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[Tegidn

AVTireievo ¢ TopoLoas SITAWUATIXNG elvat 7] avadnTuér evog epyaAeion, To onoio Ha mopayet
“Irregular Network on Chip Architectures”. Ot apyttextovinég avtég Oo oynpotiovor
obppwva pe TEodtaypagec mov Ha Sivoviat wg elcodog xat ot onoteg Ha TEQLYEAPOLY TIC AVEYHES

oe TOEOLG nat TeY Ve TTov Oa TEémer v Stabétet 1) apyLTenTOVIHY).

Y10 nepadoto 1 yivetor pia stoaywyn ot Baoua otoryela pag NoC apyttextovinng, onwg 1
Tomoloyla, o aiyoppog Spopordoynong, ot Stuotacelg twv buffer, o xEBpoOG TwWY e16dSwY Kot

Twv 00wV, Ot TeYVIKES Ottt Tolag X.A.T.

270 1EPAANLOZ2 XVATTOGOETAL 7] ETUYELQYUATOAOYLX YL TV QVayny] EDXOANG TEOTOTOLYOYG TWY
yapanototxwy  utag NoC  apyttextovinng, n omnoix Oo pmogel va ovvdvalet ot vo
EVOWPATOVEL 1OLOTNTEG O StapopeTnd povieha. Eniong napovoaletar 1 mpotetvouevy Adom
nabwg noar mwg avty evidcoetar oe i evpLteEn mEoomabetx  Sepevvnong twv NoC

XOYLTEXTOVIUGV.

210 Keydhto 3 avoardoviar Sie€odma 1o Brpata mov yeeotnue vo oaxolovdnbodv yio ™
dnuovpyla pag “NoC mhatppoopac” yevinng yonons, n omoix Ha umopst avdAoyx pe Tig
npodtayoupés va  petafarletar. Ileprypdpetar 7 tpomomoinen TOL AWOMA, WOTE VX
OLUUOQYMVETAL e TIC xEYES TG reusability, 1 evowpdtwon Twv Stdwopwy components oTny
el ovtotta xabwg not 7 dnploveyla teYYNTG Uivnong mov Ba eréyyet v opbotnta g
AelTovEYyiag.

210 Kepalato 4 nepiéyeton 7 mepryoxgy xat high-level epyodkeiov avtopatyg napaywyns NoC
xEYLTEXTOVIN®Y, TO ontolo Ba eivar ae Béomn va cuvbeter - odppwva pe éva aEyelo TEOSLXYEXPLY
yoxpupuevo oe xml - tov nwda mov Ba Siver v Telnn apyttextoviny xot Ha v TpoYodotel pe

XUTNUATX ATOCTOAYG GESOUEVWY.

Y10 Kegdhawo 5 Sivovtar Selypata ¢ AELTOLEYING TOL EOYUAElOL Yl SLXPOEETINES
npodiayoayéc. Eniong napovotdloviar  Uetenoels ©atavaAwoewy toybog xat YoEov oto chip
mov xatohapfBaver 1 ndbe apyrtentovinn Otav TEOYOSOTEITAL He iVNOY ATO SLUPOEETINES
EPUOMUOYEG.

210 Keypdhaio 6 mnapovorxloviat T CLUTEQHOPATX TNG eEYxoing xuxbwg xor 18eeg yix

UEAAOVTINY] EQELVAL.

Ag€sic-Khetdra

NoC, reusable, reconfigurable, specifications, xml, automatic generation






Abstract

The purpose of the present diploma thesis is the development of a tool, which will produce
Irregular Network on Chip Architectures. These architectures will be formed according to
input specifications, which will describe the resources and techniques that should be part of
the architecture.

In Chapter 1 we make an introduction to the basic concepts of a NoC architecture, such as
the topology, the routing algorithm, the buffer dimensions, the number of inputs and
outputs and the arbitration techniques.

In Chapter 2 we explain the need of being able to easily modify the characteristics of a NoC
arhictecture in order to combine and encompass properties of different models.
Furthermore, we describe the proposed solution and how this is integrated in a more general
effort to explore NoC architectures.

In Chapter 3 we analyze in detail the steps which were followed in order to create a general
purpose “NoC platform”, which would be reconfigurable. We describe the code
modifications which were necessary to adhere to the “reusability” principle, the integration
of the various components in order to create the final entity and finally the generation of
artificial traffic which would test the correctness of the design.

Chapter 4 includes the description of the high-level, which will be able to produce — taking as
input xml-based configuration files- the vhdl code for the NoC design and its testbench.

In Chapter 5 we present samples of the tool outputs for different configurations.
Furthermore, we display the measurements of power consumption and place utilization on

the chip.

In Chapter 6 the conclusions are present as well as ideas and proposals for future research.

Keywords

NoC, reusable, reconfigurable, specifications, xml, automatic generation
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Chapter 1:

Network on Chip Architectures and
their various Characteristics

Abstract

In this chapter, we introduce the Network-on-Chip architectures. We make a comparison
between other on-chip communication solutions and explain their advantages and
disadvantages. Furthermore, we describe their basic features and techniques deployed in their
design.



1.1 Introduction

The aim of this chapter is to make a brief introduction into the NoC architectures. The term
NoC has a quite short history. It refers to a new approach to the design of the
communication subsystem of a System On Chip (SoC).

Traditionally the design space exploration for SoCs has focused on the computational
aspects. However, the number of components on a single chip and their performance
increased to such an extent that the design of the communication architecture plays a major
role in defining the area, performance and energy consumption of the overall system.
Modern SoC architectures consist of heterogeneous IP cores such as CPU or DSP modules,
video processors, embedded memory blocks etc.

individual
clock sources
uP DSP GErap.h'cs FPGA
ngine
com—T W link\ i = -
SW router

network sWwl— T (switch

interface\é

PMU L Memories LPeripheraI IPs

Figure 1 : Heterogeneous NoC architecture

Furthermore the classical bus-based and point-to-point communication solutions failed to
address the new needs. Bus based architectures were abandoned for complex designs mainly
because of the delay factor (bottleneck when many components are connected). The point-
to-point solution is not viable for chips with many components, since the number of
connections lead to a great waste of energy and space on chip. In Table 1 we can see a
summary of the basic differences of bus and NoC architectures.
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Bus Pros & Cons

Metwork Pros & Cons

units attached.

Every unit attached adds parasitic + | Only point-to-point one-way wires are used,
capacitance, therefore electrical for all network sizes, thus local
performance degrades with growth. performance is not degraded when

scaling.

Bus timing is difficult in a deep + | Network wires can be pipelined because
submicron process. links are point-to-point.

Bus arbitration can become a + | Routing decisions are distributed, if the
bottleneck. The arbitration delay network protocol is made non-central.
grows with the number of masters.

The bus arbiter is instance-specific. + | The same router may be reinstantiated, for

all network sizes.

Bus testability is problematic and slow. + | Locally placed dedicated BIST is fast and

offers good test coverage.

Bandwidth is limited and shared by all + | Aggregated bandwidth seales with the

network size.

Bus latency is wire-speed once arbiter
has granted control.

Internal network contention may cause a
latency.

Amny bus is almost directly compatible
with most available IPs, including
software running on CPUs.

Bus-oriented IPs need smart wrappers.
Software needs clean synchronization in
multiprocessor systems.

The concepts are simple and well
understood.

System designers need reeducation for new
concepts.

Table 1: Bus-versus-Network Arguments

As a result, the NoC approach emerged as a promising alternative. The network approach is
the evolution of former on-chip communication structures. Unlike busses and dedicated
point-to-point links, a more general scheme is adapted, employing a grid of routing nodes
spread out across the chip. It achieves better performance for many cores because
connections between components are relatively fast for any size of chip, assuming a few

hops between components.
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b) point-to-point

Figure 2: Common communication structures

In a NoC architecture when a source node sends a packet to a destination node, the packet is
first generated and transmitted from the local processor to the attached router via a network
interface (NI). The NI enables seamless communication between various cores and the
network. Then, the packet is stored at the input channels and the router starts servicing it.
This service time includes the time needed to make a routing decision, allocate a channel and
traverse the switch fabric. After being serviced, the packet moves to the next router on its
path, and the process repeats until the packet arrives at its final destination. As a result, the
communication among various cores is achieved by generating, processing and forwarding
packets through the network infrastructure rather than by routing global wires.

A Genreric Node (Tile)
Routing & Router
Control Logic
Input ports Output ports

=(ERERS
SNL e 22 B [Nl Siw
7 A /7 ey

[ a7 /Ml Dosunanon i

Element (PE)

Memory

Network-on-Chip (NoC)

Figure 3: Generic NoC Architecture. The anatomy of a node which consists of an on-
chip router, buffers and processing element(PE) is also shown on the right-hand
side.
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Not surprisingly, the network communication overall performance (latency, energy
consumption, space overhead) depends on the characteristics of the target application (e.g.,
inter-task communication volume), computational elements (e.g., processor speed) and
network characteristics (e.g., network bandwidth and buffer size).

1.2 NoC Communication Paradigm

1.2.1. Routing Algorithm

The routing algorithm determines the route which a message will follow from its source to
its destination through the network. Its role is really crucial as it impacts all network metrics,
namely latency (as the hop count is directly affected by the actual route), throughput (as
congestion depends on the ability of the routing protocol to load balance), power
distribution (as routing can be used to channel different message flows along distinct paths
to avoid interference), and finally reliability (as the routing protocol needs to choose routes
that avoid faults).

A designer has to take into consideration all the above parameters and the tradeoffs between
them in order to produce the routing protocol which fits at best the application and
constraints. Usually we want to minimize the average distance traveled by packets in the
network, with a constraint on the maximum distance between any pairs of nodes.

A popular and simple routing technique is the dimension-ordered routing which routes
packets in one dimension, then moves on to the next dimension, until the final destination is
reached. (Manhattan)

While the above technique is often implemented, adaptive routing techniques are the key
when we ask for better throughput and fault tolerance. Adaptive routing enables alternative

paths, depending on the network congestion and run-time faults.

There have been also tested techniques, which are a hybrid and combine features of both
deterministic and adaptive routing.

13



Furthermore there are the oblivious routing techniques, which generate routes without any
knowledge of the traffic.

Finally, there is the fully customized approach of the routing table. The routing table
contains the next destination of a packet (namely the output port) according to its current
location and its destination. This technique is application-specific and there are works which
propose thermal-(L. Shang et al : “Dynamic voltage scaling with links for power optimization
and management of on-chip networks”) and reliability-aware(Manolache et al : “A network
traffic generator model for fast network-on-chip simulation”) routing algorithms.

When it comes to irregular topologies the routing algorithm becomes a key issue. Despite the
existing research, it remains difficult to find minimal routes and at the same time avoid
deadlock and livelock situations. On the one side it is not always reliable to rely on
dimension-ordered routing and on the other side routing tables incur delay, area and power

overheads.

To conclude, routing algorithms remain a challenging area of NoC research. Although there
is research into routing algorithms for off-chip interconnection networks, the different
nature of on-chip communication (high frequency, low latency) leads to implications.
Sophisticated solutions cannot be lightweight enough and simple ones fail to accomplish
tasks as reliability and low-power design. To date, the vast majority of NoC routing solutions
have focused on unicasting (i.e., sending from one PE to another).

1.2.2 Switching Technique

Switching technique, or flow control, governs the way in which messages are forwarded
through the network. Typically the messages are broken into flow control units (flits) which
represent the smallest unit of flow control. The switching algorithm then determines if and
when flits should be buffered, forwarded or simply dropped. Mainly it addresses the issue of
ensuring correct operation of the network.

Among the commonly used techniques in interconnection networks, wormhole switching
seems the most promising for NoCs due to the limited availability of buffering resources and

tight latency requirements.

Virtual channels have been also adopted for NoC design to improve network bandwidth and
tackle deadlock.

Depending on the case, we can choose between:

14



Circuit and packet switching: In circuit switching the circuit from source to
destination is setup and reserved until the transport of data is complete. Packet
switching on the other hand is forwarded on a per-hop basis, each packet containing
routing information as well as data.

Connection-oriented  and  connectionless  switching:  Connection-oriented
mechanisms involve a dedicated logical connection path established prior to data
transport. The connection is then terminated upon completion of communication. In
connectionless mechanisms, the communication occurs in a dynamic manner with no
prior arrangement between the sender and the receiver, Thus circuit switched
communication is always connection-oriented, whereas packet switched
communication may be either connection-oriented or connectionless.

1.2.3 Quality of Service and Congestion Control

Conventional packet-switched NoCs multiplex message flows on links and share resources

among these flows. While this results in high throughput, it also leads to unpredictable delays

per individual message flows. For many applications with real-time deadlines, this non-

determinism can substantially degrade the overall application performance. Thus, there is a

need for research into NoCs that can provide deterministic bounds for communication delay

and throughput. We need to find a resource allocation strategy (size of output buffers of

routet, bandwidth of channel and/or packet injection rates in the network.

This problem is addressed adopting methods such as :

virtual channels

multiple priority levels for urgent traffic and regular traffic

QoS-aware congestion control algorithms

1.2.4 Topology

Topology refers to the structure of the network and its organization. More specifically, it has

to do with the number of PEs, routers, links and the graph structure interconnecting them.

There are different approaches when it comes to the selection of the topology model.

Parameters such as simplicity and regularity play a significant role, since regularity improves

timing closure, reduces dependence on interconnect scalability and enables the use of high-

15



performance circuits. However, the target application traffic profile has to be taken into
consideration as well, as far as the placement and interconnects are concerned.

Typically, 1-D and 2-D topologies (mesh, torus etc) are the default choices for NoC
designers and constitute over 60% of cases. Mesh and torus topologies have 4 neighbor
nodes but torus has wraparound links connecting the nodes on network edges and mesh
does not.

The k-ary tree and the k-ary n-dimensional fat tree are two alternate regular forms of
networks explored for NoC.

The Octagon NoC topology presented in Karim et al.(2001,2002) is a further example of a
novel regular NoC topology. Its basic configuration is a ring of 8 nodes connected by 12
bidirectional links which provides two-hop communication between any pair of nodes in the
ring and a simple, shortest-path routing algorithm. Such rings are then connected edge-to-
edge to form a larger, scalable network.

(=
-

{a) mesh (b)torus (c)binary tree

Figure 4: Regular forms of topologies

But so far various irregular topologies have been developed and investigated as well. They
offer specific solutions for various performance, area and power tradeoffs (e.g. concentrated
mesh, flattened butterfly, hierarchical star). Furthermore, there are also works which help the
designer decide for the appropriate NoC topology from a given topology library for various
power/performance tradeoffs. (Radu Marculescu, Keynote Paper).

