
ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ

ΣΧΟΛΗ ΗΛΕΚΤΡΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ ΚΑΙ ΜΗΧΑΝΙΚΩΝ ΥΠΟΛΟΓΙΣΤΩΝ

ΤΟΜΕΑΣ ΤΕΧΝΟΛΟΓΙΑΣ ΠΛΗΡΟΦΟΡΙΚΗΣ ΚΑΙ ΥΠΟΛΟΓΙΣΤΩΝ

Ανάπτυξη εργαλείου εκτίμησης κατανάλωσης
ισχύος/ενέργειας για επαναδιαμορφούμενες

αρχιτεκτονικές

ΔΙΠΛΩΜΑΤΙΚΗ ΕΡΓΑΣΙΑ

του

 ΧΑΡΑΛΑΜΠΟΥ Ν. ΣΙΔΗΡΟΠΟΥΛΟΥ

Επιβλέπων : Δημήτριος Σούντρης
Καθηγητής Ε.Μ.Π.

Αθήνα, Ιούλιος 2010

Η σελίδα αυτή είναι σκόπιμα λευκή.

ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ
ΣΧΟΛΗ ΗΛΕΚΤΡΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ
ΚΑΙ ΜΗΧΑΝΙΚΩΝ ΥΠΟΛΟΓΙΣΤΩΝ

ΤΟΜΈΑΣ ΤΕΧΝΟΛΟΓΙΑΣ ΠΛΗΡΟΦΟΡΙΚΗΣ
ΚΑΙ ΥΠΟΛΟΓΙΣΤΩΝ

Ανάπτυξη εργαλείου εκτίμησης κατανάλωσης
ισχύος/ενέργειας για επαναδιαμορφούμενες

αρχιτεκτονικές

ΔΙΠΛΩΜΑΤΙΚΗ ΕΡΓΑΣΙΑ

του

ΧΑΡΑΛΑΜΠΟΥ Ν. ΣΙΔΗΡΟΠΟΥΛΟΥ

Επιβλέπων : Δημήτριος Σούντρης
Καθηγητής Ε.Μ.Π.

Εγκρίθηκε από την τριμελή εξεταστική επιτροπή την 2η Ιουλίου 2010.

...................................
Δημήτριος Σούντρης Κιαμάλ Πεκμετζή Γιώργος Οικονομάκος
Καθηγητής Ε.Μ.Π. Καθηγητής Ε.Μ.Π. Λέκτορας Ε.Μ.Π.

Αθήνα, Ιούλιος 2010

...................................

ΧΑΡΑΛΑΜΠΟΣ Ν. ΣΙΔΗΡΟΠΟΥΛΟΣ

Διπλωματούχος Ηλεκτρολόγος Μηχανικός και Μηχανικός Υπολογιστών Ε.Μ.Π.

© 2010 – All rights reserved

Απαγορεύεται η αντιγραφή, αποθήκευση και διανομή της παρούσας εργασίας, εξ ολοκλήρου ή

τμήματος αυτής, για εμπορικό σκοπό. Επιτρέπεται η ανατύπωση, αποθήκευση και διανομή για

σκοπό μη κερδοσκοπικό, εκπαιδευτικής ή ερευνητικής φύσης, υπό την προϋπόθεση να αναφέρεται η

πηγή προέλευσης και να διατηρείται το παρόν μήνυμα. Ερωτήματα που αφορούν τη χρήση της

εργασίας για κερδοσκοπικό σκοπό πρέπει να απευθύνονται προς τον συγγραφέα.

Οι απόψεις και τα συμπεράσματα που περιέχονται σε αυτό το έγγραφο εκφράζουν τον συγγραφέα

και δεν πρέπει να ερμηνευθεί ότι αντιπροσωπεύουν τις επίσημες θέσεις του Εθνικού Μετσόβιου

Πολυτεχνείου.

Development of a Design Framework for
Power/ Energy consumtion estimation in

heterogeneous FPGA architectures

by

Charalampos N. Sidiropoulos

National Technical University of Athens

School of Electrical and Computer Engineering

Division of Computer Science

July 2010

Thesis Supervisor: Dimitrios Soudris
Title: Professor in the School of Electrical and Computer Engineering,

National Technical University of Athens, Greece.

2

Abstract

The FPGA is an integrated circuit that contains many (64 to over 10,000)
logic cells and hard blocks that can be viewed as standard components. The
key to Fpgas' popularity is their ability to implement any circuit simply by be-
ing appropriately programmed (or reprogrammed). Most current reasonably
sized FPGA user designs make use of hard speci�c-purpose heterogeneous
blocks in addition to basic logic and routing fabric. These hard circuits are
speci�c circuits included on an FPGA to perform speci�c logic functions,
such as a multipliers or a memories, which could also be implemented using
the base logic units and the routing fabric.

In order to investigate the quality of di�erent FPGA architectures, one
needs CAD tools capable of automatically implementing circuits in each
FPGA architecture of interest. Once a circuit has been implemented in an
FPGA architecture, one next needs accurate area, delay and power models
to evaluate the quality (speed achieved, area required, power consumed) of
the circuit implementation in the FPGA architecture under test.

Power is especially a concern in Field-Programmable Gate Arrays (FP-
GAs). The post-fabrication �exibility in these devices is provided using a
large number of prefabricated routing tracks and programmable switches.
These tracks can be long, and can consume a signi�cant amount of energy
every time they switch. In addition, the programmable switches add capac-
itance to each track; this further increases the power dissipation of FPGAs.
Also the generic logic structures that are at the heart of every FPGA con-
sume more power than the dedicated circuitry that would be found on an
ASIC.

In this thesis frameworks and tools of FPGA design are analyzed and a
complete framework its proposed for power estimation in heterogeneous FP-
GAs, named NAROUTO, along with a Heterogeneity Support Toolset
(HST). With this framework one can explore di�erent heterogeneous FPGA
architectures in terms of delay , area and power, and the HST toolset can be
used in collaboration with other academic tools for further research.

Keywords < Heterogeneous FPGA, Framework, Design Flow, Power Esti-
mation, NAROUTO, Heterogeneity Support Toolset, HBVPR, HBT-Vpack>

2

Contents

1 Introduction 17
1.1 What is an Fpga . 17
1.2 Advantages - disadvantages of FPGAs over ASIC 19
1.3 Fpga Fabric . 21
1.4 CAD tools, design of an FPGA 28
1.5 Organization of the Chapters 31

2 State of the Art 33
2.1 Standalone tools . 33

2.1.1 Logic Synthesis and Technology mapping tools 33
2.1.1.1 MVSIS . 33
2.1.1.2 ABC . 36

2.1.2 Clustering, Place and Route tools 40
2.1.2.1 VPR 4.30 . 40
2.1.2.2 Heterogeneous framework VPR 5.0.2 43

2.1.3 Powermodel Framework 47
2.1.4 Nettovqm . 51
2.1.5 Convert_arch_to_xml 51
2.1.6 VPR 5.0 with power estimation 52

2.2 Existing Frameworks . 53
2.2.1 Meander . 53

2.2.1.1 What is Meander 53
2.2.1.2 Meander Design Flow 56

2.2.2 Quartus . 61
2.2.2.1 What is Quartus 61
2.2.2.2 Quartus design �ow 61

2.2.3 ALLIANCE . 70
2.2.3.1 What is ALLIANCE 70

3

2.2.3.2 ALLIANCE Design Flow 70

3 Proposed Framework 75
3.1 Quartus, edif . 78

3.2 Quartus, hierarchical blif . 79

3.2.1 BLIF format . 79

3.2.2 BLIF output from Quartus 81

3.3 Powermodel Ace . 86

3.4 HBT-Vpack . 89

3.5 Heterogeneity Support Toolset 96

3.5.1 Practical problems in Heterogeneity support 96

3.5.2 HST Tools . 97

3.5.2.1 Blackbox-aware technology mapping 97

3.5.2.2 Blackbox Packing 98

3.5.2.3 Multiplexer 103

3.5.2.4 Net2xml . 107

3.5.2.5 Activity_Updater 111

3.6 HBVPR . 112

3.6.1 Power estimation . 112

3.6.1.1 Dynamic Power 112

3.6.1.2 Short-Circuit Power 116

3.6.1.3 Leakage power 117

3.6.1.4 Blackboxe's power estimation 117

3.6.2 Placement and routing 118

3.7 DAGGER . 121

4 Benchmarking 125
4.1 Benchmarks information . 125

4.2 Heterogeneity Support Toolset results 127

4.3 HBVPR results . 132

4.3.1 Non-packed . 134

4.3.2 Area and delay optimized architecture after level 1, 2
packing at 180nm . 137

4.3.3 Area and delay optimized architecture after level 1, 2
packing at 130nm . 145

4.3.4 Area and delay optimized architecture after level 1, 2
packing at 90nm . 148

4

4.3.5 Area and delay optimized architecture after level 1, 2
packing at 65nm . 152

4.3.6 Area and delay optimized architecture after level 1, 2
packing at 45nm . 156

4.3.7 Comparison results . 160

5 Conclusions 165

6 Future work 167

5

6

List of Figures

1.1 Abstract design of a generic FPGA 18
1.2 Applications of FPGAs [2] . 19
1.3 A 3-LUT schematic (a) and the corresponding 3-LUT symbol

and truth table (b) for a logical XOR 21
1.4 A simple lookup table logic block. 22
1.5 An island-style architecture with connect blocks and switch

boxes. 23
1.6 A connection block. 24
1.7 A switch block. 25
1.8 Local (direct) connections and L2 connections augmenting a

switched interconnect. 26
1.9 A typical FPGA mapping �ow. 29

2.1 A cluster-based logic block. 41
2.2 Initial Random Placement . 43
2.3 Final Placement . 43
2.4 Completely (Detailed) Routed Circuit 44
2.5 Close-up View of the FPGA Routing Architecture 44
2.6 Heterogenous blocks in an FPGA. 45
2.7 Island style FPGA. 47
2.8 H-tree clock network. 48
2.9 Powermodel framework. 48
2.10 Meander design �ow. 54
2.11 DAGGER required input �les. 61
2.12 Quartus II design �ow. 62
2.13 Quartus II design entry �ow. 64
2.14 Quartus II synthesis �ow. 64
2.15 Quartus II place and route �ow. 65
2.16 Quartus II Power Analysis �ow. 66

7

2.17 Quartus II Simulation �ow. 68
2.18 Quartus II Programming �ow. 69
2.19 How the tools are linked on the data structures in ALLIANCE

design Flow. 71

3.1 NAROUTO framework design Flow. 76
3.2 The detailed design �ow for power estimation of NAROUTO

framework. 77
3.3 Design entry �ow in NAROUTO taken from Quartus design

�ow (red highlighted area). 78
3.4 Example of an FPGA Routing Segment. 113
3.5 Schematic of a logic block. 114
3.6 RC Ladder network corresponding to a clock tree with two

clock bu�ers. 117
3.7 Top view of a heterogeneous design with 8 blackboxes. The

di�erent types of blackboxes are shown with di�erent colors
(VPR only supports 6 di�erent colors) and have height three
times the basic soft logic cluster. 119

3.8 Horizontal routing tracks pass through at every grid location,
even from blackboxes . 120

3.9 Blackbox connections to the routing channel (red squares) . . 121
3.10 Blackbox connections to clbs (green blackbox is connected to

blue and red clbs) . 122

4.1 Oc_hdlc benchmark placement in HBVPR without Blackbox-
aware technology mapping. The blackbox positions are marked
with the red squares. 128

4.2 Oc_hdlc benchmark placement in HBVPR after level 1 Black-
box packing. 129

4.3 Oc_hdlc benchmark placement in HBVPR after level 2 Black-
box packing. 130

4.4 Comparison between non-packed and packed designs in terms
of area requirement. The blue area of each bar represents the
percent area savings of packed designs. The total area required
by each design is shown in CLBs number, the number in the
red area is for packed designs and the blue for non-packed . . 142

4.5 Comparison between non-packed and packed designs in terms
of critical path delay. 143

8

4.6 Comparison between non-packed and packed designs in terms
of total power consumption. 144

4.7 Comparison of di�erent technologies in terms of critical path
delay. 162

4.8 Comparison of di�erent technologies in terms of power con-
sumption. 163

4.9 Comparison in terms of power consumption for the same op-
erating frequency. 164

6.1 Meander and NAROUTO design frameworks. 168

9

10

List of Tables

2.1 Comparison betwen Meander, Toronto university framework
and ALLIANCE framework 55

2.2 Comparison beetwen EX-VPR and VPR 59

3.1 Ac2 �le example . 92
3.2 Fun �le example . 93
3.3 Net �le blackboxe's example 94
3.4 Blackbox_Pro�ler log �le . 98
3.5 Blackbox example before (top) and after (bottom) blackbox-

aware technology mapping . 100
3.6 Blackbox example after level 1 packing (top) and after level 2

packing (bottom) . 102
3.7 Blackbox example before (top) and after (bottom) I/O multi-

plexing . 105
3.8 Extra clbs from blackbox I/O multiplexing 106
3.9 Log �le of Multiplexer tool 107

4.1 Benchmark information . 126
4.2 Number of blackboxes before and after packing level 1 and

2. In some benchmarks the Blackbox_pro�ler resulted that
all blackboxes are to be packed into one in the �rst level of
packing, so in level 2 there is a "-" 127

4.3 Estimated RAM bits each blackbox in each design has after
Level 1 packing, the form is (No. of blackboxes× Ram bits) . 131

4.4 Pin multiplexing . 131
4.5 Area results benchmarks without blackbox-aware technology

mapping. 134
4.6 Delay results (in seconds) of benchmarks without blackbox-

aware technology mapping. 134

11

4.7 Total power dissipation results (in Watts) of benchmarks with-
out blackbox-aware technology mapping. 135

4.8 Leakage power dissipation results (in Watts) of benchmarks
without blackbox-aware technology mapping. 135

4.9 Energy consumption results (in Joules) of benchmarks without
blackbox-aware technology mapping. 136

4.10 Summarized results of benchmarks without blackbox-aware
technology mapping. 136

4.11 Area results from benchmarks in 180nm optimized for area
and delay FPGA architecture. 138

4.12 Delay results from benchmarks in 180nm optimized for area
and delay FPGA architecture. 138

4.13 Total power dissipation results from benchmarks in 180nm
optimized for area and delay FPGA architecture. 139

4.14 Leakage power dissipation results from benchmarks in 180nm
optimized for area and delay FPGA architecture. 140

4.15 Energy consumption from benchmarks in 180nm optimized for
area and delay FPGA architecture. 140

4.16 Summarized results from benchmarks in 180nm optimized for
power FPGA architecture. 141

4.17 Area results from benchmarks in 130nm FPGA architecture. . 145
4.18 Delay results from benchmarks in 130nm FPGA architecture. 146
4.19 Total power dissipation results from benchmarks in 130nm

FPGA architecture. 146
4.20 Leakage power dissipation results from benchmarks in 130nm

FPGA architecture. 147
4.21 Energy consumption (in Joules) from benchmarks in 130nm

FPGA architecture. 147
4.22 Summarized results from benchmarks in 130nm FPGA archi-

tecture. 148
4.23 Area results from benchmarks in 90nm FPGA architecture. . . 149
4.24 Delay results from benchmarks in 90nm FPGA architecture. . 149
4.25 Total power dissipation results from benchmarks in 90nm FPGA

architecture. 150
4.26 Leakage power dissipation results from benchmarks in 90nm

FPGA architecture. 150
4.27 Energy consumption (in Joules) from benchmarks in 90nm

FPGA architecture. 151

12

4.28 Summarized results from benchmarks in 90nm FPGA archi-
tecture. 152

4.29 Area results from benchmarks in 65nm FPGA architecture. . . 153
4.30 Delay results from benchmarks in 65nm FPGA architecture. . 153
4.31 Total power dissipation results from benchmarks in 65nm FPGA

architecture. 154
4.32 Leakage power dissipation results from benchmarks in 65nm

FPGA architecture. 154
4.33 Energy consumption (in Joules) from benchmarks in 65nm

FPGA architecture. 155
4.34 Summarized results from benchmarks in 65nm FPGA archi-

tecture. 156
4.35 Area results from benchmarks in 45nm FPGA architecture. . . 157
4.36 Delay results from benchmarks in 45nm FPGA architecture. . 157
4.37 Total power dissipation results (in Watts) from benchmarks

in 45nm FPGA architecture. 158
4.38 Leakge power dissipation results (in Watts) from benchmarks

in 45nm FPGA architecture. 158
4.39 Energy consumption (in Joules) from benchmarks in 45nm

FPGA architecture. 159
4.40 Summarized results from benchmarks in 45nm FPGA archi-

tecture. 160

13

14

List of Algorithms

1 hb_for_ace . 87
2 Blackbox_Pro�ler . 97
3 Blackbox Packing level 1 . 99
4 Blackbox_Packing Level 2 . 101
5 Multiplexer . 104
6 Activity_Updater . 111

15

16

Chapter 1

Introduction

1.1 What is an Fpga

The FPGA is an integrated circuit that contains many (64 to over 10,000)
identical logic cells that can be viewed as standard components. Each logic
cell can independently take on any one of a limited set of personalities. The
individual cells are interconnected by a matrix of wires and programmable
switches. A user's design is implemented by specifying the simple logic func-
tion for each cell and selectively closing the switches in the interconnect
matrix. The array of logic cells and interconnect form a fabric of basic build-
ing blocks for logic circuits (�gure 1.1). Complex designs are created by
combining these basic blocks to create the desired circuit.

Field Programmable means that the FPGA's function is de�ned by a
user's program rather than by the manufacturer of the device. A typical
integrated circuit performs a particular function de�ned at the time of man-
ufacture. In contrast, the FPGA's function is de�ned by a program written
by someone other than the device manufacturer. Depending on the particu-
lar device, the program is either imprinted permanently or semi-permanently
as part of a board assembly process, or is loaded from an external memory
each time the device is powered up. This user programmability gives the
user access to complex integrated designs without the high engineering costs
associated with application speci�c integrated circuits.

As process geometries have shrunk into the deep-submicron region, the
logic capacity of FPGAs has greatly increased, making FPGAs a viable im-
plementation alternative for larger and larger designs (�gure 1.2). Due to

17

18 CHAPTER 1. INTRODUCTION

Figure 1.1: Abstract design of a generic FPGA

these technological advantages since their introduction in 1984 FPGAs have
become one of the most popular implementation media for digital circuits and
have grown into an industry of 2.75 billion dollar per year (2010 estimates).

1.2. ADVANTAGES - DISADVANTAGES OF FPGAS OVER ASIC 19

Figure 1.2: Applications of FPGAs [2]

1.2 Advantages - disadvantages of FPGAs over

ASIC

The key to Fpgas' popularity is their ability to implement any circuit sim-
ply by being appropriately programmed (or reprogrammed). Other circuit
implementation options, such as Standard Cells or Mask-programmed Gate
Arrays (MPGAs), require that a di�erent VLSI chip be newly fabricated for
each design. The use of a standard FPGA over these custom technologies,
has two key bene�ts: lower non-recurring engineering (NRE) costs, and faster
time-to-market.

To implement a circuit in a MPGA or with Standard Cells, one sends the
completed design to a silicon foundry which manufactures a chip to imple-
ment exactly (and only) that design. The non-recurring engineering (NRE)
fees to have the �rst chip manufactured are typically between $100000 and
$250000; these fees cover the costs of making lithography masks for the cir-
cuit and of running a new design through the fabrication plant. On the
other hand, a design is implemented in an FPGA simply by programming
the FPGA to have the desired functionality , so there are no NRE costs. This
makes Fpgas the lowest cost implementation medium for small and medium

20 CHAPTER 1. INTRODUCTION

volume designs.
Time-to-market is the other key advantage of FPGAs. Full fabrication

typically takes 6 - 8 weeks. If problems are found in the �nished chip it
must be thrown away, and designers have to wait another 6 - 8 weeks to
fabricate a corrected design. FPGAs on the other hand can be programmed in
seconds and once the chip is tested it can be reprogrammed in mere minutes.
Sometimes reprogramming is merely a bug �x to correct faulty behavior, or it
is used to add a new feature. Other times, it may be carried out to recon�gure
a generic computation engine for a new task, or even to recon�gure a device
during operation to allow a single piece of silicon to simultaneously do the
work of numerous special-purpose chips. With today's demanding market
for short product cycles, the time-to-market advantage this provides is often
compelling.

FPGA programmability carries a price, however. In ASIC (MPGAs and
Standar Cells) circuitry is interconnected with metal wires. FPGAs, in con-
trast, must connect circuitry via programmable switches. These switches
have higher resistance than metal wires and add signi�cant capacitance to
connections, thus reducing circuit speed. The switches also take up more
area than metal wires would, so an FPGA must be considerably larger than
an MPGA to implement the same design. Due to the added capacitance to
connections, FPGAs consume more power than the MPGA implementing the
same circuit. Compared to ASICs, they may be 3 to 25 times worse in terms
of area, delay, power and performance. The larger size of FPGA circuitry
makes FPGA implementations more expensive than MPGAs for high vol-
ume designs, the limited speed and the power consumption precludes their
use in very high speed and power sensitive designs. These di�erences man-
date research into new FPGA architectures in order to reduce these speed,
density and power penalties. In addition, because the FPGA marketplace
is highly competitive, each FPGA manufacturer is constantly searching for
better FPGA architectures in order to gain a speed, density and power ad-
vantage [1].

1.3. FPGA FABRIC 21

1.3 Fpga Fabric

All FPGAs are composed of three fundamental components : logic blocks,
I/O blocks and programmable routing. The logic block used in an FPGA
strongly in�uences the FPGA speed and area e�ciency. Most current com-
mercial FPGAs use logic blocks based on Look up tables (LUTs). From a
circuit implementation perspective, a LUT can be formed simply from an
N:1 (N-to-one) multiplexer and an N-bit memory. From the perspective of
digital logic, a LUT simply enumerates a truth table. Therefore, using LUTs
gives an FPGA the generality to implement arbitrary digital logic. Figure 1.3
shows a typical N-input lookup table that we might �nd in today's FPGAs.

Figure 1.3: A 3-LUT schematic (a) and the corresponding 3-LUT symbol
and truth table (b) for a logical XOR

LUT
The LUT can compute any function of N inputs by simply programming

the lookup table with the truth table of the function we want to implement.
As shown in the �gure, if we wanted to implement a 3-input exclusive-or
(XOR) function with our 3-input LUT (often referred to as a 3-LUT), we
would assign values to the lookup table memory such that the pattern of
select bits chooses the correct row's "answer". Thus, every "row" would
yield a result of 0 except in the four cases where the XOR of the three select
lines yields 1. Of course, more complicated functions, and functions of a
larger number of inputs, can be implemented by aggregating several lookup
tables together. For example, one can organize a single 3-LUT into an 8 x
1 ROM, and if the values of the lookup table are reprogrammable, an 8 x 1
RAM. But the basic building block, the lookup table, remains the same.

22 CHAPTER 1. INTRODUCTION

Although the LUT has more or less been chosen as the smallest compu-
tational unit in commercially available FPGAs, the size of the lookup table
in each logic block has been widely investigated. On the one hand, larger
lookup tables would allow for more complex logic to be performed per logic
block, thus reducing the wiring delay between blocks as fewer blocks would
be needed. However, the penalty paid would be slower LUTs, because of
the requirement of larger multiplexers, and an increased chance of waste if
not all of the functionality of the larger LUTs were to be used. On the other
hand, smaller lookup tables may require a design to consume a larger number
of logic blocks, thus increasing wiring delay between blocks while reducing
per-logic block delay.Current empirical studies have shown that the 4-LUT
structure makes the best trade-o� between area and delay for a wide range
of benchmark circuits.

Additionally there is a simple single-bit storage element in our base logic
block in the form of a D �ip-�op. The output multiplexer selects a result
either from the function generated by the lookup table or from the stored bit
in the D �ip-�op. This is shown in �gure 1.4.

Figure 1.4: A simple lookup table logic block.

Interconnection
Current popular FPGAs implement what is often called island-style ar-

chitecture. This design has logic blocks tiled in a two dimensional array
and interconnected in some fashion. The logic blocks form the islands and
"�oat" in a sea of interconnect. With this array architecture, computations
are performed spatially in the fabric of the FPGA. Large computations are
broken into 4-LUT-sized pieces and mapped into physical logic blocks in the
array. The interconnect is con�gured to route signals between logic blocks
appropriately. With enough logic blocks, we can make our FPGAs perform
any kind of computation we desire.

1.3. FPGA FABRIC 23

Figure 1.5: An island-style architecture with connect blocks and switch
boxes.

24 CHAPTER 1. INTRODUCTION

In Figure 1.5 an island-style architecture FPGA is shown. Here the
routing structure is generic and mesh-like. The logic block accesses nearby
communication resources through the connection block, which connects logic
block input and output terminals to routing resources through programmable
switches, or multiplexers. The connection block (�gure 1.6) allows logic block
inputs and outputs to be assigned to arbitrary horizontal and vertical tracks,
increasing routing �exibility.

Figure 1.6: A connection block.

The switch block appears where horizontal and vertical routing tracks
converge as shown in Figure 1.7. In the most general sense, it is simply a
matrix of programmable switches that allow a signal on a track to connect
to another track. Depending on the design of the switch block, this con-
nection could be, for example, to turn the corner in either direction or to
continue straight. The design of switch blocks is an entire area of research
by itself and has produced many varied designs that exhibit varying degrees
of connectivity and e�ciency.

