedad | Low Compladiylez) * High Cobssiondgp. 3) = nlemal Falurs sodanca).
High Ralis of Exaemal Avciianoiald) ™ Low Dopidencs]|sd) = Extanial Fabin Stk d3].
High Ralis of Exeception Handinglp, o) o Avoidanes of Memory Laaksip, o8] => High Ralio of Imemal Svoiiancasd).
High Back Up LHilksip. «7) * High Redundancy (7| == High Ralo of Exaimel Sevosine:T|.
High Spplications Redundancy(p, 0] * High Hardeare N,) == High Radund ancy|n %,
Lirw_Coaphingalp, w1 2) v Low Inlormsatan_ Flowfp, 512) == Low Depind e (k13).

L CC4p, w15} w Lowt FPp, 315] ==~ Low Commplondinga 5.

Zynua 6.3: hypoth.min file for example 1

The output of the Alchemy tool for Module 1 respectively, is shown in figure 6.7 below.

Thus, the conclusion that can be obtained from the Alchemy tool output in figure 6.7, is that the
probability of Failure Avoidance to occur is high and averages to 0.8667 with likelier state of world the
path starting from High Back Up Utilities leading to the root that has a probability equal to 0.888961.
Therefore, through logical deduction, this leads to a probability of 0.12 - 0.15 approximately for
Module 1 not to avoid failure.

6.2 Example 2

In this second example presented, the Hypothesis Type to be validated is Incorrect Operation
Avoidance. After populating the Hypothesis Domain Model using the Eclipse runtime environment,
the XMI document which is also compliant to e - core, is shown in figure 6.8 below.

The corresponding AND/OR Goal Tree is illustrated in figure 6.9.

After launching the simulation, the hypoth.min file produced which represents the first - order
logic world given as input to Alchemy, can be seen in figure 6.10.

The Data Warehouse XMI file populated for the purposes of this example, can be seen in figure
6.11.

The Configuration XMI file populated for the purposes of this example, can be seen in figure 6.12.
After the simulation launch, the entity0.db file for Module 2 produced, including all the predicates

that have a true boolean value according to the information extracted by the Data Warehouse and
configuration file, can be seen in figure 6.13.

6.2 Example 2 63

=Tamll varsaom="1.0" anccaing ="LITF-B" 7
0 W3 oo W e o Dl B =" I Dl Tt Sl =™ e A e mg-mr wolre : D W o =" S Dl s W a0 i o™ Mlaairea="Tasl"
Wi edala =" propectifenily. OvEdaial AR projeclvTanty. 1.'@11;'.1
sppojec] Mame="Tasl" daie="\{ipeojecisTardty. WWfdaa D OiDprojec iyiantty. 1/ fdata 05
ity 10 haime= ot 1"
<data ="Wipmjgeo® marehouse="" Tmnepaicd="1.0" de="0iprckeeydfantsy O0fda OFr
Sppoparies progityfdama="High Back Lip Uit
clgarhanes foanure Mame="80 of ook ip uilikes” feakeayshes="153 07>
hgarhanas Baanure Mame="80 of rmcdibes™ fennayake =" 200,00
LUy P
ppoparies propityfdama="High Applications Raeddancy™
Shgarkares M Mame="No, of pomponenis runming Tha apelcaion” ealure\ialue="20 0%
clgarhanes foanire Mamo="M0 of Gimois Svoiior boearee of redumdemey™ Tushiookee"1 5T Ok
LUy Py
cppoparies propaityiama="High Hardsae Radurddancy®>
clgarhanes foamine Mamo="80 of duphicaied hadwon oomponants” aiurealie="21 0
clgarhanes foanire Mamo="M0 of Gimois Svoiior boearee of redumdemey™ Tushiookee"153 0k
LU P
Spoparis propityfdanma="Low Couplng™
clgarhanes foanre Mamo="80 of rmodibes hal hass depandoncios with Mok ™ ool aiee" 17 0"t
Shaarkarad R Mame="Mo of piojes] inodulic™ RalieeValiie="248 0"
LU P
Spoparies propaityNama="High Ralis of Inoomec] Dgssnalion Pamems” propemyilog Fom="=
hgarhanes foamine Mame="ho, of Boomet opermabion paioma” feaiume dioe=" 104 0%
LU P
Spoparies progaityNama="High Ralo of Poat Condidong Checks"s
hgarhanes foamine Mame="4o of poal oonditions chacks® Realureh) alise="56 k=
<hpropariass
COPOpanas piogd mea="Adapaala Faull Tolaares m Tolal Produeesom Enstronmant™>
gk e et rpicie Tol bobaradsss MeAe” fedenad\alig="0. T
LU P
<idatac
< hame="ide1" dule=" Rpeope i Eandiy W iidate 0
<haniliy=
<ty 10 Maima="lodaded™
<data ="Wihpioeol® maeehoimes" Tmepariod="1 5" de="0 oo fandinyg. 1 Tkda 0
<ppopariks propartyfieme="High Ral of Escagion Hamdlng™-
hgarkares M Mame="N0 of arepion Panded™ b awneyakee =" 2000
cgahanes s Hame="80 of aeragiiong coourtd™ B eyl =" 235 0rE
LU P
<ppoparibs propartyfiame =" anog of Memony Laaks®>
cgahanes o Hame="amount of dala kol feaiure alue="50 0
cgaianes foanune Mame="amount of tlal dafn sloned™ foahee el =" 300U
LU P
<poparinG propsaityfanasLow GO
<ptpari propsityieims="Low FPo-
<poparis propaityfanma="Low | nformabion Flow™:
Shaarkares R Mame="Mo. of modulas fRoaking information o Modubes” featurna®ak ="2 0"
hasied Rasnine Mame="No, of project inodales™ el alie="100.0%
LU P
<ptparins propsityfims s "Come Susiass Pioceas Bpacst
<pioparis propaityfms s "Corecd Sanios Regery S pees™
<gOparineG propetyf g s O o ol Daphy o Desciplion Specsts
<pitparibs propatyimss"Correcd Sanvion Dasoriplion ST
<ptparibs propatyims="Adepaie Faul Touimeos i Tolad Prodecin Emdrnment
daahanes s Hame="adoruais Ta ooka oo messc” tekere® alua="0E"
L P
<idakac
i Mame="ice 1" derle="ARpeope Tty 1 data 0ok
iy
<hprojertr
<i Dlatakaraloi s i arahoiser

