
Randomized truthful mechanisms
(PijanotikoÐ filal jeic mhqanismoÐ)

DIPLWMATIKH ERGASIA

Iw�nnhc Panagèac

Epiblèpwn: Eust�jioc Z�qoc
Kajhght c

Aj na, Okt¸brioc 2010

1

2

Randomized truthful mechanisms
(PijanotikoÐ filal jeic mhqanismoÐ)

DIPLWMATIKH ERGASIA

Iw�nnhc Panagèac

Epiblèpwn: Eust�jioc Z�qoc
Kajhght c

EgkrÐjhke apì thn trimel exetastik epitrop thn 29h OktwvrÐou 2010

..........................
Ευστάθιος Ζάχος Δημήτρης Φωτάκης ΄Αρης Παγουρτζής

Καθηγητής Λέκτορας Επίκουρος Καθηγητής

Aj na, Okt¸brioc 2010

3

...
Iw�nnhc L. Panagèac
DiplwmatoÔqoc Hlektrolìgoc Mhqanikìc kai Mhqanikìc Upologist¸n E.M.P

Copyright c©Iw�nnhc L. Panagèac. 2010 Ejnikì Metsìbio PoluteqneÐo.
Me epifÔlaxh pantìc dikai¸matoc. All rights reserved.

ApagoreÔetai h antigraf , apoj keush kai dianom thc paroÔsac ergasÐac, ex
olokl rou tm matoc aut c, gia emporikì skopì. Epitrèpetai h anatÔpwsh,
apoj keush kai dianom gia skopì mh kerdoskopikì, ekpaideutik c ereunhtik c
fÔshc, upì thn proupìjesh na anafèretai h phg proèleushc kai na diathreÐtai to
parìn m numa. Erwt mata pou aforoÔn th qr sh thc ergasÐac gia kerdoskopikì
skopì prèpei na apeujÔnontai proc ton suggrafèa.

Oi apìyeic kai ta sumper�smata pou perièqontai se autì to èggrafo ekfr�zoun ton
suggrafèa kai den prèpei na ermhneujeÐ ìti antiproswpeÔoun tic epÐshmec jèseic
tou EjnikoÔ Metsìbiou PoluteqneÐou.

4

PerÐlhyh

Sth diplwmatik aut , antimetwpÐzoume probl mta tou mechanism design, qrhsi-
mopoi¸ntac pijanotikoÔc algorÐjmouc wc idèa epÐlushc. Exet�zoume pwc oi pijan-
otikoÐ mhqanismoÐ sumperifèrontai stic yhfoforÐec, ènac shmantikìc tomèac thc
jewrÐac koinwnik c epilog c. JewroÔme diaforetik� eÐdh yhfofori¸n, kai
prospajoÔme na proseggÐsoume to bèltisto score tou upoyhfÐou pou kerdÐzei.
Oi pijanotikoÐ mhqanismoÐ ousiastik� eÐnai to kleidÐ gia na petÔqoume filal jeic
mhqanismoÔc. Epiplèon k�noume mÐa filik eisagwg sto Differential privacy pou
eÐnai ousiastik� mÐa oikogèneia pijanotik¸n algorÐjmwn pou èqei epÐshc mia
epiprìsjeth par�metro ε pou ephre�zei to mèso kìstoc enìic algorÐjmou kai thn
poluplokìtht� tou. Oi Differential privacy mhqanismoÐ ikanopoioÔn ton perior-
ismì ìti lÐgec allagèc sta (kruf�) dedomèna epÐshc prokalloÔn mikrèc allagèc
sthn puknìthta pijanìthtac twn apotelesm�twn twn algorÐjmwn. Aut h idèa
eÐnai shmantik gia na petÔqoume proseggistik filal jeia epeid to na parekklÐnei
k�poioc prokalleÐ epÐshc mikrèc allagèc sth sun�rthsh qrhsimìthtac twn paikt¸n.

Lèxeic kleidi�

JewrÐa PaignÐwn, SqediastikoÐ mhqanismoÐ, PijanotikoÐ Algìrijmoi, Differential
Privacy

5

Abstract

In this thesis, we deal with problems of mechanism design, using randomization as
a solution concept. We examine how randomization behaves in voting rules, a very
important subfield of social choice theory. We consider different voting rules, and
try to approximate the optimal score of the winner alternative. Randomization
actually is the key to achieve strategy-proof mechanisms. Moreover we make a
friendly introduction to Differential privacy which is actually a family of random-
ized algorithms that has additionally a parameter ε that affects the expected cost
of the algorithm and its complexity. Differential privacy mechanisms satisfy the
constraint that few changes in the (private) data also cause small changes at the
probability distribution of the outcome of the algorithm. This idea is important
to achieve approximate truthfulness because deviating causes small changes in the
utility function of each agent too.

Keywords

Game Theory, Mechanism Design, Randomization, Differential Privacy

6

Acknowledgements

I would like to deeply thank my three teachers and members of the committee
Prof. S.Zachos, Prof. D. Fotakis and Prof. A. Pagourtzis. I feel very lucky I had
the chance to be taught by them; I feel they have influenced me in a very positive
way not only academically but also on a personal level. Particularly I want to
thank the two supervisors of this thesis, Prof. S. Zachos and Prof. D. Fotakis for
their guidance and their persistence in helping me make this thesis better.
Additionally, I specifically want to thank my friend Andreas Galanis for being such
an inspiration for me from the early ages, when we participated in Mathematical
Olympiads. Many thanks to the members of the Corelab team for the interesting
discussions we made. Finally, i want to thank my parents for their support since
the first day of my birth.

25/10/2010, Ioannis Panageas

7

8

Contents

1 Introduction 13
1.1 Introduction to Game Theory . 13

1.1.1 Definitions . 13
1.1.2 NE concept . 14
1.1.3 Examples . 15

1.2 Introduction to Mechanism Design 16
1.2.1 Definitions . 17
1.2.2 Examples . 18
1.2.3 More Definitions . 19
1.2.4 Important Theorems . 22

1.3 Randomization . 24
1.3.1 Introduction to Probabilities and Randomization 24
1.3.2 Examples . 27

1.4 Purpose of thesis . 29

2 Randomization in voting 31
2.1 Introduction . 31
2.2 Introduction to Voting Setting . 31
2.3 Vector - Positional Scoring Rules . 33

2.3.1 Definitions . 33
2.3.2 General strategy-proof Mechanism 34
2.3.3 Upper and Lower Bounds . 35

2.4 Other scored-based Voting Rules . 39
2.4.1 Copeland - Maximin . 40
2.4.2 Lower Bounds for Copelan-Maximin 42

2.5 Special case for Approval Voting . 45
2.5.1 Model . 45
2.5.2 Deterministic approach doesn’t work 45
2.5.3 Randomized approach . 47
2.5.4 GSP consideration . 50

3 Differential Privacy 53
3.1 Introduction . 53
3.2 Definitions . 53

3.2.1 Definition . 53
3.2.2 Exponential Mechanism . 54

9

3.3 Applications to combinatorial optimization problems 57
3.3.1 Unweighted Vertex Cover . 57
3.3.2 Min-Cut . 61
3.3.3 k-Median . 63

3.4 Differential Privacy and Truthfulness 65
3.4.1 Approximate Truthfulness . 65
3.4.2 Combinatorial Public Projects 67
3.4.3 Gap Mechanism . 69

3.5 Conclusion . 73

References 75

4 Appendix 79

10

List of Algorithms

General Mechanism 1 . 34
General Mechanism 2 . 40
m-RP Algorithm . 47
Exponential Mechanism . 54
Unweighted Vertex Cover Algorithm 58
Min-Cut Algorithm . 61
Private k-Median Algorithm 63
CPP Algorithm . 67
Gap Mechanism . 70

11

12

Chapter 1

Introduction

In this chapter, we make a brief introduction to Game Theory and Mechanism
Design, knowledge that we will need to proceed with the rest of this diploma
thesis. Additionally, we make a friendly introduction to Randomized Algorithms,
because this is the point of view from which we try to examine different problems
of Mechanism Design.

1.1 Introduction to Game Theory

1.1.1 Definitions

Game Theory is considered a subfield of applied mathematics and has a lot of ap-
plications to economics and computer science. It aims to mathematically capture
situations, or games, in which players(agents) interact and their decisions affect
each other’s outcomes. Agents are modeled to be rational and intelligent, namely
they are self-interested and are aware of all the existing knowledge of the game
and capable of making all the logical inferences.

As far as the games are concerned, we will examine those that are known as
one-shot simultaneous. Generally, a game consists of N = {1, 2, ..., n} agents, each
of whom choose a way of playing from a set of possible ways, namely a way of
interacting to the game. This way of playing for agent i, is usually denoted by
si ∈ Si and is called agent i’s strategy, where Si is a well defined set of available
strategies of i. The question that arises is what are the criteria for which the
agents choose their strategies. The answer is simple, each agent i has a preference
profile and her preferences determine her strategy (choice).

We distinct the strategies of each agent to pure strategies and mixed strategies.

13

A pure strategy for agent i is just an element of Si and a mixed strategy is a
probability distribution over the elements of Si.

We use the notation s = {s1, ..., sn} for the strategy vector of the agents. Addition-
ally, we also use the notation s = (si, s−i), where s−i = {s1, ..., si−1, si+1, ..., sn},
namely the strategy vector of the agents except of agent i.

As each agent selects her strategy, then the outcome of the game is determined. In
order to specify the game and also the preference profile of each agent, we have to
"measure" the outcome of the game for each agent. Thus, we define the function
ui : S → R for agent i, where S = S1 × ... × Sn. ui is called utility function and
shows the "happiness" of agent i for the selected vector s of strategies, thus the
outcome of the game.

1.1.2 NE concept

There are lots of solution concepts to deal with a game, described above. The most
intuitive and common solution concept is the Nash Equilibrium notion, where each
agent tries to maximize his ui(si, s−i) given that the strategies of the other agents,
namely s−i is fixed. Formally, we have the following definition:

Definition 1: A strategy vector s ∈ S is said to be a Nash equilibrium if for
all players i and each alternate strategy s′i ∈ Si, we have that:

ui(si, s−i) ≥ ui(s
′
i, s−i)

In words, there is no agent i such that, she can increase her payoff by changing
her strategy. In pure strategies notion, whether there is a Nash equilibrium or not
depends on the game. However, in mixed strategies, as John Nash proved, there is
always a mixed strategy Nash equilibrium (we take expectation over utilities) and
hence the model of mixed strategies equilibria is very useful and important, even
though finding such an equilibrium is hard to compute (PPAD-complete problem).

A stronger notion than Nash equilibrium, is Dominant strategy equilibrium, where
each agent chooses her strategy to maximize her payoff(utility function), indepen-
dently of all other agents strategies. Formally we have the following definition.

Definition 2: A strategy si ∈ Si is a dominant strategy if for each alternate
strategy s′i ∈ Si and each s−i ∈ S−i = {S1× ...×Si−1×Si+1× ...Sn}, we have that:

ui(si, s−i) ≥ ui(s
′
i, s−i)

14

If all agents have a dominant strategy, then the strategy vector which is formed,
is a dominant strategy equilibrium.

It is rather straightforward to see that a dominant strategy equilibrium is also
a Nash equilibrium. Additionally, a dominant strategy equilibrium and thus a
Nash equilibrium doesn’t yield the maximum payoff the agents can have, namely
the maximum payoff that the agents can have is not usually a stable solution (there
is at least one agent such that he can increase her utility by changing her strategy).
For the rest of the diploma thesis, we search for dominant strategy equilibrium to
the problems we deal with. Below we give some examples to make our claims more
clear.

1.1.3 Examples

Prisoners Dilemma: (Dominant-strategy equilibrium) The following matrix ex-
presses the years of jails for agents P1, P2 for all the possible selections of strategies
for the two agents.

Cost matrix for prisoners dilemma

The game we describe is a symmetric game. Each player has available strategies
Si = {Confess, Silent}. In this game, each agent wants to minimize the years
of jail. We assume that ui(x) ≥ ui(y) if x ≤ y (x, y are years of jail for agent
i). Thus for s1 = Confess we have that u1(Confess, Silent) ≥ u1(Silent, Silent)
and u1(Confess,Confess) ≥ u1(Silent,Confess), thus for agent 1, the strategy
"confess" is a dominant strategy. Additionally, by symmetry this also holds for
agent 2. Hence the vector strategy s = {Confess,Confess} is a dominant strat-
egy equilibrium and hence a Nash equilibrium. Notice that the strategy vector
s′ = {Silent, Silent} gives a better payoff, namely 2 years of jail for each agent,

15

however it’s not a stable solution, since for example agent 1 can change her strat-
egy and have 1 year of jail instead of 2.

Firms price: (No dominant-strategy equilibrium) The following matrix expresses
payoff of Firms 1,2 for all the possible strategies.

Cost matrix for Firms

This game has two Nash equilibria, namely s = {Price 1,Price 1} and s′ =
{Price 2,Price 2} (this can be easily proved if considering all the cases). However
there is no dominant-strategy equilibrium. Consider the first Nash equilibrium s.
Then strategy "Price 1" is not a dominant strategy for Firm 1 and hence s is not
a dominant strategy equilibrium. Consider the second Nash equilibrium s′. Then
strategy "Price 2" is not a dominant strategy for Firm 1 and hence s′ is not a
dominant strategy equilibrium.

Generally, dominant strategy equilibrium is more desired than Nash equilibrium
because, each agent make no assumptions about the strategies of the other agents,
she doesn’t need any knowledge about the way the others play.

1.2 Introduction to Mechanism Design

Mechanism design constitutes the intersection of the field of economics and the field
of game theory. This happens since we talk about self-interested and intelligent
agents that want to maximize their payoff and we are searching for stable solutions
(NE concept). Additionally, if we add to this concept algorithmic design (and
analysis) and complexity we are talking about Algorithmic Mechanism Design.
In essence, Mechanism design attempts implementing desired social choices in a

16

strategic setting. A social choice constitutes aggregations of the preferences of the
different agents toward a single joint decision. It is remarkable that usually the
preferences of the agents are private, that’s why such strategic design is necessary.