Apart from 1-D and 2-D topologies, 3D architectures have been proposed as well. They
emerged when the integrating ICs in 3-D fashion started becoming popular. It is true that

16



they solve a number of issues, but they need further exploration. In the work (Soteriou et al :
“Polaris: A system-level roadmapping toolchain for on-chip interconnection networks”), it
was found that 3-D mesh is the most suitable NoC in many cases.

Finally, the need for irregular and customized topologies is existent in a number of cases,
where simple topologies are not applicable. For example, when we are faced with area
problems, regular architectures are not the most efficient ones. In addition, for real
applications, the communication requirements are not evenly distributed among the
components. As a result, designing the network to meet the extreme cases leads to under-
utilization of the resources and designing it to meet the average cases causes bottlenecks.
There have been suggested various approaches which customize the network topology
according to the target application (W.H Ho et al : “A methodology for designing efficient
on-chip interconnects on  well-behaved communication patterns”) and the
energy/performance constraints (U Otgas et al: “Energy- and petformance driven NoC
communication architecture synthesis using a decomposition approach”).

(a) Irregular connectivity (b) Mixed topology

Figure 5 : Irregular Forms of topologies

Generally speaking, the theoretical problem of optimal topology synthesis for a given
application does not have a known theoretical solution and it is a challenge on its own right.
Apart from that, the customized architectures may need complex floorplanning and uneven

wire lengths in order to function efficiently.

17



1.2.5 Buffering

Buffers are an integral part of any network router. In by far the most NoC architectures,
buffers account for the main part of the router area. As such, it is a major concern to
minimize the amount of buffering necessary under given performance requirements.

There are two main aspects of buffers (i) their size and (ii) their location within the router.
Tamir and Frazier (1988) have provided a comprehensive overview of advantages and
disadvantages of different buffer configurations (size and location) and additionally proposed
a buffering strategy called dynamically allocated multi-queue (DAMQ) buffer. In the
argument of input vs. output buffers for equal performance the queue length in a system
with output port buffering is always found to be shorter than the queue length in an
equivalent system with input port buffering. This is so, since in a routing node with input
buffers, a packet is blocked if it is queued behind a packet whose output port is busy(head-
of-the-line blocking). With regards to centralized buffer pools shared between multiple input
and output ports vs distributed dedicated FIFOs, the centralized buffer implementations are
found to be expensive in area due to overhead in control implementation and become
bottlenecks during periods of congestion. The DAMQ buffering scheme allows independent
access to the packets destined for each output port, while applying its free space to any
incoming packet. DAMQ shows better performance than FIFO or statically-allocated shared
buffer space per input-output port due to better utilization of the available buffer space
especially for non-uniform traffic.

In Rijpkema et al.(2001), a somewhat similar concept called virtual output queuing is
explored. It combines moderate cost with high performance at the output queues. Here
independent queues are designated to the output channels, thus enhancing the link utilization
by bypassing blocked packets.

In Hu and Marculescu (2004a), the authors present an algorithm which sizes the input
buffers in a mesh-type NoC on the basis of the traffic characteristics of a given application.
For three audio/video benchmarks, it was shown how such intelligent buffer allocation
resulted in about 85% savings in buffering resources in comparison to uniform buffer sizes
without any reduction in performance.

As a conclusion, buffer sizing and structure(location) should be thoroughly investigated if
we want to avoid misusing the chip resources.

18



1.3 Power and Thermal Management

Due to concerns on battery lifetime, cooling and thermal budgets, power issues are at the
forefront of NoC design. Indeed, several NoC prototypes show NoCs taking a substantial
portion of system power, e.g. ~40% in the MIT “RAW?” chip and ~30% in the Intel 80-core
teraflop chip. The aim of the designer is to minimize or constraint the metrics of interests
such as (peak power consumption, energy consumption and average or peak temperature). It
is an optimization problem under various constraints.

There have been proposed various approaches referring to power management issue. There
has been research into run-time NoC power management using DVS on links, as well as
shutting links down based on their actual utilization. Globally asynchronous locally
synchronous (GALS) approaches to dynamic voltage and frequency scaling further leverage
the existing boundaries between various clocking domains.

Every designer needs accurate and application-aware energy models. Ideally such models
should target both dynamic and static power dissipations.

1.4 Application Modeling

Traftic models refer to the mathematical characterization of workloads generated by various
classes of applications. With network performance being highly dependent on the actual
traffic, it is obvious that accurate traffic models are needed for a thorough understanding of
the huge design space of network topologies, protocols, and implementations. Since
implementing real applications is time consuming and lacks flexibility, analytical models can
be used instead to evaluate the network performance early in the design process.

We are in need of stochastic traffic models and statistical parameters that describe the

asymptotic properties of the network accurately and facilitate analysis.

For example, starting from real multimedia traces, one can build an analytical model that
captures the long-range dependencies and then using the results, various performance and
cost metrics such as packet loss probability and buffer size can be optimized.

Unfortunately, the research in this area is still lagging due to the latch of well-defined NoC
benchmarks. This situation has two primary reasons. First, the applications suitable for NoC
platforms are typically very complex. For instance, it is common for applications to be
partitioned among tens of processes. As a result it is unclear it the benchmarks stress the
NoCs effectively. Second, this research requires detailed information about the dynamic
behavior of the system; this is hard to obtain even using simulation or prototyping.
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Chapter 2:

Customized NoC architectures

Abstract

In this chapter, customized Network-on-Chip architectures are examined. We present
existing solutions, which implement configurable architectures as well as complete design
flows. Finally, we describe the proposed solution.
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2.1 Introduction

As we discussed above, the designers of a NoC have to take into consideration various
parameters and tradeoffs regarding the NoC features, in order to have the desirable
performance. More particularly, factors like latency, throughput, power dissipation, and
finally reliability are affected by the various design choices and sometimes the improvement
of one ends in the deterioration of the other.

Moreover, each NoC architecture is applied on a different platform and has to adhere to a
different set of constraints. The chip resources, the mapping and traffic profile of the target
application, the power and thermal specifications make the design of each chip
communication system a unique optimization problem.

Furthermore, the complexity of the modern chips and applications along with the need for
short development times are additional reasons for the existence of parameterized and
reusable vhdl code. In case of reusable code, the design is portable and easily adaptable to
any alterations. As a result the designer can easily apply the changes in the value of some
parameters and take many different network architectures. We are going to talk about
reusable code techniques in Chapter 3.

Apart from that, when it comes to the verification of a NoC structure, the designer has to try
a range of possible solutions with different parameters (topology, buffering size etc) and
produce a variety of test benches, which are going to simulate the traffic flow of the target
application and stress the network. This task is time-consuming and has to become
automatically in order to save time and money.

To conclude, it is crucial to develop the basic platforms and tools and invest initially to build
the work environment, so that we can later on generate and test various NoC models

without having to manually produce different architectures and test benches.

In this Chapter, we present some samples of related research conducted both by universities
and industry.
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2.2 Related Work

There have been published various works, which focus on the reusability and
parameterization of VHDL code of the router architecture.

These works are based on the development of generic platforms, which can support
alterations in parameters such as buffer size, the channel width, the sizes of the fields of the
flits, the maximum number of retransmission of a flit, the number of ports etc.

Their aim is to reach some conclusions about the set of parameters, which lead to better
performance results.

We will present two of these works, which describe generic NoC platforms.

2.2.1 Spidergon NoC

In “Generic and Extensible Spidergon NoC” (Abdelkrim Zitouni et al), the writers present a
GALS and generic NoC architecture based on a configurable router. This router integrates a
sophisticated dynamic arbiter, the wormhole routing technique and can be configured in a
manner that allows it to be used in many possible NoC topologies such as Mesh 2-D, Tree
and Polygon architectures.

The proposed Spidergon NoC architecture is constructed based on an elementary polygon
network which is a combination of the star and the ring architectures.

Elementary polygon network

Ps =] [=] i =} =]
Px] R (=) =
PR =]l TR[i =] = |

gl
|
A
;/L
%\
L

7
d
d
d
i

Figure 6:Example of a Spidergon architecture of valence m = 8
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This elementary network is formed by 4R+1 (R=1,2 etc.) routers including a central router
that is connected with the 4R peripherals routers via point to point links. The peripheral
routers are connected to each other in the form of a ring. The elementary network is
characterized by its valence (m = 4R) that represents the number of the peripheral routers.
These routers necessitate 2m links to be connected to the central router. Each peripheral
router is connected to 4 input/output ports and the central router is connected to m+1
input/output ports. A Spidergon architecture with valence m is constituted by 3m+1 routers
that necessitate 7m point to point links to be connected with each other.

Furthermore, the sizes and depths of the FIFO contained in this router, the number of
input/output potts, the size of the fields of a flit, the number and the time of retransmission
and the maximum numbers of the requests sent to the arbiter are also generic. Moreover, it is
generic in terms of supported number of cores. All these characteristics make the proposed
NoC flexible and extensible according to the applicative aspect and thus improve the quality
of service required by the application to be mapped on it.

The development of this network is based on a library of generic models of VHDL blocks.
The files of this library contain protocol (number of retransmissions, allowed requests, time
out, degrees of adaptability and size of each field forming the various types of flits ) and
physic ( width and depth of the FIFO, number of input/output of the routers and the
valence m of the network) parameters. These files also contain all the function used by the
VHDL blocks like the path calculation function, the CRC checking function, etc. The
generation of the Spidergon architecture is done automatically by indicating the valence m in
the package file by using the VHDL GENERATE clause.

The portion of the VHDL code following shows how to generate the peripheral routers in
an elementary Polygon network of valence m:

Generate : For I in 1 to m generate
Perif Router : Router generic map (width, i)
Port map (RO=> Request in (i),

Data inO => Input (i+l) *width-1 downto i*width),

End generate ;

The performances of the proposed NoC were studied and compared with two other NoC
with similar architectures (Mesh and Torus). A parametrised network model was constructed
using HASE (Hierarchical Architectural Simulation Environment).

Figure 7 shows the evolution of average latency according to the load for two sizes of the

Spidergon architecture. The Spidergon architecture of valence m =12 contains 37 routers
and the Spidergon architecture of valence m = 20 contains 61 routers. It can be seein that
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the latency increases with the size of the network. A larger network emits more packets. It
proposes also more buffers for stoking these packets in the event of conflicts.
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Figure 7 : Latency versus load for two Spidergon architectures

Figure 8 shows the evolution of average latency according to the load for architecture
Spidergon of valence m = 12(37 routers) and two other similar architectures Mesh and Torus
with 32 routers. The Spidergon architecture is characterized by a lower latency than the two
other architectures. The difference is increasingly large after saturation. Also, the network
Spidergon saturates later than the two other architectures. Indeed, the packets cross less
routers number in the Spidergon network than in the network Mesh 2D and Torus.
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Figure 8 : Latency versus load for three architectures (Spidergon, Mesh and Torus)

Figure 9 shows the evolution on the area of the networks Mesh, Torus and Spidergon
according to the number of routers in technology CMOS 0.35 um for buffers of 6 words.

25



The larger the network is, the greater are the differences between areas of the three
networks. This is due to the central routers of the Spidergon network which have m+1
buffers, whereas in Torus architecture all the routers have 5 buffers and in the Mesh network

the peripheral routers have only 3 or 4 buffers.
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Figure 9 : Area of NoC versus number of routers in the case of the Torus, Mesh and

Spidergon architectures

The writers conclude that the value added by the Spidergon architecture resides in its
capacity to handle a suitable cost/performance compromise in the field of NoC. Spidergon is
characterized by the lower latency and later saturation. The next step is the modeling of the
architecture in SystemC language at TLM(Transaction Level Modeling).

2.2.2 RASoC : A Router Soft-Core for Networks-on-Chip

In the paper “RASoC : A Router Soft-Core for Networks-on-Chip” (Cesar Albenes Zeferino
et al.), the design of a parametrized router is introduces. RASoC is implemented as a
reusable VHDL model which can be configured with different sizes and allows the tuning of
the NoC parameters in order to meet the requirements of the target application.

The paper gives a thorough description of the router structure. More specifically, the router
has 5 ports maximum (North, East, South, West and Local). Depending on the position of a
RASoC instance on the NoC and on the network topology, one or two of them need not be
implemented, reducing the network area. RASoC ports include two unidirectional opposite

channels.
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Figure 10 : The interface of RASoC

RASoC is implemented in a distributed way and it is composed by instances of two kinds of
modules : input channel (in) and output channel (out).

The top level entity, named RASoC has three generic parameters, 7, 7 and p which define the
data channel width, the width of the routing information in the header and the FIFO depth,
respectively. By tuning such parameters, one can synthesize routers with different cost and
performance ratios. The lower-level entities receive from the higher-level entities the
parameters they need to generate their architectures with the required dimensions. The
acronyms in the names of the bottom level entities represent the actual name of each entity
(e.g IFC is implemented by the input_flow_controller unit).
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Figure 11 : Hierarchy of entities in the model

The RASoC model was synthesized in an FPGA of the family Altera FLEX 10KE. During
the experiments, various combinations of parameters were tested and the costs in area for
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the buffers and the entire architecture as well as the costs of bottom-level entities were
measured.

In the tables below FF-based and EAB-based stand for the two different FIFO techniques.

We are shown the number of logic cells (ILC), flip-flops (Reg) and memory bits (Mem)

consumed in each approach for n=8,16 and 32 bits and for p =2 and 4 flits. Each position in
the buffer is n +2 bits wide.

2 flits 4 flits
LC |Reg | Mem | LC | Reg | Mem
8-bit | 35 | 22 0 76 | 43 0
FF-based | 16-bit | 59 | 38 0 124 | 75 0
32-bit | 107 | 70 0 220 | 139 0
8-bit | 13 5 20 19 8 40
EAB-based | 16-bit 13 5 36 19 8 72

32-bit 13 5 68 19 8 136

Table 1: Costs of buffers

2 flits 4 flits

LC | Reg |[Mem| LC | Reg | Mem
8-bit | 570 | 160 | O | 795|265| 0
FF-based | 16-bit | 770 | 240 | 0 1115} 425 | O
32-bit [1173] 400 | O |[1830| 745 | 0
8-bit | 460 | 75 | 100 | 486 | 90 | 200
EAB-based [16-bit | 540 | 75 | 180 [ 566 | 90 | 360
32-bit | 700 | 75 | 340 | 726 | 90 | 680

Table 2 : Costs of RASoC
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Entities LC Reg Mem
IRS - Input Read Switch 1% 0% 0%
IC - Input Controller 8% 0% 0%
IB - Input Buffer 12% 44% 100%
IFC - Input Flow Controller 1% 0% 0%
OFC - Ouptu Flow Controller 0% 0% 0%
ORC -  Output Rosk Switch 1% 0% 0%
ODS -  Outpu Data Switch 49% 0% 0%
OoC - Output Controller 28% 56% 0%

Table 3 : Costs of bottom-level entities

As a conclusion, RASoC allows for the automatic building of instances with different sizes.
The router has been used to enable testing of desing methodologies.