Tynua 6.4: Warehouse Domain XMI for example 1

Finally, feeding the previous two output files as input to the Alchemy tool, we get the following
results as shown in figure 6.14.

From the results of the Alchemy tool, we can logically deduct that Incorrect Operation Avoidance
has high probability of average 0.85 of occuring, that is the probability of a fault occuring which is
connected with the lack of incorrect operations, is around 0.13 - 0.19 approximately.

64 Kepddato 6. Case Studies

<Tamil versan="1.0" encodng="LITF-&"7=>
<CaniFie HypoCalegony smicvwersion="2.0" sminssmi=Tigpowses omg og O™ aeins:ConfFle="hitp. M ConfFle eoone”™ Mame="Faull Tolemnoe"
<typl Mame="Fadiune Saoidanos™
wprapsty Mame="High Rado ol Excoplicn Handing™
<hzalure Hame="Ralk of Excepton Handing™ Threshold=" > 0.8%=
<lprapeity=
<cproperty Mame="fvoidanos of Memory Leaks"=
teadine Mame="FRalis of Memary Leaks® Tresshold="8K 0.2°=
et
<property Mame="Low CC">
<feialune Mame="Falls Low OC7 Threshold="4k; 0.3
o
<proisty Mame="Low FP™>
«hzialiine Name="Fialla Low FP* Theeshold="GK 0.3
Clpropeiy
<property Mame="High Cohesion™>
healiine: Mame="Ralls Hgh Cofssion” Threshold="> 0.7
o o
wprapsty Mame="High Back Up Uilides"
healune Hame="Back Up LEFes Raiio™ Thoshold="> 0.5
et o
=property Hame="High Applheaions Redundancy™
teadiine Hame="Falis High Apps Redundancy™ Thoeshokd="> 0.177=
Spropey=
=pragty Mame="High Hardwars Redunda no®™
fealun: Hame="Falix Hgh Hardean: Aedundancy” Threshold="> 017>
o
<oty Name="Low Coupling™
headiine: Mame="Falia Low Couplng” Thieshokd="El1; D477
o
<cprniety Mame="Lo« Infammaton Flow™=
<headiine Hame="Falia of Inlomalon Flos™ Threshold="E1; 0.377=
o o
<Rypa>
<iConfFileHypoCalegory=

Tymua 6.5: Configuration XMI file for example 1

High Back Up Utilities{Back Up_Utilities_Ratio, D1}
High_Applications Redundancy(Ratio_High_Apps_Redundancy, D2)
High_Hardware Redundancy(Ratio High Hardware Redundancy, D3)
Low Coupling(Ratio Low Coupling, D4)

Synua 6.6: entity0.db file for example 1

Failure_Avoidance(D1) 0.888961
Failure_Avoidance(D2) 0.864964
Failure_Avoidance(D3) 0.856964
Failure_Avoidance(D4) 0.855964

Zynua 6.7: Alchemy output for example 1

6.3 Example 3

In this third example, the Hypothesis Type to be validated is Break Down Avoidance. After
populating the Hypothesis Domain Model using the Eclipse runtime environment, the XMI document
which is also compliant to e - core, is shown in figure 6.15 below.

