

ΔΘΝΙΚΟ ΜΔΣΟΒΙΟ ΠΟΛΤΣΔΥΝΔΙΟ

ΥΟΛΗ ΗΛΕΚΣΡΟΛΟΓΩΝ ΜΗΥΑΝΙΚΩΝ ΚΑΙ ΜΗΥΑΝΙΚΩΝ ΤΠΟΛΟΓΙΣΩΝ

ΣΟΜΕΑ ΣΕΥΝΟΛΟΓΙΑ ΠΛΗΡΟΦΟΡΙΚΗ ΚΑΙ ΤΠΟΛΟΓΙΣΩΝ

High-Level Implementation of Customized Network-on-Chip Architectures

ΓΙΠΛΩΜΑΣΙΚΗ ΔΡΓΑΙΑ

ΓΔΠΟΙΝΑ-OΛΓΑ ΚΑΜΠΑΝΗ

Δπιβλέπων : Δεκήηξηνο νύληξεο

 Επ. Καζεγεηήο ΕΜΠ

Αθήνα 2010

Εγθξίζεθε από ηελ ηξηκειή εμεηαζηηθή επηηξνπή ηελ επηεκβξίνπ 2010

.......................

.......................

.......................

Επ. Καζεγεηήο

Δεκήηξηνο νύληξεο

Καζεγεηήο

Κηακάι Πεθκεζηδή

Λέθηνξαο

Γηώξγνο Οηθνλνκάθνο

..

Δέζπνηλα - Όιγα Κακπάλε

Δηπισκαηνύρνο Ηιεθηξνιόγνο Μεραληθόο θαη Μεραληθόο Τπνινγηζηώλ

© -All rights reserved

Aπαγνξεύεηαη ε αληηγξαθή, απνζήθεπζε θαη δηαλνκή ηεο παξνύζαο εξγαζίαο, εμ νινθιήξνπ

ή ηκήκαηνο απηήο, γηα εκπνξηθό ζθνπό. Επηηξέπεηαη ε αλαηύπσζε, απνζήθεπζε θαη δηαλνκή

γηα ζθνπό κε θεξδνζθνπηθό, εθπαηδεπηηθήο ή εξεπλεηηθήο θύζεο, ππό ηελ πξνππόζεζε λα

αλαθέξεηαη ε πεγή πξνέιεπζεο θαη λα δηαηεξείηαη ην παξόλ κήλπκα. Εξσηήκαηα πνπ

αθνξνύλ ηε ρξήζε ηεο εξγαζίαο γηα θεξδνζθνπηθό ζθνπό πξέπεη λα απεπζύλνληαη πξνο ην

ζπγγξαθέα.

Οη απόςεηο θαη ηα ζπκπεξάζκαηα πνζ πεξηέρνληαη ζε απηό ην έγγξαθν εθθξάδνπλ ην

ζπγγξαθέα θαη δελ πξέπεη λα εξκελεπζεί όηη αληηπξνζσπεύνπλ ηηο επίζεκεο ζέζεηο ηνπ

Εζληθνύ Μεηζόβηνπ Πνιπηερλείνπ.

1

Contents

Περίληψη………………………………….………………………………..…3

Abstract…..…………………………………………………………………...5

Chapter 1: Network on Chip Architectures and their various Characteristics….9

Abstract ... 9

1.1 Introduction ... 10

1.2 NoC Communication Paradigm .. 13

1.2.1. Routing Algorithm .. 13

1.2.2 Switching Technique ... 14

1.2.3 Quality of Service and Congestion Control .. 15

1.2.4 Topology .. 15

1.2.5 Buffering ... 18

1.3 Power and Thermal Management ... 19

1.4 Application Modeling .. 19

Chapter 2: Customized NoC architectures…………………………………..21

Abstract ... 21

2.1 Introduction ... 22

2.2 Related Work.. 23

2.2.1 Spidergon NoC .. 23

2.2.2 RASoC : A Router Soft-Core for Networks-on-Chip ... 26

2.2.3 Æthereal Network on Chip .. 29

2.3 Proposed Solution ... 31

Chapter 3: General-Purpose platform………………………………………..33

Abstract ... 33

3.1 Introduction ... 34

3.2 Reusability ... 34

3.3 Router architecture .. 35

3.3.1 Receiver ... 36

3.3.2 Output Port Selector ... 37

3.3.3 Buffer ... 38

3.3.4 Transmitter ... 38

3.3.5 Prioritizer .. 40

2

3.3.6 Router communication schema ... 40

3.4 NoC architecture .. 42

3.4.1 Top-entity .. 42

3.4.2 Package .. 42

3.4.3 Testbench .. 42

3.4 Testcase .. 43

Chapter 4: Design Flow and Automatic Generation Tool “NoCGen” ……..47

Abstract .. 47

4.1 Introduction .. 48

4.2 Configuration Files .. 49

4.2.1 Router characteristics... 49

4.2.2 Netlist ... 50

4.2.3 Traffic ... 53

4.3 Technical Details .. 55

Chapter 5: Output Samples and Measurements ………………………….....57

Abstract .. 57

5.1 Introduction .. 58

5.2 Measurements Setup .. 58

5.1.1 MPEG-4 ... 59

5.1.2 VOPD .. 62

5.1.3 MWD ... 65

5.1.4 MMS ... 68

5.2 Conclusions ... 72

Chapter 6: Summary and Future Work……………………..…………….…..73

Abstract .. 73

6.1 Summary .. 74

6.2 Future work .. 74

Appendix …………………………………………………………..79

3

Περίληψη

Αντικείμενο της παρούσας διπλωματικής είναι η ανάπτυξη ενός εργαλείου, το οποίο θα παράγει

“Irregular Network on Chip Architectures”. Οι αρχιτεκτονικές αυτές θα σχηματίζονται

σύμφωνα με προδιαγραφές που θα δίνονται ως είσοδος και οι οποίες θα περιγράφουν τις ανάγκες

σε πόρους και τεχνικές που θα πρέπει να διαθέτει η αρχιτεκτονική.

Στο κεφάλαιο 1 γίνεται μια εισαγωγή στα βασικά στοιχεία μιας ΝοC αρχιτεκτονικης, όπως η

τοπολογία, ο αλγόριθμος δρομολόγησης, οι διαστάσεις των buffer, ο αριθμός των εισόδων και

των εξόδων, οι τεχνικές διαιτησίας κ.λ.π.

Στο κεφάλαιο2 αναπτύσσεται η επιχειρηματολογία για την ανάγκη εύκολης τροποποίησης των

χαρακτηριστικών μιας ΝοC αρχιτεκτονικής, η οποία θα μπορεί να συνδυάζει και να

ενσωματώνει ιδιότητες από διαφορετικά μοντέλα. Eπίσης παρουσιάζεται η προτεινόμενη λύση

καθώς και πώς αυτή εντάσσεται σε μία ευρύτερη προσπάθεια διερεύνησης των ΝοC

αρχιτεκτονικών.

Στο Κεφάλιο 3 αναλύονται διεξοδικά τα βήματα που χρειάστηκε να ακολουθηθούν για τη

δημιουργία μιας “ΝοC πλατφμόρμας” γενικής χρήσης, η οποία θα μπορεί ανάλογα με τις

προδιαγραφές να μεταβάλλεται. Περιγράφεται η τροποποίηση του κώδικα, ώστε να

συμμορφώνεται με τις αρχές της reusability, η ενσωμάτωση των διάφορων components στην

τελική οντότητα καθώς και η δημιουργία τεχνητής κίνησης που θα ελέγχει την ορθότητα της

λειτουργίας.

Στο Κεφάλαιο 4 περιέχεται η περιγραφή και high-level εργαλείου αυτόματης παραγωγής NoC

αρχιτεκτονικών, το οποίο θα είναι σε θέση να συνθέτει - σύμφωνα με ένα αρχείο προδιαγραφών

γραμμένο σε xml - τον κώδικα που θα δίνει την τελική αρχιτεκτονική και θα την τροφοδοτεί με

αιτήματα αποστολής δεδομένων.

Στο Κεφάλαιο 5 δίνονται δείγματα της λειτουργίας του εργαλείου για διαφορετικές

προδιαγραφές. Επίσης παρουσιάζονται μετρήσεις καταναλώσεων ισχύος και χώρου στο chip

που καταλαμβάνει η κάθε αρχιτεκτονική όταν τροφοδοτείται με κίνηση από διαφορετικές

εφαρμογές.

Στο Κεφάλαιο 6 παρουσιάζονται τα συμπεράσματα της εργασίας καθώς και ιδέες για

μελλοντική έρευνα.

Λέξεις-Kλειδιά

ΝοC, reusable, reconfigurable, specifications, xml, automatic generation

4

5

Abstract

The purpose of the present diploma thesis is the development of a tool, which will produce

Irregular Network on Chip Architectures. These architectures will be formed according to

input specifications, which will describe the resources and techniques that should be part of

the architecture.

In Chapter 1 we make an introduction to the basic concepts of a NoC architecture, such as

the topology, the routing algorithm, the buffer dimensions, the number of inputs and

outputs and the arbitration techniques.

In Chapter 2 we explain the need of being able to easily modify the characteristics of a NoC

arhictecture in order to combine and encompass properties of different models.

Furthermore, we describe the proposed solution and how this is integrated in a more general

effort to explore NoC architectures.

In Chapter 3 we analyze in detail the steps which were followed in order to create a general

purpose “NoC platform”, which would be reconfigurable. We describe the code

modifications which were necessary to adhere to the “reusability” principle, the integration

of the various components in order to create the final entity and finally the generation of

artificial traffic which would test the correctness of the design.

Chapter 4 includes the description of the high-level, which will be able to produce – taking as

input xml-based configuration files- the vhdl code for the NoC design and its testbench.

In Chapter 5 we present samples of the tool outputs for different configurations.

Furthermore, we display the measurements of power consumption and place utilization on

the chip.

In Chapter 6 the conclusions are present as well as ideas and proposals for future research.

Keywords

ΝοC, reusable, reconfigurable, specifications, xml, automatic generation

6

7

Ευχαριστίες/ Acknowledgments

Για την εκπόνηση της παρούσας διπλωματική θα ήθελα να ευχαριστήσω τον Επ. Καθηγητή του

Ε.Μ.Π. κ. Δ. Σούντρη για την αμέριστη συμπαράστασή του, την εμπιστοσύνη του και τις

πάντοτε καίριες και χρήσιμες συμβουλές του που με καθοδήγησαν στη μελέτη αυτή. Επίσης η

εργασία αυτή δε θα είχε έλθει εις πέρας χωρίς την πολύτιμη συνεργασία των μεταδιδακτορικών

φοιτητών Κώστα Σιώζιου, Κωνσταντίνου Τάτα, Αλέξανδρου Μπάρτζα, καθώς και τον υποψήφιο

διδάκτορα Διονύση Διαμαντόπουλο, οι οποίοι βοήθησαν να ξεπεραστούν όσα σημαντικά

προβλήματα προέκυψαν κατά τη διάρκεια της διπλωματικής.

8

9

Chapter 1:

Network on Chip Architectures and

their various Characteristics

Abstract

In this chapter, we introduce the Network-on-Chip architectures. We make a comparison

between other on-chip communication solutions and explain their advantages and

disadvantages. Furthermore, we describe their basic features and techniques deployed in their

design.

10

1.1 Introduction

The aim of this chapter is to make a brief introduction into the NoC architectures. The term

NoC has a quite short history. It refers to a new approach to the design of the

communication subsystem of a System On Chip (SoC).

Traditionally the design space exploration for SoCs has focused on the computational

aspects. However, the number of components on a single chip and their performance

increased to such an extent that the design of the communication architecture plays a major

role in defining the area, performance and energy consumption of the overall system.

Modern SoC architectures consist of heterogeneous IP cores such as CPU or DSP modules,

video processors, embedded memory blocks etc.

Figure 1 : Heterogeneous NoC architecture

Furthermore the classical bus-based and point-to-point communication solutions failed to

address the new needs. Bus based architectures were abandoned for complex designs mainly

because of the delay factor (bottleneck when many components are connected). The point-

to-point solution is not viable for chips with many components, since the number of

connections lead to a great waste of energy and space on chip. In Table 1 we can see a

summary of the basic differences of bus and NoC architectures.

11

Table 1 : Bus-versus-Network Arguments

As a result, the NoC approach emerged as a promising alternative. The network approach is

the evolution of former on-chip communication structures. Unlike busses and dedicated

point-to-point links, a more general scheme is adapted, employing a grid of routing nodes

spread out across the chip. It achieves better performance for many cores because

connections between components are relatively fast for any size of chip, assuming a few

hops between components.

12

Figure 2: Common communication structures

In a NoC architecture when a source node sends a packet to a destination node, the packet is

first generated and transmitted from the local processor to the attached router via a network

interface (NI). The NI enables seamless communication between various cores and the

network. Then, the packet is stored at the input channels and the router starts servicing it.

This service time includes the time needed to make a routing decision, allocate a channel and

traverse the switch fabric. After being serviced, the packet moves to the next router on its

path, and the process repeats until the packet arrives at its final destination. As a result, the

communication among various cores is achieved by generating, processing and forwarding

packets through the network infrastructure rather than by routing global wires.

Figure 3: Generic NoC Architecture. The anatomy of a node which consists of an on-

chip router, buffers and processing element(PE) is also shown on the right-hand

side.

13

Not surprisingly, the network communication overall performance (latency, energy

consumption, space overhead) depends on the characteristics of the target application (e.g.,

inter-task communication volume), computational elements (e.g., processor speed) and

network characteristics (e.g., network bandwidth and buffer size).

1.2 NoC Communication Paradigm

1.2.1. Routing Algorithm

The routing algorithm determines the route which a message will follow from its source to

its destination through the network. Its role is really crucial as it impacts all network metrics,

namely latency (as the hop count is directly affected by the actual route), throughput (as

congestion depends on the ability of the routing protocol to load balance), power

distribution (as routing can be used to channel different message flows along distinct paths

to avoid interference), and finally reliability (as the routing protocol needs to choose routes

that avoid faults).

A designer has to take into consideration all the above parameters and the tradeoffs between

them in order to produce the routing protocol which fits at best the application and

constraints. Usually we want to minimize the average distance traveled by packets in the

network, with a constraint on the maximum distance between any pairs of nodes.

A popular and simple routing technique is the dimension-ordered routing which routes

packets in one dimension, then moves on to the next dimension, until the final destination is

reached. (Manhattan)

While the above technique is often implemented, adaptive routing techniques are the key

when we ask for better throughput and fault tolerance. Adaptive routing enables alternative

paths, depending on the network congestion and run-time faults.

There have been also tested techniques, which are a hybrid and combine features of both

deterministic and adaptive routing.

14

Furthermore there are the oblivious routing techniques, which generate routes without any

knowledge of the traffic.

Finally, there is the fully customized approach of the routing table. The routing table

contains the next destination of a packet (namely the output port) according to its current

location and its destination. This technique is application-specific and there are works which

propose thermal-(L. Shang et al : “Dynamic voltage scaling with links for power optimization

and management of on-chip networks”) and reliability-aware(Manolache et al : “A network

traffic generator model for fast network-on-chip simulation”) routing algorithms.

When it comes to irregular topologies the routing algorithm becomes a key issue. Despite the

existing research, it remains difficult to find minimal routes and at the same time avoid

deadlock and livelock situations. On the one side it is not always reliable to rely on

dimension-ordered routing and on the other side routing tables incur delay, area and power

overheads.

