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Abstract

In this thesis, we deal with limited supply and unLimited supply online auctions,
as a subfield of online mechanism design. For the former case, we define a general
model, on which we examine problems such as single-item and multi-item auc-
tion and also knapsack problem. We talk about the famous secretary problem
and its applications-ideas to the previous auctions. Finally, we make a friendly
introduction to matroids and their relationship with the online auctions where we
have some restrictions (such as the size of the supply etc). For the latter case,
we also define a general model and deal with randomized algorithms that man-
age to have good approximation ratio with respect to optimal fixed price revenue
for both single-price and multi-price auctions. We also consider two cases for the
model that depend on the information the auctioneer takes from the bidders after
after their acceptance or rejection of the product. Finally, we mention results for
online pricing in other settings and give some implementations that valuate the
algorithms described in this thesis.
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Chapter 1

Introduction

1.1 Introduction to Game Theory

1.1.1 Basic Definitions

Game theory, known as a branch of applied mathematics that is used in the social
sciences, most notably in economics, as well as in biology, engineering, political
science, international relations, computer science, and philosophy, attempts to
mathematically capture behavior in strategic situations, in which an individual’s
success in making choices depends on the choices of others, in other words it aims
to model situations in which multiple participants interact or affect each other’s
outcomes.

While initially developed to analyze competitions in which one individual does
better at another’s expense (zero sum games), it has been expanded to treat a
wide class of interactions, which are classified according to several criteria. Today,
”game theory is a sort of umbrella or ’unified field’ theory for the rational side of
social science, where ’social’ is interpreted broadly, to include human as well as
non-human players (computers, animals, plants)”.

Traditional applications of game theory attempt to find equilibria in these games.
In an equilibrium, each player of the game has adopted a strategy that they are un-
likely to change. Many equilibrium concepts have been developed in an attempt to
capture this idea. These equilibrium concepts are motivated differently depending
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on the field of application, although they often overlap or coincide. This method-
ology is not without criticism, and debates continue over the appropriateness of
particular equilibrium concepts, the appropriateness of equilibria altogether, and
the usefulness of mathematical models more generally.

As a matter of fact, in game theory the model regards rational, in the sense of self-
interest, and intelligent, namely aware of all the existing knowledge of the game
and capable of making all the logical inferences, agents.

Here, we will consider the well-known class of one-shot simultaneous move games,
games in which all players simultaneously chose an action from their set of possi-
ble strategies. Specifically, such a game consists of a finite set of players, each one
having his own set of possible strategies and the obligation to select one of them
(deterministically or not), which will determine the -generally different- outcome
for him. It should be noted that each player has an explicit preference ordering
on these outcomes, playing the crucial role for his strategy decision.

Formally, elements of the game:

• a set n of players, {1, 2, ..., n}.

• a set of possible strategies for each player i, Si.

• individual’s selected strategy, si ∈ Si.

• set of all possible ways in which players can pick strategies. S = ×iSi.

• vector of strategies selected by the players s ∈ S = (s1, ..., sn)

• generally different outcomes for different players depending on s.

• a preference ordering for each player on these outcomes by a complete, tran-
sitive, reflexive binary relation on the set of all strategy vectors S.

Let’s name and slightly analyze some basic solution concepts - specifying the notion
of stability which is the final disirata- that can help us with studying various kinds
of games, some of them we will describe afterwords.

A desirable game-theoretic solution is one in which individual players act in ac-
cordance with their incentives, maximizing their own payoff. This idea is best
captured by the notion of a Nash equilibrium, which, despite its shortcomings, has
emerged as the central solution concept in game theory, with extremely diverse
applications. The Nash equilibrium captures the notion of a stable solution, a
solution from which no single player can individually improve his or her welfare
by deviating.
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It is a solution concept of a game involving two or more players, in which each
player is assumed to know the equilibrium strategies of the other players, and no
player has anything to gain by changing only his or her own strategy unilaterally.
If each player has chosen a strategy and no player can benefit by alternating his
or her strategy while the other players keep theirs unchanged, then the current set
of strategy choices and the corresponding payoffs constitute a Nash equilibrium.
Observe that such a solution is self-enforcing in the sense that once the players
are playing such a solution, it is in every player’s best interest to stick to his orher
strategy.

However, Nash equilibrium may not be unique and also does not necessarily mean
the best cumulative payoff for all the players involved; For games with multi-
ple Nash equilibria, different equilibria can have (widely) different payoffs for the
players. in many cases all the players might improve their payoffs if they could
somehow agree on strategies different from the Nash equilibrium (e.g., competing
businesses forming a cartel in order to increase their profits).

Definition 1: A strategy vector s ∈ S is said to be a Nash equilibrium if for all
players i and each alternate strategy s i ∈ Si, we have that:

ui(si, s−i) ≥ ui(s i, s−i)

.
(for a strategy vector s ∈ S, si denotes the strategy played by player i and s−i
denotes the (n−1)-dimensional vector of the strategies played by all other players.
Moreover, for each player i, ui is simply a function of si , the strategy chosen by
player i, rather than s, the strategies chosen by all n players. Now we obtain n
independent optimization problems, which means that the payoff of each player
depends only on his own strategy and not also on the strategies chosen by all other
players. ui(s) denotes the utility incurred by player i. The notation ui(si, s−i) when
is more convenient. )

Nevertheless, games sometimes possess dominant strategy solutions, a stringent
and less widely applicable solution concept. In game theory, strategic dominance
occurs when one strategy is better than another strategy for one player, no matter
how that player’s opponents may play. Many simple games can be solved using
dominance. The opposite, intransitivity, occurs in games where one strategy may
be better or worse than another strategy for one player, depending on how the
player’s opponents may play.

If a strictly dominant strategy exists for one player in a game, that player will play
that strategy in each of the game’s Nash equilibria. If both players have a strictly
dominant strategy, the game has only one unique Nash equilibrium. However, that
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Nash equilibrium is not necessarily Pareto optimal, meaning that there may be
non-equilibrium outcomes of the game that would be better for both players. The
classic game used to illustrate this is the Prisoner’s Dilemma. Strictly dominated
strategies cannot be a part of a Nash equilibrium, and as such, it is irrational for
any player to play them. On the other hand, weakly dominated strategies may be
part of Nash equilibria.

It is important to notice that a dominant strategy solution may not give an optimal
payoff to any of the players. Having a single dominant strategy for each player
is an extremely stringent requirement for a game and very few games satisfy it.
On the other hand, mechanism design, aims to design games that have dominant
strategy solutions, and where this solution leads to a desirable outcome (either
socially desirable, or desirable for the mechanism designer).

Definition 2: A strategy vector s ∈ S is a dominant strategy solution, if for each
player i, and each alternate strategy vector s ∈ S, we have that:

ui(si, (s )−i) ≥ ui((s )i, (s )−i)

It is not the objective of this analysis to demonstrate all the possible scenarios.
Whilst, for completeness, we should mention that there are cases where the players
are allowed to randomize and each player pick each of his strategies with some
probability (non-deterministically), there are cases where no-nash equilibrium can
be found, there are cases where we are able to reach a strong nash equilibrium
in the sense that even no subset of players has a way to simultaneously change
their strategies, improving each of the participant’s welfare, there are cases where
players have limited information and so we need to consider strategies that are
only based on the available information, and find the best strategy for the player,
given all his or her available information etch.

1.1.2 Examples

Now let’s examine some representative examples of games where the players’
optimal selfish strategies depend on what the other players play or there exist
dominant strategies, or even there is only a weak notion of nash equilibrium.

Tragedy of the commons (Nash Equilibrium Example)

Borrowing some terms from the ”economical crisis” that has been such a hot topic
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in game theory circles nowadays we can consider a general product and manufac-
turing companies in relation to the consuming abilities of the working class. We
make the assumption that the companies’ profit depends on the amount of units
they produce but also sinks as the demand of the product falls. That is as the
ability of the general public to buy the product diminishes. An obvious candidate
for a strategy would be for each of the selling companies to maximize their profit
independently of the other players actions. Let’s model the situation:
xi would be the production (choose your imaginary unit) of the ith company and
in order to take into account the finite spending capabilities of the masses we
calculate xi · (1 − s − xi) the real gain of the company (s being the sum of the
other players productions); we call this the utility function of the ith player. This
is a quadratic function and analysis dictates xi = (1 − s)/2 maximizes it. If all
companies abided by the selfish optimal strategy we would get an end state where
xi = (1− si)/2 where si =

∑
j,j 6=i xj. The only solution of this matrix is given by

xi = 1
n+1

. In that case the sum of the utility functions (let’s say the total well

being of the corporate giants) is
∑
j

1
n+1
· (1− n−1

n+1
− 1

n+1
) =

∑
j

1
(n+1)2

= n
(n+1)2

very

close to 1/n a very slim prospect indeed.

If on the other hand the players agreed to negotiate beforehand and take under
consideration the actions of the other players on the terrain things could turn out
fashionably different. Let’s say for instance they agree to balance their production,
that is xi is the same for all i’s. Then the communal utility value is

nx(1− (n− 1)x− x) = nx(1− nx) = nx− (nx)2 = θ − θ2

and since θ < 1 this maximizes for θ = 1/2 and raises the social welfare to a
respectable 1/4.
The reasoning of unlimited production with no respect of market demand, the
pyramid looking ”make more, sell all” schemes played an important role in the
events leading to the great depression. Of course no genius is needed to reach
the conclusion that consuming capabilities are limited but on the other hand no
game-theorists were in charge those days.

Unscrupulous diner’s dilemma (Dominant-strategy example)

The Unscrupulous diner’s dilemma (or just Diner’s dilemma) is an n-player Pris-
oner’s dilemma. The situation imagined is several individuals go out to eat, prior
to ordering they agree to split the check equally between all of them (They leave
the receipts for the lucky one). Each individual must now choose whether to order
the expensive or inexpensive dish. It is presupposed that the expensive dish is bet-
ter than the cheaper, but not by enough to justify paying the difference compared
to eating alone. Each individual reasons that the expense they add to their bill by
ordering the more expensive item is very small (since they burdened their friends
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with it), and thus the improved dining experience is worth the money. However,
due to lack of universal information every individual reasons this way and they all
end up paying for the cost of the more expensive meal, which, by hypothesis, is
worse for everyone than ordering and paying for the cheaper meal.
Let g represent the joy of eating the expensive meal, b the joy of eating the cheap
meal, h is the cost of the expensive meal, l the cost of the cheap meal, and n
the number of players. From the description above we have the following ordering
h > g > b > l. So as to facilitate for the player’s reasoning that the shared expense
is no longer a ”no go” we give the numbers the extra property that:

g − b > h− l
n

Imagine an arbitrary set of strategies by a player’s opponent. Let the total cost of
the other player’s meals be x. The cost of ordering the cheap meal is 1

n
(x+ l) and

the cost of ordering the expensive meal is 1
n
(x+ h). So the utilities for each meal

are g− 1
n
(x+ h) for the expensive meal and b− 1

n
(x+ l) for the cheaper meal. By

hypothesis the utility of ordering the expensive meal is higher. Remember that the
choice of opponents’ strategies was arbitrary and that the situation is symmetric.
This proves that the expensive meal is strictly dominant and thus the unique Nash
equilibrium. If everyone orders the expensive meal all of the diners pay h and their
total utility is g − h < 0. On the other hand suppose that all the individuals had
ordered the cheap meal, their utility would have been b − l > 0. Once again,
everyone is worse off by playing the unique equilibrium than they would have been
if they collectively pursued another strategy.

The pirate game (a weak notion of Nash Equilibrium)

The pirate game is a multi-player version of the ultimatum game. There are five
rational pirates, A,B,C,D and E. They find 100 gold coins. They must decide
how to distribute them. The pirates obey an authority ordering: A is superior to
B, who is superior to C, who is superior to D, who is superior to E. The pirate
world’s rules of distribution are thus: that the most senior pirate should propose
a distribution of coins. The pirates, including the proposer, then vote on whether
to accept this distribution. If the proposal is approved by a majority or a tie vote,
it happens. If not, the proposer is thrown overboard from the pirate ship and
(hopefully) dies, and the next most senior pirate makes a new proposal to begin
the system again. Pirates (being rational beings) base their decisions on three
factors. First of all, each pirate wants to survive. Secondly, each pirate wants to
maximize the number of gold coins he receives. Thirdly, each pirate would prefer
to throw another overboard, even if all other results would otherwise be equal
-they are simply mean.
The game-theorist’ chest: It might be expected intuitively that Pirate A will have
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to allocate little if any to himself for fear of being voted off so that there are fewer
pirates to share between. However, this is as far from the theoretical result as is
possible. This is apparent if we work backwards: if all except D and E have been
thrown overboard, D proposes 100 for himself and 0 for E. He has the casting
vote, and so this is the allocation. If there are three left (C,D and E) C knows
that D will offer E 0 in the next round; therefore, C has to offer E 1 coin in this
round to make E vote with him, and get his allocation through. Therefore, when
only three are left the allocation is C : 99, D : 0, E : 1. If B,C,D and E remain,
B knows this when he makes his decision. To avoid being thrown overboard, he
can simply offer 1 to D. Because he has the casting vote, the support only by
D is sufficient. Thus he proposes B : 99, C : 0, D : 1, E : 0. One might consider
proposing B : 99, C : 0, D : 0, E : 1, as E knows he won’t get more, if any, if he
throws B overboard. But, as each pirate is eager to throw each other overboard, E
would prefer to kill B, to get the same amount of gold from C. Assuming A knows
all these things, he can count on C and E’s support for the following allocation,
which is the final solution:

• A: 98 coins

• B: 0 coins

• C: 1 coin

• D: 0 coins

• E: 1 coin

Also, A : 98, B : 0, C : 0, D : 1, E : 1 or other variants are not good enough, as D
would rather throw A overboard to get the same amount of gold from B.
The pirates game illustrates the idea of nash equilibrium in a very weak form. Here
we clearly have no rivaling strategies but the sole dominance of one of the players.
Similar types of games that are turn-based (that is, players differentiate their
course of action after each move) need a tree-form strategy, a set of responses for
every possible state of the game. It is there that we have to search for equilibrium.
Of course these strategy-trees are often enormous even in computational terms
(think of chess for example).
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1.2 Introduction to Mechanism Design

1.2.1 Introduction

Mechanism design (sometimes called reverse game theory) is the intersection of
the field of micro-economics (utility maximization and mechanism design) and the
field of game theory (rationality and Nash equilibrium). If we wish to add to it
concepts as complexity and algorithm design from discrete mathematics and worst
case analysis and approximation ratios from theoretical computer science, then we
are talking about algorithmic mechanism design.

In essence, Mechanism design attempts implementing desired social choices (ag-
gregations of the preferences of the different participants toward a single joint
decision, namely generalization of scenarios such as elections, markets, auctions,
government policy) in a strategic setting - assuming that the different members
of society each act rationally in a game theoretic sense. Such strategic design
is necessary since usually the preferences of the participants are private. That
means that it is studying solution concepts for the class of private information
games (Bayesian games), whose distinguishing feature is firstly that a game ”de-
signer” chooses the game structure rather than inheriting one and secondly that
the designer is interested in the game’s outcome, and it usually solves them by
motivating agents to disclose their private information.