6.3 Example 3 65

w Pl woraair 100 ascsdrege"U TF-3"Fe
wHpz e e HypoiGale gy ami vaamnss"Ti0" i somi="Sipd i o isg ang Ui arvine rae"Bip st wd ongil 1ML Srherb-dsalanee™
=i Hpeolorel " Hb-L'l'ﬂ"ﬂ:Lb'l.l.ﬂ dir” M =" il T ol
e b o
CoaiPres Hniree Rresec] O ialon Bt f
wrcads e T Do O Daces So Fon™ M =Tressed, Opeiifes Avokdanes” D=1
wnods Eaclpes e Dosain s DO scompadBon™ Masa=1=kermil Beames Opacabon Sscilanss™ D= 8 s3] beon 055 taline e T rodn (M
wnole machpes THype Doman SN DOecompoaion™ Maros"Enlermal I=comes] Spesabon, Sacidarse™ De™) pares =550 oo OSoaire s J e e
wnole mrdhpes e DomuminoOf Sorsee o bon™ e = Hgh Sl ol 1=lemal oot Opeeabon, Secalares™ D= 4 pares =50 oo DEgolines e e
vnotla mrdhpes g Domain o Of Dorsem s bon ™ e = Hgh Slo ol 1=lemal Lagie Chaede™ 1D %" pannie LS S goal saiEnote 175

wnoele mrchpes oy Domumin - Sbome Ceoal ™
wnoele mrchpes g DomaincShme Geoal -
snoda sedhpes Hype Dosuin: S Dol
“noda sedhpe=THyps Dosuin: S Dol
“noda sedhpe=THyps Dosuin: S Dol
snoda sedhpes THype Dosumin: S Dol -
snoda sedkpes THype Dosumin: S Dol -
snoda sedhpes THype Dosumin: S Dol -
s Eaclpes THye Dostin b Geoal -
s Eaclpes THye Dostin b Geoal -
wnoele mechpes Ty DomaincSbome Geoal ™

Faarrez="H igh. Harle el e Sequeres ol Dale neu?™ I0="E" s ppe DEosabon'iSnods 17
Faarrez="H igh Harde el Inesees] Opanalins ol ife” e paons Sy DU pnal nsa i Snele. 150
Faarrea="H igh Aol ol Incossed] Dl Tyoom i Pasesetrs” 1D peonl" 83 0V goairea s odan 575
Faama="H igh Al ol Incosed] Sequerss ol Opatalon™ D=0 piras="5 fpoa 15Egoilines i roda T h
Faara="H igh A al Procondbona Checea™ D=" 10" pmsor="1E0 pa O8E soil i Nonoda 4
Fiamiz="H igh, Hare ol Posikeos dors Chodar (D1 17 s L=y ea WSl oo neds 477
baarma="H igh Faire ol Cerplancs Checha® 0= 12 paionl="&ERpe iiigeairea iisade 4=
Haima="Cormind Bindsircs Proceds S peci™ I0=" 13 s 43y pe DA B sl Snods 3 Te

K" Comsd Serdcn Rty S pec™ I0=" 14" Sananl=" L e CASGonionSnods 1T
Faame"Camsd Dasleyran Dessipon Spaca” 10=" 157 pasorts"1Emns Gl oa lm i Snode T
Faamz e omed Sordco Duscmpien Spoca e paeen® S ype Dqoulon'inode 17

slonug b

—

TN

........... / / I ™,
T

Synua 6.9: AND/OR Goal Tree of figure 6.8 XMI document

Temprminal
Cpraslisn

-

The corresponding AND/OR Goal Tree that is represented, appears in figure 6.16.

After launching the simulation, the hypoth.min file produced which stands for the first - order
logic world given as input to Alchemy, can be seen in figure 6.17.

The Data Warehouse XMI file populated again using the Eclipse runtime environment, can be
seen in figure 6.18.

The Configuration XMI file populated for the purposes of this example, is shown in figure 6.19.
After the simulation launch, the entity0.db file for Module 3 produced including all the predicates

that have a true boolean value according to the information extracted by the Data Warehouse and
configuration file, can be seen in figure 6.20.

66 Kepddato 6. Case Studies

Ircorradt_Oparatan_iwaidance(y}

Irtemal_lncamact_Operatian_Avoidancedy)

External_Incormect_Opamaton_ivadanoaly)

Hgh_Rato_af_Intemal_incomect_ Operation_Avoidance(y}

Hgh_Rato_al_intemal_Logikc_Checks{y)

High_Rato_af_Inoomect_Sequence_afl_Data_Inpul(z, ¥

High_Ratao_af_Incomect_Opamton_Pattems(z, v)

High_Rato_afl_Incomect_Data_Types_as_Pammolorsiz, y)

Hign_Rata_ uﬂnm‘rhu-:.t _Sosquenco_ al Upnmlnmz ¥l

Hgn_ FI.:-.I:-: uf Procanditions_Checks(z, ¥)

Hgn_Rat n_uf_PnsJ:unmlun:_l:ﬂncu;z ¥l

High_Rato_af_Complanoe_Checis(z, vi

Carecl_Business_Process_Spoos|z, y)

Carrecl_Servce_Rpgisty_Spacs(z,)

Carrecl_Dapkoyment_Descriolian_Specsiz, v}

Carrecl_Service_Desoriglian_Spoos(z, v}

Irtemal_Incamect_Cperatian_feoidancedx 1} w Exiernal_Incorect_Opembion_Awodance|x1) => incarecl_Operation_fwoidanoscl).
Hagn_ FI.;!:n:l afl_|ntemal_inoomect Operation_Avoidanceix2) * High_Ratio_od_imemal_Logic_Chooos{x2) ==

Irkamal_incamect_ Ciperatian_Avoidancedc?).