To conclude, routing algorithms remain a challenging area of NoC research. Although there

is research into routing algorithms for off-chip interconnection networks, the different

nature of on-chip communication (high frequency, low latency) leads to implications.

Sophisticated solutions cannot be lightweight enough and simple ones fail to accomplish

tasks as reliability and low-power design. To date, the vast majority of NoC routing solutions

have focused on unicasting (i.e., sending from one PE to another).

1.2.2 Switching Technique

Switching technique, or flow control, governs the way in which messages are forwarded

through the network. Typically the messages are broken into flow control units (flits) which

represent the smallest unit of flow control. The switching algorithm then determines if and

when flits should be buffered, forwarded or simply dropped. Mainly it addresses the issue of

ensuring correct operation of the network.

Among the commonly used techniques in interconnection networks, wormhole switching

seems the most promising for NoCs due to the limited availability of buffering resources and

tight latency requirements.

Virtual channels have been also adopted for NoC design to improve network bandwidth and

tackle deadlock.

Depending on the case, we can choose between:

15

 Circuit and packet switching: In circuit switching the circuit from source to

destination is setup and reserved until the transport of data is complete. Packet

switching on the other hand is forwarded on a per-hop basis, each packet containing

routing information as well as data.

 Connection-oriented and connectionless switching: Connection-oriented

mechanisms involve a dedicated logical connection path established prior to data

transport. The connection is then terminated upon completion of communication. In

connectionless mechanisms, the communication occurs in a dynamic manner with no

prior arrangement between the sender and the receiver, Thus circuit switched

communication is always connection-oriented, whereas packet switched

communication may be either connection-oriented or connectionless.

1.2.3 Quality of Service and Congestion Control

Conventional packet-switched NoCs multiplex message flows on links and share resources

among these flows. While this results in high throughput, it also leads to unpredictable delays

per individual message flows. For many applications with real-time deadlines, this non-

determinism can substantially degrade the overall application performance. Thus, there is a

need for research into NoCs that can provide deterministic bounds for communication delay

and throughput. We need to find a resource allocation strategy (size of output buffers of

router, bandwidth of channel and/or packet injection rates in the network.

This problem is addressed adopting methods such as :

 virtual channels

 multiple priority levels for urgent traffic and regular traffic

 QoS-aware congestion control algorithms

1.2.4 Topology

Topology refers to the structure of the network and its organization. More specifically, it has

to do with the number of PEs, routers, links and the graph structure interconnecting them.

There are different approaches when it comes to the selection of the topology model.

Parameters such as simplicity and regularity play a significant role, since regularity improves

timing closure, reduces dependence on interconnect scalability and enables the use of high-

16

performance circuits. However, the target application traffic profile has to be taken into

consideration as well, as far as the placement and interconnects are concerned.

Typically, 1-D and 2-D topologies (mesh, torus etc) are the default choices for NoC

designers and constitute over 60% of cases. Mesh and torus topologies have 4 neighbor

nodes but torus has wraparound links connecting the nodes on network edges and mesh

does not.

The k-ary tree and the k-ary n-dimensional fat tree are two alternate regular forms of

networks explored for NoC.

The Octagon NoC topology presented in Karim et al.(2001,2002) is a further example of a

novel regular NoC topology. Its basic configuration is a ring of 8 nodes connected by 12

bidirectional links which provides two-hop communication between any pair of nodes in the

ring and a simple, shortest-path routing algorithm. Such rings are then connected edge-to-

edge to form a larger, scalable network.

Figure 4: Regular forms of topologies

But so far various irregular topologies have been developed and investigated as well. They

offer specific solutions for various performance, area and power tradeoffs (e.g. concentrated

mesh, flattened butterfly, hierarchical star). Furthermore, there are also works which help the

designer decide for the appropriate NoC topology from a given topology library for various

power/performance tradeoffs. (Radu Marculescu, Keynote Paper).

Apart from 1-D and 2-D topologies, 3D architectures have been proposed as well. They

emerged when the integrating ICs in 3-D fashion started becoming popular. It is true that

17

they solve a number of issues, but they need further exploration. In the work (Soteriou et al :

“Polaris: A system-level roadmapping toolchain for on-chip interconnection networks”), it

was found that 3-D mesh is the most suitable NoC in many cases.

Finally, the need for irregular and customized topologies is existent in a number of cases,

where simple topologies are not applicable. For example, when we are faced with area

problems, regular architectures are not the most efficient ones. In addition, for real

applications, the communication requirements are not evenly distributed among the

components. As a result, designing the network to meet the extreme cases leads to under-

utilization of the resources and designing it to meet the average cases causes bottlenecks.

There have been suggested various approaches which customize the network topology

according to the target application (W.H Ho et al : “A methodology for designing efficient

on-chip interconnects on well-behaved communication patterns”) and the

energy/performance constraints (U Orgas et al: “Energy- and performance driven NoC

communication architecture synthesis using a decomposition approach”).

Figure 5 : Irregular Forms of topologies

Generally speaking, the theoretical problem of optimal topology synthesis for a given

application does not have a known theoretical solution and it is a challenge on its own right.

Apart from that, the customized architectures may need complex floorplanning and uneven

wire lengths in order to function efficiently.

18

1.2.5 Buffering

Buffers are an integral part of any network router. In by far the most NoC architectures,

buffers account for the main part of the router area. As such, it is a major concern to

minimize the amount of buffering necessary under given performance requirements.

There are two main aspects of buffers (i) their size and (ii) their location within the router.

Tamir and Frazier (1988) have provided a comprehensive overview of advantages and

disadvantages of different buffer configurations (size and location) and additionally proposed

a buffering strategy called dynamically allocated multi-queue (DAMQ) buffer. In the

argument of input vs. output buffers for equal performance the queue length in a system

with output port buffering is always found to be shorter than the queue length in an

equivalent system with input port buffering. This is so, since in a routing node with input

buffers, a packet is blocked if it is queued behind a packet whose output port is busy(head-

of-the-line blocking). With regards to centralized buffer pools shared between multiple input

and output ports vs distributed dedicated FIFOs, the centralized buffer implementations are

found to be expensive in area due to overhead in control implementation and become

bottlenecks during periods of congestion. The DAMQ buffering scheme allows independent

access to the packets destined for each output port, while applying its free space to any

incoming packet. DAMQ shows better performance than FIFO or statically-allocated shared

buffer space per input-output port due to better utilization of the available buffer space

especially for non-uniform traffic.

In Rijpkema et al.(2001), a somewhat similar concept called virtual output queuing is

explored. It combines moderate cost with high performance at the output queues. Here

independent queues are designated to the output channels, thus enhancing the link utilization

by bypassing blocked packets.

In Hu and Marculescu (2004a), the authors present an algorithm which sizes the input

buffers in a mesh-type NoC on the basis of the traffic characteristics of a given application.

For three audio/video benchmarks, it was shown how such intelligent buffer allocation

resulted in about 85% savings in buffering resources in comparison to uniform buffer sizes

without any reduction in performance.

As a conclusion, buffer sizing and structure(location) should be thoroughly investigated if

we want to avoid misusing the chip resources.

19

1.3 Power and Thermal Management

Due to concerns on battery lifetime, cooling and thermal budgets, power issues are at the

forefront of NoC design. Indeed, several NoC prototypes show NoCs taking a substantial

portion of system power, e.g. ~40% in the MIT “RAW” chip and ~30% in the Intel 80-core

teraflop chip. The aim of the designer is to minimize or constraint the metrics of interests

such as (peak power consumption, energy consumption and average or peak temperature). It

is an optimization problem under various constraints.

There have been proposed various approaches referring to power management issue. There

has been research into run-time NoC power management using DVS on links, as well as

shutting links down based on their actual utilization. Globally asynchronous locally

synchronous (GALS) approaches to dynamic voltage and frequency scaling further leverage

the existing boundaries between various clocking domains.

Every designer needs accurate and application-aware energy models. Ideally such models

should target both dynamic and static power dissipations.

1.4 Application Modeling

Traffic models refer to the mathematical characterization of workloads generated by various

classes of applications. With network performance being highly dependent on the actual

traffic, it is obvious that accurate traffic models are needed for a thorough understanding of

the huge design space of network topologies, protocols, and implementations. Since

implementing real applications is time consuming and lacks flexibility, analytical models can

be used instead to evaluate the network performance early in the design process.

We are in need of stochastic traffic models and statistical parameters that describe the

asymptotic properties of the network accurately and facilitate analysis.

For example, starting from real multimedia traces, one can build an analytical model that

captures the long-range dependencies and then using the results, various performance and

cost metrics such as packet loss probability and buffer size can be optimized.

Unfortunately, the research in this area is still lagging due to the latch of well-defined NoC

benchmarks. This situation has two primary reasons. First, the applications suitable for NoC

platforms are typically very complex. For instance, it is common for applications to be

partitioned among tens of processes. As a result it is unclear it the benchmarks stress the

NoCs effectively. Second, this research requires detailed information about the dynamic

behavior of the system; this is hard to obtain even using simulation or prototyping.

20

21

Chapter 2:

Customized NoC architectures

Abstract

In this chapter, customized Network-on-Chip architectures are examined. We present

existing solutions, which implement configurable architectures as well as complete design

flows. Finally, we describe the proposed solution.

22

2.1 Introduction

As we discussed above, the designers of a NoC have to take into consideration various

parameters and tradeoffs regarding the NoC features, in order to have the desirable

performance. More particularly, factors like latency, throughput, power dissipation, and

finally reliability are affected by the various design choices and sometimes the improvement

of one ends in the deterioration of the other.

Moreover, each NoC architecture is applied on a different platform and has to adhere to a

different set of constraints. The chip resources, the mapping and traffic profile of the target

application, the power and thermal specifications make the design of each chip

communication system a unique optimization problem.

Furthermore, the complexity of the modern chips and applications along with the need for

short development times are additional reasons for the existence of parameterized and

reusable vhdl code. In case of reusable code, the design is portable and easily adaptable to

any alterations. As a result the designer can easily apply the changes in the value of some

parameters and take many different network architectures. We are going to talk about

reusable code techniques in Chapter 3.

Apart from that, when it comes to the verification of a NoC structure, the designer has to try

a range of possible solutions with different parameters (topology, buffering size etc) and

produce a variety of test benches, which are going to simulate the traffic flow of the target

application and stress the network. This task is time-consuming and has to become

automatically in order to save time and money.

To conclude, it is crucial to develop the basic platforms and tools and invest initially to build

the work environment, so that we can later on generate and test various NoC models

without having to manually produce different architectures and test benches.

In this Chapter, we present some samples of related research conducted both by universities

and industry.

23

2.2 Related Work

There have been published various works, which focus on the reusability and

parameterization of VHDL code of the router architecture.

These works are based on the development of generic platforms, which can support

alterations in parameters such as buffer size, the channel width, the sizes of the fields of the

flits, the maximum number of retransmission of a flit, the number of ports etc.

Their aim is to reach some conclusions about the set of parameters, which lead to better

performance results.

We will present two of these works, which describe generic NoC platforms.

2.2.1 Spidergon NoC

In “Generic and Extensible Spidergon NoC” (Abdelkrim Zitouni et al), the writers present a

GALS and generic NoC architecture based on a configurable router. This router integrates a

sophisticated dynamic arbiter, the wormhole routing technique and can be configured in a

manner that allows it to be used in many possible NoC topologies such as Mesh 2-D, Tree

and Polygon architectures.

The proposed Spidergon NoC architecture is constructed based on an elementary polygon

network which is a combination of the star and the ring architectures.

Figure 6:Example of a Spidergon architecture of valence m = 8

24

This elementary network is formed by 4R+1 (R=1,2 etc.) routers including a central router

that is connected with the 4R peripherals routers via point to point links. The peripheral

routers are connected to each other in the form of a ring. The elementary network is

characterized by its valence (m = 4R) that represents the number of the peripheral routers.

These routers necessitate 2m links to be connected to the central router. Each peripheral

router is connected to 4 input/output ports and the central router is connected to m+1

input/output ports. A Spidergon architecture with valence m is constituted by 3m+1 routers

that necessitate 7m point to point links to be connected with each other.

Furthermore, the sizes and depths of the FIFO contained in this router, the number of

input/output ports, the size of the fields of a flit, the number and the time of retransmission

and the maximum numbers of the requests sent to the arbiter are also generic. Moreover, it is

generic in terms of supported number of cores. All these characteristics make the proposed

NoC flexible and extensible according to the applicative aspect and thus improve the quality

of service required by the application to be mapped on it.

 The development of this network is based on a library of generic models of VHDL blocks.

The files of this library contain protocol (number of retransmissions, allowed requests, time

out, degrees of adaptability and size of each field forming the various types of flits) and

physic (width and depth of the FIFO, number of input/output of the routers and the

valence m of the network) parameters. These files also contain all the function used by the

VHDL blocks like the path calculation function, the CRC checking function, etc. The

generation of the Spidergon architecture is done automatically by indicating the valence m in

the package file by using the VHDL GENERATE clause.

The portion of the VHDL code following shows how to generate the peripheral routers in

an elementary Polygon network of valence m:

Generate : For I in 1 to m generate

Perif_Router : Router generic map(width,i)

 Port map (R0=> Request_in(i),

 Data_in0 => Input(i+1)*width-1 downto i*width),

 ……..

 ……….

End generate ;

The performances of the proposed NoC were studied and compared with two other NoC

with similar architectures (Mesh and Torus). A parametrised network model was constructed

using HASE (Hierarchical Architectural Simulation Environment).

Figure 7 shows the evolution of average latency according to the load for two sizes of the

Spidergon architecture. The Spidergon architecture of valence m =12 contains 37 routers

and the Spidergon architecture of valence m = 20 contains 61 routers. It can be seein that

25

the latency increases with the size of the network. A larger network emits more packets. It

proposes also more buffers for stoking these packets in the event of conflicts.

Figure 7 : Latency versus load for two Spidergon architectures

Figure 8 shows the evolution of average latency according to the load for architecture

Spidergon of valence m = 12(37 routers) and two other similar architectures Mesh and Torus

with 32 routers. The Spidergon architecture is characterized by a lower latency than the two

other architectures. The difference is increasingly large after saturation. Also, the network

Spidergon saturates later than the two other architectures. Indeed, the packets cross less

routers number in the Spidergon network than in the network Mesh 2D and Torus.

Figure 8 : Latency versus load for three architectures (Spidergon, Mesh and Torus)

Figure 9 shows the evolution on the area of the networks Mesh, Torus and Spidergon

according to the number of routers in technology CMOS 0.35 um for buffers of 6 words.

26

The larger the network is, the greater are the differences between areas of the three

networks. This is due to the central routers of the Spidergon network which have m+1

buffers, whereas in Torus architecture all the routers have 5 buffers and in the Mesh network

the peripheral routers have only 3 or 4 buffers.

Figure 9 : Area of NoC versus number of routers in the case of the Torus, Mesh and

Spidergon architectures

The writers conclude that the value added by the Spidergon architecture resides in its

capacity to handle a suitable cost/performance compromise in the field of NoC. Spidergon is

characterized by the lower latency and later saturation. The next step is the modeling of the

architecture in SystemC language at TLM(Transaction Level Modeling).

2.2.2 RASoC : A Router Soft-Core for Networks-on-Chip

In the paper “RASoC : A Router Soft-Core for Networks-on-Chip” (Cesar Albenes Zeferino

et al.), the design of a parametrized router is introduces. RASoC is implemented as a

reusable VHDL model which can be configured with different sizes and allows the tuning of

the NoC parameters in order to meet the requirements of the target application.

