
Ενικό Μετσόιο Πουτενείο
Σοή Ηεκτροόν Μηανικών και Μηανικών Υποοιστών

Τομέας Τενοοίας Πηροφορικής και Υποοιστών

Στατική Ανάυση της Ανότητας τν
Συναρτήσεν της Γώσσας E

Διπματική Ερασία
του

Μιάη Πιτίδη

Επιέπν: Κστής Σαώνας
Αν. Καηητής Ε.Μ.Π.

Εραστήριο Τενοοίας Λοισμικού
Αήνα, Ιούιος 2010





Ενικό Μετσόιο Πουτενείο
Σοή Ηεκτροόν Μηανικών και Μηανικών Υποοιστών
Τομέας Τενοοίας Πηροφορικής και Υποοιστών
Εραστήριο Τενοοίας Λοισμικού

Στατική Ανάυση της Ανότητας τν
Συναρτήσεν της Γώσσας E

Διπματική Ερασία
του

Μιάη Πιτίδη

Επιέπν: Κστής Σαώνας
Αν. Καηητής Ε.Μ.Π.

Εκρίηκε από την τριμεή εξεταστική επιτροπή την 16η Ιουίου, 2010.

........................ ........................ ........................
Κστής Σαώνας Νικόαος Παπασπύρου Κώστας Κοντοιάννης

Αν. Καηητής Ε.Μ.Π. Επικ. Καηητής Ε.Μ.Π. Αν. Καηητής Ε.Μ.Π.

Αήνα, Ιούιος 2010



.........................................
Μιάης Πιτίδης
Διπματούος Ηεκτροόος Μηανικός και Μηανικός Υποοιστών Ε.Μ.Π.
© 2010– All rights reserved



Ενικό Μετσόιο Πουτενείο
Σοή Ηεκτροόν Μηανικών και Μηανικών Υποοιστών
Τομέας Τενοοίας Πηροφορικής και Υποοιστών
Εραστήριο Τενοοίας Λοισμικού

Copyright © – All rights reserved Μιάης Πιτίδης, 2010.
Με επιφύαξη παντός δικαιώματος.

Απαορεύεται η αντιραφή, αποήκευση και διανομή της παρούσας ερασίας, εξ οοκήρου
ή τμήματος αυτής, ια εμπορικό σκοπό. Επιτρέπεται η ανατύπση, αποήκευση και διανομή
ια σκοπό μη κερδοσκοπικό, εκπαιδευτικής ή ερευνητικής φύσης, υπό την προϋπόεση να
αναφέρεται η πηή προέευσης και να διατηρείται το παρόν μήνυμα. Ερτήματα που αφορούν
τη ρήση της ερασίας ια κερδοσκοπικό σκοπό πρέπει να απευύνονται προς τον συραφέα.





Περίηψη

Οι ανές συναρτήσεις, δηαδή οι συναρτήσεις ρίς παρενέρειες, παίζουν σημαντικό
ρόο στις συναρτησιακές ώσσες προραμματισμού, καώς οηούν στη συραφή κατα-
νοητού κώδικα που είναι εύκοο να εεεί. Σε μια ώσσα σαν την E, η οποία
δεν διαέτει σύστημα τύπν και επιτρέπει την αδιάκριτη ρήση ανών και μη ανών συνα-
ρτήσεν, η διαεαίση ότι ορισμένες συναρτήσεις είναι ανές μπορεί να φανεί ρήσιμη σε
συκεκριμένες περιπτώσεις. Η παρούσα διπματική ερασία επικεντρώνεται στην υοποίηση
μιας πήρς αυτοματοποιημένης στατικής ανάυσης ια τη διαπίστση της ανότητας ή
μη τν συναρτήσεν E. Καταράφει τις απαραίτητες ιδιότητες που καιστούν μια
συνάρτηση ανή και περιράφει τη σεδίαση της εφαρμοής P, ενός εραείου που
ξεκινάει από ένα σύνοο συναρτήσεν με προκαορισμένη ανότητα ια να αναύσει τον
κώδικα που του παρέει ο ρήστης. Με μια κατά άση απή και συντηρητική προσέιση,
είναι δυνατό να αποφανούμε ια την ανότητα ή μη του σεδόν 90% τν συναρτήσεν στις
εφαρμοές που εξετάζουμε.

Σαν πρακτική εφαρμοή, η ανάυση μας ενσματώηκε στο μεταττιστή της E,
επιτρέποντας τη ρήση αυαίρετν ανών συναρτήσεν σε εκφράσεις φρουρών, κάτι που
προηουμένς δεν ήταν δυνατόν. Η προσπάεια αυτή δεν ήταν πήρης, καώς στόος
της ήταν να δείξει ότι κάτι τέτοιο είναι εφικτό και ενδεομένς να αποτεέσει κίνητρο ια
μια ριμότερη υοποίηση. Πέρα από επεκτάσεις σαν την προηούμενη, τα αποτεέσματα
της ανάυσης μας α μπορούσαν να επιτρέψουν ορισμένους τύπους ετιστοποιήσεν στον
μεταττιστή της E.

Λέξεις Κειδιά
στατική ανάυση, ανά συναρτησιακός προραμματισμός, ανάυση ανότητας συναρτήσεν,
παρενέρειες, Erlang
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Abstract

Pure functions play an important role in functional programming languages, and help
in writing easy to test, robust and comprehensible code. In a language like E, which
lacks a type system and allows pure functions to be used interchangeably with impure
ones, being able to reason about the purity of certain functions can prove useful. This
thesis focuses on the implementation of a fully automatic static analysis that determines
the purity of E functions. It identifies the necessary properties of pure functions,
and describes the design of P, a tool which builds upon a set of functions with
predetermined values to analyse the purity of user provided code. Based on a generally
simple and conservative approach, it was possible to conclusively determine the purity of
roughly 90% of the functions in the code bases we tested.

As a practical application, our analysis was integrated into the E compiler,
allowing arbitrary pure functions to be used in guard expressions, something not previously
possible in E. While a bit rough and incomplete, our proof of concept could provide
motivation for a more mature implemenation. Furthermore, our analysis could make way
for some types of optimisations in the E compiler.

Keywords
static analysis, purely functional programming, pureness analysis, side-effects, Erlang
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Chapter 1

Introduction

1.1 Motivation and Outline of the Thesis
The purpose of this thesis is to design and implement a lightweight static analysis for

determining the purity of E functions, and evaluate the effectiveness of such an
analysis in actual code bases.

One may wonder why such an analysis is of interest. To start with, this analysis can
be useful to other software development tools. Compiler writers might benefit from such
information and enable certain optimisations based on it. Other type of code transfor-
mation tools, such as automatic refactoring programs, might find this analysis useful as
well [3, sec. 5]. Furthermore, such a tool can be of use to language designers, to gain in-
sight into what programs their users usually write. Programmers may also find it helpful
in identifying good or bad coding practices in their code, and restructuring it.

Our primary goal is to use this analysis as a stepping stone for extending the E
runtime and language supporting arbitrary guard expressions. While the first part of this
thesis elaborates on the analysis and its implementation —an E application aptly
named P— the latter documents our experiences implementing a prototype of such
an extension.

Before getting into the details of our implementation, we give an overview of purity in
functional programming languages and examine why it may represent a desired property
of functions. Chapter 2 is an introduction to the E programming language, focusing
on those features which influence our analysis. Following that, a detailed description of the
analysis itlself is described in Chapter 3. Chapter 4 details the process of implementing a
small prototype for user defined guards in the E compiler, while Chapter 5 presents
a brief summary of related work. Chapter 6 concludes this thesis.

1.2 Purely Functional Programming
Functional programming is a programming paradigm whereby computation is modeled

as the evaluation of expressions. This is in stark contrast to imperative programming,
which models computation as a series of statements (or “actions”), mutating the global
state as the statements are executed.