Camreci_| Eu:mn:: Prooess_Spoos(n, ¥3) * Comect_Servion_Rogistry_Specs(p, x3) * Comed_Depioyman!_Descrpton_Specs(p, x3) %
Currm:l Servco DIHCI'II:IIIIJH _Spaosin, k1) = E'durn:l Incorredt_Oparaton_Awaidanca|xd .

Hagn_ FI.:-.I:-: af | imeoemock _Sosquence_al_Data Ianllp.md-:-'-'th Rato_al_incorect_Oparmton_Paterns|p, x4} v

Hgn_HRat n_uf_lnm_ﬁala_Tynns_m-_P‘a'urMur::n. wd) v ngh_FI!aIn_uf_rn:n"nurl_Euquuﬂnu_uf_ﬂp-u'uhnn:p. wd) ==
Hgh_Rato_al_Intemal_incomect_ Operation_Avokdanceixd).

High_Rato_afl_Precandilions_Checks(p, x4} v Hgh_Rato_of Postoonditions_Cheossip, «8) v High_Ratio_of_Compliance_Checksip, k) ==
High_Rato_af_intemal_Logio_Checks{xb).

Zymuo. 6.10: hypoth.min file for example 2

Finally, setting the previous two output files as input to the Alchemy tool, the following results
appear as seen in figure 6.21.

From the results of the Alchemy tool, we can logically deduct that Break Down Avoidance has a
probability of average 0.52 of occuring, that is the probability of a fault occuring which is connected
with the project breaking down, is around 0.35 - 0.52 approximately. At this example, we can see
that the probably of a fault occuring is a lot higher than at the previous two examples.

6.3 Example 3

67

<rmil varsian="1.0" prcodng="UTF-A%7>
<DataWarahouse: Warchouss soverson="2. 0F xminsson="ip: fhwaw amgomgX8iIE
xmins: Cata\Warahouse="rin:\DalaWarehousa ecare”™ Mame="Tes11* warehousedata="NEpoject’ Eantity AEdata 05>
<project Mame="Test1" data="Eoropctifontty. byEdata 0°=
<gnity IDName="Moduie 2>
=data _="fifpraject” warahouse=""" limepariod ="2.7 ide=""FEprojectSantity. Q'&da 0>
<proparties praperyMame="High Ralia of Incomect Sequence of Data Input™>
=iggluras fealueiame="Falia® featuresYalue="00%=
=iproparting >
<proparties praperyMame="High Ralia of Incomect Opoeraton Patierns™>
=faaiuras featureblame="Falia® feature¥alue="09%=
<ipropartins =
<proparties praperyMame="High Ratio of Incomect Data Types as Parmmaebers® propertylogFame=™>
=iggluras fealueiMame="Falia® featursYalue="0.1=
=iproparting >
zproparties praperyMama="High Ralia of Incomact Sequence of Coeratian®™s
=faaiuras featureblame="Falia® feature¥alue="0_2%=>
=ipropartios =
<proparties praperydame="High Ralia of Precanditions Cheocks®=
“lgalures foalurehlame="Falia® featureYalue="0086%>
</propartins =
zpropartios prapertyMama="High Ratia of Postcondtions Chocks™
=faaiuras featureblame="Falia® featureYalue="024"%=
<ipropartes=
=proparties praperyMame="Hith Ratio of Compliance Chodks®>
=lgglures fealureblame="Falia® featureYalue="065">
<iproparting>
zpropartios praperybame="Cormat Business Procsss Spoos®s
<fagluras featuehlame="To. of narmaly sxeculed business processes™ laaluraalue="237 %=
=faaiuras featuretlame="Mo. of talal business processes® foatureVale="5089 0=
<ipropartins =
<proparties prapefyMame="Corect Sarvion Regisiry Spoocs®=
<logluras featuefdame="indicatve moetno for sanvios egsiny® featuealue=50 657>
<iproparting>
zproparties prapertyMame="Corect Doployment Descriplion Spocs®s
<fagluras featuehlame="indicatwe metnc for comect deployment descriplian® feature’alue=. 73
=ipropartios =
<proparties praperyMame="Cored Sarvicn Description Spocs®>
=hoaluras fealueiMame="Indicatwe metne for comeot desoriplion specs” featureYalue="0.36"=
<iproparting>
=idafa=
zide Mame="idaZ" data="\{Epraject’Fentty. A\ Edata 0=
<fenkiby=
<iprajoct>
</DataWaranouso: Warnhousa=