The paper gives a thorough description of the router structure. More specifically, the router

has 5 ports maximum (North, East, South, West and Local). Depending on the position of a

RASoC instance on the NoC and on the network topology, one or two of them need not be

implemented, reducing the network area. RASoC ports include two unidirectional opposite

channels.

27

Figure 10 : The interface of RASoC

RASoC is implemented in a distributed way and it is composed by instances of two kinds of

modules : input channel (in) and output channel (out).

The top level entity, named RASoC has three generic parameters, n, m and p which define the

data channel width, the width of the routing information in the header and the FIFO depth,

respectively. By tuning such parameters, one can synthesize routers with different cost and

performance ratios. The lower-level entities receive from the higher-level entities the

parameters they need to generate their architectures with the required dimensions. The

acronyms in the names of the bottom level entities represent the actual name of each entity

(e.g IFC is implemented by the input_flow_controller unit).

Figure 11 : Hierarchy of entities in the model

The RASoC model was synthesized in an FPGA of the family Altera FLEX 10KE. During

the experiments, various combinations of parameters were tested and the costs in area for

28

the buffers and the entire architecture as well as the costs of bottom-level entities were

measured.

In the tables below FF-based and EAB-based stand for the two different FIFO techniques.

We are shown the number of logic cells (LC), flip-flops (Reg) and memory bits (Mem)

consumed in each approach for n=8,16 and 32 bits and for p =2 and 4 flits. Each position in

the buffer is n +2 bits wide.

2 flits 4 flits

LC Reg Mem LC Reg Mem

 8-bit 35 22 0 76 43 0

FF-based 16-bit 59 38 0 124 75 0

 32-bit 107 70 0 220 139 0

 8-bit 13 5 20 19 8 40

EAB-based 16-bit 13 5 36 19 8 72

 32-bit 13 5 68 19 8 136

Table 1 : Costs of buffers

2 flits 4 flits

LC Reg Mem LC Reg Mem

 8-bit 570 160 0 795 265 0

FF-based 16-bit 770 240 0 1115 425 0

 32-bit 1173 400 0 1830 745 0

 8-bit 460 75 100 486 90 200

EAB-based 16-bit 540 75 180 566 90 360

 32-bit 700 75 340 726 90 680

Table 2 : Costs of RASoC

29

Entities LC Reg Mem

IRS - Input Read Switch 1% 0% 0%

IC - Input Controller 8% 0% 0%

IB - Input Buffer 12% 44% 100%

IFC - Input Flow Controller 1% 0% 0%

OFC - Ouptu Flow Controller 0% 0% 0%

ORC - Output Rosk Switch 1% 0% 0%

ODS - Outpu Data Switch 49% 0% 0%

OC - Output Controller 28% 56% 0%

Table 3 : Costs of bottom-level entities

As a conclusion, RASoC allows for the automatic building of instances with different sizes.

The router has been used to enable testing of desing methodologies.

2.2.3 Æthereal Network on Chip

The Æthereal NoC was introduced by Researchers of the Philips Research Laboratories. The

tenet of this NoC is that guaranteed services (GSs) (such as uncorrupted, lossless, ordered

data delivery; guaranteed throughput and bounded latency) are essential for the efficient

construction of robust SoCs. One reason is that many IPs have inherent performance

requirements, such as minimum throughput (for real-time streaming data) or bounded

latency (for interrupts).

GSs require resource reservations for the worst case. To exploit the NoC capacity unused by

GS traffic, the Æthereal NoC also provides best-effort services (BESs). Furthermore the

Æthereal NoC uses contention-free routing or pipelined time-division multiplexed circuit

switching to avoid buffer overflow or dropping of data.

In the architecture proposed, a router with N inputs and N outputs uses a slot table to avoid

contention on a link, divide up bandwidth per link between connections and switch data to

the correct output. Every slot table T has S time slots (rows) and N router outputs

(columns). There is a logical notion of synchronicity: All routers in the network occupy the

same fixed-duration slot. In a slot s, a network node (that is a router or network interface)

can read and write at most one block of data per input and output ports, respectively. In the

next slot, (s+2) modulo S, the network node writes the read blocks to the appropriate output

ports. Blocks thus propagate in a store-and-forward fashion and cannot deadlock. The

http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.62.8878&rep=rep1&type=pdf

30

latency that a block incurs per router equals the duration of a slot and the slot reservations

guarantee bandwidth in multiples of block size per S slots.

 Figure 12 :Contention-free routing:

Network of three routers at slot s =2 with corresponding slot tables

The best-effort routing is a conventional wormhole-routing, input-queued router. Round-

robin arbitration of the switch occurs at the granularity of three words (a flit, or flow-control

unit). The capacity of the input queues is a router parameter. Bes packets use source routing.

The packet header contains the path from source to destination. Each router removes as

many bits from the path as necessary to determine to which output the packet must go.

Because of the absence of multiple buffer classes, BES packets can deadlock. We avoid

deadlock with appropriate routing strategies.

To conclude, the Ethereal NoC developed by Philips aims at achieving composability and

predictability in system design and eliminating uncertainties in interconnects, by providing

guaranteed throughput and latency services. It also provides run-time reconfiguration.

31

2.3 Proposed Solution

As we have seen above, there has been conducted extended research and experimentation

regarding irregular NoC architectures. Models have been proposed which improve various

aspects of performance and tools have been introduced which enable NoC development.

However, there is still need for new tools and new approaches which may contribute to our

understanding of NoC architectures and introduce innovative ideas.

Furthermore, the target set by the “Microprocessors Laboratory” of the Electrical and

Computer Engineering School at the National Technical University of Athens is the

development of a suite of tools for the support of the NoC design. The tool chain already

includes some high-level platforms, which are responsible for the simulation of the NoC

function, the topology optimization, the traffic profiling etc. Furthermore, a router

architecture has been developed by Konstantinos Tatas, a former member of the lab.

The aim of the current master thesis is the development of an XML-based tool for the

automatic generation of customized NoC architectures. The key feature of the tool is its

reliability and efficiency, which help the NoC designer avoid errors and shorten the

programming time.

Our first step is to extend and modify the router module architecture developed initially by

Konstantinos Tatas, so that we have a reusable and generic model.

The next step is the production of a Network on Chip architecture, which has as

components the aforementioned routers. The architecture is going to be generic as far as the

topology, the port number and the switch depth of each router, the routing algorithm/table

and the arbitration technique are concerned. These parameters are going to be integrated

either in a package file or in the top-entity.

Finally, a tool, which will enable the automatic generation of the VHDL code according to

XML input, is going to be developed.

32

33

Chapter 3:

General-Purpose platform

Abstract

In this chapter we explain the reusability concept, which characterizes our architecture.

Furthermore, we give the structural description of the router architecture, analyzing the

function of every single component.

34

3.1 Introduction

The first step for the development of our tool has to do with the VHDL code describing the

router. This code exists already but is not in the desirable and appropriate form. It is not

easily configurable, since it describes the architecture of a router with fixed port number,

fixed buffer size and the only option for routing is the xy routing. The processes have been

implemented for the above sizes and the dimensions of the vectors are fixed as well. As a

result the code has to become reusable so that we can change the value of various parameters

effectively and in a “centralized” way.

The second step is the generation of a network of routers, which will be generic in the

number and topology of routers. Furthermore, we will enrich the code, adding a test bench

for verification of the NoC function.

The final code will conform to the principles of reusability and thus will be easy and fast to

apply changes.

3.2 Reusability

The term reusability refers to the property that a segment of source code has and which

allows it to be used again with minor modifications in case we want to add new features and

functionalities.

It is a characteristic, which is often adopted in industry since it reduces development times,

eliminates bugs, enables the easier understanding of code and makes changes easier to apply.

As far as reusability of VHDL code is concerned, there has been extended study and books

about this topic.

The books “Circuit Design with VHDL” (by Volnei Pedroni) and “Reuse Methodology

Manual for System on Chip Designs” by (Keating, Bricaud) gave us all the necessary

information regarding reusability techniques and characteristics. They describe VHDL

structures and examples, in a way which supports reusability.

35

3.3 Router architecture

The VHDL code for the router architecture is structural. More particularly, it consists of a

top-entity (noc_switch) and its components, namely the receiver, the transmitter, the buffer,

the prioritizer and the switch matrix. In Figure 13 we can see the architecture of the router.

Direction0

Direction1

Direction2

Direction3

DATA_VALID_IN0

DATA_IN0[WORDLENGTH-1:0]

DATA_VALID_OUT0

DATA_OUT0[WORDLENGTH-1:0]

DATA_VALID_IN1

DATA_IN1[WORDLENGTH-1:0]

DATA_VALID_OUT1

DATA_OUT1[WORDLENGTH-1:0]

D
A

T
A

_
V

A
L
ID

_
IN

0

D
A

T
A

_
IN

0
[W

O
R

D
L
E

N
G

T
H

-1
:0

]

D
A

T
A

_
V

A
L
ID

_
O

U
T

0

D
A

T
A

_
O

U
T

0
[W

O
R

D
L
E

N
G

T
H

-1
:0

]

D
A

T
A

_
V

A
L
ID

_
IN

2

D
A

T
A

_
IN

2
[W

O
R

D
L
E

N
G

T
H

-1
:0

]

D
A

T
A

_
V

A
L
ID

_
O

U
T

2

D
A

T
A

_
O

U
T

2
[W

O
R

D
L
E

N
G

T
H

-1
:0

]

CLK

RST_N

Bu

ffer

Bu

ffer

Bu

ffer

Bu

ffer

Bu

ffer

Bu

ffer

B
u
f

fe
r

B
u

ff
e
r

B
u

ff
e
r

B
u

ffe
r

B
u

ffe
r

B
u

ffe
r

SWITCH

MATRIX
CTRL

LOGIC

Figure 13 : Structural router architecture

We are going to briefly describe the function of each of these components and how they

communicate with each other.

36

3.3.1 Receiver

The receiver is responsible for polling the respective data valid signal to detect incoming data

from each port, selecting the output port for each packet according to its destination, and

then storing it to the appropriate buffer. It is composed of a state machine and the output

selection logic.

The receiver state machine has the following states:

 IDLE: The state machine is constantly polling the corresponding data valid signal.

When the signal is asserted the state machine goes to the dir_check state. Idle is the

default state (after reset, and for self-correction) of the state machine.

 DIR_SEL: In this state, the state machine enables the destination port select logic

and goes to the writing state.

 RX: The state machine enables the write (RX) side of the Buffer FIFO increments

the corresponding Buffer FIFO counter, writing input packet to the appropriate

buffer. When the counter has been incremented PACKET_SIZE/WORDLENGTH

times, the whole packet has been stored, and the state machine returns to the idle

state.

The RX control logic diagram is shown in Fig, while a RX timing diagram is shown in

Figure 14.

Figure 14: Receiver Control Logic State Diagram

37

 1 2 3 4 5 6 7 8 9 10

IDLE DIR_CHECK RX

0 21 N N+1

CLK

STATE_RX

DATA_VALID_IN

COUNTER_RX

EN/WREN

DATA_FIFO_IN

DATA_IN

Figure 15: Receiver timing diagram

3.3.2 Output Port Selector

The output port selection logic is responsible for reading the destination of the incoming

packet and, taking into account the switch address, forward it to the appropriate buffer by

setting the switch matrix decode signal appropriately. It can be implemented either by using a

ROM LUT to store the decode signals of the output port depending on the destination. The

destination if the pair (x,y), which describes the location of the destination address.

The default routing algorithm is the XY but later on we introduced the additional feature of

the user-defined routing table.

The routing table is a matrix whose number of elements is equal to the number of the

routers on the network. For example a 2x2 NoC has a 4 element matrix. Each element of

this matrix is a submatrix with another 4 elements, each of which determines the output port

of the data, in case that the destination is the correspondent switch.

For example for the NoC in Figure 20, if the data has entered switch 2 and it has destination

the switch 0, it will use the output port 0.

CONSTANT lut_array : rom_lut_type_array :=(

((4,1),(1,1)),((3,2),(4,2)), ((0,4),(1,1)), ((4,3),(0,4)));

38

3.3.3 Buffer

The buffer is a FIFO where a maximum number of words can be stored. This size is defined

as switch_depth in the code. The location of the buffer is in the output of each port.

The buffer will be implemented as a dual-port RAM, and for FPGA rapid prototyping, an

appropriate number of embedded BRAMS will be used. The FIFO counters and enable

signals in the write (input) side are controlled by the Buffer Control Logic, while the

corresponding signals of the read (output) side are controlled by the Arbitration Logic.

3.3.4 Transmitter

The transmitter is responsible for the transmission of the packets. It communicates with the

receiver (in order to be notified for the arrival of a new packet and update the fifo counter),

the prioritizer (in order to get the permission for the transmission when more than one

packets want to use an output port), the buffer(in order to send the enable signals for the

reading of the data).

PNRG BLOCK

PRIORITIZER 0

TX FSM 0

PRIORITIZER 1

TX FSM 1

PRIORITIZER 2

TX FSM 2

PRIORITIZER 3

TX FSM 3

BUF

FER

BUF

FER

BUF

FER

DATA_OUT_0[WORDLENGTH:0]

B
U

F
FE

R
B

U
F

FE
R

B
U

F
FE

R

DATA_OUT_1

[WORDLENGTH:0]

BUF

FER

BUF

FER

BUF

FER

DATA_OUT_2[WORDLENGTH:0]

B
U

F

FE
R

B
U

F

FE
R

B
U

F

FE
R

D
A

TA
_O

U
T_

3
[W

O
R

D
LE

N
G

TH
:0

]

Figure 16: TX Logic block diagram

39

The transmitter state machine has the following states:

 IDLE: The state machine is constantly polling the FIFO buffer counters. When the

write counter value is greater than the read counter value, a packet is present in the

buffer, waiting to be sent. When such a condition is detected the state machine goes

to the PR_CECK. IDLE is the default state (after reset, and for self-correction) of

the state machine.

 PR_CHECK: In this state, the state machine checks if there are other packets

pending in the same destination port and resolves their priority according to the

existing priority scheme. If the output is granted, it goes to the TX state, otherwise it

returns to the idle state.

 TX: The state machine enables the read (TX) side of the buffer, increments the

corresponding read Buffer FIFO counter, reading the input packet out of the

corresponding buffer, while enabling the appropriate 4-to-1 MUX and asserting the

corresponding DATA_VALID_OUT signal, in order to send the packet out of the

selected port. When the counter has been incremented

PACKET_SIZE/WORDLENGTH times, the packet transmission is complete, and

the state machine returns to the idle state, after disserting the appropriate signals.

IDLE

TX

FIFO_READ_ COUNTER /=

FIFO_WRITE_COUNTERFIFO_ COUNTER+=

PACKET_SIZE/ WORDLENGTH

PR_CHECK

PR_GRANTED

PR_NOT_GRANTED

Figure 17: Transmitter Control Logic State Diagram

40

Figure 18: Transmitter timing diagram

3.3.5 Prioritizer

The prioritizer is the entity which accounts for the arbitration policy. More particularly, it is

responsible for scheduling in the case of packets requesting to exit to the same

direction(output port). Multicasting is not supported. Each packet can only exit towards a

single direction, except its own (cannot return).

There are two different arbitration policies implemented in the prioritizer and it is up to the

user which one will be selected.

 Fixed priority: Ideally, the fixed priority should be programmable, using registers. A

default output port priority scheme from highest to lowest could be: Port0, Port1,

Port2, and Port3. It is easy to implement, but could cause starvation of low priority

ports if there is a lot of traffic on high priority ports.