1.2.1 Definitions

As we have already mentioned in previous section, each agent shows preferences
over the different outcomes of the game (an outcome of the game is determined
since every agent chooses a strategy). This showing preference is denoted by the
type of agent i, θi ∈ Θi. For example assume two possible outcomes aj, ak ∈ A,
where A is the set of all possible outcomes. Then given θi, we can conclude whether
agent i prefers aj to ak or not. Thus θi is a transitive relation over the different
outcomes and it can be seen as a partially ordering set over outcomes. Generally,
we give a real number for each outcome for agent i, namely we "measure" that
outcome with respect to agent i. This becomes attainable with the use of utility
function.

Definition 1: Let ui : θi × A → R be the utility function of i. We consider
ui(θi, aj) ≥ ui(θi, ak) if i (weakly) prefers outcome aj to ak.

The goal of Mechanism design, is to find functions that given the types of the
agents, selects the optimal outcome (in some criteria).

Definition 2: A function f : ×iΘi → A is called a social choice function.

A mechanism M given the game, defines the set of feasible strategies for the
agents, namely defines S1, ..., Sn and additionally determines the outcome rule
of the game, namely defines a function g, such that g(s) is the outcome where
s = {s1, ..., sn} is the strategy vector played by the agents. In order to make
a connection between a mechanism and the definitions described above, we have
additionally to define the following:

Definition 3: A mechanism M implements social function f , if for every type
vector of agents θ = (θ1, ..., θn), we have that f(θ) = g(s1(θ1), ..., sn(θn)), where si :
Θi → Si gives the strategy agent i plays, given her profile and also (s1(θ1), ..., sn(θn))
is an equilibrium of the game.

Specifically, we want the equilibrium to be a dominant strategy equilibrium, be-
cause it makes the least assumptions about the agents. Designing mechanisms
that implement social functions is a very difficult task, because each agent acts
strategically and she may try to manipulate the mechanism so as to increase her

17

utility or expected utility. For example, if we assume that Si = Θi, namely the
strategy of each agent is to report her type, an agent may misreport her type in
order to increase her utility and then the outcome of the game may be far from
the desired one. Below, we describe an example in order to make more clear the
definitions mentioned above.

1.2.2 Examples

Let Alice and Bob be two energy consumers. An energy authority is charged
with choosing the type of energy to be used by Alice and Bob. The different
kind of energies are {gas, oil, nuclear power, coal}. Let us suppose that there are
two possible states of the world. In state 1, the consumers place relatively little
weight on the future, i.e., they have comparatively high temporal discount rates.
In state 2, by contrast, they attach a great deal of importance to the future,
meaning that their rates of discount are correspondingly low. Formally we have
that ΘA = ΘB = {state 1, state 2} and A = {gas, oil, nuclear power, coal}. The
matrix below shows the consumers’ energy rankings in the two states:

The energy authority wants to select an energy source such that both Alice and
Bob are reasonably happy with. Hence a social choice function f that makes both
consumers reasonable happy is f(state 1) = oil and f(state 2) = gas. However,
the energy authority doesn’t know which state holds and by asking the consumers
which is the state of the world, both Alice and Bob have the incentive to lie. In-
deed, since Alice prefers gas to oil, she will report that the state of the world is
the second, without caring about Bob’s answer. Additionally, since Bob prefers
oil to gas, he will answer that the state of the world is the first. Hence the only
reasonable thought is to flip a coin between the two states and then decide the
alternative (type of energy). However, in that case, the probability of returning
the optimal solution is 50%, namely the optimal type of energy conditionally on
what state holds.

Let us suppose, therefore, that the authority has the consumers participate in
the mechanism given by matrix below:

18

Each energy consumer must choose between two strategies. For Alice the two
available strategies are {Top,Bottom} and for Bob are {Left,Right}. We consider
the following cases:

• The state of the world is the first. Then Bob will choose the strategy Left, no
matter what Alice chooses, since he prefers oil and nuclear to coal and gas.
Thus strategy Left is a dominant strategy for Bob. Additionally, Alice since
Bob selects Left, she will select strategy Top, since she prefers oil to nuclear.
Hence for state 1, the expected way of playing is (sA, sB) = (Top,Left) since
each the only Nash equilibrium for that state.

• The state of the world is the second. Then clearly, Alice will choose the
strategy Bottom, no matter what Bob chooses, since she prefers nuclear and
gas to oil and coal. Thus strategy Bottom is a dominant strategy for Alice.
Additionally, Bob since Alice plays Bottom, he will select the strategy Right,
since he prefers gas to nuclear. Hence for state 2, the expected way of playing
is (sA, sB) = (Bottom,Right), which is the only Nash equilibrium for state 2.

Thus in both states, the mechanism described above achieves the optimal outcome
even though the energy authority doesn’t know the actual state and the consumers
are interested in their preferences. Finally, observe that the mechanism implements
authority’s social choice in Nash equilibrium since the Nash equilibrium outcomes
of the mechanism coincide with the optimal outcomes in each state.

1.2.3 More Definitions

Definition 1: (Pareto optimality or efficiency). A function f is pareto-optimal if
there is no alternative outcome (from the returned outcomes) that makes at least
one agent better off without making any other agent worse off.

Intuitively, the social function f must not return an outcome ai such that there
exists an outcome aj where all the agents have larger utilities than at ai. Consider
for example the Firms price problem. Nash equilibrium s = {Price 2,Price 2}
must be the only choice of f . This outcome is called pareto-optimal solution. It

19

is remarkable that a pareto-optimal solution may not be stable, namely an equi-
librium. In the example of prisoners’ dilemma, {Silent, Silent} is a pareto-optimal
solution but is not a Nash equilibrium.

Definition 2: (direct-revelation mechanism). A direct-revelation mechanism
M restricts agent’s i strategies Si = Θi for all i and also defines the outcome
g(θ̂1, ..., θ̂n) of the game, where (θ̂1, ..., θ̂n) is agents’ reported vector-type.

In words, a direct-revelation mechanism is mechanism in which the only available
strategy for the agents is to report their type, hence si(θi) = θ̂i (θ̂i is the reported
preference for agent i). If agent i truthfully reports her type, then si(θi) = θi.

Definition 3: (Incentive-compatible Mechanism). An incentive-compatible mech-
anism is a direct-revelation mechanism in which agents report truthful information
about their preferences in equilibrium, namely si(θi) = θi for every i.

Definition 4: (Strategy-proof). An incentive compatible mechanism is strategy
proof, if for every agent, truthfully reporting her preference is a dominant-strategy.

Namely, a strategy-proof mechanism, is an incentive compatible mechanism in
which agents report truthful information about their preferences in specifically
dominant-strategy equilibrium.

There are games, such as auctions, where additionally there is a payment vec-
tor introduced to the game. For this reason we have to generalize our definition
of utility functions and mechanisms.

Definition 5: A quasi-linear utility function for agent i is denoted by

ui(θi, aj) = vi(θi, aj)− pi

where θi, vi are agent’s i type and valuation function respectively and aj the out-
come of the game.

In a similar way to the previous definitions, a quasi-linear mechanismM given the
game, defines the set of feasible strategies for the agents, namely defines S1, ..., Sn
it determines the outcome rule of the game, namely defines a function g, such
that g(s) is the outcome where s = {s1, ..., sn} is the strategy vector played by
the agents and also defines the payment pi = ti(s) of agent i (payment vector
p = (p1, ..., pn)). To make things more clear consider the following auction:

20

Example in auctions

Assume we have an auction of a single item, and a set N of n bidders. The set
of outcomes is the winners of the auction (notice that we have a single winner).
Formally A = {i-wins |i ∈ N}. Also, the valuation of each bidder is denoted by
vi(i-wins) = wi ≥ 0 (how much money she is willing to pay for the item, formally
it shows the type of agent i) and vi(j −wins) = 0, j 6= i (intuitively, every bidder
wants to win). Let g be a direct-revelation mechanism that selects the winner
bidder. Thus g also determines the payment vector p = (p1, ..., pn) for the bidders.
Hence the utility function of bidder i is denoted by ui = vi − pi. In order for
the auction to be reasonable, we have to demand that pi ≥ 0. In case i wins
then ui(i-wins) = vi(i-wins) − pi(i-wins) ≥ 0, or equivalently wi ≥ pi(i-wins).
Additionally, if j 6= i wins then ui(j-wins) = 0− pi(j-wins) ≥ 0 and hence pi = 0.
In words, bidder i pays money iff i wins. Consider the following strategy-proof
mechanism:

(Vickrey’s second price mechanism)

Let the winner be the player i with the highest bid (wi) and i pays p,
which is the second highest declared bid, namely p = maxj 6=iwj.
All the other bidders pay zero.

To prove that truthtelling is a dominant strategy for the mechanism above, let wi
be i’s valuation and p∗ the second largest valuation. Consider the following cases
(w′i is i’s reported valuation):

• i wins the auction. If w′i > p∗ then i would still win thus ui(w′i) = wi − p∗ =
ui(wi). If wi ≤ p∗ then i would lose the auctions thus 0 = ui(w

′
i) < wi− p∗ =

ui(wi).

• i loses the auction, namely there exists j such that wi < wj and j is the
winner. If w′i < wj then i still loses, thus ui(wi) = 0 = ui(w

′
i). If w′i > wj

then i would win the auction and ui(w′i) = wi − wj < 0 = ui(wi).

Hence truthtelling is a dominant strategy for every bidder i, thus truthtelling is a
dominant strategy equilibrium (namely the mechanism is strategy-proof).

The mechanism above belongs to a family of mechanisms, called VCG-mechanisms.
The VCGmechanisms are direct-revelation mechanisms with payments vectors and
are defined as follows. The outcome a(θ̂) - where θ̂ = (θ̂1, ..., θ̂n) is the reported
type vector- that is chosen is the one that maximizes the social welfare (sum of
valuations) namely

a(θ̂) = max
aj∈A

∑
i

vi(θ̂i, aj)

21

Additionally, the payment is denoted by

pi(θ̂) = hi(θ̂−i)−
∑
j 6=i

vi(θ̂j, a(θ̂))

where hi : Θ−i → R is an arbitrary function. Notice that the amount agent i pays
doesn’t depend on her type (valuation) but on all other agents. Agent’s i utility is
equal to ui(θi, a(θ̂)) = vi(θi, a(θ̂)) +

∑
j 6=i vi(θ̂j, a(θ̂)) − hi(θ̂−i). This is the key to

achieve strategy-proofness since each agent has incentive to maximize the social
welfare (since hi doesn’t depend on i) and this is feasible by telling the truth. Vick-
rey [29], Clarke [6], Groves [12] proved that the family of mechanisms described
above are strategy-proof and that these mechanisms are the only strategy-proof
mechanisms that maximize the sum of the utility functions.

Commonly, we define hi = max a ∈ A
∑

j 6=i vi(a, θi) which is called Clarke pivot
rule. Notice that in the example described above, we consider the Clarke pivot
rule to solve the problem.

1.2.4 Important Theorems

Theorem 1: (Revelation Principle) If there exists an arbitrary mechanism M
that implements social choice function f in dominant strategies, then there exists
an incentive compatible mechanism that implements f in dominant strategies.

Proof: Since M implements f then g(s1(θ1), ..., sn(θn)) = f(θ1, ..., θn), where
s = (s1(θ1), ..., sn(θn)) is a dominant-strategy equilibrium. We define a direct-
revelation mechanism M′ with g′(θ′1, ..., θ

′
n) = f(θ′1, ..., θ

′
n), ∀θ′ = (θ′1, ..., θ

′
n) and

we will prove that M′ is strategy-proof. Since (s1(θ1), ..., sn(θn)) is a dominant
strategy we have that

ui(θi, g(si(θi), s
′
−i(θ−i))) ≥ ui(θi, g(s′i(θi), s

′
−i(θ−i))) ∀s′i ∈ Si, s′−i ∈ S−i

We substitute s′−i(θ−i) for s−i(θ−i) and also s′i(θi) for si(θ̂i) we have that the
following holds:

ui(θi, g(si(θi), s−i(θ−i))) ≥ ui(θi, g(si(θ̂i), s−i(θ−i))) ∀θ̂i ∈ Θi, θ−i ∈ Θ−i

or equivalently

ui(θi, g
′(θi, θ−i)) ≥ ui(θi, g

′(θ̂i, θ−i)) ∀θ̂i ∈ Θi, θ−i ∈ Θ−i

Hence, for every agent i, reporting her true type is a dominant strategy, thus
direct-revelation mechanismM′ implements f in dominant strategies.

22

�

In words, Revelation Principle states that any mechanism M that implements
social function f in dominant strategies can be transformed into a strategy-proof
mechanism that implements the same social function. It is remarkable, that this
theorem give us no knowledge of how to create that mechanism. However it is
a very important theorem since it restricts our attention to direct-revelation and
truthful mechanisms, since if a social function f can be implemented in dominant
strategies by any mechanism, then it can be also implemented by an incentive
compatible one. Another point that has to be stressed is that Revelation principle
also stands for mechanisms that have also payment vectors, namely to mechanism
design with money.

Definition 1: Social function f is a dictatorship, if there is an agent i such
that for all possible outcomes aj ∈ A, we have that ui(θi, f(θi, θ−i)) ≥ ui(θi, aj).

Namely, a social function is a dictatorship for agent i, if the outcome of f is
always the most preferable for agent i, no matter what the types of the other
agents are.

Definition 2: Social function f is onto A if for every aj ∈ A, there is a vec-
tor type θ such that f(θ) = aj.

Below we mention a very important theorem for social choice theory, which is
an impossibility result.

Theorem 2: (Gibbard-Satterthwaite) There is no f that is incentive compati-
ble social choice function onto A, where |A| ≥ 3 and is not a dictatorship.