Synua 6.11: Warehouse Domain XMI for example 2

68 Kepddato 6. Case Studies

<fami wersion="1.0" ancoding="UTF 47>
<ConiFieHypoCategory kmizversion="2.0° xminsami="hipsews omg.omdXsT amins :CondFile="nhpr$SGon fFie coore™ Name="Fauit
[akrmroe™
“typa Mame="Incared] Operaton Avoidanos™
<proparty Name="Hgh Ratio of Incomadt Saquence of Dala Inpul™>
=feabure Name="Ralo™ Threshoid="> {.7"/=
<ipraporty=
<proparty Name="Hgh Ratiz of incomedt Opamtion Patams>
=feabue Name="Ralo™ Threshoid="> {1.7"/=
<iprapoty>
<proparty Name="Hgh Ratio of incomact Dala Types as Pammalons’s
=feabue Name="Fato™ Thrashoid="> {.7%/=
<ipraporty=
<proparty Name="Hgh Ratiz of incomedt Saquence of Oparation®=
=foature Name="Ralo™ Threshaid="> {.7°=
<lpraporty>
<proparty Name="Hygh Ratio of Procand lions Chedks™
=feature Name="Rala™ Thrashoid="> {.8%=
<liprapoty>
<proparty Name="High Ratio of Postconditions Chodks™
=foature Name="Ralo™ Threshaoid="> {.B°=
<lprapoty>
<proparty Name="Hygh Ratio of Gomplianoa Chacks™
=feabure Mame="Ralo™ Threshoid="> 1.8/
=lprapoty=
<proparty Name="Camed Busnass Process Specs™
<foature Name="Ralo™ Threshoid="&1t; 0.17/>
<ipraporty=
<proparty Name="Camec Sardon Regisiy Specs™
=foature Name="Halo™ Threshaod="&t; 0.3/
<iprapoty>
<proparty Name="Camed Deployment Descrinlian Specs™
<foabure Mame="Halo™ Threshaold="&It; 0.2"/>
<ipraporty=
<proparty Name="Camec Sardos Descriplion Specs™>
=foature Name="Halo™ Threshod="&1t; 057>
<lpraporty>
<Hypo>
<}ConfFieHypaCatagary>

Synua 6.12: Configuration XMI file for example 2

High_Ratio_of Incorrect_Sequence_of Data_Input(Ratio, D1)
High_Ratio_of Incorrect_Operation_Patterns(Ratio, D2)
High_Ratio_of Preconditions_Checks(Ratio, D5)
Correct_Service_Description_Specs(Ratio, D10)

Symua 6.13: entity0.db file for example 2

Incorrect_Operation_Avoidance(D1) 0.861964
Incorrect_Operation_Avoidance(D2) 0.863964
Incorrect_Operation_Avoidance(D5) 0.863964
Incorrect_Operation_Avoidance(D10) 0.810969

Synmua 6.14: Alchemy output for example 2

6.3 Example 3 69

< Tarll wirien = 10° anssding="UTF-&"T=
= Hypollormuie: Hhypol lingory xsived ors 20" amisioaml = Ripc e omguang el s oo =T w D ong D00 10 BLS S - e ™
ainlo HypeDossadin="h rp A0 HypaDomisieansore” Mame="F sl Toknmo -
hyppe i Brinal Dorat &bl on” -
s Biuiimees " Heinih. Down Sl dir™
rschi wid Ly =" HippeDossi s 8N DDnos il bert™ s =" S Do Sosokiarea” I0="1%
ik wil lype s HypaDesaa Alomeloar R Adingai e Faull Toranss e Tolsl Prodoethsn Emsirsnmant” ID2°2° paieel= 08 ee IS asalre et Seade 071
ik wil lypa = Hypea Do e AN Dlnss ot Bon™ Rases"High Rabe of Exliml Ascarse” 102" panesd=" 5 e Goeel neSaed 51
ik nil lypa s HyppaDesala Alomeoar Mame="High B Up Uik 1ID="4" paesi= WS Aol e St 5 1r
ik wil Iy = Hypa Do e AN Dlnss ol Bon™ Rases"High Rederiarey” ID2"5" el = e 0SS o el frade
ik wil lype s HypsaDesaa Alomeloar MName="High Appicalbenm Riadardars,” I02°8" paresl ="V e IAG pealinse S nnds 45
wrreche nil lypa s HpoaDeeal b medon R e High Hasdwars Redursiansy® ID"7 pars = "0 0ty pe ey osn et i rescla 4% e
wpemd L
kg
o H ypreDerrsnn HypeeCa oy

Tymua 6.15: Hypothesis Domain XMI for example 3

Break Down
Avoidance J

Adequate Fault Talerance in
Total Production Environment

High Back Up
Litilities .

Tynua 6.16: AND/OR Goal Tree of figure 6.16 XMI document

Braak_Doram_fvscidanoa|y)

Adoquale_Fauk_Tolerance_in_Taolal_Production_Erwironment{z, v}

High_Rato_al_Exiemal_Awvaidance{y|

High_Back_Up Utikties|z, ¥)

High_Redundanoyiy}

High_applicatons_Redundancy(z, ¥)

High_Hardwara_Redundancy(z, ¥

Adoquale_Fauk_Tolerance_in_Taolal_Production_Ereironmentip, x1}* High_Ratia_of Extemnal_fvoidancedx i} == Broaak_Down_feoidanos{xi).
High_Back_Up_Utities|p, 23} * High_Redundancy|x3) == High_FRalia_of_Extomal_fwoidanoosixd).

High_Applicatons_Redundancy(p, 335) * High_Hardware_Redundanoy{p, sfi} => High_Redundanoy(xt).