With this architecture, the concept of a segmented interconnect becomes
more clear. For signals that need to travel longer distances, individual seg-
ments can be switched together in a switch block to connect distant logic
blocks together. Think of it as a way to emulate long signal paths that can
span arbitrary distances. The result is a long wire that actually comprises
shorter segments. In this interconnect architecture introduction of connec-
tion blocks and switch boxes separates the interconnect from the logic, allow-
ing long-distance routing to be accomplished without consuming logic block
resources. To improve on our structure, we introduce longer-length wires.
For instance, consider a wire that spans one logic block as being of length-1

1.3. FPGA FABRIC 25

Figure 1.7: A switch block.

(L1). In some segmented routing architectures, longer wires may be present
to allow signals to travel greater distances more e�ciently. These segments
may be length-4 (L4), length-8 (L8), and so on. The switch blocks (and per-
haps more embedded switches) become points where signals can switch from
shorter to longer segments. This feature allows signal delay to be less than
O(N) when covering a distance of N logic blocks by reducing the number of
intermediate switches in the signal path. Figure 1.8 illustrates augmenting
the single-segment interconnect with two additional lengths: direct-connect
between logic blocks and length-2 (L2) lines. The direct-connect lines leave
general routing resources free for other uses, and L2 lines allow signals to
travel longer distances for roughly the same amount of switch delay. This
interconnect architecture closely matches that of the Xilinx XC4000 series of
commercial FPGAs.

Programming Technologies

Each con�gurable element in an FPGA requires 1 bit of storage to main-
tain a user-de�ned con�guration. For a simple LUT-based FPGA, these
programmable locations generally include the contents of the logic block
and the connectivity of the routing fabric. Con�guration of the FPGA is
accomplished through programming the storage bits connected to these pro-
grammable locations according to user de�nitions. For the lookup tables, this
translates into �lling it with 1s and 0s. For the routing fabric, programming
enables and disables switches along wiring paths. There are many known
methods for storing a single bit of binary information, the most popular

26 CHAPTER 1. INTRODUCTION

Figure 1.8: Local (direct) connections and L2 connections augmenting a
switched interconnect.

methods used for FPGAs are SRAM, antifuse and Flash memory.

SRAM

The most widely used method for storing con�guration information in
commercially available FPGAs is volatile static RAM, or SRAM. This method
has been made popular because it provides fast and in�nite recon�gura-
tion in a well-known technology. Drawbacks to SRAM come in the form
of power consumption and data volatility. Compared to the other popular
technologies, the SRAM cell is large (6-12 transistors) and dissipates signif-
icant static power because of leakage current. Another signi�cant drawback
is that SRAM does not maintain its contents without power, which means
that at power-up the FPGA is not con�gured and must be programmed us-
ing o�-chip logic and storage. This can be accomplished with a non-volatile
memory store to hold the con�guration and a micro-controller to perform
the programming procedure. While this may seem to be a trivial task, it
adds to the component count and complexity of a design and prevents the
SRAM-based FPGA from being a truly single-chip solution.

Flash memory

Although less popular than SRAM, several families of devices use Flash
memory to hold con�guration information. Flash memory is di�erent from
SRAM in that it is nonvolatile and can only be written a �nite number of
times. The non-volatility of Flash memory means that the data written to it

1.3. FPGA FABRIC 27

remains when power is removed. In contrast with SRAM-based FPGAs, the
FPGA remains con�gured with user-de�ned logic even through power cycles
and does not require extra storage or hardware to program at boot-up. In
essence, a Flash-based FPGA can be ready immediately. A Flash memory
cell can also be made with fewer transistors compared to an SRAM cell. This
design can yield lower static power consumption as there are fewer transistors
to contribute to leakage current.

Drawbacks to using Flash memory to store FPGA con�guration infor-
mation stem from the techniques necessary to write to it. As mentioned,
Flash memory has a limited write cycle lifetime and often has slower write
speeds than SRAM. The number of write cycles varies by technology, but is
typically hundreds of thousands to millions. Additionally, most Flash write
techniques require higher voltages compared to normal circuits; they require
additional o�-chip circuitry or structures such as charge pumps on-chip to
be able to perform a Flash write.

Antifuse
A third approach to achieving programmability is antifuse technology.

Antifuse, as its name suggests, is a metal-based link that behaves the op-
posite of a fuse. The antifuse link is normally open (i.e. unconnected). A
programming procedure that involves either a high-current programmer or
a laser melts the link to form an electrical connection across it, in essence,
creating a wire or a shortcircuit between the antifuse endpoints.

Antifuse has several advantages and one clear disadvantage, which is that
it is not reprogrammable. Once a link is fused, it has undergone a physical
transformation that cannot be reversed. FPGAs based on this technology
are generally considered one-time programmable (OTP). This severely limits
their �exibility in terms of recon�gurable computing and nearly eliminates
this technology for use in prototyping environments. However, there are
some distinct advantages to using antifuse in an FPGA platform. First, the
antifuse link can be made very small, compared to the large multi-transistor
SRAM cell, and does not require any transistors. This results in very low
propagation delays across links and zero static power consumption, as there
is no longer any transistor leakage current. Antifuse links are also not suscep-
tible to high-energy radiation particles that induce errors known as single-
event upsets, making them more likely candidates for space and military
applications.

28 CHAPTER 1. INTRODUCTION

1.4 CAD tools, design of an FPGA

Three factors combine to determine the performance of an FPGA : the quality
of the CAD tools used to map circuits into the FPGA, the quality of the
FPGA architecture, and the electrical (i.e. transistor-level) design of the
FPGA. In order to investigate the quality of di�erent FPGA architectures,
one needs CAD tools capable of automatically implementing circuits in each
FPGA architecture of interest. Once a circuit has been implemented in an
FPGA architecture, one next needs accurate area, delay and power models
to evaluate the quality (speed achieved, area required, power consumed) of
the circuit implementation in the FPGA architecture under test [1].

Implementing a circuit in a modern FPGA requires that hundreds of
thousands or even millions of programmable switches and con�guration bits
be set to proper state, on or o�. Clearly if a circuit designer has to specify
the state of each programmable switch in an FPGA very few designs will
ever be completed! Instead, users of FPGAs describe a circuit at a higher
level of abstraction, typically using a hardware description language (VHDL)
or schematic entry. Computer-Aided Design (CAD) programs then convert
these high level description in a programming �le specifying the state of
every programmable switch in an FPGA. To keep the complexity of these
procedure tractable, the problem of determining how to map a circuit into an
FPGA is normally broken into a series of sequential sub-problems, as shown
in Figure 1.9 [3].

Logic Synthesis
The �rst stage of synthesis converts the circuit description, which is usu-

ally in a hardware description language or schematic form, into a netlist
of basic gates. Then the logic synthesis process converts this netlist of ba-
sic gates into a netlist of FPGA logic blocks such that the number of logic
blocks needed is minimized and/or circuit speed is maximized. Technology-
independent logic optimization removes redundant logic and simpli�es logic
wherever possible.

Technology mapping
In the next stage of synthesis several LUTs and registers are packed into

one logic block, respecting limitations such as the number of LUTs a logic
block may contains, and the number of distinct input signals and clocks a
logic block may contain. These limitations are determined by the technology

1.4. CAD TOOLS, DESIGN OF AN FPGA 29

Figure 1.9: A typical FPGA mapping �ow.

30 CHAPTER 1. INTRODUCTION

and architecture of the FPGA platform that will implement the circuit. The
optimization goals in this phase are to pack connected LUTs together to min-
imize the number of signals to be routed between logic blocks, and attempt
to �ll each logic block to its capacity to minimize the number of logic blocks
used.

Placement
Placement algorithms determine which logic block within the FPGA

should implement each of the logic blocks required by the circuit. The opti-
mization goals are to place connected logic blocks close together to minimize
the required wiring (wirelength-driven placement), and sometimes to place
blocks to balance the wiring density across the FPGA (routability-driven
placement) or to maximize circuit speed (timing-driven placement).

Routing
Once locations for all the logic blocks in a circuit have been chosen, a

router determines which programmable switches should be turned on to con-
nect all the logic block input and output pins required by the circuit. In
FPGA routing, one usually represents the routing architecture of the FPGA
as a directed graph. Each wire and logic and each logic block pin becomes a
node in this routing-resource graph and potential connections become edges.
Routing a connection corresponds to �nding a path in this routing-resource
graph between the nodes representing the logic block pins to be connected.
To avoid using up too many of the limited number of wires in an FPGA,
one wants this path to be as short as possible. As well, it is important that
the routing for one net not use up routing resources another net needs, so
most FPGA routers have some king of congestion avoidance scheme to re-
solve contention for routing resources. An additional optimization goal is
to make nets on or near the critical path fast by routing them using short
paths and fast routing connections. Routers that attempt to optimize tim-
ing in this way are called timing-driven, whereas delay oblivious routers are
purely routability-driven. Since most of the delay in FPGAs is due to the
programmable routing, timing-driven routing is crucial to obtain good circuit
speeds.

1.5. ORGANIZATION OF THE CHAPTERS 31

1.5 Organization of the Chapters

Subject of this thesis is to propose a complete framework for power, delay and
area analysis of heterogeneous FPGAs. The rest of this thesis is organized
in four parts:

� Chapter two is about State of Art in FPGA CAD tools. Complete
frameworks and standalone tools of FPGA design will be analysed in
order to study their capabilities, and their advantages and disadvan-
tages.

� Chapter three presents the proposed framework NAROUTO. The prac-
tical problems occured in developement and every step in the design
�ow from VHDL circuit description to FPGA programming is thor-
oughly described. New tools, a Heterogeneity Support Toolset and
modi�ed existing tools are presented.

� The framework is tested in chapter four , in which the results are pre-
sented from eight benchmarks, concerning area, power ans delay of
those benchmarks mapped in 6 di�erent FPGA architectures.

� In Chapter �ve there are the conclutions of this thesis.

� Finally in chapter six there are thoughts for future reseacrh, one can
do to expand the features and versatilty of NAROUTO framework.

32 CHAPTER 1. INTRODUCTION

Chapter 2

State of the Art

In the current chapter complete frameworks and standalone tools of FPGA
design both academic and commercial will be analyzed. These tools are used
mainly in research.

2.1 Standalone tools

2.1.1 Logic Synthesis and Technology mapping tools

2.1.1.1 MVSIS

The MVSIS group at Berkeley [4] studies logic synthesis and veri�cation for
VLSI design. MVSIS 2.0 is the newer version of SIS, which is an interac-
tive tool for synthesis and optimization of sequential circuits. Given a state
transition table, a signal transition graph, or a logic-level description of a
sequential circuit, it produces an optimized net-list in the target technology
while preserving the sequential input-output behavior. Many di�erent pro-
grams and algorithms have been integrated into SIS, allowing the user to
choose among a variety of techniques at each stage of the process. SIS serves
as a tool for automatic synthesis and optimization of sequential circuits.

The main focus in MVSIS 2.0 is on new optimization algorithms that
improve the quality of circuits generated by automatic synthesis tools and,
at the same time, are scalable for practical use. Although the initial focus of
MVSIS was on logic minimization for multivalued networks, over time it has
developed into a full featured tool for synthesis and veri�cation in general.

In MVSIS, techniques for combinational optimization of MV networks

33

34 CHAPTER 2. STATE OF THE ART

have developed and included. MVSIS is an interactive tool, and has been
made to have the look and feel of SIS. When applied to purely binary net-
works, it behaves almost exactly like the technology independent part of SIS
but is faster. At this point in time, on binary �les, MVSIS 2.0 is about 3-5
times faster than SIS, uses much less memory, and can be applied more ro-
bustly to much larger designs.

Currently in MVSIS 2.0 there is focus on three main areas of research:

Multi-Valued Logic Synthesis. Multi-level multi-valued (MV) logic syn-
thesis can have many applications including:

1. Logic synthesis for multi-valued hardware devices such as current-
mode circuits.

2. Initial manipulation of a hardware description before it is encoded
into binary and processed by standard binary logic synthesis pro-
grams; MV is a natural way to describe procedures at a higher
level.

3. A front end to a software compiler for embedded control applica-
tions. Software lends itself naturally to the evaluation of multi-
valued variables in a single cycle. For embedded applications
speci�ed from synchronous languages with �nite state machine
semantics, strong logic synthesis transformations can be applied
for control �ow optimization.

4. Asynchronous synthesis of delay insensitive (DI) circuits.

5. Data mining, where the objective is a simple description that sum-
marizes the content of some data.

The MVSIS logic network is an extension of the traditional boolean
network to include multi-valued nodes, each with its own range. MV-
SIS includes all the technology-independent transformations of SIS for
combinational logic synthesis generalized from binary to multi-valued
case, e.g. algebraic decomposition and observability don't care based
node minimization. The domain of these optimizations is expanded
by opening up multi-valued possibilities. It also includes transforma-
tions speci�c to multi-valued nodes such as combining binary nodes
and producing multi-valued ones and vice versa, node minimization by

2.1. STANDALONE TOOLS 35

exploring non-determinism in the network, and bidecomposition into
multi-valued MIN/MAX gates, etc.

Boolean Technology Mapping. Technology mapping is the process of ex-
pressing a given boolean network in terms of library gates (for standard
cells) or look-up tables (for FPGAs). MVSIS has technology mappers
for both standard cells and FPGAs. The core mapping algorithm in
both cases uses boolean matching which is superior to structural match-
ing for large and complex libraries, leading to better quality results.

Since the �nal mapping is derived from the technology independent
netlist by local re-writes, the quality of the initial netlist determines
to a large extent the quality of the �nal mapping. To mitigate this
structural bias the new mapper introduces supergates and choice nodes.

A supergate is a virtual gate built from a set of real library gates.
By having these larger gates, the mapper can look deeper into the
circuit, thus producing better results. This is because the mapper is
constrained by the fact that there is a correspondence in the mapped
netlist and the initial netlist at the gate boundaries. By mapping with
larger gates, these constraints are relaxed, leading to better quality.

Choice nodes in the initial netlist specify di�erent structural imple-
mentations and serve as an e�cient way of encoding multiple netlists
in one. The choices can be added in a number of ways such as by

1. algebraic re-writing like the Lehman Watanabe mapper

2. combining netlists from di�erent scripts

3. combining netlists at di�erent stages of the same script (this is
useful since synthesis scripts are often heuristic, and there is no
guarantee that the �nal netlist is overall the best netlist for map-
ping).

Combinational Veri�cation. The combinational veri�cation capabilities
of MVSIS include a BDD-based and a SAT-based equivalence checking
command.

The �rst command represents a traditional approach, which constructs
and compares the BDDs for the primary outputs of the two circuits

36 CHAPTER 2. STATE OF THE ART

to be veri�ed. This command is applicable to non-deterministic multi-
valued networks. In the case of non-deterministic networks, the con-
tainment of SS-behaviours of the networks is checked. The BDD-based
veri�er can also return an error trace, which pin-points the mismatch
in the functionality of the two circuits. The error trace is a minterm in
terms of (multi-valued) primary input variables, for which one pair of
the primary outputs of the two circuits produces di�erent values. This
veri�cation option is only applicable to the circuits, for which BDDs
can be e�ciently constructed.

The second veri�cation option is based on the representation of Boolean
functions in terms of And-Inv Graphs (AIGs). A semi-canonical form
AIGs, called Functionally Reduced AIGs, is used to prove equivalence
of primary outputs in a way similar to the use of BDDs. The FRAIGs
for the primary outputs of the two circuits are constructed and com-
pared. The functional reduction of FRAIGs guarantees that the pri-
mary outputs are equal if and only if they are represented by the same
FRAIG node. This command is currently applicable only to the binary
circuits, but it is substantially more robust than the BDD-based one. It
has been successfully used to verify industrial circuits with hundreds of
thousands of gates. The FRAIG-based veri�cation command can also
be applied to the problem of bounded sequential veri�cation, when a
sequential circuit is unrolled for k time-frames and veri�ed combina-
tionally for all pairs of primary outputs of each time frame. This option
may help quickly �nd bugs with short error-traces for large circuits after
sequential optimization.

2.1.1.2 ABC

ABC [6] is a growing software system for synthesis and veri�cation of binary
sequential logic circuits appearing in synchronous hardware designs. ABC
combines scalable logic optimization based on And-Inverter Graphs (AIGs),
optimal-delay DAG-based technology mapping for look-up tables and stan-
dard cells, and innovative algorithms for sequential synthesis and veri�cation.

ABC provides an experimental implementation of these algorithms and
a programming environment for building similar applications.

ABC is currently in version 1.01 , the features of this version are :

� Basic data structures to represent and manipulate combinational and

2.1. STANDALONE TOOLS 37

sequential technology-independent networks in a variety of ways: as a
netlist, as a logic network with nodes represented by SOPs (a SIS-style
network) or by BDDs (a BDS-style network), as a technology-mapped
network, as an AIG, as a sequential AIG, etc.

� Input �le parsers for binary BLIF, binary PLA, BENCH format, a
subset of EDIF (for reading ISCAS benchmarks), a subset of Synopsys
equation format, and a subset of structural Verilog (for reading IWLS
2005 benchmarks).

� Output �le writers for binary BLIF (both technology-independent and
mapped), binary PLA (collapsed networks only), BENCH format, Syn-
opsys equation format, CNF (combinational miters only), and two rep-
resentations for circuit graphs: DOT format (used in the graph visu-
alization package GraphViz) and GML format (used by some graph
editors, such as yEd, a free product of yWorks).

� A specialized format BAF (Binary Aig Format) for reading/writing
large AIGs into binary �les. With BAF, reading and writing of AIGs
with millions of AND-nodes can be done in a few seconds. The mem-
ory requirements are also reduced by almost an order of magnitude,
compared to BLIF and Verilog.

� The data structures to represent logic networks that are conceptually
similar to those used in SIS and procedures to perform multi-purpose
operations on logic networks, such as technology-independent sweep-
ing, logic sharing, disjoint-support decomposition, structural hashing
and balancing of AIGs, creating combinational and sequential miters
(product machines), unrolling sequential circuits for a number of time
frames, etc.

� E�cient combinational synthesis �ow based on AIG balancing, rewrit-
ing, and refactoring using DAG-aware transformations inspired by Per
Bjesse and Arne Boralv, "DAG-aware circuit compression for formal
veri�cation", (ICCAD 2004, pp. 42-49). These commands work on
combinational networks only. They can be used to accumulate struc-
tural choices that lead to additional freedom in technology mapping
and sequential synthesis.

38 CHAPTER 2. STATE OF THE ART

� Procedures to detect and accumulate structurally di�erent representa-
tions of Boolean functions (FRAIG package).

� Procedures working with several snapshots of the same network. These
procedures implement the idea of lossless synthesis, which consists in
accumulating all or some of the functionally-equivalent structurally-
di�erent representation of logic functions that appear in the course
of logic transformations. Mapping over the multiple structures helps
overcome structural bias and tends to improve delay and area.

� Technology mappers for variable-LUT-size FPGAs and standard cells,
applicable to traditional logic networks and logic network with struc-
tural choices. Recently added priority-cut-based mapper has improved
memory and runtime.

� Several area-oriented resynthesis commands for LUT mapping, such as
imfs and lutpack.

� Combinational equivalence checking based on SAT sweeping, a resource-
aware combination of simulation and SAT.

� Basic data structures for sequential synthesis (sequential AIG) and
an experimental implementation of integrated sequential optimization,
which combines logic synthesis, technology mapping, and retiming for
standard cells and FPGAs. Initial state of circuits after retiming is
computed by formulating and solving a SAT problem.

� Programmable interface to MiniSat, an extensible SAT solver by Niklas
Eén and Niklas Sörensson. The C version of the solver is included in
the current release of ABC.

� Procedures to construct the global BDDs of the primary output func-
tions of the network using CUDD package by Fabio Somenzi. The code
of CUDD Version 2.3.1 is included in the current release of ABC.

� Simple bounded sequential equivalence checking, which unrolls sequen-
tial circuits for a given number of timeframes and performs combina-
tional equivalence of the resulting combinational circuits.

� Sequential synthesis commands lcorr and ssw for detecting and merging
sequentially-equivalent registers and internal nodes. These command

2.1. STANDALONE TOOLS 39

can be seen as extension into the sequential domain of the notion of
SAT sweeping (command fraig).

� Unbounded sequential equivalence checking command dsec applicable
to two networks to be veri�ed for equivalence (and its counterpart,
command dprove that works on a sequential miter).

40 CHAPTER 2. STATE OF THE ART

2.1.2 Clustering, Place and Route tools

2.1.2.1 VPR 4.30

T-Vpack and VPR tools are developed in university of Toronto. VPR is a
placement and routing tool for array-based FPGAs, and T-VPack is a logic
block packing (clustering) program. VPR was written to allow circuits to
be placed and routed on a wide variety of FPGAs to facilitate comparisons
of di�erent architectures. The version since 1999 (until 2009) was 4.30[7] [1]
but it is still popular in academic research.

T-Vpack T-VPack takes as input a technology-mapped netlist of lookup
tables (LUTs) and �ip �ops in .blif format, and outputs a .net format netlist
composed of more complex logic blocks. The logic block to be targeted is
selected via command-line options. The simplest logic block T-VPack can
target consists of a LUT and a FF. By default, T-VPack marks all clock nets
in the input netlist as global nets which VPR should not route. Since clocks
are typically routed via a dedicated network in FPGAs, this is usually the
most realistic thing to do.

T-VPack is capable of targeting a more complex form of logic block,
which its called a cluster-based logic block. Figure 2.1 depicts an example.
A cluster-based logic block consists of N basic logic elements (i.e. N LUTs
and N FFs), along with local interconnect that allows the N cluster outputs
to be routed back to LUT inputs. Since the number of logic block inputs,
I, can be less than the total number of LUT inputs (K×N, where K is the
number of inputs per LUT), the local interconnect also allows each of the
I inputs to be routed to any of the K×N LUT inputs. Cluster-based logic
blocks are very similar to the logic blocks used in the Altera 8K and 10K
FPGAs, and are reasonably similar to those used in the Xilinx 5200 and
Virtex FPGAs.

VPR

VPR takes two input �les, a netlist describing the circuit to be placed
and routed, and a description of the FPGA architecture. Optionally, one can
also input a placement �le to VPR if one desires that an existing placement
be routed only.

Some of the architectural parameters that can be speci�ed in the archi-
tecture description �le are:

2.1. STANDALONE TOOLS 41

Figure 2.1: A cluster-based logic block.

� the number of logic block inputs and outputs,

� the side(s) of the logic block from which each input and output is
accessible,

� the logical equivalence between various input and output pins (e.g. all
LUT inputs are functionally equivalent),

� the number of I/O pads that �t into one row or one column of the
FPGA, and

� the dimensions of the logic block array (e.g. 23 x 30 logic blocks).

In addition, if global routing is to be performed, one can also specify:

� the relative widths of horizontal and vertical channels, and

� the relative widths of the channels in di�erent regions of the FPGA.

Finally, if combined global and detailed routing is to be performed, one
also speci�es:

42 CHAPTER 2. STATE OF THE ART

� the switch block [1] architecture (i.e. how the routing tracks are inter-
connected),

� the number of tracks to which each logic block input pin connects (Fc
[1]),

� the Fc value for logic block outputs, and

� the Fc value for I/O pads.

In terms of routing area, VPR outperforms all other academic placement
and routing packages so its a very popular tool for academic research.

VPR can be run in one of two basic modes. In its default mode, VPR
places a circuit on an FPGA and then repeatedly attempts to route it in
order to �nd the minimum number of tracks required by the speci�ed FPGA
architecture to route this circuit. If a routing is unsuccessful, VPR increases
the number of tracks in each routing channel and tries again; if a routing
is successful, VPR decreases the number of tracks before trying to route it
again. Once the minimum number of tracks required to route the circuit is
found, VPR exits. The other mode of VPR is invoked when a user speci�es
a speci�c channel width for routing. In this case, VPR places a circuit and
attempts to route it only once, with the speci�ed channel width. If the circuit
will not route at the speci�ed channel width, VPR simply report that it is
unroutable. VPR can perform either global routing or combined global and
detailed routing.

VPR also has graphics for a more "human readable" placing and routing,
as shown in �gures 2.2, 2.3, 2.4, 2.5.

2.1. STANDALONE TOOLS 43

Figure 2.2: Initial Random Placement Figure 2.3: Final Placement

2.1.2.2 Heterogeneous framework VPR 5.0.2

The current version of the tools is (since 2009) 5.0.2 [8]. There are four
important added features in this version[9]:

� Single Driver Routing - Single-Driver routing architectures have
routing segments that are driven by only one driver that is fed by
a multiplexer. This style has been shown to dominate multi-driver
routing architectures, and is in wide use in the major commercial FP-
GAs. The new version of VPR supports this routing in addition to the
multi-driver (bi-directional) routing supported by the original version
of VPR.

� Heterogeneity - VPR is now designed to handle a heterogeneous mix-
ture of block types. Most current reasonably sized user designs make
use of heterogeneous blocks such as multipliers and memories.