1.2.2 Definitions

In this section we will give some basic definitions that concern mechanism design.
Let n be the set of agents and i an arbitraty agent. We denote by θi ∈ Θi the type
of agent i, which shows i’s preference profile over the possible outcomes, assume
O. For example if we have a set A of m candidates, we consider of Θi as the set
of linear orders on A (let L) and θi as a specific linear order on A, let ≺i∈ L (i’s
preference over the candidates, where a ≺i b means voter i prefers b to a). Ob-
viously A = O. For the case of voting, when we introduce the theorem of Arrow
and Gibbard-Satterwaite, we will use the notation A,L,≺.

In order to measure the happiness of agent i for an outcome oj ∈ O, we de-
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fine the utility function ui.

Definition 1: Let ui : θi × O → R be the utility function of i. We consider
ui(θi, oj) > ui(θi, ok) if i prefers outcome oj to ok.
Considering the previous example, if a ≺i b then ui(θi, b) > ui(θi, a).

Definition 2: A function f : ×iΘi → O is called a social choice function.

Below, we define what a mechanism, which shows formally mechanism design
relation with the game theory model.

Definition 3: A mechanism M = (S1, ..., Sn, g(s)) defines the set of strate-
gies Si for agent i and g is a function that denotes the outcome of M , that is
g : S1 × ...× Sn → O and g(s) is the outcome, where s = (s1, ..., sn) the vector of
strategies of the agents.

Thus, the strategy of agent i si, is a function that depends on his type θi. The im-
plementation of a social function f , given a mechanismM , we have that f(θ1, ..., θn) =
g(s1(θ1), ..., sn(θn)) for every vector of types. In this thesis, we are interested in
problems where the agents’ strategies consider the reporting of their type. Hence,
we search solutions that truthtelling is a dominant strategy, that is (s1(θ1), ..., sn(θn)
is a dominant strategy where si(θi) = θi.

There are two well-known theorems that concern the impossibility of achieving
”reasonable” voting, Arrow’s and Gibbard-Satterthwaite, but first, we need to
mention some properties social choice function f must satisfy (in order to make
the voting ”reasonable”).

A social welfare function must satisfy the following to have ”reasonable” voting:

• Function f satisfies unaminity if for every ≺∈ L , f(≺, ...,≺) =argf irst≺ .
intuitively, if all voters have the same preference, the result of the voting
must be the first candidate of the preference.

• Function f is not a dictatorship, which means there is no voter i such that
f(≺1, ...,≺n) =argf irst≺i, for all ≺1, ...,≺n∈ L.

• Function f satisfies independence of irrelevant alternatives, which means for
every a, b ∈ A and every ≺1, ...,≺n,≺′1, ...,≺′n, if we denote a = f(≺1, ...,≺n)
and the relevant position of a, b remains unchanged in the two profile prefer-
ences then b 6= f(≺′1, ...,≺′n) that is b can’t be a winner.

It’s been proven by Arrow the following theorem (Nisan et al. [21] to see the proof):
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Theorem: Every social choice function over A, with |A| ≥ 3 that satisfies un-
aminity and independence of irrelevant alternatives, is a dictatorship.

Actually the proof in Nisan et al. [21] concerns a social welfare function, but
the idea is the same and the proof is similar.

From another view, suppose a social choice function must satisfy the following
in order to have ”reasonable” voting:

• Function f is incentive-compatible, that is there is no voter i such that for
some ≺1, ...,≺n∈ L and some ≺′i∈ L we have that a ≺i a′ where a = f(≺1

, ...,≺i, ...,≺n) and a′ = f(≺1, ...,≺′i, ...,≺n). Intuitively, there is no i that
prefers a′ to a and can ensure that a′ gets socially chosen rather than a by
misrepresenting his preferences.

• Function f is not a dictatorship, which means there is no i such that for all
≺1, ...,≺n∈ L, ∀b 6= a, b ≺i a⇒ f(≺1, ...,≺n) = a.

It’s been proven by Gibbard and Satterthwaite independently the following theo-
rem (Nisan et al. [21] to see the proof):

Theorem: There is no f that is incentive compatible social choice function onto
A and is not a dictatorship.

In order to surpass the previous results of Arrow and Gibbard-Satterthwaite, we
put some restrictions to our problems. An idea is to use money (see auctions) in
order to achieve ”reasonable” and incentive compatible mechanisms. Another way
to deal with that impossibility result is randomization, where we search for the
expected utility for each agent (mechanism makes nondeterministic choices) and
the expected welfare.

Mechanisms with Money:

In this section, we have a set of alternatives A and a set of n players I. Each
player’s preference is expressed with a valuation function vi : A → R, where v(a)
shows i’s assignment ”value” if a is chosen. If player a is also given an amount
m of money, i’s utility function (function that player i intends to maximize) is
denoted

ui = vi +m

Utilities of this form are called quasilinear preferences.

Definition 4: A (direct revelation) mechanism is a social choice function f : V1×
...×Vn → A and a vector of payment functions p1, ..., pn where pi : V1×...×Vn → R
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is the amount of money player i pays.

In words, the mechanism restricts agents strategies to their types-preferences that
are expressed with the valuation functions and also decides about the payment of
each agent (which depends on their type).

Most of the times, when we are searching for mechanisms to solve an algorith-
mic game theory problem, we want our mechanism to be truthful and truthfulness
be a dominant strategy.

Definition 5: A mechanism with money (f, p1, ..., pn) is called incentive com-
patible if for every i, every v1 ∈ V1,...,vn ∈ Vn and every v′i ∈ Vi, the following
inequality holds:

vi(a)− pi(vi, v−i) ≥ vi(a
′)− pi(v′i, v−i)

where a = f(vi, v−i) and a′ = f(v′i, v−i).

Although it sounds strange, any general mechanism that implements a function in
dominant strategies can be converted into an incentive compatible one. Formally,
we have the following theorem.

Revelation Principle

Theorem: If there exists an arbitrary mechanism that implements f in dominant
strategies, then there exists an incentive compatible mechanism that implements
f . The payments of the players in the incentive compatible mechanism are iden-
tical to those obtained at equilibrium, of the original mechanism.

Mechanisms without Money:

As opposed to the previous paragraph, in mechanism design without money, we
search for social choice function without the presence of the payment vector. Even
though the existance of Gibbard-Satterthwaite theorem described above, we exam-
ine dominant strategy implementation on restricted domains of preferences. It is
remarkable to mention that in this case a direct revelation mechanism also restricts
the strategies of agents to their types and the revelation principle still holds (we
omit anything that has to do with payments). In this thesis, we are not interested
in analyzing the mechanisms without money, thus we will just mention a prob-
lem and a strategy proof mechanism that deals with it. A well-known example is
house allocation problem. House allocation involves a set of n agents, each owning
a unique house and a strict preference ordering over all n houses. Our goal is to
reallocate the houses among the agent in an ”appropriate” way. Specifically, we
search for an allocation rule that is strategy-proof. The difference in this problem
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is that the set of alternatives and agents actually are the same. A strategy-proof
mechanism is the following:

Top Trading Cycle Algorithm: We construct a directed graph, where each ver-
tex presents an agent. Suppose house j is agent i’s k-th ranked choice, then insert
an edge (i, j) with color k. Notice that the set of cycles,loops with the same color
are node disjoint. At step k let Nk be the set of vertices incident to cycles with
color k. For each cycle C, take all edges of C (il, il+1) and give house il+1 to agent
il. Delete all edges with color k and repeat. It’s proven that the algorithm (Nisan
et al. [21]) above is strategy-proof, namely no agent takes a more preferable house
if he deviates.

1.3 Auctions - VCG mechanism

1.3.1 Model

Consider an auction of an item that takes place among n bidders. Each bidder i
has a value wi that shows how much ”money” i is willing to pay. Suppose that
bidder i wins the auction and he buys the item at some price p. Then his utility
is wi − p. If someone else (not i) wins the auction, then his utility is 0. Our goal
is to design a mechanism that allocates the item - chooses the winner bidder in a
way that the auction cannot be strategically manipulated. Moreover, we want in
a way to maximize the social welfare: ∑

i

ui

An approach to solve this problem we will discuss in section 1.3.2 below , the
VCG mechanism. There are also auctions with k identical items that each bidder is
interested in buying only one (k Vickrey auction). Furthermore, there are auctions
where each bidder is interested in buying a set of items and the problem is to
price the items. Finally, other modifications of auctions can be occured if each
bidder i has arriving and departure time (i must buy an item before he departs),
etc. Vickrey (1961) gives a celebrated result that any member of a large class of
auctions assures the seller of the same expected revenue and that the expected
revenue is the best the seller can do. This is the case if:

1. The buyers have identical valuation functions (which may be a function of
type)

2. The buyers’ types are independently distributed
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3. The buyers types are drawn from a continuous distribution

4. The type distribution bears the monotone hazard rate property

5. The mechanism sells the good to the buyer with the highest valuation

1.3.2 Vickrey’s second price auction

Assume we have an auction of a single item, as described above and a set I of
n bidders. The set of alternatives is the winners of the auction. Formally A =
{i−wins|i ∈ I}. Also, the valuation of each bidder is denoted by vi(i−wins) = wi
(how much he wills to pay for the item) and vi(j − wins) = 0, j 6= i (intuitively,
every bidder wants to win). The algorithm that solves the latter problem is the
following:
Let the winner be the player i with the highest bid (wi) and i pays p, which is
the second highest declared bid, p = maxj 6=iwj. The following theorem holds
(incentive compatible mechanism).

Theorem:For every w1, ..., wn and every w′i, let ui be i’s utility if he bids wi and
u′i his utility if he bids w′i. Then ui ≥ u′i.

PROOF: Assume that by saying wi he wins and the second highest (reported)
value is p∗, then ui = wi− p∗ ≥ 0. If i attempted to manipulate, then we consider
two cases:

• w′i > p∗, i would still win if he bids w′i and would still pay p∗. Thus u′i = ui.

• w′i ≤ p∗, i would lose so u′i = 0 ≤ ui.

If i loses by bidding wi then ui = 0. Let j be the winner, so wj ≥ wi. We again
consider two cases:

• For w′i < wj, i would still lose and so u′i = 0 = ui.

• w′i ≥ wj, i would win and pay wj, thus biidder’s utility would be u′i =
wi − wj ≤ 0 = ui.

Notice that the algorithm above also maximizes the social welfare function (be-
cause the winner is the only bidder with utility 6= 0). The second price auction is
a special case of the general V CG mechanisms. Generally, in V CG mechanisms
(f, w1, w2, ..., wn) the following properties must hold:

• f(w1, ..., wn) maximizes Rev =
∑n
j=1wj (social welfare).

• pi(w1, ..., wn) = hi(w−i) − Rev(f(w1, ..., wn)) + wi(f(w1, ..., wn)), that is pi
doesn’t depend on i’s marginal value function.
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The idea is rather simple, for bidder i it occurs that ui = Rev − hi(w−i), so
in order bidder i to maximize his utility function, he must maximize the social
welfare. The V CG mechanism is incentive compatible (similar proof to the proof
of truthfulness of second price auction). To choose a ”proper” hi, we have to
demand that pi ≥ 0 for every i. Thus choosing hi(w−i) = maxbi∈A

∑
j 6=iwj(bi)

(Clarke pivot payment), and letting a ∈ A such that Rev(a) is maximized we have
that pi ≥

∑n
j=1wj(a) − wj(bi) ≥ 0 since wi ≥ 0. It is rather straightforward to

observe that for the statement of the second price auction, we have that the winner
pays the second largest price.

1.4 Online Algorithms

1.4.1 Introduction

Online Algorithms are a subfield of Algorithms where we are dealing with interac-
tive computing. More specifically, in Online Algorithms, we are facing problems
whose input arrives as a sequence of portions and the interactive system must react
in response to each portion. Moreover, we consider that the future input is not
known and we are interested in finding a solution that is close to the optimal offline
solution. Offline Algorithms are more or less what we consider classic Algorithms.
Formally, an online algorithm receives a sequence of requests σ = σ(1), ..., σ(m).
These requests must be served in the order of occurrence. When serving request
σ(t), an online algorithm does not know requests σ(t′) with t′ > t. Serving requests
incurs cost and the goal is to minimize the total cost paid on the entire request
sequence.

1.4.2 Competitive ratio

In order to analyze online algorithms, we compare the perfomance of an online
algorithm with the optimal offline algorithm. This method is called competitive
analysis. Assume that we have online algorithm ALG for a problem and the
respective optimal offline algorithm OPT and input x. Let ALG(x) and OPT(x)
be the cost of online and offline algorithm respectively. If the relation below holds
for every input x:

ALG(x) ≤ c ·OPT (x) + b

where b is a constant number, then ALG is c-competitive. It is remarkable that
competitive analysis is a worst-case analysis measure.
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1.4.3 Problems

There are online problems which have great interest over the years such as paging
problem, selforganizing lists, the k-server problem as well as metrical task systems.
In this section, we discuss the statement of k-server problem and results referred
to competitive analysis for the latter problem.

k-server Problem

In this problem we have k servers and m requests which are represented as points
in a metric space S. Let G be the graph that is formed of the locations of the
requests. As each request arrives, the algorithm must determine which server to
move to the requested point. The goal is to keep the total distance the servers
move as small as possible. For competitive analysis, the respective offline problem
is to know from the beginning the requests and move the servers optimally to serve
them. Symmetric k-server problem is the k-server problem where d(i, j) = d(j, i)
for every points i, j (distance between i, j).

Theorem: For any symmetric k-server problem, there is no c-competitive de-
terministic algorithm for c < k.

PROOF: Let A be an online algorithm for k-server. Let H be a subgraph of
G of size k + 1 induced by the k initial positions of A’s servers and one other
vertex. Let σ(i) be the unique vertex in H not covered by A at time i. Then the
cost of A is:

CA(σ, t) =
t∑
i=1

dσ(i+1),σ(i)

Let S be any k-element subset of H containing σ(1). We define A(S) as follows:
Initially, the servers occupy the vertices in S. At step i, if σ(i) ∈ S do nothing,
else move server from σ(i − 1) to σ(i) and update S. It’s obvious when step i
begins, σ(i− 1) ∈ S.
Assume now S1, S2 sets with the property of S that initially are not equal. We
will prove that during the procedure, they never become equal (i).
Let j be an index such that S1, S2 differ before σ(j) procedure. We examine the
following cases:

• σ(j) ∈ S1, S2 then after updating, S1, S2 still differ (they don’t change).

• σ(j) belongs to exactly one of them. Then after updating, the one set contains
σ(j − 1), but not the other.

• σ(j) /∈ S1, S2 then after updating, S1, S2 still differ (σ(j) replaced σ(j − 1)
from both sets).
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This completes the induction. Let us consider simultaneously running A(S) start-
ing from all k-elements subsets of H containing σ(1). There are k such sets. At
each step, there are all k-elements subsets (using i) of H. At step i + 1, each of
these algorithms either does nothing at no cost, or it moves a server from σ(i) to
σ(i + 1) at cost dσ(i)σ(i+1). From the k algorithms, one of them doesn’t contain
σ(i + 1) (since we have all sets at each step). So at step i, the total cost of the k
algorithms is dσ(i)σ(i+1). Thus the total cost of running all of these algorithms up
to σ(t) (including) is:

t−1∑
i=1

dσ(i)σ(i+1)

So the expected cost is E = 1
k

∑t−1
i=1 dσ(i)σ(i+1) of the offline algorithms. Thus

CA(σ, t) ≥ k · E.