Synua 6.17: hypoth.min file for example 3

70 Kepddato 6. Case Studies

<7xml version="1.0" encoding="UTF-8"7=
<DataWarehouse\Warehouse xmizversion="2.0" xminsxmi="nttp:feww.omg.org/XMI™
xmins:DataWarehouse="http:///DataWarehouse.ecore” Name="Test3"
warehousedata="/{@project@entity.0/@data.0">
<project Name="Test3" data="//@project@entity.0/@data.0">
<entity IDName="Module 3°=
<data _="/@project” warehouse="" timeperiod="2.5"
ide="//@project/@entity.0/@ide.0">
<properties propertyMame="Adequate Fault Tolerance in Total Production
Environment™
<features featureMame="Fault Tolerance Metric" feature/alue="0.8"/>
</propertigs>
<properties propartyName="High Back Up Utilities™>
<features featureMame="MNo. of back up utilities" feature\alue="245.0">
<features featureName="No. of modules" featureValue="387.07/>
</properties=
<properties propertyName="High Applications Redundancy”>
<features featureMame="No. of components running the application”
featureValue="25.0"/>
<features featureName="MNo. of errors avoided because of redundancy”
featureValue="178.0">
</properties=>
<properties propertyMame="High Hardware Redundancy">
<features featureMame="No. of duplicated hardware components”
featureValue="34.0"/>
<features featureMame="Mo. of errors avoided because of redundancy”
featureValue="203.0"/>

</properties>
<fdata>
<ide Mame="ide3" data="/@project/@entity.0/@data.0"/>
</antity=>
<fproject=

</DataWarehouse: Warehouse>

Symua 6.18: Warehouse Domain XMI for example 3

<7xml version="1.0" encoding="UTF-8"7=
<ConfFile:HypoCategory xmi:version="2.0" smins:xmi="http-'www.omg.org/XMI™
xmins:ConfFile="nttp/fConfFile.ecore” Name="Fault Tolerance™>
<type Mame="Break Down Avoidance™
<property Mame="Adaquate Fault Tolerance in Total Production Environment™=
<feature Name="Fault Tolerance Metric” Threshold="> 0.6"/=
</property=
<property Mame="High Back Up Utilities">
<feature Mame="Back Up Utilities Ratic" Threshold="= 0.5"/>
</property=
<property Mame="High Applications Redundancy™
<feature Mame="Ratic High Apps Redundancy™ Threshold="> 0.1%/>
</property=>
<property Name="High Hardware Redundancy">
<feature Mame="Ratic High Hardware Redundancy” Threshold="=> 0.1"/=
</property=>
<ftype=
</ConfFile:HypoCategory=

Zynua 6.19: Configuration XMI file for example 3

6.3 Example 3

71

Adequate Fault Tolerance _in_Total _Production_Environment{Fault_Tolerance_Metnc, D1)
High_Back_Up_ Utilities(Back_Up_|Hilities_Ratio, D2)
High_Applications_Redundancy{Ratio_High_Apps_Redundancy, D3)
High_Hardware_Redundancy(Ratio_High_Hardware_Redundancy, D4}

Zymuo 6.20: entity0.db file for example 3

Break _Down_Avoidance(D1) 0.651985
Break Down_Avoidance(D2) 0.482002
Break Down_Avoidance(D3) 0.481002
Break Down_Avoidance(D4) 0.481002

Synua 6.21: Alchemy output for example 3

Kegaiowo 7

Conclusion

This diploma thesis focused on the problem of assisting Software Management operations for
large software projects and more specifically to assist the project managers, team leaders and architects
to obtain a better view and perspective of the status of their projects and even to identify potential
risks or quality problems. An early prediction of possible faults that can lead to failures, can allow the
planning of a potential avoidance strategy and, therefore, yield a better quality product.

The objective of this diploma thesis was, first, to investigate ways of modeling information obtained
by various IDEs and Project Management tools and, second, to analyze this information so as for
project managers to gather valuable information in order to assess the process of the development and
make project related decisions. A third objective was to model risk avoidance and quality prediction
policies using goal trees and a fourth was to utilize the MLN statistical reasoning framework to verify
these risk avoidance and quality prediction policies. Towards this target, an extensible and end - user
framework was developed in order to implement the above.

More specifically, data from various IDEs and project management tools are modeled using
an extensible MOF compliant schema and stored in a centralized object oriented data repository.
The data repository can be accessed by any tool that requires information. A pub/sub notification
mechanism allows for different tools also to be notified whenever there is a change in the repository’s
state. Furthermore, logic pertaining to quality prediction or risk avoidance is encoded in the form of
AND/OR Goal Trees. These trees through their different paths denote different ways of satisfying
or denying the top goal that is the root node of the corresponding tree. As each Goal Tree node is
associated with a First Order Logic expression containing user defined predicates, each path then can
be denoted by a Conjunctive Normal Form (CNF) First Order Logic expression. Each predicate in
such an expression can be verified or denied by a verifier component. As it was mentioned above, for
this thesis we have chosen to utilize a statistical reasoning mechanism based on the Markov Logic
Network theory. Markov Logic Networks allow for the evaluation of a probability value denoting the
confidence by which a predicate or property holds given a set of constraints and a First Order Logic
Knowledge Base. For evaluation purposes we have chosen to encode quality assessment policies that
stem from the ISO 9126 software quality standard.