� Architecture Files - Architecture �les de�ne the FPGA architecture
to the VPR �ow. With this release we are providing a broad swath of
di�erent architectures, which are optimized to meet di�erent area and
delay criteria, in a wide range of IC process generations. Architecture
�les in version 5.0.2 are in .xml format.

� Regression Tests - Included with this release of VPR are regression

44 CHAPTER 2. STATE OF THE ART

Figure 2.4: Completely (Detailed)
Routed Circuit

Figure 2.5: Close-up View of the
FPGA Routing Architecture

tests that are used to verify the correct operation of VPR and the full
CAD �ow; so if one changes the source code, he can check if he have
broken anything he didn't intend to.

Heterogeneity
One very important added feature to the new VPR is support of het-

erogeneity. A heterogeneous FPGA contains hard speci�c-purpose circuits
in addition to basic logic and routing fabric (�gure 2.6). A hard circuit is
a speci�c circuit included on an FPGA to perform speci�c logic functions,
which could also be implemented using the base logic units and the routing
fabric. Given these de�nitions, there are two common ways hard circuits are
added to FPGAs.

The �rst is to add speci�c circuits into all the tiles in an FPGA. In this
case, all the tiles are the same, and the FPGA remains a homogeneous array
of tiles. We call this soft fabric heterogeneity. The hard circuits within each
tile allow certain functions to be implemented with better area-e�ciency and
faster speed. For example, �ip �ops are commonly paired with LUTs to save
both speed and area in, arguably, all cases compared to implementing the �ip
�op in the base soft logic fabric. We call a unit of soft fabric heterogeneity
that consists of the base logic unit and additional hard circuits a Soft Fabric
Logic Unit (SFLU). The SFLU is called a Logic Element (LE) by Altera and

2.1. STANDALONE TOOLS 45

Figure 2.6: Heterogenous blocks in an FPGA.

46 CHAPTER 2. STATE OF THE ART

a slice by Xilinx[10].
The second way to employ hard circuits in an FPGA is to include a spe-

ci�c circuit as a di�erentiated tile, which separately abuts the SFLU tiles.
We call this tile-based heterogeneity. Examples of heterogeneous tiles are
multipliers which are large circuits added to an FPGA as unique tiles.

Heterogeneity support in VPR
Supporting heterogeneous FPGA requires an entire CAD �ow above the

packing placement and routing supplied by VPACK and VPR. Accompa-
nying this release of VPR is a full set of CAD tools o�ering a full Verilog-
to-routing �ow. This �ow starts with ODIN, that provides elaboration of
Verilog. Logic synthesis is performed using a speci�c version of the ABC
tool from UC Berkeley. Packing is performed with an updated version of
TVPack that can pass heterogeneous blocks through untouched. Finally,
placement and routing is performed with the latest version of VPR. Though
there are limitations in this �ow. In particular, the front end synthesis tool,
ODIN, only identi�es multipliers as hard blocks. Other blocks may be added
by modifying the program to �nd other hard structures. Any hard blocks
that are found are treated as block boxes for all the tools except VPR. This
means inputs to the blocks are treated as Primary Outputs and outputs are
treated as Primary Inputs and, as a result, timing-driven optimization of
paths containing blocks is not possible. The architectural Speci�cation of a
Hard Block in VPR's architecture �le is :

� Column based

� Each block has parameterized (multi-row) height

� Transparent routing

� All input-output timing paths of block can be speci�ed

� Allow combinational or registered outputs

� All other parameters same as soft cluster

2.1. STANDALONE TOOLS 47

2.1.3 Powermodel Framework

Powermodel is aimed at island-style FPGA architectures, which have logic
blocks, switch blocks, connection blocks, and routing, as shown in Figure
2.7, with an H-tree clock network, as shown in Figure 2.8. The model has
two modules: an activity generation module, and a power estimation mod-
ule. The �rst module employs the transition density model to determine
the switching activities inside the circuit. The second module estimates the
power consumption at the transistor level. The second module is based on
T-Vpack and VPR 4.30 tools. The model was calibrated using HSPICE
with the technology parameters from TSMC for a 1.8 volt, 0.18mm CMOS
technology [13].

The model contains includes terms for dynamic power, short-circuit power,
and leakage power. Although the techniques have been used before, the in-
tegration of these techniques into a �exible power model for FPGAs is a
novel approach. The model is �exible enough to target FPGAs with dif-
ferent look-up table (LUT) sizes, di�erent interconnect strategies (segment
length, switch block type, connection �exibility), di�erent cluster sizes (for
a hierarchical FPGA), and di�erent process technologies.

Figure 2.7: Island style FPGA.

48 CHAPTER 2. STATE OF THE ART

Figure 2.8: H-tree clock network.

Figure 2.9: Powermodel framework.

2.1. STANDALONE TOOLS 49

ACE 1.1
ACE 1.1 implementing probabilistic techniques is responsible for the ac-

tivity generation step. The probabilistic technique used is the Transition
Density Model. The Transition Density model is based on two parameters
for each signal: the transition density and the static probability. The transi-
tion density of a signal represents the average number of transitions of that
signal per unit time, and the static probability is the probability of the signal
being high at any given time. The transition density and static probability
values of all the signals are calculated iteratively from the primary inputs to
the primary outputs.

ACE 1.1 takes as input the netlist of the circuit in BLIF format and as
output it produces an .act �le which has the transition density and the static
probability of each pin in the design.

ACE 2.0
Currently there is a new version of ACE (2.0) by J. Lamoureux[12]. This

new version of Ace has addressed and solve some accuracy and speed prob-
lems of previous version.

Probability-based estimates are less accurate than simulation-based es-
timates for two reasons. First, they typically ignore wire and gate delays,
which are the cause of glitching activity. Second, they typically ignore both
spatial and temporal correlation between signals. Spatial correlation occurs
when the logic value of a wire depends on the value of another wire. Spa-
tial correlation can occur between primary inputs when the input data has
correlation or between internal nodes when gates fan-out to multiple gates
and later reconverge. Temporal correlation occurs when the value of a wire
depends on previous values of that same wire. This can also occur at the
primary inputs or within sequential circuits which have feedback. Ignoring
temporal correlation introduces between 15% and 50% error, and ignoring
spatial correlation introduces between 8% and 120% error.

Ace 2.0 algorithm have three phases :

1. The �rst phase determines the static and switching probability for logic
and �ip-�ops within sequential feedback loops in a circuit. ACE in this
phase simulate switching probabilities instead of switching activities.
Each cycle of the simulation begins by updating the values of the pri-
mary inputs with the next input vector. If vectors are not supplied,
ACE-2.0 pseudo-randomly generates vectors which match the speci�ed

50 CHAPTER 2. STATE OF THE ART

input activities. Once the input values are speci�ed, the routine deter-
mines the output value of each gate in the feedback logic in topological
order from the primary inputs to the primary outputs. Finally, at the
end of each cycle, the routine updates the value at the output of each
�ip-�op based on the input value.

2. Although ACE-2.0 uses simulation to obtain static and switching prob-
abilities for logic and �ip-�ops within sequential feedback loops, switch-
ing probabilities are also required for logic and �ip-�ops not within se-
quential feedback loops. These remaining probabilities are calculated
using the Lag-one model, which produces exact switching probabilities
(assuming that inputs are not correlated). For speeding up this phase
combined Partial Collapsing and BDD Pruning are used

3. The �nal phase of the ACE-2.0 algorithm addresses the issue of ac-
curately and e�ciently modeling the glitch component of switching
activities.

T-Vpack
In powermodel the modi�ed T-Vpack has an added feature. If the .act

�le from the ACE is given as an input, the T-Vpack has two extra outputs
required for the �nal power estimation:

1. An .act2 �le which will be used by VPR later on in the �ow. Each global
net in the design has its corresponding probability and the transition
density value listed. Nets that connect clusters (ie. use the general-
purpose routing) are listed also in the same way. Each subblock (LUT
and/or FF) has its corresponding activities of all inputs followed by
the clock static probability and clock transition density. Then, the
probability and transition density of the node between the LUT and
�ip-�op (if there is both a LUT and �ip-�op used within this subblock)
is listed. (this number is 0 if a �ip-�op is not used). Finally, the activity
of the output is listed.

2. A .fun �le which will also be used by VPR in the power estimation
�ow. Each subblock in �le .fun its described by its name and the
corresponding logic function implemented in the subblock.

2.1. STANDALONE TOOLS 51

VPR
In powermodel the VPR has been modi�ed to estimate power consump-

tion. In the current implementation, the activity estimator and the power
model are not used to guide the placement and routing. It estimates the
power consumption only after placement and routing has occurred. In order
to estimate dynamic power, the powermodel separate the resources in an
FPGA into three categories: routing resources, logic blocks, and the clock
network. The power dissipated by resources in each category is estimated
separately.

The modi�ed VPR takes as inputs the .ac2 and .fun outputs from T-
Vpack. Also the architecture �le needs additional parameters for power anal-
ysis. The outputs of the powermodel's VPR is the placement and routing
�le (same as simple VPR), and the power analysis �les :

LBpower.echo that lists the power dissipation of each logic block

Routing_power.echo that lists the power consumed in routing in each
net

CLKpower.echo that lists the power dissipation by clock network

power.echo that lists the total power dissipation

2.1.4 Nettovqm

Nettovqm is a tool provided in by VPR 4.30 research team. This tool can
convert a VPR format (.net) netlist into the .vqm format netlist used by
Altera's Quartus CAD suite to represent a technology-mapped netlist. This
is allowing the designer to run a VPR-format netlist targeting 4-LUTs and
size 1 logic clusters through Altera's commercial tools, and compare result
quality. It doesn't work with other LUT sizes since they don't match the
LUT size in Altera's Stratix and Cyclone parts, and it needs a cluster of size
1 since Quartus needs an unclustered, technology-mapped netlist.

2.1.5 Convert_arch_to_xml

Since the architectures �les in new VPR are in .xml format and these �les in
old VPR are in .arch format, in VPR 5.0 toolset is the Convert_arch_to_xml

52 CHAPTER 2. STATE OF THE ART

tool. This is a program that converts old vpr architecture �les into the Het-
erogeneous VPR's XML format, in order to support backward compatibility.

2.1.6 VPR 5.0 with power estimation

In 2009 a version of VPR 5.0 with power estimation was developed by Dr.
Peter A. Jamieson in Miami university [14]. The power estimation is based
in Kara Poon's powermodel in VPR 4.30 (for further details see 2.1.3). This
software is open source and its currently unsupported.

The updated power models support the new data structures in VPR 5.0,
the new architecture �le format, and can estimate power on both uni and bi
directional routing structures. It was tested in non-heterogeneous fpga archi-
tectures since there wasn't a complete power estimation design framework for
heterogeneous FPGAs. In the process of testing this VPR version there were
some errors in the power estimation of homogeneous FPGA designs (very
large, or even negative results).

2.2. EXISTING FRAMEWORKS 53

2.2 Existing Frameworks

2.2.1 Meander

2.2.1.1 What is Meander

Meander[15] is a result from AMDREL (Architectures and Methodologies for
Dynamic REcon�gurable Logic) project[16]. Its an FPGA design framework
that has the following features :

� It supports a complete �from VHDL to FPGA programming� design
in which all tools are exclusively open source software

� Its used under Linux environment

� Its written in C/C++ language

� The input �les can be RT VHDL, Structural VHDL, EDIF, or BLIF
�les

� The output is an FPGA programming �le

� The design �ow is independent from the underlying architecture

� It works in a variety of processors (Pentium / SPARC)

� It runs either locally or in a network

� Every tools in the �ow can be used individually

� It has Graphical User interface (GUI)

The design �ow and some comparisons between Meander, T-Vpack/Vpr
and ALLIANCE is shown in �gure 2.10 and to table 2.1.

54 CHAPTER 2. STATE OF THE ART

Circuit

Syntactical Evaluation (VHDLParser) & Simulation (FreeHDL)

Synthesis (DIVINER)

Modification of EDIF file (DRUID)

Translation of Blif file (E2FMT)

BLE and Cluster Creation (T-Vpack)

Placement (EX-VPR)

Routing (EX-VPR)

FPGA Programming (DAGGER)

Minimum
Channel
 Width ?

SIS

Architecture
Description
(DUTYS)

Adjust channel width
No

Yes

POWER
MODEL

Figure 2.10: Meander design �ow.

2.2. EXISTING FRAMEWORKS 55

FEATURE Meander TORONTO
(T-Vpack,
VPR)

ALLIANCE

Data Input Format VHDL
/Verilog

BLIF VHDL

Synthesizer X 7 X
Format Translation X 7 7

Architecture X 7 7

Description
Architecture Explo-
ration

X 7 7

/Modi�cation
Place & Route X X X
Bitstream X 7 7

Generation
Back annotation 7 7 7

Power Estimation X 7 7

Area Estimation X 7 7

GUI X 7 7

User Manual X X X
OS Linux Solaris Linux

Table 2.1: Comparison betwen Meander, Toronto university framework and
ALLIANCE framework

56 CHAPTER 2. STATE OF THE ART

2.2.1.2 Meander Design Flow

VHDL Parser
The �ow of design tools included in Meander starts with the description

of circuit in VHDL hardware description language which is very popular spe-
cially in the �eld of circuitry design for FPGA. Initially the syntax of the
description of circuit is evaluated according to VHDL-93 standard. The eval-
uation is done with the VHDL-Parser which is written in Java programming
language.

FreeHDL
After the syntax evaluation of the .vhdl �le a simulation is needed to

con�rm that the circuit has the expected behaviour. This evaluation checks
the outputs of the circuit when in the inputs are applied user-de�ned signal
waveforms and delays. The tool that carries out this evaluation is FreeHDL
which is compatible with VHDL-93 standard and has a graphical user inter-
face in which the user can see the waveforms of the signals.

DIVINER
Democritus University of Thrace RTL Synthesizer (DIVINER) is a soft-

ware tool that performs the basic function of the RTL synthesis procedure.
It converts a VHDL description to an EDIF format netlist. DIVINER sup-
ports a subset of VHDL as all synthesis tools do. It does not support Verilog
or other hardware description languages. It outputs a generic EDIF format
netlist, which can then be used with technology mapping tools in order to im-
plement the digital system described in the DIVINER input �le in any ASIC
or FPGA technology and not only the AMDREL �ne-grain recon�gurable
hardware platform. It only performs a partial syntax check of input VHDL
�les, therefore the input �les should be compiled �rst using any VHDL simu-
lation tool, commercial (Modelsim) or open-source (FreeHDL). Additionally,
at this stage, DIVINER does not perform Boolean optimization, therefore
the designer should be careful in the VHDL coding of Boolean expressions.

DRUID
DemocRitus University of Thrace EDIF to EDIF translator (DRUID)

is a tool that converts the EDIF format netlist produced by Leonardo or
DIVINER to an equivalent EDIF format netlist compatible with the next
tool in the tool chain. Even though the output of the synthesis tools and the

2.2. EXISTING FRAMEWORKS 57

input of the LUT-mapping tools are in the same format, there are di�erences
in their generic libraries. Some cells are identical in functionality but with
di�erent names and port names, while other cells present in one tools library
are absent in the others, and then they may have to be decomposed to gates.
These conversions among other necessary functions compose the functionality
of DRUID. DRUID is a tool that integrate the output of a synthesis tool
(DIVINER or Leonardo Spectrum) with the rest of the tool �ow. The input
�le that is processed by DRUID is an EDIF format netlist �le and the output
�le that is produced is also an EDIF �le, compatible with the rest of the tool
�ow. It is based on the generic output EDIF �le produced by Leonardo
Spectrum, because of the extensive use of this commercial synthesis tool.
However, DRUID can appropriately modify any EDIF �le of version 2 0 0
with only minor changes.

DRUID serves a threefold purpose:

1. It modi�es the names of the libraries, cells (in EDIF format all struc-
tures are called cells) etc, found in the input EDIF �le

2. It simpli�es the structure of the EDIF �le in order to make it compatible
to Meander tool �ow

3. It constructs, in the simplest way possible, the cells and generated
modules that are included in the input EDIF �le and are not found in
the libraries of the following in Meander design �ow tools.

This modi�cation is necessary because the tools that follow DRUID in the
proposed design �ow can handle structures of limited complexity. Without
DRUID, the hardware architectures that could be processed by the proposed
�ow would be the ones speci�ed in structural level by using only the following
basic components: inverter, AND, OR and XOR gates of 8 inputs maximum,
a 2-input multiplexer, a latch, and a D �ip-�op without set or reset signals.
Moreover, signal vectors would not be supported. DRUID is necessary in
order to implement real-life applications on the proposed �ne-grain platform.

E2FMT
E2fmt takes as input a set of EDIF netlist �les and converts them to an-

other format. Supported output formats are EDIF, SLIF, and BLIF. There
are options for �attening the hierarchy to a single level netlist and for load-
ing a �le, which contains de�nitions of the target technology gates. E2fmt

58 CHAPTER 2. STATE OF THE ART

is provided to maintain compatibility with the following in Meander design
�ow tools which require netlists in BLIF format.

SIS
SIS is an interactive tool for synthesis and optimization of sequential cir-

cuits. For more details see section 2.1.1.1.

ACE ACE (activity estimator) has been incorporated in the framework to
estimate the switching frequencies of all nodes in the circuit using the Transi-
tional Density Model. Its included in the powermodel framework which will
be analyzed in section 2.1.3.

T-Vpack
T-VPack takes as input a technology-mapped netlist of lookup tables

(LUTs) and �ip-�ops in BLIF format (the output of SIS), and outputs a .net
format netlist composed of logic blocks as presented in section 2.1.2.1.

EX-VPR
The Extended Versatile Placement and Routing tool (EX-VPR) is an

FPGA placement and routing tool based on VPR (for more details see section
2.1.2.1).

In order to implement a more user-friendly interface than the command
line, there is a GUI that helps the user input the �les and options. The
required �elds are the input netlist �le in .net format and the target FPGA
architecture �le. The produced outputs are the placement and routing �les,
Also the output placement and routing can be seen graphically. Additional
available outputs are the power estimation and the critical path details.

EX-VPR has some important extra features compared to VPR 4.30.
These features are shown in the table 2.2

DUTYS
DUTYS (Democritus University of Thrace Architecture �le generator-

synthesizer) creates the architecture �le of the FPGA that is required by
T-VPack and VPR. The architecture �le contains a description of various pa-
rameters of the FPGA architecture, including size (array of CLBs), number
of pins and their positions, number of BLEs per CLB, plus interconnection
layout details such as relative channel widths, switch box type, etc. It has a
GUI that helps the designer select the FPGA architecture features and then

2.2. EXISTING FRAMEWORKS 59

Feature VPR EX-VPR
Placement X X
Routing X X
Supported Switch
Boxes (SBs)

Subset, Wilton,
Universal

Subset, Wilton, Uni-
versal, User speci�ed
Switch-Box

Multiple switch boxes 7 X
Multiple Segments X X
Thermat/Temperature
Analysis

7 X

Insertion of IP core 7 X
Power Estimation X X(with powermodel,

see 2.1.3)
Timing info (sec) X X
Silicon Area estima-
tion (um2)

7 X

Application speci�c
FPGA design

7 X

Table 2.2: Comparison beetwen EX-VPR and VPR

60 CHAPTER 2. STATE OF THE ART

automatically creates the architecture �le in the required format.

DAGGER
DAGGER (DEMOCRITUS UNIVERSITY OF THRACE E-FPGA BIT-

STREAM GENERATOR) is the tool that programs the AMDREL �ne-grain
recon�gurable hardware. DAGGER currently only supports the type of FP-
GAs that are supported by the rest of the tools in the tool chain. The input
�les that required by the DAGGER tool in order to generate the bitstream
for the FPGA program are:

� The netlist �le that describes the circuit in ".NET" format which pro-
duced by the T-VPACK tool

� The output function �le (.FUN) which is produced by the ACE and
the T-VPACK tools

� The FPGA architecture description �le (.ARCH) which is produced by
the DUTYS tool

� The placement �le (.P) of the circuit into the FPGA which is produced
by the VPR tool

� The routing �le (.R) of the circuit into the FPGA which is produced
by the VPR tool

The DAGGER tool input, it is shown schematically in Figure 2.11. In
this schematic, the rectangular boxes represent the four di�erent tools that
produce the required from DAGGER tool �les. These �les are shown in the
ellipses bellow the tools, and the �le format is written inside the eclipse. The
ellipses that are �lled only with only one color represent �les produced only
by one tool, while ellipses with two colors represent �les produced with the
cooperation of two di�erent tools.

2.2. EXISTING FRAMEWORKS 61

Figure 2.11: DAGGER required input �les.

2.2.2 Quartus

2.2.2.1 What is Quartus

The Altera Quartus II design software provides a multiplatform design envi-
ronment . It is a comprehensive environment for system-on-a-programmable-
chip (SOPC) design and includes solutions for all phases of FPGA and CPLD
design.

2.2.2.2 Quartus design �ow

Design entry
The Quartus II software supports the following design entry methods[18]:

� Altera HDL (AHDL) Text Design File (.tdf)

� Block Diagram File (.bdf)

62 CHAPTER 2. STATE OF THE ART

Figure 2.12: Quartus II design �ow.

2.2. EXISTING FRAMEWORKS 63

� EDIF Netlist File (.edf)

� VHDL (.vhd)

� Verilog HDL (.v) and System Verilog (.sv)

The Quartus II software has an advanced integrated synthesis engine that
fully supports the Verilog HDL and VHDL languages and provides options
to control the synthesis process.

The designer can use the Quartus II Block Editor, Text Editor, MegaWiz-
ard Plug-In Manager, and EDA (Electronic design automation) design entry
tools to create design �les that include Altera megafunctions, library of pa-
rameterized modules (LPM) functions, and intellectual property (IP) func-
tions. All the availiable options are shown in �gure 2.13.

Synthesis
The Quartus II advanced integrated synthesis software fully supports the

industry standard hardware description languages and provides a complete,
easy-to-use, stand-alone solution for today's designs. The designer select
one of these optimization techniques: Speed, Area, or Balanced. For higher
design performance, one can turn on synthesis netlist optimizations that are
available when targeting certain devices. A designer can unmap a netlist
created by an EDA tool and remap the components in the netlist back to
Altera primitives.

Analysis & Synthesis module in Quartus II supports the Verilog-1995
(IEEE Std. 1364-1995) and Verilog-2001 (IEEE Std. 1364-2001) standards,
a subset of features of the SystemVerilog-2005 (IEEE Std. 1800-2005) stan-
dard, and also supports the VHDL-1987 (IEEE Std. 1076-1987) and 1993
(IEEE Std. 1076-1993) standards. Analysis & Synthesis uses Verilog-2001
and VHDL-1993 by default[19]. If the designer is using another EDA synthe-
sis tool, he can also specify a Library Mapping File (.lmf) that the Quartus II
software should use to map non-Quartus II functions to Quartus II functions.
The synthesis �ow is shown in �gure 2.14.

64 CHAPTER 2. STATE OF THE ART

Figure 2.13: Quartus II design entry �ow.

Figure 2.14: Quartus II synthesis �ow.

2.2. EXISTING FRAMEWORKS 65

Place and Route
The Quartus II Fitter places and routes a design, which is also referred

to as "�tting" in the Quartus II software. Using the database that has been
created by Analysis & Synthesis, the Fitter matches the logic and timing
requirements of the project with the available resources of the target device.
It assigns each logic function to the best logic cell location for routing and
timing, and selects appropriate interconnection paths and pin assignments.
Figure 2.15 shows the place and route design �ow.

Figure 2.15: Quartus II place and route �ow.

High-density device families supported in the Quartus II software, such
as the Stratix series, sometimes require signi�cant �tter e�ort to achieve an
optimal �t. The Quartus II software o�ers several options to reduce the time
required to �t a design. The designer can control the e�ort the Quartus
II Fitter expends to achieve his timing requirements with options. If min-
imizing compilation time is more important than achieving speci�c timing
results, one can turn o� the optimization options.

Power-analysis
To develop an appropriate power budget and to design the power supplies,

voltage regulators, heat sink, and cooling system, one needs an accurate esti-
mate of the power that his design consumes. Power in Quartus II design �ow
can be estimated by using the PowerPlay Early Power Estimation spread-
sheet available by the Altera, or with the PowerPlay Power Analyzer in the

66 CHAPTER 2. STATE OF THE ART

Quartus II software. The designer can perform early power estimation with
the PowerPlay Early Power Estimation spreadsheet by entering device re-
source and performance information. The Quartus II PowerPlay Analyzer
tool performs vector-based power analysis by reading either a Signal Activity
File (.saf) generated from a Quartus II simulation, or a Verilog Value Change
Dump File (.vcd) generated from a third-party simulation. The power anal-
ysis �ow is shown in Figure 2.16

Figure 2.16: Quartus II Power Analysis �ow.

The Quartus II PowerPlay Power Analysis Tools provide an interface that
allows the estimation of static and dynamic power consumption throughout
the design cycle. The PowerPlay Power Analyzer performs post-�tting power
analysis and produces a power report that highlights, by block type and en-
tity, the power consumed. The Altera PowerPlay Early Power Estimator
estimates power consumption at other stages of the design process and pro-
duces a Microsoft Excel-based spreadsheet with estimate information.