2.2.3 AEthereal Network on Chip

The Athereal NoC was introduced by Researchers of the Philips Research Laboratories. The
tenet of this NoC is that guaranteed services (GSs) (such as uncorrupted, lossless, ordered
data delivery; guaranteed throughput and bounded latency) are essential for the efficient
construction of robust SoCs. One reason is that many IPs have inherent performance
requirements, such as minimum throughput (for real-time streaming data) or bounded
latency (for interrupts).

GSs require resource reservations for the worst case. To exploit the NoC capacity unused by
GS traffic, the Athereal NoC also provides best-effort services (BESs). Furthermore the
/thereal NoC uses contention-free routing or pipelined time-division multiplexed circuit
switching to avoid buffer overflow or dropping of data.

In the architecture proposed, a router with N inputs and N outputs uses a slot table to avoid
contention on a link, divide up bandwidth per link between connections and switch data to
the correct output. Every slot table T has S time slots (rows) and N router outputs
(columns). There is a logical notion of synchronicity: All routers in the network occupy the
same fixed-duration slot. In a slot s, a network node (that is a router or network interface)
can read and write at most one block of data per input and output ports, respectively. In the
next slot, (s+2) modulo §, the network node writes the read blocks to the appropriate output
ports. Blocks thus propagate in a store-and-forward fashion and cannot deadlock. The

29


http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.62.8878&rep=rep1&type=pdf

latency that a block incurs per router equals the duration of a slot and the slot reservations
guarantee bandwidth in multiples of block size per S slots.
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Figure 12 :Contention-free routing:
Network of three routers at slot s =2 with corresponding slot tables

The best-effort routing is a conventional wormhole-routing, input-queued router. Round-
robin arbitration of the switch occurs at the granularity of three words ( a flit, or flow-control
unit). The capacity of the input queues is a router parameter. Bes packets use source routing.
The packet header contains the path from source to destination. Each router removes as
many bits from the path as necessary to determine to which output the packet must go.
Because of the absence of multiple buffer classes, BES packets can deadlock. We avoid
deadlock with appropriate routing strategies.

To conclude, the Ethereal NoC developed by Philips aims at achieving composability and

predictability in system design and eliminating uncertainties in interconnects, by providing

guaranteed throughput and latency services. It also provides run-time reconfiguration.
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2.3 Proposed Solution

As we have seen above, there has been conducted extended research and experimentation
regarding irregular NoC architectures. Models have been proposed which improve various
aspects of performance and tools have been introduced which enable NoC development.
However, there is still need for new tools and new approaches which may contribute to our
understanding of NoC architectures and introduce innovative ideas.

Furthermore, the target set by the “Microprocessors Laboratory” of the FElectrical and
Computer Engineering School at the National Technical University of Athens is the
development of a suite of tools for the support of the NoC design. The tool chain already
includes some high-level platforms, which are responsible for the simulation of the NoC
function, the topology optimization, the traffic profiling etc. Furthermore, a router
architecture has been developed by Konstantinos Tatas, a former member of the lab.

The aim of the current master thesis is the development of an XML-based tool for the
automatic generation of customized NoC architectures. The key feature of the tool is its
reliability and efficiency, which help the NoC designer avoid errors and shorten the
programming time.

Our first step is to extend and modify the router module architecture developed initially by
Konstantinos Tatas, so that we have a reusable and generic model.

The next step is the production of a Network on Chip architecture, which has as
components the aforementioned routers. The architecture is going to be generic as far as the
topology, the port number and the switch depth of each router, the routing algorithm/table
and the arbitration technique are concerned. These parameters are going to be integrated
either in a package file or in the top-entity.

Finally, a tool, which will enable the automatic generation of the VHDL code according to
XML input, is going to be developed.
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Chapter 3:

General-Purpose platform

Abstract

In this chapter we explain the reusability concept, which characterizes our architecture.
Furthermore, we give the structural description of the router architecture, analyzing the
function of every single component.
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3.1 Introduction

The first step for the development of our tool has to do with the VHDL code describing the
router. This code exists already but is not in the desirable and appropriate form. It is not
easily configurable, since it describes the architecture of a router with fixed port number,
fixed buffer size and the only option for routing is the xy routing. The processes have been
implemented for the above sizes and the dimensions of the vectors are fixed as well. As a
result the code has to become reusable so that we can change the value of various parameters
effectively and in a “centralized” way.

The second step is the generation of a network of routers, which will be generic in the
number and topology of routers. Furthermore, we will enrich the code, adding a test bench
for verification of the NoC function.

The final code will conform to the principles of reusability and thus will be easy and fast to
apply changes.

3.2 Reusability

The term reusability refers to the property that a segment of source code has and which
allows it to be used again with minor modifications in case we want to add new features and
functionalities.

It is a characteristic, which is often adopted in industry since it reduces development times,
eliminates bugs, enables the easier understanding of code and makes changes easier to apply.
As far as reusability of VHDL code is concerned, there has been extended study and books
about this topic.

The books “Circuit Design with VHDL” (by Volnei Pedroni) and “Reuse Methodology
Manual for System on Chip Designs” by (Keating, Bricaud) gave us all the necessary
information regarding reusability techniques and characteristics. They describe VHDL
structures and examples, in a way which supports reusability.
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3.3 Router architecture

The VHDL code for the router architecture is structural. More particularly, it consists of a
top-entity ( noc_switch) and its components, namely the receiver, the transmitter, the buffer,
the prioritizer and the switch matrix. In Figure 13 we can see the architecture of the router.
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Figure 13 : Structural router architecture

We are going to briefly describe the function of each of these components and how they
communicate with each other.
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3.3.1 Receiver

The receiver is responsible for polling the respective data valid signal to detect incoming data
from each port, selecting the output port for each packet according to its destination, and
then storing it to the appropriate buffer. It is composed of a state machine and the output
selection logic.

The receiver state machine has the following states:

The RX control logic diagram is shown in Fig, while a RX timing diagram is shown in
Figure 14.

IDLE: The state machine is constantly polling the corresponding data valid signal.
When the signal is asserted the state machine goes to the dir_check state. Idle is the
default state (after reset, and for self-correction) of the state machine.

DIR_SEL: In this state, the state machine enables the destination port select logic
and goes to the writing state.

RX: The state machine enables the write (RX) side of the Buffer FIFO increments
the corresponding Buffer FIFO counter, writing input packet to the appropriate
buffer. When the counter has been incremented PACKET SIZE/WORDLENGTH
times, the whole packet has been stored, and the state machine returns to the idle

DATA_VALID
FIFO_CouU)

PACKET_SIZ

ER+=

Figure 14: Receiver Control Logic State Diagram
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Figure 15: Receiver timing diagram

3.3.2 Output Port Selector

The output port selection logic is responsible for reading the destination of the incoming
packet and, taking into account the switch address, forward it to the appropriate buffer by
setting the switch matrix decode signal appropriately. It can be implemented either by using a
ROM LUT to store the decode signals of the output port depending on the destination. The
destination if the pair (x,y), which describes the location of the destination address.

The default routing algorithm is the XY but later on we introduced the additional feature of
the user-defined routing table.

The routing table is a matrix whose number of elements is equal to the number of the
routers on the network. For example a 2x2 NoC has a 4 element matrix. Each element of
this matrix is a submatrix with another 4 elements, each of which determines the output port
of the data, in case that the destination is the correspondent switch.

For example for the NoC in Figure 20, if the data has entered switch 2 and it has destination
the switch 0, it will use the output port 0.

CONSTANT lut array : rom lut type array :=(
((4,1),(1,1)),((3,2),(4,2)), ((0,4),(1,1)), ((4,3),(0,4)) )

37



3.3.3 Buffer

The buffer is a FIFO where a maximum number of words can be stored. This size is defined
as switch_depth in the code. The location of the buffer is in the output of each port.

The buffer will be implemented as a dual-port RAM, and for FPGA rapid prototyping, an
appropriate number of embedded BRAMS will be used. The FIFO counters and enable
signals in the write (input) side are controlled by the Buffer Control Logic, while the
corresponding signals of the read (output) side are controlled by the Arbitration Logic.

3.3.4 Transmitter

The transmitter is responsible for the transmission of the packets. It communicates with the
receiver (in order to be notified for the arrival of a new packet and update the fifo counter),
the prioritizer (in order to get the permission for the transmission when more than one
packets want to use an output port), the buffer(in order to send the enable signals for the

reading of the data).
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Figure 16: TX Logic block diagram
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The transmitter state machine has the following states:

IDLE: The state machine is constantly polling the FIFO buffer counters. When the
write counter value is greater than the read counter value, a packet is present in the
buffer, waiting to be sent. When such a condition is detected the state machine goes
to the PR_CECK. IDLE is the default state (after reset, and for self-correction) of
the state machine.

PR_CHECK: In this state, the state machine checks if there are other packets
pending in the same destination port and resolves their priority according to the
existing priority scheme. If the output is granted, it goes to the TX state, otherwise it
returns to the idle state.

TX: The state machine enables the read (TX) side of the buffer, increments the
corresponding read Buffer FIFO counter, reading the input packet out of the
corresponding buffer, while enabling the appropriate 4-to-1 MUX and asserting the
corresponding DATA_VALID_OUT signal, in order to send the packet out of the
selected port. When the counter has been incremented
PACKET_SIZE/WORDLENGTH times, the packet transmission is complete, and
the state machine returns to the idle state, after disserting the appropriate signals.

Figure 17: Transmitter Control Logic State Diagram

39



1 2 3 4 5 B 7 8 g 10
CLK t+ 4+ L+ L +& L4+ L+ L+ [+ L+ [ 1
STATE_TX IDLE X_PR_CHECK X i W

EN /

COUNTER_TX o X1 X2 X X e )
DATA VALID_OUT /

DATA_OUT X X AT X X_

Figure 18: Transmitter timing diagram

3.3.5 Prioritizer

The prioritizer is the entity which accounts for the arbitration policy. More particularly, it is
responsible for scheduling in the case of packets requesting to exit to the same
direction(output port). Multicasting is not supported. Each packet can only exit towards a
single direction, except its own (cannot return).

There are two different arbitration policies implemented in the prioritizer and it is up to the
user which one will be selected.

o Fixed priority: 1deally, the fixed priority should be programmable, using registers. A
default output port priority scheme from highest to lowest could be: Port0, Portl,
Port2, and Port3. It is easy to implement, but could cause starvation of low priority
ports if there is a lot of traffic on high priority ports.

o Round-robin priority: The packets are scheduled in a round-robin manner. For fixed-
sized packets, this scheduling scheme results in virtually no congestion. It is
implemented using a four bit ring counter, producing a single, circularly shifted,
enable signal.

3.3.6 Router communication schema

In the following picture, we can see a rough description of the router communication
schema.
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Figure 19: Communication schema of noc_switch
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3.4 NoC architecture

The NoC top entity contains one or more noc_switch components and their links(topology).
In order to have different switches we had to integrate all the parameters into arrays, which
are assigned in a reusable package file. Furthermore, we developed a test bench, which is
configurable as well.

3.4.1 Top-entity

Underneath, we present the code of the top entity noc. The signal assignments which define
the links between the switches, as well as the traffic refer only to this test case and are fully
configurable.

3.4.2 Package

The package includes the definitions of all configurable and standard data and data
structures. It also contains the function LUT, which has two possible forms, one of which is
displayed here.

3.4.3 Testbench

The testbench is a fully configurable part of the code. It includes all the signal assignments,
which are responsible for the traffic in the network. We are actually simulating the traffic that
the IP cores would produce if they were integrated in the design. As a result we have the
chance to quickly and reliably test the network behavior.

Although there are many sophisticated tools, which offer high-level simulation ( e.g Noxim),
the existence of a testbench is a necessary step, in order to verify the functionality of the
code.

A testbench can also be useful in case that new features will be added in the future.

The code displayed underneath is the testbench of a specific case. The testbench is a

configurable part of the code and is written according to the noc specifications and the
application traffic desirable.
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3.4 Testcase

We are going generate a NoC like the one of Figure 20 .The links are the ones displayed in

the picture and the XY routing algorithm is deployed for the servicing of the transmission
requests.

2 2
3 5 1 3 3 1
4 0 4 0

2 2
3 0 1 3 1 1
4 0 . 0

Figure 20 : 2x2 NoC

The function for the implementation of the XY routing is is the following and is located in
the noc_pkg.vhd file :

function LUT (X S, Y S, p : integer) return rom lut type is --the port
is not taken into consideration in the implementation of the function

variable x: integer range 0 to pe num x-1; --switch x address
variable y: integer range 0 to pe num y-1; --switch y address
variable port num: integer range 0 to max ports-1; --port number
variable rom lut: rom lut type;

begin
port num := p;
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for i in 0 to pe num x-1 loop --for every pe in the x dimension

3 then --bouncing back packet
= 0;

--exit to the y

3; —--exit left port

1 then --bouncing back packet

2; —--exit to the y

1; --exit right port

then --bouncingback packet

y) = 1; --exit to the x

y) := 0; --exit upwards

then --bouncingback packet

y) = 3; --exit to the y

y) = 2; —--exit downwards

then --bouncingback packet

y) = 0; --exit to the y

y) = 4; --exit to pe

X = 1i;
for j in 0 to pe num y-1 loop --for every pe in the y
dimension
y = 3
if X S > i then
if port num =
rom lut(x, y)
direction
else
rom lut(x,y) :=
end if;
elsif X S < i then
if port num =
rom lut(x,y) :=
direction
else
rom lut(x,y) :=
end if;
else
if Y S > j then
if port num = 0
rom lut (x,
direction
else
rom lut (x,
port
end if;
elsif Y S < j then
if port num = 2
rom lut (x,
direction
else
rom lut (x,
port
end if;
else
if port num = 4
rom lut (x,
direction
else
rom lut (x,
end if;
end if;
end if;
end loop;
end loop;

return rom lut;
end function;
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Figure 21: Waveform of the testcase (We send traffic requests from router 0 to router 3 and from router 0 to router 2).