This theorem actually states that (because we are interested in dominant strate-
gies equilibria) that there isn’t a strategy-proof mechanism that is "reasonable",
in a sense that every outcome can be returned and simultaneously not to be a dic-
tatorship. There are many ways to circumvent Gibbard-Satterthwaite’s [10],[26]
theorem such as the restriction of the structure of agents preferences, the design
of mechanisms where finding a manipulation is computationally hard or the use of
randomization. In this diploma thesis, we will try to circumvent this impossibility
result using randomization for different games.

23

1.3 Randomization

There exists lots of problems in mathematics and computer science, that are inef-
ficiently solvable (NP-hard), or polynomially solvable, but with large complexity.
Additionally, some algorithms are really difficult to be implemented. Thus in or-
der to deal with this fact, we turn our attention to randomization. A randomized
algorithm, is an algorithm that makes random choices, with respect to a random
number generator. Generally, randomized algorithms are simply to implement and
quicker than the deterministic ones (otherwise there wasn’t a reason for examining
them). However, their expected outcomes usually approximate the optimal out-
come in optimization problems, and have a probability error in decision problems.
In this section, we make a friendly introduction to probabilities and randomized
algorithms. Subsection 1.3.1 exists for completeness reasons. The reader should
see Motwani et al. [19], before continuing with the rest of this diploma thesis.

1.3.1 Introduction to Probabilities and Randomization

Definition 1: A real-valued random variable X on a sample space Ω is a function
X mapping the elementary events of Ω to real numbers, namely X : Ω→ R.

Since an algorithm makes random choices, we don’t have a unique outcome, thus
we take the expectation of the possible outcomes (for optimization problems). For-
mally, expectation is the following:

Definition 2: Let X be a discrete random variable and let f : R → R. Then the
expectation is denoted by:

E[f(X)] =
∑
x

Pr[X = x]f(x)

Additionally, we can define the conditional expectation, namely E[Y |Z = z] =∑
y y Pr[Y = y|Z = z].

Definition 3: Let X be a random variable with expectation µX . Then vari-
ance is denoted by σ2

X = E[(X − µX)2].

Definition 4: Let X, Y be random variables. X, Y are independent iff ∀ x, y
we have that Pr[X = x ∧ Y = y] = Pr[X = x] · Pr[Y = y].

Below, we mention some useful inequalities that are used in analyzing of the per-
formance of the randomized algorithms.

24

Theorem 1: Markov’s inequality: Let X a random variable, t > 0, the following
holds:

Pr[X ≥ t] ≤ E[X]

t

Proof:

E[X] =
∑
x

xPr[X = x]

≥
∑
x≥t

xPr[X = x]

≥
∑
x≥t

tPr[X = x]

= tPr[X ≥ t]

�

It is remarkable that Markov inequality is tight. Consider the random variable Xt

which is t if Xt ≥ t and 0 otherwise. Then E[Xt] = t · Pr[Xt ≥ t].

Theorem 2: Chebychef ’s inequality: Let X a random variable with expectation
µX and variance σ2

X , the following holds:

Pr[|X − µX | ≥ t · σX] ≤ 1

t2

Proof: Let Y = (X−µ)2. Then from Markov we have that Pr[Y ≥ t2 ·σ2
X] ≤ E[Y]

t2σ2
X

.

Equivalently, Pr[|X − µX | ≥ t · σX] ≤ 1
t2
.

�

Theorem 3: Chernoff Bounds Let X1, ..., Xn be independent random variables
with
Pr[Xi = 1] = pi and Pr[Xi = 0] = 1− pi. Then it holds that ∀ 0 ≤ ε ≤ 1:

Pr[X > (1 + ε)µX] ≤ e−ε
2µX/3 and also Pr[X < (1− ε)µX] ≤ e−ε

2µX/2

where X =
∑n

i=1Xi.

Proof: Let MX(t) = etX , t > 0. Then from Markov’s inequality we have that
Pr[MX(t) ≥ eat] ≤ E[MX(t)]

eat
. Equivalently, since X1, ..., Xn are independent, we

have that E[MX(t)] =
∏n

i=1[(1−pi) +pie
t]. Moreover, 1−pi+pie

t ≤ epi(e
t−1) since

ex ≥ x + 1. Hence, E[MX(t)] ≤ e(et−1)(
∑
i pi) = e(et−1)µX . Thus for a = (1 + ε)µX

25

we have that Pr[X ≥ (1 + ε)µX] ≤

(
e(et−1)

e(1+ε)t

)µX

. Finally, for t = ln(1 + ε) is min-

imized, and since (1 + ε) ln(1 + ε) − ε ≥ ε2/3 (it comes from simple calculus), we
have that Pr[X > (1+ε)µX] ≤ Pr[X ≥ (1+ε)µX] ≤

(
eε−(1+ε) ln(1+ε)

)µX ≤ e−µXε
2/3.

For the second inequality, we define M ′
X(t) = e−tX , t > 0. Thus similarly,

we have that Pr[X ≤ a] = Pr[M ′
X(t) ≥ e−at] ≤ e(e−t−1)µX

e−at
.we substitute a for

(1 − ε)µX , thus we have that Pr[X ≤ (1 − ε)µX] ≤

(
e(e−t−1)

e−(1−ε)t

)µX

. Similarly, for

t = − ln(1− ε) > 0 is minimized thus, since −ε− (1− ε) ln(1− ε) < −ε2/2 we have
that Pr[X < (1− ε)µX] ≤ Pr[X ≤ (1− ε)µX] ≤ e−µXε

2/2

�

The intuitive part of the theorem, is that the probability that X takes values far
from the expectation is exponentially low, that is we have a strong concentration
around the expectation.

Definition 5: Let A be a randomized algorithm and CostA(I) be A’s cost of
output (for specific choices) for input I. The expected score of A is denoted
E[CostA(I)]. The approximation ratio of a randomized mechanism is defined as
follows, namely we consider the worst-case scenario:

Definition 6: The approximation ratio of a randomized algorithm is denoted
by for maximization problems

min
I

E
[
CostA(I)

OPT (I)

]
or max

I
E
[
OPT (I)

CostA(I)

]
and for minimization problems

max
I

E
[
CostA(I)

OPT (I)

]
or min

I
E
[
OPT (I)

CostA(I)

]
Examples for this scenario can be seen in the rest of the diploma thesis and also
in subsection 1.3.2. There are also other scenarios, such as average-case where we
examine the performance of the algorithm in average-case. One common example
for this is Quicksort with random pivot. In the average case, the complexity of
Quicksort is O(n log n).

In decision problems, we usually find the probability of the algorithm to be correct
over the worst input, namely

min
I

Pr[A(I) answers correctly]

26

Usually, one of the answers "YES" or "NO" is correct with probability 1. Thus
assume that if A answers "YES" then is correct and if A answers "NO" and the
probability of error is pe < 1. Applying A a lot of times (let n) (depends on
pe, the experiments must be independent) then we can make the probability of
error very small, namely pne (negligible). A common example is Primality test, or
checking matrix multiplication. This family of randomized algorithms are called
Monte-Carlo. Additionally, there are the Las Vegas algorithms, where the output
is always correct, however the complexity of the algorithm may be unbounded (in
that case we check the expected complexity).

In order to find lower bounds with respect to approximation ratio of randomized
algorithms, a common way is to apply Yao’s Minimax Principle[1]. In words, the
cost of the best randomized algorithm over the worst deterministic input cannot
be better than the cost of the best deterministic algorithm over the worst (ran-
domized) input. If we substitute approximation ratio for the cost of the algorithm,
it follows that the approximation ratio of the best randomized algorithm cannot
be better than the approximation ratio of the best deterministic algorithm (over
the worst randomized input).

1.3.2 Examples

Example 1 - Max cut (maximization). Let G(V,E) be an undirected graph.
Find a partition of V = V1∪V2 such that the edges between V1 and V2 is maximized.
Consider the following algorithm:

Algorithm (E1)

1. For each vertex v ∈ V
2. flip a fair coin

We will prove that E1 has approximation ratio of 1
2
. Let I(V,E) be an arbitrary

input. Firstly, we have that E
[
CostE1

OPT

]
≥ E[CostE1]

|E| . Let Xe be a random vari-
able which is 1 if e is between V1, V2 and zero otherwise. Then E[CostE1] =
E[
∑

e∈E Xe] =
∑

e∈E E[Xe]. Additionally, E[Xe] = Pr[e between V1, V2] = 1
2
.

Hence E[CostE1] =
∑

e∈E
1
2

= |E|
2
, from which follows that E

[
CostE1

OPT

]
≥ 1

2
.

Example 2 - checking matrix multiplication (decision). Let A,B,C be three
n × n matrices. We want to check whether AB = C holds or not. The easy

1See appendix for statement and proof

27

deterministic way, has complexity O(n3), however we can do better using random-
ization. Consider the following algorithm:

Algorithm (E2)

1. Pick a vector from d ∈ {0, 1, ..., S}n uniformly at random
2. if AB · d = C · d output "YES?"
3. else output "NO"

The complexity if the randomized is actually O(n2) since we use associative prop-
erty to calculate AB · d = A(B · d). Obviously, if E2 outputs "NO", then E2 is
correct. We have to find the probability that E2 is wrong conditionally on out-
putting "YES". Let S = AB − C, S 6= 0 and assume Sij 6= 0. Then if E2 outputs
"YES" (thus E2 is wrong) then it holds that

dj = −
∑

t6=j dtSit

Sij
(i)

So only if E2 selects dj such that (i) holds, then it outputs wrongly. Hence
Pr[error] ≤ 1

S+1
. Thus, if we run E2 m independent times (each time E2 out-

puts "YES"), then the probability of failure is at most
(

1
S+1

)m.
Example 3 - Fingerprinting (decision). Let a = a0a1...an−1,b = b0b1...bn−1

be the numbers of Alice and Bob respectively. Alice and Bob want to check if
a = b , without transmitting all n bits of the numbers to each other. Consider the
following randomized algorithm.

Algorithm (E3)

1. Alice picks a prime p from {2, ..., T} uniformly at random
2. She sends to Bob p, ta = a mod p
3. Bob calculates tb = b mod p
4. if ta = tb output "YES?"
5. else output "NO"

Obviously, if E3 outputs "NO", then E3 outputs correctly. Our goal is to find
the probability of error, if E3 answers "YES". From the analysis, we will find the
size of the data that has to be transmitted (= O(log T)), such that the probability
of error is negligible. Let E3 outputs "YES". Then p divides |a − b|. |a − b| is
a n-bit number, thus it has at most n prime factors (each prime ≥ 2). Hence,
the probability of error is at most n

π(T)
, where π(x) is the number of primes less

than or equal to x. Hence Pr[error] ≤ n
π(T)

. Since it holds that x
lnx
≤ π(x),

∀x ≥ 17, we have that Pr[error] ≤ n

π(T)
≤ n lnT

T
. Thus for T = cn lnn, we

28

have that Pr[error] ≤ 1
c

+ o(1) and the number of bits transmitted is at most
log T = O(log n).

1.4 Purpose of thesis

The purpose of this thesis is to deal with problems of mechanism design, using ran-
domization as a solution concept. In chapter 2, we examine how randomization
behaves in voting rules, a very important subfield of social choice theory. We con-
sider different voting rules, and try to approximate the optimal score of the winner
alternative. Randomization actually is the key to achieve strategy-proof mecha-
nisms. Moreover, in chapter 3, we make a friendly introduction to Differential
privacy which is actually a family of randomized algorithms that has additionally
a parameter ε that affects the expected cost of the algorithm and its complex-
ity. Differential privacy mechanisms satisfy the constraint that few changes in
the (private) data also cause small changes at the probability distribution of the
outcome of the algorithm. This idea is important to achieve approximate truthful-
ness because deviating causes small changes in the utility function of each agent
too. Finally, we examine applications of differential privacy to combinatorial opti-
mization problems in order to understand in practice how actually works and the
intuitive part of it.

29

30

Chapter 2

Randomization in voting

2.1 Introduction

The Gibbard-Satterthwaite [10],[26] theorem makes it impossible to have a "rea-
sonable" and also strategy-proof voting. Bartholdi et al. [3], Conitzer & Sandholm
[7], Hemaspaandra & Hemaspaandra [14] showed that manipulation is computa-
tionally hard for a variety of voting rules. However, this approach happens in
the worst-case scenario, but most of the times, the prominent voting rules are
usually easy to manipulate. Thus, in this chapter, we try to circumvent Gibbard-
Satterthwaite theorem using randomization, with respect to score-based voting
rules. Even though a strategy-proof randomized voting is a combination of non-
"reasonable" deterministic strategy-proof mechanisms [11], the existence of ran-
domization makes the situation more fair. More precisely, we examine randomized
mechanisms that choose an alternative whose expected score is an approximation
of the optimal score, namely the score of the alternative who should win [25]. Fi-
nally, we will examine another special case (problem) of approval voting and try
to approximate the optimal solution using randomization.

2.2 Introduction to Voting Setting

In this chapter, we examine the traditional social choice point of view, namely
voting. We assume that we have a set of agents(voters) that want to elect a
winner from a set of alternatives(candidates). Our goal is to elect the most de-
sirable alternative (based on some criteria). Formally, we have the following model:

31

Let N be the set of agents and A the set of alternatives where |N | = n and
|A| = m respectively. Each agent has a preference ≺i, which is a line order over
the alternatives (let L the set of line orders over the A). A voting rule, is a function
f : Ln → A, namely a social choice function.

There are various voting systems some of which are examined in sections be-
low. There are voting systems such that the number of voters is far larger than
the number of alternatives (political election case). Additionally, there are voting
systems that the previous case is reversed (web search framework). Another case,
is that there maybe weights on the voters, namely some agents’ preferences affect
the outcome more than others.

Some of the most common voting rules are Plurality, Borda, Veto, Condorcet,
Dodgson, Copeland.