 Round-robin priority: The packets are scheduled in a round-robin manner. For fixed-

sized packets, this scheduling scheme results in virtually no congestion. It is

implemented using a four bit ring counter, producing a single, circularly shifted,

enable signal.

3.3.6 Router communication schema

In the following picture, we can see a rough description of the router communication

schema.

41

Figure 19: Communication schema of noc_switch

42

3.4 NoC architecture

The NoC top entity contains one or more noc_switch components and their links(topology).

In order to have different switches we had to integrate all the parameters into arrays, which

are assigned in a reusable package file. Furthermore, we developed a test bench, which is

configurable as well.

3.4.1 Top-entity

Underneath, we present the code of the top entity noc. The signal assignments which define

the links between the switches, as well as the traffic refer only to this test case and are fully

configurable.

3.4.2 Package

The package includes the definitions of all configurable and standard data and data

structures. It also contains the function LUT, which has two possible forms, one of which is

displayed here.

3.4.3 Testbench

The testbench is a fully configurable part of the code. It includes all the signal assignments,

which are responsible for the traffic in the network. We are actually simulating the traffic that

the IP cores would produce if they were integrated in the design. As a result we have the

chance to quickly and reliably test the network behavior.

Although there are many sophisticated tools, which offer high-level simulation (e.g Noxim),

the existence of a testbench is a necessary step, in order to verify the functionality of the

code.

A testbench can also be useful in case that new features will be added in the future.

The code displayed underneath is the testbench of a specific case. The testbench is a

configurable part of the code and is written according to the noc specifications and the

application traffic desirable.

43

3.4 Testcase

We are going generate a NoC like the one of Figure 20 .The links are the ones displayed in

the picture and the XY routing algorithm is deployed for the servicing of the transmission

requests.

0

2

13

4

0

0 1

2 3

11

1

3 3

3

0

0

2

22

4

4

4

Figure 20 : 2x2 NoC

The function for the implementation of the XY routing is is the following and is located in

the noc_pkg.vhd file :

function LUT (X_S, Y_S, p : integer) return rom_lut_type is --the port

is not taken into consideration in the implementation of the function

variable x: integer range 0 to pe_num_x-1; --switch x address

variable y: integer range 0 to pe_num_y-1; --switch y address

variable port_num: integer range 0 to max_ports-1; --port number

variable rom_lut: rom_lut_type;

begin

port_num := p;

44

for i in 0 to pe_num_x-1 loop --for every pe in the x dimension

x := i;

for j in 0 to pe_num_y-1 loop --for every pe in the y

dimension

y := j;

if X_S > i then

if port_num = 3 then --bouncing back packet

rom_lut(x, y) := 0; --exit to the y

direction

else

rom_lut(x,y) := 3; --exit left port

end if;

elsif X_S < i then

if port_num = 1 then --bouncing back packet

rom_lut(x,y) := 2; --exit to the y

direction

else

rom_lut(x,y) := 1; --exit right port

end if;

else

if Y_S > j then

if port_num = 0 then --bouncingback packet

rom_lut(x,y) := 1; --exit to the x

direction

else

rom_lut(x,y) := 0; --exit upwards

port

end if;

elsif Y_S < j then

if port_num = 2 then --bouncingback packet

rom_lut(x,y) := 3; --exit to the y

direction

else

rom_lut(x,y) := 2; --exit downwards

port

end if;

else

if port_num = 4 then --bouncingback packet

rom_lut(x,y) := 0; --exit to the y

direction

else

rom_lut(x,y) := 4; --exit to pe

end if;

end if;

end if;

end loop;

end loop;

return rom_lut;

end function;

45

Figure 21: Waveform of the testcase (We send traffic requests from router 0 to router 3 and from router 0 to router 2).

46

47

Chapter 4:

 Design Flow and Automatic

Generation Tool “NoCGen”

Abstract

In this chapter, we describe the design flow for the noc platform generation. Furthermore,

we explain in detail the configuration files, which are taken as input by the generation tool

“NocGen”.

48

4.1 Introduction

The design flow, which is depicted in Fig 20, includes the steps required in order to build an

irregular architecture.

The first phase is the application mapping and the traffic profiling. Next, we need a topology

targeted at the application and its communication needs. The topology determines how the

cores are going to be distributed on the chip and interconnected with each other.

Furthermore, the designer is going to give various directions, as far as the buffer size and

number of ports are concerned.

Topology

Designer Desicions

Application Mapping/Traffic Profiling

netlist.xml

elements.xml

traffic.xml

XML Parser

(NoCGen)

noc_pkg.vhd

noc.vhd

noc_tb.vhd

Figure 22 : Design Flow

All the above features are incorporated into three configuration files written in xml.

The first one named “elements.xml“ contains information about the buffer sizes and number

of output ports of each of the routers. These characteristics are determined by the designer,

who has to take into consideration the traffic profile of the application. It is a decision, which

will propably be reached after system-level exploration as well and consideration of the

feedback coming from the network function.

The file “netlist.xml” contains information about the topology of the design, namely the way

the cores are connected with each other. In the current thesis, we used the experimental

49

results of the work of Vourkas Ioannis. The tool developed during his thesis gives optimized

topologies for the execution of various hardware applications.

The file “traffic.xml” contains some samples of the traffic generated during the execution of

the above applications.

 “ NocGen” is an XML-based tool, which generates automatically a Network on Chip with

the properties described in the above mentioned configuration files.It parses the

aforementioned xml files and writes the vhdl file noc.vhd, noc_tb.vhd, noc_pkg.vhd.

These vhd files have some standard and some reconfigurable parts. The tool writes the

reconfigurable part, which has to do with the topology, the traffic and some of the sizes of

the router according to the specifications.

4.2 Configuration Files

Underneath, we present the XML schemas and a short example for each of them.

4.2.1 Router characteristics

The file named “elements.xml” contains the (x,y) coordinates of each router, as well as the

switch depth and the number of ports. The coordinates are of use for the process of routing

and the later process of floorplanning.

The XML schema is the following:

<xs:schema xmlns:xs="http://www.w3.org/2001/XMLSchema">

The network is a sequence of the elements “switch”

<xs:element name="ips">

<xs:complexType>

<xs:sequence>

<xs:element ref="switch" maxOccurs="unbounded" />

</xs:sequence>

</xs:complexType>

</xs:element>

Each “switch” element consists of the element “switchPorts” and the

element “switchDepth”. It has as attributes the x, y coordinates.

50

<xs:element name="switch">

 <xs:complexType>

<xs:sequence>

 <xs:element name="switchPorts" type ="xs:nonNegativeInteger" />

 <xs:element name="switchDepth" type ="xs:nonNegativeInteger"/>

 </xs:sequence>

 <xs:attribute name="x" type="xs:nonNegativeInteger" use="required"

/>

 <xs:attribute name="y" type="xs:nonNegativeInteger" use="required"

/>

 </xs:complexType>

</xs:element>

An xml file which corresponds to this schema is :

<ips>

<switch x = "0" y = "0" >

<switchPorts>5</switchPorts>

<switchDepth>3</switchDepth>

</switch>

<switch x = "1" y = "0" >

<switchPorts>5</switchPorts>

<switchDepth>3</switchDepth>

</switch>

<switch x = "0" y = "1" >

<switchPorts>5</switchPorts>

<switchDepth>3</switchDepth>

</switch>

<switch x = "1" y = "1" >

<switchPorts>5</switchPorts>

<switchDepth>3</switchDepth>

</switch>

</ips>

The above file describes a network of four routers, which all have 5 switch ports and a

switch depth of 3 words.

4.2.2 Netlist

The file named “netlist.xml” includes the connections/links between the routers. Every port

can be connected with any another and the direction of the dataflow can be defined too.

51

The XML schema is the following

<xs:schema xmlns:xs="http://www.w3.org/2001/XMLSchema">

The netlist contains a sequence of the elements “link”

<xs:element name="netlist">

<xs:complexType>

<xs:sequence>

<xs:element ref="link" maxOccurs="unbounded" />

</xs:sequence>

</xs:complexType>

</xs:element>

Each “link” has a sourceRouter, a source Port, a destinationRouter and

a destinationPort. The order is important since it determines the

direction of the link.

<xs:element name="link">

<xs:complexType>

<xs:sequence>

<xs:element ref="sourceRouter" />

<xs:element ref="sourcePort" />

<xs:element ref="destinationRouter" />

<xs:element ref="destinationPort" />

</xs:sequence>

 <xs:attribute name="ID" type="xs:ID" use="required" />

</xs:complexType>

</xs:element>

<xs:elementname="destinationPort"type="xs:nonNegativeInteger"/>

<xs:element name="destinationRouter" type="xs:nonNegativeInteger"/>

<xs:element name="sourcePort" type="xs:nonNegativeInteger"/>

<xs:element name="sourceRouter" type="xs:nonNegativeInteger"/>

</xs:schema>

52

An xml document for the above schema is the following:

<netlist>

<link ID="link1">

<sourceRouter> 0 </sourceRouter>

<sourcePort> 1 </sourcePort>

<destinationRouter> 1 </destinationRouter>

<destinationPort> 3 </destinationPort>

</link>

<link ID="link2">

<sourceRouter> 1 </sourceRouter>

<sourcePort> 2 </sourcePort>

<destinationRouter> 3 </destinationRouter>

<destinationPort> 0 </destinationPort>

</link>

<link ID="link3">

<sourceRouter> 0 </sourceRouter>

<sourcePort> 2 </sourcePort>

<destinationRouter> 2 </destinationRouter>

<destinationPort> 0 </destinationPort>

</link>

</netlist>

The above xml document describes the following topology.

2 3

0 1

Figure 23 : The topology of the NoC described in the xml document

53

4.2.3 Traffic

In the file named “traffic.xml” , the data exchange between the cores is described.

 Every piece of data, which is produced by a core, proceeds to the router attached to the core

and its “aim” is to reach the destination with coordinates (x,y) . This destination is defined by

the first digits of the data packet.

For example, in the case that we have a 4*4 NoC (pe_num_x =2, pe_num_y =2) :

the first 2 (log2=2) binary digits of the packet will denote the x coordinate and the next 2

(log4=2) will denote the y coordinate. The xml data will include the source of the data

packet, the data packet itself (whose header is the destination), the clock period when the

transmission begins and the number of clock cycles while it is active.

We have to give the different transmissions, which come from the same IP core, one after

the other with ascending time order. For example if we have continuous traffic from a

network port but with different destinations, we should express like this:

<transmission ID="trans2">

<inputRouter>2 </inputRouter>

<inputPort> 4 </inputPort>

<transBegin>35</transBegin>

<transDuration>2</transDuration>

<dataSequence>

<data>0001001101110100</data>

</dataSequence>

</transmission>

<transmission ID="trans3">

<inputRouter>2 </inputRouter>

<inputPort> 4 </inputPort>

<transBegin>38</transBegin>

<transDuration>2</transDuration>

<dataSequence>

<data>0101001101110100</data>

<data>0111001101110100</data>

</dataSequence>

</transmission>

Furthermore, each transmission has to hold at least 2 clock cycles, even if the packet

contains only one flit (as in the case of the transmission trans1e above)

54

The XML schema is the following:

<xs:schema xmlns:xs="http://www.w3.org/2001/XMLSchema">

<xs:element name="data" type="xs:string"/>

</xs:schema>

The traffic.xml consists of all the transmissions which take place in the

network.

<xs:element name="traffic">

<xs:complexType>

<xs:sequence>

<xs:element ref="transmission" maxOccurs="unbounded" />

</xs:sequence>

</xs:complexType>

</xs:element>

Each transmission is described by the inputPort and inputRouter,the

trasnBegin, the transBegin,the transDuration and the dataSequence.

<xs:element name="transmission">

<xs:complexType>

<xs:sequence>

<xs:element ref="inputRouter" />

<xs:element ref="inputPort" />

<xs:element ref="transBegin"/>

<xs:element ref="transDuration"/>

<xs:element ref="dataSequence"/>

</xs:sequence>

<xs:attribute name="ID" type="xs:ID" use="required" />

</xs:complexType>

</xs:element>

The inputPort and inputRouter denote the input point of the traffic in the

network. Traffic is initially generated by cores attached to port routers.

<xs:element name="inputPort" type="xs:nonNegativeInteger"/>

<xs:element name="inputRouter" type="xs:nonNegativeInteger"/>

The transBegin denotes the period when the transmission started and the

startDuration how long it lasted.

<xs:element name="transBegin" type="xs:nonNegativeInteger"/>

<xs:element name="transDuration" type="xs:nonNegativeInteger"/>

The datasequence contains the flits of data to be transmitted.

<xs:element name="dataSequence">

<xs:complexType>

<xs:sequence>

<xs:element ref="data" maxOccurs="unbounded" />

</xs:sequence>

</xs:complexType>

</xs:element>

55

An xml document for the above schema is the following:

<traffic>

<transmission ID="trans0">

<inputRouter> 0 </inputRouter>

<inputPort> 3 </inputPort>

<transBegin>20</transBegin>

<transDuration>3</transDuration>

<dataSequence>

<data>0111001101110100</data>

<data>1100000000000000</data>

<data>1000000000100000</data>

</dataSequence>

</transmission>

<transmission ID="trans1">

<inputRouter> 0 </inputRouter>

<inputPort> 3 </inputPort>

<transBegin>29</transBegin>

<transDuration>2</transDuration>

<dataSequence>

<data>1110000000000000</data>

</dataSequence>

</transmission>

</traffic>

4.3 Technical Details

The tool for the automatic generation of the vhdl code is implemented in C++. In order to

parse the XML files, we used the library xerces-c-3.0.1. Xerces is a validating XML parser

written in a portable subset of C++. It gives the ability to read and write XML data. A shared

library is provided for parsing, generating, manipulating, and validating XML documents

using the DOM, SAX, and SAX2 APIs. Xerces-C++ is faithful to the XML 1.0

recommendation and many associated standards. The parser provides high performance,

modularity, and scalability.

The code of the tool can be found in Appendix.

http://www.w3.org/XML/
http://www.w3.org/TR/REC-xml

56

57

Chapter 5:

Output Samples and Measurements

Abstract

In this chapter we study the efficiency of the NoCs-based interconnection architecture

regarding four multimedia applications. We take measurements of the power dissipated, the

maximum possible frequency, the slices and utilization for each of the above

implementations.

58

5.1 Introduction

We are going to implement the network communication system of four popular hardware

applications. The applications are are (a) an MPEG-4 hardware encoder/decoder, (b) a video

object plane decoder (VOPD), (c) a multimedia system (MMS) and (d) a Multi-Window

Display (MWD).

The number of routers is clearly defined by the application. The topology for every network

will be irregular and the number of ports will be 3 or 5.

The traffic trace as well as the position of every router on chip is derived from the simulation

results of previous Microlab thesis , whose task was the system-level exploration of NoCs.

The buffer depth of each router will be defined according to the sample traffic needs but we

are going to investigate the changes in the overall design performance in case of its increase.

It is to be expected, that increase of buffer depth leads to growth of energy on the chip.

Furthermore, we are going to take measurements of the power dissipated, the maximum

possible frequency, the slices and utilization for each of the above implementations for

different buffer sizes.

More particularly we are going to present the slices/slice registers/4 Input LUTs utilization

for the 3 different buffer sizes in diagrams. Furthermore, we are interested in the maximum

frequency and total power dissipated for the 3 different buffer sizes.