45



46



Chapter 4:

Design Flow and Automatic
Generation Tool “NoCGen”

Abstract

In this chapter, we describe the design flow for the noc platform generation. Furthermore,
we explain in detail the configuration files, which are taken as input by the generation tool
“NocGen”.
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4.1 Introduction

The design flow, which is depicted in Fig 20, includes the steps required in order to build an
irregular architecture.

The first phase is the application mapping and the traffic profiling. Next, we need a topology
targeted at the application and its communication needs. The topology determines how the
cores are going to be distributed on the chip and interconnected with each other.
Furthermore, the designer is going to give various directions, as far as the buffer size and
number of ports are concerned.

netlist.xml

Topology

noc_pkg.vhd
XML Parser
(NoCGen)
?

elements.xml

noc_tb.vhd

(Application Mapping/Traffic Profiling

Figure 22 : Design Flow

All the above features are incorporated into three configuration files written in xml.

The first one named “elements.xml contains information about the buffer sizes and number
of output ports of each of the routers. These characteristics are determined by the designer,
who has to take into consideration the traffic profile of the application. It is a decision, which
will propably be reached after system-level exploration as well and consideration of the
feedback coming from the network function.

The file “netlist.xml” contains information about the topology of the design, namely the way
the cores are connected with each other. In the current thesis, we used the experimental
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results of the work of Vourkas Ioannis. The tool developed during his thesis gives optimized
topologies for the execution of various hardware applications.

The file “traffic.xml” contains some samples of the traffic generated during the execution of
the above applications.

“ NocGen” is an XML-based tool, which generates automatically a Network on Chip with
the properties described in the above mentioned configuration files.It parses the
aforementioned xml files and writes the vhdl file noc.vhd, noc_tb.vhd, noc_pkg.vhd.

These vhd files have some standard and some reconfigurable parts. The tool writes the

reconfigurable part, which has to do with the topology, the traffic and some of the sizes of
the router according to the specifications.

4.2 Configuration Files

Underneath, we present the XML schemas and a short example for each of them.

4.2.1 Router characteristics

The file named “elements.xml” contains the (x,y) coordinates of each router, as well as the
switch depth and the number of ports. The coordinates are of use for the process of routing
and the later process of floorplanning.

The XML schema is the following:

<xs:schema xmlns:xs="http://www.w3.0rg/2001/XMLSchema">

The network is a sequence of the elements “switch”

<xs:element name="ips">
<xs:complexType>
<xs:sequence>
<xs:element ref="switch" maxOccurs="unbounded" />
</xs:sequence>
</xs:complexType>
</xs:element>

Each “switch” element consists of the element “switchPorts” and the
element “switchDepth”. It has as attributes the x, y coordinates.
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<xs:element name="switch">
<xs:complexType>
<xs:sequence>
<xs:element name="switchPorts" type ="xs:nonNegativelnteger" />
<xs:element name="switchDepth" type ="xs:nonNegativelInteger"/>
</xs:sequence>
<xs:attribute name="x" type="xs:nonNegativelInteger" use="required"
/>
<xs:attribute name="y" type="xs:nonNegativelInteger" use="required"
/>
</xs:complexType>
</xs:element>

An xml file which corresponds to this schema is :

<ips>
<switch x = "0" y = "0" >
<switchPorts>5</switchPorts>
<switchDepth>3</switchDepth>
</switch>
<switch x = "1" y = "0" >
<switchPorts>5</switchPorts>
<switchDepth>3</switchDepth>
</switch>
<switch x = "0" y = "1" >
<switchPorts>5</switchPorts>
<switchDepth>3</switchDepth>
</switch>
<switch x = "1" y = "1" >
<switchPorts>5</switchPorts>
<switchDepth>3</switchDepth>
</switch>
</ips>

The above file describes a network of four routers, which all have 5 switch ports and a
switch depth of 3 words.

4.2.2 Netlist

The file named “netlist.xml” includes the connections/links between the routers. Every port
can be connected with any another and the direction of the dataflow can be defined too.
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The XML schema is the following

<xs:schema xmlns:xs="http://www.w3.0rg/2001/XMLSchema">

The netlist contains a sequence of the elements “1link”

<xs:element name="netlist">
<xs:complexType>
<xXs:sequence>
<xs:element ref="1ink" maxOccurs="unbounded" />
</xs:sequence>
</xs:complexType>
</xs:element>

Each “1link” has a sourceRouter, a source Port, a destinationRouter and
a destinationPort. The order is important since it determines the
direction of the link.

<xs:element name="1ink">
<xs:complexType>
<xs:sequence>
<xs:element ref="sourceRouter" />
<xs:element ref="sourcePort" />
<xs:element ref="destinationRouter" />
<xs:element ref="destinationPort" />
</xs:sequence>
<xs:attribute name="ID" type='"xs:ID" use="required" />
</xs:complexType>
</xs:element>

<xs:elementname="destinationPort"type="xs:nonNegativeInteger"/>
<xs:element name="destinationRouter" type="xs:nonNegativeInteger"/>
<xs:element name="sourcePort" type="xs:nonNegativelnteger"/>
<xs:element name="sourceRouter" type="xs:nonNegativeInteger"/>

</xs:schema>
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An xml document for the above schema is the following:

<netlist>

<link ID="1link1">
<sourceRouter> 0 </sourceRouter>
<sourcePort> 1 </sourcePort>
<destinationRouter> 1 </destinationRouter>
<destinationPort> 3 </destinationPort>
</link>

<link ID="1link2">
<sourceRouter> 1 </sourceRouter>
<sourcePort> 2 </sourcePort>
<destinationRouter> 3 </destinationRouter>
<destinationPort> 0 </destinationPort>
</link>
<link ID="1ink3">
<sourceRouter> 0 </sourceRouter>
<sourcePort> 2 </sourcePort>
<destinationRouter> 2 </destinationRouter>
<destinationPort> 0 </destinationPort>
</link>

</netlist>

The above xml document describes the following topology.

Figure 23 : The topology of the NoC described in the xml document
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4.2.3 Traffic

In the file named “trafficxml” , the data exchange between the cores is described.

Every piece of data, which is produced by a core, proceeds to the router attached to the core

and its “aim” is to reach the destination with coordinates (x,y) . This destination is defined by

the first digits of the data packet.

For example, in the case that we have a 4*4 NoC (pe_num_x =2, pe_num_y =2 ) :

the first 2 (log2=2) binary digits of the packet will denote the x coordinate and the next 2

(log4=2) will denote the y coordinate. The xml data will include the source of the data

packet, the data packet itself (whose header is the destination), the clock period when the

transmission begins and the number of clock cycles while it is active.

We have to give the different transmissions, which come from the same IP core, one after

the other with ascending time order. For example if we have continuous traffic from a

network port but with different destinations, we should express like this:

<transmission ID="trans2">
<inputRouter>2 </inputRouter>
<inputPort> 4 </inputPort>
<transBegin>35</transBegin>
<transDuration>2</transDuration>
<dataSequence>
<data>0001001101110100</data>
</dataSequence>
</transmission>
<transmission ID="trans3">
<inputRouter>2 </inputRouter>
<inputPort> 4 </inputPort>
<transBegin>38</transBegin>
<transDuration>2</transDuration>
<dataSequence>
<data>0101001101110100</data>
<data>0111001101110100</data>
</dataSequence>
</transmission>

Furthermore, each transmission has to hold at least 2 clock cycles, even if the packet

contains only one flit (as in the case of the transmission transle above)
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The XML schema is the following

<xs:schema xmlns:xs="http://www.w3.0rg/2001/XMLSchema">

The traffic.xml consists of all the transmissions which take place in t
network.

<xs:element name="traffic">
<xs:complexType>
<xs:sequence>
<xs:element ref="transmission" maxOccurs="unbounded" />
</xs:sequence>
</xs:complexType>
</xs:element>

Each transmission is described by the inputPort and inputRouter,t
trasnBegin, the transBegin,the transDuration and the dataSequence.

<xs:element name="transmission">
<xs:complexType>
<xs:sequence>
<xs:element ref="inputRouter" />
<xs:element ref="inputPort" />
<xs:element ref="transBegin"/>
<xs:element ref="transDuration"/>
<xs:element ref="dataSequence"/>
</xs:sequence>
<xs:attribute name="ID" type="xs:ID" use="required" />
</xs:complexType>
</xs:element>

The inputPort and inputRouter denote the input point of the traffic in t
network. Traffic is initially generated by cores attached to port routers

<xs:element name="inputPort" type="xs:nonNegativeInteger"/>
<xs:element name="inputRouter" type="xs:nonNegativelnteger"/>

The datasBpogncedenotadnshehepddiiad whedatthetot bensmassimdntedarted and t
startDuration how long it lasted.
<xs:element name="dataSequence">
<xs:elerentompiexTypansBegin" type="xs:nonNegativelnteger"/>
<xs:element namesddquancs®mration" type="xs:nonNegativelnteger"/>
<xs:element ref="data" maxOccurs="unbounded" />
</xs:sequence>
</xs:complexType>
</xs:element>

<xs:element name="data" type="xs:string"/>

</xs:schema>
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An xml document for the above schema is the following:

<traffic>
<transmission ID="transO">
<inputRouter> 0 </inputRouter>
<inputPort> 3 </inputPort>
<transBegin>20</transBegin>
<transDuration>3</transDuration>
<dataSequence>
<data>0111001101110100</data>
<data>1100000000000000</data>
<data>1000000000100000</data>
</dataSequence>
</transmission>

<transmission ID="transl">
<inputRouter> 0 </inputRouter>
<inputPort> 3 </inputPort>
<transBegin>29</transBegin>
<transDuration>2</transDuration>
<dataSequence>

<data>1110000000000000</data>

</dataSequence>

</transmission>

</traffic>

4.3 Technical Details

The tool for the automatic generation of the vhdl code is implemented in C++. In order to
parse the XML files, we used the library xerces-c-3.0.1. Xerces is a validating XML parser
written in a portable subset of C++. It gives the ability to read and write XML data. A shared
library is provided for parsing, generating, manipulating, and validating XML documents
using the DOM, SAX, and SAX2 APIs. Xerces-C++ is faithful to the XML 1.0
recommendation and many associated standards. The parser provides high performance,
modularity, and scalability.

The code of the tool can be found in Appendix.
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Chapter 5:

Output Samples and Measurements

Abstract

In this chapter we study the efficiency of the NoCs-based interconnection architecture
regarding four multimedia applications. We take measurements of the power dissipated, the
maximum possible frequency, the slices and utilization for each of the above
implementations.
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5.1 Introduction

We are going to implement the network communication system of four popular hardware
applications. The applications are are (a) an MPEG-4 hardware encoder/decoder, (b) a video
object plane decoder (VOPD), (c) a multimedia system (MMS) and (d) a Multi-Window
Display (MWD).

The number of routers is clearly defined by the application. The topology for every network
will be irregular and the number of ports will be 3 or 5.

The traffic trace as well as the position of every router on chip is derived from the simulation
results of previous Microlab thesis , whose task was the system-level exploration of NoCs.

The buffer depth of each router will be defined according to the sample traffic needs but we
are going to investigate the changes in the overall design performance in case of its increase.
It is to be expected, that increase of buffer depth leads to growth of energy on the chip.

Furthermore, we are going to take measurements of the power dissipated, the maximum
possible frequency, the slices and utilization for each of the above implementations for
different buffer sizes.

More particulatly we are going to present the slices/slice registers/4 Input LUTSs utilization

for the 3 different buffer sizes in diagrams. Furthermore, we are interested in the maximum
frequency and total power dissipated for the 3 different buffer sizes.

5.2 Experimental Setup

Product Version ISE 12.1

Target Device Virtex 4-XC4VLX15
Temperature 50, 65, 80 (°C)
Number of Ports per router 5

Links Bidirectional

Buffer size 3,6,9

Topology Mesh, Irregular
Routing algorithm XY, routing table
Clock frequency 100 MHz
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5.1.1 MPEG-4

MPEG-4 is a broadly used protocol for audio and video encoding. A hardware encoder and
decoder consist of many components, so a NoC approach is suitable. The tested MPEG-4
includes various processing elements, such as a video unit, an audio unit, a risc processor, a
med cpu, a binary alpha block and three SRAMS. The total number of cores needed for the
application are 12, with an equal number of routers attached to them.

L L

IDCT MED CPU ADSP

L i L

SRAM2 UP SAMP AU

RISC SDRAM VU

Router10 Routerll Router12

BAB RAST SRAM1

Figure 24: Block diagram of MPEG-4(12 cores)
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Figure 25 : MPEG-4 Area utilization

As we can see the resources of the chip required increase as the buffer size increases. In the case
of buffer size 6 and 9 a significant percentage of the chip slices are used(almost 90%). A larger
buffer size would take up all the chip resources.

400 T Maximum Operation Frequency (MHz) ~—
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m Buffer size=3 mBuffersize=6  m Buffersize=9

Figure 26 : MPEG-4 Maximum Frequency

The maximum frequency at which the chip can function is 276 MHz in case of buffer size 9. This
frequency is well greater than our clock frequency (100 MHz). Furthermore, we notice that the
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ratio in performance degradation in term of maximum operation frequency is greater from
buffer size 3 to 6 than buffer size 6 to 9. This is due to the saturation, which takes place when
the buffer size is 6.

0420 —— —
Total Power (Watt)
0.400
0.380
0.360
0.340 -
0.320 -
0.300 -
T=50°C T=65C T=80°C
m Buffersize=3 mBuffersize=6 m Buffersize=9
Figure 27 : MPEG-4 Total Power Dissipation
0t Leakage Power (Watt)
0.2
0.15 -
0.1 -
0.05 -
0 .
T=50°C T=65°C T=280°C
m Buffersize=3 mBuffersize=6 m Buffersize=9

Figure 28 : MPEG-4 Leakage Power Dissipation

The total power dissipation increases as the buffer size increases. Furthermore, as expected
increase of chip temperature influences significantly the power. For this application leakage
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power is 0.168 at 50°C, 0.191 at 65°C, 0.219 at 80°C independent of the buffer size. The leakage
power for given temperature is constant among the different buffer sizes, because it depends
mainly on temperature.