The development of this framework was based on the BlackBoard architecture style and a combination
of multiple architecture design styles for the periphery components of the framework. This choice of

architecture design was aiming to offer flexibility and extensibility to the system.

In order to accomplish the verification of policies we utilized, it was also necessary to define
the domain models introduced in chapter 4. The Data Warehouse Domain Model simulated the data

73

74 Kepadiaio 7. Conclusion

provided originally by the developers, concerning IDEs or other Software Management projects. The
Hypothesis Domain Model exploited the flexibility offered by the AND/OR Goal Tree representation
structure in order to effectively model the hypotheses the user desires to check for validity. Finally,
the Markov Logic Networkds theory was adopted in order to gain softer constraints for the first -
order logic world and to calculate probabilities for the possible states of the world.

Through the development of this framework, this diploma thesis focused on handling questions
such as whether it is possible to apply Business Intelligence methods into Software Engineering
Management and Quality Control in order to accomplish a dynamic quality check based on information
gathered from IDEs or if this approach of analyzing and projecting business data can enable the
performance of fault and risk prediction with some measure of certainty. In order for this to be
accomplished, various fields were investigated such as the first - order logic theory, the Markov Logic
Networks theory, the AND/OR Goal Trees theory as well as the ISO International Standards.

7.1 Future Work

As mentioned above, the framework was developed in such a way that extensibility is ensured.
Therefore, its actual structure enables various future additions and optimizations. One necessary
optimization would be to create a friendly User Interface in order for the framework to be completely
end - user and to fulfil its purpose as an independent and autonomic system, apart from the simulation
within this diploma thesis.

Another possible extension that should be taken into consideration, is the expansion of the quality
assessment features. For the purposes of this diploma thesis and the creation of a pilote prototype,
focus was put mostly on the ISO Quality Standards. In the future, a very beneficial expansion would
be to enhance the framework with customization option, that is, the user/developer will have the
ability to customize the verification process according to his or her demands and criteria. The benefits
of such an extension are pointed in [20]. To this direction, the Business Intellegence area of Profiling
can prove very useful and, thus, should be looked into.

The technique used that is based on the Markov Logic Networks theory also has optimization
potential. For the purposes of this diploma thesis, first - order logic constraints that constitute the first
- order logic world on which the MLN construction is based, are considered equally probable. This
assumption may not always hold. Therefore, a future target would be the creation of an algorithm
that will assign weights to each predicate of the first - order logic world. One first estimation of
suitable weights for the predicates, would be the computation of the difference of each feature value
corresponding to one predicate, and the appropriate acceptance threshold of the same feature. Other
verification methods, apart from the Markov Logic Networks, can also be considered and researched.

Finally, the next steps include, to complete development of the framework as stand - alone application
integrated to data collection tools and software so as to assist developers to obtain a more comprehensive
perspective over the state of their projects and to gain knowledge on probable risks and errors.

Bifhoypocpio

(1]

(2]

(3]

(4]

[5]

(6]

[7]

(8]
[9]

Jay Ramanathan Rajiv Ramnath Aman Kumar, Preethi Raghavan. Enterprise interaction
ontology for change impact analysis of complex systems. In Proceedings of the 2008 IEEE
Asia-Pacific Services Computing Conference, pages 303--309, 2008.

Zhibao Wang Bilong Wen, Qing Shao. Integration enterprise process metrics model and
information model based on semantics. In Proceedings of the 2009 WRI World Congress on
Software Engineering, volume 4, pages 34--37, 2009.

Palo Alto Burton H. Lee, Standford University. Using bayes belief networks in industrial fmea
modeling and analysis. In Annual Reliability and Maintainability Symposium, pages 7 -- 15,
2001.

Magnus C. Ohlsson Claes Wohlin, Martin Host. Understanding the sources of software
defects : A filtering approach. In Proceedings of the Sth International Workshop on Program
Comprehension, pages 9--17, 2000.

Dr. James D. Palmer Dr. Joseph J. Romano. Tbrim : Decision support for validation/verification
of requirements. In /998 IEEE International Conference on Systems, Man, and Cybernetics,
volume 3, pages 2489 -- 2494, 1998.

Yong Hu Xiangzhou Zhang Xin Sun Mei Liu Jianfeng Du. An intelligent model for
software project risk prediction. In 2009 International Conference on Information Management,
Innovation Management and Industrial Engineering, volume 1, pages 629--632, 2009.

The Eclipse Foundation. Eclipse modeling framework (emf) [online]. http://help.
eclipse.org/galileo/index. Jsp.

Dr. John Hunt. Blackboard architectures. Technical report, 2002.

JIN Yongqin CHEN Qingzhang LI Jun, LIN Jianming1. Development of the decision support
system for software project cost estimation. In 2008 International Symposium on Information
Science and Engieering, pages 299--302, 2008.

Ronald R. Yager Liping Liu. Classic Works of the Dempster - Shafer Theory of Belief Functions.
Springer, 2008.

Pedro Domingos Matthew Richardson. Markov logic networks. Technical report, 2004.

Robert G. Mays. Applications of defect prevention in software development. IEEE Journal on
Selected Areas in Communications, 8:164 -- 168, 1990.