The Work Function:

LetX be a configuration of the servers. Given a request sequence σ = σ(1), ..., σ(t),
the work function w(X) is the minimal cost of serving σ and ending in configu-
ration X. Suppose that the algorithm has served σ = σ(1), ..., σ(t − 1) and that
a new request r = σ(t) arrives. Let X be the current configuration of the servers
and let xi be the point where server si, 1 ≤ i ≤ k, is located. Serve the request
by moving the server si that minimizes w(Xi)+d(xi, r), where Xi = X−{xi}+{r}.

Theorem: The Work Function algorithm is (2k − 1)-competitive in an arbitrary
metric space.

1.5 Online Mechanism Design

Sections 1.2, 1.4 are a friendly introduction to Mechanism Design and Online Al-
gorithms. In this section we discuss tha combination of these two fields. Suppose
that we have a game theory problem and we search for incentive compatible mecha-
nisms (truthful is a dominant strategy). However, in the statement of the problem,
we have that the self-interested agents are dynamically arriving or departing, or
there is uncertainty about the set of feasible decisions in the future. Online mecha-
nism design, generalization of the theory of computational mechanism design deals
with these kind of problems. Decisions must be made dynamically and without
knowledge of future decision possibilities, in the sense of online algorithms. A well-
known example is the secretary problem that we analyse in chapter 2. Moreover,
agents can misrepresent except of their valuation, their arrival and departure time
(it’s usually unavailable to repot an earlier than the true arrival time). Finally, for
the worst-case analysis, we can also use competitive analysis, as defined in section

24



1.4.2 because we deal with mechanisms with online setting. Below, we give for-
mally the general model.

Model: Consider discrete time periods T = {1, 2, ...} indexed by t. A mecha-
nism makes decisions in time t that depend on events that took place in time <t.
The events may be bids that are received from agents, or the loss of an item (if
the time it expires passed), or uncertain events that don’t have any relation with
agents’ types. The agents have a type of the form (ai, di, wi) that concern their
arrival,departure time and valuation. The decisions that have to do with a certain
agent, let i, must be made during the period [ai, di]. Most of the times, we have
some restrictions on the announced type of an agent, that is the agent is not al-
lowed to announce every type he wants that is different from his true type (namely
we may have no early-arrival misreports or no late-departure misreports). This
is rather important, because without these assumptions we can’t use the direct
revelation principle in the online case (Nisan et al. [21]).

Definition 1: A (direct-revelation) on-line mechanism M = (π(t), x(t)) restricts
each agent to make a single announce about his type and defines decision policy
π(t) and payment policy x(t) happened in time t, where t ∈ T .

In words, π(t) is the function that given the time t, denotes the decisions that
must be made in t and x(t) is the payment-rule for some agents that are present
in t.

In Online Mechanism Design (as generally in mechanism design), we are interested
in finding mechanisms that are dominant-strategy incentive compatible. In this
case, the only thing that changes is that truthtelling must be dominant strategy
for every set of events that occur in the dynamic environment. For the randomized
mechanisms, we care about the expected utility to be maximized when the agents
are truthful over all uncertain events that take place and over all the flip coins a
randomized mechanism uses, namely, truthtelling is independent of the uncertain
events.

The main part of this diploma thesis, deals with these kind of problems in mech-
anism design. In the next two chapters, we examine different modifications of
online auctions that the field of online mechanism design deals with. In chapter
2, we deal with problems where we try to find strong-strategy proof mechanisms,
that is agents truthtelling about their valuation,arrival and departure is a dom-
inant strategy and have the constraint that the auctioneer has limited supply of
the items he sells (the number of items is less than the number of agents). For
this case, we consider the random order scenario. However, in chapter 3 we deal
with problems with weak-strategyproofness, that is truthtelling about only their
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valuation is a dominant strategy (we don’t discuss about arrivals and departures
of the agents). For this case, we consider the worst-case scenario.
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Chapter 2

Limited supply online auctions

In this chapter we examine the auctions at which the auctioneer and the bidders
deal with a limited supply of goods. Except of the internet, in real auctions, the
auctioneer sells a finite number of goods. So it is very important to focus on this
kind of auctions. First of all, we present an online algorithm for the well-known
Secretary problem, the idea of which has a lot of applications with respect to the
online auctions with limited supply. Furthermore, we give a common framework
that all the problems of this chapter can be reducted to, such as single-item auction,
multi-item auction, knapsack secretary. Finally, we make a friendly introduction
to matroid domains and their relation to the previous problems.

2.1 Introduction

Assume that we are interested in selling an item with the following procedure. N
bidders come one at a time and announce a bid that shows how willing they are to
buy the item, namely how much ”money” they are willing to pay. After hearing
bidder i, we must immediately decide whether or not to sell the item to him. What
is the best approach for the preceding problem? In order to give a right answer,
there are a lot of questions that have to be answered first, such as, do we have
any a priori knowledge of the bid values, or any assumptions with respect ot the
bids’ order? Suppose for the contrary that we don’t have any assumptions for the
order. Then, in order to analyse our problem, an idea is the worst-case scenario,
that is, we consider the input to be the worst permutation of bids according to
the online algorithm we examine (for a given vector of bids). Unluckily, for this
scenario the bound is rather pessimistic, as their is no online algorithm with com-
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petitive ratio less than N . Another scenario, is to consider that the bidders come
in random order, that is we compare the expected profit of the online algorithm
with the optimal offline (the expectation is taken over all permutations of bids, for
a given vector b1, ..., bN). For the rest of this chapter, we make the assumption that
this scenario holds and the analysis for all the different modifications of the online
auctions we study is based on this scenario. The Secretary problem we discuss
in section 2.1.2, is very similar to the initially given problem. In the first case,
we are interested in maximizing the expected value of the chosen bid and in the
Secretary problem we are interested in maximizing the probability of choosing the
maximum element (highest applicant). It is rather straightforward to observe that
the solution to the secretary problem yields an algorithm for choosing a bid from
a randomly-ordered bid sequence (as described above). For now, we postpone the
analysis of the problem because firstly, we have to give the necessary definitions
and background knowledge.

2.1.1 Basic Definitions

As we have already mentioned, we consider an environment with N agents
that want to allocate a single, indivisible item. Each agent’s type is denoted
θi = (ai, di, wi) ∈ Θ (Θ is the set of types), where ai, di, wi denote the agent’s
i arrival time, departure time and value for the item respectively. Additionally,
bidders are strategic and may try to manipulate the auction by misreporting their
type. Assuming no early-arrival misreports and allowing all other kinds of misre-
ports - namely, when bidder i announces his type, he can’t report a′i, d

′
i, w

′
i with

a′i < ai - we try to find a solution with a good revenue as far as the auctioneer is
concerned. Revenue is defined by

Rev =
∑
i

pi(θi)

where pi(θi) is the payment of bidder i. In order to compare the online mechanisms
with the offline, we have to define what a c-competitive mechanism means, with
respect to efficiency and revenue.

Let S be the set of all inputs of the algorithm. As an example, consider that
for the problem described in the introduction, S is all the permutations of the bid

values. Assume an arbitrary input s ∈ S. If Es∈S[
Vonline(θs)

Vopt−offline(θs)
] ≥ 1

c
, where V is

an objective function, V : Θ→ R defined by the problem (value of the allocation,
usually

∑
i

vi), we say that our algorithm is c-competitive with respect to efficiency.

It is remarkable to say that we take the expectation with respect to the random
order of the elements of S.
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In a similar way, if Es∈S[
Revonline(θs)

RevV ic(θs)
] ≥ 1

c
then our algorithm is c-competitive

with respect to revenue, where RevV ic is the returned revenue from Vickrey’s sec-
ond price auction. It is remarkable to mention that for the revenue case, there are
different definitions as far as the optimal offline revenue is concerned, that depend
on the nature of the problem. Namely, if we deal with auctions where we have
more than one item to sell, we define different revenues from RevV ic.

2.1.2 Secretary Problem

It is rather straightforward to see that the example described in introduction
is familiar with the secretary problem, the statement of which is the following. An
interviewer wants to hire one of N job applicants. The total number of them is
known. Each applicant meets the interviewer in turn and informs him about his
quality. If the interviewer denies to hire an applicant, he can’t change his mind.
The goal is to hire the best applicant. Actually, the goal is to maximize the propa-
bility of hiring the highest rank applicant, for all adversarially selected inputs.
Ferguson in [12] describes the following mechanism to solve the secretary problem.
For a given parameter r the policy is to interview the first r − 1 applicants and
hire the i applicant (i ≥ r) with the best quality so far, if there exists one (it is
possible that for all i ≥ r , there exists j < i such that qualityi < qualityj). In his
paper [1], he proves the theorem below.

Theorem: The probability of selecting the best applicant converges to 1
e

as

N →∞ for the optimal choice of r, which is
⌊
N

e

⌋
.

PROOF: Define φN(r) as the probability that the algorithm selects the best
applicant after declining the r−1 applicants and ψN(j) as the probability that the
j-th applicant is the best and the algorithm has declined the first j−1 applicants.
It is obvious that φN(r) =

∑N
j=r ψN(j) because if the algorithm rejects the j − 1

applicants and the j-th is the best, then the algorithm will choose him (j ≥ r).

Now, let pM(j) = (M−1)!
M !

= 1
M

be the probability that the j-th applicant is the
best among M applicants and finally qM(j) be the probability the best applicant
among the first M has index less than or equal to j. Then, ψN(r) = pN(r) = 1

N
(the probability that r-th applicant is the best) and ψN(j) = pN(j)× qj−1(r − 1)

for j > r. Furthermore, apparently qM(j) =
∑j
t=1 pM(t) = j

M
Thus

φN(r) =
N∑
j=r

pN(j)× qj−1(r − 1) =
N∑
j=r

1

N
(
r − 1

j − 1
) =

r − 1

N

N∑
j=r

(
1

j − 1
)

As N →∞ then the sum can be approximated by the following integral (using x,t
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and dt as limit of r/N , j/N and 1/N respectively).

x
∫ 1

x
(
1

t
) dt = −x log x

The previous integral is maximized for x = 1
e

(using derivatives). The integral is

equal to 1
e

and so is φN(r). It is remarkable to mention that r that maximizes the

propability φN(r) is
⌊
N

e

⌋
(substitue x for r/N).

Formally, the algorithm for the secretary problem is the following:

Algorithm for Secretary problem

1. Observe r = bN
e
c − 1 without picking any element and let p be the highest quality

among the first r elements.
2. for i = r + 1, r + 2, ..., n do
3. if wi ≥ p then output wi, break
4. end for.

However, except of the secretary problem, there are lots of modifications of the
standard model (discussed in introduction and also in next section) and we examine
them seperately. For the simple case, we assume the following constraints. Each
bidder i has a type θi and is strategic, namely he may misreport his type to
increase his utility function. The goal is to find a truthful, efficient and competitive
mechanism in order to maximize the revenue of the auctioneer.

2.2 Online auctions with limited supply

All the problems that we discuss below, can be described in the following common
framework, that is an extention of the problem we discussed in the introduction.
Suppose we have a set U of bidders and let I ⊆ 2U be a collection of sets of the
simultaneously winning bidders (the ones that buy an item), namely, if S ∈ I
then S is a feasible set of accepted bidders. Our goal is to design online algorithms
in which the structure of U is known (see for example section 2.3 matroids), as
opposed to the elements and their values that belong to U , which are revealed one
at a time. As each bidder arrives, our algorithm must decide whether to accept or
reject him, satisfying the following constraints: decision of acceptance or rejection
can’t be changed, decision must be made before the arrival of the next element
and finally the set of decisions must belong to I. Last but not least, in any case,
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we consider the assumption we mentioned in the previous section about the order
of the bidders. Hence, the expectation is calculated over all permutations of the
bidders and according to the random choices that are made from the algorithm.

2.2.1 Single item online auction

In this section, we consider an online auction for one single item, in which each
bidder i has a type θi = (wi, ai, di) which is his private data. We consider that
bidder i learns about the auction, or its value (wi) for the good, at his arrival time
ai and needs a decision by departure time di. As we have already mentioned, we
consider the scenario that the bidders come in random order. For this case, we
mean that for a specific set of valuations V = {w1, ..., wn} and a specific set of
intervals T = [a1, d1], ..., [an, dn], we take the expectation over all the matchings
from V to T (n! matchings). As the general framework indicates for this special
case, U = {1, 2, ..., n} the set of bidders and I = {{}, {1}, {2}, ..., {n}} the collec-
tion of the sets with at most one bidder.

To deal with this problem we consider the following algorithm, ascribed to Dynkin,
that is based on two simple ideas (it can be seen in Nisan et al. [21], Hajiaghayi
et al. [15]). The first idea is the one of examining the first bN/ec bidders and
then decide to whom to sell the product, idea that we came up with from the
analysis of Secretary problem. This is the best case for achieving a solution close
to the optimal with respect to revenue and efficiency. The second idea is the one of
Vickrey’s second price auction, where we sell the product to the best bidder seen
so far at the price of the second maximum bid. The latter idea is the reason for
the algorithm-mechansim below to be truthful. Combined together the two ideas,
we manage to have good competitive ratio and strong truthfulness.

ALG1
1. (transition): In period τ in which the bN/ec-th bid is received, let p ≥ q be
the top two bid values received so far. If an agent bidding p is still present in
time τ then sell it to that agent at price q (breaking ties at random).

2. (Second phase): Otherwise, sell the item to the next agent to bid a value at
least p at the price of p (breaking ties at random).

We prove now that ALG1 is truthful and find the competitive ratio as far as the
revenue we defined in basic definitions and efficiency.

Theorem: ALG1 is strongly truthful for single-unit and limited supply envi-
ronment, supposing that we have no early-arrival misreports.

31



PROOF: Fix θ−i and assume no breaking ties ( breaking ties are independent
of the types). We consider the following cases according to θi:

• Case 1: If di is at the left of the transition, agent i is not allocated and thus
he will not win the auction even if he deviates his type θi.

• Case 2: If [ai, di] spans the transition, agent i wins the bid if wi > q. If he
bids later departure or higher wi he still wins. If wi ≤ q, he loses because
the price of the item will be ≥ p (or = q if there is in time τ an agent j
that has wj = p). For later arrival (misreporting), agent i still can’t win
the auction with wi < p and with wi ≥ p there is a possibility of losing the
auction (if reported arrival a′i > τ and at the transition the bidder with the
second highest bid is still present). Hence, in case i misreports, he can’t win
unless he would win being truthful.

• Case 3: If ai is after the transition, agent i wins the bid if wi ≥ p and there is
no bidder j with wj ≥ p that appears in time interval [τ, ai]. For later arrival,
agent i still can’t win the auction with wi < p and with wi ≥ p there is a
possibility of losing the auctions (another bidder j with wj with aj > τ and
aj < a′i would be the winner). For later departure, i can’t win the auction
with less bid value than p and still wins if he was the winner before. Earlier
arrival misreporting is not allowed (in that case agent i would manipulate the
auction).

• Case 4: If agent i triggers the transition, then he wins if and only if wi > q,
namely wi = p. The case for arrival and departure misreports is similar to
case 2.

The theorem below shows that ALG1 is e-competitive with respect to revenue and
efficiency. A similar proof can be found at Nisan et al. [21], Hajiaghayi et al. [15].

Theorem: The ALG1 is e+o(1)-competitive for efficiency and e2+o(1)-competitive
for single-unit and limited supply environment as N →∞.