A function is said to be pure, if its outcome is not dependent on any mutable internal
state, which could vary across the program’s execution, and if it does not modify its
environment in any way. Such functions will always produce the same value given the
same set of arguments, a property known as referential transparency [11].
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16 Chapter 1. Introduction

Since evaluation of expressions and functions plays a central role in functional lan-
guages, the notion of a side-effect is introduced, i.e., any other interaction with the
program’s state or its environment. Characterising a function as having side-effects is
synonymous to saying it is not pure.

Listing 1.1 illustrates the difference with a very simple example in pseudo-code. The
first function, add, is useful because of the calculation it performs, and subsequently
returns. Conversely, the say_hello function is only useful because of its side-effect, writing
the message "Hello, world!" to standard output; its return value is irrelevant. �

1 add x y =
2 x + y
3
4 say_hello =
5 writeln "Hello, world ! "�

Listing 1.1: Pure functions vs functions executed for their side-effects

A functional language which only allows pure functions is said to be purely functional.
There are certain advantages to the purely functional approach in language design. First
of all, reasoning about pure functions is easier, and more intuitive. The programmer does
not have to keep track of all the possible changes in state, pertaining to a function call.
Pure functions are closer to their mathematical counterparts.

Furthermore, there is room for some types of optimisations, only possible with refer-
entially transparent functions. Order of evaluation is not important with pure functions,
and a compiler is free to reorder expressions as necessary, to achieve better locality of ref-
erence, or parallelization. Multiple calls to a function with the same set of arguments can
be substituted by a single one, and the result used in all subsequent calls, an optimisation
known as common subexpression elimination.

However, there are certain drawbacks as well. Having mutable data types can be more
efficient for a sizeable class of programs. Communication with the environment, be it I/O,
message passing or something else, is inherently imperative and mostly procedural.

Traditionally, functional languages work around these problems by including a small
set of imperative constructs, while keeping the core of the language purely functional.
This is the approach taken by E. A notable exception is Haskell, which manages to
keep the language purely functional, by wrapping side-effects and imperative constructs
in monads [12].



Chapter 2

Preliminaries

2.1 Erlang
E is a functional language, with strict semantics and dynamic types. Besides

features commonly found in functional languages, such as automatic memory management,
and built-in support for high level data types, some key features make E stand out.
These include first class support for concurrency and distribution, as well as fault-tolerance
and on-the-fly code reloading. The language also provides soft real-time guarantees. The
above make E ideal for building highly scalable and robust systems.

While functional programming is an established paradigm in the academic world, it
is not as widespread in the computer industry. E is a notable exception in this
respect, being one of the most industrially relevant functional languages of our day.

2.1.1 Implementation details
The de-facto implementation of the E VM is the Bogdan/Björn’s Erlang Ab-

stract Machine, BEAM for short. Compilation of E programs ends with generation
of BEAM bytecode, which is then interpreted by the virtual machine —from here on
abbreviated to VM.

2.1.2 Built-in functions
Built-in functions —or simply BIFs— are special functions in E. They are native

to the virtual machine and implemented in the language the VM is written, in this case C.
As a consequence, their execution differs from the execution of regular E functions.
For example, the BEAM bytecode generated for a call to some built-in function is typically
less complicated than that generated for regular function calls.

BIFs are thoroughly documented in the E module man page of the ERTS ref-
erence manual [8]. The manual also includes information on which BIFs can be used in
guard expressions. Why such information is necessary is the subject of Section 2.1.5.

2.1.3 Data types
A brief introduction to the most common data types in E is presented in this

section. These provide the building blocks for more complex structures. For a more
thorough description, refer to the E manual [7, ch. 2].

Numbers E supports integers and floats, e.g., 1, 42, 3.14.

17



18 Chapter 2. Preliminaries

Atoms These are essentially named constant literals, e.g., foo, bar, ok, error.

Lists A collection of E terms, which can be of arbitrary length and include terms
of any type, e.g., [1,3.14,foo].

Tuples A collection of E terms, this time of fixed length, e.g., {1,3.14,foo}.

Records Not a distinct data type, but rather a convenience notation for referring to tuple
elements by name.

Bit Strings and Binaries These are used to represent areas of untyped memory and
allow for efficient access to parts of it through a special syntax, e.g. <<10,20>>,
<<"ABC">>

Besides the ones mentioned above, E supports some additional built-in types,
such as port and process identifiers, or references, which are implementation dependent.
It should also be noted that strings and booleans are a special case of the previous types.
Strings are lists of characters, where characters are represented by integers, while boolean
values are the atoms true and false respectively.

2.1.4 Exceptions
E has a relatively simple exception handling mechanism. An exception consists

of its class, an exit reason, and a stack trace, which are E terms themselves. Ex-
ceptions of class error are generated by runtime errors, which occur when builtins such
as pattern matching, arithmetic and list manipulation operations fail. The user may also
generate an exception with one of the exit/1 and throw/1 BIFs, which belong to an
equivalent class.

If uncaught, an exception will terminate the process which evaluated the erroneous
expression. Two distinct mechanisms may catch exceptions, the older catch expression, or
the newer and more robust try-catch, which can distinguish between different exception
classes. The various exit reasons are documented in the E manual [7, ch. 10].

2.1.5 Pattern Matching: En Guard!
A well established feature of many functional languages, particularly those influenced

by ML, pattern matching, plays a central role in E. Pattern matching tries to match
a sequence of values against a corresponding sequence of patterns. The result, if successful,
is a mapping of variables from the pattern, to the various terms in the sequence of values.

One can think of pattern matching as the opposite of constructing a value. Whereas
in construction we bind a variable to a concrete value we specify, in pattern matching
we try to match an abstract value —such as a function argument— to a concrete one,
deconstructing it and binding variables to different parts of it. For instance, one can
assign a single-element list to a variable, with something like L = [5]. To pattern match
on such a list, binding the element to a variable, one merely has to write [E] = L.

While pattern matches in E can occur as arbitrary expressions in function bod-
ies, like the one just shown, they are most useful if specified in function definitions, case,
receive and try-catch expressions. In such cases, multiple patterns can be tried sequen-
tially, until a matching one is found.

Besides lists, most combinations of E data types can be pattern matched. This
includes numbers, atoms, tuples and records. Pattern matching also plays a major part in
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the concurrent aspect of the language, as it used extensively in the extraction of messages
from the mailbox of a process with the receive expression.

The example in Listing 2.1 shows how pattern matching can help write concise and
declarative functions. This particular example implements a lookup function for associa-
tion lists, which is very close to the abstract definition of such an operation:

1. if the list is empty, the key is not included;

2. if the first element of the list matches the key being looked up, stop and return the
value; or

3. if the first element of the list does not match the key, search the remainder of the
list.

Listing 2.2 contrasts a similar implementation in a fictional language without pattern
matching. This version is slightly convoluted, and does not convey the semantics of the
function so clearly.

Note how we can use the same name in two or more variables and the match will
only be successful when they hold the same value. Also noteworthy is the use of variable
names with a leading underscore. These are special to the compiler and will not generate
a warning if they remain unused in the rest of the function. Another special variable, the
single underscore, is not bound to values at all and can be used as a catch-all for any part
of the pattern we do not care about. �

1 assoc_find(_Key, []) −>
2 error;
3 assoc_find(Key, [{Key, Val}|_T]) −>
4 {ok, Val};
5 assoc_find(Key, [_H|T]) −>
6 assoc_find(Key, T).�

Listing 2.1: A simple example of pattern matching

�
1 assoc_find(Key, Lst) −>
2 i f Lst =:= []
3 error
4 else
5 H = hd(Lst),
6 i f is_tuple(H) and size(H) =:= 2 and element(1, H) =:= Key
7 {ok, element(2, H)}
8 else
9 assoc_find(Key, t l (Lst))�

Listing 2.2: The previous example in a language without pattern matching

When a pattern match is incomplete, and there is no matching clause, an exception
will be raised. The reason varies between badarg, function clause and case clause,
depending on the case. For example, the length/1 function, which is not total, will raise
a badarg exception when called with anything other than a list, as depicted in Listing 2.4.