In Condorcet rule, the winner must satisfy the condorcet criterion, namely a win-
ner of an election is the one who would beat all other alternatives in head-to-head
elections (more than half of the agents must prefer the winner to every other alter-
native). However, consider the following instance, known as condorcet’s paradox:
Let v1, v2, v3 be 3 agents and a, b, c be 3 alternatives. We have the following pref-
erence profiles: v1 : c ≺ b ≺ a, v2 : a ≺ c ≺ b and v3 : b ≺ a ≺ c. b ≺ a
since v1, v3 prefer a to b. For similar reasons c ≺ b and a ≺ b. However this is
inconsistent. Notice that for every winner, at least half of the agents would prefer
another alternative and they would want to change the outcome.

Another example is Dodgson’s rule, the winner alternative pf which (let a) is the
one with the minimum score, where a’s equals to the smallest number of sequen-
tial exchanges in the voters’ preference lists that suffices to make a, a Condorcet
winner. Observe that the rules described above and also the ones that will be seen
in next section, satisfy pareto optimality, namely if ∀i ∈ N , we have that b ≺i a
then b can’t be a winner.

Unfortunately, recalling Gibbard’s-Satterthwaite theorem, we can’t have a strategy-
proof f such that f is not a dictatorship and also for every candidate i, there is
a profile preference vector that f chooses i to be the winner, namely we can’t
have a strategy-proof and also reasonable voting rule. We will turn our attention
to vector - positional scoring rules and also approval voting rules, because using
randomization, we can choose an alternative that approximates the optimal score
of the alternative that should be the winner.

32

2.3 Vector - Positional Scoring Rules

2.3.1 Definitions

For this chapter, we assume that that the voting rules are randomized, that is
f : Ln → ∆(A), where ∆(A) is a probability distribution over the set of alter-
natives A. In words, f chooses alternative i with probability pi, according to a
probability distribution P .

Definition 1: Vector - Positional scoring: Given a m-dimensional vector a =
[a1, ..., am] of non-negative and non-decreasing coordinates and the preference pro-
file of the agents (let ≺), the score of alternative x is denoted by

scr(x,≺) =
n∑
j=1

a≺j(x)

where ≺j (x) = k iff x is the k-th most preferable alternative for agent j.

Below we mention some well-known scoring rules:

• Plurality: is defined by the vector a = [1, 0, ..., 0].

• Borda: is defined by the vector a = [m− 1,m− 2, ..., 0].

• Veto: is defined by the vector a = [1, 1, ..., 1, 0].

For example, assume we have 4 agents and 3 alternatives, and let the preference
profiles of the agents be (≺1,≺2,≺3,≺4) = ({1, 3, 2}, {1, 2, 3}, {2, 1, 3}, {3, 2, 1}).
Thus for plurality rule, we have that scr(1) = 2, scr(2) = 1, scr(3) = 1, for
Borda rule we have that scr(1) = 5, scr(2) = 4, scr(3) = 3 and for Veto rule
scr(1) = 3, scr(2) = 3, scr(3) = 2.

Additionally, each agent i comes with a utility function ui : A → R that shows
how preferable is every alternative for i. In order to make sense, we have to assume
that function ui "agrees" with ≺i that is y ≺i x⇒ a≺i(y) ≥ a≺i(x) ⇒ ui(y) ≥ ui(x).

Our goal is to find strategy-proof mechanisms that choose an alternative, whose
expected positional score is close to optimal, namely maxx∈A scr(x,≺). Consider
the following rather easy algorithm:

Choose alternative x uniformly at random

33

Hence, we choose x with probability 1
m
. For plurality, since

∑
i∈A scr(i) = n,

then the E[scr(x)] = n
m
. However, maxx∈A scr(x) = n (every agent has x as her

first preference), thus we have 1
m

approximation ratio. It is remarkable that the
mechanism above is trivially strategy-proof.

2.3.2 General strategy-proof Mechanism

In this section, we describe a general randomized strategy-proof mechanism and
find the approximation ratio with respect to Plurality, Borda and Veto. Consider
the following algorithm, as it can be seen in Procaccia [25]:

General Mechanism 1 (GM1)

1. Pick agent i uniformly at random
2. Choose alternative x with probability proportional to a≺i(x)

The algorithm works as follows. At first step we choose an agent (let i) with
probability p = 1

n
and then we choose an alternative x with probability p′ =

a≺i(x)∑
y∈A a≺i(y)

. It is rather straightforward to prove that GM1 is truthful.

Theorem 1: GM1 is strategy-proof.

Proof: Let i be an agent that is not selected. Then agent i can’t increase her
utility by deviating, because she doesn’t affect the outcome of the voting, thus she
can’t manipulate. Suppose i is the selected agent. Then her expected utility is
equal to (conditionally on choosing i)

E[ui] =
∑
x∈A

ui(x) · a≺i(x)∑
y∈A a≺i(y)

=
1∑m
j=1 aj

∑
x∈A

ui(x) · a≺i(x)

Thus using Rearrangement inequality[2], we have that the expected utility is max-
imized. Thus, if i deviates, her expected utility will decrease or stay the same.
Hence, GM1 is strategy-proof.

�

Observe that we have made no assumptions for the vector a, that is GM1 is truth-
ful for every positional scoring rule. Below we analyze the expected score of the
outcome of GM1, without making any assumption for vector a too.

2See appendix for the statement and the proof of Rearrangement inequality

34

Theorem 2: EGM1[scr(x,≺)] ≥ Ω
(

1√
m

)
·OPT , where OPT is the largest score.

Proof: Thus we want to calculate EGM1[scr(x,≺)] =
∑

y∈A Pr[GM1 chooses y] ·
scr(y,≺) (definition). Additionally,

Pr[GM1 chooses y] =
1

n

n∑
j=1

a≺j(y)∑
x∈A a≺j(x)

=
1

SUM

n∑
j=1

a≺j(y)

=
scr(y,≺)∑
x∈A scr(x,≺)

where SUM = n
∑m

i=1 ai. Hence EGM1[scr(x,≺)] =
1

SUM

∑
y∈A

(scr(y,≺))2. Equiv-

alently, assuming a is the alternative that has the largest score then
EGM1[scr(x,≺)] = OPT 2

SUM
+ 1

SUM

∑
y∈A\{a} (scr(y,≺))2. Using BCS inequality[3], it

occurs that EGM1[scr(x,≺)] ≥ OPT 2

SUM
+ 1

SUM
(SUM−OPT)2

m−1
. Finally, taking the deriva-

tive of the function f(x) = x
SUM

+ 1
SUM

(SUM−x)2

x(m−1)
, it follows that it takes the mini-

mum when x = SUM√
m

, and we conclude that EGM1[scr(x,≺)] ≥ OPT · f(SUM√
m

) =

OPT ·
(

1√
m

+
√
m(1− 1√

m
)2

m−1

)
= OPT · Ω

(
1√
m

)
.

�

It is remarkable to mention that OPT = SUM√
m

may not be a feasible equation (it
depends on the rule) as we will see in the next section. However, since f (of the

proof) is convex, we manage to have approximation ratio
(
E[scr(x,≺)]

OPT

)
of at

least Ω

(
1√
m

)
. In next sections, we consider each scoring rule separately and

prove bounds for the approximation factor.

2.3.3 Upper and Lower Bounds

First of all we examine the upper bounds of the fraction
OPT

EGM1[scr(x,≺)]
(approx-

imation ratio). We consider the following cases for vector a.
3See appendix for the statement and the proof of BCS inequality

35

1. Let a = [1, 0, ..., 0], namely we examine Plurality rule. Using Theorem 2 from
section 2.3.2 and observing the fact that OPT = SUM√

m
= n√

m
is a feasible

equation we have that we can approximate the OPT using GM1 to a factor
c ≥ Ω(1√

m
).

2. Let a = [m−1,m−2, ..., 1, 0], namely we examine Borda rule. Since SUM =
nm(m−1)

2
and OPT ≤ n(m − 1) we have that OPT

SUM
≤ 2

m
. Since function

f from Theorem 2 of section 2.2.2 is convex and 2SUM
m

is less than SUM√
m

,
we have that the minimum is taken when OPT = 2SUM

m
(the equation is

feasible from the previous claim) and hence we can approximate OPT to
a factor c ≥ f

(
2SUM
m

)
≥ 1

2
+ 1

2m
= 1

2
+ Ω(1

m
). We should mention that the

approximation ratio being 1
2
with respect to Borda is an easy fact, just choose

an alternative at random. Then obviously the expected score is n(m−1)
2
≥ OPT

2
.

3. Let a = [1, 1, ..., 1, 0], namely we examine Veto rule. Similarly as in previous
cases, since SUM = n(m−1) and OPT ≤ n, we have that OPT

SUM
≤ 1

m−1
. Since

f is convex and SUM
m−1

is less than SUM√
m

we conclude that the approximation
factor c ≥ f

(
SUM
m−1

)
≥ 1− 1

m−1
= 1−O

(
1
m

)
.

As you can imagine, proving lower bounds generally for the scoring rules above is
far more difficult. To proceed with the proofs for lower bounds, we firstly have to
mention some helpful definitions and a theorem proved by Gibbard [11] (the weak
version of the theorem), we are going to use.

Definition 1: Duple. A voting rule f is duple if its range is at most two, that is
there are x, y ∈ A such that ∀ ≺∈ Ln, we have that f(≺) = {x, y}.

Theorem 1: (Gibbard 1977) Every strategy-proof voting rule is a probability
mixture of rules each of which is either dictatorship or duple.

In words, for every strategy-proof mechanism f , there are f1, ..., fk rules, each
of which is dictatorship or duple and a1, ..., ak with

∑k
i=1 ai = 1 such that for

every preference profile ≺ it follows that Pr[f(≺) = fj(≺)] = aj.

Using now Theorem 1, we can find a lower bound of strategy-proof mechanisms
with respect to Plurality and Borda.

Theorem 2: There is no strategy-proof mechanism that achieves an approxi-
mation ratio of ω

(
1√
m

)
with respect to Plurality.

Proof: Assume n = m = k2 and let f be a strategy-proof randomized mech-
anism. We will create a preference profile ≺ such that the approximation of f

36

is less than O
(

1
k

)
= O

(
1√
m

)
. Let p be the probability f is duple (thus 1 − p

is the probability f is a dictatorship) (Gibbard). Assume f is a duple and let
D1, .., Dg be the sets of two alternatives that the duples f1, ..., fg (the aggre-
gate of them creates f when it is duple) return respectively. Then we define
qx =

∑g
i=1 Pr[x ∈ Di|f is duple fi] · Pr[f is duple fi], that is qx is the probability

x is elected conditionally on f is duple. Apparently,∑
y∈A

qy =

g∑
i=1

∑
y∈A

Pr[y ∈ Di|f is duple fi] · Pr[f is duple fi]

=

g∑
i=1

2 Pr[f is duple fi] = 2

Hence there is a set of m
k

= k alternatives, let A′ such that
∑

y∈A′ qy ≤
2
k
. Thus

the probability x is elected and x ∈ A′ by union bound is less than or equal to∑
y∈A qy ≤

2
k
(i).

Assume now that f is a dictatorship. Then there is a set N ′ ⊂ N with k agents
such that the probability an agent x ∈ N ′ is a dictator is less than or equal to

1
n/k

= 1
k
(ii). We construct a preference ≺ profile as follows: Each alternative

in A\A′ is ranked first by exactly one agent of N\N ′ (the other alternatives are
placed arbitrarily). Additionally, since |A′| = k, it follows that there is a x∗ ∈ A′
such that

Pr[f(≺) = x∗|f dictatorship over N\N ′] ≤ 1

k
(iii)

So, we complete ≺ in a way that every agent ∈ N ′ ranks x∗ first and the other
alternatives arbitrarily. Hence from (ii) and (iii) it follows that

Pr[f(≺) = x∗|f dictatorship] = Pr[f(≺) = x∗|f dictatorship over N ′]
· Pr[f dictatorship over N ′|f dictatorship]

+ Pr[f(≺) = x∗|f dictatorship over N\N ′]
· Pr[f dictatorship over N\N ′|f dictatorship]

≤ 1

k
+

1

k
=

2

k
(iv)

Finally from (i),(iv) it occurs that

Pr[f(≺) = x∗] = Pr[f(≺) = x∗|f dictatorship] · Pr[f dictatorship]

+ Pr[f(≺) = x∗|f duple] · Pr[f duple]

≤ (1− p)2

k
+ p

2

k
=

2

k

37

Thus E[scr(x,≺)] ≤ k
2

k
+

(
1− 2

k

)
· 1 < 3 and OPT = k. So we conclude that

the approximation ratio is ≤ 3

k
= O

(
1√
m

)
.

�

It is remarkable to mention that GM1 has a tight approximation ratio with respect

to Plurality (is Θ
(

1√
m

)
).

Theorem 3: There is no strategy-proof mechanism that achieves an approxi-
mation ratio of 1

2
+ ω

(
1√
m

)
with respect to Borda.

Proof: Assume f an arbitrary strategy-proof voting rule. Then f is a proba-
bility mixture of rules each of which is either dictatorship or duple (Theorem 1),
let f1, ..., fk. We will apply Yao’s minimax principle [31][4], with A = {f1, ..., fk}

and I = Ln and k =
scr(f(≺),≺)

maxx∈A scr(x,≺)
(maximization case), hence the expected

score of f (in worst-case) is less or equal to the expected score of the best determin-
istic (dictatorship or duple) mechanism over a specific distribution of preference
profiles. We will consider "difficult" inputs such that the expected score of every
deterministic rule is upper bounded by 1

2
+ O

(
1√
m

)
and the theorem will hold.

Consider the following distribution over the profiles:

Let n = m − 1, assume w.l.og that
√
m ∈ N and consider the following pro-

cedure which produces a probability distribution over Ln:

1. Choose (fix) x∗ uniformly at random (with probability 1
m
).

2. For each agent i, choose ki uniformly at random from {1, 2, ...,
√
m}. Agent i

ranks x∗ in position ki.