Timing Analysis
The Quartus II TimeQuest Timing Analyzer allows an analysis of the

performance of all logic in a design and help to guide the Fitter to meet
timing requirements. The TimeQuest analyzer uses industry-standard Syn-
opsys Design Constraint (SDC) methodology for constraining designs and
reporting results. The designer can use the information generated by the

2.2. EXISTING FRAMEWORKS 67

timing analyzer to analyze, debug, and validate the timing performance of
the design.

Timing analysis measures the delay along the various timing paths and
veri�es the performance and operation of the design. The designer can specify
constraints and assignments that help the design meet timing requirements.
If constraints or assignments are speci�ed, the Fitter optimizes the placement
of logic in the device to meet those constraints. The TimeQuest Timing An-
alyzer is a powerful ASIC-style timing analysis tool that validates the timing
performance of all logic in the design with industry standard constraint, anal-
ysis, and reporting methodologies. The TimeQuest Timing Analyzer can be
used by its graphical user interface (GUI) or command-line interface to con-
strain, run, and view results for all timing paths in the design. Before running
the TimeQuest Timing Analyzer, one must specify initial timing constraints
that describe the clock characteristics, timing exceptions, and external signal
arrival and required times. The Quartus II Fitter optimizes the placement
of logic in the device to meet your speci�ed constraints.

Early in the design process, before �nal device �tting is completed, pre-
liminary timing data is availiable by running an early timing estimate with
the Start Early Timing Estimate command. When the design is complete, the
designer can run a full timing analysis following compilation. During timing
analysis, the TimeQuest Timing Analyzer analyzes the timing paths in the
design, calculates the propagation delay along each path, checks for timing
constraint violations, and reports timing results as slack in the Report pane
and in the console. If the TimeQuest Timing Analyzer reports any timing
violations, the designer can determine whether the design requires additional
timing constraints or exceptions, or if the design requires logic changes or
place-and-route constraints.

Simulation
Functional and timing simulation of a design can be performed by using

EDA simulation tools or the Quartus II Simulator. The Quartus II software
provides the following features for performing simulation of designs in EDA
simulation tools:

� NativeLink integration with EDA simulation tools

� Generation of output netlist �les

� Functional and timing simulation libraries

68 CHAPTER 2. STATE OF THE ART

� Generation of test bench template and Memory Initialization Files
(.mif)

� Generation of Signal Activity Files (.saf) for power analysis

Figure 2.17 shows the simulation �ow with EDA simulation tools and the
Quartus II Simulator.

Figure 2.17: Quartus II Simulation �ow.

Programming
Once a project has successfully compiled with the Quartus II software,

the designer can program or con�gure an Altera device. The Assembler
module of the Quartus II Compiler generates programming �les that the
Quartus II Programmer can use to program or con�gure a device with Altera

2.2. EXISTING FRAMEWORKS 69

programming hardware.A stand-alone version of the Quartus II Programmer
can be also used to program and con�gure devices. Figure 2.18 shows the
programming design �ow.

Figure 2.18: Quartus II Programming �ow.

The Assembler automatically converts the Fitter's device, logic cell, and
pin assignments into a programming image for the device, in the form of one
or more Programmer Object Files (.pof) or SRAM Object Files (.sof) for the
target device.

The Programmer uses the Programmer Object Files and SRAM Object
Files generated by the Assembler to program or con�gure all Altera devices
supported by the Quartus II software.

70 CHAPTER 2. STATE OF THE ART

2.2.3 ALLIANCE

2.2.3.1 What is ALLIANCE

Alliance[20] is a complete set of free CAD tools and portable libraries for
VLSI design. It includes a VHDL compiler and simulator, logic synthe-
sis tools, and automatic place and route tools. A complete set of portable
CMOS libraries is provided. Alliance is the result of the research at ASIM
department of LIP6 laboratory of the Pierre et Marie Curie University (Paris
VI, France). Alliance has been used for research projects such as the 875.000
transistors StaCS superscalar microprocessor and 400.000 transistors IEEE
Gigabit HSL Router.

Each Alliance tool therefore supports several standard VLSI description
formats : SPICE, EDIF, VHDL, CIF, GDS2. In that respect, the tools
outputs are fully usable under the Compass and Cadence Opus environment,
provided these tools have the necessary con�guration �les.

2.2.3.2 ALLIANCE Design Flow

One of the distinct characteristics of the Alliance system is that it provides a
common internal data structure to represent the three basic views of a chip:

� the behavioral view,

� the structural view,

� the physical view.

Figure 2.19 details how all the Alliance tools are linked together around the
basic behavioral, structural and physical data structures.

Below the 5 major steps of the basic design methodology in ALLIANCE
are introduced.

Capture and Simulation of the behavioral view. The capture of the
behavioral view is the very �rst step of the design �ow. Within Al-
liance, any VLSI design begins with a timing independent description
of the circuit with a subset of VHDL behavior primitives. This subset
of VHDL, called vbe, is fairly restricted: it is the data-�ow subset of
this language. It is not very easy to modelize an architecture using
this subset, but it has the great advantage of allowing simulation, logic
synthesis and bit level formal proof on the same �les.

2.2. EXISTING FRAMEWORKS 71

Figure 2.19: How the tools are linked on the data structures in ALLIANCE
design Flow.

72 CHAPTER 2. STATE OF THE ART

A VHDL analyzer called vasy can be used to automatically convert
most common VHDL descriptions (using for example IEEE 1164 pack-
ages) to the restricted Alliance subsets (vbe and vst).
Patterns, VHDL simulation stimuli, are described in a speci�c formal-
ism that can be captured using a dedicated language genpat. Once
a VHDL behavioral description written and a set of test vectors have
been determined, a functional simulation is ran. The behavioral VHDL
simulator is called asimut. It validates the input behavior, according
to the input/output vectors.

Capture and Validation of the structural view. The structural view can
be captured once the data �ow description is validated. The actual cap-
ture of the netlist relies either on speci�c description languages, genlib
for standard cells or dpgen for data-path, or on direct synthesis from
the data �ow using the boom tool for optimization and the boog tool to
map on a cell library. Genlib and dpgen are netlist-oriented libraries of
C functions. The advantage of such an approach is that designers do
not have to learn several language with speci�c syntax and semantics.
Usually, the main behavior is partitionned in several sub-behaviors.
Some are described recursively using the genlib language and the other
ones can be directly synthesized from a VHDL description of the cor-
responding sub-behaviors. The boog tool takes an RTL description and
generates a netlist of standard cell gates. An other subset of VHDL
allows to capture �nite state machines. This subset, called fsm, can
be translated into a RTL description using the tool syf, and then the
resulting description optimized using boom and �nally synthesized as a
netlist using once more boog.
Since asimut can operate on both RTL and structural views, the struc-
tural description is checked against the behavioral description by using
the same set of patterns that has been used for behavioral validation.

Physical implementation of the design. Once the circuit netlist has been
captured and validated, each leaf of the hierarchy has to be physically
implemented. A netlist issued from boog is usually placed and routed

2.2. EXISTING FRAMEWORKS 73

using the over cell router nero. If the netlist has been captured using
genlib and if it has a high degree of regularity, it can be placed manu-
ally for optimization using other genlib functions.
The di�erent parts can be placed and assembled together using ocp
and routed using overcell router called nero, and this generates what
ALLIANCE call a core. The circuit core is now ready to be connected
to external pads. The core-to-pads router, ring, aims at doing this
operation automatically, provided the user has given an appropriate
netlist and some indications on pad placement.
The last stage of the physical implementation is the translation of the
symbolic layout to a foundry compliant layout using the s2r tool. Af-
ter that, the tape containing the circuit can be processed by the silicon
supplier.

Layout veri�cation. Powerful tools to perform behavior, netlist and lay-
out veri�cations, have been introduced in the design �ow .
The correctness of the design rules is checked using the design rule
checker druc. An extracted netlist can be obtained from the result-
ing layout. Cougar, the layout extractor operates on both hierarchical
and �attened layout and can output both �attened netlists (transistor
netlist) and hierarchical netlists. The transistor netlist can be the in-
put of a spice simulator. When extracted hierarchically, the resulting
netlist can be compared with the original netlist by using the lvx tool.
lvx, that stands for Logical Versus Extracted, is a netlist comparator
that matches every design object found in both netlists.
The critical path of the circuit is evaluated using a commercial static
timing analyzer, as Alliance doesn't provided one.

Test and Coverage evaluation. For now, the fault coverage provided by
the functional patterns is evaluated using a commercial fault simulator,
as Alliance doesn't provide one yet.

74 CHAPTER 2. STATE OF THE ART

Chapter 3

Proposed Framework

Motivation
Power dissipation is becoming a major concern for semiconductor ven-

dors and customers. Power is especially a concern in Field-Programmable
Gate Arrays (FPGAs). The post-fabrication �exibility in these devices is pro-
vided using a large number of prefabricated routing tracks and programmable
switches. These tracks can be long, and can consume a signi�cant amount
of energy every time they switch. In addition, the programmable switches
add capacitance to each track; this further increases the power dissipation
of FPGAs. Finally, the generic logic structures that are at the heart of ev-
ery FPGA consume more power than the dedicated circuitry that would be
found on an ASIC. For all these reasons, FPGA vendors have indicated that
power is one of the primary concerns of their customers.

As concluded from Chapter two there isn't an academic complete frame-
work for power dissipation for heterogeneous FPGAs. This thesis is proposing
a complete framework for power estimation in heterogeneous FPGAs , named
NAROUTO. With this framework one can explore di�erent heterogeneous
FPGA architectures in terms of delay , area and power.

NAROUTO
NAROUTO (National Technical University of Athens Heterogeneous

Fpga's power estimation framework), is composed by both commercial and
open source CAD tools. It is based in Quartus, ACE, T-Vpack, VPR, and
DAGGER, and all tools can also be used as standalone tools. The abstract
design �ow of NAROUTO is shown in �gure 3.2. In �gure 3.1 a more detailed
�ow for power estimation in NAROUTO framework is presented.

75

76 CHAPTER 3. PROPOSED FRAMEWORK

Quartus
(Synthesis, Technology mapping)

Application Evaluation
 (Area, Power, Delay)

HBT-Vpack
(Clustering)

Hb_for_ace
Power

Estimation ?

Net2xml
(Architecture Creation)

Blackbox-aware
Technology mapping ?

Blackbox_Profiler

Blackbox Packing
Level 1, 2

Pin Multiplexing

Power
Estimation ?

Update Activities

HBVPR
(Place & Route / Power Estimation)

Blackbox-aware
Technology

mapping

YES

YES

YES

NO
NO

NO

Design Description (VHDL)

ACE 2.0
(Activity Estimation)

New tool

Modified tool

Exixting tool

Figure 3.1: NAROUTO framework design Flow.

77

Design Description (VHDL)

Hb_for_ACE

HBT-Vpack

Quartus – Synthesis, Technology mapping

ACE 2.0

In
it

ia
l N

et
lis

t

Net2XML (Architecture Creation)

HBVPR

Application Evaluation
 (Area, Power, Delay)

HBT-Vpack

H
ie

ra
rc

hi
ca

l B
lif

.act file

Blif file

.net netlist

F
u

nc
tio

n
 .f

u
n

fil
e

Synthesis

Activity
Estimation

Clustering/
Packing

Place & Route/
Power
Estimation

Blackbox_Profiler

Blackbox Packing
Level 1, 2

Pin Multiplexing

Blackbox-
aware

Technology
mapping

Update activities

.net netlist

.net netlist .net netlist

.a
c2

 a
ct

iv
ity

.ac2 activity
.ac2 activity

.a
c2

 a
ct

iv
ity

.net netlist.xml
architecture

Synthesis

Input

Output

Hb_for_ACE

New Tool Modified ToolExisting tool

Figure 3.2: The detailed design �ow for power estimation of NAROUTO
framework.

78 CHAPTER 3. PROPOSED FRAMEWORK

3.1 Quartus, edif

In synthesis step as shown in �gure .. the free Quartus II Web Edition
Software v9.1 is used. The input �les used in the design �ow are in VHDL
hardware description language, but all the Quartus II available options are
possible. The output is an .edif netlist �le as shown in �gure 3.3 (the red
highlighted area is the Quartus design entry �ow that is used in NAROUTO).

Figure 3.3: Design entry �ow in NAROUTO taken from Quartus design �ow
(red highlighted area).

3.2. QUARTUS, HIERARCHICAL BLIF 79

3.2 Quartus, hierarchical blif

ACE and T-Vpack require as inputs netlists in BLIF format. In the second
step of NAROUTO design �ow Quartus II it is used to make the appropriate
netlist type transformation.

In Quartus II there are methods to output BLIF (Berkeley Logic Inter-
change Format). In the current Quartus II hierarchical BLIF is supported by
handling all unknown netlist constructs such as DSP and memory blocks as
black boxes. This increases not only the number of designs that can be writ-
ten to BLIF, but also the quality of those designs since all modern designs
of signi�cant size contain either RAM or DSP blocks.

3.2.1 BLIF format

BLIF [21] is rather restrictive as a synthesis netlist format, as it is unable to
express back-boxes that would be required to implement primitives such as
DSP (multiplier) blocks, RAM that are not de�ned at the gate-level. The
most glaring issue with BLIF is that there is no way to express arithmetic
carry chains without converting them to gates. A quick view of some impor-
tant structs in BLIF format is following.

Amodel is a �attened hierarchical circuit. A BLIF �le can contain many
models and references to models described in other BLIF �les. A model is
declared as follows:

.model <decl-model-name>

.inputs <decl-input-list>

.outputs <decl-output-list>

.clock <decl-clock-list>

<command>

.

.

.

<command>

.end

80 CHAPTER 3. PROPOSED FRAMEWORK

A logic-gate associates a logic function with a signal in the model, which
can be used as an input to other logic functions. A logic-gate is declared as
follows:

.names <in-1> <in-2> ... <in-n> <output>

<single-output-cover>

A generic-latch is used to create a delay element in a model. It repre-
sents one bit of memory or state information. The generic-latch construct
can be used to create any type of latch or �ip-�op. A generic-latch is declared
as follows:

.latch <input> <output> [<type> <control>] [<init-val>]

A model-reference is used to insert the logic functions of one model
into the body of another. It is de�ned as follows:

.subckt <model-name> <formal-actual-list>

A .subckt construct can be viewed as creating a copy of the logic functions of
the called model model-name, including all of model-name's generic-latches,
in the calling model.

The following examples consists of an OR gate fed by 2 2-input AND
gates, and a 4 bit adder made from 4 1 bit adders:

OR gate fed by 2 2-input AND gates

.model and_or

.inputs a c d b

.outputs f

.names a c d b f

0110 1

1110 1

1001 1

1101 1

1011 1

0111 1

1111 1

.end

3.2. QUARTUS, HIERARCHICAL BLIF 81

4 bit adder made from 4 1 bit adders

.model 4bitadder

.inputs A3 A2 A1 A0 B3 B2 B1 B0 CIN

.outputs COUT S3 S2 S1 S0

.subckt fulladder a=A0 b=B0 cin=CIN s=S0 cout=CARRY1

.subckt fulladder a=A3 b=B3 cin=CARRY3 s=S3 cout=COUT

.subckt fulladder b=B1 a=A1 cin=CARRY1 s=XX cout=CARRY2

.subckt fulladder a=JJ b=B2 cin=CARRY2 s=S2 cout=CARRY3

for the sake of example,

.names XX S1 # formal output 's' does not fanout to a primary output

1 1

.names A2 JJ # formal input 'a' does not fanin from a primary input

1 1

.end

.model fulladder

.inputs a b cin

.outputs s cout

.names a b k

10 1

01 1

.names k cin s

10 1

01 1

.names a b cin cout

11- 1

1-1 1

-11 1

.end

3.2.2 BLIF output from Quartus

BLIF can be output from QIS in three di�erent formats[22]:

1. After RTL inference and LPM instantiation, but before tech-
nology independent multilevel logic optimization (MLS). To
dump BLIF before technology independent (MLS) optimization, one
needs to turn on the following control variables:

82 CHAPTER 3. PROPOSED FRAMEWORK

� no_add_ops = on (adder-synthesis will not be performed because
BLIF cannot support adder carry-chains)

� opt_dont_use_mac = on (DSP/multiply-accumulate blocks will
not be used)

� dump_blif_before_optimize = on (the BLIF output will take
place before gate-level optimizations)

2. After technology independent optimization, but before tech-
nology mapping to LUTs. To write BLIF after technology indepen-
dent (MLS) optimization, one needs to turn on the following control
variables:

� no_add_ops = on (adder-synthesis will not be performed because
BLIF cannot support adder carry-chains)

� opt_dont_use_mac = on (DSP/multiply-accumulate blocks will
not be used)

� dump_blif_after_optimize = on (the BLIF output will take place
after gate-level optimizations)

3. After complete optimization and technology mapping. To write
BLIF after LUT mapping, one uses a di�erent 3rd setting:

� no_add_ops = on (adder-synthesis will not be performed because
BLIF cannot support adder carry-chains)

� opt_dont_use_mac = on (DSP/multiply-accumulate blocks will
not be used)

� dump_blif_after_lut_map = on (the BLIF output will take place
after LUT mapping)

There are several methods to set these variables. The method used was to
add the appropriate TCL-like syntax to quartus settings �le (QSF), which is
named <projectname>.qsf once the project has created. This example sets
all three variables.

set_global_assignment -name INI_VARS
"no_add_ops=on;opt_dont_use_mac=on;dump_blif_before_optimize=on"

3.2. QUARTUS, HIERARCHICAL BLIF 83

It is important to note the di�erences between these three formats. In the
�rst case, the assumption is that the research goal is to do gate-level syn-
thesis on the design. In the second case, you have a good starting point
for evaluating a new technology mapping algorithm. In the third case, your
goal is either to extract a comparison point from QIS, or to use the mapped
netlist for some other purpose (e.g. to convert to .net format for VPR).

Hierarchical BLIF: Black Box Primitive Support
If the BLIF writer encounters any FPGA hard block such as a RAM

or MAC block or any other unsupported gate, it gives an internal error.
The supported gate types are combinational gates (and,or,xor,not), DFF,
input pin, output pin, bidir, bu�ers (carry-sum,expander,cut and other wire
bu�ers), LUT, tri-bus and I/O bu�er (tri-state, open-drain).

Quartus II black box primitives are supported to BLIF. Any block in the
netlist that is not supported by traditional BLIF will be turned into a black
box leading to a hierarchical BLIF netlist. Black boxes are instantiated in
the current model as sub-circuits using the .subckt construct. Every black
box needs to be de�ned outside of the current model. It requires a name, an
interface consisting of inputs and outputs and the keyword ".blackbox". The
support of black box primitives is activated by adding the following variable
to the QSF �le:

set_global_assignment -name INI_VARS "dump_blif_with_blackboxes=on"

An example of 6x6bits multiplier in Verilog and the corresponding hierar-
chical BLIF netlist from Quartus is shown below:
VHDL

module mult(a,b,f);

input [5:0] a;

input [5:0] b;

output [11:0] f;

assign f = a * b;

endmodule

BLIF output

84 CHAPTER 3. PROPOSED FRAMEWORK

.model mult

.inputs a[0] a[1] a[2] a[3] a[4] a[5] b[0] b[1] b[2] b[3] b[4] b[5]

.outputs f[0] f[1] f[2] f[3] f[4] f[5] f[6] f[7] f[8] f[9] f[10] f[11]

.subckt blackbox_g1 g14=g14 g15=g15 g16=g16 g17=g17 g18=g18 g19=g19

g20=g20 g21=g21 g22=g22 g23=g23 g24=g24 g25=g25 f[0]=f[0] f[1]=f[1]

f[2]=f[2] f[3]=f[3] f[4]=f[4] f[5]=f[5] f[6]=f[6] f[7]=f[7] f[8]=f[8]

f[9]=f[9] f[10]=f[10] f[11]=f[11]

.subckt blackbox_g14 a[0]=a[0] a[1]=a[1] a[2]=a[2] a[3]=a[3] a[4]=a[4]

a[5]=a[5] b[0]=b[0] b[1]=b[1] b[2]=b[2] b[3]=b[3] b[4]=b[4] b[5]=b[5]

g14=g14 g15=g15 g16=g16 g17=g17 g18=g18 g19=g19 g20=g20 g21=g21 g22=g22

g23=g23 g24=g24 g25=g25

.end

blackbox_g1 = lpm_mult:Mult0|mult_fl01:auto_generated|result[0]

#g14 = lpm_mult:Mult0|mult_fl01:auto_generated|mac_mult2

#g15 = lpm_mult:Mult0|mult_fl01:auto_generated|mac_mult2~DATAOUT1

#g16 = lpm_mult:Mult0|mult_fl01:auto_generated|mac_mult2~DATAOUT2

#g17 = lpm_mult:Mult0|mult_fl01:auto_generated|mac_mult2~DATAOUT3

#g18 = lpm_mult:Mult0|mult_fl01:auto_generated|mac_mult2~DATAOUT4

#g19 = lpm_mult:Mult0|mult_fl01:auto_generated|mac_mult2~DATAOUT5

#g20 = lpm_mult:Mult0|mult_fl01:auto_generated|mac_mult2~DATAOUT6

#g21 = lpm_mult:Mult0|mult_fl01:auto_generated|mac_mult2~DATAOUT7

#g22 = lpm_mult:Mult0|mult_fl01:auto_generated|mac_mult2~DATAOUT8

#g23 = lpm_mult:Mult0|mult_fl01:auto_generated|mac_mult2~DATAOUT9

#g24 = lpm_mult:Mult0|mult_fl01:auto_generated|mac_mult2~DATAOUT10

#g25 = lpm_mult:Mult0|mult_fl01:auto_generated|mac_mult2~DATAOUT11

#f[0] = lpm_mult:Mult0|mult_fl01:auto_generated|result[0]

#f[1] = lpm_mult:Mult0|mult_fl01:auto_generated|result[1]

#f[2] = lpm_mult:Mult0|mult_fl01:auto_generated|result[2]

#f[3] = lpm_mult:Mult0|mult_fl01:auto_generated|result[3]

#f[4] = lpm_mult:Mult0|mult_fl01:auto_generated|result[4]

#f[5] = lpm_mult:Mult0|mult_fl01:auto_generated|result[5]

#f[6] = lpm_mult:Mult0|mult_fl01:auto_generated|result[6]

#f[7] = lpm_mult:Mult0|mult_fl01:auto_generated|result[7]

#f[8] = lpm_mult:Mult0|mult_fl01:auto_generated|result[8]

#f[9] = lpm_mult:Mult0|mult_fl01:auto_generated|result[9]

#f[10] = lpm_mult:Mult0|mult_fl01:auto_generated|result[10]

#f[11] = lpm_mult:Mult0|mult_fl01:auto_generated|result[11]

.model blackbox_g1

3.2. QUARTUS, HIERARCHICAL BLIF 85

.inputs g14 g15 g16 g17 g18 g19 g20 g21 g22 g23 g24 g25

.outputs f[0] f[1] f[2] f[3] f[4] f[5] f[6] f[7] f[8] f[9] f[10] f[11]

.blackbox

.end

blackbox_g14 = lpm_mult:Mult0|mult_fl01:auto_generated|mac_mult2

#g14 = lpm_mult:Mult0|mult_fl01:auto_generated|mac_mult2

#g15 = lpm_mult:Mult0|mult_fl01:auto_generated|mac_mult2~DATAOUT1

#g16 = lpm_mult:Mult0|mult_fl01:auto_generated|mac_mult2~DATAOUT2

#g17 = lpm_mult:Mult0|mult_fl01:auto_generated|mac_mult2~DATAOUT3

#g18 = lpm_mult:Mult0|mult_fl01:auto_generated|mac_mult2~DATAOUT4

#g19 = lpm_mult:Mult0|mult_fl01:auto_generated|mac_mult2~DATAOUT5

#g20 = lpm_mult:Mult0|mult_fl01:auto_generated|mac_mult2~DATAOUT6

#g21 = lpm_mult:Mult0|mult_fl01:auto_generated|mac_mult2~DATAOUT7

#g22 = lpm_mult:Mult0|mult_fl01:auto_generated|mac_mult2~DATAOUT8

#g23 = lpm_mult:Mult0|mult_fl01:auto_generated|mac_mult2~DATAOUT9

#g24 = lpm_mult:Mult0|mult_fl01:auto_generated|mac_mult2~DATAOUT10

#g25 = lpm_mult:Mult0|mult_fl01:auto_generated|mac_mult2~DATAOUT11

.model blackbox_g14

.inputs a[0] a[1] a[2] a[3] a[4] a[5] b[0] b[1] b[2] b[3] b[4] b[5]

.outputs g14 g15 g16 g17 g18 g19 g20 g21 g22 g23 g24 g25

.blackbox

.end

The complete variable added to the QSF �le in order to output an hier-
archical blifs with blackbox primitives is :

set_global_assignment -name INI_VARS "no_add_ops=on;
dump_blif_with_blackboxes=on;dump_blif_after_lut_map = on;opt_dont_use_mac=on"

86 CHAPTER 3. PROPOSED FRAMEWORK

3.3 Powermodel Ace

In NAROUTO framework the activity estimator used is the current version
of ACE, ACE 2.0 (see section 2.1.3). ACE calculates static probability and
transision density of each pin beggining from primary inputs to primary
outputs, but it doesn't support hierarchical blifs.