Additional constraints can be placed on pattern matches, with the use of guards. Guard
expressions are executed in order and if the result evaluates to true, then the match is
successful. With guards, it is possible to extend the expressiveness of pattern matching,
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adding support for things like value ranges for numbers, or tests for abstract types, like
process identifiers, references and function objects. Listing 2.3 shows an example of pattern
matching extended with guards. �

1 cool(T) when T > 15, T < 22 −>
2 true;
3 cool(T) −>
4 fa l se .
5
6 loop_register(#st{players = Ps} = St0, Waiting) −>
7 receive
8 {Pid, start} when Ps =/= [], is_pid(Pid), node() =:= node(Pid) −>
9 %% Override player wait.

10 loop_register(St0, 0);
11 {new_player , Node, Pid, {Name, Vsn} = _Info} when is_pid(Pid) −>
12 ...
13 end.�

Listing 2.3: Example of pattern matching with guards

Since guard expressions are executed for every pattern match candidate, it is evident
that they should lack side-effects. Furthermore, guard expressions should evaluate in
bounded time. E’s solution is to restrict valid guard expressions to a predefined
set, which includes variables, boolean and arithmetic operators, and a small set of pure
BIFs, such as type tests.

A notable exception to the above are the node/0 and node/1 BIFs. Even though they
lack side-effects, they depend on the environment, specifically the node name of the VM
the code is currently executed in, which can be changed dynamically at runtime. This is a
testament to the ad-hoc manner in which certain parts of the E VM and language
specification have evolved.

Invalid guard expressions are detected at compile time, and the user is notified with
an appropriate error message. This occurs early in the compilation process, so for the
most part the compiler back-end works on the assumption that function calls in guard
expressions can only be BIFs.

Guards can fail for two reasons. Either the expression evaluates to false, or it raises
an exception. Consequently, any exception raised in a guard is silenced. This is apparent
in Listing 2.4, where the call to length(42) raises a badarg exception, while the call
to Foo(42) does not. Internally, the compiler wraps guard expressions inside try-catch
blocks.

2.1.6 Concurrency
Erlang implements the Actor model of concurrency. In particular, its concurrency

model can be summarised as share-nothing concurrency based on lightweight processes
communicating via asynchronous message passing [2].

We can see this model as an extension to that of pure functions. Each process does
not share state with other processes, ideally at least. Instead, it can only receive and send
messages, much like a function can be thought of receiving its arguments and sending its
reply.

This way it is far easier to reason about complex concurrency schemes. However,
just like with functions, pragmatic constraints force E to allow for global struc-
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�
1 1> Foo = fun(L) when length(L) =:= 4 −> ok;
2 1> (_) −> error end.
3 #Fun<erl_eval.6.13229925>
4 2> length(42).
5 ** exception error: bad argument
6 in function length/1
7 called as length(42)
8 3> Foo([1,2,3,4]).
9 ok

10 4> Foo([1,2]).
11 error
12 5> Foo(42).
13 error�

Listing 2.4: Exceptions in guards are silenced

tures, like the process registry, or ETS and DETS tables, which can introduce unwanted
complications such as race conditions [6].

2.1.7 On-the-fly code reloading
An unusual feature of E is support for replacement of old code with a newer

version, while the system is still running, otherwise known as on-the-fly code reloading.
This has implications on our plan to add support for user defined guards, since it is
not enough to integrate it to the compiler; a check for pure functions —or some type of
assurance thereof— has to be placed somewhere in the code loader of the E runtime
system as well.

2.1.8 E NIFs
Native Implemented Functions (NIFs) are a relatively new E construct, which

allow interfacing E with C code in a simple manner. The standard way of doing
so would be through the E ports system, which spawns external processes or links
C code as a shared library, and uses message passing to communicate with an E
program. The old approach is clearly an impure one, for the concurrency part alone.

As stated in the NIF section of the E interoperability tutorial [9], NIFs are
meant as synchronous functions making relatively short calculations without side-effects.
However, this is just a guideline and cannot be checked or enforced either way. Thus,
the purity of NIFs has to be hard-coded, in a manner similar to BIFs, by the user of the
application.

2.2 Core Erlang
As part of the compilation process, E code is first translated to C E,

a simpler functional language, better suited as a starting point for static analysis [4].
It is at this point in the compilation that guard expressions are wrapped in try-catch

blocks. The C E reference specifies the desired properties of guard expressions,
such as lack of side-effects and bounded —constant of linear— time of computation [5,
sec. 6.7]. It also specifies that the general form of function application is not allowed in
guards.
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Another notion introduced by C E is that of primitive operations, or primops
for short. These are similar to BIFs, in that they depend on the implementation of the
underlying runtime system. Unlike BIFs however, they are not exposed as functions to
the programmer.

For a more thorough understanding of C E, refer to the language refer-
ence [5]. Throughout the rest of the thesis, E and C E terminology will
be used interchangeably without special mention, as long as confusion does not ensue.

2.3 What is Pure in E
As mentioned earlier, E consists of a purely functional core, mixed with some

imperative constructs. The imperative parts are mostly BIFs which deal with Input/Out-
put operations, message passing, and other low level operations, usually related to the
E Virtual Machine.

2.3.1 Except exceptions
A notable gray area is exception handling in E. Exceptions disrupt the normal

flow of execution, as they represent a non-local return. In certain contexts however, they
can be thought of as just another return value, since exceptions can be pattern-matched
in special try-catch blocks.

Consider however the common subexpression elimination optimisation, where multiple
calls to a function with the same set of arguments are replaced by a single one whose result
is used in place of subsequent calls. As the example in Listing 2.5 illustrates, exceptions
should be considered side-effects in such contexts. �

1 foo(N) −>
2 42 / N.
3
4 bar(N) −>
5 X = foo(N),
6 Y = foo(N),
7 {X, Y}.
8
9 baz(N) −>

10 X = (catch foo(N)),
11 Y = foo(N),
12 {X, Y}.
13
14 bar_equiv(N) −>
15 X = foo(N),
16 {X, X}.
17
18 baz_equiv_wrong1(N) −>
19 X = (catch foo(N)),
20 {X, X}.
21
22 baz_equiv_wrong2(N) −>
23 Y = foo(N),
24 {Y, Y}.�

Listing 2.5: Exceptions can be tricky
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If we mark the function foo/1 as pure, then we could replace the second call to it
in bar/1, and transform bar/1 to bar_equiv/1. However, in the case of baz/1, doing
so would be wrong if exceptions are to be considered. The call foo(0) will generate a
bad arith exception, and if we only kept X, this would be silenced. Conversely, keeping
the version without the catch would also be wrong, considering a more complex example,
where the two calls are in different execution paths.

One may argue that expressions like catch could be detected and prevent optimisation
in such cases. However, handling exceptions as side-effects is undoubtedly simpler.

In contrast, exceptions do not pose a problem in case of guards, as we saw in Sec-
tion 2.1.5. Furthermore, almost all E functions, even total ones, are guarded with
an extra catch-all clause upon translation to C E, which raises the badarg
exception. While some of these clauses are later removed by an optimisation pass, such
behaviour cannot be relied upon for two reasons: a) the optimisation pass is optional,
and b) type analysis is required to accurately identify such cases. The E compiler
does not keep any type information, and type analysis is out of the scope of P.
Consequently, if exceptions were considered impure, almost any function would qualify as
impure too.

In any case, our choice is to leave the decision to the user of P, allowing exceptions
to be considered as side-effects as well as pure constructs, depending on the context.

2.3.2 Examples
A non-exhaustive table of impure constructs, along with a brief explanation, is available

in Table 2.1.