PROOF: For efficiency which is denoted wi where i is the winning bidder, we
consider the definition of section 2.1.1 and assuming that C is the fact of choosing
the agent with the highest value (let w∗), we have to prove that Pr[C] ≥ 1

e
− o(1),

because E
[
wwinner
w∗

]
=
E[wwinner]

w∗
≥ Pr[C]w∗

w∗
≥ Pr[C]. We examine two cases:

• Case A: Selling at step 1 (transition) of ALG1.

The probability of choosing the agent with the highest value is at least bN/ec
N

=
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1
e
− o(1), that is the probability the agent with highest value to belong to the

interval [1, ..., bN
e
c].

• Case B: Selling at step 2 (after transition) of ALG1.
The probability of choosing the highest value event is at least 1

e
− o(1). (See

secretary problem analysis made above).

So the total probability Pr[C] = Pr[A]·Pr[C|A]+Pr[B]·Pr[C|B] ≥ (1
e
−o(1))(Pr[A]+

Pr[B]) = 1
e
− o(1) and the competitive ratio is at most 1

Pr[C]
≤ e

1−o(1) = e+ o(1).

For revenue which is denoted by pi where i is the winning bidder (pi is the amount
i pays) we consider the definition of section 2.1.1 and assuming that C is the
fact of selling the item to the agent with the highest value at a price equal to
the second-highest bid (let w∗∗ be the second highest bid), we have to prove that

Pr[C] ≥ 1
e2
− o(1), because E

[
pwinner
w∗∗

]
=
E[pwinner]

w∗∗
≥ Pr[C]w∗∗

w∗∗
≥ Pr[C]. We

examine two cases too:

• Case A: Selling the item at step 1 (transition) of ALG1. The probability of
selling the item to the agent with the highest value at a price equal to the
second-highest bid can be occured as follows. The probability of the first event
is 1

e
− o(1) and of the second event is also 1

e
− o(1). So the total probability

Pr[C|A] is (1
e
− o(1))2 = 1

e2
− o(1).

• Case B: Selling the item at step 2 (after transition) of ALG1. The probability
of selling the item to the agent with the highest value at a price equal to the
second-highest bid can be occured as follows. The probability of the first
event is 1

e
− o(1) and of the second event is 1 − (1

e
− o(1)). Hence, the total

probability Pr[C|B] is (1
e
−o(1))(1− 1

e
+o(1)) = (1

e
)(1− 1

e
)−o(1) > 1

e2
−o(1).

So the total probability Pr[C] = Pr[A] · Pr[C|A] + Pr[B] · Pr[C|B] ≥ ( 1
e2
−

o(1))(Pr[A] + Pr[B]) = 1
e2
− o(1) and the competitive ratio is at most 1

Pr[C]
≤

e2

1−o(1) = e2 + o(1).

The case of the single item is rather an easy application of the algorithm of the
secretary problem. However, in online auctions we may face problems with more
than one item that has to be sold (that is we have more than one winning bidder).
The section below, deals with the more generalised version.

2.2.2 Multi-item auction - k-choice secretary problem (k > 1)

In this section, we consider the model of the previous section (2.2.1). However,
in this case the auction has k (n ≥ k > 1) identical items instead of one. If we
consider that U is the set of bidders and I is the family of all the subsets of U
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with at most k elements, we can integrate this case to the general framework. A
first approach is to generalize ALG1. In ALG2 described below, we observe the
first t = bN/ec bidders (suppose at time τ comes the t-th bidder) and we create
a set T with the k highest (if we have k > t then we fill T with zeros). Set T is
used for comparison and the elements that belong to T are not all of them actually
selected. Whenever a bidder j, with aj > aτ arrives, if his bid value wj is larger
than the minimum of T and the minimum of T belongs to an non-selected bidder,
an item is sold to j and T is updated (wj replaces the minimum). This continues
till we run out of bidders or items.

ALG2
1. Observe the first t = bn/ec without picking any of them.
2. Let T be the set of the best k elements ( if k > bn/ec fill with dummy zero
variables)
3. Whenever an element arrives whose value is greater than the minimum-value
element in T (which must not be selected), select this element, put it in T and
delete the minimum-value element from T .

Babaioff et al [5] proved that ALG2 is e-competitive with respect to
∑k
j=1wj∗

where wj∗ is the j-th highest bidder as far as the bid values are concerned.

Theorem: The ALG2 is e-competitive with respect to revenue.

PROOF: Let S be the set of the selected bidders, w(S) =
∑k
j=1wj, i

∗ be the
i-th larger bid value (i ≤ k) and S∗ = {1∗, ..., k∗}. We prove that Pr[i∗ ∈ S] ≥
t
n

ln(n/t). Suppose the i− th bidder is observed at time j (j > t , i ≥ k). Then the
probability of selecting j is equal to the probability of the minimum-value element
in T not to be selected, namely to be arrived at time t or earlier. Thus the prob-
ability is equal to 1

n
· t
i−1 . Hence the total probability Pr[i∗ ∈ S] by union bound

is equal to
∑n
j=t+1

1
n
· t
i−1 ≥

t
n

∫ n
t

1
x
dx = t

n
ln(n

t
). Thus E[w(S)] =

∑n
j=1wj Pr[j ∈

S] ≥ ∑k
j=1wj∗ Pr[j∗ ∈ S] > t

n
ln(n/t)w(S∗) (we assumed t = bn/ec). Substituting

t for bn/ec it follows that E[w(S)] ≥ ew(S∗).

However, Kleinberg in [18] proved that e-competitive ratio is far from optimal as
k → ∞. He defined a recursive algorithm that is 1 + O( 1√

k
)-competitive. It is

remarkable that competitive ratio reaches 1 as k → ∞. The algorithm works as
follows. It seperates the bidders (in order of arriving) into two almost equal in size
segments (with the use of binomial distribution). It chooses recursively l (up to
k/2) bidders from the first segment and k− l from the second segment that exceed
a threshold bid value. The threshold bid value is the bid of the l-th bidder that
was chosen from the first segment. For the special case of k = 1, it uses ALG1.
Formally the algorithm is the following:
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ALG3 (1,n,k)
1. if k = 1 then return ALG1(1, n)

else
{

2. Choose m according to binomial distribution B(n, 1/2)
3. Let S = ALG3(1,m, k/2) and l = |S|
4. Let pt = minimum element of S
5. O = S.
5. for i = m+ 1 to n do
6. if |O| = k then break

else
7. if wi > pt then O = O ∪ {i}
8. return O
}

Theorem: The ALG3 is (1 +O( 1√
k
))-competitive with respect to revenue.

Proof-sketch: Kleinberg in [18] uses induction on k to prove that for any set

S with n, the expected value of the elements ALG3 selects is at least (1−5/
√
k)v,

where v is the sum of the k largest elements in S. First of all, he defines as
T the set of the k largest elements and modified value of x ∈ S equal to x if
x ∈ T , zero otherwise. Then he shows that Y = {w1, ..., wm} is a sample of the
uniform distribution over all 2n subsets of S. This is straightforward as the prob-
ability |Y | = m is (1/2)n n!

m!(n−m)!
and thus the probability Y = {w1, ..., wm} is

(1/2)n n!
m!(n−m)!

× m!(n−m)!
n!

= (1/2)n. Using that argument, it can be easily seen

that Y ∩ T is a uniform random subset of T and thus |Y ∩ T | follows B(k, 1/2)
(binomial distribution). Hence, using the inductive hypothesis for k/2, Kleinberg
proves that the elements selected from Y have expected modified value at least

(1 − 5/
√
k/2)(1 − 1/(2

√
k))v/2. Additionally, defining Z = {wm+1, ..., wn} and

q as a random variable of the number of the elements that belong to Z and are
greater than wl (l is defined in ALG3), he proves that the expected modified

value of the elements of Z selected by the ALG3 is at least (1/2 −
√

1/k)v. Fi-

nally, by adding the expected modified values of the two sets (Y, Z) we have that

(1− 5/
√
k/2)(1− 1/(2

√
k))v/2 + (1/2−

√
1/k)v > (1− 5/

√
k)v which completes

the induction step.

2.2.3 Knapsack Secretary Problem

In this section, we are dealing with the online knapsack problem. Online knap-
sack problem is a modified version of knapsack problem and the online auction
framework we discussed in section 2.2. Knapsack is NP -complete problem, ad-
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mits FPTAS using dynamic programming as well as a simple 2-approximation.
However, the online version is inapproximable to within any non-trivial factor.
Below we describe the model formally and mention an algorithm with constant
(10e) competitive ratio, as it can be seen in Babaioff et al [5].

Model:

Let U = 1, ..., n set of n secretaries each have non-negative weight w(i) and value
v(i). Given a weight bound W , we must select in an ”online fashion” (assuming
random-ordering hypothesis) a set S ⊂ U such that:

Maximize
∑
i∈S

v(i) subject to
∑
i∈S

w(i) ≤ W

This case can be ascribed to the general framework if we consider U as the set of
bidders and I as the family of sets whose total weight doesn’t exceed W . For the
unweighted case, every secretary i has weight w(i) = 1. This problem has already
been analysed in the previous section (k-choice secretary problem).

For the weighted case, Babaioff et al. [5] propose the following algorithm, namely

ALG4. In order to proceed to ALG4, we need to define density, ρ(i) = v(i)
w(i)

first.

ALG4:

Assume in this section that W = 1. (To reduce from the general case to the
W = 1 case, simply rescale the weight of each element by a factor of 1/W ). The
algorithm begins by sampling a random number a ∈ {0, 1, 2, 3, 4} from the uniform
distribution. The case a = 4 is a special case which will be treated in the following
paragraph.

• If 0 ≤ a ≤ 3, then the algorithm sets k = 3a and runs the k-secretary
algorithm from Section 2.2 (ALG2, with t = bn/ec) to select at most k
elements. If the k-choice secretary algorithm selects an element i whose weight
w(i) is greater than 1/k, we override this decision and do not select the
element.

• If a = 4, the algorithm operates as follows. It samples a random t ∈
{1, 2, ..., n} from the binomial distribution B(n, 1/2). Let X = {1, 2, ..., t}
and Y = {t+ 1, t+ 2, ..., n}. For every element i ∈ X, the algorithm observes

v(i) and w(i) but does not select i. It then sets ρ′ = ρ
1/2
X and selects every

element i ∈ Y which satisfies w(i) ≤ 3−4, ρ(i) ≥ ρ′, and w(S<i ∪ {i}) ≤ 1,
where S<i denotes the set of elements which were selected by the algorithm
before observing i.
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The algorithm ALG4 is a combination of ALG2 and another algorithm (let KLP),
the idea of which is the following. Instead of a threshold price, in this case we
have threshold density. Initially, the algorithm seperates the bidders in two seg-
ments (with expected equal size because we use binomial distribution to make
the seperation). It observes the first segment of elements and define a threshold
density. Then it chooses an element of the second segment, if it’s density is larger
than the threshold. This idea comes from the fact that discrete knapsack problem
can be reducted to an ILP problem. Thus ALG4 makes use of ALG2 (k-choice)
with probability 0.8 (0.2 probability for each k ∈ {1, 3, 9, 27}) and the KLP with
probabilty 0.2. Babaioff et al [5] proved the following theorem for the competitive
ratio of ALG4:

Theorem: ALG4 is (10e)-competitive.

Proof-sketch: Assume that OPT = {i1, ..., im} in decreasing order of weight
and S the set of elements selected by ALG4. The idea of the proof is to de-
fine Bj = {il|3j ≤ l < 3j+1} for 0 ≤ j ≤ 3 and B4 = {i81, ..., im}, thus

OPT = B0 ∪ ... ∪ B4. Also, let gj = E[v(S)|a = j] (v(S) =
∑|S|
i=1 v(i)). By

proving bj = v(Bj ≥ 2egj (for 0 ≤ j ≤ 3 is easy, more difficult for j = 4) we
have that v(OPT ) = b0 + b1 + b2 + b3 + b4 ≤ 2e(q0 + q1 + q2 + q3 + q4), thus
v(OPT ) ≤ 10e(

∑4
j=0 Pr[a = j] · E[v(S)|a = j]) = 10eE[v(S)].

2.3 Matroids

In this part, we deal with the same framework as predefined in the introduction
of section 2.2. In this case, we consider that the allowed sets which belong to I,
form a combinatorial structure called a matroid. The restrictions that a matroid
structure has to satisfy, help us to design algorithms solving problems that belong
to the common framework and are log k-competitive, where k is the rank of the
matroid, or even c-competitive with c constant. This work can be seen in Babaioff
et al. [3]. Hence, the matroid structure is very important and this can be justified
from the example we give in section 2.3.2. Below, we proceed with the formal
definitions.

2.3.1 Definitions

Definition. A matroid (U, I) is constructed from a ground set U 6= ∅ and a
nonempty family of subsets of U denoted by I, called the independent subsets of
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U , such that if B ∈ I and A ⊆ B then A ∈ I. Additionally, if A,B ∈ I and
|A| < |B|, then ∃x ∈ B\A such that that A ∪ {x} ∈ I (exchange property).

A matroid is a common extension of the ideas of a base in linear algebra (U
is the set of vectors, and an independent set is a set with linearly independent
vectors), of a graph (U is the set of edges, and an independent set is a set of
edges that doesn’t contain a circle) and other mathematical notions. Exchange
property is the one that gives us the ability to form competitive algorithms since
an early mistake can only lead to one suboptimal element being chosen and not for
instance to having minimal/overall weight because the independent sets with our
unlucky choice are comprised of unworthy items. It is also the main reason that
the matroid (as it is a generalization of base) has maximal independent subsets
all of which have the same number of elements called the rank of the matroid.
This is true, because if we suppose for the contrary that there are two maximal
independent set A,B with |A| < |B|, then from exchange property, there is x such
that A ∪ {x} is also independent, which is a contradiction as A is maximal.

2.3.2 Algorithmic Model

The algorithmic model that we adapt considers an algorithm that is given the
matroid structure at the beginning and receives the elements online. It maintains
a set of selected elements and chooses to add or not the next one in line according
to its weight and the possible independent sets.
Our strategic model considers matroid preference domains. Generally we have
a set of U of n agents and a set Ω of possible outcomes (in auctions a possible
outcome is a matching of successful buyers and products). In such domains each
agent has a satisfying set of outcomes Ai ⊆ Ω in which he always obtains value Vi
while 0 in outcomes in Ω\Ai. A set of agents is called independent if there is an
outcome that satisfies exactly those agents. If for any profile of types the family
of independent sets is a matroid the domain is called a matroid domain. Thus, we
maintain the common framework we have already discussed with the constraint
that the family feasible-allowed sets consists a matroid.

2.3.3 Importance of matroid structure

Matroid domains represent interesting economic problems. For instance, the
unit-demand domain is built as a transversal-matroid domain. Given a set of ele-
ments, U , and a class I of subsets of U , a transversal of I is a subset S of U such
that there is a one-to-one function f from S to I by which x belongs to f(x) for
each x ∈ S. (I may have repeated members, which are treated as separate subsets
of U .) The set of transversals forms the class of independent sets of a matroid,
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called the transversal matroid of (U, I). Additionally, in the unit-demand prefer-
ence domain there are n agents and a set M of m non-identical items. Each agent
i desires a set of items Ti and obtains value vi if he is successful. Each outcome is
represented as a one-to-one matching of agents to items.
We give a proof-sketch which shows that the unit-demand domain has the struc-
ture of a transversal-matroid.

Theorem: The unit-demand domain has the structure of a transversal-matroid.