Ashok Sontakke Meng Li, He Xiaoyuan. Defect prevention : A general framework and its
applications. In Proceedings of the Sixth Conference on Quality Software, pages 281--286, 2006.

77

http://help.eclipse.org/galileo/index.jsp
http://help.eclipse.org/galileo/index.jsp

78

Biroyoagio

[14]

[15]

[16]

[17]
[18]
[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

Inc. Object Management Group. Object constraint language (ocl) [online]. http://www.
omg.org/technology/documents/formal/ocl.htm.

Inc. Object Management Group. Omg's metaobject facility (mof) [online]. http://www.
omg.org/mof/.

Inc. Object Management Group. Xml metadata interchange (xmi) [online]. http://www.
omg.org/technology/documents/formal/xmi.htm,

International Standards Organization. Iso/iec tr 9126 - 2. Technical report, 2003.
International Standards Organization. Iso/iec tr 9126 - 3. Technical report, 2003.

M. R. Bhashyam M. Ramakrishnan Pankaj Jalote, K. Dinesh. Quantitative quality management
through defect prediction and statistical process control. Technical report, 2000.

W. M. Pratt. Experiences in the application of customer - based metrics in impoving software
service quality. In IEEE International Conference on Communications, volume 3, pages 1459--
1462, 1991.

Xiaoyan Gao Qingtian Han. Application of data warehouse techniques in enterprise decision
support systems. In 9th International Conference on Computer - Aided Industrial Design and
Conceptual Design, pages 1116--1120, 2008.

Radu Marinescu Robert Mateescu, Rina Dechter. And/or multi-valued decision diagrams
(aomdds) for graphical models. Journal of Artificial Intelligence, pages 465--519, 2008.

Hamed Ahmadi Ali Kamandi Shahrouz Moaven, Jafar Habibi. A decision support system for
software architecture-style selection. In Sixth International Conference on Software Engineering
Research, Management and Applications, pages 213--220, 2008.

Carnegie Mellon University Software Engineering Institute. Capability maturity model
integration (cmmi) [online]. http://www.sei.cmu.edu/cmmi/.

Chad Brower Jayavel Shanmugasundaram Sergei Vassilvitskii Erik Vee Ramana Yerneni Steven
Euijong Whang, Hector Garcia-Molina. Indexing boolean expressions. VLDB, pages 37--48,
2009.

T. M. Allen Zhiwei Xu Khoshgoftaar. Prediction of software faults using fuzzy nonlinear
regression modeling. In Fifth IEEE International Symposium on High Assurance Systems
Engineering, pages 281--290, 2000.

http://www.omg.org/technology/documents/formal/ocl.htm
http://www.omg.org/technology/documents/formal/ocl.htm
http://www.omg.org/mof/
http://www.omg.org/mof/
http://www.omg.org/technology/documents/formal/xmi.htm
http://www.omg.org/technology/documents/formal/xmi.htm
http://www.sei.cmu.edu/cmmi/

Biproyoagia

79

	Ευχαριστίες
	Περίληψη
	Abstract
	Περιεχόμενα
	Κατάλογος σχημάτων
	Introduction
	Problem Description
	Thesis Contribution
	Outline of the Thesis

	Related Work
	MOF/XMI
	Quality Assessment Standards
	ISO International Standards
	CMMI

	Reasoning Frameworks
	Markov Logic Networks
	Dempster - Shafer theory of Evidence

	Goal Trees

	System Architecture
	Architecture Description
	General Overview
	Component Description
	Warehouse Module
	Modeling Module
	Hypothesis Generator Module
	UI Module
	Verification Module
	BlackBoard

	Sequence Diagram of the Functionality of the System

	Domain Models
	Warehouse Domain Model
	Warehouse Class
	Project Class
	Project Entity Class
	IDE Class
	Warehouse Data Class
	Property Class
	Feature Class
	Interpretation Logic Class
	Grounded Logic Expression Class
	MLN Class

	Hypothesis Domain Model
	HypoCategory Class
	HypoType Class
	Hypothesis Class
	HypoPath Class
	Iterator Class
	CNFExpr Class
	MLN Class
	Verifier Class
	GoalTree Class
	GoalNode Class
	AtomicGoal Class
	DecompositionGoal Class
	ExprProducer Class
	Strategy Class
	VerifierA Class
	VisitorCreator Class
	Visitor Class
	AnnotationContainer Class
	Annotation Class

	Hypothesis Analysis Algorithms
	Global Hypothesis Formation
	Hypothesis Domain XMI Population and Storage
	Strategy and Category definition
	Hypothesis Domain XMI Load and Parsing
	AND/OR Goal Tree Creation
	Goal Tree Node Annotations Creation
	Goal Tree Traversal and Predicates Construction

	Data and Fact Gathering
	Warehouse Domain XMI and Configuration XMI Population and Storage
	Verification Process Start
	Isolation of Features and Thresholds
	Predicates Construction

	Markov Logic Network Based Reasoning

	Case Studies
	Example 1
	Example 2
	Example 3

	Conclusion
	Future Work

	Βιβλιογραφία