In order to compute activities in hierarchical blifs a tool was created to
prepare the blif netlist for ACE. This tool is called hb_for_ace (transform
Hierarchical Blifs for ACE), its open source and its written in perl.

It removes blackboxes from blifs (not functional removal, hardcoded),
it adds all blackboxes inputs to the main model's primary outputs and all
blackboxes outputs to the main model's primary inputs. The algorithm of
this tool is shown in algorithm �gure 1. It takes as input the hierarchical blif
�le and outputs a blif appropriate for ACE.

Ace as said before starts from primary inputs. Treating blackbox outputs
as primary inputs it means that ACE will give them static probability 0.5 and
transition density 0.2 (as in all primary inputs if its not speci�ed di�erently).
These are acceptable average values because we don't know the outputs of
blackboxes, and ACE can continue normally to compute the activities of the
rest of the pins.

Ace ends at primary outputs. So if blackbox inputs are included in pri-
mary outputs their static probability and transition density will be computed
normally, all the signals will be calculated iteratively until the blackbox in-
puts and primary outputs.

In an abstract level view in an heterogeneous FPGA an heterogeneous
unique block (of whatever type, DSP, RAM, e.t.c.) it behaves as a blackbox.
The rest of Logic Elements of FPGA circuitry outputs some signals that are
processed by the blackbox. This unique block outputs some signals that are
fed back to the Logic Elements as inputs. This process its equivalent to
an external blackbox that communicates with the FPGA through primary
inputs and outputs.

After the use of hb_for_ace, the new BLIF is input to ACE which it
outputs an .act �le containing the activities of each signal in the design
circuitry.

3.3. POWERMODEL ACE 87

Algorithm 1 hb_for_ace

hb_for_ace(input_blif){

blb_inputs();

blb_outputs();

primary_inputs();

primary_outputs();

primary_inputs()=grab_primary_inputs;

primary_outputs()=grab_primary_outputs;

for all blackboxes do

{

ins()=grab_blackbox_inputs(input_blif);

outs()=grab_blackbox_ouputs(input_blif);

add(blb_inputs,ins);

add(blb_outputs,outs);

}

delete_subcircuits(input_blif);

delete_blackbox_models(input_blif);

add(primary_inputs,blb_outputs);

add(primary_outputs,blb_inputs);

printout_final_blif();

}

88 CHAPTER 3. PROPOSED FRAMEWORK

ACE 2.0 it is invoked by the following command :

./ace_linux

--+

-b [circuitname.blif] | required

--+

--+

-o [output activity filename] | optional

--+

--+

-a [input activity filename] | optional

or |

-v [input vector filename] |

or |

-p [PI static probability] |

-d [PI switching activity] |

--+

3.4. HBT-VPACK 89

3.4 HBT-Vpack

HBT-Vpack its a merging of Heterogeneity supporting T-Vpack of VPR
5.0 and powermodel's modi�ed T-Vpack 4.30. The powermodel's code for
T-Vpack was annotated to the new Heterogeneous T-Vpack.

It takes as input the hierarchical blif outputed from Quartus II and it out-
puts an .ac2, a .fun �le and a .net �le. The options are these of Heterogeneous
T-Vpack of VPR 5.0 framework :

1. Architecture Description Options That Are Always Valid

-lut_size <int>
Number of inputs per LUT (i.e. K).
Default: 4.

-no_clustering
Speci�es that no clustering is to be performed � i.e. the logic block
consists of one BLE (a LUT and a FF) with no local routing.
Default: cluster.

-global_clocks {on | o�}
Indicates whether clocks should be marked as being routed via a
special, global resource. VPR does not route global signals.
Default: on.

2. Architecture Options Valid Only When -no_clustering Is Not
Speci�ed

-cluster_size <int>
Number of BLEs in a cluster-based logic block (i.e. N).
Default: 1.

-inputs_per_cluster <int>
Number of distinct inputs in a logic cluster (i.e. I).
Default: lut_size × cluster_size.

-clocks_per_cluster <int>
Number of distinct clocks in a logic cluster.
Default: 1.

-muxes_to_cluster_output_pins {on | o�}
If "o�", each BLE output is hooked directly to a cluster output
pin. If "on", a set of N (one per cluster output) N:1 multiplexers

90 CHAPTER 3. PROPOSED FRAMEWORK

allows each output pin to be driven by any of the N BLEs within
a cluster.
Default: o�.

3. CAD Optimization Options

-timing_driven {on | o�}
Controls whether the clustering algorithm attempts to optimize
circuit timing by attempting to capture critical connections within
a logic cluster.
Default: on.

-connection_driven {on | o�}
Controls whether or not T-VPack attempts to absorb, within one
cluster, connections from the output of one BLE to the input of
another.
Default: o�.

-hill_climbing {on | o�}
Controls whether the algorithm used to pack BLEs into clusters
allows hill climbing or is strictly greedy.
Default: on.

-cluster_seed {timing | max_inputs}
Speci�es the way in which the cluster packing algorithm picks the
�rst BLE to be placed in an empty cluster. Max_inputs picks the
BLE with the most used inputs, while timing picks the BLE on
the most critical path.
Default: timing if timing_driven is on, max_inputs otherwise.

-allow_unrelated_clustering {on | o�}
Controls whether or not BLEs with no attraction to the current
cluster can be packed into it.
Default: on.

-alpha <�oat>
A tradeo� parameter that controls the optimization of delay in
packing vs. the optimization of signal sharing. A value of 0 focuses
solely on signal sharing, while a value of 1 focuses solely on timing.
This option is meaningful only when timing_driven is on.
Default: 0.75.

3.4. HBT-VPACK 91

-recompute_timing_after <int>
T-VPack will recompute its estimate of how timing-critical each
connection is after packing the speci�ed number of BLEs into
clusters. This option is meaningful only when timing_driven is
on.
Default: 32 000.

-block_delay <�oat>
The relative delay of a BLE. This option is meaningful only when
timing_driven is on.
Default: 0.1.

-intra_cluster_net_delay <�oat>
The relative delay of a signal that goes from one BLE to another
using the local routing within a cluster. This option is meaningful
only when timing_driven is on.
Default: 0.1.

-inter_cluster_net_delay <�oat>
The relative delay of a signal that goes from one BLE to another
BLE that is in a di�erent cluster, or an I/O pad. This option is
meaningful only when timing_driven is on.
Default: 1.0.

-allow_early_exit {on | o�}
If on, the clusterer will stop re-timing analyzing a circuit once it
believes the current, partially complete packing, has �xed ("locked")
the critical path.
Default o�.

In .ac2 �le each global net, net that connect clusters and subblock in the
design, has its corresponding probability and the transition density values
listed, as shown in the example (table 3.1).

In �le .fun each subblock its described by its name and the corresponding
logic function implemented in the subblock. This is shown in the example
(table 3.2) .

The .net �le that outputs the HBT-Vpack contains the blackboxes of the
design as show in the example (table 3.3).

92 CHAPTER 3. PROPOSED FRAMEWORK

global_net_probability clk 0.500000

global_net_density clk 1.000000

.

.

.

intercluster_net_probability g103 0.329200

intercluster_net_density g103 0.321000

intercluster_net_probability g409 0.509400

intercluster_net_density g409 0.197000

intercluster_net_probability g411 0.501600

intercluster_net_density g411 0.206000

intercluster_net_probability g413 0.498400

intercluster_net_density g413 0.204600

.

.

.

subblock_probabiliy g281 0.048000 0.000000 0.000000 0.500000

0.000000 0.048000

subblock_density g281 0.026400 0.000000 0.000000 0.000000

1.000000 0.000000 0.026400

subblock_probabiliy g282 0.078000 0.025600 0.042200 0.000000

0.000000 0.001200

subblock_density g282 0.052600 0.051000 0.026800 0.024800

0.000000 0.000000 0.002600

subblock_probabiliy g283 0.048000 0.001200 0.517400 0.000000

0.000000 0.050400

subblock_density g283 0.026400 0.002600 0.206200 0.080200

0.000000 0.000000 0.050800

subblock_probabiliy g284 0.533800 0.017400 0.040000 0.000000

0.000000 0.048000

subblock_density g284 0.194000 0.035000 0.080200 0.050800

0.000000 0.000000 0.026400

.

.

.

Table 3.1: Ac2 �le example

3.4. HBT-VPACK 93

.

.

.

subblock_function g80 0100011100110011

subblock_function g84 0000110000111111

subblock_function g86 0000110000111111

subblock_function g87 0011000100111101

subblock_function g89 0000111111111111

subblock_function g90 0101101001100110

subblock_function g91 0100011100110011

subblock_function g92 0000111100110011

subblock_function g97 0000110000111111

subblock_function g99 0000110000111111

subblock_function g100 0100110001001111

subblock_function g101 0111001101000011

subblock_function g102 0001011100110101

subblock_function g103 0011000100111101

subblock_function g104 0000100011111111

subblock_function g106 1000101100110011

subblock_function g107 0011001100001111

.

.

.

Table 3.2: Fun �le example

94 CHAPTER 3. PROPOSED FRAMEWORK

.

.

.

.blackbox_g130 blackbox_g130_4

pinlist: g406 clk g254 g409 g411 g413 g418 g420 g422 \

g415 g426 g428 g430 g434 g435 g436 g432 g131 open

subblock: sub0 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 open

.blackbox_g154 blackbox_g154_5

pinlist: g406 clk g207 g409 g411 g413 g418 g420 g422 \

g415 g426 g428 g430 g434 g435 g436 g432 g155 open

subblock: sub0 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 open

.blackbox_g169 blackbox_g169_6

pinlist: g406 clk g278 g409 g411 g413 g418 g420 g422 \

g415 g426 g428 g430 g434 g435 g436 g432 g170 open

subblock: sub0 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 open

.blackbox_g198 blackbox_g198_7

pinlist: g406 clk g302 g409 g411 g413 g418 g420 g422 \

g415 g426 g428 g430 g434 g435 g436 g432 g199 open

subblock: sub0 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 open

.

.

.

Table 3.3: Net �le blackboxe's example

3.4. HBT-VPACK 95

The HBT-Vpack is invoked by the command :

t-vpack input.blif output.net [-activity_in activity.act] [-activity_out activ-
ity.ac2]

96 CHAPTER 3. PROPOSED FRAMEWORK

3.5 Heterogeneity Support Toolset

HST (Heterogeneity Support Toolset) is a collection of open source tools
written in perl to prepare the inputs that the VPR needs. It works for both
VPR 5.0 and HBVPR (in NAROUTO framework).

3.5.1 Practical problems in Heterogeneity support

Even though the synthesis output from Quartus software can produce BLIF
netlists with black-boxes, the resulted netlist is not logically equivalent with
the original RTL description. This mainly occurs since BLIF format describes
application's functionality at �ner level. For instance, application's logic is
translated at gate level, while memories are usually reported at word level.
For example, an 128 × 8 bit RAM block will be encoded as 128 blackboxes,
in the output blif.

If an hierarchical Blif such as that described above is given in HBT-Vpack
as input it will result in a .net netlist with the same number of blackboxes
representing individual cells. If this netlist is fed into VPR 5.0 or HBVPR it
creates the following problems :

� The design is not realistic, because heterogeneous blocks are imple-
mented as whole in commercial FPGAs.

� Because the number of blackboxes in .net �le is greater than the actual
number of heterogeneous blocks, the place and route step of the design
�ow requires more available slots for black-boxes, as well as signi�cantly
wider routing channels.

� The number of blackboxes in .net �le can be so large (for example a
2048 × 8 bit RAM block will result in 2048 blackboxes!!!) than VPR,
or any other Place and Route tool can't handle.

Another problem that creates the support of heterogeneity in VPR 5.0
(and in HBVPR which is based in VPR 5.0), is that for every .net �le that in-
cludes blackboxes one needs a corresponding architectural �le in .xml format,
but until now the only way for this �le to be created was manual.

3.5. HETEROGENEITY SUPPORT TOOLSET 97

3.5.2 HST Tools

3.5.2.1 Blackbox-aware technology mapping

In order to overcome the problem of breaking an heterogeneous block into
individual cells of �ner logic by the Quartus II, a blackbox-aware technology
mapping must be applied to the design before this is placed and routed by
VPR.

Blackbox_Pro�ler tool was created for this reason. Blackbox_Pro�ler's
algorithm its based in the fact that sub-blackboxes that belong to a single
hardware block have the same signals as the hardware block for controlling
and communicating with the rest of the FPGA logic elements (for example
a RAM hardware block may have read/write input to prevent simultaneous
read and write in the same address).

Algorithm �gure 2 shows the algorithm that performs this black-box-
aware technology mapping.

Algorithm 2 Blackbox_Pro�ler
function blackbox-aware technology mapping

{

types()=find_diffrerent_types(blackboxes);

new_blackboxes()=types();

}

Blackbox_Pro�ler takes as input the design circuitry's netlist in .net for-
mat which is output in HBT-Vpack or T-Vpack, and the hierarchical blif
that Quartus II outputs. It outputs a .net.res �le that shows the results
blackbox-aware technology mapping and its needed by various tools in HST,
and a log �le that contains informations about the mapping.

Table 3.4 shows the contents of a log �le.

98 CHAPTER 3. PROPOSED FRAMEWORK

Blackbox name : .blackbox_g70 blackbox_g70_0

Blackboxes merged : 8

Total pins : 32

Input pins : 24

Output pins : 8

Initial Inputs : 17

Initial outputs : 1

--- Total number of 8 blackboxes merged in 1 ---

--- Input file: oc_minirisc.net Output file: Packed-oc_minirisc.net

Table 3.4: Blackbox_Pro�ler log �le

3.5.2.2 Blackbox Packing

After the pro�ling of blackboxes the initial .net netlist from T-Vpack or
HBT-Vpack can be updated to re�ect the results of Blackbox_Pro�ler.

Blackbox packing can be done in two levels.

Blackbox Packing level 1
In level 1 packing, the packer groups all the subcomponents that belong

to a single hardware block into a distinct black-box instance. Its algorithm
can be shown in 3.

Blackbox_Packing level 1 takes as input the design circuitry's netlist in
.net format which is output in HBT-Vpack or T-Vpack, the hierarchical blif
that Quartus II outputs and information from Blackbox_Pro�ler. Then it
outputs the new blackbox-aware technology mapped netlist in .net format
ready for Heterogeneous VPR and HBVPR.

Example 3.5 shows an example of a blackbox instance in a netlist, before
and after blackbox-aware technology mapping

Blackbox Packing level 2
In heterogeneous FPGAs some times unique hardware blocks can be part

3.5. HETEROGENEITY SUPPORT TOOLSET 99

Algorithm 3 Blackbox Packing level 1
function Level_1_packing

{

for all blackboxes do

{

x=types(0);

while (not_matched)

{

if (blackbox_is_of_type(x))

{

multiplex(blackbox,new_blackboxes(x));

not_matched=FALSE;

}

else x= type->next;

}

}

}

100 CHAPTER 3. PROPOSED FRAMEWORK

.blackbox_g70 blackbox_g70_0
pinlist: g406 clk g103 g409 g411 g413 g418 g420 g422 g415 g426 g428 g430
g434 g435 g436 g432 g71 open
subblock: sub0 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 open
.blackbox_g82 blackbox_g82_1
pinlist: g406 clk g143 g409 g411 g413 g418 g420 g422 g415 g426 g428 g430
g434 g435 g436 g432 g83 open
subblock: sub0 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 open
.blackbox_g95 blackbox_g95_2
pinlist: g406 clk g231 g409 g411 g413 g418 g420 g422 g415 g426 g428 g430
g434 g435 g436 g432 g96 open
subblock: sub0 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 open
.blackbox_g117 blackbox_g117_3
pinlist: g406 clk g179 g409 g411 g413 g418 g420 g422 g415 g426 g428 g430
g434 g435 g436 g432 g118 open
subblock: sub0 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 open
.blackbox_g130 blackbox_g130_4
pinlist: g406 clk g254 g409 g411 g413 g418 g420 g422 g415 g426 g428 g430
g434 g435 g436 g432 g131 open
subblock: sub0 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 open
.blackbox_g154 blackbox_g154_5
pinlist: g406 clk g207 g409 g411 g413 g418 g420 g422 g415 g426 g428 g430
g434 g435 g436 g432 g155 open
subblock: sub0 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 open
.blackbox_g169 blackbox_g169_6
pinlist: g406 clk g278 g409 g411 g413 g418 g420 g422 g415 g426 g428 g430
g434 g435 g436 g432 g170 open
subblock: sub0 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 open
.blackbox_g198 blackbox_g198_7
pinlist: g406 clk g302 g409 g411 g413 g418 g420 g422 g415 g426 g428 g430
g434 g435 g436 g432 g199 open
subblock: sub0 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 open

.blackbox_g70 blackbox_g70_0
pinlist: g406 g103 g302 g278 g207 g254 g179 g231 g143 g409 g411 g413 g418
g420 g422 g415 g426 g428 g430 g434 g435 g436 g432 g71 g199 g170 g155 g131
g118 g96 g83 clk
subblock: sub0 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23
24 25 26 27 28 29 30 31

Table 3.5: Blackbox example before (top) and after (bottom) blackbox-aware
technology mapping

3.5. HETEROGENEITY SUPPORT TOOLSET 101

of a larger block. For example , 2 × 1Kbyte RAM blocks can be packed into
one larger RAM hardware block. In odrer to expand the exploration space of
research in placement and routing of NAROUTO framework, a second level
of blackbox packing developed.

Blackbox_Packing level 2 , groups all blackboxes that a netlist contains,
in one larger blackbox. The algorithm of the tool is shown in algorithm �gure
4 .

Algorithm 4 Blackbox_Packing Level 2

function group_all_blackboxes

{

all_inputs();

all_outputs();

for all blackboxes do

{

ins() = grab_inputs(blackbox);

outs()= grab_outputs(blackbox);

add(all_inputs,ins);

add(all_outputs,outs);

}

new_blackbox = build_blackbox(all_inputs,all_outputs);

}

It takes as input the design circuitry's netlist in .net format which is
output in HBT-Vpack, T-Vpack, or level 1 Packer, information from Black-
box_Pro�ler and the hierarchical blif that Quartus II outputs. Then Black-
box Packing level 2 outputs the new netlist, with grouped blackboxes, in .net
format.

Example 3.6 shows an example of two blackboxes in a netlist after packing
level 1, and after packing level 2.

102 CHAPTER 3. PROPOSED FRAMEWORK

.blackbox_g394 blackbox_g394_0
pinlist: g412 g564 g572 g571 g570 g569 g568 g567 g566 g298 g297 g296 g295
g294 g293 g292 g486 g485 g484 g482 g480 g479 g477 g395 g452 g446 g440
g434 g428 g422 g416 CLK_I
subblock: sub0 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23
24 25 26 27 28 29 30 31
.blackbox_g747 blackbox_g747_8
pinlist: g744 g795 g929 g897 g873 g872 g871 g860 g859 g135 g136 g140 g141
g145 g146 g150 g277 g279 g282 g284 g285 g287 g289 g748 g907 g864 g837
g831 g825 g812 g806 CLK_I
subblock: sub0 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23
24 25 26 27 28 29 30 31

.blackbox_g394 blackbox_g394_0
pinlist: g929 g897 g873 g872 g871 g860 g859 g289 g287 g285 g284 g282 g279
g277 g150 g146 g145 g141 g140 g136 g135 g795 g744 g572 g571 g570 g569
g568 g567 g566 g412 g564 g298 g297 g296 g295 g294 g293 g292 g486 g485
g484 g482 g480 g479 g477 g395 g416 g422 g428 g434 g440 g446 g452 g748
g806 g812 g825 g831 g837 g864 g907 CLK_I
subblock: sub0 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23
24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48
49 50 51 52 53 54 55 56 57 58 59 60 61 62

Table 3.6: Blackbox example after level 1 packing (top) and after level 2
packing (bottom)

3.5. HETEROGENEITY SUPPORT TOOLSET 103

3.5.2.3 Multiplexer

Since BLIF format describes application's functionality at �ner level that
results in demultiplexion of the signals of the heterogeneous hardware block.
The Blackbox Packing tool may result a blackbox instantiation with 700
pins!!!. The channel width of intercluster connections needed for this block
to be routed by VPR or any similar tool is signi�cantly larger than a real
RAM block or DSP would need (if VPR can even handle this channel width).

Multiplexer is a tool that transforms the blackbox instantiation in a .net
type netlist of the design in a realistic �concerning the number of pins�
heterogeneous hardware block.

In the development of Multiplexer tool some practical problems concern-
ing the integrity of the initial circuitry design occurred. If the method for
reducing the input and output pins of blackboxes was to simply merge many
signals into one that would undermine the structural and functional integrity
of .net netlist. For example : if every reference in the netlist of signals g30,
g31, g32, g33, g34 to become reference of signal g3_0, some nets will result in
multiple fanin and VPR will result in unexpected exit with "error in netlist"
error.

The method used to reduce the number of pins, was to "simulate" a
multiplexer through clbs. Input signals of a blackbox, �rst pass through
"multiplexing" clbs, and the new multiplexed signals are the new inputs of
a blackbox. Output signals of a blackbox are multiplexed and pass through
"demultiplexing" clbs before connecting with the rest of the clbs. That way
the rest of the design in the netlist �le remains intact. If it is needed the
new inputs and outputs of the blackbox will be multiplexed again (as many
times its needed).

The Multiplexer tool algorithm is shown in algorithm �gure 5.

One disadvantage of this method is that adds to the existing netlist extra
clbs. This means utilization of more FPGA fabric than the design actually
needs. On the other hand this penalty its easily computed since the number
of axtra clbs is known to the designer. Additionally the percentage of extra
clbs compared to the total number of clb's a design's netlist contains is in
most cases 2-4%, so the penalties this creates can be overlooked.

Multiplexer needs as input the netlist of a design in blif and net format
(.net �le is the result of Blackbox Packing tool), and information from Black-
box_Pro�ler. It outputs a .net.res �le that its needed by net2xml tool, and
a log �le that contains informations about the multiplexing.

104 CHAPTER 3. PROPOSED FRAMEWORK

Algorithm 5 Multiplexer

function multiplexe-pins

(input_compression_level, output_compression_level)

{

inputs();

outputs();

extra_clbs();

for all blackboxes do

{

inputs()=grab_blackbox_inputs();

outputs()=grab_blackbox_outputs();

for i=0 to i=input_compression_level{

new_signals()=create_new_input_names(inputs);

new_clbs=create_in_clbs(inputs,new_signals);

add(extra_clbs,new_clbs);

inputs()=new_signals;

}

for i=0 to i=output_compression_level{

new_signals()=create_new_output_names(outputs);

new_clbs=create_out_clbs(outputs,new_signals);

add(extra_clbs,new_clbs);

outputs()=new_signals;

}

}

}

3.5. HETEROGENEITY SUPPORT TOOLSET 105

.blackbox_g70 blackbox_g70_0
pinlist: g406 g103 g302 g278 g207 g254 g179 g231 g143 g409 g411 g413 g418
g420 g422 g415 g426 g428 g430 g434 g435 g436 g432 g71 g199 g170 g155 g131
g118 g96 g83 clk
subblock: sub0 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23
24 25 26 27 28 29 30 31

.blackbox_g70 blackbox_g70_0
pinlist: JE_4 JE_5 JE_0 JE_3 JE_2 JE_1 SI_3 SI_0 SI_1 SI_2 clk
subblock: sub0 0 1 2 3 4 5 6 7 8 9 10

Table 3.7: Blackbox example before (top) and after (bottom) I/O multiplex-
ing

Example 3.7 shows an example of a blackbox instance in a netlist, before
and after I/O multiplexing. In 3.8 the extra clb's added are presented, and
3.9 shows the contents of the corresponding log �le.

106 CHAPTER 3. PROPOSED FRAMEWORK

.clb Inplex_1_0

pinlist: g406 g103 g409 g411 g413 g418 g420 g422 g415 g426 \

g428 g430 g434 g435 g436 g432 g143 g231 g179 g254 open open \

open open open open open JE_0 JE_1 JE_2 JE_3 JE_4 clk

subblock: JE_4 0 1 2 3 31 32

subblock: JE_3 4 5 6 7 30 32

subblock: JE_2 8 9 10 11 29 32

subblock: JE_1 12 13 14 15 28 32

subblock: JE_0 16 17 18 19 27 32

.clb Inplex_1_1

pinlist: g207 g278 g302 open open open open open open open \

open open open open open open open open open open open open \

open open open open open open open open open JE_5 clk

subblock: JE_5 0 1 2 open 31 32

.clb Outplex_1_0

pinlist: SI_0 SI_1 SI_2 SI_3 open open open open open open \

open open open open open open open open open open open open \

open open g71 g83 g96 g118 g131 g155 g170 g199 clk

subblock: g199 0 open open open 31 32

subblock: g170 1 open open open 30 32

subblock: g155 2 open open open 29 32

subblock: g131 3 open open open 28 32

subblock: g118 0 open open open 27 32

subblock: g96 1 open open open 26 32

subblock: g83 2 open open open 25 32

subblock: g71 3 open open open 24 32

Table 3.8: Extra clbs from blackbox I/O multiplexing

3.5. HETEROGENEITY SUPPORT TOOLSET 107

--- Number of clbs: 73 ---

--- Total inputs: 23 Total outputs: 8 ---

Input Compression level: 1 -- Inputs: 23=>6 -- Extra clbs: 2

Output Compression level: 1 -- Outputs: 8=>4 -- Extra clbs: 1

Input Compression level: 1 -- Output Compression level: 1

--- New File : PL-Packed-oc_minirisc.net ---

Table 3.9: Log �le of Multiplexer tool

3.5.2.4 Net2xml

As mentioned in section 3.5.1 for every .net �le that includes blackboxes
one needs a corresponding unique architectural �le in .xml format to use as
input in VPR 5.0 (and HBVPR). In order to create this architectural �le
automatically a tool has been added in Heterogeneity Support Toolset.