3. Choose a permutation of {1, ...,m− 1} uniformly at random, let π.

4. Let A′ = A\{x∗} = {x1, ..., xm−1}. The preference profile of agent 1, is the
permutation π with inserting in index k1, the alternative x∗. For each agent
j ≥ 2, x∗ is inserted in kj position and the other m−1 are inserted in a cyclic
way (counter clock-wise with respect to agent j − 1).

Firstly, observe that (m − 1)2 = (m − 1)n ≥ scr(x∗,≺) ≥ (m −
√
m)n =

(m −
√
m)(m − 1) since x∗ is ranked in the first

√
m positions for every agent

and also scr(y,≺) ≤
(
m
2

)
for every y ∈ A′ (y is ranked in position j at most once).

We consider now two cases. The first case is that the best deterministic rule is
4See appendix for statement and proof of Yao’s minimax principle

38

duple (let g). Then the probability x∗ is chosen is at most m−1

(m2)
= 2

m
from which

follows that:

E
[

scr(g(≺),≺)

maxx∈A scr(x,≺)

]
≤ E

[
scr(g(≺),≺)

scr(x∗,≺)

]
≤

2
m

(m− 1)2 +
(
1− 2

m

)
·
(
m
2

)
(m− 1)(m−

√
m)

=
1

2
+O

(
1

m

)
The second case is that the best deterministic rule is dictatorship (let g) and i be
the dictator. Then we have that for every y ∈ A in the first

√
m positions, Pr[y =

x∗] = 1√
m

(x∗ can be in any position of the first
√
m with the same probability),

hence Pr[g(≺) = x∗] = 1√
m
, if g(≺) belongs to the first

√
m positions. Additionally,

if g(≺) doesn’t belong to the first
√
m positions, then Pr[g(≺) = x∗] = 0. Thus

Pr[g(≺) = x∗] ≤ 1√
m
. Furthermore,

E
[

scr(g(≺),≺)

maxx∈A scr(x,≺)

]
≤ E

[
scr(g(≺),≺)

scr(x∗,≺)

]

≤
1√
m

(m− 1)2 +
(

1− 1√
m

)
·
(
m
2

)
(m− 1)(m−

√
m)

=
1

2
+O

(
1√
m

)
�

It is remarkable that in case of Borda, there is a gap since GM1 manages to have
approximation ratio of at least 1

2
+Ω

(
1
m

)
and there is no strategy-proof mechanism

that can have approximation ratio of 1
2

+ ω
(

1√
m

)
.

2.4 Other scored-based Voting Rules

In this section, we examine scored-based voting rules that the score of an alterna-
tive doesn’t depend on a specific vector, but depends only on his relative position.
We will examine Copeland, Maximin rules.

39

2.4.1 Copeland - Maximin

Let P (x, y) = |i ∈ N : y ≺i x|, that is the number of agents such that x is preferred
to y. Copelanda rule’s score for alternative x is denoted by

scr(x,≺) = |{y ∈ A\{x}} : P (x, y) > n/2|+ a · |{y ∈ A\{x}} : P (x, y) = n/2|

where a ∈ [0, 1].

Additionally, Maximin rule’s score for alternative x is denoted by

scr(x,≺) = min
y∈A\{x}

P (x, y)

For this special case of scored-based voting rules, we will describe another strategy-
proof mechanism that achieves 1

2
+ Ω

(
1
m

)
approximation ratio with respect to

Copeland1/2. Consider the following rather easy randomized mechanism.

General Mechanism 2 (GM2)

1. Pick two alternatives x, y uniformly at random
2. if P (x, y) > n/2 then the winner is x
3. else if P (y, x) > n/2 then the winner is y
4. else toss a fair coin.

Theorem 1: GM2 is strategy-proof w.r.t Copeland and Maximin.

Proof: Assume that x, y are the chosen alternatives. Then let Nx be the agents
that prefer "more" x than y. Obviously, we are interested in the relative position
of x, y and not the rank of them, thus w.l.o.g we restrict the preference profile to
A′ = {x, y}, namely we ignore all the other alternatives. If i ∈ Nx, that is she
ranks x before y, if she changes her profile and ranks y before x, she will decrease
or leave the same her utility function (as ui(x) ≥ ui(y)), because then she increases
the chances of y to be the winner. Hence, for every agent i, every pair of alterna-
tives must remain their relative position. Formally, assuming i’s true preference
profile is ≺i= {x1, ...xm}, then reporting ≺′i, it must hold that xk ≺′i xl for every
k, l ∈ {1, 2, ...,m} with l < k, thus ≺′i=≺i.

�

Theorem 2: GM2 gives 1
2
+Ω

(
1
m

)
approximation ratio with respect to Copeland1/2

Proof: First of all, we will prove by induction on m that
∑

y∈A scr(y,≺) =
(
m
2

)
.

Since P (x, y) + P (y, x) = n, then the pair (x, y) gives one to the total sum (this

40

is rather straightforward if we consider cases if P (x, y) = P (y, x) or not). Thus
since we have

(
m
2

)
pairs, then SUM =

∑
y∈A scr(y,≺) =

(
m
2

)
. Hence, the proba-

bility of selecting alternative x is
1(
m
2

)
 ∑
y∈A\{x}:P (x,y)>n/2

+
1

2

∑
y∈A\{x}:P (x,y)=n/2

 =

scr(x,≺)∑
y∈A scr(y,≺)

. Thus, observing the fact that OPT ≤ m − 1 and SUM =
(
m
2

)
we have that OPT

SUM
≤ 2

m
. Since function f from Theorem 2 of section 2.2.2 is

convex and OPT = 2SUM
m

is less than SUM√
m

, the approximation ratio is at least
f(2SUM

m
) ≥ 1

2
+ 1

2m
= 1

2
+ Ω

(
1
m

)
.

�

Theorem 3: GM2 gives Ω
(

1
nm2

)
approximation ratio with respect to Maximin

Proof: As previously, the probability alternative x is chosen is

1(
m
2

)
 ∑
y∈A:P (x,y)>n/2

+
1

2

∑
y∈A:P (x,y)=n/2

, thus the expected score of GM2 is

1(
m
2

)∑
x∈A

 ∑
y∈A:P (x,y)>n/2

+
1

2

∑
y∈A:P (x,y)=n/2

 · scr(x,≺). First of all, we have that

OPT ≤ n − 1. We will prove that ∃x ∈ A such that the probability x is chosen
is larger or equal to 1/2

(m2)
and also scr(x,≺) ≥ 1. Observe that we have

(
m
2

)
n pair-

wise "battles" between alternatives. Thus there is an alternative y such that he

wins at least (m2)n
m

= n(m − 1)/2 times. Thus there is an alternative z such that
P (y, z) ≥ n(m−1)/2

m−1
= n/2. If scr(y,≺) ≥ 1, then we are done. Else there is an

alternative y′ such that P (y, y′) = 0, or equivalently P (y′, y) = n. If scr(y′,≺) ≥ 1
we are done (since y′ is in front of y). Else we do the same procedure until we find
an alternative w such that scr(w,≺) ≥ 1 (obviously we can’t have zero score for
every alternative).

Thus the expected score is larger or equal to 1

2(m2)
and hence the approximation

ratio is at least Ω
(

1
nm2

)
.

�

Observe that this bound depends also on the number of agents n, thus there is no
constant c(m) such that the approximation ratio is larger than c(m). We believe
that we can achieve better bound for GM2 because the analysis is not tight.

41

2.4.2 Lower Bounds for Copelan-Maximin

In this section we examine how tight is the approximation ratio we found for
Copeland1/2 and Maximin using GM2 mechanism. Namely, we describe theorems
about the upper bound of any strategy-proof randomized mechanism with respect
to Copeland1/2 and Maximin. Both proofs depend on the weak version of theorem
of Gibbard [11].

Theorem 1: There is no strategy-proof randomized voting rule that can ap-
proximate Copeland1/2 to a factor of 1

2
+ ω

(
1
m

)
Proof: Assume n = m! + m − 1 and let f be a strategy-proof randomized mech-
anism. We will create a preference profile ≺ such that the approximation of f
is less than 1/2 + O

(
1
m

)
. Let p be the probability f is duple (thus 1 − p is

the probability f is a dictatorship). Assume f is a duple and let D1, .., Dg be
the sets of two alternatives that the duples f1, ..., fg (the aggregate of them cre-
ates f when it is duple) return respectively. Then we define qx =

∑g
i=1 Pr[x ∈

Di|f is duple fi] · Pr[f is duple fi], that is qx is the probability x is elected condi-
tionally on f is duple. Apparently,∑

y∈A

qy =

g∑
i=1

∑
y∈A

Pr[y ∈ Di|f is duple fi] · Pr[f is duple fi]

=

g∑
i=1

2 Pr[f is duple fi] = 2

Hence there is a set of m/2 alternatives, let A′ such that each alternative y ∈ A′
has the property that qy ≤ 4

m
(i).

Assume now that f is a dictatorship. Then there is a set N ′ with m − 1 agents
such that the probability an agent x ∈ N ′ is a dictator is less than or equal
to 1

n/(m−1)
= m−1

m!+m−1
(ii). We construct a preference ≺ profile as follows: Each

agent’s preference profile in N\N ′ is a permutation of {1, 2, ...,m} (notice that
N\N ′ = m!) Additionally, since |A′| = m/2, it follows that there is a x∗ ∈ A′ such
that

Pr[f(≺) = x∗|f dictatorship over N\N ′] ≤ 2

m
(iii)

So, we complete ≺ in a way that every agent ∈ N ′ ranks x∗ first and the other
alternatives cyclically. Hence from (ii) and (iii) it follows that:

42

Pr[f(≺) = x∗|f dictatorship] = Pr[f(≺) = x∗|f dictatorship over N ′]
· Pr[f dictatorship over N ′|f dictatorship]

+ Pr[f(≺) = x∗|f dictatorship over N\N ′]
· Pr[f dictatorship over N\N ′|f dictatorship]

≤ m− 1

m! +m− 1
+

2

m
≤ 4

m
(iv)

Finally from (i),(iv) it occurs that

Pr[f(≺) = x∗] = Pr[f(≺) = x∗|f dictatorship] · Pr[f dictatorship]

+ Pr[f(≺) = x∗|f duple] · Pr[f duple]

≤ (1− p) 4

m
+ p

4

m
=

4

m

Now observe that the score of x∗ is m−1 since it P (x∗, y) = m!
2

+m−1 > n/2 and
all the other alternatives are tied, thus scr(y,≺) = 1

2
· (m−2), ∀y ∈ A\{x∗}. Thus

E[scr(x,≺)] ≤ (m− 1)
4

m
+

1

2
· (m− 2)

(
1− 4

m

)
· < 1

2
m+ 4 and OPT = m− 1.

So we conclude that the approximation ratio is ≤
1
2
m+ 4

m− 1
=

1

2
+O

(
1

m

)
.

�

It is remarkable to mention that GM2 has a tight approximation ratio with respect
to Copelan1/2 (is 1

2
+ Θ

(
1
m

)
). Additionally, observe that the proof is similar to the

one of Plurality.

Theorem 2: There is no strategy-proof randomized voting rule that can ap-
proximate Maximin to a factor of ω

(
1
m

)
Proof: Assume f an arbitrary strategy-proof voting rule. Then f is a proba-
bility mixture of rules each of which is either dictatorship or duple (Gibbard),
let f1, ..., fk. We will apply Yao’s minimax principle[5], with A = {f1, ..., fk} and

I = Ln and k =
scr(f(≺),≺)

maxx∈A scr(x,≺)
(maximization case), hence the expected score

of f (in worst-case) is less or equal to the expected score of the best determin-
istic (dictatorship or duple) mechanism over a specific distribution of preference
profiles. We will consider "difficult" inputs such that the expected score of every
deterministic rule is upper bounded by O

(
1
m

)
and the theorem will hold. Consider

the following distribution over the profiles:
5See appendix for statement and proof of Yao’s minimax principle

43

Let n = m − 1, assume w.l.og that m is even and consider the following pro-
cedure which produces a probability distribution over Ln:

1. Choose (fix) x∗ uniformly at random (with probability 1
m
).

2. For each agent i, choose ki uniformly at random from {1, 2, ...,m/2}. Agent
i ranks x∗ in position ki.

3. Choose a permutation of {1, ...,m− 1} uniformly at random, let π.

4. Let A′ = A\{x∗} = {x1, ..., xm−1}. The preference profile of agent 1, is the
permutation π with inserting in index k1, the alternative x∗. For each agent
j ≥ 2, x∗ is inserted in kj position and the other m−1 are inserted in a cyclic
way (counter clock-wise with respect to agent j − 1).

Firstly, observe that scr(x∗,≺) ≥ m/2 since each alternative y 6= x∗ is ranked
below m/2 position for m/2 times. Additionally, scr(y,≺) = 1 since for every
y 6= x∗, there is y′ 6= x∗ who is ranked before y for n− 1 times. We consider now
two cases. The first case is that the best deterministic rule is duple (let g). Then
the probability x∗ is chosen is at most m−1

(m2)
= 2

m
from which follows that

E
[

scr(g(≺),≺)

maxx∈A scr(x,≺)

]
≤ E

[
scr(g(≺),≺)

scr(x∗,≺)

]
≤

2
m

(m− 1) + 1 ·
(
1− 2

m

)
m/2

<
6

m

= O

(
1

m

)
The second case is that the best deterministic rule is dictatorship (let g) and i
be the dictator. Then we have that for every y ∈ A in the first m/2 positions,
Pr[y = x∗] = 1

m/2
(x∗ can be in any position of the first m/2 with the same

probability), hence Pr[g(≺) = x∗] = 1
m/2

, if g(≺) belongs to the firstm/2 positions.
Additionally, if g(≺) doesn’t belong to the first m/2 positions, then Pr[g(≺) =
x∗] = 0. Thus Pr[g(≺) = x∗] ≤ 1

m/2
. Furthermore,

E
[

scr(g(≺),≺)

maxx∈A scr(x,≺)

]
≤ E

[
scr(g(≺),≺)

scr(x∗,≺)

]

≤
1

m/2
(m− 1) + 1 ·

(
1− 1

m/2

)
m/2

<
6

m
= O

(
1

m

)
�

44

Thus, there is a gap between the approximation ratio of GM2 and Theorem 2,
with respect to Maximin.