Proof-sketch: We consider a random profile of types. Let A be an independent set
of agents and Ω its winning outcome. ∀A′ ⊆ A there is the outcome where some
of the items are not obtained leaving the members of A′ the sole agents with a
matching to an element. Thus A′ is independent. Let |A| < |B| independent set.
An agent bi must have an item X that no agent in A has. If bi /∈ A and is aj we
consider A ∪ {bi} and we are done. If bi ∈ A, we consider the outcomes where he
obtains element X and then the sets A1 = A − {aj} and B1 = B − {bi}. Induc-
tively (consider A becoming empty ...) ∃b ∈ B1 such that A1∪{b} is independent.
Then since no agent in B1 or A1 obtains element X, the set A1 ∪ {b} ∪ {aj} is
independent. Thus A ∪ {b} is independent. Since by these the exchange property
also holds the unit-demand domain is a matroid domain.

It is remarkable to mention that single-item (2.2.1 section) and multi-item auc-
tion (2.2.2 section) is a subcase of a unit-demand domain. For the first case,
∀i ∈ U we have that Ti = {item} and for the second case, assuming the items are
{g1, g2, ..., gk} then ∀i ∈ U we have that Ti = {g1, g2, ..., gk}.

As the previous example demonstrated, however general, the assumption of a
matroid domain demands some not-so-trivial properties in the structure of the
economic problem we study. The truth is we cannot generalize further into set-
systems with no restrictions whatsoever. The following problem shows that if we
did that, it would be impossible to achieve constant-competitive algorithms:

Example problem without matroid structure

We consider an integer n and k = blog nc and manufacture the following set
system (U, I): U has n elements partitioned into m = d(n/k)e subsets S1, ..., Sm.
A set A ⊆ U is independent if and only if it is contained in some Si. The weight
function assigns weight 1 with probability 1/k and 0 otherwise. It is independent
of the structure of U .

Here we will demonstrate how the lack of the exchange property along with the
fact that the algorithm can have no hint on which independent set to prefer since
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every element appears online lead to a very low expected weight (less than 2) for
the answer of any randomized online algorithm. On the other hand the density of
elements with weight 1 cannot be the same in every set Si (there are infinite...)
and the probability that all of them have less than some constant weight tends to
zero.

1. Suppose at some time t the algorithm makes it first choice and picks an
element with weight 1 from set Si. Afterwards it can choose up to k other
elements that belong to Si and since each one has probability 1/k to have
weight 1 (0 otherwise) and the weight of each element is independent to the
others the expected value of the answer will be less than 2. (1 + 1/k + 1/k +
...+ 1/k)

2. On the other hand if we consider Ei to be the event that set Si has weight
more than j (where j is some random number) then Pr[Ei] is much more
than 1/kj. Thus the probability that none of the events Ei occurs (there
is no ”favoured set”) is less than [1 − 1/kj]m (the events are independent).

However [1− 1/kj]m = [1− 1/kj]n/k = [1− 1/kj](k
j)·(n/kj+1) which is close to

(1/e)n/k
j+1

and since k = log n, by del hospital (n/kj+1) has the same limit

as n/(j!) that is, infinite. Thus (1/e)n/k
j+1

tends to 0 as well as probability
that none of the events Ei occurs.

Since j could be any constant value there cannot exist any constant-competitive
algorithm, for then a big enough n would provide (with almost certain probability)
a set Ei with weight more than j. If we furthermore consider j to be dependent on
n ( and equal to k/(2lnk) ) it would be easy to show with similar calculations that
the expected value of the maximum-weight independent set is Ω(log n/ log log n)
(see balls and bins in Rajeev Motwani and Prabhakar Raghavan - Randomized
Algorithms).

2.3.4 Logarithmically competitive algorithm for general ma-
troids

One of the properties that matroids inherit from linear algebra’s bases is the di-
mension. It can be shown (through use of the exchange property) that every largest
independent set in a matroid has the same number of elements, namely the rank of
the matroid. The previous result showed we cannot achieve constant-competitive
algorithms in the general case; here we present an algorithm as can be seen in
Babaioff et al. [3] that is O(log k)-competitive for general matroids, k being the
rank of the matroid.

Threshold Price Algorithm
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1. Observe half of the elements without picking any, and call the observed ele-
ments the sample set S.

2. Consider the element t∗ in the sample set that has maximum weight. Pick a
random number j between 0 and dlog ke (k is the rank of the matroid). The
threshold price will be the weight of t∗ divided by 2j.

3. Let li be the element in U\S observed at time i = s + 1, ..., n and B the set
of selected elements (which is an empty set at the beginning). If the weight
of li is bigger than the threshold value ( w(li) ≥ w(t∗)/2j) and li ∪ B is an
independent set then select li. (i.e. add it to B).

Theorem: The threshold price algorithm is 32dlog ke-competitive for any matroid
domain where k is the rank of the matroid.

Before the proof we provide some comments on the structure of the algorithm.
First of all it is clear that the algorithm will be O(log k) competitive only in re-
spect to the expected weight of the answer; as we said at the beginning, great
economic interest exists for matroids where the weight function is random and
evenly distributed. We also like to comment on the choice of the threshold value:
The divisor is less than the rank (the maximum size of any independent set) and
thus provides reasonable boundaries when the algorithm decides on expanding an
independent set. It also can have several values which we will be able (with a cer-
tain sacrifice to the competitiveness) to use for the best answer in different cases.
Actually it is exactly this part that adds the log k ration in the competitiveness of
the algorithm.

PROOF: Let B∗ be the maximum weight independent set of the matroid with
elements x1, ..., xk with values in descending order v1 ≥ v2 ≥ ... ≥ vk. We only
consider those that are bigger than v1/k let them be v1, ..., vq and mention that
the rest can only add up to less than v1 (since there are k elements in the base).
Thus v1 + ...+ vq contributes more than half the weight of B∗.
Next, for any set A ⊆ U , let ni(A) denote the number of elements in A with weight
at least vi and mi(A) be the number of elements in A with weight at least vi/2. A
known summation technique gives us

v1 + v2 + ...+ vq =
q−1∑
1

(vi − vi+1) · ni(B∗) + vq · nq(B∗)

Now if B is the answer of the algorithm, the value of B is bigger than the sum of
the values of the elements in B that have weight at least vq/2 which is

q−1∑
1

((vi)/2−vi+1/2)·mi(B
∗)+vq/2·mq(B

∗) = 1/2·
q−1∑
1

(vi−vi+1)·mi(B
∗)+1/2·vq·mq(B

∗)
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Using the above representations for the value of the max-weight base and the
answer set it is easy to see that to provide a factor for the competitiveness of the
algorithm we must place the expected value of mi(B) within a factor of ni(B

∗).
We have lost a factor of 2 by considering only v1, ..., vq and another factor of 2
to the coefficient of the last sum. We need to prove that the expected value of
mi(B) is within a 8(log k) factor of ni(B

∗). We will do this by showing that
mi(B) ≥ ni(B

∗)/4 with probability 1
2 log k

. Thus even if in every other case mi(B)

is very small the expected value of mi(B) is bigger than (1/8 log k) · ni(B).

1. For i = 1 we have a special consideration. With probability 1/4 the sample
doesn’t contain the maximum-weight element but does contain the element
with the second-highest weight. Conditional on this event with probability
1/ log k the threshold price will be x2/2

0 = x2 and the answer of the algorithm
is the set {x1}. Thus with probability 1

4 log k
the value of m1(B) is 1, and so

the expected value of m1(B) is bigger than 1
4 log k

while n1(B
∗) = 1.

2. Now assume that i > 1.By definition ni(B
∗) = i. We condition on the

event that the sample contains x1 (the maximum weight element) and we
wish the value of the threshold to be small enough so that the i biggest
elements can pass the test, but not smaller. That is we also condition on
the event that j is such that w(t∗)/2j is the maximum number in the set
of possible threshold values that is less than or equal to vi. Since we have
assumed that vi ≥ vq ≥ v1/k which is the smallest possible threshold value
(since t∗ = v1) such a j exists and the algorithm selects this particular j
with probability 1/ log k. Thus with probability 1

2 log k
every element of the

independent set A = {x1, ..., xi} exceeds the threshold value. The expected
amount of elements in A that appear outside the sample is (i − 1)/2 > i/4.
Now this means that the expected size of the answer set B will also be more
than i/4 elements: Well the algorithm can decline elements of A only if they
don’t unite with B in an independent set (because all of them do exceed
the threshold value) but we also know from the exchange principle that if
|A∗| > |B| then there is an element in A∗ that can be moved to B, and
therefore it would have been chosen by the algorithm. So of the at least i/4
elements of A that are expected to appear in the second half the algorithm
has to choose enough for B to have size i/4 (it can choose none if B has size
≥ i/4 but the opposite would mean contradiction).

Finally since the threshold value is at least vi/2 (conditionally on the previous
events), and every element of B must exceed the threshold value mi(B) = |B| ≥
i/4 = ni(B

∗)/4. And that happens with probability 1
2 log k

.This completes the ar-
gument.

However, for specific matroid domains as Unit-Demand Domain (which has the
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structure of a transversal-matroid) we can achieve better competitive ratio. The
example below justifies our claim.

Example of transversal matroid with bounded-left degree

Assume that there is a constant d such that |Ti| ≤ d, for all i, that is, each
agent desires one of at most d items. An outcome is mapping of agents to items,
such that each agent is matched to at most one item. Let Ai be all the outcomes
in which i is matched to an item in Ti. We also assume that the values vi and set
Ti are private information. The matroid elements of a transversal matroid corre-
spond to vertices on the left side (L) of a bipartite graph G = (L,R,E) (thus the
size of the ground set is |L| = n). A set S ⊂ L is independent if there is a perfect
matching of S to nodes in R. The unit-demand domain is a transversal matroid
domain in which L is the set of agents, R is the set of items, and there is an edge
from l ∈ L to r ∈ R if r ∈ Tl. The bound on the number of items an agent desires
translates to a bound of d on the maximal degree of any node in L. The value of
an agent l corresponds to the weight of the node l ∈ L and is denoted by w(l).
Below, we present a 4d-approximation algorithm to the matroid secretary problem
for transversal matroids with left-degree at most d.

Price Sampling Algorithm (PSA)

• Observe s = |n/2| elements without picking any element, and let S ⊂ L be
the set of observed elements (S is called the sample). For a right node r ∈ R,
let l∗s(r) ∈ S be the sampled left node with maximal weight that is a neighbor
of r. Let the price of r ∈ R be w(l∗s(r)).

• At time t = s+ 1, ..., n we observe element l ∈ L with weight w(l). Let R∗(l)
be the set of unmatched neighbors of l with price lower than w(l). If R∗(l) is
not empty, match l to the node with the lowest price in R∗(l).

The theorem below, as it can be seen in Babaioff et al. [3] shows that Price Samp-
ing Algorithm is truthful and 4d-approximation with respect to the weight of the
maximum weight matching.

Theorem: For any transversal matroid with bounded left degree d, the above
algorithm is a 4d-approximation and truthful.

Proof-sketch:

For approximation: Let OPT be a maximum weighting matching in graph, w(S) =∑
l∈S w(l) for a set S and let w(m(r)) be the weight of the element that is matched

to r(∈ R ∩ OPT ) (0 if r is unmatched). Assume H be the set of neighbors with
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maximal weight for every r ∈ R. Firstly, in [7] it is proven that w(OPT ) =∑
r∈R w(m(r)) ≤ ∑

r∈R w(h(r)) ≤ d ·∑l∈H w(l) = d · w(H) (as each vertex r ∈ R
has dr ≤ d). Moreover, it is proven that with probability at least 1/4, each
l ∈ H is matched by PSA. Thus E[w(PSA)] ≥ ∑

l∈H 1/4w(l) = 1/4w(H). Hence
4dE[w(PSA)] ≥ w(OPT ).

For truthfulness: We consider two cases:

• Agent i in the sample: Obviously agent’s utility is 0 for any declaration. Thus
he doesn’t gain anything from lying.

• Agent i not in the sample: For every item that is not taken and belongs to Ti,
i takes it and pays it’s given price. Truthtelling maximizes his utility (about
Ti and vi).
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Chapter 3

Digital Goods

3.1 Introduction

Nowadays, a lot of auctions take place in internet. The items that are sold at these
kind of auctions, in most of the cases are digital goods - products (songs,videos,pages).
It is very important to deal with auctions, where the auctioneer can sell as many
units of his products as he is asked to do. Thus, in this section, we are examining
online auctions that are in an unlimited supply setting. Specifically, the auctioneer
is able to sell any number of units of each item (we may have a single item) and
they each have zero marginal cost to seller. We also consider single-minded bidder,
which means that each bidder is interested in only a single bundle of items. In
the first sections (3.3,3.4), we consider the offline case for the unlimited supply
auctions. After that we make an introduction to mechanisms for the online case.

3.2 Unlimited Supply Auctions

3.2.1 Basic Definitions

Model:

We consider auctions that have goods which are available in unlimited supply.
Particularly, we examine the case of one item which the auctioneer can sell to each
one of the n bidders (at least n copies of the item). Each bidder i has a value
vi ∈ [1, h] (w.l.o.g, if we rescale by dividing with the smallest bid value) that shows
how willing he is to buy the item. If a bidder i wins the auction ( the auctioneer
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sells him a good), then his non-negative utility function is denoted ui = vi − pi
(else ui = 0), where pi is how much money i spent for the good. In order to give a
game theoritic notion, bidders are strategic and they might try to manipulate (in
order to increase their utilities) by misreporting their valuation. Furthermore, the
online notion for this family of auctions as it can be seen at Bar-Yossef et al [7],
can be given if we consider that each bidder comes at a time and the auctioneer
decides a price pi for the i-th bidder and bidder i buys that item if bi ≥ pi and all
that must happen before the arrival of the next bidder. The goal is to find truth-
ful mechanism that achieve a good competitive ratio with respect to auctioneer’s
revenue. Later, we will discuss about the choice of the benchmark to compare
a truthful offline with the optimal untruthful offline and also an online with the
optimal offline algorithm.
Finally it is remarkable to mention that there are two main categories of auctions
as far as the item-pricing is concerned. We have the single-price auctions, where
all the winning bidders pay the same price and the multi-price where the prices
may differ. In section 3.4 we mention algorithms for both categories. Additionally,
for each catergory, we define the optimal revenue that a mechanism might output.
For the single-price auctions we define the optimal fixed price revenue as

F = max
1≤i≤n

i · v(i)

and for the multi-price auctions the optimal revenue is denoted by

T =
n∑
i=1

vi

where for v(i) we consider the i-th largest valuation of the bidders. Goldberg et al.
[13] proved that there is an inequality relation between F, T (it is also obvious that
F ≤ T ). They proved that F ≥ T/(2 log h). The idea of the proof is to partition
the bids in log h bins , where in the i-th bin we put all the bids j with the property
that 2i−1 ≤ vj < 2i (we start the enumeration from 1). Then from Pingeonhole
Principle, there is a bin S = {b1, ..., bk} (assume the bids in increasing order) with∑k
j=1 bj at least T/ log h. Assuming S is the winning bidders that pay the minimum

element of S, namely b1, then F = k · b1 ≥ 1/2
∑k
j=1 bj ≥ (1/2)T/ log h. This is

interesting, because it means that in a single-price auction we may deal with T
revenue and in a multi-price auction may deal with F revenue. Finally Rao and
Tardos proved that F ≥ T/(4 log n) (inequality that depends on n). The writer
proved a better inequality which is the following:

Theorem: F ≥ T/ ln(en).