5.1.2VOPD

Video object plane decoder is another digital signal processing application that has been
proposed for use on NoC and studied before (MUR, 2005). VOPD offers quality video
transition with decent bandwidth performance. The tested VOPD decoder includes twelve
processing elements, such as two length decoders, an AC-DC prediction, an ARM processor,
two memory components and a VOP reconstructor. The cores needed for the application
are 12 and so many are the routers as well.

L L

STRIPE
MEMORY

PADDING VAR LENGTH

L ¥ L

VOPD
UP SAMP RECONST ARM

RUN
IDCT M\ElﬁgDRY LENGTH
DECODER
. AC-DC INVERSE
IQUANT PREDICTION SCAN

Figure 29: Block diagram of VOPD (12 cores)
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Area utilization, frequency and power dissipation are depicted in upcoming figures.
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Figure 30 : VOPD Area utilization

As we can see the resources of the chip required increase as the buffer size increases. In the case
of buffer size 6 and 9 a significant percentage of the chip slices are used(almost 90%). A larger
buffer size would take up all the chip resources.

350 - Maximum Operation Frequency (MHz)
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Figure 31 : VOPD Maximum Frequency



The maximum frequency at which the chip can function is 260 MHz in case of buffer size 9. This
frequency is well greater than our clock frequency (100 MHz). Furthermore, we notice that the
ratio in performance degradation in term of maximum operation frequency is greater from
buffer size 3 to 6 than buffer size 6 to 9. This is due to the saturation, which takes place when
the buffer size is 6.
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Figure 32: VOPD Total Power Dissipation
Leakage Power (Watt)
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Figure 33: VOPD Leakage Power Dissipation
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The total power dissipation increases as the buffer size increases. Furthermore, as expected
increase of chip temperature influences significantly the power. For this application leakage
power is again 0.168 at 50°C, 0.191 at 65°C, 0.219 at 80°C independent of the buffer size. The
leakage power for given temperature is constant among the different buffer sizes, because it
depends mainly on temperature.

5.1.3 MWD

Multi window display is another digital signal processing application (TAM, 2005), which is also
suitable for NoC architectures and also uses twelve processing elements. The cores needed for
the application are 12 and so many are the routers as well.

L L

SE BLEND MEM1

L L L

JUG1 VS MEM2

MEMS§ JUG2 HVS

Figure 34: Block diagram of MWD(12 cores)
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Figure 35 : MWD Area utilization

As we can see the resources of the chip required increase as the buffer size increases. In the case
of buffer size 6 and 9 a significant percentage of the chip slices are used(almost 86%). A larger
buffer size would take up all the chip resources.
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Figure 36 : MWD Maximum Frequency

66



The maximum frequency at which the chip can function is 260 MHz in case of buffer size 9. This
frequency is well greater than our clock frequency (100 MHz). Furthermore, we notice that the
ratio in performance degradation in term of maximum operation frequency is greater from
buffer size 3 to 6 than buffer size 6 to 9. This is due to the saturation, which takes place when
the buffer size is 6.
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Figure 37 : MWD Total Power Dissipation
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Figure 38 : MWD Leakage Power Dissipation
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The total power dissipation increases as the buffer size increases. Furthermore, as expected
increase of chip temperature influences significantly the power. For this application leakage
power is again 0.168 at 50°C, 0.191 at 65°C, 0.219 at 80°C independent of the buffer size. The
leakage power for given temperature is constant among the different buffer sizes, because it
depends mainly on temperature.

5.1.4 MMS

In this section a multimedia system (MMS) is tested. The system contains 25 cores, including
several memories and DSP processors. In this case, we will use 3 routers, since the strategy
according to which a router attached to each core requires far too many resources. For the
clustering of routers, we wanted to achieve traffic minimization. The existence of
communication links between routers ensures the lack of deadlocks and livelocks.
Furthermore, in this application we are going to use a user-defined look up table for the
efficient routing of the data. The xy routing has no sense here since we do not have a classic

mesh structure.
The diagram with the area utilization does not present percentage values as the above ones,

nut the actual unit numbers. The percentage values would not be enlightening, since the chip
utilization of this design does not exceed 5-6%.
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Figure 39 : Block diagram of MMS
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Figure 40 : MMS Area utilization

As we can see the resources of the chip required increase as the buffer size increases. But even
in the case of buffer 9, only a small percentage of the chip slices are used(about 6%). A larger
buffer size could be used in this case, if the traffic is to be serviced more efficiently.
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Figure 41 : MMS Maximum Frequency

The maximum frequency at which the chip can function is 312 MHz in case of buffer size 9. This
frequency is well greater than our clock frequency (100 MHz).
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Figure 42: MMS Total Power Dissipation
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Figure 43: MMS Lekage Power Dissipation

The total power dissipation increases as the buffer size increases. Furthermore, as expected
increase of chip temperature influences significantly the power. For this application leakage
power is 0.165 at 50°C, 0.187 at 65°C, 0.216 at 80°C independent of the buffer size.Although the
design is significantly smaller than the previous ones, the leakage values are near the previous
ones.
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5.2 Conclusions

As we can see, for all the applications, the utilization of all the resources on the chip increases as
the buffer size increases. This behavior is expected, since the buffer component is responsible
for a large proportion of the chip resources.

The power dissipated increases too, as the buffer size increases. This can be explained by the
fact that the additional buffer space needs more chip area, which increases the overall power
(dynamic and through leakage) produced.

As the buffer size increases, the maximum frequency at which the design can function
decreases. That happens because a design with many slices requires more interconnects, which
results in delays and need for a slower clock.

What we have noticed is that all the 3 applications mwd, vopd and mpeg, which consist of 12
cores have similar values as far as resources, power and frequency is concerned. That is
expected since the design has similar complexity (equal number of routers). On the other side,
mms has one fourth of the routers of the other designs, hence the corresponding values are
significantly smaller.
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Chapter 6:

Summary and Future Work

Abstract

In this chapter we present the summary of our work and suggest extensions.
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6.1 Summary

In the current thesis we studied irregular NoC architectures, created a generic NoC platform
and we developed a tool for their automatic generation.

The tool enables the easy and fault-free generation of the code of a NoC, which has the

characteristics that the user desires. The user has only to write the requirements in some pre-
defined xml files.

After the development of the tool, we had the chance to test various NoCs which were
targeted for some common hardware applications. We thus examined our NoC architecture
from the area, timing and power scope. The results showed the needs of each design, and
give the designer a helpful first evaluation of the application requirements.

Furthermore, the tool along with the ones developed by the Microlab laboratory offer the
designer the chance to explore the design communication schema and adopt its architectures
to the application needs and constraints.

Finally, NoCGen contributes to the fast prototyping of NoC architectures, giving the
possibility for efficient generation and debugging of NoCs.

6.2 Future work

We are going to suggest here some extensions of the work done during the current thesis.

6.2.1 Additional Functionalities

The architecture itself can be improved and enriched with additional functionalities. The
code has been developed according to the principles of reusability with the aim to add
functionalities in the future without having to perform extensive modifications.

Keeping the existing form of inputs and outputs, the processes may be “refined” and more
sophisticated techniques for routing, buffering, arbitration and flow control could be
adopted. Moreover, techniques for power-aware design from the literature could be used.
The features integrated depend on the decisions of each designer.
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6.2.2 Floorplanning

Each router has a unique “ID” on the chip — its coordinates. If the designer uses advanced
tools for the efficient placement of the routers on the chip, this would have a significant
impact on the power dissipation and interconnect delays -two topics, which are crucial for
every chip. As a result, effective floorplanning will be a key in the NoC development.
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Appendix

Tool Code

noc_pkg_gen.hpp

#ifndef XML PARSER HPP

#define XML PARSER HPP

/ * *

* @file

* Class "GetConfig" provides the functions to read the XML data.
* @version 1.0

*/

#include <xercesc/dom/DOM.hpp>

#include <xercesc/dom/DOMDocument.hpp>
#include <xercesc/dom/DOMDocumentType.hpp>
#include <xercesc/dom/DOMElement.hpp>
#include <xercesc/dom/DOMImplementation.hpp>
#include <xercesc/dom/DOMImplementationLS.hpp>
#include <xercesc/dom/DOMNodeIterator.hpp>
#include <xercesc/dom/DOMNodeList.hpp>
#include <xercesc/dom/DOMText.hpp>

#include <xercesc/parsers/XercesDOMParser.hpp>
#include <xercesc/util/XMLUni.hpp>

#include <string>

#include <stdexcept>

#include <algorithm>

#include <math.h>

#include <fstream>

const int MAX PENUM = 50;

const int MAX PORTS = 10;

// Error codes

enum {

ERROR ARGS = 1,

ERROR XERCES INIT,

ERROR PARSE,
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ERROR EMPTY DOCUMENT

bi

class GetConfig

{

public:

//constructor

GetConfig () ;

//destructor

~GetConfig();

//functions

void readConfigFile (std::string&) throw(std::runtime error);
void calculate () ;

void print();

int max(int arrayl[]):;

void binary (int number) ;

//variables

int x [MAX_PENUM] Y% [MAX_PENUM] ;

int switchPorts[MAX PENUM];

int switchDepth[MAX PENUM];

int peNum;

int peNumx;

int peNumy;

int maxPorts;

int maxDepth;

char binvalue[MAX PORTS];//it is log2 (max ports)
int allbutiarray[MAX PORTS] [MAX PORTS-1];

int shift array[MAX PORTS-1] [MAX PORTS-1];
private:

xercesc: :XercesDOMParser *m ConfigFileParser;
char* m x; N

char* m y;

char* m switchPorts;

char* m switchDepth;

// Internal class use only. Hold Xerces data in UTF-16 SMLCh type.
XMLCh* TAG switch;

XMLCh* TAG switchPorts;

XMLCh* TAGiswitchDepth;

XMLCh* ATTR x;

XMLCh* ATTR_y;

}i
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#endif

noc_pkg_gen.cpp

#include <string>

#include <iostream>

#include <sstream>

#include <stdexcept>

#include <list>

#include <sys/types.h>

#include <sys/stat.h>

#include <unistd.h>

#include <errno.h>

#include "noc pkg gen.hpp"

using namespace xercesc;

using namespace std;

/**

* Constructor initializes xerces-C libraries.

* The XML tags and attributes which we seek are defined.
* The xerces-C DOM parser infrastructure is initialized.
*/

GetConfig::GetConfig ()

{

try

{

XMLPlatformUtils::Initialize(); // Initialize Xerces infrastructure
}

catch( XMLException& e )

{

char* message = XMLString::transcode( e.getMessage() );
cerr << "XML toolkit initialization error: " << message << endl;
XMLString::release( &message );

// throw exception here to return ERROR XERCES INIT

}

// Tags and attributes used in XML file.

// Can't call transcode till after Xerces Initialize()
TAG switch = XMLString::transcode("switch");

TAG switchPorts= XMLString::transcode ("switchPorts");
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TAG switchDepth= XMLString::transcode ("switchDepth");

ATTR x = XMLString::transcode ("x");

ATTR y = XMLString::transcode("y");

m ConfigFileParser = new XercesDOMParser;

}

/**

* Class destructor frees memory used to hold the XML tag and

* attribute definitions. It als terminates use of the xerces-C

* framework.

*/

GetConfig::~GetConfig()

{

// Free memory

delete m ConfigFileParser;
) XMLString::release

y) XMLString::release

if (m_y) XMLString::release

) XMLString::release

(&m x );

(&m_y );

( &m_switchPorts );

( &m_switchDepth );
XMLString::release( &TAG switch );

XMLString::release( &TAG_switchPorts );

XMLString::release( &TAG_switchDepth );

XMLString::release( &ATTR x );

XMLString::release( &ATTR y );

}

catch( ... )

{

cerr << "Unknown exception encountered in TagNamesdtor" << endl;
}

// Terminate Xerces

try

{

XMLPlatformUtils::Terminate(); // Terminate after release of memory
}

catch( xercesc::XMLException& e )

{

char* message = xercesc::XMLString::transcode( e.getMessage() );
cerr << "XML ttolkit teardown error: " << message << endl;
XMLString::release( &message );
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*
*

This function:

- Tests the access and availability of the XML configuration file.

- Configures the xerces-c DOM parser.

- Reads and extracts the pertinent information from the XML config file.

@param in configFile The text string name of the HLA configuration file.

A N

~

void GetConfig::readConfigFile(stringé& configFile)

throw( std::runtime error )

{

// Test to see if the file is ok.

struct stat fileStatus;

int iretStat = stat(configFile.c str(), &fileStatus);

if( iretStat == ENOENT )

throw ( std::runtime error ("Path file name does not exist, or path is
an empty string.") );

else if( iretStat == ENOTDIR )

throw ( std::runtime error ("A component of the path is not a directory

")) g

else if( iretStat == ELOOP )

throw ( std::runtime error ("Too many symbolic links encountered while
traversing the path."));

else if( iretStat == EACCES )

throw ( std::runtime error ("Permission denied."));

else if( iretStat == ENAMETOOLONG )

throw ( std::runtime error("File can not be read\n"));

// Configure DOM parser.

m ConfigFileParser->setValidationScheme ( XercesDOMParser::Val Never );
m ConfigFileParser->setDoNamespaces( false );

m ConfigFileParser->setDoSchema( false );
m_ConfigFileParser->setLoadExternalDTD( false );

try

{

noc_pkg_gen.cpp

m ConfigFileParser->parse( configFile.c str() );

// no need to free this pointer - owned by the parent parser object
DOMDocument* xmlDoc = m ConfigFileParser->getDocument () ;
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// Get the top-level element: NAme is "root". No attributes for "root"
DOMElement* elementRoot = xmlDoc->getDocumentElement () ;

if ( !elementRoot ) throw(std::runtime error( "empty XML document'" ));
// Parse XML file for tags of interest: "ApplicationSettings"
// Look one level nested within "root". (child of root)

DOMNodeList* children = elementRoot->getChildNodes() ;
const XMLSize t nodeCount = children->getLength();

// For all nodes, children of "root" in the XML tree.
int i=0;

for( XMLSize t xx = 0; xx < nodeCount; ++xx )

{

DOMNode* currentNode = children->item(xx) ;

if ( currentNode->getNodeType () && // true is not NULL
currentNode->getNodeType () == DOMNode::ELEMENT NODE ) // is ele
ment

{

// Found node which is an Element. Re-cast node as element
DOMElement* currentElement = dynamic_cast< xercesc::DOMElement*
>( currentNode );

if ( XMLString::equals (currentElement->getTagName (), TAG switch))
{

const XMLCh* xmlch x = currentElement->getAttribute (ATTR x);
m x = XMLString::transcode (xmlch x);

x[i]=atoi(m x);

const XMLCh* xmlch y = currentElement—>getAttribute(ATTR_y);
m y = XMLString::transcode (xmlch y);

ylil=atoi(m y);