5.2 Experimental Setup

Product Version ISE 12.1

Target Device Virtex 4-XC4VLX15

Temperature 50, 65, 80 (°C)

Number of Ports per router 5

Links Bidirectional

Buffer size 3, 6, 9

Topology Mesh, Irregular

Routing algorithm XY , routing table

Clock frequency 100 MHz

59

5.1.1 MPEG-4

MPEG-4 is a broadly used protocol for audio and video encoding. A hardware encoder and

decoder consist of many components, so a NoC approach is suitable. The tested MPEG-4

includes various processing elements, such as a video unit, an audio unit, a risc processor, a

med cpu, a binary alpha block and three SRAMS. The total number of cores needed for the

application are 12, with an equal number of routers attached to them.

SRAM2 UP SAMP AU

RISC SDRAM VU

BAB RAST SRAM1

IDCT MED CPU ADSP

Router1

Router7

Router5

Router8 Router9

Router4

Router11Router10 Router12

Router6

Router3Router2

Figure 24: Block diagram of MPEG-4(12 cores)

60

Figure 25 : MPEG-4 Area utilization

As we can see the resources of the chip required increase as the buffer size increases. In the case

of buffer size 6 and 9 a significant percentage of the chip slices are used(almost 90%). A larger

buffer size would take up all the chip resources.

Figure 26 : MPEG-4 Maximum Frequency

The maximum frequency at which the chip can function is 276 MHz in case of buffer size 9. This

frequency is well greater than our clock frequency (100 MHz). Furthermore, we notice that the

61

ratio in performance degradation in term of maximum operation frequency is greater from

buffer size 3 to 6 than buffer size 6 to 9. This is due to the saturation, which takes place when

the buffer size is 6.

Figure 27 : MPEG-4 Total Power Dissipation

Figure 28 : MPEG-4 Leakage Power Dissipation

The total power dissipation increases as the buffer size increases. Furthermore, as expected

increase of chip temperature influences significantly the power. For this application leakage

62

power is 0.168 at 50°C, 0.191 at 65°C, 0.219 at 80°C independent of the buffer size. The leakage

power for given temperature is constant among the different buffer sizes, because it depends

mainly on temperature.

5.1.2 VOPD

Video object plane decoder is another digital signal processing application that has been

proposed for use on NoC and studied before (MUR, 2005). VOPD offers quality video

transition with decent bandwidth performance. The tested VOPD decoder includes twelve

processing elements, such as two length decoders, an AC-DC prediction, an ARM processor,

two memory components and a VOP reconstructor. The cores needed for the application

are 12 and so many are the routers as well.

UP SAMP
VOPD

RECONST
ARM

IDCT
VOPD

MEMORY

RUN

LENGTH

DECODER

iQUANT
AC-DC

PREDICTION

INVERSE

SCAN

STRIPE

MEMORY
PADDING VAR LENGTH

Router1

Router7

Router5

Router8 Router9

Router4

Router11Router10 Router12

Router6

Router3Router2

Figure 29: Block diagram of VOPD (12 cores)

63

Area utilization, frequency and power dissipation are depicted in upcoming figures.

Figure 30 : VOPD Area utilization

As we can see the resources of the chip required increase as the buffer size increases. In the case

of buffer size 6 and 9 a significant percentage of the chip slices are used(almost 90%). A larger

buffer size would take up all the chip resources.

Figure 31 : VOPD Maximum Frequency

64

The maximum frequency at which the chip can function is 260 MHz in case of buffer size 9. This

frequency is well greater than our clock frequency (100 MHz). Furthermore, we notice that the

ratio in performance degradation in term of maximum operation frequency is greater from

buffer size 3 to 6 than buffer size 6 to 9. This is due to the saturation, which takes place when

the buffer size is 6.

Figure 32: VOPD Total Power Dissipation

Figure 33: VOPD Leakage Power Dissipation

65

The total power dissipation increases as the buffer size increases. Furthermore, as expected

increase of chip temperature influences significantly the power. For this application leakage

power is again 0.168 at 50°C, 0.191 at 65°C, 0.219 at 80°C independent of the buffer size. The

leakage power for given temperature is constant among the different buffer sizes, because it

depends mainly on temperature.

5.1.3 MWD

Multi window display is another digital signal processing application (TAM, 2005), which is also

suitable for NoC architectures and also uses twelve processing elements. The cores needed for

the application are 12 and so many are the routers as well.

IN HS NR

JUG1 VS MEM2

MEM§ JUG2 HVS

SE BLEND MEM1

Router1

Router7

Router5

Router8 Router9

Router4

Router11Router10 Router12

Router6

Router3Router2

Figure 34: Block diagram of MWD(12 cores)

66

Figure 35 : MWD Area utilization

As we can see the resources of the chip required increase as the buffer size increases. In the case

of buffer size 6 and 9 a significant percentage of the chip slices are used(almost 86%). A larger

buffer size would take up all the chip resources.

Figure 36 : MWD Maximum Frequency

67

The maximum frequency at which the chip can function is 260 MHz in case of buffer size 9. This

frequency is well greater than our clock frequency (100 MHz). Furthermore, we notice that the

ratio in performance degradation in term of maximum operation frequency is greater from

buffer size 3 to 6 than buffer size 6 to 9. This is due to the saturation, which takes place when

the buffer size is 6.

Figure 37 : MWD Total Power Dissipation

Figure 38 : MWD Leakage Power Dissipation

68

The total power dissipation increases as the buffer size increases. Furthermore, as expected

increase of chip temperature influences significantly the power. For this application leakage

power is again 0.168 at 50°C, 0.191 at 65°C, 0.219 at 80°C independent of the buffer size. The

leakage power for given temperature is constant among the different buffer sizes, because it

depends mainly on temperature.

5.1.4 MMS

In this section a multimedia system (MMS) is tested. The system contains 25 cores, including

several memories and DSP processors. In this case, we will use 3 routers, since the strategy

according to which a router attached to each core requires far too many resources. For the

clustering of routers, we wanted to achieve traffic minimization. The existence of

communication links between routers ensures the lack of deadlocks and livelocks.

Furthermore, in this application we are going to use a user-defined look up table for the

efficient routing of the data. The xy routing has no sense here since we do not have a classic

mesh structure.

The diagram with the area utilization does not present percentage values as the above ones,

nut the actual unit numbers. The percentage values would not be enlightening, since the chip

utilization of this design does not exceed 5-6%.

69

DSP7
DSP10

MEM3

DSP4

DSP5

DESP8

CPU3 DSP9

ASIC5
DSP1

DSP2
ASIC3

CPU2

MEM2

DSP6 DSP3 ASIC2

ASIC1

CPU1

MEM1
Router 2

Router 3

Router 1

MEM4

ASIC4 DSP12 ASIC6 MEM4

Figure 39 : Block diagram of MMS

70

Figure 40 : MMS Area utilization

As we can see the resources of the chip required increase as the buffer size increases. But even

in the case of buffer 9, only a small percentage of the chip slices are used(about 6%). A larger

buffer size could be used in this case, if the traffic is to be serviced more efficiently.

Figure 41 : MMS Maximum Frequency

The maximum frequency at which the chip can function is 312 MHz in case of buffer size 9. This

frequency is well greater than our clock frequency (100 MHz).

71

Figure 42: MMS Total Power Dissipation

Figure 43: MMS Lekage Power Dissipation

The total power dissipation increases as the buffer size increases. Furthermore, as expected

increase of chip temperature influences significantly the power. For this application leakage

power is 0.165 at 50°C, 0.187 at 65°C, 0.216 at 80°C independent of the buffer size.Although the

design is significantly smaller than the previous ones, the leakage values are near the previous

ones.

72

5.2 Conclusions

As we can see, for all the applications, the utilization of all the resources on the chip increases as

the buffer size increases. This behavior is expected, since the buffer component is responsible

for a large proportion of the chip resources.

The power dissipated increases too, as the buffer size increases. This can be explained by the

fact that the additional buffer space needs more chip area, which increases the overall power

(dynamic and through leakage) produced.

As the buffer size increases, the maximum frequency at which the design can function

decreases. That happens because a design with many slices requires more interconnects, which

results in delays and need for a slower clock.

What we have noticed is that all the 3 applications mwd, vopd and mpeg, which consist of 12

cores have similar values as far as resources, power and frequency is concerned. That is

expected since the design has similar complexity (equal number of routers). On the other side,

mms has one fourth of the routers of the other designs, hence the corresponding values are

significantly smaller.

73

Chapter 6:

Summary and Future Work

Abstract

In this chapter we present the summary of our work and suggest extensions.

74

6.1 Summary

In the current thesis we studied irregular NoC architectures, created a generic NoC platform

and we developed a tool for their automatic generation.

The tool enables the easy and fault-free generation of the code of a NoC, which has the

characteristics that the user desires. The user has only to write the requirements in some pre-

defined xml files.

After the development of the tool, we had the chance to test various NoCs which were

targeted for some common hardware applications. We thus examined our NoC architecture

from the area, timing and power scope. The results showed the needs of each design, and

give the designer a helpful first evaluation of the application requirements.

Furthermore, the tool along with the ones developed by the Microlab laboratory offer the

designer the chance to explore the design communication schema and adopt its architectures

to the application needs and constraints.

Finally, NoCGen contributes to the fast prototyping of NoC architectures, giving the

possibility for efficient generation and debugging of NoCs.

6.2 Future work

We are going to suggest here some extensions of the work done during the current thesis.

6.2.1 Additional Functionalities

The architecture itself can be improved and enriched with additional functionalities. The

code has been developed according to the principles of reusability with the aim to add

functionalities in the future without having to perform extensive modifications.

Keeping the existing form of inputs and outputs, the processes may be “refined” and more

sophisticated techniques for routing, buffering, arbitration and flow control could be

adopted. Moreover, techniques for power-aware design from the literature could be used.

The features integrated depend on the decisions of each designer.

75

6.2.2 Floorplanning

Each router has a unique “ID” on the chip – its coordinates. If the designer uses advanced

tools for the efficient placement of the routers on the chip, this would have a significant

impact on the power dissipation and interconnect delays -two topics, which are crucial for

every chip. As a result, effective floorplanning will be a key in the NoC development.

76

77

References

[1] Outstanding Research Problems in NoC Design : System, Microarchitecture, and Circuit

Perspectives (Marculescu et al)

[2] A Survey of Research and Practices of Network-on-Chip (Bjerregaard et al)

[3] A Reconfigurable Crossbar Switch with Adaptive Bandwidth Control for Networks-on-

Chip (Kim et al)

[4] A Generic and Extensible Spidergon NoC (Zitouni et al)

[5] RASoC :A Router Soft-Core for Network-on-Chip (Zeferino et al)

[6] Power Consumption and Performance Analysis of 3D NoCs (Sharifi et al)

[7] High-Speed Buffered Crossbar Switch Design Using Virtex-EM Devices (Singhal et al)

[8] Roung-robin Arbiter Design and Generation (Shin et al)

[9] Trade-offs in the design of a router with both guaranteed and best-effort services for

networks on chip (Rijpkema et al)

[10] Low-Latency Virtual-Channel Routers for On-Chip Networks (Mullins et al)

[11] Æthereal Network on Chip:Concepts, Architectures,and Implementations (Goosens et

al)

[12] SPIN: a Scalable, Packet Switched, On-chip Micro-network (Adriahantenaina et al)

[13] Flit-Reservation Flow Control (Peh et al)

[14] Power-driven Design of Router Microarchitectures in On-chip Networks (Hangsheng et

al)

[15] Trade-Offs in the Configuration of aNetwork on Chip for Multiple Use-Cases

(Hansson)

[16] Low-Power Network-on-Chip for High-Performance SoC Design (Yoo et al)

[17] Circuit Design with VHDL” (by Volnei Pedroni)

[18] “Reuse Methodology Manual for System on Chip Designs” (by Keating, Bricaud)

78

79

Appendix

Tool Code

noc_pkg_gen.hpp

#ifndef XML_PARSER_HPP

#define XML_PARSER_HPP

/**

* @file

* Class "GetConfig" provides the functions to read the XML data.

* @version 1.0

*/

#include <xercesc/dom/DOM.hpp>

#include <xercesc/dom/DOMDocument.hpp>

#include <xercesc/dom/DOMDocumentType.hpp>

#include <xercesc/dom/DOMElement.hpp>

#include <xercesc/dom/DOMImplementation.hpp>

#include <xercesc/dom/DOMImplementationLS.hpp>

#include <xercesc/dom/DOMNodeIterator.hpp>

#include <xercesc/dom/DOMNodeList.hpp>

#include <xercesc/dom/DOMText.hpp>

#include <xercesc/parsers/XercesDOMParser.hpp>

#include <xercesc/util/XMLUni.hpp>

#include <string>

#include <stdexcept>

#include <algorithm>

#include <math.h>

#include <fstream>

const int MAX_PENUM = 50;

const int MAX_PORTS = 10;

// Error codes

enum {

ERROR_ARGS = 1,

ERROR_XERCES_INIT,

ERROR_PARSE,

80

ERROR_EMPTY_DOCUMENT

};

class GetConfig

{

public:

//constructor

GetConfig();

//destructor

~GetConfig();

//functions

void readConfigFile(std::string&) throw(std::runtime_error);

void calculate();

void print();

int max(int array[]);

void binary(int number);

//variables

int x[MAX_PENUM],y[MAX_PENUM];

int switchPorts[MAX_PENUM];

int switchDepth[MAX_PENUM];

int peNum;

int peNumx;

int peNumy;

int maxPorts;

int maxDepth;

char binvalue[MAX_PORTS];//it is log2(max_ports)

int allbutiarray[MAX_PORTS][MAX_PORTS-1];

int shift_array[MAX_PORTS-1][MAX_PORTS-1];

private:

xercesc::XercesDOMParser *m_ConfigFileParser;

char* m_x;

char* m_y;

char* m_switchPorts;

char* m_switchDepth;

// Internal class use only. Hold Xerces data in UTF-16 SMLCh type.

XMLCh* TAG_switch;

XMLCh* TAG_switchPorts;

XMLCh* TAG_switchDepth;

XMLCh* ATTR_x;

XMLCh* ATTR_y;

};

81

#endif

noc_pkg_gen.cpp

#include <string>

#include <iostream>

#include <sstream>

#include <stdexcept>

#include <list>

#include <sys/types.h>

#include <sys/stat.h>

#include <unistd.h>

#include <errno.h>

#include "noc_pkg_gen.hpp"

using namespace xercesc;

using namespace std;

/**

* Constructor initializes xerces-C libraries.

* The XML tags and attributes which we seek are defined.

* The xerces-C DOM parser infrastructure is initialized.

*/

GetConfig::GetConfig()

{

try

{

XMLPlatformUtils::Initialize(); // Initialize Xerces infrastructure

}

catch(XMLException& e)

{

char* message = XMLString::transcode(e.getMessage());

cerr << "XML toolkit initialization error: " << message << endl;

XMLString::release(&message);

// throw exception here to return ERROR_XERCES_INIT

}

// Tags and attributes used in XML file.

// Can't call transcode till after Xerces Initialize()

TAG_switch = XMLString::transcode("switch");

TAG_switchPorts= XMLString::transcode("switchPorts");

82

TAG_switchDepth= XMLString::transcode("switchDepth");

ATTR_x = XMLString::transcode("x");

ATTR_y = XMLString::transcode("y");

m_ConfigFileParser = new XercesDOMParser;

}

/**

* Class destructor frees memory used to hold the XML tag and

* attribute definitions. It als terminates use of the xerces-C

* framework.