Function/Construct Description
receive Pattern match on messages, concurrency

! / erlang:send/2 Send messages, concurrency
register/2 Register a name for an E process, modifies VM state

io:format/2 Print to standard output, I/O
file:read/2 Read from file, I/O

date/0 Return the current date, depends on the environment
put/2 Store value in the process dictionary, modifies state

make_ref/0 Create a unique identifier, depends on hidden state in the VM

Table 2.1: Common impure constructs in E
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Analysis

3.1 Description

Our analysis is relatively straightforward. It operates on E modules, which are
first compiled to C E, and consists of two distinct stages. At the information
gathering stage, the C E Abstract Syntax Tree is traversed two times. The
first pass collects variable aliases for each function, while the second pass associates each
function analysed with a list of dependencies and a small context for each dependency.
Since all impure E constructs are translated to specific function calls in C
E —with the exception of the receive expression which needs special handling—
this list of dependencies essentially represents a call graph.

The second stage, the core of the analysis, tries to convert each function’s list of
dependencies to a value representing its purity. This is achieved by means of an iterative
process which ends when a fixed point is reached for all functions. The process starts
by selecting the subset of functions in the call graph whose purity is predetermined, the
so-called seed. The purity of each member of the seed is then propagated to the set of
functions which depend on it, following this simple rule: if impure, the dependent function
is characterised as impure too; if pure, this particular dependency is removed from the
dependent function’s dependency list. If a function ends up without any dependencies it
can be safely marked as pure. The process is then repeated, with the seed becoming the
set of functions whose purity was just determined.

The final product of our analysis is a lookup table, which maps functions to their
purity. The key is a 3-tuple of module, function and arity, while the value can be either
a concrete result, i.e., true or false, or a list of dependencies, which means the analysis
was inconclusive. From a conservative standpoint such functions are considered impure as
well.

To see how the analysis works in practice, some simple E functions are listed
along with their results after both the first and second stage of the analysis. �

1 % depends: [{remote ,{erlang,is_list ,1},[]},{remote ,{erlang,is_tuple ,1},[]}]
2 % is_pure: true
3 tol(L) when is_list(L) −> true;
4 tol(T) when is_tuple(T) −> true;
5 tol(_) −> false .�

Listing 3.1: A genuinely pure function

25
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Listing 3.1 presents a small function which performs a simple check on its argument.
This function calls two BIFs, is_list/1 and is_tuple/1, which are known to be pure.
Thus, the function is pure as well. It also happens that this function is total, as it works
for any type of input argument. Therefore, it cannot raise a function clause exception, so
it is pure regardless of how exceptions are treated. �

1 % depends: [{primop ,{match_fail ,1},[]}]
2 % is_pure: true
3 check_version(#plt{version = ?VERSION}) −>
4 ok;
5 check_version(#plt{}) −>
6 error.
7
8 % depends: [{primop ,{match_fail ,1},[]},{remote ,{erlang ,'+',2},[]}]
9 % is_pure: true

10 total(#stats{p = P, i = I, u = U, l = L}) −>
11 P + I + U + L.
12
13 % depends: [{primop ,{match_fail ,1},[]},{remote ,{erlang ,'=:=',2},[]}]
14 % is_pure: true
15 assoc_find(_Key, []) −>
16 error;
17 assoc_find(Key, [{Key, Val}|_T]) −>
18 {ok, Val};
19 assoc_find(Key, [_H|T]) −>
20 assoc_find(Key, T).�

Listing 3.2: Pure functions which may raise an exception

Listing 3.2 presents more pure functions. Unlike the previous listing, all of these may
raise exceptions, if called with inappropriate arguments. Notice how check_version/1
expects a #plt record as argument, while total/1 a #stats one. The compiler com-
pensates by adding a call to the match_fail/1 primop, which generates the appropriate
exception, as a catch-all clause on pattern matches.

The addition operation, which total/1 depends on, will also generate such an excep-
tion for non-numeric arguments, but is otherwise pure. Finally, assoc_find/3 will raise an
exception if its third argument is not a list. To provide some insight into the dependencies
of assoc_find/3, Listing 3.3 shows the same function translated to C E. One
can see how the =:= dependency corresponds to the pattern match on the Key variable
of the second case clause. It also shows how the call to the match_fail/1 primop is
automatically generated by the compiler.

It follows that none of these functions will be considered pure if exceptions are to be
treated as impure.

Having seen what qualifies as a pure function, it is time to take a look at what fails
to do so. Listing 3.4 shows how one may construct a stateful function in E. This
particular example makes explicit calls that manipulate the process dictionary —which
provides global mutable state for each E process.

On the other hand, the functions in Listing 3.5 are all impure because they make use
of concurrency primitives. First of all, the start/0 function calls the spawn/1 BIF, which
creates a new process —clearly a side-effect— and returns its process identifier. Then,
there is the call to register/2, which adds an appropriate entry to the process registry;
another side-effect.

In similar fashion, the loop/1 and pcount/0 functions are impure because of their
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�
1 'assoc_find'/2 =
2 fun (_cor1,_cor0) −>
3 case _cor0 of
4 <[]> when 'true' −>
5 'error'
6 <[{_cor5,Val}|_cor6]> when ca l l 'erlang':'=:='(_cor5,_cor1) −>
7 {'ok',Val}
8 <[_cor7|T]> when 'true' −>
9 apply 'assoc_find'/2(_cor1, T)

10 ( <_cor2> when 'true' −>
11 primop 'match_fail'({'case_clause',_cor2}) -| ['compiler_generated'] )
12 end�

Listing 3.3: Part of Listing 3.2 translated to C E

�
1 % depends: [{primop ,{match_fail ,1},[]},{remote ,{erlang ,'+',2},[]},
2 % {remote ,{erlang,get,1},[]},{remote ,{erlang,is_integer ,1},[]},
3 % {remote ,{erlang,put,2},[]}]
4 % is_pure: {false,"call to impure erlang:get/1, erlang:put/2"}
5 count() −>
6 case get(counter) of
7 undefined −>
8 put(counter, 1),
9 1;

10 N when is_integer(N) −>
11 put(counter, N + 1) %% put/2 also returns the previous value.
12 end.�

Listing 3.4: A stateful accumulator

dependency to the receive construct, and the ! primitive. The latter is more clear in
the stop/0 function. Other than that, we can see that loop/1 is structured in a manner
more fitting to a pure function, passing its state as argument to the next call. One should
also note the 'start-1'/0 function, which represents the anonymous function passed as
an argument to spawn/1. This is also impure, since it calls loop/1.

3.1.1 Bootstraping the analysis
As previously mentioned, we need an initial set of functions whose purity is predeter-

mined. This set should include all built-in functions, since these are implemented in C, not
in E, and thus cannot be analysed. It follows that we need to somehow hard-code
the purity of E BIFs. To this purpose, we extracted all the BIFs in BEAM and
generated an appropriate E module which holds all the necessary information. This
was extended to other commonly used functions for which our analysis could not extract
satisfactory results.

3.1.2 PLT: the Persistent Lookup Table
Besides having hard-coded values for functions, it is useful to keep track of previously

analysed modules, allowing for incremental analysis and saving the user the trouble of
re-analysing every module his application depends on, each time.

This is implemented with a persistent lookup table, or PLT for short. This PLT stores
the original list of dependencies produced by the analysis of each function, along with a
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�
1 % depends: [{remote ,{erlang,register ,2},[]},
2 % {remote ,{erlang,spawn ,1},[{1,{test,'start -1',0}}]}]
3 % is_pure: {false,"call to impure erlang:register/2, erlang:spawn/1"}
4 start() −>
5 register(acc, spawn(fun() −> loop(0) end)).
6
7 %'start -1'/0
8 % depends: [{local,{test,loop ,1},[]}]
9 % is_pure: {false,"call to impure test:loop/1"}

10
11 % depends: [{remote ,{erlang,' ! ',2},[]}]
12 % is_pure: {false,"call to impure erlang:' ! '/2"}
13 stop() −>
14 acc ! stop.
15
16 % depends: [{erl,'receive '},{remote ,{erlang,' ! ',2},[]},
17 % {remote ,{erlang,self ,0},[]}]
18 % is_pure: {false,"receive"}
19 pcount() −>
20 acc ! { s e l f (), next},
21 receive {count, N} −> N end.
22
23 % depends: [{erl,'receive '},{remote ,{erlang,' ! ',2},[]},
24 % {remote ,{erlang ,'+',2},[]}]
25 % is_pure: {false,"receive"}
26 loop(N0) −>
27 receive
28 {Pid, next} −>
29 N1 = N0 + 1,
30 Pid ! {count, N1},
31 loop(N1);
32 stop −> ok
33 end.�

Listing 3.5: Concurrency is a side-effect

table of the final purity results, which serves as a cache for faster execution on subsequent
runs. On each run, modules in the PLT are checked for modifications and re-analysed if
necessary.