}

DOMNodeList* grandchildren = currentElement->getChildNodes () ;
const XMLSize t nodeCount b = grandchildren->getLength();
for( XMLSize t yy = 0; yy < nodeCount b; ++yy )

{

DOMNode* currentNodeb = grandchildren->item(yy);

if ( currentNodeb->getNodeType () && currentNodeb->getNodeTyp
e () == DOMNode::ELEMENT NODE ) // is element

{

DOMElement* currentElementb = dynamic_cast< xercesc
::DOMElement* >( currentNodeb );

if ( XMLString::equals(currentElementb->getTagName (),
TAG_switchPorts))
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{

const XMLCh* xmlch ports = currentNodeb->ge
tTextContent () ;

m_switchPorts =
ports) ;
switchPorts[i]=atoi (m_switchPorts);

}

if ( XMLString::equals (currentElementb->getTagName ()
, TAG switchDepth))

{

const XMLCh* xmlch depth = currentNodeb->ge
tTextContent () ;

m_switchDepth =
depth) ;
switchDepth[i++]=atoi (m_switchDepth) ;

XMLString::transcode (xmlch

XMLString::transcode (xmlch

— e e o o

peNum = 1i;

cout << "arithmos switches: " << peNum << endl;

}

catch( xercesc::XMLException& e )

{

char* message = xercesc::XMLString::transcode( e.getMessage ()
ostringstream errBuf;

errBuf << "Error parsing file: " << message << flush;
XMLString::release( &message );

}

}

//function max

int GetConfig::max(int arrayl[]) {

int maxvalue = arrayl[0];

for (int i = 0; i < peNum; i++)

{

if (arrayl[i] > maxvalue)

{

maxvalue = arrayl[i];

}
85



}i

return maxvalue;

}

//function binary

void GetConfig::binary(int number) {
int remainder, i=0;

for (int j=0;]j<log2 (maxPorts);j++)
{

binvalue[j]='0";

}

while (number>1)

{

remainder = number % 2;

number = number / 2;
binvalue[i++] = remainder + '0°';
}

binvalue[i] = number + '0' ;

}

//function calculate

void GetConfig::calculate ()
{

int array[peNum];

int i;//peNumx

for (i=0;i<peNum;i++) {
arrayl[i] = x[1i];

}

sort (array,array+peNum) ;
peNumx=1;

for(i = 0; 1 < peNum -1 /*since we don't want to compare last element with
junk*/; i++)

{

if (arrayl[i]l==arrayl[i+l])

continue;

else

peNumx++;

}

cout <<"peNumx: " << peNumx <<endl;
/ /peNumy

for (i=0;i<peNum; i++) {

array[i] = y[il;
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}

sort (array,array+peNum) ;

peNumy=1;

for(int i = 0; i < peNum -1 /*since we don't want to compare last element
with junk*/; i++)

{

if (array[i]==array[i+l])

continue;

else

peNumy++;

}

cout <<"peNumy: " << peNumy <<endl;

//maxPorts

maxPorts = max (switchPorts);

cout <<"maxPorts: " << maxPorts <<endl;

//maxDepth

maxDepth = max (switchDepth) ;

cout <<"maxDepth: " << maxDepth <<endl;

for(int i = 0; 1 < peNum /*since we don't want to compare last element wit
h Jjunk*/; i++)

{

cout <<"x"<<x[1]<<"y"<<Ly[1]<< "ports "<<switchPorts[i]<< "depth"<<sw
itchDepth[i]<<endl;

}

//allbutiarray

for (int i1=0; i<maxPorts;i++) {

int k = 0;

for (int j=0;j<maxPorts-1;j++) {

if (k==1i){

allbutiarrayl[i] [J]1=++k;

}

else {

allbutiarrayl[i] [j]1=k;

}

k++;

}

}

for (int i=0; i<maxPorts;i++)
for (int Jj=0;j<maxPorts-1;j++)
cout << allbutiarray[i]l[j];

{
{

87



}

cout <<endl;

}

//tx_grant enc_const

binary (6);

for (int i=0;i<log2 (maxPorts) ;i++) {
cout << binvaluel[i];

}

cout << endl;

binary (5);

for (int i=0;i<log2 (maxPorts) ;i++) {
cout << binvaluel[i];

}

//shift array

int temp[maxPorts-1];

for (int i=0; i<maxPorts-1;i++) {
temp[i]=1i;

}

for (int 1=0; i<maxPorts-1;i++){
int k=0;

for (int j=0;j<maxPorts-1;j++) {
if ((k+1) <= maxPorts-2) {

shift array[i][j]=temp[k+i];
k++;

}

else(

k=-1;

shift array[i][j]=temp[k+i];
k++;

}

}

}

cout << endl;

for (int i1=0; i<maxPorts-1;i++) {
for (int Jj=0;j<maxPorts-1;j++) {
cout<<shift array([i][]];

}

cout <<endl;

}

}



//function print

void GetConfig::print ()

{ofstream myfile;

myfile.open ("vhdl/noc pkg.vhd",std::ios::out);
myfile.seekp(0,i0s::beqg);

myfile << "library ieee;\nlibrary work;\nuse ieee.std logic 1164.all;\nuse

ieee.std logic unsigned.all;\nuse work.noc functions.all;\nPACKAGE
noc_pkg is\n--configurable\nCONSTANT wordlength: integer
:= 16; —--width of data word in bits\n";

myfile << "CONSTANT pe num x: integer :="<< pe
Numx ;

myfile << ";\nCONSTANT pe num y: integer :=" <
< peNumy ;

myfile << ";\nCONSTANT pe num: integer :=" <

< peNum ;

myfile << ";\nTYPE parameter array is array(0 to pe num -1) of integer;\n";

myfile << "CONSTANT switch depth array: parameter array := (";
for (int i=0;i<peNum-1;i++)

myfile << switchDepth[i]<<",";

myfile << switchDepth[peNum-1] << ");\n";

myfile << "CONSTANT switch ports array: parameter array := (";
for (int i=0;i<peNum-1;i++)

myfile << switchPorts[i]<<",";

myfile << switchPorts[peNum-1] << ");\n";

myfile << "CONSTANT x s array: parameter array := (";

for (int i=0;i<peNum-1;i++) h

nmyfile << x[i]<<",";

myfile <<x[peNum-1] << ");\n";

myfile << "CONSTANT y s array: parameter array := (";

for (int i=0;i<peNum-1;i++) h

myfile << y[i]l<<",";

myfile <<y[peNum-1] << ");\n";

myfile << "CONSTANT max ports: integer :=" << m
axPorts ;

myfile << ";\nCONSTANT switch depth max: integer :=" <

< maxDepth ;

myfile << ";\nTYPE allbuti array is array(0 to max ports-1,0 to max ports-

2) of integer;";
myfile << "\nCONSTANT all but i :allbuti array :=(";
for (int i=0;i<maxPorts-1;i++) {
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myfile << " (";

for (int j=0;j<maxPorts-2;j++) {

myfile << allbutiarray[i][j] << ", ";

}

myfile << allbutiarray[i] [maxPorts-2];
myfile << "), ";

}

nyfile << " (";

for (int j=0;j<maxPorts-2;j++) {

myfile << allbutiarray[maxPorts-1][]] << ",";
}

myfile << allbutiarray[maxPorts-1] [maxPorts-2];

myfile << ")) ;";
myfile << "\nTYPE tx grant enc array 2 is array(0 to max ports-2) of std log
ic _vector (log(max ports-1)-1 downto 0);";

myfile << "\nCONSTANT tx grant enc const : tx grant enc array 2

=M.
. ’

mnyfile << " (";

for (int 1=0;i<maxPorts-2;i++) {
binary (i) ;

myfile << "\"";

for (int j=log2 (maxPorts-1)-1; 3>=0;7--){
myfile << binvalue[j];

}

myfile << "\", ";

}

myfile << "\"";

binary (maxPorts-2);

for (int j=log2 (maxPorts-1)-1; j>=0;7j--){
myfile << binvalue[]j];

}

myfile << "\");";

myfile << "\nTYPE shift array type is array( 0 to max ports-2,0 to max ports
-2) of integer;" ;

myfile << "\nCONSTANT shift array : shift array type := (";
for (int i=0;i<maxPorts-2;i++) {
myfile << " (";

for (int j=0;j<maxPorts-2;j++) {
myfile << shift array[i][]J] << ", ";
}
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myfile << shift array[i] [maxPorts-2];

myfile << "), ";

}

nyfile << " (";

for (int j=0;j<maxPorts-2;j++) {

myfile << shift array[maxPorts-2][]j] << ", ";

}

myfile << shift array[maxPorts-2] [maxPorts-2];

myfile << "));";

myfile << "\nTYPE rom lut type is array (0 to pe num x-1,0 to pe num y-1) of
integer range 0 to (max ports -1);";

myfile << "\n--configurable\n";

myfile.close();

myfile.open("vhdl/noc pkg.vhd",std::ios::out|std::ios::app);
ifstream myfile2 ("vhdl/noc pkg aux", std::ios::in);
char str[2000];

while (!myfile2.eo0f()) {

myfile2.getline(str,2000);

myfile << str << endl;

}

myfile.close();

myfile2.close();

}

#ifdef MAIN TEST

/* This main is provided for unit test of the class. */
int main (int argc, char *argv[])

{

string s0 = "xml/";
string sl = argv([l];
string s2 = "/elements.xml";

string configFile= s0 + sl + s2; // stat file. Get ambigious segfault oth
erwise.

GetConfig appConfig;

appConfig.readConfigFile (configFile);

appConfig.calculate();

appConfig.print();

return 0;

}

#endif
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noc_gen.hpp

#ifndef XML PARSER HPP

#define XML PARSER HPP

/**

* @file

* Class "GetConfig" provides the functions to read the XML data.
* @version 1.0

*/

#include <xercesc/dom/DOM.hpp>

#include <xercesc/dom/DOMDocument.hpp>

#include <xercesc/dom/DOMDocumentType.hpp>

#include <xercesc/dom/DOMElement.hpp>

#include <xercesc/dom/DOMImplementation.hpp>

#include <xercesc/dom/DOMImplementationLS.hpp>

#include <xercesc/dom/DOMNodelterator.hpp>

#include <xercesc/dom/DOMNodeList.hpp>

#include <xercesc/dom/DOMText .hpp>

#include <xercesc/parsers/XercesDOMParser.hpp>

#include <xercesc/util/XMLUni.hpp>

#include <string>

#include <stdexcept>

#include <algorithm>

#include <math.h>

#include <fstream>

const int LINKS MAX = 500; //50*10( = MAX PENUM * MAX PORTS)
const int TRANS MAX = 1000; //2*50*10( = 2*MAX PENUM * MAX PORTS)
const int MAX NUMBER OF FLITS = 10; //number of flits in a packet
// Error codes

enum {

ERROR ARGS = 1,

ERROR XERCES INIT,

ERROR PARSE,

ERROR EMPTY DOCUMENT
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}i

class GetConfig

{

public:

//constructor

GetConfig () ;

//destructor

~GetConfig();

//variables

struct link struct{char* sourceRouter; char* sourcePort ; char* destinati
onRouter; char* destinationPort;};

link struct link array[LINKS MAX];

int NoOfLinks;

struct trans_struct{int inputRouter; int inputPort ; char* transBegin; ch
ar* transDuration; char* data[MAX NUMBER OF FLITS];};
trans struct trans array[TRANS MAX];

int NoOfTrans;

//functions

void readNetlist(std::stringé&) throw(std::runtime error);
void readTraffic(std::stringé&) throw(std::runtime error);
void print () ;

private:

xercesc: :XercesDOMParser *m ConfigFileParser;

// Internal class use only. Hold Xerces data in UTF-16 SMLCh type.
XMLCh* TAG transmission;

XMLCh* TAG destinationRouter;

XMLCh* TAG destinationPort;

XMLCh* TAG inputRouter;

XMLCh* TAG inputPort;

XMLCh* TAG transBegin;

XMLCh* TAG transDuration;

XMLCh* TAG dataSequence;

XMLCh* TAG data;

XMLCh* TAG link;

XMLCh* TAG sourceRouter;

XMLCh* TAG sourcePort;

char* m sourceRouter;

char* m sourcePort;

char* m destinationRouter;

char* m destinationPort;
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char* m inputRouter;
char* m inputPort;
}i

#endif

noc_gen.cpp

#include <string>

#include <iostream>

#include <sstream>

#include <stdexcept>

#include <list>

#include <sys/types.h>

#include <sys/stat.h>

#include <unistd.h>

#include <errno.h>

#include "noc_gen.hpp"

using namespace xercesc;

using namespace std;

/**

* Constructor initializes xerces-C libraries.

* The XML tags and attributes which we seek are defined.
* The xerces-C DOM parser infrastructure is initialized.
*/

GetConfig::GetConfig()

{

try

{

XMLPlatformUtils::Initialize(); // Initialize Xerces infrastructure
}

catch( XMLException& e )

{

char* message = XMLString::transcode( e.getMessage () );
cerr << "XML toolkit initialization error: " << message << endl;
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XMLString::release( &message );

// throw exception here to return ERROR XERCES INIT

}

// Tags and attributes used in XML file.

// Can't call transcode till after Xerces Initialize()
TAG transmission = XMLString::transcode("transmission");
TAG destinationRouter = XMLString::transcode ("destinationRouter");
TAG destinationPort= XMLString::transcode ("destinationPort");
TAG inputRouter = XMLString::transcode ("inputRouter");

TAG inputPort= XMLString::transcode ("inputPort");

TAG transBegin= XMLString::transcode ("transBegin");

TAG transDuration= XMLString::transcode ("transDuration");

TAG dataSequence=XMLString::transcode ("dataSequence");

TAG data=XMLString::transcode ("data");

TAG link = XMLString::transcode ("link");

TAG_sourceRouter = XMLString::transcode ("sourceRouter");
TAG_sourcePort= XMLString::transcode ("sourcePort");

m ConfigFileParser = new XercesDOMParser;

}

/**

* Class destructor frees memory used to hold the XML tag and

* attribute definitions. It als terminates use of the xerces-C
* framework.