2.5 Special case for Approval Voting

Approval voting [4],[16], is a subfield of social choice theory, where each agent’s i
preference profile, is a subset of alternatives that i approves and that set hasn’t a
specific size (consider a generalization of Veto rule, with variant number of ones).
In this section, we consider that set N and A, namely agents(voters) and alter-
natives respectively, coincide and that we can have multiple winners (alternatives
that are selected). This problem is rather common, and has its applications in
social networks. The goal of this section is to describe strategy-proof randomized
mechanism that selects k < n agents who are the winners, work that can be seen
in Alon et al [1].

2.5.1 Model

Let N = {1, ..., n} be the set of agents, which coincides with set A, the set of
alternatives, that is N = A. Each agent i comes with an approval profile ai ⊂ N ,
that is a set of agents that i approves. Assume di is the number of agents that
"like" agent i. Our goal is for a given k < n (if k = n we select them all), to select
a set S ⊂ N , with |S| = k such that

∑
i∈S di is maximized. It is remarkable that

the "approval" relation is not symmetric. Additionally, each agent wants to be
selected, thus agent i has the property that ui = 1 if i ∈ S and ui = 0 otherwise.
From the definition of the model, we can represent an instance of the problem,
with a directed graph G(V,E) where V = N and (i, j) ∈ E iff j ∈ ai, namely i
"likes" j. The rather strange fact is that even for k = 1, there is no deterministic
strategy-proof mechanism f that can approximate OPT (maxS⊂N,|S|=k

∑
i∈S di) to

a factor c > 0 (we assume c =
Costf
OPT

). See section 2.4.2 for a proof.

2.5.2 Deterministic approach doesn’t work

As we mentioned above, we have made restrictions to the preference profile of the
agents and also we have assumed that each agent is interested in being selected,
namely only for himself. Thus, it is an obvious idea to think that we can cir-
cumvent the impossibility result of Gibbard-Satterthwaite [10],[26]. However the
theorem, below shows that we can’t have deterministic strategy-proof mechanism

45

that has a good approximation with respect to the selection problem we discuss in
this section. Formally, there is no (deterministic) strategy-proof function f that
has a non-trivial, that is > 0, approximation ratio with respect to the optimal
outcome. The fraction we deal with is Costf

OPT
.

Theorem 1: Let N = {1, ..., n}, n ≥ 2, and k ∈ {1, ..., n − 1}. Then there
is no deterministic strategy-proof k-selection mechanism that gives non-zero ap-
proximation ratio.

Proof: Assume the contrary and let f be a function that gives > 0 approximation
ratio. Let G∗ be the empty graph of N vertices. Obviously, since k < n, there
is an agent i such that i /∈ f(G∗) (w.l.o.g assume i = n). We restrict function f
to star graphs, where the only vertex with incoming edges is n (the vertex that
doesn’t belong to f(G∗)). See the figure below.

Star graph, with n the centered vertex

This kind of graphs, can be represented with a (n − 1)-vector x = (x1, ..., xn−1),
where xi ∈ {0, 1} (xi = 1 iff i approves n). Assume x 6= 0. Since f has approxi-
mation ratio > 0 and the only vertex with incoming edges is n, then n ∈ f(x) (i)
(we restricted f ’s domain). Additionally, since f is a strategy-proof mechanism,
then i ∈ f(x) iff i ∈ f(x′) where x = (x1, ..., xn−1) and x′ = (x1, ..., xi−1, (xi + 1)
mod 2, xi+1, ..., xn−1) (because agent i then could increase her utility (being se-
lected) by deviating, namely changing her opinion about n). Hence, by parti-
tioning the vectors x into two sets, depending on the xi mod , we conclude that
|x : i ∈ f(x)| is an even number ∀i 6= n (ii).

By Fubini’s principle, we count with two ways the aggregate number of selections
of agents for every graph of the form of the star, and must be equal. Obviously,
the number of graphs is 2n−1 and since we select k agents for each graph, we have
that the number of selections of agents is k2n−1, which is even. Moreover, from (ii)
the number of selections of each agent i 6= n is even and the number of selections
of n is 2n−1 − 1 which is odd. Thus the aggregate number of selections of agents
is odd. Contradiction.

�

Thus, we must turn our attention to randomization, in order to approximate the
selection problem.

46

2.5.3 Randomized approach

Alon et al [1] described an algorithm, based on partitioning, calledm-RP (Random
Partition) with parameter m, which gives 1/4 approximation in case m = 2 and
1/dk1/3e for m > 2 and can be seen below.

m-RP Algorithm

1. Assign each agent independently and uniformly at random to one set of S1, ..., Sm

2. Let T ⊂ {1, ...,m} be a random subset of size k −m · bk/mc.

3. If t ∈ T , select the dk/me agents from St with highest indegrees based only on
edges from N\St. If t /∈ T , select the bk/mc agents from St with highest indegrees
based only on edges from N\St. Break ties lexicographically in both cases.
If one of the subsets St is smaller than the number of agents to be selected
from this subset, select the entire subset.

4. If only k′ < k agents were selected in Step 3, select k − k′ additional agents uniformly
from the set of agents that were not previously selected.

The algorithm works as follows. It separates the set of agents intom sets uniformly
at random and then chooses the k/m with the highest indegree agents from each
set Si (without calculating the edges with endpoints in Si, which is the main idea
of giving truthfulness)(ties are broken lexicographically). Since (k mod m) may
not be zero, we have also step 2, to insure that in the end we select exactly k
agents. Additionally, in case step 3 selects less than k agents (let k′), we fill with
other k − k′ uniformly. We claim that m-RP is strategy-proof and has non-trivial
approximation ratio.

Theorem 1: m-RP is strategy-proof.

Proof: Assume an arbitrary agent i, that is assigned in set Sj. Then, the out-
coming edges of i to the agents of the set N\Sj don’t affect the selection of i, thus
i doesn’t increase the probability of being selected by misreporting these edges.
Additionally, the selection of i depends on the outcoming edges of the agents of
the set N\Sj to set Sj, thus i doesn’t increase the probability of being selected by
misreporting the edges that have the other endpoint also in Sj.

�

47

The Theorem below shows that 2-RP gives an expected output of OPT/4. The
main idea of the proof lies in a well-known theorem which says that for a given
graph G(V,E) and a random bipartition of G, the expected number of edges from
the one partitioned set to the other is |E|

2
.

Theorem 2: 2-RP gives 1/4 approximation ratio.

Proof: Let G(N,E) be the graph that represents the relation between the agents,
K∗ be an optimal set of agents, that is OPT =

∑
i∈K∗ di (maximum) and K∗1 ,K∗2 is

the partition (let π) ofK∗ such thatK∗1 ⊂ S1,K∗2 ⊂ S2. Assume w.l.o.g |K∗1 | ≥ |K∗2 |
and let d1(π) = |(i, j) ∈ E : i ∈ S2, j ∈ K∗1 |, d2(π) = |(i, j) ∈ E : i ∈ S1, j ∈ K∗2 |,
namely the edges from S2 to K∗1 and from S1 to K∗2 respectively. Since |K∗2 | ≤
bk/2c (assumption), the selection of the mechanism ensures that at the selected
agents from S2 have at least d2(π) incoming edges. Additionally, assuming k is
odd (for the case k is even T = ∅ and the inequality below still holds) we have
that the selection of the mechanism ensures that the selected agents from S1 have
at least incoming edges dk/2e

k
· d1(π) if T = {1} and bk/2c

k
· d1(π) otherwise. Hence

E[2-RP|π] ≥ 1

2

(
dk/2e
k
· d1(π) + d2(π)

)
+

1

2

(
bk/2c
k
· d1(π) + d2(π)

)
≥ d1(π) + d2(π)

2

Since we count the incoming edges, we will find the expected number of incoming
edges of set K∗ (the number of incoming edges of K∗ is OPT) after a given parti-
tion. Let X(u,v) be random variables such that X(u,v) = 1 iff agents u, v are not in
the same set after the partition. Then

∑
π

[d1(π) + d2(π)] · Pr[π] = E

 ∑
(u,v):v∈K∗

X(u,v)

 =
∑

(u,v):v∈K∗
E[X(u,v)]

=
∑

(u,v):v∈K∗
Pr[u, v not in same set]

=
1

2

∑
(u,v):v∈K∗

1

=
OPT

2

Hence E[2-RP] =
∑

π E[2-RP|π] · Pr[π] ≥
∑

π
d1(π)+d2(π)

2
· Pr[π] = OPT

4
.

�

Observe that the analysis made above is rather tight. To see this assume k = 1
and consider the graph G(N, {(1, n)}). In order to choose n, n must belong to

48

the partitioned set from which 2-RP chooses the one agent. This happens with
probability 1/2. Since n belongs to that set, then in order to be selected, agent 1
must belong to the remaining set which happens with probability 1/2 (in all the
other cases, since ties are broken lexicographically, n will not be selected). Hence
the total probability of selecting n is 1

4
. Thus E[2-RP (G)] = 1

4
and OPT = 1.

Theorem 3: dk1/3e-RP gives 1−O(1/k1/3) approximation ratio.

Proof: Assume K∗ be one optimal set (w.l.o.g let K∗ = {1, 2, ..., k}). Let Zi
be a random variable and is equal to the number of agents (except i) that belong
to both K∗ and also to the same partition set as i. Additionally, as in previous
proof, assuming that d′i = {(j, i) ∈ E : j ∈ partition set different from i’s}, then if
Zi = si, agent i contributes d′i · k

2/3

si+1
incoming edges if si+1 > k2/3 and d′i otherwise

(we denote the coefficient by σsi = min(1, k
2/3

si+1
)). Hence

E[dk1/3e-RP] =
∑
s1,...,sk

E[dk1/3e-RP|Z1 = s1 ∧ ... ∧ Zk = sk] · Pr[Z1 = s1 ∧ ... ∧ Zk = sk]

≥
∑
s1,...,sk

E[
∑
i∈K∗

σsid
′
i|Z1 = s1 ∧ ... ∧ Zk = sk] · Pr[Z1 = s1 ∧ ... ∧ Zk = sk]

=
∑
s1,...,sk

∑
i∈K∗

E[σsid
′
i|Z1 = s1 ∧ ... ∧ Zk = sk] · Pr[Z1 = s1 ∧ ... ∧ Zk = sk](i)

Let d(i, S) be the set of i’s incoming edges from set S. The probability of j 6= i
and j ∈ K∗ be in the same set as i is si

k−1
and thus the probability of not being is

1− si
k−1

. Additionally for j ∈ N\K∗, the probability of not being in the same set

is k1/3−1
k1/3 . Hence E[σsid

′
i|Zi = si] = σsi

(
d(i,K∗)

k − 1− si
k − 1

+ d(i, N\K∗)k
1/3 − 1

k1/3

)
(ii). Since

E[σsid
′
i|Zi = si]

Pr[Zi = si]
=

∑
s1,...,si−1,si+1,...,sk

E[σsid
′
i|Z1 = s1 ∧ ... ∧ Zk = sk]

· Pr[Z1 = s1 ∧ ... ∧ Zk = sk], from (i),(ii) it occurs that

E[dk1/3e-RP] ≥
∑
i∈K∗

∑
si

Pr[Zi = si] · σsi
(
d(i,K∗)

k − 1− si
k − 1

+ d(i, N\K∗)k
1/3 − 1

k1/3

)
=
∑
i∈K∗

d(i,K∗)
∑
si

Pr[Zi = si] · σsi
k − 1− si
k − 1

+
∑
i∈K∗

d(i, N\K∗)
∑
si

Pr[Zi = si] · σsi
k1/3 − 1

k1/3

Since OPT =
∑

i∈K∗ d(i,K∗) + d(i, N\K∗), we have to show that∑
si

Pr[Zi = si] · (1−σsi k−1−si
k−1

) and
∑

si
Pr[Zi = si] · (1−σsi k

1/3−1
k1/3) are O(1/k1/3).

49

For si ≤ k2/3 we have that σsi = 1 and thus both sums till the additive term si =

k2/3 are O(1/k1/3). Thus we have to show that
∑

si>k2/3 Pr[Zi = si]·(1− k2/3

si+1
k−1−si
k−1

)

and
∑

si>k2/3 Pr[Zi = si] · (1− k2/3

si+1
k1/3−1
k1/3) are O(1/k1/3).

Equivalently, for the second term, we have to show that
∑

si>k2/3 Pr[Zi = si] ·
si+1−k2/3

si+1
is O(1/k1/3). To prove this, we have to observe that Zi =

∑
j∈N,j 6=iXj

where Xj is 1 if j is in the same set with i, 0 otherwise. Hence Pr[Xj = 1] = 1
k1/3 .

Now we can apply Chernoff bounds (see section 1.3), with ε ← ε/µZi , namely
Pr[Zi − µZi > ε] ≤ e−ε

2/(3µZi). We have that µZi =
∑

j∈K∗ E[Xj] = k · 1
k1/3 = k2/3.

Using telescopic idea we have that

∑
si>k2/3

Pr[Zi = si] ·
si + 1− k2/3

si + 1
≤

2
√

ln k∑
x=1

Pr[Zi ≥ k2/3 + (x− 1)k1/3] · xk1/3 + 1

k2/3 + xk1/3 + 1

+ Pr[Zi ≥ k2/3 + 2
√

ln k · k1/3]

Hence for ε = (x− 1)k1/3 and for ε = 2
√

ln k · k1/3 we conclude that
Pr[Zi ≥ k2/3 + (x− 1)k1/3] ≤ e−

(x−1)2

3 and Pr[Zi ≥ k2/3 + 2
√

ln k · k1/3] ≤ e−
4 ln k

3 ≤
1

k4/3 . Finally,
∑2
√

ln k
x=1 e−

(x−1)2

3 · xk1/3+1
k2/3+xk1/3+1

+ 1
k4/3 ≤ 1

k1/3

∑2
√

ln k
x=1 e−

(x−1)2

3 2x+ 1
k4/3 =

O(1/k1/3).