Our implementation is inspired by the PLT in D, but is somewhat simpler and
more limited in scope.

3.1.3 Mutually recursive functions

One problem with our dependency-driven approach relates to mutually recursive func-
tions. Given two mutually recursive functions, with no dependencies other than the ones
between them, the algorithm previously described would result in an endless loop, unable
to determine the purity of either one. Worse, it is entirely possible that this can extend to
a bigger set of functions, for example that f1 depends on f2 which depends on f3, which
in turn depends on f1.

To address the issue, an extra step is added to the core of the analysis. Since mutually
dependent functions form cycles in the call graph, we map each function to the particular
cycle it belongs to and then single out those functions whose dependencies are all part of
that same cycle. These functions can be safely marked as pure.
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�
1 %% Directly dependent mutually recursive functions.
2 f(0) −> 1;
3 f(N) when N > 0 −> N - m(f(N-1)).
4
5 m(0) −> 0;
6 m(N) when N > 0 −> N - f(m(N-1)).
7
8 %% Indirectly dependent mutually recursive functions.
9 ping(0) −> ping_win;

10 ping(N) −> shoot(ping, N-1).
11
12 shoot(ping, N) −> pong(N);
13 shoot(pong, N) −> ping(N).
14
15 pong(0) −> pong_win;
16 pong(N) −> shoot(pong, N-1).�

Listing 3.6: Examples of mutually recursive functions

3.2 Higher Order Functions and Limitations

To better understand the limitations of our analysis, we consider the case of higher
order functions. A function is considered to be higher order, if it accepts other functions as
arguments or returns functions as return values. Considering the first part of the definition,
if a call is made to one of these arguments in the body of the higher order function, then
it follows that its purity depends on it, and the purity of the function cannot be resolved
to a fixed value. The only exception to this is when the function depends on other impure
functions as well.

Let us consider a higher order function, h, which just makes a call to its first argument,
for the sake of example. Clearly this has an unfixed purity. But what can be said about
a function g, which depends on h? This function would either be a higher order function
itself, taking another function as argument, and passing it along to h, or it would pass a
concrete function f, as argument to h. It is thus possible in the second case —assuming the
purity of f is known— to resolve the purity of this specific instance of h and consequently
that of g. Listing 3.7 gives an example of the above. �

1 %% A higher order function , which depends on its first argument.
2 fold(_Fun, Acc, []) −>
3 Acc;
4 fold(Fun, Acc, [H|T]) −>
5 fold(Fun, Fun(H, Acc), T).
6
7 %% A pure argument is passed to the higher order function , so the result
8 %% is pure as well.
9 g1() −>

10 fold(fun erlang:'*'/2, 1, [2, 3, 7]).
11
12 %% An impure argument is passed to the higher order function , so the
13 %% result is impure.
14 g2() −>
15 fold(fun erlang:put/2, computer, [ok, error]).�

Listing 3.7: An example of a higher order function
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This is a fairly simple case, but describes the most common use of higher order func-
tions in E. Our analysis also supports multiple function arguments. The next most
frequent case encountered, relates to the other possibility discussed earlier, i.e., that there
are multiple levels of indirection between the initial higher order function with the depen-
dency to its argument and the one which actually passes a concrete value. An example of
this is presented in Listing 3.8. �

1 %% One level of indirection: it is not apparent this is a higher
2 %% order function, since no call to its argument is made.
3 fold_1(Fun, Acc, Lst) −>
4 fold(Fun, Acc, Lst).
5
6 %% Two levels of indirection , and the function argument has changed
7 %% position as well.
8 fold_2(Lst, Fun) −>
9 fold_1(Fun, 1, Lst).

10
11 g3() −>
12 fold_1(fun erlang:put/2, ok, [computer , error]).
13 g4() −>
14 fold_2([2, 3, 7], fun erlang:'*'/2).�

Listing 3.8: A more elaborate example of higher order functions

The fact that both fold_1/3 and fold_2/2 are higher order functions is not imme-
diately apparent when their code is traversed. We can only infer that they depend on
fold/3, whose purity may not be available yet. So, during the second stage of the analy-
sis, the flow of arguments towards known higher order functions is analysed, and functions
like g3/0 and g4/0 can be resolved to impure and pure respectively. Some real world
examples of this case include functions like ordsets:fold/3 which depends in turn on
lists:fold/3, and dict:fold/3 which depends on helper functions internal to the dict
module.

The current implementation has limited support for this type of data flow analysis. It
only supports indirect higher order functions which take a single argument and have no
other unresolved dependencies. While the first limitation is probably straightforward to
overcome, the latter can be further complicated by mutually recursive calls, a common
practice for higher order functions which traverse tree-like structures for instance. An
example of some mutually recursive higher order functions is presented in Listing 3.9.

Yet another limitation arises from higher order functions which receive their arguments
indirectly, as parts of complex data structures, like records for instance. Again, it could be
possible to detect some of these cases statically, but most of them would require runtime
information. Refer to Listing 3.10 for some examples.

Another type of limitation regards higher order functions which are conditionally de-
pendent on their arguments. For instance the example in Listing 3.11 shows how we cannot
resolve the purity of baz/1, without a combination of control and data flow analysis. While
the example may seem slightly contrived, this type of limitation is actually encountered
in functions of the standard library, for instance the io_lib:format/2 function.

In regard to higher order functions which return other functions our analysis is even
more limited, as such return values are not tracked at the moment. As Listing 3.12
illustrates, while both foo/1 and the function it returns are pure, the purity of bar/0
cannot be determined, as it seemingly depends on an unknown value.
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�
1 %% Mutually recursive higher order functions , adapted from the
2 %% 'cerl_trees ' module.
3 treefold(Fun, Acc, Node) −>
4 case node_type(Node) of
5 clause −>
6 listfold(Fun, Acc, clause_elements(Node));
7 module −>
8 pairfold(Fun, listfold(Fun, module_defs(Node),
9 listfold(Fun, Acc, module_attrs(Node)));

10 cons −>
11 treefold(Fun, treefold(Fun, Acc, cons_hd(Node)), cons_tl(Node));
12 ...
13 end.
14
15 listfold(Fun, Acc, [N|Ns]) −>
16 listfold(Fun, treefold(Fun, Acc, N), Ns);
17 listfold(_, Acc, []) −>
18 Acc.
19
20 pairfold(Fun, Acc, [{N1, N2}|Rest]) −>
21 pairfold(Fun, treefold(Fun, treefold(Fun, Acc, N1), N2), Rest);
22 pairfold(_, Acc, []) −>
23 Acc.�

Listing 3.9: Mutually recursive higher order functions

�
1 %% Two function arguments , one direct and one extracted from the
2 %% #st record. Adapted from 'erlsom_sax_lib '.
3 foo(Val, Prev, ParseFun , #st{continuation = CFun, cont_state = CSt} = St) −>
4 case CFun(CSt) of
5 {Prev, _} −>
6 throw({error , "Unexpected end of data"});
7 {Next, NextContState} −>
8 ParseFun(Val, Next, St#st{cont_state = NextContState})
9 end.