*/

GetConfig::~GetConfig()

{

// Free memory

delete m ConfigFileParser;

try

{

XMLString: :release
XMLString: :release
XMLString: :release
XMLString: :release
XMLString: :release
XMLString: :release
XMLString::release
XMLString::release
XMLString: :release
XMLString: :release

( &TAG_transmission);

( &TAG_destinationRouter );
( &TAG destinationPort );

( &TAG_inputRouter );

( &TAG_inputPort );

( &TAG_transBegin );

( &TAG transDuration );

( &TAG _dataSequence );

( &TAG data );

( &TAG link);
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XMLString::release( &TAG_ sourceRouter );

XMLString::release( &TAG sourcePort );

}

catch( ... )

{

cerr << "Unknown exception encountered in TagNamesdtor" << endl;

}

// Terminate Xerces

try

{

XMLPlatformUtils::Terminate(); // Terminate after release of memory
}

catch( xercesc::XMLException& e )

{

char* message = xercesc::XMLString::transcode( e.getMessage() );
cerr << "XML ttolkit teardown error: " << message << endl;
XMLString::release( &message );

}

}

/**

* This function:

- Tests the access and availability of the XML configuration file.
- Configures the xerces-c DOM parser.

- Reads and extracts the pertinent information from the XML config file.

@param in configFile The text string name of the HLA configuration file.
/

void GetConfig::readNetlist (stringé& configFile)

throw( std::runtime error )

{

// Test to see if the file is ok.

int i=0;

struct stat fileStatus;

int iretStat = stat(configFile.c str(), &fileStatus);

if( iretStat == ENOENT )

throw ( std::runtime error ("Path file name does not exist, or path is
an empty string.") );

else if( iretStat == ENOTDIR )

throw ( std::runtime error ("A component of the path is not a directory

")

*
*
*
*
*
*
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else if ( iretStat == ELOOP )
throw ( std::runtime error ("Too many symbolic links encountered while
traversing the path."));

else if( iretStat == EACCES )
throw ( std::runtime error ("Permission denied."));
else if( iretStat == ENAMETOOLONG )

throw ( std::runtime error("File can not be read\n"));

// Configure DOM parser.

m ConfigFileParser->setValidationScheme ( XercesDOMParser::Val Never );
m ConfigFileParser->setDoNamespaces( false );

m ConfigFileParser->setDoSchema( false );

m ConfigFileParser->setLoadExternalDTD( false );

try

{

m_ConfigFileParser->parse( configFile.c str() );

// no need to free this pointer - owned by the parent parser object
DOMDocument* xmlDoc = m ConfigFileParser->getDocument () ;

// Get the top-level element: NAme is "root". No attributes for "root"
DOMElement* elementRoot = xmlDoc->getDocumentElement () ;

if ( !elementRoot ) throw(std::runtime error( "empty XML document'" ));
// Parse XML file for tags of interest: "ApplicationSettings"
// Look one level nested within "root". (child of root)

DOMNodeList* children = elementRoot->getChildNodes () ;
const XMLSize t nodeCount = children->getLength();

// For all nodes, children of "root" in the XML tree.
for ( XMLSize_t xx = 0; xx < nodeCount; ++xx )

{

DOMNode* currentNode = children->item(xx) ;

if ( currentNode->getNodeType () && // true is not NULL
currentNode->getNodeType () == DOMNode::ELEMENT NODE ) // is ele
ment

{

// Found node which is an Element. Re-cast node as element
DOMElement* currentElement = dynamic_cast< xercesc::DOMElement*
>( currentNode );

if ( XMLString::equals (currentElement->getTagName (), TAG link))
{

DOMNodeList* grandchildren = currentElement->getChildNodes ()

’

const XMLSize t nodeCount b = grandchildren->getLength();
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for( XMLSize t yy = 0; yy < nodeCount b; ++yy )

{

DOMNode* currentNodeb = grandchildren->item(yy);

if ( currentNodeb->getNodeType () && currentNodeb->ge
tNodeType () == DOMNode::ELEMENT NODE ) // is element
{

DOMElement* currentElementb = dynamic cast<

xercesc: :DOMElement* >( currentNodeb );

if ( XMLString::equals (currentElementb->getTa

gName (), TAG sourceRouter))

{

const XMLCh* xmlch sourceRouter = cu
rrentNodeb->getTextContent () ;

link arrayli].sourceRouter = XMLStri
ng::transcode (xmlch sourceRouter) ;

cout << link array[i].sourceRouter;

}i

if ( XMLString::equals (currentElementb->getTa

gName (), TAG sourcePort))

const XMLCh* xmlch sourcePort = curr
entNodeb->getTextContent () ;

link arrayli].sourcePort = XMLString
::transcode (xmlch sourcePort);

cout << link array[i].sourcePort;

}i

if ( XMLString::equals (currentElementb->getTa

gName (), TAG destinationRouter))

{

const XMLCh* xmlch destinationRouter

= currentNodeb->getTextContent () ;
link arrayl[i].destinationRouter = XM
LString::transcode (xmlch destinationRouter);
cout << link array[i].destinationRou

ter;

}i

if ( XMLString::equals (currentElementb->getT
agName () , TAG destinationPort))

{

const XMLCh* xmlch destinationPort =
currentNodeb->getTextContent () ;
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link arrayl[i].destinationPort = XMLS
tring::transcode (xmlch destinationPort);
cout << link array[i].destinationPort;

}i

NoOfLinks = 1i;

cout << endl << "links: " <<NoOfLinks <<endl ;

for (int j=0;j<NoOfLinks;j++)

cout << link array[j].sourceRouter <<link array[]j].sourcePort<<link
array[j] .destinationRouter<<link array[j].destinationPort<<endl;

}

catch( xercesc::XMLException& e )

{

char* message = xercesc::XMLString::transcode( e.getMessage() );
ostringstream errBuf;
errBuf << "Error parsing file: " << message << flush;

XMLString::release( &message );

}

}

void GetConfig::readTraffic(string& configFile)

throw( std::runtime error )

{

// Test to see if the file is ok.

int i=0;

struct stat fileStatus;

int iretStat = stat(configFile.c str(), &fileStatus);

if( iretStat == ENOENT )

throw ( std::runtime error("Path file name does not exist, or path is
an empty string.") );

else if( iretStat == ENOTDIR )

throw ( std::runtime error ("A component of the path is not a directory
"))

else if( iretStat == ELOOP )

throw ( std::runtime error ("Too many symbolic links encountered while
traversing the path."));
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else if( iretStat == EACCES )

throw ( std::runtime error ("Permission denied."));
else if( iretStat == ENAMETOOLONG )
throw ( std::runtime error("File can not be read\n"));

// Configure DOM parser.

m ConfigFileParser->setValidationScheme ( XercesDOMParser::Val Never );
m ConfigFileParser->setDoNamespaces( false );

m ConfigFileParser->setDoSchema( false );

m ConfigFileParser->setLoadExternalDTD( false );

try

{

m ConfigFileParser->parse( configFile.c str() );

// no need to free this pointer - owned by the parent parser object
DOMDocument* xmlDoc = m ConfigFileParser->getDocument () ;

// Get the top-level element: NAme is "root". No attributes for "root"
DOMElement* elementRoot = xmlDoc->getDocumentElement () ;

if ( !elementRoot ) throw(std::runtime error( "empty XML document" ));
// Parse XML file for tags of interest: "ApplicationSettings"
// Look one level nested within "root". (child of root)

DOMNodeList* children = elementRoot->getChildNodes() ;

const XMLSize t nodeCount = children->getLength();

// For all nodes, children of "root" in the XML tree.

for( XMLSize t xx = 0; xx < nodeCount; ++xx )

{

DOMNode* currentNode = children->item (xx);

if ( currentNode->getNodeType () && // true is not NULL
currentNode->getNodeType () == DOMNode::ELEMENT NODE ) // is ele
ment

{

// Found node which is an Element. Re-cast node as element
DOMElement* currentElement = dynamic_cast< xercesc::DOMElement*
>( currentNode ) ;

if ( XMLString::equals (currentElement->getTagName (), TAG transmis
sion))

{

DOMNodeList* grandchildren = currentElement->getChildNodes ()

const XMLSize t nodeCount b = grandchildren->getLength();
for ( XMLSize t yy = 0; yy < nodeCount b; ++yy )
{
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DOMNode* currentNodeb = grandchildren->item(yy);

if ( currentNodeb->getNodeType () && currentNodeb->ge
tNodeType () == DOMNode::ELEMENT NODE ) // is element
{

DOMElement* currentElementb = dynamic cast<

xercesc: :DOMElement* >( currentNodeb );

if ( XMLString::equals (currentElementb->getTa

gName (), TAG_ inputRouter))

{

const XMLCh* xmlch inputRouter = cur
rentNodeb->getTextContent () ;

m_inputRouter = XMLString::transcode

(xmlch inputRouter);

trans_array[i].inputRouter = atoi(m_inputRouter) ;

}

else if ( XMLString::equals (currentElementb-
>getTagName (), TAG inputPort))

{

const XMLCh* xmlch inputPort = curre
ntNodeb->getTextContent () ;

m_inputPort = XMLString::transcode (x

mlch inputPort);

trans_array[i].inputPort = atoi(m_ inputPort);

}

else if( XMLString::equals (currentElementb->
getTagName (), TAG transBegin))

{

const XMLCh* xmlch transBegin = curr
entNodeb->getTextContent () ;
trans _array[i].transBegin = XMLStrin
g::transcode (xmlch transBegin);

cout << trans arrayl[i].transBegin;

}

else if( XMLString::equals (currentElementb->
getTagName (), TAG transDuration))

{

const XMLCh* xmlch transDuration = c
urrentNodeb->getTextContent () ;
trans_array[i].transDuration = XMLSt
ring::transcode (xmlch transDuration);

101



cout << trans arrayl[i].transDuration

}

else if( XMLString::equals (currentElementb->
getTagName () , TAG dataSequence))

{

DOMNodeList* ggrandchildren
tElementb->getChildNodes () ;
const XMLSize t nodeCount c = ggran
dchildren->getLength () ;

int j=0;

for( XMLSize t zz = 0; zz < nodeCoun
t c; ++zz )

{

DOMNode* currentNodec = ggra
ndchildren->item(zz) ;

if ( currentNodec->getNodeTyp

curren

e() && currentNodec->getNodeType () == DOMNode::ELEMENT NODE ) // is element

{

DOMElement* currentE

lementc = dynamic_cast< xercesc::DOMElement* >( currentNodec );
if ( XMLString::equal

s (currentElementc->getTagName (), TAG data))

{

const XMLCh*
xmlch data =
trans_arrayl|
il.datalj] =
cout << tran
s arrayl[i].dataljl;
J++;

currentNodec->getTextContent () ;

XMLString::transcode (xmlch data);

[N T D VD N N
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}

NoOfTrans = 1i;

cout << endl << "trans: " <<NoOfTrans <<endl ;

for (int J=0;j<NoOfTrans; j++)

cout << trans array[j].inputRouter <<trans array[j].inputPort<<trans
_arrayl[j].transBegin<<trans arrayl[]J].transDuration<<endl;

}

catch( xercesc::XMLException& e )

{

char* message = xercesc::XMLString::transcode( e.getMessage() );
ostringstream errBuf;
errBuf << "Error parsing file: " << message << flush;

XMLString::release( &message );

}

}

//function print

void GetConfig::print ()

{

ofstream myfile;

myfile.open ("vhdl/noc.vhd",std::10s::o0ut);
myfile.seekp(0,i0s::beqg);

ifstream myfile2 ("vhdl/noc aux", std::ios::in);
char str[2000];

while (!myfile2.eof())

{

myfile2.getline(str,2000);

myfile << str << endl;

}

myfile2.close();

myfile.seekp(0,i0s::end);

//traffic

myfile << "--traffic"<<endl;

int i = 0;

while (i<NoOfTrans)

{

//for each packet

myfile << endl;

//initialisation

myfile << "data valid in help("<< trans_arrayl[i].inputRoute
r<<") ("<< trans_arrayl[i].inputPort
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<<")<=data valid in traffic("<<trans array[i].inputR
outer<<™) ("

<< trans_array[i].inputPort<<");"<<endl ;

myfile << "data in help("<< trans_arrayl[i].inputRouter<<") ("
<< trans_array[i].inputPort

<<")<=data in traffic("<<trans arrayl[i].inputRouter<

<M) ("

<< trans_array[i].inputPort<<");"<<endl ;

i++; //next transmission

//1f the next transmission is from the same port as the prev
ious one

while ((i<=NoOfTrans-2) && (trans array[i].inputRouter == tr
ans_array[i-1].inputRouter) &&

(trans_arrayl[i].inpu

tPort == trans array[i-1].inputPort))

{

i++;

}

}

myfile.seekp(0,i0s::end);

//1links

myfile << "--links'"<<endl;

for (int 1i=0;i<NoOfLinks;i++)

{

myfile << "data valid in help(" << link arrayl[i].destination

Router << ") (" << link array([i].destinationPort
<<")<=data valid out help (" << link array[i].sourceR

outer << ") (" <<link array[i].sourcePort <<");"<< endl;
myfile << "data in help (" << link array[i].destinationRouter
<< ") (" << link arrayl[i].destinationPort
<<")<=data out help(" << link array[i].sourceRouter

<< ") (" <<1link array[i].sourcePort <<");"<<endl;

myfile << endl;

bi

myfile << "end;";

myfile.close();

}

#ifdef MAIN TEST

/* This main is provided for unit test of the class. */
int main ()
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{

string s0,sl,s2,configFile;

sO = "xml/";

sl = argv([l];

//parsing tou prwtou

s2 = "/traffic.xml";

configFile= s0 + sl + s2;
GetConfig appConfig ;
appConfig.readTraffic (configFile);
//parsing tou defterou

s2 = "/netlist.xml";

configFile= s0 + sl + s2;
appConfig.readNetlist (configFile);
appConfig.print () ;

return 0;

}

fendif

noc_tb_gen.hpp

#ifndef XML, PARSER_HPP

#define XMI,_ PARSER HPP

/**

* @file

* Class "GetConfig" provides the functions to read the XML data.
* @version 1.0

*/

#include <xercesc/dom/DOM.hpp>

#include <xercesc/dom/DOMDocument.hpp>
#include <xercesc/dom/DOMDocumentType.hpp>
#include <xercesc/dom/DOMElement.hpp>

#include <xercesc/dom/DOMImplementation.hpp>
#include <xercesc/dom/DOMImplementationLS.hpp>
#include <xercesc/dom/DOMNodeIterator.hpp>
#include <xercesc/dom/DOMNodeList.hpp>
#include <xercesc/dom/DOMText .hpp>