*/

GetConfig::~GetConfig()

{

// Free memory

delete m_ConfigFileParser;

if(m_x) XMLString::release(&m_x);

if(m_y) XMLString::release(&m_y);

if(m_y) XMLString::release(&m_switchPorts);

if(m_y) XMLString::release(&m_switchDepth);

try

{

XMLString::release(&TAG_switch);

XMLString::release(&TAG_switchPorts);

XMLString::release(&TAG_switchDepth);

XMLString::release(&ATTR_x);

XMLString::release(&ATTR_y);

}

catch(...)

{

cerr << "Unknown exception encountered in TagNamesdtor" << endl;

}

// Terminate Xerces

try

{

XMLPlatformUtils::Terminate(); // Terminate after release of memory

}

catch(xercesc::XMLException& e)

{

char* message = xercesc::XMLString::transcode(e.getMessage());

cerr << "XML ttolkit teardown error: " << message << endl;

XMLString::release(&message);

83

}

}

/**

* This function:

* - Tests the access and availability of the XML configuration file.

* - Configures the xerces-c DOM parser.

* - Reads and extracts the pertinent information from the XML config file.

*

* @param in configFile The text string name of the HLA configuration file.

*/

void GetConfig::readConfigFile(string& configFile)

throw(std::runtime_error)

{

// Test to see if the file is ok.

struct stat fileStatus;

int iretStat = stat(configFile.c_str(), &fileStatus);

if(iretStat == ENOENT)

throw (std::runtime_error("Path file_name does not exist, or path is

an empty string."));

else if(iretStat == ENOTDIR)

throw (std::runtime_error("A component of the path is not a directory

."));

else if(iretStat == ELOOP)

throw (std::runtime_error("Too many symbolic links encountered while

traversing the path."));

else if(iretStat == EACCES)

throw (std::runtime_error("Permission denied."));

else if(iretStat == ENAMETOOLONG)

throw (std::runtime_error("File can not be read\n"));

// Configure DOM parser.

m_ConfigFileParser->setValidationScheme(XercesDOMParser::Val_Never);

m_ConfigFileParser->setDoNamespaces(false);

m_ConfigFileParser->setDoSchema(false);

m_ConfigFileParser->setLoadExternalDTD(false);

try

{

noc_pkg_gen.cpp

m_ConfigFileParser->parse(configFile.c_str());

// no need to free this pointer - owned by the parent parser object

DOMDocument* xmlDoc = m_ConfigFileParser->getDocument();

84

// Get the top-level element: NAme is "root". No attributes for "root"

DOMElement* elementRoot = xmlDoc->getDocumentElement();

if(!elementRoot) throw(std::runtime_error("empty XML document"));

// Parse XML file for tags of interest: "ApplicationSettings"

// Look one level nested within "root". (child of root)

DOMNodeList* children = elementRoot->getChildNodes();

const XMLSize_t nodeCount = children->getLength();

// For all nodes, children of "root" in the XML tree.

int i=0;

for(XMLSize_t xx = 0; xx < nodeCount; ++xx)

{

DOMNode* currentNode = children->item(xx);

if(currentNode->getNodeType() && // true is not NULL

currentNode->getNodeType() == DOMNode::ELEMENT_NODE) // is ele

ment

{

// Found node which is an Element. Re-cast node as element

DOMElement* currentElement = dynamic_cast< xercesc::DOMElement*

>(currentNode);

if(XMLString::equals(currentElement->getTagName(), TAG_switch))

{

const XMLCh* xmlch_x = currentElement->getAttribute(ATTR_x);

m_x = XMLString::transcode(xmlch_x);

x[i]=atoi(m_x);

const XMLCh* xmlch_y = currentElement->getAttribute(ATTR_y);

m_y = XMLString::transcode(xmlch_y);

y[i]=atoi(m_y);

}

DOMNodeList* grandchildren = currentElement->getChildNodes();

const XMLSize_t nodeCount_b = grandchildren->getLength();

for(XMLSize_t yy = 0; yy < nodeCount_b; ++yy)

{

DOMNode* currentNodeb = grandchildren->item(yy);

if(currentNodeb->getNodeType() && currentNodeb->getNodeTyp

e() == DOMNode::ELEMENT_NODE) // is element

{

DOMElement* currentElementb = dynamic_cast< xercesc

::DOMElement* >(currentNodeb);

if(XMLString::equals(currentElementb->getTagName(),

TAG_switchPorts))

85

{

const XMLCh* xmlch_ports = currentNodeb->ge

tTextContent();

m_switchPorts = XMLString::transcode(xmlch_

ports);

switchPorts[i]=atoi(m_switchPorts);

}

if(XMLString::equals(currentElementb->getTagName()

, TAG_switchDepth))

{

const XMLCh* xmlch_depth = currentNodeb->ge

tTextContent();

m_switchDepth = XMLString::transcode(xmlch_

depth);

switchDepth[i++]=atoi(m_switchDepth);

}

}

}

}

}

peNum = i;

cout << "arithmos switches: " << peNum << endl;

}

catch(xercesc::XMLException& e)

{

char* message = xercesc::XMLString::transcode(e.getMessage());

ostringstream errBuf;

errBuf << "Error parsing file: " << message << flush;

XMLString::release(&message);

}

}

//function max

int GetConfig::max(int array[]){

int maxvalue = array[0];

for (int i = 0; i < peNum; i++)

{

if (array[i] > maxvalue)

{

maxvalue = array[i];

}

86

};

return maxvalue;

}

//function binary

void GetConfig::binary(int number) {

int remainder,i=0;

for (int j=0;j<log2(maxPorts);j++)

{

binvalue[j]='0';

}

while (number>1)

{

remainder = number % 2;

number = number / 2;

binvalue[i++] = remainder + '0';

}

binvalue[i] = number + '0' ;

}

//function calculate

void GetConfig::calculate()

{

int array[peNum];

int i;//peNumx

for (i=0;i<peNum;i++){

array[i] = x[i];

}

sort(array,array+peNum);

peNumx=1;

for(i = 0; i < peNum -1 /*since we don't want to compare last element with

junk*/; i++)

{

if(array[i]==array[i+1])

continue;

else

peNumx++;

}

cout <<"peNumx: " << peNumx <<endl;

//peNumy

for (i=0;i<peNum;i++){

array[i] = y[i];

87

}

sort(array,array+peNum);

peNumy=1;

for(int i = 0; i < peNum -1 /*since we don't want to compare last element

with junk*/; i++)

{

if(array[i]==array[i+1])

continue;

else

peNumy++;

}

cout <<"peNumy: " << peNumy <<endl;

//maxPorts

maxPorts = max(switchPorts);

cout <<"maxPorts: " << maxPorts <<endl;

//maxDepth

maxDepth = max(switchDepth);

cout <<"maxDepth: " << maxDepth <<endl;

for(int i = 0; i < peNum /*since we don't want to compare last element wit

h junk*/; i++)

{

cout <<"x"<<x[i]<<"y"<<y[i]<< "ports "<<switchPorts[i]<< "depth"<<sw

itchDepth[i]<<endl;

}

//allbutiarray

for (int i=0; i<maxPorts;i++){

int k = 0;

for(int j=0;j<maxPorts-1;j++){

if (k==i){

allbutiarray[i][j]=++k;

}

else {

allbutiarray[i][j]=k;

}

k++;

}

}

for (int i=0; i<maxPorts;i++){

for(int j=0;j<maxPorts-1;j++){

cout << allbutiarray[i][j];

88

}

cout <<endl;

}

//tx_grant_enc_const

binary(6);

for(int i=0;i<log2(maxPorts);i++){

cout << binvalue[i];

}

cout << endl;

binary(5);

for(int i=0;i<log2(maxPorts);i++){

cout << binvalue[i];

}

//shift array

int temp[maxPorts-1];

for (int i=0; i<maxPorts-1;i++){

temp[i]=i;

}

for (int i=0; i<maxPorts-1;i++){

int k=0;

for(int j=0;j<maxPorts-1;j++){

if ((k+i) <= maxPorts-2) {

shift_array[i][j]=temp[k+i];

k++;

}

else{

k=-i;

shift_array[i][j]=temp[k+i];

k++;

}

}

}

cout << endl;

for (int i=0; i<maxPorts-1;i++){

for(int j=0;j<maxPorts-1;j++){

cout<<shift_array[i][j];

}

cout <<endl;

}

}

89

//function print

void GetConfig::print()

{ofstream myfile;

myfile.open ("vhdl/noc_pkg.vhd",std::ios::out);

myfile.seekp(0,ios::beg);

myfile << "library ieee;\nlibrary work;\nuse ieee.std_logic_1164.all;\nuse

ieee.std_logic_unsigned.all;\nuse work.noc_functions.all;\nPACKAGE

noc_pkg is\n--configurable\nCONSTANT wordlength: integer

:= 16; --width of data word in bits\n";

myfile << "CONSTANT pe_num_x: integer :="<< pe

Numx ;

myfile << ";\nCONSTANT pe_num_y: integer :=" <

< peNumy ;

myfile << ";\nCONSTANT pe_num: integer :=" <

< peNum ;

myfile << ";\nTYPE parameter_array is array(0 to pe_num -1) of integer;\n";

myfile << "CONSTANT switch_depth_array: parameter_array := (";

for (int i=0;i<peNum-1;i++)

myfile << switchDepth[i]<<",";

myfile << switchDepth[peNum-1] << ");\n";

myfile << "CONSTANT switch_ports_array: parameter_array := (";

for (int i=0;i<peNum-1;i++)

myfile << switchPorts[i]<<",";

myfile << switchPorts[peNum-1] << ");\n";

myfile << "CONSTANT x_s_array: parameter_array := (";

for (int i=0;i<peNum-1;i++)

myfile << x[i]<<",";

myfile <<x[peNum-1] << ");\n";

myfile << "CONSTANT y_s_array: parameter_array := (";

for (int i=0;i<peNum-1;i++)

myfile << y[i]<<",";

myfile <<y[peNum-1] << ");\n";

myfile << "CONSTANT max_ports: integer :=" << m

axPorts ;

myfile << ";\nCONSTANT switch_depth_max: integer :=" <

< maxDepth ;

myfile << ";\nTYPE allbuti_array is array(0 to max_ports-1,0 to max_ports-

2) of integer;";

myfile << "\nCONSTANT all_but_i :allbuti_array :=(";

for (int i=0;i<maxPorts-1;i++){

90

myfile << "(";

for (int j=0;j<maxPorts-2;j++){

myfile << allbutiarray[i][j] << ",";

}

myfile << allbutiarray[i][maxPorts-2];

myfile << "),";

}

myfile << "(";

for (int j=0;j<maxPorts-2;j++){

myfile << allbutiarray[maxPorts-1][j] << ",";

}

myfile << allbutiarray[maxPorts-1][maxPorts-2];

myfile << "));";

myfile << "\nTYPE tx_grant_enc_array_2 is array(0 to max_ports-2) of std_log

ic_vector(log(max_ports-1)-1 downto 0);";

myfile << "\nCONSTANT tx_grant_enc_const : tx_grant_enc_array_2

:=";

myfile << "(";

for (int i=0;i<maxPorts-2;i++){

binary(i);

myfile << "\"";

for(int j=log2(maxPorts-1)-1; j>=0;j--){

myfile << binvalue[j];

}

myfile << "\", ";

}

myfile << "\"";

binary(maxPorts-2);

for(int j=log2(maxPorts-1)-1; j>=0;j--){

myfile << binvalue[j];

}

myfile << "\");";

myfile << "\nTYPE shift_array_type is array(0 to max_ports-2,0 to max_ports

-2) of integer;" ;

myfile << "\nCONSTANT shift_array : shift_array_type := (";

for (int i=0;i<maxPorts-2;i++){

myfile << "(";

for (int j=0;j<maxPorts-2;j++){

myfile << shift_array[i][j] << ",";

}

91

myfile << shift_array[i][maxPorts-2];

myfile << "),";

}

myfile << "(";

for (int j=0;j<maxPorts-2;j++){

myfile << shift_array[maxPorts-2][j] << ",";

}

myfile << shift_array[maxPorts-2][maxPorts-2];

myfile << "));";

myfile << "\nTYPE rom_lut_type is array (0 to pe_num_x-1,0 to pe_num_y-1) of

integer range 0 to (max_ports -1);";

myfile << "\n--configurable\n";

myfile.close();

myfile.open("vhdl/noc_pkg.vhd",std::ios::out|std::ios::app);

ifstream myfile2("vhdl/noc_pkg_aux", std::ios::in);

char str[2000];

while (!myfile2.eof()){

myfile2.getline(str,2000);

myfile << str << endl;

}

myfile.close();

myfile2.close();

}

#ifdef MAIN_TEST

/* This main is provided for unit test of the class. */

int main(int argc, char *argv[])

{

string s0 = "xml/";

string s1 = argv[1];

string s2 = "/elements.xml";

string configFile= s0 + s1 + s2; // stat file. Get ambigious segfault oth

erwise.

GetConfig appConfig;

appConfig.readConfigFile(configFile);

appConfig.calculate();

appConfig.print();

return 0;

}

#endif

92

noc_gen.hpp

#ifndef XML_PARSER_HPP

#define XML_PARSER_HPP

/**

* @file

* Class "GetConfig" provides the functions to read the XML data.

* @version 1.0

*/

#include <xercesc/dom/DOM.hpp>

#include <xercesc/dom/DOMDocument.hpp>

#include <xercesc/dom/DOMDocumentType.hpp>

#include <xercesc/dom/DOMElement.hpp>

#include <xercesc/dom/DOMImplementation.hpp>

#include <xercesc/dom/DOMImplementationLS.hpp>

#include <xercesc/dom/DOMNodeIterator.hpp>

#include <xercesc/dom/DOMNodeList.hpp>

#include <xercesc/dom/DOMText.hpp>

#include <xercesc/parsers/XercesDOMParser.hpp>

#include <xercesc/util/XMLUni.hpp>

#include <string>

#include <stdexcept>

#include <algorithm>

#include <math.h>

#include <fstream>

const int LINKS_MAX = 500; //50*10(= MAX_PENUM * MAX_PORTS)

const int TRANS_MAX = 1000; //2*50*10(= 2*MAX_PENUM * MAX_PORTS)

const int MAX_NUMBER_OF_FLITS = 10; //number of flits in a packet

// Error codes

enum {

ERROR_ARGS = 1,

ERROR_XERCES_INIT,

ERROR_PARSE,

ERROR_EMPTY_DOCUMENT

93

};

class GetConfig

{

public:

//constructor

GetConfig();

//destructor

~GetConfig();

//variables

struct link_struct{char* sourceRouter; char* sourcePort ; char* destinati

onRouter; char* destinationPort;};

link_struct link_array[LINKS_MAX];

int NoOfLinks;

struct trans_struct{int inputRouter; int inputPort ; char* transBegin; ch

ar* transDuration; char* data[MAX_NUMBER_OF_FLITS];};

trans_struct trans_array[TRANS_MAX];

int NoOfTrans;

//functions

void readNetlist(std::string&) throw(std::runtime_error);

void readTraffic(std::string&) throw(std::runtime_error);

void print();

private:

xercesc::XercesDOMParser *m_ConfigFileParser;

// Internal class use only. Hold Xerces data in UTF-16 SMLCh type.

XMLCh* TAG_transmission;

XMLCh* TAG_destinationRouter;

XMLCh* TAG_destinationPort;

XMLCh* TAG_inputRouter;

XMLCh* TAG_inputPort;

XMLCh* TAG_transBegin;

XMLCh* TAG_transDuration;

XMLCh* TAG_dataSequence;

XMLCh* TAG_data;

XMLCh* TAG_link;

XMLCh* TAG_sourceRouter;

XMLCh* TAG_sourcePort;

char* m_sourceRouter;

char* m_sourcePort;

char* m_destinationRouter;

char* m_destinationPort;

94

char* m_inputRouter;

char* m_inputPort;

};

#endif

noc_gen.cpp

#include <string>

#include <iostream>

#include <sstream>

#include <stdexcept>

#include <list>

#include <sys/types.h>

#include <sys/stat.h>

#include <unistd.h>

#include <errno.h>

#include "noc_gen.hpp"

using namespace xercesc;

using namespace std;

/**

* Constructor initializes xerces-C libraries.