10
11 %% Even more obscure, the funtion is extracted from an abstract data
12 %% type, a dictionary in this case.
13 bar(Key, Arg, Store) −>
14 Fun = dict:fetch(Key, Store),
15 case Fun(Arg) of
16 {ok, Val} −>
17 {Val, dict:erase(Key, Store)};
18 error −>
19 {error , Store}
20 end.�

Listing 3.10: Functions as parts of complex data structures

Finally, a different kind of limitation is described with the use of an example in List-
ing 3.13. While direct assignments of functions to variables are detected by P, more
complex cases like that of conditional assignment are currently unsupported.
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�
1 foo(Term, Format) when is_function(Format, 1) −>
2 term_to_binary(Format(Term));
3 foo(Term, no_fun) −>
4 term_to_binary(Term).
5
6 baz(Term) −>
7 foo(Term, no_fun).�

Listing 3.11: Conditional higher order functions

�
1 %% A simple closure.
2 foo(A) −>
3 fun(B) −> A + B end.
4
5 bar() −>
6 F = foo(2),
7 F(40).�

Listing 3.12: Functions as return values

�
1 %% We cannot handle the complex variable-binding expression generated by
2 %% the case clause, so F1 and F2 are not matched to either of the two
3 %% pure functions they may be bound to.
4 foo(Type, Arg) −>
5 {F1, F2} =
6 case Type of
7 normal −>
8 {fun math:sin/1, fun math:cos/1};
9 reverse −>

10 {fun math:cos/1, fun math:sin/1}
11 end,
12 {F1(Arg), F2(Arg)}.�

Listing 3.13: Example of limitations on complex variable assignments

3.3 A Conservative Approach
It is important to note that P takes a conservative approach in regard to its

analysis, which implies that any function which cannot be analysed conclusively is to be
considered impure. This is necessary since false positives are not acceptable, while false
negatives can be tolerated. In regard to the intended use of P, which is to allow
for arbitrary pure functions in guards, this does not pose a significant problem. Such
functions will most likely be small and straightforward.

3.4 P in Numbers
E programming guidelines suggest writing relatively small and self contained

pure functions, and then concentrating necessary side-effects to a few impure ones. In
order to measure the effectiveness of our analysis and also gain some insight as to how
closely such guidelines are actually followed, we analysed a diverse set of open source
E applications:
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Open Telecom Platform (OTP) An extensive collection of libraries and applications
distributed with open source E. Among other things, it includes the E
compiler itself, the standard library, static analysis tools like D, an XML
parsing library, and various networking tools.

CouchDB A document oriented distributed database system.
Wings3D A subdivision modeler, used for generation of polygon models in computer

graphics.
ejabberd A server implementation of the Extensible Messaging and Presence Protocol

(XMPP), an open standard used primarily for instant messaging.
Yaws A high performance HTTP 1.1 server.
ibrowse An HTTP 1.1 client, also a dependency of Yaws.
Erlssom Another XML parsing library and dependency of Yaws.

P itself is also analysed and presented with the rest of these applications. Ta-
ble 3.1 includes some further information about each application, while Table 3.2 presents
the results of the analysis.

The first two columns of Table 3.2, ‘Pure’ and ‘Impure’, should be self-explanatory.
Both the ‘Undefined’ and ‘Limited’ columns list functions which lack concrete pure-
ness values. While the first represents functions whose purity is inherently undecid-
able, the latter contains those for which we cannot draw any conclusions because of
limitations in our analysis. A typical example of the first category is a function like
apply(Module, Function, Args), which returns the result of calling Function in Module,
with Args. Keeping in mind that functions in E are characterised by their arity as
well as their module and name, and since Args is an arbitrary list, it is not always known
at compile time which function will be called. 1 In general, the purity of most higher
order functions is undecidable, since it depends on their arguments. Also included here
are unknown functions, and any functions which depend on them. These could be BIFs
and NIFs, or just functions not included in the PLT at the time of analysis. For examples
of the second category, refer to Section 3.2. Finally, the last column contains CPU times
for each application analysed, measured with the erlang:statistics/1 function.

The surprisingly high percentage of undecidable functions in Erlsom was traced down
to the extensive use of continuation passing style in its lower level parsing functions.

A graphical representation of the results in Table 3.2 can be found in Figure 3.1 through
Figure 3.4.

It is worth noting, that a completely different picture is presented when exceptions are
treated as impure. The percentage of pure functions plummets to the single digit values,
between 5-6%. These results are omitted, since they are pretty much uniform across every
analysed application.

1In fact, calls to erlang:apply/3 with a concrete argument list are converted to direct
Module:Function(Args) calls by the compiler.
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App Version Modules Functions LOC
OTP R14 1,743 116,115 1,183,904

ibrowse 1.6.1 7 226 2,683
Erlsom 1.2.1 18 568 10,410
Yaws 1.88 42 1,560 30,543

ejabberd 2.1.4 149 5,168 55,457
Wings3D 1.2 168 9,506 87,774
CouchDB 0.11.0 97 2,501 22,938
purity 0.1 12 361 2,557

Table 3.1: Details of analysed applications

App % Pure % Impure % Undefined % Limited Time
OTP 41.5 44.0 0.9 13.5 4:52

ibrowse 39.4 60.6 0.0 0.0 0:02
Erlsom 38.7 16.7 0.5 44.0 0:04
Yaws 41.9 49.2 1.5 7.3 0:07

ejabberd 35.5 56.3 4.9 3.3 0:17
Wings3D 45.8 45.3 1.2 7.8 0:27
CouchDB 42.0 46.9 1.1 10.0 0:09

purity 62.9 27.7 1.1 8.3 0:03

Table 3.2: Analysis results
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Figure 3.1: Percentage of pure functions in OTP and ibrowse
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Figure 3.4: Percentage of pure functions in CouchDB and purity

3.4.1 Beyond the numbers
According to the previous statistics, the biggest part of most E applications is

written in an impure manner. However, such a conclusion is not necessarily consistent with
the intentions of most E programmers. To begin with, there is no measurement of
the actual size of each function, and the role it plays in each module. Furthermore, if a
commonly used function in a module is impure, this will propagate to every other function
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calling it, and therefore most of the module.
Finally, it should be noted that our definition of purity is a strict one. Consider

an example like the one in Listing 3.14. At first glance it is not so obvious whether
this function is impure. Both filename:basename/1 and filename:rootname/1 should be
simple list processing functions, and they are used for the value they return. As it turns
out, they are both impure, because they depend on os:type/0 in order to do their work
in a portable manner across different operating systems. Consequently, they depend on
the execution environment, and are thus not referentially transparent: their results vary
across different operating systems. A typical programmer would most likely not consider
the use of such a function as inconsistent with programming in a purely functional style.

This is why the possibility of distinguishing between functions which are impure be-
cause they lack referential transparency, as opposed to those which are impure because of
side-effects, is being considered. This would enable the users of P to select only one
of the two criteria instead of both whenever that would fit better to their intended use of
the results. Such an option would also help in the handling of functions like erlang:node/0
and erlang:node/1 which are allowed in guards —as mentioned in Section 2.1.5— but
are considered impure by our analysis. �

1 filename_to_module(Filename) −>
2 list_to_atom(filename:basename(filename:rootname(Filename))).�

Listing 3.14: Is this function impure?





Chapter 4

User Defined Guards

4.1 Motivation
Chapter 2 introduced guards, how they are used in E, and the limitations cur-

rently enforced. Allowing arbitrary function calls as guard expressions further increases
the expressiveness of the language and leaves room for more compact and descriptive code.