With similar arguments we can prove the same for the first term. Thus, it follows
that E[dk1/3e-RP] ≥

(
1−O

(
1

k1/3

))
·OPT .

�

A lower bound for any randomized strategy-proof mechanism is 1 − O(1
k2). To

notice this, consider a randomized strategy-proof mechanism f and the graph
G(N,E) where for 1 ≤ i ≤ k, (i, i+ 1) ∈ E , (k+ 1, 1) ∈ E and E doesn’t contain
any other edge. Hence there is an agent (w.l.o.g assume 1) that the probability
of being selected from f is at most k

k+1
. We omit agent’s 1 outgoing edge and

form graph G′(N,E\{(1, 2)}. Then the probability of 1 being selected continues
to be at most k

k+1
since f is strategy-proof. Thus the expected score of f is at

most k k
k+1

+ (k− 1) 1
k+1

. However OPT = k and hence E[f] ≤ (1− 1
k2+k

) ·OPT =

(1−O(1
k2)) ·OPT .

2.5.4 GSP consideration

Sometimes, we are interested in whether there exists a group of people rather than
a person, that can manipulate the voting, that is, some agents make a coalition

50

and gain from jointly misreporting their preference profiles (their outgoing edges).
In this section we try to find mechanisms that are group strategy-proof (GSP),
that is there is no such group of agents that can make a coalition and benefit from
that coalition. Consider the following rather easy algorithm where S is a set of
agents with size k:

Choose set S uniformly at random

This algorithm (ALG) is trivially GSP. Additionally, it is straightforward that
the approximation ratio is k

n
. The technique to prove this is classical. Let X(i,j)

be a random variable where X(i,j) = 1 if agent j ∈ S and X(i,j) = 0 otherwise.
The cost the algorithm returns from selection is E[

∑
(i,j)∈E Xi,j]. Additionally,

Pr[j ∈ S] =
(n−1
k−1)
(nk)

= k
n
. Hence

E[
∑

(i,j)∈E

Xi,j] =
∑

(i,j)∈E

E[Xi,j]

=
∑

(i,j)∈E

Pr[j ∈ S]

=
k

n
|E|

≥ k

n
OPT

We claim that k
n
is optimal (asymptotically), namely we claim that there is no

GSP randomized that can have approximation ratio larger than k ·Θ(1
n
).

Theorem 1: There is no GSP randomized mechanism that gives k · ω
(

1
n

)
ap-

proximation ratio.

Proof: Let f be GSP randomized mechanism. Then for the empty graph, namely
G∗(N, ∅) we have that ∃i, j ∈ N such that Pr[i ∈ f(G∗)] ≤ k

n−1
and Pr[j ∈

f(G∗)] ≤ k
n−1

. To prove this, we use the same technique as we did in previous
proofs. Let Xi be a random variable which is 1 if i is selected else is 0. Thus we
have that ∑

i∈N

Pr[i ∈ f(G∗)] =
∑
i∈N

E[Xi]

= E[
∑
i∈N

Xi] = k

Hence if at least n− 1 agents had probability of being selected more than k
n−1

this
would lead to contradiction. Assume now G’(N,{(i,j),(j,i)}). Thus since f is GSP,

51

then Pr[i ∈ f(G′)] ≤ k
n−1

or Pr[j ∈ f(G′)] ≤ k
n−1

else i, j would make a coalition
(assume it holds for i w.l.o.g). Finally, we consider the graph G′′(N, {(j, i)}). The
probability of selecting i (f is GSP thus strategy-proof), is Pr[i ∈ f(G′′)] ≤ k

n−1
.

Hence E[ALG] ≤ 1 · k
n−1

and OPT = 1.

�

52

Chapter 3

Differential Privacy

3.1 Introduction

Search engines, hospitals etc possess huge amounts of personal sensitive informa-
tion that have to be private. In our case, suppose we have some private data and
we want to find an algorithm that returns a "good" solution as far as these private
data are concerned. Differential privacy means the constraint that few changes in
the private data also cause small changes at the output of the algorithm. Actu-
ally, we want the outputs of the algorithm not to be strongly correlated to each
particular element of the input. We say outputs, because for a single input we
have as an output a probability distribution over a range R. That constraint of
differential privacy is the key to achieve approximate truthfulness in mechanism
design or even strong truthfulness. The idea is simple, if agent i misreports her
utility function, then the "output" barely changes, so she gains little or nothing
by deviating. Below, we give a formal definition for differential privacy.

3.2 Definitions

3.2.1 Definition

Let an abstract domain X , n individuals that want their privacy to be preserved
and D ∈ X n the private data - input. We assume for this chapter that an algo-
rithm or a mechanism is a functionM : X n → ∆(R), where ∆(R) is a probability

53

distribution over range R (randomized algorithm).

Definition 1. Let D1,D2 be two data sets. We say that D1,D2 are neighbor-
ing if and only if their symmetric difference equals to 1, that is |D14D2| = 1 (they
differ only on a single user’s data).

Definition 2. A mechanismM preserves ε-differential privacy if for every pair of
neighboring sets D1,D2 and for every set S ⊆ R we have the following inequality:

Pr[M(D1) ∈ S] ≤ eε Pr[M(D2) ∈ S]

Intuitively, in differential privacy every event changes in probability by a small
factor for every element that is changed in D. Generally, we think ε as a small
constant. It is actually meaningless to think of ε = o(1

n
) because it follows that

for every D we have approximately (w.h.p) the same output distribution. This
is true because for D1,D2 such that |D14D2| ≤ t, it apparently follows that
Pr[M(D1) ∈ S] ≤ eεt Pr[M(D2) ∈ S] (the property is called collusion resis-
tance). Thus substituting t for n and ε for o(1

n
) it occurs that for every D1,D2,

Pr[M(D2) ∈ S] ≤ Pr[M(D1) ∈ S] ≤ Pr[M(D2) ∈ S] (when n → ∞ then
n · o(1

n
) ≈ 0) and hence Pr[M(D1) ∈ S] = Pr[M(D2) ∈ S]. Another obvious

observation that holds and has many applications on auctions and on databases
(queries) is the following:

Composability: The sequential application ofM1,M2 with ε1,ε2-differential pri-
vacy respectively gives (ε1 + ε2)-differential privacy.

McSherry and Talwar in [18] define the exponential mechanism, a mechanism that
outputs privately objects from X and preserves differential privacy. In order to
proceed to the algorithm, we first have to define what a quality function is. A
quality function q is a function q : X n × R → R that maps private data/output
pairs to quality scores (for our case each user-agent wants as high a quality score
as possible).

3.2.2 Exponential Mechanism

Exponential mechanism: For any quality function q and base measure µ over
R, we define

Mε(q,D) := Choose r with probability proportional to exp(εq(D, r))× µ(r)

We will typically take µ(r) to be uniform, so we ignore it most of the time.

54

Theorem 1: Exponential Mechanism Mε(q,D) preserves 2ε∆q differential pri-
vacy (we define ∆q as the maximum possible difference in q for all pairs of neigh-
boring sets D1,D2).

Proof: Assume R is discrete (in other case use integrals). Let D1,D2 two neigh-
boring data sets. Then

Pr[Mε(q,D1) = r]

Pr[Mε(q,D2) = r]
=

exp(εq(D1,r))×µ(r)∑
r′∈R exp(εq(D1,r′))×µ(r′)

exp(εq(D2,r))×µ(r)∑
r′∈R exp(εq(D2,r′))×µ(r′)

= exp(ε(q(D1, r)− q(D2, r))) ·
∑

r′∈R exp(εq(D2, r
′))× µ(r′)∑

r′∈R exp(εq(D1, r′))× µ(r′)

≤ exp(ε∆q) ·
exp(ε∆q)

∑
r′∈R exp(εq(D1, r

′))× µ(r′)∑
r′∈R exp(εq(D1, r′))× µ(r′)

= exp(2ε∆q).

Thus
Pr[Mε(q,D1) ∈ S]

Pr[Mε(q,D2) ∈ S]
≤ exp(2ε∆q).

�

In many cases, we consider function q so as to ∆q = 1 and thus from the pre-
vious theorem it follows that we can achieve 2ε-differential privacy when using
exponential mechanism. As we have already said, we are interested in maximizing
q. Defining ROPT to be the subset of range R such that q(D, r) = maxr q(D, r),
the theorem below shows that the probability of a highly suboptimal output is
low (exponentially low). This also can be seen in Anupam Gupta et al [13] and
a similar version in McSherry et al. [18]. It is remarkable that we consider R
normalized, namely |R| = 1.

Theorem 2: Using Exponential Mechanism Mε(q,D) and having as an output r,
the following inequality holds:

Pr[q(D, r) < max
v
q(D, v) + ln(|ROPT |)/ε− t/ε] ≤ exp(−t)

where |ROPT | is the measure of ROPT .

Proof: Let S be the set of outputs r such that q(D, r) < maxv q(D, v)+ln(|ROPT |)/ε

− t/ε. The probability of choosing element r ∈ S is obviously
eεq(D,r)∑
v∈R e

εq(D,v)

which is less than
eε(maxv q(D,v)+ln(|ROPT |)/ε−t/ε)∑

v∈R e
εq(D,v)

. Moreover, |S| ≤ |R| = 1 and also

55

∑
v∈R

eεq(D,v) ≥ |ROPT | · eεmaxv q(D,v). Thus the probability of choosing any element

of S by union bound is ≤ |S| · e
εmaxv q(D,v)+ln(|ROPT |)−t

|ROPT | · eεmaxv q(D,v)
= |S| · e−t ≤ e−t.

�

When set R is infinite, we use integrals and the proof is similar. However, the
measure of R must be finite (<∞).

Dwork et al [9] introduced the Laplace mechanism which is based on Laplace
Distribution. Laplace Distribution is defined by the following probability density
function

Lap(x|b) =
1

2b
e
−|x|
b

Definition 3. Given function f : X n → Rk the Laplace mechanism and a vector
of independent random variables (Y1, ..., Yk) which every Yi follows Lap(x|∆f/ε)
is defined as

ML(D, f, ε) = f(D) + (Y1, ..., Yk)

That is Pr[ML(D, f, ε) = (x1, ..., xk)] =
k∏
i=1

ε

2∆f
e
−ε|f(D)i−xi|

∆f . It is rather straight-

forward (similar proof to Theorem 1, that’s why we omit it) to prove that the
Laplace mechanism gives ε-differential privacy. Here, ∆f is the maximum possi-
ble distance in f for all pairs of neighboring sets D1,D2. It is remarkable that
the Laplace mechanism can be implemented by Exponential Mechanism by taking
q(D, x) = −||f(D)−x||. More generally, let N be a differential private mechanism
and let p(x) = Pr[N (D) = x]. By taking q(D, x) = ln(p(x)) we can implement N
using the Exponential Mechanism. Thus Exponential Mechanism captures the full
class of differential privacy mechanisms.

Application to pricing

Assume we organize an auction, where we want to sell at most one item out of k at
a fixed price (each bidder will buy the specific item). We have n bidders and each
bidder i has a non-increasing bid function bji : [0, 1]→ [0, a] referred to item j. We
define revenue Rev = p

∑
i b
j
i (p) where j is the item we sell and p its price. The

goal is to choose the item that maximizes the revenue. Considering D = (b1, ..., bn),
R = {1, ..., k} × [0, a], q(D, (j, p)) = p

∑
i b
j
i (p) and assuming p · bji (p) ≤ 1 ∀i, j, p,

we use the exponential mechanism to solve the problem in a private manner.
It is straightforward that exponential mechanism gives 2ε-differential privacy for

56

the problem. Suppose two neighboring sets D1,D2. These sets differ on a single
bidder i. By changing the bid of bidder i, we have that the revenue changes by
p · (bji − β

j
i) ≤ p ·max(bji , β

j
i) ≤ 1. Thus using Theorem 1 we finish the proof.

In order to find the expected revenue we pick an appropriate t and make use
of theorem 8 as it can be seen in Mc-Sherry et al. [18]. Selecting t = ln(e +
ε2OPT km), where m is the number of sold items and using the fact that bji is non-
increasing for every i, we conclude that E[p·

∑
i b
j
i (p)] ≥ OPT −3 ln(e+ε2OPT km).

3.3 Applications to combinatorial optimization
problems

There are a lot of well-known combinatorial optimization problems, some of them
are polynomially (efficiently) solvable and other are NP-hard. The minimum cut,
vertex cover, k-median and Combinatorial Public Project (CPP)[6] are some of
them. In this scenario, the input consists of sensitive information about individu-
als, who don’t want to reveal them. So privacy, is an important goal in some cases
and algorithms that preserve differential privacy and give suboptimal solutions
are preferred to non-private optimal algorithms. The purpose of this section is to
examine in practice (giving examples) how we face problems with private data, an
interesting work that can be viewed in the paper of Anupam Gupta et al [13].

3.3.1 Unweighted Vertex Cover

Let G = (V,E) be an undirected graph. The problem is to pick a set S ⊂ V such
that for every (u, v) ∈ E we have u ∈ S or v ∈ S. The goal is to minimize the size
of S. The set S is called vertex cover of G. It’s remarkable to mention that the
vertex cover problem is NP-complete. In our case, we want using randomization,
to find a solution close to the optimal in a private manner, where private data are
the edges (absence or presence of each edge). The difficult part of this problem
is that we demand a set S to be the output and not only the size |S|. Suppose
we have as output the vertex cover S and u, v /∈ S, then we can conclude that
(u, v) /∈ E. Hence, how can we solve Vertex Cover Problem privately? The
randomized algorithm that we mention below, surpass this problem, as it actually
outputs a permutation of all vertices. In order to determine the vertex cover for
an input G, for each edge (u, v) we put u at S if u comes before v in the output
permutation, otherwise we put v at S (in the end, both u and v may belong to

6we examine CPP in a next section

57

S). Additionally, the algorithm has a good approximation with respect to the
minimum vertex cover and also gives ε-differential privacy. It is remarkable that
UVC can be implemented with the exponential mechanism (see section 3.2.2 where
we give a general method of implementing every ε-differential private mechanism
with the exponential mechanism).