Net2xml (that tool) can be used in two ways.

1. One can use the initial netlist that T-Vpack outputted along with the
corresponding hierarchical blif,

2. or he can use the .net.res output of Blackbox_Pro�ler along with the
netlist from either level 1 or 2 blackbox packing

There are three �les that one can change manually to con�gure the ar-
chitecture of the FPGA.

� template.xml that contains information about the FPGA fabric.

� blackbox.conf that contains information about blackboxes such as
the position of pins and input to output delays.

� power.xml that contains information that needed in power estimation.

108 CHAPTER 3. PROPOSED FRAMEWORK

Net2xml has two modes of architecture creation:

� If no parameter used the .xml output is ready for VPR 5.0.

� If the <-p> parameter used, .xml output has power information that
HBVPR needs.

Net2xml then outputs the appropriate .xml architecture �le that HBVPR
or VPR 5.0 needs.

It follows an example which is shows a blackbox architecture description.

<type name=".blackbox_g70" height="1">

<subblocks max_subblocks="1" max_subblock_inputs="6"

max_subblock_outputs="4">

<timing >

<T_comb >

<trow>2e-09 2e-09 2e-09 2e-09 </trow>

<trow>2e-09 2e-09 2e-09 2e-09 </trow>

<trow>2e-09 2e-09 2e-09 2e-09 </trow>

<trow>2e-09 2e-09 2e-09 2e-09 </trow>

<trow>2e-09 2e-09 2e-09 2e-09 </trow>

<trow>2e-09 2e-09 2e-09 2e-09 </trow>

</T_comb >

<T_seq_in >

<trow>-1e-10</trow>

<trow>-1e-10</trow>

<trow>-1e-10</trow>

<trow>-1e-10</trow>

</T_seq_in >

<T_seq_out >

<trow>-1e-10</trow>

<trow>-1e-10</trow>

<trow>-1e-10</trow>

<trow>-1e-10</trow>

</T_seq_out >

</timing >

</subblocks >

<fc_in type="frac">0.25</fc_in >

<fc_out type="full" />{sec:multiplexer}

<pinclasses >

<class type="in">0</class >

<class type="in">1</class >

<class type="in">2</class >

3.5. HETEROGENEITY SUPPORT TOOLSET 109

<class type="in">3</class >

<class type="in">4</class >

<class type="in">5</class >

<class type="out">6 7 8 9 </class>

<class type="global">10</class >

</pinclasses >

<pinlocations >

<loc side="left">0 4 8 </loc>

<loc side="top">1 5 9 </loc>

<loc side="right">2 6 10 </loc>

<loc side="bottom">3 7 </loc>

</pinlocations >

<gridlocations >

<loc type="col" start="2" repeat="0" priority="3"/>

</gridlocations >

<timing >

<tedge type="T_sblk_opin_to_sblk_ipin">2e-9</tedge>

<tedge type="T_fb_ipin_to_sblk_ipin">3e-9</tedge>

<tedge type="T_sblk_opin_to_fb_opin">4e-9</tedge>

</timing >

</type>

Below it is shown the power information needed in .xml architecture �le
for HBVPR power estimation.

<clocks >

<clock buffer_R="124" buffer_Cin="80e-15" buffer_Cout="

200e-15" Rwire="40" Cwire="20e-15"

Cin_per_clb_clock_pin="7.512e-15"/>

</clocks >

<power>

<temperature_records >

<temp NMOS_NFS="8.28 e18" PMOS_NFS="8.32 e18"> -40</temp

>

<temp NMOS_NFS="8.50 e18" PMOS_NFS="8.46 e18"> -30</temp

>

<temp NMOS_NFS="8.72 e18" PMOS_NFS="8.62 e18"> -20</temp

>

<temp NMOS_NFS="8.94 e18" PMOS_NFS="8.79 e18"> -10</temp

>

<temp NMOS_NFS="9.16 e18" PMOS_NFS="8.96 e18">0</temp>

<temp NMOS_NFS="9.38 e18" PMOS_NFS="8.14 e18">10</temp>

110 CHAPTER 3. PROPOSED FRAMEWORK

<temp NMOS_NFS="9.59 e18" PMOS_NFS="9.31 e18">20</temp>

<temp NMOS_NFS="9.70 e18" PMOS_NFS="9.49 e18">25</temp>

<temp NMOS_NFS="9.81 e18" PMOS_NFS="9.40 e18">30</temp>

<temp NMOS_NFS="1.00 e19" PMOS_NFS="9.67 e18">40</temp>

<temp NMOS_NFS="1.02 e19" PMOS_NFS="9.85 e18">50</temp>

<temp NMOS_NFS="1.05 e19" PMOS_NFS="1.00 e18">60</temp>

<temp NMOS_NFS="1.07 e19" PMOS_NFS="1.02 e19">70</temp>

<temp NMOS_NFS="1.09 e19" PMOS_NFS="1.04 e19">80</temp>

<temp NMOS_NFS="1.11 e19" PMOS_NFS="1.06 e19">90</temp>

<temp NMOS_NFS="1.13 e19 " PMOS_NFS="1.07 e19">100</

temp>

</temperature_records >

<Nmos Vth="0.4" CJ="1E-3" CJSW="2E-10" CJSWG="5e-10"

CGDO="3E-10" COX="8e-3" EC="4e6"/>

<Pmos Vth="0.4" CJ="1E-3" CJSW="2E-10" CJSWG="5e-10"

CGDO="3E-10" COX="8e-3" EC="5e6"/>

<poly Cpoly="1E-10" poly_extension="0.18e-6"/>

<min_transistor_size length="0.18e-6" width="0.36e-6"/>

<Vdd>1.8</Vdd>

<Vswing >1.8</Vswing >

<Vgs_for_leakage >0.2</Vgs_for_leakage >

<SRAM_leakage >0</SRAM_leakage >

<short_circuit_power_percentage >0.1</

short_circuit_power_percentage >

</power>

3.5. HETEROGENEITY SUPPORT TOOLSET 111

3.5.2.5 Activity_Updater

After multiplexing the pins of the blackboxes (section 3.5.2.3), the .ac2 ac-
tivity �le must be updated to include the signals of added "multiplexing"
clbs.

The Activity_Updater tool of HST toolset generates the new activities
of each new signal. The algorithm is calculating the average static probabil-
ity and transition density of the signals multiplexed to output new signal's
corresponding values. The algorithm is shown in algorithm �gure 6.

Algorithm 6 Activity_Updater
function update_activities

{

signals();

activities();

for all new_signals do

{

x=current_signal;

signals()=find_all_signals_multiplexed_in(x);

prob=calculate_average_prob(signals);

dens=calculate_average_dens(signals);

add(activities, prob, dens);

}

Activity_Updater takes as input, the .act and .ac2 activity �les of the
design, and the .net netlist the Multiplexer tool outputs. It generates a new
.ac2 activity �le that will be used from HBVPR.

112 CHAPTER 3. PROPOSED FRAMEWORK

3.6 HBVPR

HBVPR is a Placement & Routing tool in NAROUTO framework that sup-
ports power estimation in both homogeneous and heterogeneous FPGA de-
signs. It is based in VPR 5.0 (see section 2.1.2.2), Powermodel framework of
VPR 4.30 (see section 2.1.3) and VPR 5.0 with power estimation (see section
2.1.6).

3.6.1 Power estimation

If an .ac2 activity �le, an .fun function �le, and an .xml architecture �le with
power concerning information are given, HBVPR estimates power dissipation
of the given design. This step is done after the �nal Placement and routing
of the design, so placement and routing are not power-aware.

The average power consumption in digital circuits consists of three main
components:

� dynamic,

� short-circuit

� and leakage power.

3.6.1.1 Dynamic Power

Dynamic power is the dominant component of the total power. It is dissipated
every time a signal changes due to the charging and discharging of load and
parasitic capacitances. Therefore, dynamic power is closely related to the
transition density of all nodes inside the circuit. The total dynamic power
dissipation can be written as:

DynamicPower =
∑

allnodes

0.5 × Cy × Vsupply × Vswing ×D(y) × fclk (3.1)

The expression 0.5 × Cy × Vsupply × Vswing ×D(y) determines the energy
per clock cycle, where Vswing is the swing voltage of each node, Vsupply is
the supply voltage, D(y) is the transition density at node y, and Cy is the
capacitance of node y that is charged and discharged during each transition.
The dynamic power is then equal to the energy per clock cycle multiplied by

3.6. HBVPR 113

the clock frequency, fclk, which is bounded by the critical path delay of the
circuit.

To estimate dynamic power, the resources in an FPGA are separated into
three categories: routing resources, logic blocks, and the clock network. The
estimation of power dissipation by these resources is done in each category
separately.

Routing Resource Dynamic Power

A large part of the dynamic power is due to switching tracks within
the routing fabric of the FPGA. Since the power model needs to be �exible
enough to model the power in any FPGA that can be described within VPR,
and since the capacitances of the routing tracks vary greatly with the track
length and the number of attached bu�ers, a single value for track capacitance
is not enough. Instead, capacitance information is extracted from the routing
resource graph within VPR for each metal track separately. Figure 3.4 shows
an example metal track that spans four logic blocks and is attached to a
number of programmable switches. In general, the capacitance of a track
depends on the number of logic blocks spanned by the segment, the size of
each logic block (since a larger logic block implies a longer metal track),
the number of pins on each logic block, the switch block and connection
block connectivities, and information about the target technology. Using
this information, the overall capacitance of each track is estimated by adding
the metal capacitance of the track itself and the parasitic capacitances of all
switches attached to the track.

Figure 3.4: Example of an FPGA Routing Segment.

114 CHAPTER 3. PROPOSED FRAMEWORK

After calculating the capacitance information for each track, the overall
dynamic power of the routing fabric is calculated. For each net in the design,
the capacitance of all tracks that are used to route the net are summed, and
the activity of the net is then used, along with this capacitance, to calculate
the power dissipated by that net.

Logic Block Dynamic Power
Like the power model for the routing fabric, the power model for the

logic block must be �exible. It must accommodate any lookup-table size,
any number of lookup-tables in each cluster, and any number of inputs to
each cluster. The model assumes the architecture in Figure 3.5, and consists
of four components: the power dissipated in the lookup-tables, the power
dissipated in the input multiplexers, the power dissipated in the �ip-�ops,
and the power dissipated in the other nodes and wires within the logic block.

Figure 3.5: Schematic of a logic block.

3.6. HBVPR 115

Power Dissipated in the Lookup-Tables. Lookup-tables in FPGA's are
commonly implemented as multiplexer trees. To estimate the power
dissipated in a multiplexer tree, the tree is represented as a set of two-
input multiplexers. Then from the transition density model (as before)
the activity of each node within the lookup-table is calculated. The
capacitance of each node within the lookup-table is estimated by noting
that each node is associated with three source/drain capacitances and
one gate capacitance (the gate capacitance is due to the Miller e�ect
spread over two transistors).

Power Dissipated in the Input Multiplexers. The input multiplexers
select the lookup-table input signals from among the routing tracks.
Since these multiplexers are similar in structure to the lookup-tables,
the modeling is similar. There are, however, two important di�erences.
First, the gates of the pass transistors inside the LUTs are connected
directly to the internal routing; therefore, the internal nodes inside the
LUT can be a�ected by thev body e�ect of the pass transistors, and
may swing at a degraded supply voltage. On the other hand, the gates
of the pass transistors inside the input multiplexers are connected to
SRAM cells. The SRAM cells are assumed to be powered by a higher
voltage than the core voltage, meaning that the internal nodes inside
the input multiplexers are not a�ected by the body e�ect and swing at
the full core voltage.

A second reason that the input multiplexers have di�erent power be-
havior than the multiplexers within the lookup tables is that the inter-
nal nodes within input multiplexers are often more correlated to each
other than those within the LUTs. Such a phenomenon in LUTs may
not happen as frequent as in the input multiplexers because the input
signals to the LUTs can switch at di�erent times.

Power Dissipated in Flip-Flops To determine the dynamic power dissi-
pated inside each D-�ip-�op in an FPGA logic block, the following
model used.

116 CHAPTER 3. PROPOSED FRAMEWORK

DynamicPower(DFF) = 0.5×CDFF×(EffectiveDensity)×Vsupply×Vswing×fclk
(3.2)

EffectiveDensity = (−0.074)×D(input)+(5.2486)×D(input) (3.3)

where D(input) is the transition density of the input signal for the D-
�ip-�op, Vsupply is the supply voltage, Vswing is the swing voltage, and
fclk is the clock frequency. The quantity CDFF is the total capacitance
of all nodes inside a �ip-�op that toggle when a �ip-�op changes state
(this was estimated using reasonable transistor sizes and source/drain
overlaps for our �ip-�op circuit).

Power Dissipated in Clock Tree. Finally, the dynamic power of the clock
network is determined by assuming an H-tree clock network. The clock
network consists of a set of clock bu�ers connected using clock seg-
ments. The optimum number of clock bu�ers and clock segments, as
well as the optimum bu�er size, depends on the size of the FPGA. Since
the power model needs to be �exible enough to estimate the power for
any size FPGA, a method is used of predicting the number and size of
the clock bu�ers and segments based on the size of the FPGA.

Given the number of logic blocks in the FPGA, the length of the longest
path from the clock source to a �ip-�op clock pin is calculated. Then
a single path in the clock tree network its modeled as a distributed RC
ladder network, as shown in �gure 3.6. In general, there are M stages
(corresponding to M clock bu�ers), and each clock bu�er is of size N.
After calculating these values of M and N, the power dissipated in the
clock network can be calculated as before.

3.6.1.2 Short-Circuit Power

Short-circuit power is dissipated through a direct current path between the
power supply and ground during each transition. Short-circuit power is a
function of the rise and fall time and the load capacitance. Short-circuit
power is modeled as 10% of the dynamic power calculated above.

3.6. HBVPR 117

Figure 3.6: RC Ladder network corresponding to a clock tree with two clock
bu�ers.

3.6.1.3 Leakage power

Leakage power dissipation comes from two sources: reverse-bias leakage
power and sub-threshold leakage power. As the majority of leakage power
is from sub-threshold current the reverse bias leakage current is assumed
to be negligible. A �rst-order estimation model is applied to estimate the
sub-threshold current.

All the logic blocks and routing switches, including the unused logic blocks
and unused routing switches, are considered in the leakage power calculation.
The leakage current of each SRAM cell can be de�ned by the users in the
architecture input �le in order to include the SRAM leakage in the power
estimation.

3.6.1.4 Blackboxe's power estimation

As mentioned before in .net netlist all unique blocks are described as black-
boxes. For this reason HBVPR tool can't calculate the power consumed by
these hardware blocks. On the other hand, it does calculate the routing and
clock power consumed by these blocks.

Complete �nal power estimation is easily done by simply adding to the
power consumed by logic blocks, the power consumed by heterogeneous
blocks. This can actually expand the research space in terms of power dissi-
pation. The designer can e�ortlessly evaluate di�erent types and hierarchies
of appropriate unique blocks, like di�erent types of DSP multipliers or dif-
ferent types and hierarchies of RAM memories. The power consumption of
these blocks can be easily obtained from data sheets or even simulation.

118 CHAPTER 3. PROPOSED FRAMEWORK

3.6.2 Placement and routing

Placement and routing process in HBVPR is the same as in VPR 5.0. The
basic X-Y coordinate system in HBVPR is dictated by the soft logic cluster
tile: one grid unit in the X and Y directions is designated as the space taken
up by the basic soft logic cluster. All other blocks must be multiples of this
size. Hard blocks are restricted to be in one grid width column, and that
column can be composed of only one type of block. Although this restriction
prevents a more general cross-column approach, it appears su�cient for all
but the extremely large hard blocks.

Each hard block may be broken in a di�erent number of subblocks, not
unlike the logic elements in a cluster. Each type of block may have di�erent
timing characteristics, routing connectivity, and height. The height of a
block must be an integral number of grid units. This is shown in �gure 3.7
which shows a top view of a placed and routed heterogeneous design with 8
blackboxes. In the event that a block's height is indivisible with the height
of the core, some grid locations are left empty.

The blackckboxes are transparent in the routing step; this means that if
a hard block spans multiple rows, the horizontal routing tracks pass through
at every grid location, but there are no input or output pins from the block
where the routing passes through, as shown in �gure 3.8.

Figure 3.9 shows the connections from one blackbox to the global routing
channel and �gure 3.10 shows a top-view of the clbs a blackbox (the green
one) is connected.

HBVPR (as VPR 5.0) models logic blocks, heterogeneous blocks, and
I/Os using the same data structure. The timing parameters of all blocks
are speci�ed using a timing matrix. The timing in a subblock is modeled
as a complete set of all possible delays from each input to each output of
the subblock. Heterogeneous subblocks can have purely combinational or
registered output.

3.6. HBVPR 119

Figure 3.7: Top view of a heterogeneous design with 8 blackboxes. The di�er-
ent types of blackboxes are shown with di�erent colors (VPR only supports
6 di�erent colors) and have height three times the basic soft logic cluster.

120 CHAPTER 3. PROPOSED FRAMEWORK

Figure 3.8: Horizontal routing tracks pass through at every grid location,
even from blackboxes

3.7. DAGGER 121

Figure 3.9: Blackbox connections to the routing channel (red squares)

3.7 DAGGER

NAROUTO framework if an FPGA design is homogeneous it can co-operate
with MEANDER Framework. If one need to evaluate a heterogeneous de-
sign he can use in the last step of the design Flow the Dagger tool from
MEANDER framework (see 2.2.1), that programs the AMDREL �ne-grain
recon�gurable hardware.

The input �les that required by the DAGGER tool in order to generate
the bitstream for the heterogeneous FPGA programming from NAROUTO
framework:

� The netlist �le that describes the circuit in ".NET" format which is
ready after Multiplexer

� The output function �le (.FUN) which is produced by the HBT-VPACK
tool

� The FPGA architecture description �le which is produced by the Net2xml
tool (it needs to be converted again in .arch format)

122 CHAPTER 3. PROPOSED FRAMEWORK

Figure 3.10: Blackbox connections to clbs (green blackbox is connected to
blue and red clbs)

3.7. DAGGER 123

� The placement �le (.P) of the circuit into the FPGA which is produced
by the HBVPR tool

� The routing �le (.R) of the circuit into the FPGA which is produced
by the HBVPR tool

124 CHAPTER 3. PROPOSED FRAMEWORK

Chapter 4

Benchmarking

In this chapter the results of eight benchmarks are presented. The design �ow
used to evaluate these benchmarks is NAROUTO framework, from VHDL
hardware description to Placement and Routing.

This chapter is divided in three distinct parts:

� The �rst section contains information about the benchmarks.

� In the second section the results of design circuitries from HST toolset
are presented.

� In the third and last section of this chapter the benchmark designs are
evaluated in terms of delay, area and power, that HBVPR resulted.

4.1 Benchmarks information

The six design used as benchmarks for NAROUTO framework are the fol-
lowing :

1. oc_aes_core_inv. Encryption-type design taken from Quip toolkit
version 9.0

2. oc_ata_ocidec3. Processor, control-type design from Quip toolkit
version 9.0

3. oc_hdlc. Processor, control-type design from Quip toolkit version 9.0

125

126 CHAPTER 4. BENCHMARKING

Benchmark I/Os 4-LUTs F/Fs Ram bits
oc_aes_core_inv 389 5,144 536 34,176
oc_ata_ocidec3 130 1,589 594 224
oc_hdlc 82 859 926 2,048
oc_minirisc 389 908 300 1,024
oc_oc8051 189 4,306 754 4,608
os_blow�sh 585 5,368 891 67,168

Table 4.1: Benchmark information

4. oc_minirisc. Processor, control-type design from Quip toolkit version
9.0

5. oc_oc8051. Processor, control-type design from Quip toolkit version
9.0

6. os_blow�sh. Encryption-type design taken from Quip toolkit version
9.0

Table 4.1 contains information about the designs such as lut number, F/F
number, memory bits, and I/O numbers

4.2. HETEROGENEITY SUPPORT TOOLSET RESULTS 127

Benchmark
No. of Blackboxes

Initial level 1 packing level 2 packing
oc_aes_core_inv 128 1 -
oc_ata_ocidec3 32 1 -
oc_hdlc 16 2 1
oc_minirisc 8 1 -
oc_oc8051 67 21 1
os_blow�sh 160 5 1

Table 4.2: Number of blackboxes before and after packing level 1 and 2. In
some benchmarks the Blackbox_pro�ler resulted that all blackboxes are to
be packed into one in the �rst level of packing, so in level 2 there is a "-"

4.2 Heterogeneity Support Toolset results

The benchmark designs are outputted from Quartus II in Hierarchical BLIF
format that describes application's functionality at �ner level. Then the
resulted BLIFs were passed through hb_for_ace and ACE 2.0 in the activity
estimation step of the �ow.

HBT-Vpack packed the LUTs into clusters of the designs. For all the
benchmarks the cluster size was 10, the lut size was 4 and inputs per cluster
were set to 22.

After HBT-Vpack, tools from Heterogeneity Support Toolset were used
to pro�le, pack, and multiplex the pins of blackboxes.

Table 4.2 shows the number of blackboxes before packing and after pack-
ing (level 1 and 2). In table 4.3 is shown an estimation of memory bits each
blackbox after level 1 packing contains1.

The blackboxes, before and after level 1 and level 2 packing are shown
graphical in �gures 4.1, 4.2 and 4.3 correspondingly. The images are taken
from HBVPR after placement of oc_hdlc benchmark (the only one that has a
"viewable" number of blackboxes and 2 levels of packing). The CLBs are the
gray color squares, the blackboxes possible positions in the column are with
a di�erent light color and the actual blackboxes positions after placement are
shown by a darker color (not grey).

In table 4.4 the results of pin Multiplexing are shown.

1In level 2 all blackboxes are merged into one, so the RAM bits of each blackbox is the
total number as shown in table 4.1

128 CHAPTER 4. BENCHMARKING

Figure 4.1: Oc_hdlc benchmark placement in HBVPR without Blackbox-
aware technology mapping. The blackbox positions are marked with the red
squares.

4.2. HETEROGENEITY SUPPORT TOOLSET RESULTS 129

Figure 4.2: Oc_hdlc benchmark placement in HBVPR after level 1 Blackbox
packing.

130 CHAPTER 4. BENCHMARKING

Figure 4.3: Oc_hdlc benchmark placement in HBVPR after level 2 Blackbox
packing.

4.2. HETEROGENEITY SUPPORT TOOLSET RESULTS 131

Benchmark Estimated RAM bits each blackbox
represents after Level 1 packing

oc_aes_core_inv 1×34,176
oc_ata_ocidec3 1×224
oc_hdlc 2×1,024
oc_minirisc 1×1,024
oc_oc8051 3×486, 1×972, 16×60, 1×678
os_blow�sh 5×13,434 bits

Table 4.3: Estimated RAM bits each blackbox in each design has after Level
1 packing, the form is (No. of blackboxes× Ram bits)

Benchmark
No. of CLBs Total no. of blackboxes pins
Initial Extra Initial After multiplexing

oc_aes_core_inv 528 20 265 48
oc_ata_ocidec3 132 6 71 14
oc_hdlc 88 5 62 20
oc_minirisc 73 3 31 10
oc_oc8051 343 14 180 24
os_blow�sh 565 37 362 67

Table 4.4: Pin multiplexing

As shown in table 4.2 and in �gure 4.1 the number of blackbox and
blackboxes I/O pins obtained from the .blif output from Quartus is unrealistic
large and this is presenting a problem in Placement & Route step which will
presented in the following section.

132 CHAPTER 4. BENCHMARKING

4.3 HBVPR results

The results presented in this section are output of HBVPR with the following
options:

� The underlying FPGA architecture is STRATIX based, and the layout
is set in auto, that is the minimum square array of clbs.

� Timing analysis of the routing.

� Path-timing-driven placement algorithm that focuses on minimizing
both wire-length and the critical path delay.

� Detailed routing.

� Timing-driven router that focuses both on achieving a successful route
and achieving good circuit speed.

The designs and di�erent architectures are evaluated in the following
three terms:

Area. Because there is no information about the size of the blackboxes only
the minimum size of FPGA needed and the routing channel width2 are
used.

Delay. The Total logic delay, Total net delay, and critical path delay are
used with the last, being the most crucial measurement.

Power. The power estimation results contain information about routing,
logic block and clock: power, leakage power and energy.

The blackboxes in the benchmark designs have the following main features :

� They have height equal to one clb.

� The delay from any subblock input to the subblock output when this
subblock is used in combinational mode is set to "2e-09" (sec).