PROOF: Let F = k · v(k). Then obviously k
l
· v(k) ≥ v(l) for every 1 ≤ l ≤ n.

Thus F ·
n∑
j=1

1

j
= k · v(k)

n∑
j=1

1

j
≥

n∑
j=1

v(j) = T . Additionally
n∑
j=1

1

j
≤
∫ n

1

1

x
dx + 1 =
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lnn+ 1 = ln(en). Thus F ≥ T/ ln(en).

3.2.2 Competitive ratio benchmark

Benchmark for competitive ratio:

As opposed to the limited supply auctions where we compared the revenue of
the online with the k-Vickrey’s revenue, here we compare the revenue of the truth-
ful mechanism with the following which is called optimal fixed price revenue (for
the single-price case):

F (2) = max
1<i

i · v(i)

We didn’t take as a benchmark the case for i = 1, namely F , because informally,
suppose the bidder i with the highest valuation has vi = h� n and all the other
bidders have vj = 1 then there is no way to create a truthful mechanism that
has expected profit (of the auctioneer) c · h where c is a constant less than 1.
It is remarkable that for the multi-price case, we take as a benchmark T . As
T ≥ F (2) ≥ T/2 log h holds, actually most of the times both are used (assuming
that F > h, thus F (2) = F ).

3.3 Truthfulness

3.3.1 Bid-independent

Definition 1: Let f be a predetermined function (before the start of the auction).
Bid-independent auctions are the auctions that have the following property:

• Bidder i wins an item if and only if f(b−i) ≤ vi and he pays pi = f(b−i), that
is the amount i pays is independent of his announced valuation.

It is rather straightforward to see that the bid-independent mechanism may be
for single-price or multi-price auction too. Intuitively, in general case the bid-
independent mechanisms must be for multi-price auctions. However, consider the
following example. Let f(b1, ..., bn−1) = min(b1, ..., bn−1). Then every bidder will
buy the item at the price of the smallest bid value (the same price) except of the
bidder with the smallest bid who will lose. Goldberg et al. [13], proved that a
mechanism is truthful if and only if it is bid-independent. This is true for both
the deterministic and randomized case. This is actually a collorary from Theorem
13.6 in Nisan et al. [21]. Thus, the target is to find a function f : Rn−1 → R to
achieve a good competitive ratio with respect to the untruthful optimal fixed price
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revenue (truthfulness will be guaranteed). For example, suppose f(b1, ..., bn−1) =
max(b1, ..., bn−1). It is obvious that the auction above is the Vickrey’s second
price auction, which is a truthful mechanism as shown in section 1.3. From now
on, every mechanism we discuss is bid-independent, thus truthful. So notions bi
(announced valuation) and vi (true valuation) are considered the same.

3.3.2 The deterministic approach

As we have already said, we are interested in truthful mechanisms. The purpose
of this section is to show that any symmetric1, deterministic truthful mechanism
can’t have a constant competitive ratio with respect to R/F (2) for the single-price
unlimited supply auctions (R is the sum of sale prices which returned from the
algorithm). Remember that we don’t take F as a benchmark (see example in
3.2.2). The following theorem holds:

Theorem: There is no symmetric, deterministic, truthful mechanism M that is
constant-competitive against F (2).

PROOF: We consider the case where all bids are 1 or n (we have n bidders).
As M is truthful and symmetric, then the auction is bid-independent. Thus let
f : {1, n}n−1 → R be the symmetric function that determines the threshold price.
W.l.o.g we assume that the image of f is {0, 1}. Because of symmetry, assume
that f(j) is the threshold price for bid vector with j 1’s and n− j− 1 n’s. We will
prove that R ≤ F/n.

Clearly f(n−1) = 1, else if f(n−1) = n then for a bid vector {1, 1, ..., 1} we would
have that R = 0 and since F = n, the theorem would hold. Also f(0) = n, else if
f(0) = 1 then for a bid vector {n, n, ..., n} we would have that R = n and since
F = n2, the theorem would hold. Let k be the smallest integer in {1, 2, ..., n− 1}
such that f(k) = 1. Then for a bid vector with k bids 1’s and n − k bids n’s we
have that, since f(k−1) = n, all the bidders with bid 1 will lose and the threshold
price for the winners will be 1. Thus R = n−k and F = k+n(n−k), so R/F ≤ 1/n.

So, we have to use randomization to achieve a better ratio for the expected R.
The next section deals with it.

1symmetric means that f has to be symmetric, namely independent from the sequence of the bids
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3.4 Randomized sampling

3.4.1 Introduction

As we have already mentioned in the previous section, symmetric truthful mech-
anisms are not competitive with respect to revenue (as benchmark we considered
F (2)). Thus we have to use randomization to do our work. The algorithm we will
describe in section 3.4.2, is based on randomized sampling. The general idea is
the following. Let B be the set of bids and B′ a subset of B and a symmetric
function f . We define a threshold price which is equal to pt = f(B′) and use it to
the set B\B′. The winners are those who belong to B\B′ and have valuation ≥ pt.
Clearly the family of randomized sampling algorithms are truthful (just observe
that they are bid-independent). The difficult part is to choose an appropriate f
and B′ (of size) in order to achieve a good competitive ratio with repsect to R.

3.4.2 Random Sampling Optimal Threshold Auction

Let f(b1, ..., bn−1) = argmaxbibi · (n− i+ 1) ((b1, ..., bn−1) are in increasing order).
Consider the following algorithm for the single-price case where B is the set of
announced bids.

Random Sampling Optimal Threshold Auction

1. Choose B′ ⊂ B randomly with |B′| ≈ bn/2c. (toss a fair coin for each element)
2. Let pt = f(B′) (fill with dummy zeros)
3. for bi ∈ B\B′ do
4. if bi ≥ pt then sell to i with price pt.

This is an application of the general idea described above. We will prove now that
the expected revenue E[R] ≥ F/12 for if we assume that F ≥ 288 ln(3)h (that is,
the benchmark is actually F (2) as F > h). We will use the following lemma, the
proof of which can be found in Goldberg et al [13].

Lemma: Assume ah ≤ F . Then R ≥ F/6 with probability at least 1 − e−a/36 −
40e−a/72.

Theorem: Assume 288 ln(3)h ≤ F . Then E[R] ≥ F/12 = F (2)/12.

PROOF: Substitute a for 288 ln(3)h from the lemma above. Then R ≥ F/6 with
probability at least 1− 1

e8 ln 3− 40
e4 ln 3 = 1− 1

38
− 40

81
> 1/2. Thus E[R] ≥ (1/2)(F/6) =

F/12 = F (2)/12.
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For the multi-price case, we consider the following modification of random sampling
optimal threshold auction (called RSOP) for the single-price auctions. Actually,
this case is a subcase of multi-price case, called dual-price auction, where every
winning bidder pays one of two possible threshold prices (what he pays depends
on the partitioning the algorithm makes).

Random Sampling Optimal Threshold Auction (RSOP)

1. Choose B′ ⊂ B randomly with |B′| ≈ bn/2c. (toss a fair coin for each element)
2. Let pt = f(B′) and p′t = f(B\B′) (fill with dummy zeros)
3. for bi ∈ B\B′ do
4. if bi ≥ pt then sell to i with price pt.
5. for bi ∈ B′ do
6. if bi ≥ p′t then sell to i with price p′t.

For the performance analysis, we just use the theorem above, assuming that F ≥
288 ln(3)h. Suppose R1, R2 be the revenue for the two partitions. Then E[R1] +
E[R2] ≥ 2F/12 = F/6. Because we have a multi-price auction we should take
as a benchmark optimal revenue T . Using the fact that F ≥ T/2 log h, we have
that E[R] ≥ T/12 log h. Additionally, it is important to mention that, Feige
et al.[11] proved that RSOP is 15-competitive for the benchmark F (2), namely
E[R] ≥ F (2)/15 without making any assumptions on F (2) (as we did in the theorem
above). Finally, it is rather easy to see that we can’t achieve better competitive
ratio than 4 with RSOP. Consider the bid vector {1, 1, ...., 1, h, h+ ε} where h� 1
(actually we need only h > n). Then R is not zero if and only if bids h, h+ ε fall
on different sides of the partition (this fact happens with probability 1/2). So, if
h, h+ ε fall on different sides, then only bidder with bid h+ ε will win and he will
pay h. Thus E[R] = h/2 and F (2) = 2h. Hence F (2)/E[R] = 4.

3.5 Online case

The previous sections were a friendly introduction to the model of digital goods.
We saw some general ideas of how we examine the performance of a truthful
mechanism, we rejected the deterministic approach of dealing with digital-goods
auction and we saw the randomized sampling method that under some assumptions
has constant competitive ratio with respect to the optimal fixed revenue. Here, we
will examine digital goods in an online manner, the model of which has already
been mentioned in the 3.2.1. We consider two cases, the full information case
and the partial information case. The kind of auctions described in 3.5.1,3.5.2
section are considered to be the full information case, where after the arrival of the
bidder, the auctioneer learn about bidder’s true valuation. In section 3.5.3, we will
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consider the partial information case, where the only information the auctioneer
has is the acceptance or rejection of the bidder to buy the item. All the algorithms
we examine are bid-independent and thus truthful as far as the valuation of the
bidders is concernced (not the time of arrival).

3.5.1 Online Weighted Buckets Auction

Bar-Yossef et al [7] introduced the online bucket auction that we will need next
when we define Exp3 algorithm. First of all, we give some basic definitions that
will be used in the auction we will present next.

Terminology and Notation: For l = blog hc+ 1, valuation buckets are the intervals
I0, ..., Il−1 where Ik = [2k, 2k+1). Additionally, we denote Bk = {i ∈ {1, ..., n}|vi ∈
Ik}, that is the set of bidders whose valuations fall in Ik and finally wk =

∑
i∈Bk

vi,
namely the weight of set Bk. Consider the following algorithm with parameter d.

Online Weighted Bucket Auction (Wd)

1. for i = 1, ..., n do (v1, ..., vn is the order of arriving)
2. if every bucket is empty choose one at random

else choose Ik with probability
wk({v1, ..., vi−1})d∑l−1

j=0(wj({v1, ..., vi−1}))d
.

3. Let si = 2t, where t is the chosen bucket
4. if vi ≥ si then sell to i with price si.
5. Put vi to the right bucket.

The algorithm works as follows. At each time a bidder comes (let i), we set price

threshold si = 2k with probability
wk({v1, ..., vi−1})d∑l−1

j=0(wj({v1, ..., vi−1}))d
. If si ≤ vi then bidder

i buys the product at the price of si and then we update the buckets by putting
in the valuation vi (where it belongs). It is remarkable that [1, h] must be known
in advance. For the perfomance analysis, we assume that F (2) ≥ 9h and using the
two following lemmas, we prove that RSOP is O(3d log h1/(d+1))-competitve w.r.t
F (2).

Lemma 1: Assume 9h ≤ F (2). Then (1/2) maxk wk ≤ F (2) ≤ 3 maxk wk.

PROOF: Let k be a bucket with maximum weight. Then obviously F (2) ≥
2k|Bk|. Additionally, (1/2)vi ≤ 2k ≤ vi for every i ∈ Bk, thus F (2) ≥ 2k|Bk| ≥
(1/2)

∑
i∈Bk

vi = (1/2) maxk wk. For the upper bound, assume p be the optimal
fixed price and let g such that 2g ≤ p < 2g+1. Then wr ≥ 2r|Br| ≥ 2r−g−1p|Br|.
Thus F (2) ≤ wg + p

∑l−1
r=g+1

wr

2r−g−1 ≤ maxk wk · (1 +
∑l−1
r=g+1

1
2r−g−1 ) ≤ 3 maxk wk.
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Lemma 2: Assume 9h ≤ F , K1 be the set of buckets with at least two elements.
Then

∑l−1
j=1w

d
j < 2

∑
i∈K1

wdi .

PROOF: First of all we argue that the bucket with weight (let m) maxk wk has
at least three elements. This is true because since maxk wk ≥ F (2)/3 ≥ 3h from
lemma above. Hence, wm ∈ K1. So we have that

∑
i∈K1

wdi ≥ wdm ≥ (3h)d. Let
K2 be the set of buckets with one element. If i ∈ K2 then wi < 2i+1, thus since
2blog hc ≤ h we have that wi < 2h2i−blog hc (only one element). Thus

∑
i∈K2

wdi <
(2h)d

∑l−1
j=0

1
2d(j+1) ≤ 3hd <

∑
i∈K1

wdi . Finally, we have that
∑l−1
j=0w

d
j =

∑
i∈K1

wdi +∑
i∈K2

wdi < 2
∑
i∈K1

wdi .

Lemma 3: Let v1, ..., vm be real numbers in [0, 1], with at least one vi = 1. Then∑m
j=1 v

d
i∑m

j=1 v
d+1
i

≤ m1/(d+1).

PROOF: If
∑m
j=1 v

d
i ≤ m1/(d+1) then since the denominator ≥ 1 the inequality

holds. Suppose the contrary. We will use Holder’s inequality which says for every

p, q ≥ 1 with 1
p

+ 1
q

= 1 and xi, yi positive sequences,
∑m
j=1 xjyj ≤

(∑m
j=1 x

p
j

)1/p
·(∑m

j=1 y
q
j

)1/q
. Substitute yi for 1, xi for vdi , p for (d + 1)/d and q for d + 1. Then∑m

j=1 v
d
i ≤

(∑m
j=1 v

d+1
i

)d/(d+1)
m1/(d+1) ⇒ ∑m

j=1 v
d+1
i ≥ 1

m(1/d)

(∑m
j=1 v

d
i

)(d+1)/d
. Thus∑m

j=1 v
d
i∑m

j=1 v
d+1
i

≤ m(1/d)

m1/d(d+1)
= m1/(d+1).

Theorem: Assuming that 9h ≤ F (2), Wd is O(3d log h1/(d+1))-competitve w.r.t
F (2).

PROOF: Let K1 be the set of buckets with at least two elements and k be an
arbitrary integer such that k ∈ K1. Assume B′k are the first d|Bk|/2e inserted in
Ik and B′′k the remaining. It is obvious that since two elements ∈ Bk are away
from each other by a factor of two, then 3w(B′k) ≥ w(Bk). Thus for bidder i, the
probability of the price threshold to be 2k is bounded by the following:

Pr[si = 2k] =
wk({v1, ..., vi−1})d∑l−1

j=0(wj({v1, ..., vi−1}))d
≥

(∑
i∈B′

k
vi
)d

∑l−1
j=0w

d
j

≥ wdk
3d
∑l−1
j=0w

d
j

. Thus sum-

ming over the buckets we have that E[R] ≥
∑
k∈K1

∑
i∈B′′

k

2k
wdk

3d
∑l−1
j=0w

d
j

. If i ∈ Bk then

2k ≥ vi/2 and hence E[R] ≥
∑
k∈K1

∑
i∈B′′

k

vi
2

wdk
3d
∑l−1
j=0w

d
j

. Since
∑
i∈B′′

k
vi ≥ 1

5
wk (rather

easy if we consider that two elements of the set are away from each other by a fac-
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tor of two and we have one element less than B′k). Thus using also lemma 2, letting

w∗ = maxk wk we conclude that E[R]/w∗ ≥
∑
k∈K1

1

10
· wd+1

k /(w∗)d+1

2 · 3d∑t∈K1
wdt /(w∗)d

. Thus

from lemma 3, we have that E[R]/w∗ ≥ 1

3d · 20|K1|1/(d+1)
≥ 1

3d · 20(log h)1/(d+1)
.