#include <xercesc/parsers/XercesDOMParser.hpp>
#include <xercesc/util/XMLUni.hpp>
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#include <string>

#include <stdexcept>

#include <algorithm>

#include <math.h>

#include <fstream>

const int TRANS MAX = 3000; //2*50*10( = 2*MAX_PENUM * MAX PORTS) antistoix
oun se kathe thira.

const int MAX NUMBER OF FLITS = 10; //number of flits in a packet
const int CLK PERIOD = 100;

const int FLIT SIZE IN BITS = 16;

// Error codes

enum {

ERROR ARGS = 1,

ERROR XERCES INIT,

ERROR PARSE,

ERROR EMPTY DOCUMENT

}i

class GetConfig

{

public:

//constructor

GetConfig();

//destructor

~GetConfig();

//variables

struct trans struct{int inputRouter; int inputPort ;int transBegin; int t
ransDuration;

char* data[MAX NUMBER OF FLITS];};

trans struct trans array[TRANS MAX];

int NoOfTrans; B B

int NoOfFlits[TRANS MAX] ;

//functions

void readTraffic(std::stringé&) throw(std::runtime error);
void createAssignmentsArray () ;

void print () ;

int GetIntVal (std::string strConvert) {

int intReturn;

// NOTE: You should probably do some checks to ensure that
// this string contains only numbers. If the string is not
// a valid integer, zero will be returned.
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intReturn = atoi(strConvert.c str());
return (intReturn) ;

}

private:

xercesc: :XercesDOMParser *m ConfigFileParser;
// Internal class use only. Hold Xerces data in UTF-16 SMLCh type.
XMLCh* TAG transmission;

XMLCh* TAG destinationRouter;

XMLCh* TAG destinationPort;

XMLCh* TAG inputRouter;

XMLCh* TAG inputPort;

XMLCh* TAG transBegin;

XMLCh* TAG transDuration;

XMLCh* TAG dataSequence;

XMLCh* TAG data;

char* m destinationRouter;

char* m destinationPort;

char* m transBegin;

char* m transDuration;

char* m inputRouter;

char* m inputPort;

}i

#endif

noc_tb_gen.cpp

#include <string>
#include <iostream>
#include <sstream>
#include <stdexcept>
#include <list>
#include <sys/types.h>
#include <sys/stat.h>
#include <unistd.h>
#include <errno.h>
#include "noc tb gen.hpp"
using namespace xercesc;
using namespace std;

/*k*k

* Constructor initializes xerces-C libraries.
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* The XML tags and attributes which we seek are defined.

* The xerces-C DOM parser infrastructure is initialized.

*/

GetConfig::GetConfig()

{

try

{

XMLPlatformUtils::Initialize(); // Initialize Xerces infrastructure
}

catch( XMLException& e )

{

char* message = XMLString::transcode( e.getMessage () );

cerr << "XML toolkit initialization error: " << message << endl;
XMLString::release( &message );

// throw exception here to return ERROR XERCES INIT

}

// Tags and attributes used in XML file.

// Can't call transcode till after Xerces Initialize()

TAG transmission = XMLString::transcode("transmission");

TAG destinationRouter = XMLString::transcode ("destinationRouter");
TAG destinationPort= XMLString::transcode ("destinationPort");
TAG inputRouter = XMLString::transcode ("inputRouter");

TAG inputPort= XMLString::transcode ("inputPort");

TAG transBegin= XMLString::transcode ("transBegin");

TAG transDuration= XMLString::transcode ("transDuration");

TAG dataSequence=XMLString::transcode ("dataSequence");

TAG data=XMLString::transcode ("data");

m ConfigFileParser = new XercesDOMParser;

}

/**

* Class destructor frees memory used to hold the XML tag and

* attribute definitions. It als terminates use of the xerces-C
* framework.

*/

GetConfig::~GetConfig ()

{

// Free memory

delete m ConfigFileParser;

try

{
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XMLString::release( &TAG transmission);
XMLString::release( &TAG destinationRouter );
XMLString::release( &TAG destinationPort );
XMLString::release( &TAG_inputRouter );
XMLString::release( &TAG inputPort );
noc_tb_gen.cpp
XMLString::release
XMLString: :release
XMLString: :release
XMLString::release
}

catch( ... )

{

cerr << "Unknown exception encountered in TagNamesdtor" << endl;

}

// Terminate Xerces

try

{

XMLPlatformUtils::Terminate(); // Terminate after release of memory

}

catch( xercesc::XMLException& e )

{

char* message = xercesc::XMLString::transcode( e.getMessage() );

cerr << "XML ttolkit teardown error: " << message << endl;
XMLString::release( &message );

}

}

void GetConfig::readTraffic(string& configFile)

throw( std::runtime error )

{

// Test to see if the file is ok.

int 1=0;

struct stat fileStatus;

int iretStat = stat(configFile.c str(), &fileStatus);

if( iretStat == ENOENT )

throw ( std::runtime error ("Path file name does not exist, or path is
an empty string.") );

else if( iretStat == ENOTDIR )

throw ( std::runtime error ("A component of the path is not a directory

"))

&TAG_transBegin );
&TAG_ transDuration );
&TAG dataSequence );

(
(
(
( &TAG data );
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else if ( iretStat == ELOOP )
throw ( std::runtime error ("Too many symbolic links encountered while
traversing the path."));

else if( iretStat == EACCES )
throw ( std::runtime error ("Permission denied."));
else if( iretStat == ENAMETOOLONG )

throw ( std::runtime error("File can not be read\n"));

// Configure DOM parser.

m ConfigFileParser->setValidationScheme ( XercesDOMParser::Val Never );
m ConfigFileParser->setDoNamespaces( false );

m ConfigFileParser->setDoSchema( false );

m ConfigFileParser->setLoadExternalDTD( false );

try

{

m_ConfigFileParser->parse( configFile.c str() );

// no need to free this pointer - owned by the parent parser object
DOMDocument* xmlDoc = m ConfigFileParser->getDocument () ;

// Get the top-level element: NAme is "root". No attributes for "root"
DOMElement* elementRoot = xmlDoc->getDocumentElement () ;

if ( !elementRoot ) throw(std::runtime error( "empty XML document'" ));
// Parse XML file for tags of interest: "ApplicationSettings"
// Look one level nested within "root". (child of root)

DOMNodeList* children = elementRoot->getChildNodes () ;
const XMLSize t nodeCount = children->getLength();

// For all nodes, children of "root" in the XML tree.
for ( XMLSize_t xx = 0; xx < nodeCount; ++xx )

{

DOMNode* currentNode = children->item(xx) ;

if ( currentNode->getNodeType () && // true is not NULL
currentNode->getNodeType () == DOMNode::ELEMENT NODE ) // is ele
ment

{

// Found node which is an Element. Re-cast node as element
DOMElement* currentElement = dynamic_cast< xercesc::DOMElement*
>( currentNode );

if ( XMLString::equals (currentElement->getTagName (), TAG transmis
sion))

{

DOMNodeList* grandchildren = currentElement->getChildNodes ()

’
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const XMLSize t nodeCount b = grandchildren->getLength ()
for( XMLSize t yy = 0; yy < nodeCount b; ++yy )

{

DOMNode* currentNodeb = grandchildren->item(yy);
if ( currentNodeb->getNodeType () && currentNodeb->ge
tNodeType () == DOMNode::ELEMENT NODE ) // is element
{

DOMElement* currentElementb = dynamic_cast<
xercesc: :DOMElement* >( currentNodeb );

if ( XMLString::equals (currentElementb->getTa
gName (), TAG inputRouter))

{

const XMLCh* xmlch inputRouter = cur
rentNodeb->getTextContent () ;

m_inputRouter = XMLString::transcode

(xmlch inputRouter);

trans_array([i].inputRouter = atoi(m_inputRouter) ;
}

else if ( XMLString::equals (currentElementb-
>getTagName (), TAG inputPort))

{

const XMLCh* xmlch inputPort = curre
ntNodeb->getTextContent () ;

m_inputPort = XMLString::transcode (x

mlch inputPort);

trans_array[i].inputPort = atoi(m_ inputPort);

}

else if( XMLString::equals (currentElementb->
getTagName (), TAG transBegin))

{

const XMLCh* xmlch transBegin = curr
entNodeb->getTextContent () ;

m_ transBegin= XMLString::transcode (

xmlch transBegin) ;

trans_array[i].transBegin = atoi (m_

transBegin) ;

}

else if ( XMLString::equals (currentElementb->
getTagName (), TAG transDuration))

{

I
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const XMLCh* xmlch transDuration = c
urrentNodeb->getTextContent () ;
m_transDuration= XMLString::transcod

e (xmlch transDuration);
trans_array[i].transDuration= atoi (m
_transDuration);

}

else if( XMLString::equals (currentElementb->
getTagName () , TAG dataSequence))

{

DOMNodeList* ggrandchildren
tElementb->getChildNodes () ;
const XMLSize t nodeCount c = ggran
dchildren->getLength () ;

int 3=0;

for( XMLSize t zz = 0; zz < nodeCoun
t c; ++zz )

{

DOMNode* currentNodec = ggra
ndchildren->item(zz) ;

if ( currentNodec->getNodeTyp

curren

e() && currentNodec->getNodeType () == DOMNode::ELEMENT NODE ) // is element

{

DOMElement* currentE

lementc = dynamic_cast< xercesc: :DOMElement* >( currentNodec );
if ( XMLString::equal

s (currentElementc->getTagName (), TAG data))

{

const XMLCh*
xmlch data =
trans arrayl
il.datalj] =
J++;

}

}

}
NoOfFlits[i]=7;
}

}

}

currentNodec->getTextContent () ;

XMLString::transcode (xmlch data);
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i++;
}
}
}

NoOfTrans = 1i;

cout << endl << "trans: " <<NoOfTrans <<endl ;

for (int k=0;k<NoOfTrans; k++) {

cout << trans_arraylk].inputRouter << " "<<trans arrayl[k].inputPort<

<" "<<trans_ arraylk].transBegin<<trans array[k].transDuration<<" ";
for (int 1=0;1<NoOfFlits[k];1++)

cout << trans arraylk].data[l] <<"";

cout << endl;

}

}

catch( xercesc::XMLException& e )

{

char* message = xercesc::XMLString::transcode( e.getMessage() );
ostringstream errBuf;
errBuf << "Error parsing file: " << message << flush;

XMLString::release( &message );
}

}

//function print

void GetConfig::print ()

{

//write the standard content
ofstream myfile;

myfile.open ("vhdl/noc tb.vhd",std::ios::out);
myfile.seekp(0,i0s::beqg);
ifstream myfile2 ("vhdl/noc tb aux", std::ios::in);
char str[2000];

int line=0;

while (!myfile2.eof())

{

++1line;

if (line != 56)

{

myfile2.getline(str,2000);
myfile << str << endl;

}
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else

{

//write the traffic values
//data_valid in tranffic

int i=0;

while (i<NoOfTrans)

{

//for each packet

myfile << endl;

//initialisation

myfile << "data valid in traffic("<< trans a
rray[i].inputRouter<<") ("<< trans array[i].inputPort <<")<='0",6"
//first packet

<<"'1' after "<<trans_ arrayl[i].trans
Begin*CLK_PERIOD+CLK_PERIOD/2 <<" ns,"
<<"'0'" after "<< trans_array[i].tran
sBegin*CLK PERIOD+trans_arrayl[i].transDuration*CLK PERIOD
+CLK_PERIOD/2<< " ns";

i++; //next transmission

//if the next transmission is from the same
port as the previous one

while ((i<=NoOfTrans-1) && (trans arrayl[i].i

nputRouter == trans array[i-1].inputRouter) &&
(trans_arrayl[i].inpu
tPort == trans array[i-1].inputPort))

{

myfile <<",'l' after "<< trans arra
y[i].transBegin*CLK PERIOD+CLK PERIOD/2 <<" ns,"
<<"'0'" after " << trans_arra

y[i] .transBegin*CLK PERIOD

+trans_arr

ay[i].transDuration*CLK PERIOD+CLK PERIOD/2 << " ns";
i++; - -

}

nmyfile << ";";

}

//data in traffic

i=0;

while (i<NoOfTrans)

{
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myfile << endl;

myfile << "data in traffic("<< trans array[i

] .inputRouter<<") ("<< trans_array[i].inputPort <<")<=\"";
//initialisation

for (int k=0;k<FLIT SIZE IN BITS;k++)

myfile << "0";

myfile << "\"";

//packet

//for each flit

for (int j=0;Jj<NoOfFlits[i];j++)

{

myfile <<",\""<< trans_array[i].data

[J] <<"\" after "

<< trans_array[i].transBegin*
CLK_PERIOD+(CLK_PERIOD*j)+CLK_PERIOD/2 <<" ns'";
}

myfile << ", \"";

//packet end

for (int k=0;k<FLIT SIZE IN BITS;k++)

myfile << "0";

myfile << "\" after "

<< (trans_array[i].transBegin*

CLK_PERIOD) + (CLK PERIOD*trans_array[i].transDuration)+CLK PERIOD/2
<<" ns"

i++;

//1if another packet for the same port

while ((i<=NoOfTrans-1) && (trans arrayl[i].
inputRouter == trans array[i-1].inputRouter) &&
(trans_arrayl[i].inputPort == t

rans_array[i-1].inputPort))

{

//for each flit

for (int j=0;j<NoOfFlits[i];j++)
{

myfile << ",\"" << trans_arr
ay[i].datal[j] <<"\" after "

<< trans arrayl[i].tr
anSBegin*CLKiPERIOD+(CLKiPERIOD*j)+CLK7PERIOD/2 <<" ns";
}

myfile << ", \"";
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//packet end

for (int k=0;k<FLIT SIZE IN BITS;k++
)

myfile << "0";

myfile << "\" after "

<< (trans_arrayl[i].transBegin
*CLK_PERIOD)+ (CLK PERIOD*trans arrayl[i]
+CLK PERIOD/2<<" ns"

it4;

}

myfile << ";";

}

}

}

myfile2.close();

myfile.close();

}

#ifdef MAIN TEST

.transDuration)

/* This main is provided for unit test of the class. */

int main (int argc, char *argv([])

{

string s0 = "xml/";
string sl = argv[l];
string s2 = "/traffic.xml";

string configFile= sO0 + sl + s2; // stat file. Get ambigious segfault oth

erwise.

GetConfig* appConfig = new GetConfig;
appConfig->readTraffic (configFile);
appConfig->print () ;

delete appConfig;

return 0;

}

#endif
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