Grouping multiple guard tests into a single function is a readily apparent advantage.
However, this is currently possible in E with the use of macros as shown in List-
ing 4.1. The real advantage of such an extension is better abstraction. �

1 -define(is_mfa(M, F, A), is_atom(M), is_atom(F), A >= 0, A =< 255).
2
3 ...
4 is_pure(erlang,is_integer ,1) −>
5 true;
6 is_pure(M, F, A) when ?is_mfa(M, F, A) −>
7 unknown.�

Listing 4.1: Compact guards with the help of macros

Abstract data types —often abbreviated to ADTs— are a fundamental aspect of most
programming languages. They make it possible to hide the implementation details of
a particular data type, and only allow it to be manipulated via well defined interfaces.
For example, a set module should only export common set manipulation operations, like
element addition, unions and intersections. Whether the set is implemented as a balanced
tree, a hash table or something else, does not affect those fundamental operations. Keeping
the data type abstract, allows the programmer to change it —to a more efficient one for
instance— without breaking all the code which depends on set operations.

Unfortunately, structural information of data types is exposed in E, as it allows
inspection through pattern matching and type tests. Recent additions to D, a
static analysis tool for E, allow specifying terms as opaque, and detecting violations
of their opaqueness outside their module [14]. Such violations should be replaced with
proper type tests exported by that module. For example, all three modules implementing
sets in the E standard library —sets, ordsets and gb_sets— export an is_set/1
function, to this end.

Allowing arbitrary type tests as guards can help make code cleaner, and could even
discourage programmers from breaking ADT contracts. The two examples in Listing 4.2,
depict an attempt at distinguishing between different set implementations. The first ver-
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sion shows how one might implement it in E currently, while the second shows how
simpler it could become with the help of user defined guards. �

1 %% Custom tests not allowed as guards.
2 foo(Set) −>
3 case gb_sets:is_set(Set) of
4 true −>
5 handle_gb_set(Set);
6 fa l se −>
7 case sets:is_set(Set) of
8 true −>
9 handle_set(Set);

10 fa l se −>
11 error
12 end
13 end.
14
15 %% Custom tests allowed.
16 foo(Set) when gb_sets:is_set(Set) −>
17 handle_gb_set(Set);
18 foo(Set) when sets:is_set(Set) −>
19 handle_set(Set);
20 foo(_) −>
21 error.�

Listing 4.2: Employing custom abstract type tests in guards

Besides type tests, functions such as gb_sets:is_empty/1 are also prominent candi-
dates for use as guards. Listing 4.3 presents additional examples. �

1 foo(S) when gb_sets:is_empty(S) −>
2 error;
3 foo(S) −>
4 {ok, gb_sets:largest(S)}.
5
6
7 %% Example of how a balanced tree manipulation function could look like.
8 bar({tree, _, L, R} = Tree, ....) when is_balanced(Tree) −>
9 handle_balanced...

10 bar({tree, _, L, R} = Tree, ....) when is_left_chain(L) −>
11 handle_left_chain...
12 bar({tree, _, L, R} = Tree, ....) when is_right_chain(R) −>
13 handle_right_chain..
14
15 %% Another example of type abstraction , taken from Purity.
16 is_impure({ false , _}) −>
17 true;
18 is_impure(Ctx) when is_context(Ctx) −>
19 ctx_mem({erl, 'receive'}, Ctx);
20 is_impure(_) −>
21 fa l se .
22
23 is_context(C) −> is_list(C).�

Listing 4.3: More cases of useful user defined guards
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4.2 Erlang Compilation
In the course of its compilation, an E program has to go through many transfor-

mations, represented by distinct passes in the compiler. These include conversions between
several intermediate languages, three of which are of interest to us:

1. C E: An intermediate representation of E, more suitable for anal-
ysis and code transformations;

2. Kernel E: An internal representation of the compiler;

3. Kernel E annotated with variable life-time information; and

4. BEAM bytecode, where our interaction with the compiler stops

4.3 Implementation
A proof of concept implementation of user defined guards was implemented as a patch

against the development version of E R14. It adds an optional flag to the E
compiler, which allows for arbitrary functions to be used as guards, but only if they are
free of side-effects.

Two distinct aspects of the compilation process were altered. First of all, the compiler
frontend was modified. An extra pass was added for pureness analysis, as well as command
line flags to control it. Other than that, part of the compiler backend had to be changed
so that arbitrary E functions could be executed properly in guard expressions. A
more thorough explanation of the changes follows.

4.3.1 Frontend
Errors relating to invalid guards expressions are first converted to warnings. If the

+pure_guards flag is provided, and after the code is translated to C E, it is
analysed for purity. Afterwards, any functions used in guards are looked up. If they are
pure, the warning is preserved, otherwise it is reverted to an error. This is also what
happens if the flag is not present.

4.3.2 Backend
Minor changes were necessary up to the code generation stage. Support for handling

arbitrary call expressions in Kernel E was added.
In the subsequent pass, where Kernel E is annotated with lifetime information,

any functions with user defined guards were marked and wrapped in a block expression.
This was in order to take advantage of the existing mechanisms in the BEAM code gen-
eration phase, which insert appropriate stack and register manipulation instructions, such
as allocation and deallocation.

Small modifications to the BEAM validation pass were also necessary.

4.4 Engineering Issues
A proposal for somehow annotating pure functions is being considered. This could be

used to trigger appropriate compiler checks. Furthermore, it would make the programmer’s
intentions explicit, and help in making the use of user defined guards less confusing.
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Another thing to consider is the E loader. As mentioned in Section 2.1.7, because
of on-the-fly code reloading the E loader needs to make sure that a newer version of
an E module does not violate the assumptions made for the earlier version. Purity
annotations could assist the loader in checking for potential violations.

4.5 Usage Examples
Some examples of using the modified compiler are presented in Listing 4.4 through

Listing 4.8. �
1 -module(test1).
2 -compile(export_all).
3
4 mylist(L) when is_list(L) −>
5 true;
6 mylist(_) −>
7 fa l se .
8
9 f(H) when mylist(H) −>

10 [ok|H];
11 f(_) −>
12 error.
13
14 h(H) −>
15 i f mylist(H) −> [ok|H];
16 true −> error
17 end.
18
19 g(H) when mylist(H) −>
20 [ok|H];
21 g(H) −>
22 H.�

Listing 4.4: A very basic user defined guard

�
1 $ ./bin/erlc test1.erl
2 test1.erl:9: illegal guard expression
3 test1.erl:15: illegal guard expression
4 test1.erl:19: illegal guard expression
5
6 $ ./bin/erlc +pure_guards test1.erl
7 test1.erl:0: Warning: error loading plt: no_such_file
8 test1.erl:9: Warning: user defined guard mylist/1
9 test1.erl:15: Warning: user defined guard mylist/1

10 test1.erl:19: Warning: user defined guard mylist/1
11
12 $ ./bin/erlc +pure_guards '+{plt,"otp.plt"}' test1.erl
13 test1.erl:9: Warning: user defined guard mylist/1
14 test1.erl:15: Warning: user defined guard mylist/1
15 test1.erl:19: Warning: user defined guard mylist/1�

Listing 4.5: Example usage of the modified compiler

As we can see in the example, a simple test module is compiled. First we pass no flags
to the compiler and get an illegal guard expression error as a result. Then, we make use
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of the +pure_guards flag, in which case we are warned of the fact that we are using user
defined guards, but the program compiles fine. There is one more warning, regarding the
PLT which is not found at its default location. So, in the subsequent call we pass the
location of the PLT file explicitly.

While this example was simple enough not to require a PLT, a more advanced example
shows how it can be useful. As illustrated in Listing 4.6 and Listing 4.7, there is no way to
determine the purity of the ordsets:is_element/2 function, since it belongs to a different
module. If however the results of a previous analysis are stored in a PLT, the function can
be used as a guard. The example also illustrates how the compiler will report an error if
a function is not found to be pure. �

1 -module(test4).
2 -compile(export_all).
3
4 f(L) when ordsets:is_element(x, L) −>
5 success;
6 f(_) −>
7 failure.�

Listing 4.6: A more useful guard

�
1 $ ./bin/erlc +pure_guards test4.erl
2 test4.erl:4: illegal guard expression
3 test4.erl:0: Warning: error loading plt: no_such_file
4
5 $ ./bin/erlc +pure_guards '+{plt,"otp.plt"}' test4.erl
6 test4.erl:4: Warning: user defined guard ordsets:is_element/2�

Listing 4.7: Different results depending on the presence of the PLT

Finally, the correctness of the test1 module is verified by calling its functions from
the E shell. This is shown in Listing 4.8. �

1 $ ./bin/erl
2 Eshell V5.7.5 (abort with ^G)
3 1> test1:mylist([]).
4 true
5 2> test1:f([1]).
6 [ok,1]
7 3> test1:f(3).
8 error
9 4> test1:h([2]).