Using from lemma 1 that w∗ ≥ F (2)/3, we complete the proof.

An obvious corollary is that substituting d for
√

log log h, RSOP with F ≥ 9h is
O(exp(

√
log log h))-competitive.

3.5.2 WM Algorithm

Auer et al [1] presented WM Algorithm, an algorithm that is also considered in
the category of the full information case. The main idea is that we have a set
X of possible fixed prices. Every time a bidder comes (let the i-th bidder), the
algorithm picks price xk ∈ X = {x1, ..., xm} with a probability pk(i) (that depends
on the revenue ). After learning the true valuation of the bidder (it is a bid-
independent, thus truthful and bi = vi), the probabilty distribution is updated
and always depends on the current revenue rk(i) of each price xk ∈ X, namely
rk(i) = |1 ≤ j ≤ i : vj ≥ xk| · xk. Below is the algorithm.

Algorithm WM

Parameters: Reals a ∈ (0, 1] and X ∈ [1, h]m

Initialization: For each expert k, initialize rk(0) = 0, wk(0) = 1.
For each bidder i = 1, ..., n:

Chose price si = xk, with probability pk(i) = wk(i−1)∑l

j=1
wj(i−1)

.

For each price xk, update rk(i) = rk(i− 1) + dk(i)xk where dk(i) = 1 if vi ≥ xk else
dk(i) = 0 and wk(i) = (1 + a)rk(i)/h.

For the perfomance analysis, we will prove that E[R] ≥ (1− a
2
)FX − h lnm

a
, where

FX is the optimal fixed price revenue restricted to fixed prices in X.

Theorem: E[R] ≥ (1− a
2
)FX − h lnm

a
.

PROOF: Let W (i) =
∑
k wk(i) (the sum of weights after the arrival of the i-th

bidder) and gk(i) = dk(i)xk. Thus the expected revenue from bidder i+1 is gi+1 =
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∑m

k=1
gk(i+1)wk(i)

W (i)
. Additionally we can bound W (i+1) in terms of W (i). W (i+1) =∑m

k=1(1 + a)rk(i)/h(1 + a)gk(i+1)/h ≤ ∑m
k=1wk(i)(1 + a · gk(i + 1)/h) (comes from

applying bernoulli’s inequality). Thus W (i+ 1) ≤ W (i)
(

1 + a
∑m

k=1
gk(i+1)wk(i)

hW (i)

)
=

W (i)(1 + agi+1/h). From the above inequality, over all i from 1 to n we have that
W (n) ≤ W (0)

∏m
i=1(1 + agi/h) = m

∏m
i=1(1 + agi/h) since W (0) = m. Finally

W (n) ≥ (1 + a)FX/h (from the sum of all weights, we take only the largest term).
Hence ln(1 + a)FX/h ≤

∑m
i=1 ln(1 + agi/h) + lnm. Thus, using the fact that

x − x2/2 ≤ ln(1 + x) ≤ x we have that (a − a2/2)FX/h ≤ aE[R]/h + lnm ⇒
(1− a

2
)FX ≤ E[R] + (h lnm)/a.

If we want to get rid of FX and find an inequality with respect to F , we do
the following. We assume that X = {1, 1 + b, (1 + b)2, ..., (1 + b)log1+b h} and
that a = b = ε/3 and using the fact that F ≤ (1 + b)FX we conclude that
(1 − ε

6
)F ≤ E[R] + O((h ln log1+ε/3 h)/ε) = E[R] + O(h ln lnh/(ε ln(1 + ε/3))) =

E[R] +O(h ln lnh/ε2).

3.5.3 Posted price auctioning - partial information case

As opposed to 3.5.1,3.5.2 in this section we examine the partial information case.
When a bidder comes, the auctioneer selectes a price p and sell the item to the
bidder. By the decision of the bidder, we just learn if his bid is less or larger than
the price but the bid value actually. As it is seems that the auctioneer is in worse
situation than in full information case, we can design algorithms (based to WM)
to achieve good competitive ratio. Before we mention Exp3 algorithm that solves
the partial information case, we have to give some information about posted price
mechanisms (Exp3 that we describe below belongs to this family of mechanisms).

Formally, an online posted price mechanism can be defined as follows (the ran-
domized posted price mechanisms is just a distribution over deterministic online
posted price mechanisms):

Definition: (Online Posted Price Mechanism)
Any class of functions gk from {0, 1}k−1 to R defines an deterministic online posted
price mechanism as follows. For each agent i,

1. For j < i, let xj = 1 if agent j accepted offer zj = gj(x1, ..., xj−1), and 0
otherwise.

2. zi ← gi(x1, ..., xi−1)

3. If zi ≤ bi sell to bidder i at price zi.
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4. Otherwise, reject bidder i.

Intuitively, we see that zi is a function that depends on z1, ..., zi−1 and not bidders’
valuations. Exp3 is a randomized mechanism that belongs to the family of posted
price mechanisms. Consider Exp3, as it can be seen in Auer et al [1]. and Blum
et al.[8]:

Algorithm Exp3

Parameters: Reals a ∈ (0, 1], γ ∈ (0, 1] and X ∈ [1, h]m

Initialization: For each k, initialize rk(0) = 0, wk(0) = 1.
For each bidder i = 1, ..., n:

Set the posted price si to be xk with probability p′k(i) = (1− γ)pk(i) + γ
m

, where

pk(i) = wk(i−1)∑l

j=1
wj(i−1)

.

For the chosen price si = xl, if bidder i accepts, set gl(i) = si else set gl(i) = 0.

Set g′l(i) = γ
m
gl(i)
p′
l
(i)

For all other k, set g′k(i) = 0.
For all k, update rk(i) = rk(i− 1) + g′k(i) and wk(i) = (1 + a)rk(i)/h.

The algorithms works as follows. Again we have a set X = {x1, ..., xm} with
possible fixed prices (as in WM) and parameters a, γ. a plays the same role as in
WM but γ is used for mixing the probability distribution of choosing an element
of X. At step i, we take the probability distribution pk(i) (as defined in WM
algorithm) and mix it with the uniform distribution (that’s why we multiply γ
with 1

m
) to obtain a modified probability distribution p′k(i), which is then used to

select a threshold price si. Following each bidder’s accept/reject decision, we use
the information obtained (if vi ≥ si or not) to formulate a simulated gain vector,
which is then used to update the weights. An interesting difference from WM, is
that rk(i) = |1 ≤ j ≤ i : vj ≥ xk, k was chosen when j arrived| · xk.

For competitive analysis, we use the theorem below, as it can be seen in Blum et
al. [8]. It says 7that we can achieve a constant competitive ratio with respect to
optimal fixed price revenue (F ) when F is large ”enough”.

Theorem: There exists a constant c(ε) such that for all valuation sequences with
F ≥ ch(log h) log log h, mechanism Exp3 is (1 + ε)-competitive relative to the
optimal fixed price revenue F .

PROOF: We use theorem 3.1 from Auer et al. [1] and thus F−E[R] ≤ (e−1)γF+
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h

ln(1 + a)

m lnm

γ
. Thus F (1−γ(e−1)] ≤ E[R]+

h

ln(1 + a)

m lnm

γ
. Hence for a = ε,

γ = ε/(e−1) and m = lnh we have that F (1− ε) ≤ E[R] +O(c(ε)h(lnh)(ln lnh)).

3.6 Conclusion

In this section, we examine the auctions where the auctioneer has an unlimited
supply of goods. We saw both the offline and online case and focus on the ran-
domized online pricing algorithms for solving the problems. It is remarkable, as it
also said in Hartline et al [16] and Blum et al [8] that the techniques of the algo-
rithms discussed can be used in limited supply setting too (so long as the sequence
of bids can be truncated as soon as we run out of items to sell), but with worse
competitive ratio. Also, the game theoritic model we discussed in this section,
doesn’t consider the case the bidders misreport their arrival (that is, come later or
earlier in this case) and the expected profit was not taken over the permutation of
the bidders’ sequence (as opposed to the previous chapter).
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Chapter 4

Other settings for pricing in online
auctions
In this chapter, we describe other settings-modifications of online auctions that
are interesting and of great importance. We haven’t done much analysis about the
proofs of our theorems-claims, most of them are results that we found in different
papers. For the section 1, we examine online auctions, where the pricing may differ
for every unit of the good for a specific bidder and depends on a non-decreasing
function. In section 2, we consider online auctions where the goods expire one at
a time we want to find a price in order to sell each one at a bidder. Finally, in
section 3, we deal with online auctions, where each bidder wants to buy a specific
set of goods and only that set.

4.1 Supply Curves

In this subsection, we consider an auction with k identical indivisible goods (if k
is very large then this case is viewed as auctioning one divisble good). For each
player i, we denote his marginal valuation vi(j), the additional value gained from
the jth good. Thus the total valuation of player i that buys q goods is

∑q
j=1 vi(j).

We assume ∀i, j : vi(j + 1) ≤ vi(j) and player i pays Pi, so the utility of i is:

Ui(q, Pi) =
q∑
j=1

vi(j)− Pi

At some time ti, player i determines his valuation and must declare a bid bi to
the auctioneer. A bid is a function b : [1...k] → R (non-increasing) which may
differ from vi and when it differs we say that player i lies (in order to increase his
utility). The auctioneer must answer immediately the quantity which he will sell
to the bidder i and the total payment i must pay.
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Supply curves for on-line auctions:

An online auction that fixes a function pi(q) based on previous bids before receiving
i’s bid is called ”based on supply curves”. The following must also hold:

• The quantity qi that is sold to i maximizes
∑qi
j=1(bi(j)−pi(j)) (bidder’s utility)

• Pi =
∑qi
j=1 pi(j)

4.1.1 Incentive Compatibility for Supply Curves

Assuming that pi(q) is non-decreasing ∀q with 1 ≤ q ≤ k, we have that qi is the
largest q such that bi(q) ≥ pi(q). As we can see from the following theorem, such
a mechanism is strategyproof (players will not increase their utility by deviating,
declaring different bid).

Theorem: A deterministic online auction is incentive compatible (strategyproof)
if and only if it is based on supply curves.

PROOF: We prove the following lemmas and the theorem follows:

Lemma 1: An online auction that is based on supply curves is incentive compat-
ible.

PROOF: Let bi 6= vi. Suppose the quantity sold for this bid is q′i, and for the
truthful bid is qi. Then it is the case that:

Ui(qi) =
qi∑
j=1

(vi(j)− pi(j)) ≥
q′i∑
j=1

(vi(j)− pi(j)) = Ui(q
′
i)

because of the first condition of supply curves definition. So if follows that the
auction is truthful.

Lemma 2: An incentive compatible online auction is based on supply curves.

PROOF: Assume an incentive compatible online auction A. Firstly, we argue that
Pi is determined uniquely by the quantity sold to i. For contradiction, suppose
two bids vi, v

′
i. Let P, P ′ be the payment for declaring vi, v

′
i and receiving quantity

q. Without loss of generality, assume that P < P ′. Then a player with bid
v′i will increase his utility function by declaring vi(q), because

∑q
j=1 v

′
i(j) − P >∑q

j=1 v
′
i(j)− P ′. This is a contradiction because A is a truthful mechanism.
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As payment Pi depends only on quantity, we observe that pi(q) = Pi(q)−Pi(q−
1). Payment Pi(q) then is denoted

∑q
j=1 pi(q) (telescopic sum) where Pi(0) = 0

from our assumptions. Finally for the total payment, let qi be the quantity that
maximizes Ui(q) =

∑q
j=1 vi(j) − Pi(q) =

∑q
j=1(vi(j) − pi(j)), bi be the bid for the

quantity qi and assume that A gives quantity q′i for bid vi. If q′i 6= qi then player i
can increase his utility function by declaring bi (because qi maximizes the previous
sum) which is contradiction, as A is a truthful mechanism.

Even if the previous thereom allow us to use any online auction that is based
on supply curves in order to achieve truthfulness, allowing any (non-increasing)
marginal valuation functions may increase significantly the complexity of present-
ing the valuation function to the auctioneer. In order to overcome this difficulty,
we use modified auctions, where the supply curves is known to every player and
each bid is just a point on the curve. Before we move on to competitive analysis of
some algorithms related to online auctions based on supply curves, we give another
definition that we will use below. An on-line auction is called ”based on a global
supply curve p(q)” if it is based on supply curves and if pi(q) = p(q +

∑i−1
j=1 qj) ,

where qj is the quantity sold to the j’th bidder.

4.1.2 Competitive Analysis

In this section we mention theorems for the case of k indivisible goods that referred
to competitive ratio of online mechanism for the online auctions ”based on sup-
ply curves”. We asume that all marginal valuations are taken from some known
interval [ps, pf ]. Firstly, we need to define Revenue, Social Efficiency and Com-
petitiveness for this kind of auction. The revenue of an auction A, is the utility
function of the auctioneer, denoted by:

RA =
∑
i

Pi + ps(k −
∑
i

qi)

where Pi is the total price paid by player i and qi the quantity he bought. Moreover,
the social efficiency of an auction A is the sum of the resulting utilities of all players,
including the auctioneer:

EA =
∑
i

qi∑
j=1

vi(j) + ps(k −
∑
i

qi)

Finally, an on-line auction A is c-competitive with respect to the revenue if RA ≥
Rvic/c (Rvic is revenue for Vickrey offline auction). Similarly, A is c-competitive
with respect to the social efficiency if EA ≥ Evic/c (Evic is social efficiency for
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Vickrey offline auction). For k = 1, a it can be seen at R.El-Yaniv - Competitive

solutions for online financial problems, the auctioneer gives the good to player i
such that vi(1) > p for a fixed price p =

√
ps · pf . The competitive ratio of the

algorithm above (reservation price algorithm, denoted RPP) is
√
φ, where φ =

pf
ps

.

For the general case k ≥ 2, we introduce the global supply curve:

p(j) = ps · φ
j

k+1

Then the following theorem as seen at Lavi’s, Nisan’s paper (Competitive Analysis
of Incentive Compatible On-Line Auctions) holds:

Theorem: The online auction based on previous supply curve is k·φ
1

k+1 -competitive
with respect to the revenue and to the social efficiency.

In the last paper, there is also another theorem referred to lower bound of com-
petitive ratio of any incentive compatible online auction of k goods, which is also
based on supply curves as it has been already proven.

Theorem: Any incentive compatible online auction of k goods has a competitive

ratio of at least φ
1

k+1 with respect to the revenue and to the social efficiency.

4.2 Expiring Items

4.2.1 Definition

Model: In this section, we consider online auctions, where the items must be sold
during a certain period (different for each one) and then they expire. Specifically,
we wish to sell M identical items with different expiration times. W.l.o.g. we
assume that the first item expires at time 1, the second at time 2, and so on.
Each item must be sold (and received by the buyer) at or before its expiration
time. For the bidders, we assume that they arrive over time. Player i arrives to
the market at time r(i) ∈ N and stays in the market for some fixed period of
time, until his departure time d(i) ∈ N . Each player desires only one item (unit
demand), that expires no earlier than his arrival time. He must receive it at or
before his departure time. Player i obtains a value of v(i) from receiving such
an item, otherwise his value is 0. We assume w.l.o.g. that different players have
different values. We assume the private value model with quasi-linear utilities:
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player i privately obtains his variables r(i), d(i), and v(i), and acts rationally in
order to maximize his own utility: his obtained value minus his price. A player
may arrive at or after his true arrival time, and declare or act as if he has any
value, and any deadline.