* The XML tags and attributes which we seek are defined.

* The xerces-C DOM parser infrastructure is initialized.

*/

GetConfig::GetConfig()

{

try

{

XMLPlatformUtils::Initialize(); // Initialize Xerces infrastructure

}

catch(XMLException& e)

{

char* message = XMLString::transcode(e.getMessage());

cerr << "XML toolkit initialization error: " << message << endl;

95

XMLString::release(&message);

// throw exception here to return ERROR_XERCES_INIT

}

// Tags and attributes used in XML file.

// Can't call transcode till after Xerces Initialize()

TAG_transmission = XMLString::transcode("transmission");

TAG_destinationRouter = XMLString::transcode("destinationRouter");

TAG_destinationPort= XMLString::transcode("destinationPort");

TAG_inputRouter = XMLString::transcode("inputRouter");

TAG_inputPort= XMLString::transcode("inputPort");

TAG_transBegin= XMLString::transcode("transBegin");

TAG_transDuration= XMLString::transcode("transDuration");

TAG_dataSequence=XMLString::transcode("dataSequence");

TAG_data=XMLString::transcode("data");

TAG_link = XMLString::transcode("link");

TAG_sourceRouter = XMLString::transcode("sourceRouter");

TAG_sourcePort= XMLString::transcode("sourcePort");

m_ConfigFileParser = new XercesDOMParser;

}

/**

* Class destructor frees memory used to hold the XML tag and

* attribute definitions. It als terminates use of the xerces-C

* framework.

*/

GetConfig::~GetConfig()

{

// Free memory

delete m_ConfigFileParser;

try

{

XMLString::release(&TAG_transmission);

XMLString::release(&TAG_destinationRouter);

XMLString::release(&TAG_destinationPort);

XMLString::release(&TAG_inputRouter);

XMLString::release(&TAG_inputPort);

XMLString::release(&TAG_transBegin);

XMLString::release(&TAG_transDuration);

XMLString::release(&TAG_dataSequence);

XMLString::release(&TAG_data);

XMLString::release(&TAG_link);

96

XMLString::release(&TAG_sourceRouter);

XMLString::release(&TAG_sourcePort);

}

catch(...)

{

cerr << "Unknown exception encountered in TagNamesdtor" << endl;

}

// Terminate Xerces

try

{

XMLPlatformUtils::Terminate(); // Terminate after release of memory

}

catch(xercesc::XMLException& e)

{

char* message = xercesc::XMLString::transcode(e.getMessage());

cerr << "XML ttolkit teardown error: " << message << endl;

XMLString::release(&message);

}

}

/**

* This function:

* - Tests the access and availability of the XML configuration file.

* - Configures the xerces-c DOM parser.

* - Reads and extracts the pertinent information from the XML config file.

*

* @param in configFile The text string name of the HLA configuration file.

*/

void GetConfig::readNetlist(string& configFile)

throw(std::runtime_error)

{

// Test to see if the file is ok.

int i=0;

struct stat fileStatus;

int iretStat = stat(configFile.c_str(), &fileStatus);

if(iretStat == ENOENT)

throw (std::runtime_error("Path file_name does not exist, or path is

an empty string."));

else if(iretStat == ENOTDIR)

throw (std::runtime_error("A component of the path is not a directory

."));

97

else if(iretStat == ELOOP)

throw (std::runtime_error("Too many symbolic links encountered while

traversing the path."));

else if(iretStat == EACCES)

throw (std::runtime_error("Permission denied."));

else if(iretStat == ENAMETOOLONG)

throw (std::runtime_error("File can not be read\n"));

// Configure DOM parser.

m_ConfigFileParser->setValidationScheme(XercesDOMParser::Val_Never);

m_ConfigFileParser->setDoNamespaces(false);

m_ConfigFileParser->setDoSchema(false);

m_ConfigFileParser->setLoadExternalDTD(false);

try

{

m_ConfigFileParser->parse(configFile.c_str());

// no need to free this pointer - owned by the parent parser object

DOMDocument* xmlDoc = m_ConfigFileParser->getDocument();

// Get the top-level element: NAme is "root". No attributes for "root"

DOMElement* elementRoot = xmlDoc->getDocumentElement();

if(!elementRoot) throw(std::runtime_error("empty XML document"));

// Parse XML file for tags of interest: "ApplicationSettings"

// Look one level nested within "root". (child of root)

DOMNodeList* children = elementRoot->getChildNodes();

const XMLSize_t nodeCount = children->getLength();

// For all nodes, children of "root" in the XML tree.

for(XMLSize_t xx = 0; xx < nodeCount; ++xx)

{

DOMNode* currentNode = children->item(xx);

if(currentNode->getNodeType() && // true is not NULL

currentNode->getNodeType() == DOMNode::ELEMENT_NODE) // is ele

ment

{

// Found node which is an Element. Re-cast node as element

DOMElement* currentElement = dynamic_cast< xercesc::DOMElement*

>(currentNode);

if(XMLString::equals(currentElement->getTagName(), TAG_link))

{

DOMNodeList* grandchildren = currentElement->getChildNodes()

;

const XMLSize_t nodeCount_b = grandchildren->getLength();

98

for(XMLSize_t yy = 0; yy < nodeCount_b; ++yy)

{

DOMNode* currentNodeb = grandchildren->item(yy);

if(currentNodeb->getNodeType() && currentNodeb->ge

tNodeType() == DOMNode::ELEMENT_NODE) // is element

{

DOMElement* currentElementb = dynamic_cast<

xercesc::DOMElement* >(currentNodeb);

if(XMLString::equals(currentElementb->getTa

gName(), TAG_sourceRouter))

{

const XMLCh* xmlch_sourceRouter = cu

rrentNodeb->getTextContent();

link_array[i].sourceRouter = XMLStri

ng::transcode(xmlch_sourceRouter);

cout << link_array[i].sourceRouter;

};

if(XMLString::equals(currentElementb->getTa

gName(), TAG_sourcePort))

const XMLCh* xmlch_sourcePort = curr

entNodeb->getTextContent();

link_array[i].sourcePort = XMLString

::transcode(xmlch_sourcePort);

cout << link_array[i].sourcePort;

};

if(XMLString::equals(currentElementb->getTa

gName(), TAG_destinationRouter))

{

const XMLCh* xmlch_destinationRouter

= currentNodeb->getTextContent();

link_array[i].destinationRouter = XM

LString::transcode(xmlch_destinationRouter);

cout << link_array[i].destinationRou

ter;

};

if (XMLString::equals(currentElementb->getT

agName(), TAG_destinationPort))

{

const XMLCh* xmlch_destinationPort =

currentNodeb->getTextContent();

99

link_array[i].destinationPort = XMLS

tring::transcode(xmlch_destinationPort);

cout << link_array[i].destinationPort;

};

}

}

i++;

}

}

}

NoOfLinks = i;

cout << endl << "links: " <<NoOfLinks <<endl ;

for (int j=0;j<NoOfLinks;j++)

cout << link_array[j].sourceRouter <<link_array[j].sourcePort<<link_

array[j].destinationRouter<<link_array[j].destinationPort<<endl;

}

catch(xercesc::XMLException& e)

{

char* message = xercesc::XMLString::transcode(e.getMessage());

ostringstream errBuf;

errBuf << "Error parsing file: " << message << flush;

XMLString::release(&message);

}

}

void GetConfig::readTraffic(string& configFile)

throw(std::runtime_error)

{

// Test to see if the file is ok.

int i=0;

struct stat fileStatus;

int iretStat = stat(configFile.c_str(), &fileStatus);

if(iretStat == ENOENT)

throw (std::runtime_error("Path file_name does not exist, or path is

an empty string."));

else if(iretStat == ENOTDIR)

throw (std::runtime_error("A component of the path is not a directory

."));

else if(iretStat == ELOOP)

throw (std::runtime_error("Too many symbolic links encountered while

traversing the path."));

100

else if(iretStat == EACCES)

throw (std::runtime_error("Permission denied."));

else if(iretStat == ENAMETOOLONG)

throw (std::runtime_error("File can not be read\n"));

// Configure DOM parser.

m_ConfigFileParser->setValidationScheme(XercesDOMParser::Val_Never);

m_ConfigFileParser->setDoNamespaces(false);

m_ConfigFileParser->setDoSchema(false);

m_ConfigFileParser->setLoadExternalDTD(false);

try

{

m_ConfigFileParser->parse(configFile.c_str());

// no need to free this pointer - owned by the parent parser object

DOMDocument* xmlDoc = m_ConfigFileParser->getDocument();

// Get the top-level element: NAme is "root". No attributes for "root"

DOMElement* elementRoot = xmlDoc->getDocumentElement();

if(!elementRoot) throw(std::runtime_error("empty XML document"));

// Parse XML file for tags of interest: "ApplicationSettings"

// Look one level nested within "root". (child of root)

DOMNodeList* children = elementRoot->getChildNodes();

const XMLSize_t nodeCount = children->getLength();

// For all nodes, children of "root" in the XML tree.

for(XMLSize_t xx = 0; xx < nodeCount; ++xx)

{

DOMNode* currentNode = children->item(xx);

if(currentNode->getNodeType() && // true is not NULL

currentNode->getNodeType() == DOMNode::ELEMENT_NODE) // is ele

ment

{

// Found node which is an Element. Re-cast node as element

DOMElement* currentElement = dynamic_cast< xercesc::DOMElement*

>(currentNode);

if(XMLString::equals(currentElement->getTagName(), TAG_transmis

sion))

{

DOMNodeList* grandchildren = currentElement->getChildNodes()

;

const XMLSize_t nodeCount_b = grandchildren->getLength();

for(XMLSize_t yy = 0; yy < nodeCount_b; ++yy)

{

101

DOMNode* currentNodeb = grandchildren->item(yy);

if(currentNodeb->getNodeType() && currentNodeb->ge

tNodeType() == DOMNode::ELEMENT_NODE) // is element

{

DOMElement* currentElementb = dynamic_cast<

xercesc::DOMElement* >(currentNodeb);

if(XMLString::equals(currentElementb->getTa

gName(), TAG_inputRouter))

{

const XMLCh* xmlch_inputRouter = cur

rentNodeb->getTextContent();

m_inputRouter = XMLString::transcode

(xmlch_inputRouter);

trans_array[i].inputRouter = atoi(m_inputRouter);

}

else if (XMLString::equals(currentElementb-

>getTagName(), TAG_inputPort))

{

const XMLCh* xmlch_inputPort = curre

ntNodeb->getTextContent();

m_inputPort = XMLString::transcode(x

mlch_inputPort);

trans_array[i].inputPort = atoi(m_inputPort);

}

else if(XMLString::equals(currentElementb->

getTagName(), TAG_transBegin))

{

const XMLCh* xmlch_transBegin = curr

entNodeb->getTextContent();

trans_array[i].transBegin = XMLStrin

g::transcode(xmlch_transBegin);

cout << trans_array[i].transBegin;

}

else if(XMLString::equals(currentElementb->

getTagName(), TAG_transDuration))

{

const XMLCh* xmlch_transDuration = c

urrentNodeb->getTextContent();

trans_array[i].transDuration = XMLSt

ring::transcode(xmlch_transDuration);

102

cout << trans_array[i].transDuration

;

}

else if(XMLString::equals(currentElementb->

getTagName(), TAG_dataSequence))

{

DOMNodeList* ggrandchildren = curren

tElementb->getChildNodes();

const XMLSize_t nodeCount_c = ggran

dchildren->getLength();

int j=0;

for(XMLSize_t zz = 0; zz < nodeCoun

t_c; ++zz)

{

DOMNode* currentNodec = ggra

ndchildren->item(zz);

if(currentNodec->getNodeTyp

e() && currentNodec->getNodeType() == DOMNode::ELEMENT_NODE) // is element

{

DOMElement* currentE

lementc = dynamic_cast< xercesc::DOMElement* >(currentNodec);

if(XMLString::equal

s(currentElementc->getTagName(), TAG_data))

{

const XMLCh*

xmlch_data = currentNodec->getTextContent();

trans_array[

i].data[j] = XMLString::transcode(xmlch_data);

cout << tran

s_array[i].data[j];

j++;

}

}

}

}

}

}

i++;

}

}

103

}

NoOfTrans = i;

cout << endl << "trans: " <<NoOfTrans <<endl ;

for (int j=0;j<NoOfTrans;j++)

cout << trans_array[j].inputRouter <<trans_array[j].inputPort<<trans

_array[j].transBegin<<trans_array[j].transDuration<<endl;

}

catch(xercesc::XMLException& e)

{

char* message = xercesc::XMLString::transcode(e.getMessage());

ostringstream errBuf;

errBuf << "Error parsing file: " << message << flush;

XMLString::release(&message);

}

}

//function print

void GetConfig::print()

{

ofstream myfile;

myfile.open("vhdl/noc.vhd",std::ios::out);

myfile.seekp(0,ios::beg);

ifstream myfile2("vhdl/noc_aux", std::ios::in);

char str[2000];

while (!myfile2.eof())

{

myfile2.getline(str,2000);

myfile << str << endl;

}

myfile2.close();

myfile.seekp(0,ios::end);

//traffic

myfile << "--traffic"<<endl;

int i = 0;

while (i<NoOfTrans)

{

//for each packet

myfile << endl;

//initialisation

myfile << "data_valid_in_help("<< trans_array[i].inputRoute

r<<")("<< trans_array[i].inputPort

104

<<")<=data_valid_in_traffic("<<trans_array[i].inputR

outer<<")("

<< trans_array[i].inputPort<<");"<<endl ;

myfile << "data_in_help("<< trans_array[i].inputRouter<<")("

<< trans_array[i].inputPort

<<")<=data_in_traffic("<<trans_array[i].inputRouter<

<")("

<< trans_array[i].inputPort<<");"<<endl ;

i++; //next transmission

//if the next transmission is from the same port as the prev

ious one

while ((i<=NoOfTrans-2) && (trans_array[i].inputRouter == tr

ans_array[i-1].inputRouter) &&

(trans_array[i].inpu

tPort == trans_array[i-1].inputPort))

{

i++;

}

}

myfile.seekp(0,ios::end);

//links

myfile << "--links"<<endl;

for (int i=0;i<NoOfLinks;i++)

{

myfile << "data_valid_in_help(" << link_array[i].destination

Router << ")(" << link_array[i].destinationPort

<<")<=data_valid_out_help(" << link_array[i].sourceR

outer << ")(" <<link_array[i].sourcePort <<");"<< endl;

myfile << "data_in_help(" << link_array[i].destinationRouter

<< ")(" << link_array[i].destinationPort

<<")<=data_out_help(" << link_array[i].sourceRouter

<< ")(" <<link_array[i].sourcePort <<");"<<endl;

myfile << endl;

};

myfile << "end;";

myfile.close();

}

#ifdef MAIN_TEST

/* This main is provided for unit test of the class. */

int main()

105

{

string s0,s1,s2,configFile;

s0 = "xml/";

s1 = argv[1];

//parsing tou prwtou

s2 = "/traffic.xml";

configFile= s0 + s1 + s2;

GetConfig appConfig ;

appConfig.readTraffic(configFile);

//parsing tou defterou

s2 = "/netlist.xml";

configFile= s0 + s1 + s2;

appConfig.readNetlist(configFile);

appConfig.print();

return 0;

}

#endif

noc_tb_gen.hpp

#ifndef XML_PARSER_HPP

#define XML_PARSER_HPP

/**

* @file

* Class "GetConfig" provides the functions to read the XML data.