� The delay from any subblock input pin to the FF storage element when
this subblock is used in sequential mode is set to "1e-10" (sec)

2The minimum width required is increased by 20% in order to achieve lower delays

4.3. HBVPR RESULTS 133

� The delay from the subblock storage element (FF) to the subblock
output pin when this block is used in sequential mode is set to "1e-10"
(sec)

� The number of tracks to which each block input pin connects in each
channel bordering the pin is set to 0.25 of the channel width.

� The number of tracks to which each logic block output pin connects in
each channel bordering the pin is set to "full" meaning it can use the
whole channel width.

� Each type of blackbox can move (in placement) in one column, and the
they have one empty column between them.

134 CHAPTER 4. BENCHMARKING

Benchmark CLB Array size Channel width
oc_aes_core_inv - -
oc_ata_ocidec3 64×64 36
oc_des_des3perf - -
oc_hdlc 32×32 22
oc_minirisc 16×16 28
oc_oc8051 - -
os_blow�sh - -
ucsb_152_tap_�r - -

Table 4.5: Area results benchmarks without blackbox-aware technology map-
ping.

Benchmark Total logic Total net Critical path
delay delay delay

oc_aes_core_inv - - -
oc_ata_ocidec3 6.2733e-09 9.7107e-09 1.5984e-08
oc_hdlc 7.3548e-09 4.4894e-09 1.18442e-08
oc_minirisc 1.18706e-08 8.22e-09 2.00906e-08
oc_oc8051 - - -
os_blow�sh - - -

Table 4.6: Delay results (in seconds) of benchmarks without blackbox-aware
technology mapping.

4.3.1 Non-packed

For comparisons reason (and in order to show the problems mentioned in
section 3.5.1), the result presented in this section are of benchmarks without
blackbox-aware technology mapping. The benchmarks which have "-" in the
tables they couldn't run in HBVPR due to their enormous size ("Unable to
malloc memory" error). The CMOS technology is 180nm.

In table 4.5 the area results are presented , the size of the minimum clb
array in number of clbs and the required channel width.

In table 4.6 the delay results are presented : Total logic delay, Total net
delay, and critical path in seconds.

Table 4.7 shows the total power dissipation of the circuitry design anal-
ysed in routing, logic block and clock power consumption, table 4.8 shows

4.3. HBVPR RESULTS 135

Benchmark
Total Power (W)

Routing Logic Block Clock
oc_aes_core_inv - - -
oc_ata_ocidec3 1.11012 0.0120632 0.0686623
oc_hdlc 0.245012 0.0413755 0.0447689
oc_minirisc 0.0581201 0.00897621 0.00659914
oc_oc8051 - - -
os_blow�sh - - -

Table 4.7: Total power dissipation results (in Watts) of benchmarks without
blackbox-aware technology mapping.

Benchmark
Leakage Power (W)
Routing Logic Block

oc_aes_core_inv - -
oc_ata_ocidec3 1.08555 0.00297538
oc_hdlc 0.151896 0.00214618
oc_minirisc 0.0374889 0.0015797
oc_oc8051 - -
os_blow�sh - -

Table 4.8: Leakage power dissipation results (in Watts) of benchmarks with-
out blackbox-aware technology mapping.

the leakage power dissipation of the circuitry design and the table 4.9 shows
the corresponding energy needed.

Lastly the results are summarized3 in table 4.10.
As conclusion of this section we can say that there isn't an academic

complete framework to support Heterogeneity from Synthesis step to Place
& Route step of the design �ow, for more complex designs. From six bench-
mark circuits, only the four smallest, HBVPR could process without memory
over�ow problem ("Cannot allocate memory").

3The average power and critical path delay and channel width are not accurate because
the largest designs are missing

136 CHAPTER 4. BENCHMARKING

Benchmark
Energy in Joule

Routing Logic Block Clock
oc_aes_core_inv - - -
oc_ata_ocidec3 1.77441e-08 1.92819e-10 1.0975e-09
oc_hdlc 2.90198e-09 4.9006e-10 5.30252e-10
oc_minirisc 1.16767e-09 1.80338e-10 1.32581e-10
oc_oc8051 - - -
os_blow�sh - - -

Table 4.9: Energy consumption results (in Joules) of benchmarks without
blackbox-aware technology mapping.

Benchmark Total Power
(W)

Critical path
delay (s)

Channel
width

oc_aes_core_inv - - -
oc_ata_ocidec3 1.19084 1.5984e-08 36
oc_hdlc 0.331157 1.18442e-08 22
oc_minirisc 0.0736955 2.00906e-08 28
oc_oc8051 - - -
os_blow�sh - - -
Average 0.531 1.59e-08 28.6

Table 4.10: Summarized results of benchmarks without blackbox-aware tech-
nology mapping.

4.3. HBVPR RESULTS 137

4.3.2 Area and delay optimized architecture after level

1, 2 packing at 180nm

The intelligent FPGA Architecture Repository (iFAR) website [23] contains
accurate area and timing estimates for the logic and routing of varied island-
style FPGA architectures. Within this repository one can �nd areas and
delays for architectures with varied logic block parameters, such as LUT
size, and routing parameters such as segment length. The area and delay
is determined through careful transistor sizing of each architecture. This is
done for both a range of past, current and future implementation technologies
(ranging from 22 nm to 180 nm CMOS) and a range of design objectives with
varying emphasis on performance or area/cost.

Various FPGA architectures from iFAR were used for benchmarking the
designs. These architectures used as templates in net2xml (see section 3.5.2.4)
that created the speci�c for each design .xml architecture �le. The parame-
ters for all the architectures used were equally optimized for better area and
delay results.

The results presented in this section are from a 180nm CMOS FPGA
architecture.

All the benchmarks have passed through the blackbox-aware technology
mapping step (Blackbox_Pro�ler tool). Every design had its blackboxes
packed with level 1 and level 2 packing4. Also the pins of the blackboxes
have been multiplexed.In the following results the benchmarks that their
name is followed by "#FP" (Fully Packed) have been packed with level 2
blackbox packing and the rest with level 1.

In table 4.11 the area results are presented , the size of the minimum
clb array in number of clbs, the required channel width and lastly the area
savings in required area by packing the blackboxes, instead of leaving the as
they are (section 4.3.1). This decrease is the percent decrease in the area of
the FPGA array (in CLB area tiles).

In table 4.12 the delay results are presented : Total logic delay, Total net
delay, and critical path in seconds.

Table 4.13 shows the total power dissipation of the circuitry design anal-
ysed in routing, logic block and clock power consumption, table 4.14 shows
the leakage power dissipation of the circuitry design and the table 4.15 shows

4In some benchmarks the Blackbox_pro�ler resulted that all blackboxes are to be
packed into one in the �rst level of packing, so these benchmarks they were tested with
only level 1 packing

138 CHAPTER 4. BENCHMARKING

Benchmark CLB Array Channel Decrease of
size width Area

oc_aes_core_inv 24×24 46 -
oc_ata_ocidec3 13×13 40 95%
oc_hdlc 11×11 32 88%
oc_minirisc 10×10 36 60%
oc_oc8051 42×42 44 -
os_blow�sh 28×28 50 -
oc_hdlc#FP 11×11 28 88%
oc_oc8051#FP 20×20 62 -
os_blow�sh#FP 25×25 56 -

Table 4.11: Area results from benchmarks in 180nm optimized for area and
delay FPGA architecture.

Benchmark Total logic Total net Critical
delay delay path delay

oc_aes_core_inv 5.027e-09 8.0692e-09 1.30962e-08
oc_ata_ocidec3 3.1175e-09 5.1387e-09 8.2562e-09
oc_hdlc 5.1827e-09 7.223e-10 5.905e-09
oc_minirisc 7.7444e-09 4.2147e-09 1.19591e-08
oc_oc8051 1.63509e-08 1.17537e-08 2.81046e-08
os_blow�sh 1.89591e-08 1.9748e-09 2.09339e-08
oc_hdlc#FP 2.3278e-09 3.9957e-09 6.3235e-09
oc_oc8051#FP 1.20431e-08 1.64813e-08 2.85244e-08
os_blow�sh#FP 1.89591e-08 1.7462e-09 2.07053e-08

Table 4.12: Delay results from benchmarks in 180nm optimized for area and
delay FPGA architecture.

4.3. HBVPR RESULTS 139

Benchmark
Total Power (W)

Routing Logic
Block

Clock

oc_aes_core_inv 0.449013 0.213825 0.0202744
oc_ata_ocidec3 0.056261 0.0218882 0.0080378
oc_hdlc 0.10228 0.0832783 0.00572775
oc_minirisc 0.0362397 0.0146424 0.00282817
oc_oc8051 0.505805 0.0208085 0.0192158
os_blow�sh 0.26368 0.0435005 0.012905
oc_hdlc#FP 0.100096 0.0780017 0.00534868
oc_oc8051#FP 0.134548 0.0207192 0.00474794
os_blow�sh#FP 0.240735 0.0424196 0.0128237

Table 4.13: Total power dissipation results from benchmarks in 180nm opti-
mized for area and delay FPGA architecture.

the corresponding energy needed.

The results are summarized in table 4.16.

In �gure 4.4 an area comparison it is shown between benchmarks that
haven't passed through blackbox pro�ling and packing are compared with
those packed with packing level 1 and 2 at the same 180nm technology. The
blue part of each bar is the percent area savings in terms of CLBs number of
the area required by each non-packed design compared to the corresponding
packed design. The FPGA array size (in CLB tiles) is decreased by a factor
of 80%. If larger designs had completed the P&R step this factor would be
even greater because the "minimum" width of the FPGA array is Number−
of − blackboxes + 1 since each blackbox utilizes a column.

As shown also in �gure 4.1 and in table 4.2 the hierarchical blif netlist,
the only way until today solution to support heterogeneity, outputted from
Quartus in Synthesis step doesn't have realistic results. This is mainly be-
cause BLIF format describes application's functionality at �ner level. So for
example, memories are reported at word level, each word is re�ected in one
blackbox. Something like this isn't realistic because commercial FPGAs have
a small number of independent RAM blocks. So blackbox-aware technology
mapping proposed in this thesis through Heterogeneity Support Toolset (sec-
tion 3.5) is necessary for systematic and e�cient grouping of blackboxes.

Every design is mapped in a certain amount of CLBs as resulted from

140 CHAPTER 4. BENCHMARKING

Benchmark
Leakage Power (W)
Routing Logic

Block
oc_aes_core_inv 0.120238 0.0131264
oc_ata_ocidec3 0.0309331 0.00340505

oc_hdlc 0.0209909 0.0026209
oc_minirisc 0.0184509 0.00190929
oc_oc8051 0.468334 0.00839515
os_blow�sh 0.206896 0.0154454
oc_hdlc#FP 0.0158092 0.00262174
oc_oc8051#FP 0.109309 0.00839512
os_blow�sh#FP 0.172131 0.0141808

Table 4.14: Leakage power dissipation results from benchmarks in 180nm
optimized for area and delay FPGA architecture.

Benchmark
Energy in Joule

Routing Logic Block Clock
oc_aes_core_inv 5.88036e-09 2.80029e-09 2.65518e-10
oc_ata_ocidec3 4.64502e-10 1.80713e-10 6.63617e-11
oc_hdlc 6.03963e-10 4.91758e-10 3.38224e-11
oc_minirisc 4.33394e-10 1.7511e-10 3.38224e-11
oc_oc8051 1.42154e-08 5.84815e-10 5.40053e-10
os_blow�sh 5.51984e-09 9.10636e-10 2.70151e-10
oc_hdlc#FP 6.32958e-10 4.93244e-10 3.38224e-11
oc_oc8051#FP 3.83789e-09 5.91004e-10 1.35432e-10
os_blow�sh#FP 4.9845e-09 8.7831e-10 2.65518e-10

Table 4.15: Energy consumption from benchmarks in 180nm optimized for
area and delay FPGA architecture.

4.3. HBVPR RESULTS 141

Benchmark Total Critical path Channel
Power (W) delay (s) width

oc_aes_core_inv 0.683112 1.30962e-08 46
oc_ata_ocidec3 0.086187 8.2562e-09 40
oc_hdlc 0.191286 5.905e-09 32
oc_minirisc 0.0537103 1.19591e-08 36
oc_oc8051 0.545829 2.81046e-08 44
os_blow�sh 0.320085 2.09339e-08 50
oc_hdlc#FP 0.183446 6.3235e-09 28
oc_oc8051#FP 0.160015 2.85244e-08 62
os_blow�sh#FP 0.295979 2.07053e-08 56
Average 0.2799 1.597e-08 43.7

Table 4.16: Summarized results from benchmarks in 180nm optimized for
power FPGA architecture.

HBT-Vpack independently from FPGA size and blackbox-aware technology
mapping. This means that the area penalty of unpacked blackboxes its uti-
lized by logic elements that are not used by the benchmark design. Also the
extra area causes the intercluster signals to travel greater lengths and pass
through a larger number of switchboxes.

The increase in required wires and switchboxes that the intercluster signal
have to travel through results in an increase of delay of each benchmark as
shown in �gure 4.5.

The increase of unused CLBs, wires and switchboxes, (due to the area
penalty) results in larger leakage power and total routing power dissipation
correspondingly so benchmarks that haven't passed through blackbox pro�l-
ing and packing are more "power-hungry" than those packed with packing
level 1 and 2. This is shown in �gure 4.6.

142 CHAPTER 4. BENCHMARKING

oc_ata_ocidec3 oc_hdlc oc_minirisc oc_oc8051 oc_hdlc #FP oc_oc8051 #FP

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

169

121

100

1024
121

400

4096

1024

256

17956
1024

17956

Figure 4.4: Comparison between non-packed and packed designs in terms
of area requirement. The blue area of each bar represents the percent area
savings of packed designs. The total area required by each design is shown
in CLBs number, the number in the red area is for packed designs and the
blue for non-packed

4.3. HBVPR RESULTS 143

oc_ata_ocidec3 oc_hdlc oc_minirisc

0

0.01

0.01

0.02

0.02

0.0160

0.0118

0.0201

0.0082

0.0059

0.0119

0.0063

Critical path delay comparison between benchmarks with non packed and packed blackboxes

Non-packed
Level 1 packing
Level 2 packing

Benchmark designs

C
ri

tic
a

l p
a

th
 d

e
la

y
in

 μ
se

c

Figure 4.5: Comparison between non-packed and packed designs in terms of
critical path delay.

144 CHAPTER 4. BENCHMARKING

oc_ata_ocidec3 oc_hdlc oc_minirisc

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.19

0.33

0.07
0.09

0.19

0.05

0.18

Power consumption comparison between benchmarks with non packed and packed blackboxes

Non-packed
Level 1 packing
Level 2 packing

Benchmark designs

P
o

w
e

 c
o

n
su

m
p

tio
n

 in
 W

a
tts

Figure 4.6: Comparison between non-packed and packed designs in terms of
total power consumption.

4.3. HBVPR RESULTS 145

Benchmark CLB Array size Channel width
oc_aes_core_inv 24×24 44
oc_ata_ocidec3 13×13 44
oc_hdlc 11×11 32
oc_minirisc 10×10 36
oc_oc8051 42×42 44
os_blow�sh 28×28 56
oc_hdlc#FP 11×11 28
oc_oc8051#FP 20×20 60
os_blow�sh#FP 25×25 58

Table 4.17: Area results from benchmarks in 130nm FPGA architecture.

4.3.3 Area and delay optimized architecture after level

1, 2 packing at 130nm

All the benchmarks in this section have passed through the blackbox-aware
technology mapping step (Blackbox_Pro�ler tool). Every design had its
blackboxes packed with level 1 and level 2 packing5. Also the pins of the
blackboxes have been multiplexed.In the following results the benchmarks
that their name is followed by "#FP" (Fully Packed) have been packed with
level 2 blackbox packing and the rest with level 1.

The results presented in this section are from a 130nm CMOS FPGA
architecture obtained from iFAR.

In table 4.17 the area results are presented, the size of the minimum clb
array in number of clbs and the required channel width.

In table 4.18 the delay results are presented : Total logic delay, Total net
delay, and critical path in seconds.

Table 4.19 shows the total power dissipation of the circuitry design anal-
ysed in routing, logic block and clock power consumption, table 4.20 shows
the leakage power dissipation of the circuitry design and the table 4.21 shows
the corresponding energy needed.

Lastly the results are summarized in table 4.22.

5In some benchmarks the Blackbox_pro�ler resulted that all blackboxes are to be
packed into one in the �rst level of packing, so these benchmarks they were tested with
only level 1 packing

146 CHAPTER 4. BENCHMARKING

Benchmark Total logic Total net Critical
delay delay path delay

oc_aes_core_inv 3.51636e-09 4.75289e-09 8.26925e-09
oc_ata_ocidec3 5.0558e-09 3.2083e-10 5.37663e-09
oc_hdlc 5.0558e-09 5.4574e-10 5.60154e-09
oc_minirisc 5.91904e-09 1.30427e-09 7.22331e-09
oc_oc8051 1.04055e-08 8.34816e-09 1.87537e-08
os_blow�sh 1.20939e-08 1.35829e-09 1.34522e-08
oc_hdlc#FP 5.0558e-09 3.2083e-10 5.37663e-09
oc_oc8051#FP 1.07453e-08 5.62829e-09 1.63736e-08
os_blow�sh#FP 1.20939e-08 1.13338e-09 1.32273e-08

Table 4.18: Delay results from benchmarks in 130nm FPGA architecture.

Benchmark
Total Power (W)

Routing Logic Block Clock
oc_aes_core_inv 0.287672 0.174706 0.0167482
oc_ata_ocidec3 0.0368797 0.0167423 0.00643797
oc_hdlc 0.0465192 0.0458233 0.00314947
oc_minirisc 0.0232786 0.0119692 0.00244236
oc_oc8051 0.28407 0.0157366 0.0150207
os_blow�sh 0.17215 0.0336424 0.0104751
oc_hdlc#FP 0.053521 0.048991 0.00328122
oc_oc8051#FP 0.0750406 0.0172036 0.00431439
os_blow�sh#FP 0.147747 0.0325155 0.0104705

Table 4.19: Total power dissipation results from benchmarks in 130nm FPGA
architecture.

4.3. HBVPR RESULTS 147

Benchmark
Leakage Power (W)
Routing Logic

Block
oc_aes_core_inv 0.0605833 0.00935204
oc_ata_ocidec3 0.0206187 0.00245484
oc_hdlc 0.0114238 0.00188863
oc_minirisc 0.0102589 0.00137818
oc_oc8051 0.256207 0.00601822
os_blow�sh 0.13291 0.0110108
oc_hdlc#FP 0.00843055 0.00188857
oc_oc8051#FP 0.0583797 0.00601898
os_blow�sh#FP 0.10084 0.0101076

Table 4.20: Leakage power dissipation results from benchmarks in 130nm
FPGA architecture.

Benchmark
Energy in Joule

Routing Logic Block Clock
oc_aes_core_inv 2.37883e-09 1.44468e-09 1.38495e-10
oc_ata_ocidec3 1.98288e-10 9.00171e-11 3.46146e-11
oc_hdlc 2.60579e-10 2.56681e-10 1.76419e-11
oc_minirisc 1.68149e-10 8.64576e-11 1.76419e-11
oc_oc8051 5.32735e-09 2.95119e-10 2.81694e-10
os_blow�sh 2.31579e-09 4.52564e-10 1.40912e-10
oc_hdlc#FP 2.87763e-10 2.63407e-10 1.76419e-11
oc_oc8051#FP 1.22868e-09 2.81684e-10 7.0642e-11
os_blow�sh#FP 1.95429e-09 4.30091e-10 1.38495e-10

Table 4.21: Energy consumption (in Joules) from benchmarks in 130nm
FPGA architecture.

148 CHAPTER 4. BENCHMARKING

Benchmark Total Critical path Channel
Power (W) delay (s) width

oc_aes_core_inv 0.479126 8.26925e-09 44
oc_ata_ocidec3 0.06006 5.37663e-09 44
oc_hdlc 0.095492 5.60154e-09 32
oc_minirisc 0.0376902 7.22331e-09 36
oc_oc8051 0.314827 1.87537e-08 44
os_blow�sh 0.216268 1.34522e-08 56
oc_hdlc#FP 0.105793 5.37663e-09 28
oc_oc8051#FP 0.0965586 1.63736e-08 60
os_blow�sh#FP 0.190733 1.32273e-08 58
Average 0.176 1.040e-08 44.6

Table 4.22: Summarized results from benchmarks in 130nm FPGA architec-
ture.

4.3.4 Area and delay optimized architecture after level

1, 2 packing at 90nm

All the benchmarks in this section have passed through the blackbox-aware
technology mapping step (Blackbox_Pro�ler tool). Every design had its
blackboxes packed with level 1 and level 2 packing6. Also the pins of the
blackboxes have been multiplexed.In the following results the benchmarks
that their name is followed by "#FP" (Fully Packed) have been packed with
level 2 blackbox packing and the rest with level 1.

The results presented in this section are from a 90nm CMOS FPGA
architecture obtained from iFAR.

In table 4.23 the area results are presented, the size of the minimum clb
array in number of clbs and the required channel width.

In table 4.24 the delay results are presented : Total logic delay, Total net
delay, and critical path in seconds.

Table 4.25 shows the total power dissipation of the circuitry design anal-
ysed in routing, logic block and clock power consumption, table 4.26 shows
the leakage power dissipation of the circuitry design and the table 4.27 shows
the corresponding energy needed.

6In some benchmarks the Blackbox_pro�ler resulted that all blackboxes are to be
packed into one in the �rst level of packing, so these benchmarks they were tested with
only level 1 packing

4.3. HBVPR RESULTS 149

oc_aes_core_inv 24×24 44
oc_ata_ocidec3 13×13 44
oc_hdlc 11×11 28
oc_minirisc 10×10 34
oc_oc8051 42×42 44
os_blow�sh 28×28 50
oc_hdlc#FP 11×11 28
oc_oc8051#FP 20×20 62
os_blow�sh#FP 25×25 58

Table 4.23: Area results from benchmarks in 90nm FPGA architecture.

Benchmark Total logic Total net Critical
delay delay path delay

oc_aes_core_inv 3.34686e-09 3.47617e-09 6.82303e-09
oc_ata_ocidec3 5.0442e-09 2.7317e-10 5.31737e-09
oc_hdlc 5.0442e-09 5.2657e-10 5.57077e-09
oc_minirisc 4.24383e-09 2.07843e-09 6.32226e-09
oc_oc8051 7.49437e-09 8.70637e-09 1.62007e-08
os_blow�sh 1.04119e-08 1.09268e-09 1.15045e-08
oc_hdlc#FP 5.0442e-09 3.3652e-10 5.38072e-09
oc_oc8051#FP 9.56174e-09 4.73509e-09 1.42968e-08
os_blow�sh#FP 1.04119e-08 1.02933e-09 1.14412e-08

Table 4.24: Delay results from benchmarks in 90nm FPGA architecture.

150 CHAPTER 4. BENCHMARKING

Benchmark
Total Power (W)

Routing Logic Block Clock
oc_aes_core_inv 0.356626 0.179939 0.0172955
oc_ata_ocidec3 0.0421214 0.0150135 0.00554674
oc_hdlc 0.0537712 0.0397783 0.0026984
oc_minirisc 0.0263515 0.0117195 0.00237766
oc_oc8051 0.341419 0.015177 0.0148156
os_blow�sh 0.185337 0.0336089 0.0104365
oc_hdlc#FP 0.0551673 0.0414802 0.00279371
oc_oc8051#FP 0.095756 0.0164531 0.00421016
os_blow�sh#FP 0.176735 0.0318081 0.0103143

Table 4.25: Total power dissipation results from benchmarks in 90nm FPGA
architecture.

Benchmark
Leakage Power (W)
Routing Logic

Block
oc_aes_core_inv 0.07357 0.00867012
oc_ata_ocidec3 0.0248991 0.00226197
oc_hdlc 0.0105774 0.00174699
oc_minirisc 0.0110838 0.00127344
oc_oc8051 0.307173 0.00553185
os_blow�sh 0.136839 0.010284
oc_hdlc#FP 0.0104559 0.00174598
oc_oc8051#FP 0.0750971 0.00553036
os_blow�sh#FP 0.12051 0.00940561

Table 4.26: Leakage power dissipation results from benchmarks in 90nm
FPGA architecture.

4.3. HBVPR RESULTS 151

Benchmark
Energy in Joule

Routing Logic Block Clock
oc_aes_core_inv 2.43327e-09 1.22773e-09 1.18008e-10
oc_ata_ocidec3 2.23975e-10 7.98321e-11 2.94941e-11
oc_hdlc 2.99547e-10 2.21596e-10 1.50322e-11
oc_minirisc 1.66601e-10 7.4094e-11 1.50322e-11
oc_oc8051 5.53124e-09 2.45879e-10 2.40024e-10
os_blow�sh 2.13222e-09 3.86655e-10 1.20067e-10
oc_hdlc#FP 2.9684e-10 2.23193e-10 1.50322e-11
oc_oc8051#FP 1.36901e-09 2.35227e-10 6.0192e-11
os_blow�sh#FP 2.02206e-09 3.63922e-10 1.18008e-10

Table 4.27: Energy consumption (in Joules) from benchmarks in 90nm FPGA
architecture.

Lastly the results are summarized in table 4.28.