4.2.2 Approximation ratio for deterministic truthful mech-
anism

Our goal is to maximize the social welfare, the sum of values of players that receive
an item. From the theorem below follows that we can’t achieve a better approx-
imation than M with respect to social welfare if our deterministic mechanism is
truthful (M is the number of items).

Theorem: Any truthful deterministic mechanism for our online allocation prob-
lem cannot always obtain more than 1/M fraction of the optimal welfare.

PROOF: Let Ti be the domain of all valid player types (r(i), v(i), d(i)). We use
the following lemma:

Lemma: Fix some truthful deterministic mechanism with some approximation ra-
tio c. Then, for any player i with r(i) = 1 there exists a price function pi : T−i → R
such that, for any combination of players that arrive at time 1, b−i:

• If v(i) > pi(b−i) then i wins item 1 and pays pi(b−i) (regardless of his deadline).

• If v(i) < pi(b−i) then i does not win any item.

Fix any price functions pi : T−i → R. For any ε > 0 we will show that there exist
player types b1, ..., bM such that, for all i, r(i) = 1, d(i) = M , 1 ≤ v(i) ≤ 1 + ε,
and v(i) 6= pi(b−i). To verify that such types exist, fix L > M real values in
[1, 1 + ε]. Choose M values v(i) uniformly at random from these L values. Then,
for any given i, Pr(v(i) = pi(v(−i))) ≤ 1/L, as the values were drawn i.i.d. Thus,
Pr(∃i, v(i) = pi(v(−i))) ≤ M/L < 1, hence there exist a choice of values with
v(i) 6= pi(v(−i)) for all i. By the above lemma, it follows that the mechanism can
obtain welfare of at most 1 + ε, while the optimal allocation is at least M , and the
theorem follows.

It is remarkable that there exists truthful, determistic online mechanism that ob-
tains at least 1

M
fraction of the optimal welfare. The algorithm is the following:

for any player i, set pi to be the highest bid received in time slots 1, ..., t, excluding
i’s own bid. Sell item t to player i if and only if v(i) > pi, for a price of pi. It is
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easy to see that the mechanism is truthful. Additionally, since the player with the
highest value always wins, a at least 1/M fraction of the optimal is obtained.

4.2.3 Semi-Myopic Allocation Rules

we say that a set S of players is independent with respect to items t, ...,M if
there exists an allocation of (part of) the items t, ...,M such that every player in
S receives an item. The current best schedule at time t, St, is the allocation with
maximal value among all allocations of items t, ...,M to the active players, At.
Define

ft = {j ∈ St|St j is independent w.r.t items t+ 1, ...,M}
The set ft contains all players that can receive item t, when one plans to allocate
items t, ...,M to the players of St (i.e. these are all the potentially first players).
Now define the critical value at time t, v∗t as:

0 if St is independent w.r.t. items t+ 1, ...,M

minj∈ft{v(j)} otherwise

All active players with value larger than v∗t must belong to St, because of its
optimality (w.l.o.g the first player in St has value v∗t , and if there was a higher
valued player outside of St, we could switch between them and increase the value
of St). Thus, it seems reasonable not to allocate item t to a player with value
less than v∗t , as this player cannot belong to any optimal allocation. Surprisingly,
this condition is enough to obtain approximately optimal allocations. Below, we
mention the online iterative auction algorithm that solves the problem above and
some definitions we need for the further analysis. Finally, the theorem below shows
that the online iterative auction algorithm is 3-approximation with respect to the
social welfare.

The online iterative auction: The Online Iterative Auction constantly main-
tains a current price pt and a current winner wint for every item t. These are
initialized to zero at t = 0, and updated according to players’ actions at each time
t, as follows:

• Each player, in his turn, may place his name as the temporary winner of some
item t′, causing the previous winner to be deleted, and the price to increase by
some fixed small δ. A player cannot perform this action, and must relinquish
his turn, if he is already a temporary winner.
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• When none of the players that are not temporary winners wishes to place
their names somewhere, the time t phase ends: item t is sold to the player
wint for a price of pt − δ.

• At time t + 1 the prices and temporary winners from time t are kept. If
additional players arrive then the auction continues according to the above
rules.

Definition 1: Player i has a myopic strategy in the iterative auction if, in his
turn, he always places his name on the item t ≤ d(i) with the minimal price, unless
the minimal price ≥ v(i), in which case he does not bid at all.

Definition 2: Player i is semi-myopic if, in his turn, i bids on some item t with
p(t) ≤ v(i) and r(i) ≤ t ≤ d(i) (not necessarily the one with the lowest price). If
there is no such item, i stops participating.

Definition 3: (A semi myopic allocation rule) An allocation rule is semi
myopic if every item t is sold at time t to some player j with v(j) ≥ v∗t

Theorem: If all players are semi-myopic then the online iterative auction achieves
at least one third of the optimal welfare:

v(OPT ) ≤ 3 · v(ON) + 2 ·M · δ

where OPT,ON are the optimal, online allocations, respectively.

The theorem above can be proved if firstly we show that, under any semi-myopic
behavior, the online iterative auction follows a semi myopic allocation rule, hence
obtains the desired welfare level (fraction of 1

3
).

4.3 Graph Vertex Pricing

4.3.1 Definition

In this section we are dealing with auctions, where customers have valuations over
pairs of items (e.g., a computer and a monitor), and will only purchase if the
combined price of the items in their pair is below their value. In that case, we
can model the problem as a (multi) graph, where each edge e has some valuation

63



we, and our goal is to set prices pi on the vertices of the graph to maximize total
profit which is denoted by

Profit(p) =
∑

e=(i,j):we≥pi+pj

(pi + pj)

where p is the vector of individual prices. In a more general way, if bidders have
valuations over larger subsets (k > 2), we can model our computational problem
as one of pricing vertices in a hypergraph. A hyperedge e connects a set of items
bidder e wants to buy followed by value we. So for this case we want the price
vector p, (called p∗) that maximizes

Profit(p) =
∑

{e:we≥
∑

i∈e pi}

∑
i∈e

pi

The problem above is called k-hypergraph vertex pricing.

4.3.2 The Online k-Hypergraph Vertex Pricing

For the offline case of k-Hypergraph Vertex Pricing, we will discuss an algorithm
that is O(k)-approximation. Assume G(V,E) an hypergraph. The algorithm is
the following:

1. Randomly partition V into VL and Vrest by placing each node into VL with
probability 1

k
.

2. Let E ′ be the set of edges with exactly one endpoint in VL. Ignore all edges
in E − E ′.

3. Set prices in Vrest to 0 and set prices in VL optimally with respect to edges in
E ′.

Theorem: The algorithm above is O(k)-approximation.

PROOF: Let OPTi,e be the profit made by p∗, selling item i to bidder e (ob-
viously, OPTi,e ∈ {0, p∗i }) and OPT= Profit(p∗) =

∑
i∈V,e∈EOPTi,e. From the

third step of the algorithm above, it’s easy to see that the total profit is at least∑
i∈VL,e∈E′OPTi,e. So we need to find a lower bound for E[

∑
i∈VL,e∈E′OPTi,e]. Let

Xi,e be random variable such that Xi,e = 1 if (i ∈ VL and e ∈ E ′), and Xi,e = 0
otherwise. Therefore, E[Xi,e] = Pr[i ∈ VL ∧ e ∈ E ′] ≥ 1

k
(1− 1

k
)|e|−1 ≥ 1

k
(1− 1

k
)k−1.

Thus, E[
∑
i∈VL,e∈E′ OPTi,e] = E[

∑
i∈VL,e∈E OPTi,eXi,e] =

∑
i∈VL,e∈E OPTi,eE[Xi,e]≥

OPT · 1
k
(1− 1

k
)k = OPT

O(k)
.
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For the online case, we use the algorithm described above, adapted to the posted-
price setting by using Exp3 algorithm. The only tricky issue is that a customer
who chooses not to buy anything must be fed in as a non-buyer to all of the online
algorithms, in order to ensure that the sequence of customers fed into algorithm
i is a superset of the true customers for that item (notice that interval [1,h] must
be known in advance).
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Appendix A

Experimental Analysis

A.1 2-Hypergraph Vertex Pricing

We implemented in C programming language the algorithm desrcibed in section
4.3.2. We used rand() function to create random graphs with specific number
of nodes and the weight of each edge is 2. It is obvious that the optimal profit
= 2 · E, where E is the number of edges. Below you can see the implementation
and a graph that gives the approximation ratio as it followed from the output of
the program (expected O(k)-approximation, where k = 2).

#include <stdio.h>

#include <stdlib.h>

#include <time.h>

#define n 2000

int matrix[n+1][n+1];

int vl[n+1];

int optprofit;

int edges;

int profit;

int main()

{

int i,j,k;

srand( time(NULL) );

for (i=1;i<=n;i++)

for (j=1;j<i;j++)

{

k = rand() %2;

if (k==0)

{matrix[i][j] = -1;

matrix[j][i] = -1;}

else
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{

matrix[i][j] = 2;

matrix[j][i] = 2;

edges++;

}

}

optprofit = 2*edges;

for (i=1;i<=n;i++)

vl[i] = rand()%2;

for (i=1;i<=n;i++)

for (j=1;j<i;j++)

{

if (vl[i]+vl[j] == 1 && matrix[i][j]==2) profit +=2;

}

printf("%d %d %lf",profit,optprofit,((double)optprofit / (double)profit));

return 0;

}
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A.2 RSOP

We implemented in C programming language the algorithm desrcibed in section
3.4.2 RSOP mechanism for the multi-price case. We used rand() function for bid
values of the bidders, and for the partition of the bidders to the two sets. Finally
we have as an output the competitive ratio with respect to the revenue of the
auctioneer. As optimal revenue for the untruthful case we mean F (2) (see section
3.2.2 for definitions).

#include <stdio.h>

#include <stdlib.h>

#include <time.h>

#define n 30

int bid[n+1];

int select[n+1];

int seta[n+1];

int setb[n+1];

int numa,numb;

int main()

{

int i,j,temp;

srand( time(NULL) );

for (i=1;i<=n;i++)

{

bid[i] = rand();

j = rand()%2;

if (j==0)

{numa++;

seta[numa] = bid[i];}

else

{numb++;

setb[numb] = bid[i];}

}

for (i=1;i<=n;i++)

for (j=1;j<i;j++)

{

if (bid[i]>bid[j])

{
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temp = bid[i];

bid[i] = bid[j];

bid[j] = temp;

}

}

int fbench=0;

for (i=2;i<=n;i++)

{

if (fbench < i*bid[i])

fbench = i*bid[i];

}

for (i=1;i<=numa;i++)

for (j=1;j<i;j++)

{

if (seta[i]>seta[j])

{

temp = seta[i];

seta[i] = seta[j];

seta[j] = temp;

}

}

for (i=1;i<=numb;i++)

for (j=1;j<i;j++)

{

if (setb[i]>setb[j])

{

temp = setb[i];

setb[i] = setb[j];

setb[j] = temp;

}

}

int thresa,thresb;

int opta=0,optb=0;

for (i=1;i<=numa;i++)

{

if (opta < i*seta[i])

{opta = i*seta[i];

thresb = seta[i];}

}
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for (i=1;i<=numb;i++)

{

if (optb < i*setb[i])

{optb = i*setb[i];

thresa = setb[i];}

}

int sol =0;

i=1;

while(seta[i] >= thresa)

i++;

sol+= thresa*(i-1);

i=1;

while(setb[i] >= thresb)

i++;

sol+= thresb*(i-1);

printf("%lf",((double)fbench / (double)sol));

return 0;

}

For the number of bidders n varying, we have the following graph.
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A.3 Online iterative auction

We implemented in C programming language the online iterative algorithm desrcibed
in section A.2. We used rand() function for utility functions, arrival and departure
time of bidders. We assume that d = 5 and we took cases for 10 ≤M ≤ 100 with
step 10 and also we took n = 5000 the number of bidders. The expected compet-
itive ratio was ≤ 3 (if we subtract the 2 ·M · d).

#include <stdio.h>

#include <stdlib.h>

#include <time.h>

#define n 5000

#define d 5

#define M 100

int utility[n+1];

int departure[n+1];

int arrival[n+1];
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int sort[n+1];

int winners[n+1];

int itemtakes[n+1];

int main()

{

int i,j,t,oldplayer,argmax,temp;

double cpt=0,welfare=0,optwelfare=0,maxprice,secmaxprice;

srand(time(NULL));

for (i=1;i<=n;i++)

{

utility[i] = rand();

arrival[i] = rand()%M;

departure[i] = arrival[i] + (rand()%M+1);

}

for (t=1;t<=M;t++)

{

for (j=1;j<=n;j++)

if (arrival[j]<= t && departure[j]>=t && utility[j]>= cpt

&& winners[j]==0)

{

cpt+=d;

oldplayer = itemtakes[t];

winners[oldplayer] = 0;

winners[j] = 1;

}

welfare += cpt - d;

}

for (i=1;i<=n;i++)

for (j=1;j<i;j++)

if (utility[i] > utility[j])

{

temp = utility[i];

utility[i] = utility[j];

utility[j] = temp;

}

optwelfare = M*utility[M+1];

printf("%lf %lf %lf",welfare,optwelfare,((double)(optwelfare-

2.0*M*d)/(double)welfare));

return 0;

}

75



A.4 Price Sampling Algorithm

We implemented in C programming language the price sampling algorithm desrcibed
in section 2.3. We used rand() function to create the bipartite graph, with max
degree of left nodes ≤ d and the utility functions of the agents. The graph is con-
structed in a way that the optimal solution is

∑n
j=n−m+1 j, where m is the number

of items (right set). Below you see the implementation and a graph that gives
the approximation ratio to the optimal output. We expected a 4d-approximation
ratio.

#include <stdio.h>

#include <stdlib.h>

#include <time.h>

#define n 2000

#define m 300

int matrix[n+1][m+1];

int vl[n+1];
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int price[m+1];

int akmes[n+1];

int visited[m+1];

int main()

{

int i,j,optsol=0,k,d;

scanf("%d",&d);

srand( time(NULL) );

for (i=1;i<=n;i++)

for (j=1;j<=m;j++)

{

k = rand()%2;

if (k==0)

matrix[i][j] = 0;

else

{

if (akmes[i]<d-1)

{matrix[i][j] = 1;

akmes[i]++;}

}

}

for (i=1;i<=n;i++)

vl[i] = i;

for (i=n-m+1;i<=n;i++)

{

matrix[i][i+m-n]=1;

optsol+=vl[i];

}

int s = n/2,t,minim,mini,sol=0;

for (j=1;j<=m;j++)

{

int maxx = 0;

for (i=1;i<=s;i++)

{

if (matrix[i][j]==1 && maxx < vl[i])

maxx = vl[i];
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}

price[j] = maxx;

}

for (i=s+1;i<=n;i++)

{

minim = 1000000;

for (j=1;j<=m;j++)

if (visited[j]==0 && vl[i]>price[j] && minim > price[j])

{minim = price[j];

mini = j;}

if (minim == 1000000)

minim = 0;

visited[mini] = 1;

sol +=minim;

}

printf("%lf",((double)optsol / (double)sol));

return 0;

}
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