10 [ok,2]
11 5> test1:h({}).
12 error
13 6> test1:g({tup,le}).
14 {tup,le}
15 7> test1:g([{tup,le}]).
16 [ok,{tup,le}]
17 8>�

Listing 4.8: Verifying the guards work as expected
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4.6 Limitations
Some limitations of our prototype should be noted. To begin with, it is not possible

to make use of the patch when defining functions in the E shell at the moment.
Another limitation relates to calls to higher order functions in guard expressions and is
described with the help of an example in Listing 4.9. While the guards in function foo/1
and bar/1 are equivalent, the first one will generate an illegal guard expression error, since
the purity of lists:all/1 is actually not fixed but depends on its argument. However,
no call site analysis will be performed at this stage, the compiler merely looks up the
value of the function which is part of the guard expression in the table returned by a
previous analysis pass. We can easily work around this by defining a wrapper function like
literals/1, as shown in the example. Whether the above presents an actual limitation
or instead helps keep guard expressions simple and easier to comprehend is debatable. �

1 %% Illegal guard expression
2 foo(Arg) −>
3 Args = cerl:call_args(Arg),
4 case call_mfa(Arg) of
5 {erlang,make_fun ,3} when lists:all(fun cerl:is_literal/1, Args) −>
6 list_to_tuple([cerl:concrete(L) || L <- Args]);
7 ...
8 end.
9

10 %% Same functionality , but legal guard expression
11 bar(Arg)
12 Args = cerl:call_args(Arg),
13 case call_mfa(Arg) of
14 {erlang,make_fun ,3} when literals(Args) −>
15 list_to_tuple([cerl:concrete(L) || L <- Args]);
16 ...
17 end.
18
19 literals(Args) −>
20 lists:all(fun cerl:is_literal/1, Args).�

Listing 4.9: Limitations on direct calls to higher order functions
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Related Work

5.1 Purity in other Languages
Even though we are not aware of any related work regarding E specifically,

purity concerns most functional programming languages, one way or the other.

5.1.1 The case of H
H is a purely functional, statically typed programming language, with non-

strict semantics. It employs one of the most interesting and exotic approaches to functional
programming, managing to keep the language pure, while allowing for arbitrary side-effects
by encapsulating them into monads [12].

This approach cleanly isolates pure from impure code, and at the same time, relies on
H’s rich type system for determining the purity of functions. This way, no extra
annotations are required, and in combination with type inference, the programmer is
relieved of the burden of specifying such properties. Listing 5.1 shows how some common
impure functions can be encapsulated in the IO monad and how such information is
encoded in their type signature. Also noteworthy is the use of the sequence function,
which forces the evaluation of the particular sequence of actions from left to right in order
to produce the desired side-effects. �

1 module Main where
2 import Random
3
4 say_hello :: IO ()
5 say_hello =
6 putStrLn "Hello, world!"
7
8 rand :: Int -> IO Int
9 rand n =

10 randomRIO (1, n)
11
12 main :: IO [()]
13 main = do
14 n <- rand 42
15 sequence $ take n $ repeat say_hello�

Listing 5.1: Encapsulation of impure functions into monads
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5.1.2 Clean
Clean is similar to H in many respects. It is purely functional, statically typed

and also features non-strict evaluation. It differs however in its approach in regard to
purity. Clean uses a uniqueness typing system [1, ch. 9]. This extends a traditional type
system, by allowing the user to specify that a given function argument is unique. This
annotation guarantees the function will have private access to the argument, therefore
destructive updates to it will not violate the function’s semantics during the execution of
the program.

5.1.3 BC
BC was developed as a systems programming language with the goal of supporting

formal verification. Unlike the previous two languages, BC is not purely functional.
It does however support user level type annotations regarding the purity of functions,
through a so called effect type system [16, ch. 10]. This associates expressions with an
effect variable, which can have a value of pure, impure or unfixed.

The use of the effect type system, and the classification of expressions is similar in many
regards to the way our analysis works. BC takes this one step further and allows for
annotations meant to ensure stateless execution, leaving room for compiler optimisations.

5.1.4 Joe-E
Joe-E is a subset of the Java programming language specifically developed to support

verification of pure functions via static analysis, something previously not possible in a
high-level imperative language such as Java. Joe-E is described as an object-capability lan-
guage by its designers and focuses primarily on using pureness analysis to ensure security
properties such as function invertibility, reproducibility of computation and execution of
untrusted code [10].

5.2 Other Uses
5.2.1 Compiler optimizations

A few compiler optimisations depend on pureness analysis. Some of the more common
ones are listed here.

5.2.1.1 Common Subexpression Elimination (CSE)

As mentioned in previous sections, common subexpression elimination takes advantage
of pure functions, so that multiple calculations of the same value can be avoided.

5.2.1.2 Code Reordering

This is a general type of optimisation, with many variations. The idea is to change the
order of certain expressions in a program while preserving its semantics. In most cases the
goal is to achieve better locality of reference, in order to exploit instruction pre-fetching
and CPU caches.
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5.2.1.3 Parallelization
As long as two or more pure functions do not depend on the result of each other they

can be executed in parallel. With this observation in mind, it is possible for a compiler to
perform a parallelizing code transformation to gain performance benefits, something all the
more important in today’s multi-core environments. This optimisation can be combined
with code reordering for better results.

5.2.1.4 Memoization
Memoization is a type of caching optimisation, where results of functions calls are

stored, and instead of evaluating the same function repeatedly, the cached results are
returned. The concept is somewhat similar to the CSE optimisation described earlier,
but is more general, as the stored calls may span across completely different parts of the
executing program.

5.2.2 Miscellaneous
As mentioned in the introduction, one of the drawbacks of pure functions is reduced

performance. While there have been advancements in the development of efficient purely
functional algorithms and data structures [13], there is ongoing research towards different
directions as well.





Chapter 6

Conclusion

6.1 Concluding Remarks
This thesis analysed the required properties for an E function to be considered

pure, in the functional programming sense, and presented P, a tool for determining
such properties by way of static analysis of E source code. As a direct application
of this analysis the possibility of enhancing the E language with user defined guard
expressions was considered and a small —and incomplete— prototype of this was imple-
mented as a patch against the E compiler. To seriously consider such an extension
however, further assurances for E functions in guard expressions are necessary. In
particular, evaluation in bounded time is a mandatory requirement, a property that could
be determined by some type of conservative finiteness analysis. Some engineering issues
need to be worked out as well.

In the course of testing our implementation diverse code bases were analysed, providing
insight as to the current practices of E programmers. The percentage of functions
that are classified as pure by our analysis constitutes roughly 40 to 50% of the functions in
all the modules of an application. This percentage is significant if one takes into account
that E is primarily a concurrent language; the fact that it is also a functional
language is itself a side-effect.

6.2 Future Work
It is our intention to release P as open source software so as to to further pursue

the enhancement of the E language with arbitrary guard expressions. Besides sup-
port for distinguishing between functions which are impure because of lack of referential
transparency as opposed to the presence of side-effects, P could also benefit from
more advanced data and control flow analysis in order to increase its accuracy.

6.3 Acknowledgements
The source code of D [15] has been very helpful in the development of P

and earlier versions of the code depended on some of its modules. Various free and open
source software applications, including the E distribution itself, provided signifi-
cant help in testing and diagnosing the functionality of P. Without such wealth of
applications freely available in source code form, the development of P would have
been significantly harder.
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