152 CHAPTER 4. BENCHMARKING

Benchmark Total Critical path Channel
Power (W) delay (s) width

oc_aes_core_inv 0.55386 6.82303e-09 44
oc_ata_ocidec3 0.0626816 5.31737e-09 44
oc_hdlc 0.0962479 5.57077e-09 28
oc_minirisc 0.0404487 6.32226e-09 34
oc_oc8051 0.371411 1.62007e-08 44
os_blow�sh 0.229382 1.15045e-08 50
oc_hdlc#FP 0.0994412 5.38072e-09 28
oc_oc8051#FP 0.116419 1.42968e-08 62
os_blow�sh#FP 0.218858 1.14412e-08 58
Average 0.196 9.20e-09 43.5

Table 4.28: Summarized results from benchmarks in 90nm FPGA architec-
ture.

4.3.5 Area and delay optimized architecture after level

1, 2 packing at 65nm

All the benchmarks in this section have passed through the blackbox-aware
technology mapping step (Blackbox_Pro�ler tool). Every design had its
blackboxes packed with level 1 and level 2 packing7. Also the pins of the
blackboxes have been multiplexed.In the following results the benchmarks
that their name is followed by "#FP" (Fully Packed) have been packed with
level 2 blackbox packing and the rest with level 1.

The results presented in this section are from a 65nm CMOS FPGA
architecture obtained from iFAR.

In table 4.29 the area results are presented, the size of the minimum clb
array in number of clbs and the required channel width.

In table 4.30 the delay results are presented : Total logic delay, Total net
delay, and critical path in seconds.

Table 4.31 shows the total power dissipation of the circuitry design anal-
ysed in routing, logic block and clock power consumption, table 4.32 shows
the leakage power dissipation of the circuitry design and the table 4.33 shows
the corresponding energy needed.

7In some benchmarks the Blackbox_pro�ler resulted that all blackboxes are to be
packed into one in the �rst level of packing, so these benchmarks they were tested with
only level 1 packing

4.3. HBVPR RESULTS 153

Benchmark CLB Array size Channel width
oc_aes_core_inv 24×24 46
oc_ata_ocidec3 13×13 38
oc_hdlc 11×11 26
oc_minirisc 10×10 36
oc_oc8051 42×42 46
os_blow�sh 28×28 50
oc_hdlc#FP 11×11 32
oc_oc8051#FP 20×20 62
os_blow�sh#FP 25×25 56

Table 4.29: Area results from benchmarks in 65nm FPGA architecture.

Benchmark Total logic Total net Critical path
delay delay delay

oc_aes_core_inv 2.7714e-09 4.09254e-09 6.86394e-09
oc_ata_ocidec3 4.99396e-09 2.2785e-10 5.22181e-09
oc_hdlc 4.99396e-09 2.8129e-10 5.27525e-09
oc_minirisc 3.52677e-09 1.78345e-09 5.31022e-09
oc_oc8051 5.74936e-09 7.78282e-09 1.35322e-08
os_blow�sh 8.67292e-09 9.114e-10 9.58432e-09
oc_hdlc#FP 4.99396e-09 2.2785e-10 5.22181e-09
oc_oc8051#FP 7.72561e-09 4.26987e-09 1.19955e-08
os_blow�sh#FP 8.67292e-09 7.5108e-10 9.424e-09

Table 4.30: Delay results from benchmarks in 65nm FPGA architecture.

154 CHAPTER 4. BENCHMARKING

Benchmark
Total Power (W)

Routing Logic Block Clock
oc_aes_core_inv 0.25168 0.149822 0.0144464
oc_ata_ocidec3 0.0262287 0.012889 0.0047461
oc_hdlc 0.0371527 0.0349259 0.00239442
oc_minirisc 0.0214984 0.0117852 0.00237866
oc_oc8051 0.251889 0.0149079 0.0149042
os_blow�sh 0.1384 0.0321715 0.0105265
oc_hdlc#FP 0.0376617 0.0353386 0.00241893
oc_oc8051#FP 0.0707263 0.0158939 0.00421642
os_blow�sh#FP 0.125898 0.0313164 0.010522

Table 4.31: Total power dissipation results from benchmarks in 65nm FPGA
architecture.

Benchmark
Leakage Power (W)
Routing Logic

Block
oc_aes_core_inv 0.0555407 0.0079329
oc_ata_ocidec3 0.013454 0.00206927
oc_hdlc 0.00650337 0.00159811
oc_minirisc 0.00854591 0.00116734
oc_oc8051 0.226265 0.0050822
os_blow�sh 0.0938053 0.00934561
oc_hdlc#FP 0.00978357 0.00159794
oc_oc8051#FP 0.0517859 0.00508074
os_blow�sh#FP 0.0789864 0.0085727

Table 4.32: Leakage power dissipation results from benchmarks in 65nm
FPGA architecture.

4.3. HBVPR RESULTS 155

Benchmark
Energy in Joule

Routing Logic Block Clock
oc_aes_core_inv 1.72752e-09 1.02837e-09 9.91595e-11
oc_ata_ocidec3 1.36962e-10 6.73041e-11 2.47832e-11
oc_hdlc 1.9599e-10 1.84243e-10 1.26312e-11
oc_minirisc 1.14161e-10 6.25822e-11 1.26312e-11
oc_oc8051 3.4086e-09 2.01736e-10 2.01686e-10
os_blow�sh 1.32647e-09 3.08342e-10 1.0089e-10
oc_hdlc#FP 1.96662e-10 1.84531e-10 1.26312e-11
oc_oc8051#FP 8.48395e-10 1.90654e-10 5.0578e-11
os_blow�sh#FP 1.18646e-09 2.95126e-10 9.91595e-11

Table 4.33: Energy consumption (in Joules) from benchmarks in 65nm FPGA
architecture.

Lastly the results are summarized in table 4.34.

156 CHAPTER 4. BENCHMARKING

Benchmark Total Critical path Channel
Power (W) delay (s) width

oc_aes_core_inv 0.415949 6.86394e-09 46
oc_ata_ocidec3 0.0438639 5.22181e-09 38
oc_hdlc 0.0744731 5.27525e-09 26
oc_minirisc 0.0356622 5.31022e-09 36
oc_oc8051 0.281701 1.35322e-08 46
os_blow�sh 0.181098 9.58432e-09 50
oc_hdlc#FP 0.0754192 5.22181e-09 32
oc_oc8051#FP 0.0908365 1.19955e-08 62
os_blow�sh#FP 0.167736 9.424e-09 56
Average 0.151 8.047e-09 43.5

Table 4.34: Summarized results from benchmarks in 65nm FPGA architec-
ture.

4.3.6 Area and delay optimized architecture after level

1, 2 packing at 45nm

All the benchmarks in this section have passed through the blackbox-aware
technology mapping step (Blackbox_Pro�ler tool). Every design had its
blackboxes packed with level 1 and level 2 packing8. Also the pins of the
blackboxes have been multiplexed.In the following results the benchmarks
that their name is followed by "#FP" (Fully Packed) have been packed with
level 2 blackbox packing and the rest with level 1.

The results presented in this section are from a 45nm CMOS FPGA
architecture obtained from iFAR.

In table 4.35 the area results are presented, the size of the minimum clb
array in number of clbs and the required channel width.

In table 4.36 the delay results are presented : Total logic delay, Total net
delay, and critical path in seconds.

Table 4.37 shows the total power dissipation of the circuitry design anal-
ysed in routing, logic block and clock power consumption, table 4.38 shows
the leakage power dissipation of the circuitry design and the table 4.39 shows
the corresponding energy needed.

8In some benchmarks the Blackbox_pro�ler resulted that all blackboxes are to be
packed into one in the �rst level of packing, so these benchmarks they were tested with
only level 1 packing

4.3. HBVPR RESULTS 157

Benchmark CLB Array size Channel width
oc_aes_core_inv 24×24 44
oc_ata_ocidec3 13×13 40
oc_hdlc 11×11 28
oc_minirisc 10×10 32
oc_oc8051 42×42 46
os_blow�sh 28×28 60
oc_hdlc#FP 11×11 26
oc_oc8051#FP 20×20 62
os_blow�sh#FP 25×25 56

Table 4.35: Area results from benchmarks in 45nm FPGA architecture.

Benchmark Total logic Total net Critical path
delay delay delay

oc_aes_core_inv 4.34941e-09 1.72204e-09 6.07145e-09
oc_ata_ocidec3 4.98534e-09 2.7005e-10 5.25539e-09
oc_hdlc 4.98534e-09 3.9631e-10 5.38165e-09
oc_minirisc 3.38714e-09 3.89298e-09 7.28012e-09
oc_oc8051 5.72687e-09 8.79604e-09 1.45229e-08
os_blow�sh 9.05448e-09 1.0802e-09 1.01347e-08
oc_hdlc#FP 4.98534e-09 3.9631e-10 5.38165e-09
oc_oc8051#FP 8.04476e-09 4.73819e-09 1.27829e-08
os_blow�sh#FP 9.05448e-09 1.14333e-09 1.01978e-08

Table 4.36: Delay results from benchmarks in 45nm FPGA architecture.

158 CHAPTER 4. BENCHMARKING

Benchmark
Total Power (W)

Routing Logic Block Clock
oc_aes_core_inv 0.229306 0.113608 0.0109331
oc_ata_ocidec3 0.0258275 0.00864125 0.00315684
oc_hdlc 0.0328686 0.0232201 0.00157119
oc_minirisc 0.0150966 0.00616325 0.00116146
oc_oc8051 0.268165 0.010198 0.00929657
os_blow�sh 0.165753 0.0221397 0.00666403
oc_hdlc#FP 0.0299404 0.0236438 0.00157119
oc_oc8051#FP 0.0700368 0.0110367 0.00264868
os_blow�sh#FP 0.120167 0.0210552 0.00650919

Table 4.37: Total power dissipation results (in Watts) from benchmarks in
45nm FPGA architecture.

Benchmark
Leakage Power (W)
Routing Logic

Block
oc_aes_core_inv 0.0569171 0.00656244
oc_ata_ocidec3 0.0155596 0.0017025
oc_hdlc 0.00797102 0.00131098
oc_minirisc 0.00750365 0.000954651
oc_oc8051 0.247363 0.00419752
os_blow�sh 0.132378 0.00772435
oc_hdlc#FP 0.00717569 0.00131029
oc_oc8051#FP 0.0566593 0.00419944
os_blow�sh#FP 0.083589 0.00709208

Table 4.38: Leakge power dissipation results (in Watts) from benchmarks in
45nm FPGA architecture.

4.3. HBVPR RESULTS 159

Benchmark
Energy in Joule

Routing Logic Block Clock
oc_aes_core_inv 1.39222e-09 6.89765e-10 6.63795e-11
oc_ata_ocidec3 1.35733e-10 4.54131e-11 1.65904e-11
oc_hdlc 1.76887e-10 1.24962e-10 8.45559e-12
oc_minirisc 1.09905e-10 4.48692e-11 8.45559e-12
oc_oc8051 3.89453e-09 1.48105e-10 1.35013e-10
os_blow�sh 1.67986e-09 2.24379e-10 6.75378e-11
oc_hdlc#FP 1.61129e-10 1.27243e-10 8.45559e-12
oc_oc8051#FP 8.95276e-10 1.41081e-10 3.3858e-11
os_blow�sh#FP 1.22545e-09 2.14717e-10 6.63795e-11

Table 4.39: Energy consumption (in Joules) from benchmarks in 45nm FPGA
architecture.

Lastly the results are summarized in table 4.40.

160 CHAPTER 4. BENCHMARKING

Benchmark Total Critical path Channel
Power (W) delay (s) width

oc_aes_core_inv 0.353847 6.07145e-09 44
oc_ata_ocidec3 0.0376256 5.25539e-09 40
oc_hdlc 0.0576599 5.38165e-09 28
oc_minirisc 0.0224213 7.28012e-09 32
oc_oc8051 0.287659 1.45229e-08 46
os_blow�sh 0.194557 1.01347e-08 60
oc_hdlc#FP 0.0551554 5.38165e-09 26
oc_oc8051#FP 0.0837221 1.27829e-08 62
os_blow�sh#FP 0.147732 1.01978e-08 56
Average 0.137 8.556e-09 43.7

Table 4.40: Summarized results from benchmarks in 45nm FPGA architec-
ture.

4.3.7 Comparison results

The following �gures present the comparison between the di�erent architec-
tures. In �gure 4.7 the average critical path delay of each of the previous
FPGA architectures is presented. Figure 4.8 shows the average power con-
sumption of each FPGA architecture. Because of the di�erent critical path
delay of each architecture its di�cult to immediately compare the power
dissipation of each FPGA architecture. Figure 4.9 shows the average power
consumption of each architecture scaled to the same critical path delay, that
of the area and delay optimized architecture at 180nm. The scaling is based
to the fact that power is inverse proportional to the time element of a design.

Delay
As shown in �gure 4.7, generally the decrease in CMOS size results in

decrease in delay of the circuitry. This is a result of the decrease in delay of:

� A signal to go from a routing track to a logic block input.

� A signal to pass through a switchbox

� A logic block to process input signals

� A signal to go from the output of a logic block to the routing track.

4.3. HBVPR RESULTS 161

The FPGA architecture at 45nm has critical path delay 10% increased com-
pared to that of 65nm. This is natural because the same benchmark in
di�erent architectures may have slightly di�erent placement, routing, FPGA
array size and channel width. The cause of this variation is that Placement
and Routing are timing-driven.

Power
As shown in �gure 4.8, in most cases the decrease in technology scaling

results to a decrease of the average total power consumption of the circuitry,
mainly because of the decrease of supply Voltage (Vdd). Power consumption
is proportional to the square of supply Voltage, so little decreases in Vdd

result in large power bene�ts. On the other hand when CMOS technology
is decreasing in size the delay of the circuit which is inverse proportional to
power consumption is also decreased. Figure 4.9 shows that if we extract
from the parameters the delay of the design the scaling of CMOS size and
supply voltage is re�ected clearly to the average power consumption of each
architecture.

162 CHAPTER 4. BENCHMARKING

180nm, architecture 130nm architecture 90nm architecture 65nm architecture 45nm architecture

0.00E+00

2.00E-09

4.00E-09

6.00E-09

8.00E-09

1.00E-08

1.20E-08

1.40E-08

1.60E-08 1.57E-08

1.04E-08

9.20E-09

8.05E-09

8.55E-09

Critical path comparison between different FPGA Architectures

Architectures

C
ri

tic
al

 p
at

h
de

la
y

(s
)

Figure 4.7: Comparison of di�erent technologies in terms of critical path
delay.

4.3. HBVPR RESULTS 163

180nm, architecture 130nm architecture 90nm architecture 65nm architecture 45nm architecture

0

0.05

0.1

0.15

0.2

0.25

0.3

0.28

0.18

0.20

0.15

0.14

Power Consumption comparison between different archtectures

Architectures

P
o

w
e

r
C

o
n

su
m

p
tio

n
 in

 W
a

tts

Figure 4.8: Comparison of di�erent technologies in terms of power consump-
tion.

164 CHAPTER 4. BENCHMARKING

180nm, architecture 130nm architecture 90nm architecture 65nm architecture 45nm architecture

0

0.05

0.1

0.15

0.2

0.25

0.3

0.28

0.12 0.11

0.08 0.07

Comparison in terms of power consumption for the same operating frequency
between different architectures

Architectures

P
o

w
e

r
C

o
n

su
m

p
tio

n
 in

 W
a

tts

Figure 4.9: Comparison in terms of power consumption for the same operat-
ing frequency.

Chapter 5

Conclusions

Recon�gurable systems and special FPGAs have received much attention
during the last years. The research is expanded in many �elds of interest,
FPGA Fabric, power consumption, heterogeneity, CAD tools etc. This thesis
addresses the lack of a complete, free, academic design framework of CAD
tools that supports power estimation in Heterogeneous FPGAs.

In the �rst chapter, the fundamental principles of an FPGA are analysed.
In the second chapter complete frameworks and standalone tools of FPGA
design both academic and commercial are analysed, and the lack of tools for
power estimation in Heterogeneous FPGAs is shown.

The third chapter presents the proposed framework NAROUTO. The
practical problems occurred in development and every step in the design
�ow from VHDL circuit description to FPGA programming is thoroughly
described. New tools, a Heterogeneity Support Toolset and modi�ed existing
tools are presented.

The framework is tested in chapter four , in which the results are presented
from eight benchmarks. Firstly the results of Blackbox pro�ling, packing and
pin multiplexing are shown. Then with tool HBVPR we take results concern-
ing area, power and delay of those benchmarks mapped in 6 di�erent FPGA
architectures. For comparison reasons the �rst architecture is in 180nm and
the designs haven't passed the Blackbox-aware technology mapping step.
The second architecture is in 180nm and its calibrated for decreased power
consumption. The other four architectures are in 45nm, 65nm, 90nm, and
130nm calibrated for area and delay optimization.

165

166 CHAPTER 5. CONCLUSIONS

Chapter 6

Future work

As this thesis has shown, today's academic research CAD tools are not com-
pletely updated to support Heterogeneous FPGA designs. Current tools need
to be modi�ed or new tools to be created in order : a) to support multiple
di�erent Heterogeneous FPGA architectures b) to expand the exploration
space to include power estimation, a critical design parameter. This thesis
proposed a complete framework for power estimation in heterogeneous FP-
GAs that includes both modi�ed existing tools, and new tools to meet the
goals mentioned above.

Blif format structure its restrictive concerning heterogeneity as seen in
this thesis and requires a lot of conversions in order to fully support hetero-
geneous blocks. Edif �le format is the standard output of every commercial
and of many academic tools, so further research must be done in clustering
and/or P&R tools to support this �le format.

In the proposed framework research can be done in :

� Building libraries and an identi�er to recognize the blackboxes and
supply accurate power and delay values in HBVPR.

� Modifying HBVPR to make power-aware placement and routing.

� Modifying the framework to support 3D architectures.

Also research can be done in merging the Meander framework (see sec-
tion 2.2.1) with NAROUTO design framework. Figure 6.1 shows the two
frameworks side by side and the middle arrow shows a possible connection
of the design �ows.

Lastly a Graphical User Interface it would be a useful feature.

167

168 CHAPTER 6. FUTURE WORK

Circuit

Syntactical Evaluation (VHDLParser)
 & Simulation (FreeHDL)

Synthesis (DIVINER)

Modification of EDIF file (DRUID)

Translation of Blif file (E2FMT)

BLE and Cluster Creation
 (T-Vpack)

Placement (EX-VPR)

Routing (EX-VPR)

FPGA Programming (DAGGER)

Minimum
Channel
 Width ?

SIS

Architecture
Description
(DUTYS)

Adjust channel width

No

Yes

Quartus
(Synthesis, Technology mapping)

Application Evaluation
 (Area, Power, Delay)

HBT-Vpack
(Clustering)

Hb_for_ace
Power

Estimation ?

Blackbox-aware
Technology mapping ?

Blackbox_Profiler

Blackbox Packing
Level 1, 2

Pin Multiplexing

Power
Estimation ?

Update Activities

Blackbox-
aware

Technology
mapping

YES

YES

YES

NO
NO

NO

Design Description (VHDL)

ACE 2.0
(Activity Estimation)

Net2xml
(Architecture Creation)

HBVPR
(Place & Route / Power Estimation)

Design Flow
connection

Design Flow
connection

Figure 6.1: Meander and NAROUTO design frameworks.

Bibliography

[1] V. Betz, J. Rose, and A. Marquardt, Architecture and CAD for Deep-
Submicron FPGAs, ISBN 0-7923-8460-1

[2] Altera AN 311: Standard Cell ASIC to FPGA Design Methodology and
Guidelines, April 2009

[3] Scott Hauck and Andre DeHon, Recon�gureable Computing, The The-
ory and practice of FPGA-BASED computation, ISBN 978-0-12-370522-
8

[4] http://embedded.eecs.berkeley.edu/mvsis/

[5] Wayne Wolf, FPGA-Based System Design, 2004 PRENTICE HALL
www.phptr.com ISBN: 0-13-142461-0

[6] http://www.eecs.berkeley.edu/~alanmi/abc/

[7] http://www.eecg.toronto.edu/~vaughn/vpr/vpr.html

[8] http://www.eecg.utoronto.ca/vpr/

[9] Jason Luu, Ian Kuon, Peter Jamieson, Ted Campbell, Andy Ye, Wei
Mark Fang, and Jonathan Rose, VPR 5.0: FPGA CAD and Architec-
ture Exploration Tools with Single-Driver Routing, Heterogeneity and
Process Scaling, International Symposium on Field Programmable Gate
Arrays (FPGA) 2009, pp. 133-142

[10] Peter Jamieson, Jonathan Rose Edward S. Rogers, A VERILOG RTL
Synthesis tool for Heterogeneous FPGAs, 15th International Conference
on Field Programmable Logic and Applications, August, 2005

[11] http://www.ece.ubc.ca/~stevew/powermodel.html

169

http://embedded.eecs.berkeley.edu/mvsis/
www.phptr.com
http://www.eecs.berkeley.edu/~alanmi/abc/
http://www.eecg.toronto.edu/~vaughn/vpr/vpr.html
http://www.eecg.utoronto.ca/vpr/
http://www.ece.ubc.ca/~stevew/powermodel.html

170 BIBLIOGRAPHY

[12] Julien Lamoureux, Modeling and Reduction of Dynamic Power in Field-
Programmable Gate Arrays, The University of British Columbia 2003,
Phd Thesis

[13] Kara K.W. Poon Steven J.E. Wilton and Andy Yan, A Detailed Power
Model for Field Programmable Gate Arrays , ACM Transactions on
Design Automation of Electronic Systems (TODAES), Vol. 10, Issue 2,
April 2005, pp. 279-302.

[14] http://www.users.muohio.edu/jamiespa/vpr_5_pow.html

[15] http://proteas.microlab.ntua.gr/meander/index.html

[16] http://vlsi.ee.duth.gr/amdrel/

[17] KOSTAS SIOZIOS, "Design of a Con�gurable Logic Block and The De-
velopment of Supporting Toolset for embedded FPGAs", Master Thesis,
Democritus University of Thrace, Greece, 2003.

[18] Introduction to the Quartus II Software Altera Corporation www.

altera.com

[19] Quartus II Handbook Version 9.1 Volume 1: Design and Synthesis Altera
Corporation www.altera.com

[20] http://www-asim.lip6.fr/recherche/alliance/

[21] Berkeley Logic Interchange Format (BLIF) University of Califor-
nia Berkeley February 22, 2005 www.cs.uic.edu/~jlillis/courses/

cs594/spring05/blif.pdf

[22] Synthesis Design Flows Using the Quartus University Interface Program
(QUIP) Version 1.1 February 6, 2008

[23] http://www.eecg.utoronto.ca/vpr/architectures/

[24] VPR and T-VPack User's Manual Summer 2008 VPR 5.0 Full Release,
July 29, 2009

[25] Xiaoxiang Shi, FPGA CAD Research: An Introduction Report 1:
6/4/05 13/4/05

http://www.users.muohio.edu/jamiespa/vpr_5_pow.html
http://proteas.microlab.ntua.gr/meander/index.html
http://vlsi.ee.duth.gr/amdrel/
www.altera.com
www.altera.com
www.altera.com
http://www-asim.lip6.fr/recherche/alliance/
www.cs.uic.edu/~jlillis/courses/cs594/spring05/blif.pdf
www.cs.uic.edu/~jlillis/courses/cs594/spring05/blif.pdf
http://www.eecg.utoronto.ca/vpr/architectures/

	Introduction
	What is an Fpga
	Advantages - disadvantages of FPGAs over ASIC
	Fpga Fabric
	CAD tools, design of an FPGA
	Organization of the Chapters

	State of the Art
	Standalone tools
	Logic Synthesis and Technology mapping tools
	MVSIS
	ABC

	Clustering, Place and Route tools
	VPR 4.30
	Heterogeneous framework VPR 5.0.2

	Powermodel Framework
	Nettovqm
	Convert_arch_to_xml
	VPR 5.0 with power estimation

	Existing Frameworks
	Meander
	What is Meander
	Meander Design Flow

	Quartus
	What is Quartus
	Quartus design flow

	ALLIANCE
	What is ALLIANCE
	ALLIANCE Design Flow

	Proposed Framework
	Quartus, edif
	Quartus, hierarchical blif
	BLIF format
	BLIF output from Quartus

	Powermodel Ace
	HBT-Vpack
	Heterogeneity Support Toolset
	Practical problems in Heterogeneity support
	HST Tools
	Blackbox-aware technology mapping
	Blackbox Packing
	Multiplexer
	Net2xml
	Activity_Updater

	HBVPR
	Power estimation
	Dynamic Power
	Short-Circuit Power
	Leakage power
	Blackboxe's power estimation

	Placement and routing

	DAGGER

	Benchmarking
	Benchmarks information
	Heterogeneity Support Toolset results
	HBVPR results
	Non-packed
	Area and delay optimized architecture after level 1, 2 packing at 180nm
	Area and delay optimized architecture after level 1, 2 packing at 130nm
	Area and delay optimized architecture after level 1, 2 packing at 90nm
	Area and delay optimized architecture after level 1, 2 packing at 65nm
	Area and delay optimized architecture after level 1, 2 packing at 45nm
	Comparison results

	Conclusions
	Future work