* @version 1.0

*/

#include <xercesc/dom/DOM.hpp>

#include <xercesc/dom/DOMDocument.hpp>

#include <xercesc/dom/DOMDocumentType.hpp>

#include <xercesc/dom/DOMElement.hpp>

#include <xercesc/dom/DOMImplementation.hpp>

#include <xercesc/dom/DOMImplementationLS.hpp>

#include <xercesc/dom/DOMNodeIterator.hpp>

#include <xercesc/dom/DOMNodeList.hpp>

#include <xercesc/dom/DOMText.hpp>

#include <xercesc/parsers/XercesDOMParser.hpp>

#include <xercesc/util/XMLUni.hpp>

106

#include <string>

#include <stdexcept>

#include <algorithm>

#include <math.h>

#include <fstream>

const int TRANS_MAX = 3000; //2*50*10(= 2*MAX_PENUM * MAX_PORTS) antistoix

oun se kathe thira.

const int MAX_NUMBER_OF_FLITS = 10; //number of flits in a packet

const int CLK_PERIOD = 100;

const int FLIT_SIZE_IN_BITS = 16;

// Error codes

enum {

ERROR_ARGS = 1,

ERROR_XERCES_INIT,

ERROR_PARSE,

ERROR_EMPTY_DOCUMENT

};

class GetConfig

{

public:

//constructor

GetConfig();

//destructor

~GetConfig();

//variables

struct trans_struct{int inputRouter; int inputPort ;int transBegin; int t

ransDuration;

char* data[MAX_NUMBER_OF_FLITS];};

trans_struct trans_array[TRANS_MAX];

int NoOfTrans;

int NoOfFlits[TRANS_MAX] ;

//functions

void readTraffic(std::string&) throw(std::runtime_error);

void createAssignmentsArray();

void print();

int GetIntVal(std::string strConvert) {

int intReturn;

// NOTE: You should probably do some checks to ensure that

// this string contains only numbers. If the string is not

// a valid integer, zero will be returned.

107

intReturn = atoi(strConvert.c_str());

return(intReturn);

}

private:

xercesc::XercesDOMParser *m_ConfigFileParser;

// Internal class use only. Hold Xerces data in UTF-16 SMLCh type.

XMLCh* TAG_transmission;

XMLCh* TAG_destinationRouter;

XMLCh* TAG_destinationPort;

XMLCh* TAG_inputRouter;

XMLCh* TAG_inputPort;

XMLCh* TAG_transBegin;

XMLCh* TAG_transDuration;

XMLCh* TAG_dataSequence;

XMLCh* TAG_data;

char* m_destinationRouter;

char* m_destinationPort;

char* m_transBegin;

char* m_transDuration;

char* m_inputRouter;

char* m_inputPort;

};

#endif

noc_tb_gen.cpp

#include <string>

#include <iostream>

#include <sstream>

#include <stdexcept>

#include <list>

#include <sys/types.h>

#include <sys/stat.h>

#include <unistd.h>

#include <errno.h>

#include "noc_tb_gen.hpp"

using namespace xercesc;

using namespace std;

/**

* Constructor initializes xerces-C libraries.

108

* The XML tags and attributes which we seek are defined.

* The xerces-C DOM parser infrastructure is initialized.

*/

GetConfig::GetConfig()

{

try

{

XMLPlatformUtils::Initialize(); // Initialize Xerces infrastructure

}

catch(XMLException& e)

{

char* message = XMLString::transcode(e.getMessage());

cerr << "XML toolkit initialization error: " << message << endl;

XMLString::release(&message);

// throw exception here to return ERROR_XERCES_INIT

}

// Tags and attributes used in XML file.

// Can't call transcode till after Xerces Initialize()

TAG_transmission = XMLString::transcode("transmission");

TAG_destinationRouter = XMLString::transcode("destinationRouter");

TAG_destinationPort= XMLString::transcode("destinationPort");

TAG_inputRouter = XMLString::transcode("inputRouter");

TAG_inputPort= XMLString::transcode("inputPort");

TAG_transBegin= XMLString::transcode("transBegin");

TAG_transDuration= XMLString::transcode("transDuration");

TAG_dataSequence=XMLString::transcode("dataSequence");

TAG_data=XMLString::transcode("data");

m_ConfigFileParser = new XercesDOMParser;

}

/**

* Class destructor frees memory used to hold the XML tag and

* attribute definitions. It als terminates use of the xerces-C

* framework.

*/

GetConfig::~GetConfig()

{

// Free memory

delete m_ConfigFileParser;

try

{

109

XMLString::release(&TAG_transmission);

XMLString::release(&TAG_destinationRouter);

XMLString::release(&TAG_destinationPort);

XMLString::release(&TAG_inputRouter);

XMLString::release(&TAG_inputPort);

noc_tb_gen.cpp

XMLString::release(&TAG_transBegin);

XMLString::release(&TAG_transDuration);

XMLString::release(&TAG_dataSequence);

XMLString::release(&TAG_data);

}

catch(...)

{

cerr << "Unknown exception encountered in TagNamesdtor" << endl;

}

// Terminate Xerces

try

{

XMLPlatformUtils::Terminate(); // Terminate after release of memory

}

catch(xercesc::XMLException& e)

{

char* message = xercesc::XMLString::transcode(e.getMessage());

cerr << "XML ttolkit teardown error: " << message << endl;

XMLString::release(&message);

}

}

void GetConfig::readTraffic(string& configFile)

throw(std::runtime_error)

{

// Test to see if the file is ok.

int i=0;

struct stat fileStatus;

int iretStat = stat(configFile.c_str(), &fileStatus);

if(iretStat == ENOENT)

throw (std::runtime_error("Path file_name does not exist, or path is

an empty string."));

else if(iretStat == ENOTDIR)

throw (std::runtime_error("A component of the path is not a directory

."));

110

else if(iretStat == ELOOP)

throw (std::runtime_error("Too many symbolic links encountered while

traversing the path."));

else if(iretStat == EACCES)

throw (std::runtime_error("Permission denied."));

else if(iretStat == ENAMETOOLONG)

throw (std::runtime_error("File can not be read\n"));

// Configure DOM parser.

m_ConfigFileParser->setValidationScheme(XercesDOMParser::Val_Never);

m_ConfigFileParser->setDoNamespaces(false);

m_ConfigFileParser->setDoSchema(false);

m_ConfigFileParser->setLoadExternalDTD(false);

try

{

m_ConfigFileParser->parse(configFile.c_str());

// no need to free this pointer - owned by the parent parser object

DOMDocument* xmlDoc = m_ConfigFileParser->getDocument();

// Get the top-level element: NAme is "root". No attributes for "root"

DOMElement* elementRoot = xmlDoc->getDocumentElement();

if(!elementRoot) throw(std::runtime_error("empty XML document"));

// Parse XML file for tags of interest: "ApplicationSettings"

// Look one level nested within "root". (child of root)

DOMNodeList* children = elementRoot->getChildNodes();

const XMLSize_t nodeCount = children->getLength();

// For all nodes, children of "root" in the XML tree.

for(XMLSize_t xx = 0; xx < nodeCount; ++xx)

{

DOMNode* currentNode = children->item(xx);

if(currentNode->getNodeType() && // true is not NULL

currentNode->getNodeType() == DOMNode::ELEMENT_NODE) // is ele

ment

{

// Found node which is an Element. Re-cast node as element

DOMElement* currentElement = dynamic_cast< xercesc::DOMElement*

>(currentNode);

if(XMLString::equals(currentElement->getTagName(), TAG_transmis

sion))

{

DOMNodeList* grandchildren = currentElement->getChildNodes()

;

111

const XMLSize_t nodeCount_b = grandchildren->getLength();

for(XMLSize_t yy = 0; yy < nodeCount_b; ++yy)

{

DOMNode* currentNodeb = grandchildren->item(yy);

if(currentNodeb->getNodeType() && currentNodeb->ge

tNodeType() == DOMNode::ELEMENT_NODE) // is element

{

DOMElement* currentElementb = dynamic_cast<

xercesc::DOMElement* >(currentNodeb);

if(XMLString::equals(currentElementb->getTa

gName(), TAG_inputRouter))

{

const XMLCh* xmlch_inputRouter = cur

rentNodeb->getTextContent();

m_inputRouter = XMLString::transcode

(xmlch_inputRouter);

trans_array[i].inputRouter = atoi(m_inputRouter);

}

else if (XMLString::equals(currentElementb-

>getTagName(), TAG_inputPort))

{

const XMLCh* xmlch_inputPort = curre

ntNodeb->getTextContent();

m_inputPort = XMLString::transcode(x

mlch_inputPort);

trans_array[i].inputPort = atoi(m_inputPort);

}

else if(XMLString::equals(currentElementb->

getTagName(), TAG_transBegin))

{

const XMLCh* xmlch_transBegin = curr

entNodeb->getTextContent();

m_transBegin= XMLString::transcode(

xmlch_transBegin);

trans_array[i].transBegin = atoi(m_

transBegin);

}

else if(XMLString::equals(currentElementb->

getTagName(), TAG_transDuration))

{

112

const XMLCh* xmlch_transDuration = c

urrentNodeb->getTextContent();

m_transDuration= XMLString::transcod

e(xmlch_transDuration);

trans_array[i].transDuration= atoi(m

_transDuration);

}

else if(XMLString::equals(currentElementb->

getTagName(), TAG_dataSequence))

{

DOMNodeList* ggrandchildren = curren

tElementb->getChildNodes();

const XMLSize_t nodeCount_c = ggran

dchildren->getLength();

int j=0;

for(XMLSize_t zz = 0; zz < nodeCoun

t_c; ++zz)

{

DOMNode* currentNodec = ggra

ndchildren->item(zz);

if(currentNodec->getNodeTyp

e() && currentNodec->getNodeType() == DOMNode::ELEMENT_NODE) // is element

{

DOMElement* currentE

lementc = dynamic_cast< xercesc::DOMElement* >(currentNodec);

if(XMLString::equal

s(currentElementc->getTagName(), TAG_data))

{

const XMLCh*

xmlch_data = currentNodec->getTextContent();

trans_array[

i].data[j] = XMLString::transcode(xmlch_data);

j++;

}

}

}

NoOfFlits[i]=j;

}

}

}

113

i++;

}

}

}

NoOfTrans = i;

cout << endl << "trans: " <<NoOfTrans <<endl ;

for (int k=0;k<NoOfTrans;k++){

cout << trans_array[k].inputRouter << " "<<trans_array[k].inputPort<

<" "<<trans_array[k].transBegin<<trans_array[k].transDuration<<" ";

for (int l=0;l<NoOfFlits[k];l++)

cout << trans_array[k].data[l] <<"";

cout << endl;

}

}

catch(xercesc::XMLException& e)

{

char* message = xercesc::XMLString::transcode(e.getMessage());

ostringstream errBuf;

errBuf << "Error parsing file: " << message << flush;

XMLString::release(&message);

}

}

//function print

void GetConfig::print()

{

//write the standard content

ofstream myfile;

myfile.open("vhdl/noc_tb.vhd",std::ios::out);

myfile.seekp(0,ios::beg);

ifstream myfile2("vhdl/noc_tb_aux", std::ios::in);

char str[2000];

int line=0;

while (!myfile2.eof())

{

++line;

if (line != 56)

{

myfile2.getline(str,2000);

myfile << str << endl;

}

114

else

{

//write the traffic values

//data_valid_in_tranffic

int i=0;

while (i<NoOfTrans)

{

//for each packet

myfile << endl;

//initialisation

myfile << "data_valid_in_traffic("<< trans_a

rray[i].inputRouter<<")("<< trans_array[i].inputPort <<")<='0',"

//first packet

<<"'1' after "<<trans_array[i].trans

Begin*CLK_PERIOD+CLK_PERIOD/2 <<" ns,"

<<"'0' after "<< trans_array[i].tran

sBegin*CLK_PERIOD+trans_array[i].transDuration*CLK_PERIOD

+CLK_PERIOD/2<< " ns";

i++; //next transmission

//if the next transmission is from the same

port as the previous one

while ((i<=NoOfTrans-1) && (trans_array[i].i

nputRouter == trans_array[i-1].inputRouter) &&

(trans_array[i].inpu

tPort == trans_array[i-1].inputPort))

{

myfile <<",'1' after "<< trans_arra

y[i].transBegin*CLK_PERIOD+CLK_PERIOD/2 <<" ns,"

<<"'0' after " << trans_arra

y[i].transBegin*CLK_PERIOD

+trans_arr

ay[i].transDuration*CLK_PERIOD+CLK_PERIOD/2 << " ns";

i++;

}

myfile << ";";

}

//data_in_traffic

i=0;

while (i<NoOfTrans)

{

115

myfile << endl;

myfile << "data_in_traffic("<< trans_array[i

].inputRouter<<")("<< trans_array[i].inputPort <<")<=\"";

//initialisation

for (int k=0;k<FLIT_SIZE_IN_BITS;k++)

myfile << "0";

myfile << "\"";

//packet

//for each flit

for (int j=0;j<NoOfFlits[i];j++)

{

myfile <<",\""<< trans_array[i].data

[j] <<"\" after "

<< trans_array[i].transBegin*

CLK_PERIOD+(CLK_PERIOD*j)+CLK_PERIOD/2 <<" ns";

}

myfile << ",\"";

//packet end

for (int k=0;k<FLIT_SIZE_IN_BITS;k++)

myfile << "0";

myfile << "\" after "

<< (trans_array[i].transBegin*

CLK_PERIOD)+(CLK_PERIOD*trans_array[i].transDuration)+CLK_PERIOD/2

<<" ns" ;

i++;

//if another packet for the same port

while ((i<=NoOfTrans-1) && (trans_array[i].

inputRouter == trans_array[i-1].inputRouter) &&

(trans_array[i].inputPort == t

rans_array[i-1].inputPort))

{

//for each flit

for (int j=0;j<NoOfFlits[i];j++)

{

myfile << ",\"" << trans_arr

ay[i].data[j] <<"\" after "

<< trans_array[i].tr

ansBegin*CLK_PERIOD+(CLK_PERIOD*j)+CLK_PERIOD/2 <<" ns";

}

myfile << ",\"";

116

//packet end

for (int k=0;k<FLIT_SIZE_IN_BITS;k++

)

myfile << "0";

myfile << "\" after "

<< (trans_array[i].transBegin

*CLK_PERIOD)+(CLK_PERIOD*trans_array[i].transDuration)

+CLK_PERIOD/2<<" ns" ;

i++;

}

myfile << ";";

}

}

}

myfile2.close();

myfile.close();

}

#ifdef MAIN_TEST

/* This main is provided for unit test of the class. */

int main(int argc, char *argv[])

{

string s0 = "xml/";

string s1 = argv[1];

string s2 = "/traffic.xml";

string configFile= s0 + s1 + s2; // stat file. Get ambigious segfault oth

erwise.

GetConfig* appConfig = new GetConfig;

appConfig->readTraffic(configFile);

appConfig->print();

delete appConfig;

return 0;

}

#endif

117

	Diplomatikh_Despinas__cover
	Diplomatikh_Despinas__text
	Diplomatikh_Despinas__appendix