Algorithm Unweighted Vertex Cover (UVC)

1. n← |V |, V1 ← V , E1 ← E
2. for i = 1, 2, ..., n do
3. wi ← (4/ε) ·

√
n/(n− i+ 1)

4. pick a vertex v ∈ Vi with probability proportional to dEi(v) + wi
5. output v. Vi+1 ← Vi\{v},Ei+1 ← Ei\{v} × Vi
6. end for.

The algorithm works as follows. As initialization, we have G1(V1, E1) = G(V,E).
At step i, let Gi(Vi, Ei) be the graph with n− i + 1 vertices remaining. We omit
vertex u with probability proportional to dGi(u) +wi and obviously all its incident
edges and we move to the next step. The following theorems show that UVC al-
gorithm is (2 + 16/ε)-approximation and also preserves ε-differential privacy.

Theorem 1: UVC gives ε-differential privacy.

Proof: In such cases, we try to bound the fraction
Pr[UV Cε(E) = r]

Pr[UV Cε(E ′) = r]
with eε (see

Theorem 1 from section 3.2.2, similar technique), where r is a permutation of the
vertices. Let di,mi, di(Ej) be the degree of i-th vertex in permutation r (in graph
Gi), the edges of Gi and the degree of i-th vertex in r in graph Gj respectively.

Then Pr[UV Cε(E) = r] =
n∏
j=1

wj + dj∑n
k=j(wj + dk(Ej))

=
n∏
j=1

wj + dj
(n− j + 1)wj + 2mi

.

Thus
Pr[UV Cε(E) = r]

Pr[UV Cε(E ′) = r]
=

n∏
j=1

wj + dj
wj + d′j

·
(n− j + 1)wj + 2m′j
(n− j + 1)wj + 2mj

. As |E4E ′| = 1, let

the t-th vertex in r be the one endpoint of edge e that belongs to precisely one of
E,E ′. Then for every j ≤ t we have that mj = m′j + 1 or m′j = mj + 1 and for
j > t we have that mj = m′j. Additionally dj = d′j for every j 6= t and |dt−d′t| = 1.
We consider two cases:

58

• dt = d′t + 1⇒ mj = m′j + 1 for j ≤ t. Hence

Pr[UV Cε(E) = r]

Pr[UV Cε(E ′) = r]
=
wt + d′t + 1

wt + d′t

t∏
j=1

(n− j + 1)wj + 2m′j
(n− j + 1)wj + 2m′j + 2

<
wt + d′t + 1

wt + d′t
≤ wt + 1

wt
≤ exp(1/wt)

(the first inequality comes from the fact that the second factor is less than
1 and the second from ex ≥ x + 1 for every x ∈ R). Using the fact that

1/wt ≤ ε/4 it follows that
Pr[UV Cε(E) = r]

Pr[UV Cε(E ′) = r]
≤ eε/4 ≤ eε.

• d′t = dt + 1⇒ m′j = mj + 1 for j ≤ t. Thus

Pr[UV Cε(E) = r]

Pr[UV Cε(E ′) = r]
=

wt + dt
wt + dt + 1

t∏
j=1

(n− j + 1)wj + 2mj + 2

(n− j + 1)wj + 2mj

<
t∏

j=1

(n− j + 1)wj + 2mj + 2

(n− j + 1)wj + 2mj

<
t∏

j=1

(n− j + 1)wj + 2

(n− j + 1)wj

<
t∏

j=1

exp

(
2

(n− j + 1)wj

)
(similar analysis). Using the fact that

∑t
j=1

1√
n(n−j+1)

≤
∑n

j=1
1√

n(n−j+1)

≤ 1√
n

+
∫ n

1
1√

n(n−x+1)
dx = 2− 1√

n
< 2, occurs that

Pr[UV Cε(E) = r]

Pr[UV Cε(E ′) = r]
≤ eε.

�

Theorem 2: UVC is (2 + 2avgi≤nwi) ≤ (2 + 16/ε)-approximation.

Proof: We will use induction on the number of vertices n. During the proof,
we make no assumptions for the values of the sequence wi. For n = 2 trivially
holds. Assume that it holds for every graph with n = k vertices. We will prove
that it also holds for n = k + 1. Suppose that OPT (G) ≤ k+1

2
(the other case

trivially holds). Let v be an arbitrary vertex that was picked in step 1. Then the
expected cost of UVC is the following:

E[UV C(G)] = 1 · Pr[v is incident to an edge at G] + Ev[E[UV C(G\v)]]

59

The first term is equal to

∑
t∈V,dt(G)>0(w1 + dt(G))∑k+1

j=1(w1 + dj(G))
. Assuming |E| = m, as each

edge has two endpoints, we conclude that |t : t ∈ V, dt > 0| ≤ 2m. Thus∑
t∈V,dt(G)>0(w1 + dt(G))∑k+1

j=1(w1 + dj(G))
≤ 2mw1 + 2m

(k + 1)w1 + 2m
. Additionally, the probability

Pr[v ∈ OPT (G)], where OPT (G) is a minimum vertex cover of G, is equal to

Pr[v ∈ OPT (G)] =

∑
t∈OPT (G)(w1 + dt(G))∑k+1

j=1(w1 + dj(G))

≥ |OPT (G)|w1 +m

(k + 1)w1 + 2m

≥ m

(k + 1)w1 + 2m
(i)

(the second from the end inequality comes from the fact that OPT (G) "covers" the
m edges, thus

∑
t∈OPT (G) dt(G) ≥ m). Hence Pr[v is incident to an edge at G] ≤

(2w1 + 2)m

(k + 1)w1 + 2m
≤ (2w1 + 2) Pr[v ∈ OPT (G)] (ii).

Furthermore, it is straightforward to prove that Pr[v ∈ OPT (G)] ≤ Ev[|OPT (G)|−
|OPT (G\v)|] = |OPT (G)| − Ev[|OPT (G\v)|] (iii). To do this, consider that if
|OPT (G)| = |OPT (G\v)| then obviously v /∈ OPT (G). Using (ii),(iii) we conclude
that E[UV C(G)] ≤ (2w1 + 2)(|OPT (G)| − Ev[|OPT (G\v)|]) + Ev[E[UV C(G\v)].
Now, using inductive hypothesis on graph G\v which has k vertices, it occurs that
E[UV C(G)] ≤ (2w1 +2)(|OPT (G)|)+(2avg1<i≤k+1wi−2w1)Ev[|OPT (G\v)|].Also
from inequalities (iii),(i) obviously

Ev[|OPT (G\v)|] ≤ |OPT (G)| − Pr[v ∈ OPT (G)]

≤ |OPT (G)| − |OPT (G)|w1 +m

(k + 1)w1 + 2m
≤ (1− 1

k + 1
)|OPT (G)|

since
k + 1

2
≥ |OPT (G)|. Finally, from the last inequality we have that E[UV C(G)] ≤

|OPT (G)|(2+2avg1≤i≤k+1wi). In order to prove that UV C is (2+16/ε)-approximation,

we use the following: 2avg1≤j≤nwj =
n∑
j=1

2wj
n

=
n∑
j=1

8

ε
√
n(n− j + 1)

≤

8

ε

(
1√
n

+

∫ n

1

1√
n(n− x+ 1)

dx

)
=

8

ε
(2− 1√

n
) < 16/ε.

�

60

3.3.2 Min-Cut

Let G = (V,E) be an undirected graph. The problem is to partition the set V into
S, Sc such that set C = {(u, v) : (u, v) ∈ E, u ∈ S, v ∈ Sc} is minimized. Minimum
cut problem has been solved efficiently (polynomial complexity). A rather common
way to solve the problem is to make a reduction to the max-flow problem, that is
create a graph G′ = (V,E ′) where E ′ = {(u, v), (v, u) : (u, v) ∈ E} and for every
pair of vertices x, y, find the maximum flow of G’ with x → sink, y → source
and output the smallest (which will be the size of min-cut, namely |C|). From
the residual graph comes the set C. Below we present an algorithm that gives
4ε-differential privacy and expected cost OPT (G) + O(log n/ε) of the cut, where
OPT (G) is the size of the minimum cut.

Algorithm Min-Cut (PMC)

1. Let H0 ⊂ H1... ⊂ H(n2)
be arbitrary strictly increasing sets of edges on V .

2. Choose index i with probability proportional to exp(−ε|OPT (G ∪Hi)− 8 lnn/ε|).
3. Choose cut C with probability proportional to exp(−εCost(G ∪Hi, C)).
4. Output C.

From the technical analysis of Anupam Gupta et al [13], the writer wanted to
ensure that OPT is at least 4 lnn/ε (w.h.p) in order to bound the expected cost
of PMC with the use of the theorem of Karger, see [15]7. For this purpose, he
adds some more edges in graph G at the first part of the algorithm. He uses the
exponential mechanism to achieve that. In the second part, he also uses the expo-
nential mechanism to output the cut, where quality function q is the cost of the cut.

Theorem 1: PMC gives 4ε-differential privacy.

Proof: Let G,G′ be two graphs which differ only in a single edge. Then the
probability for a certain cut C to be an output is the following:

Pr[PMCε(G) = C] =
∑
i

e−ε|OPT (G∪Hi)−8 lnn/ε|∑
j e
−ε|OPT (G∪Hj)−8 lnn/ε| ×

e−εCost(G∪Hi,C)∑
C′ e

−εCost(G∪Hi,C′)

≤ e4ε ×
∑
i

e−ε|OPT (G′∪Hi)−8 lnn/ε|∑
j e
−ε|OPT (G′∪Hj)−8 lnn/ε| ×

e−εCost(G
′∪Hi,C)∑

C′ e
−εCost(G′∪Hi,C′)

= e4ε Pr[PMCε(G
′) = C]

7Karger’s theorem: For any graph G with min cut C, there are at most n2a cuts of size at most aC

61

This is true because OPT (G ∪Hi)− 1 ≤ OPT (G′ ∪Hi) ≤ OPT (G ∪Hi) + 1 and
also Cost(G∪Hi, C)− 1 ≤ Cost(G′ ∪Hi, C) ≤ Cost(G∪Hi, C) + 1. Thus for any

set S of cuts we have that
Pr[PMCε(G) ∈ S]

Pr[PMCε(G′) ∈ S]
≤ e4ε.

�

Theorem 2: E[PMCε] ≤ OPT +O(lnn/ε).

Proof: First of all, we will prove that (OPT ∪ Hi) > 4 lnn/ε with probability at
least 1− 1

n2 (i is the selected index). From Theorem 2 of section 3.2.2, for t = 2 lnn,
|ROPT | = 2

n(n−1)
and max ≈ 0 we have that |OPT (G ∪ Hi) − 8 lnn/ε| ≥ 4 lnn/ε

with probability at most 1
n2 . Thus Pr[OPT (G ∪ Hi) ≤ 4 lnn/ε] ≤ 1

n2 , from
which follows that Pr[OPT (G ∪ Hi) > 4 lnn/ε] ≥ 1 − 1

n2 . Let C be a cut with

|C| = OPT (G∪Hi) + t. The probability of choosing C is
e−ε(OPT (G∪Hi)+t)∑
C′ e

−ε(Cost(G∪Hi),C′)
≤

e−ε(OPT (G∪Hi)+t)

e−εOPT (G∪Hi)
= e−εt (i). Additionally, from Kerger’s theorem, there are at most

n
2
(

1+ t
OPT (G∪Hi)

)
cuts [8] with size at most

(
1 +

t

OPT (G ∪Hi)

)
OPT (G ∪ Hi) =

OPT (G ∪ Hi) + t (ii). Hence for some b, from (i),(ii) we have that from union
bound (assuming ct the number of cuts of size at most OPT (G ∪ Hi) + t and
ct − ct−1 is the number of cuts with size OPT (G ∪Hi) + t)

Pr[Cost(G ∪Hi, C) > OPT + b] ≤
∑
t>b

e−εt(ct − ct−1)

≤
∑
t>b

e−εtct − e−ε
∑
t>b

e−εtct

= (1− e−ε)
∑
t>b

e−εtct

≤ (1− e−ε)
∑
t>b

e−εtn2e
2t lnn

OPT (G∪Hi)

≤ (1− e−ε)
∑
t>b

e−εt/2n2

≤ n2 (1− e−ε)
eε/2 − 1

e−
εb
2 ≤ n2(eε/2 + 1)e−

εb
2

Thus, for b = 8 lnn/ε we have that Pr[Cost(G∪Hi, C) > OPT+8 lnn/ε] ≤ (eε/2+1)
n2 .

Finally, the expected cost of PMC is at most (1 − 1
n2) × (1 − (eε/2+1)

n2) × (OPT +

8Substitute a for 1 +
t

OPT (G ∪Hi)
in Kerger’s theorem

62

8 lnn/ε) +
1+(eε/2+1)− e

ε/2+1

n2

n2 ×
(
n
2

)
≤ OPT + 8 lnn/ε+ 3 = OPT +O(8 lnn/ε).

�

It is rather easy to prove, if we consider the instance of a d = Θ(lnn/ε)-regular
graph G that has n = |V | min-cuts of size d − 1 of the form (V \{v}, {v}) (there
are such graphs according to Anupam Gupta et al. [13]), that for any ε-differential
private mechanism, the expected cost of that mechanism for the graph G′(V,E\A)
(A is the set of neighbors of u, the selection of u is such that the probability of
outputting the cut (V \{u}, {u}) with input G is less than or equal to 1

n
)[9] is at

least (1 − 1
n4/3)(d − 1) = Ω(lnn/ε)[10]. On the other hand, the optimal cost is 0.

Hence for every ε-differential private mechanismM, E[M] ≥ OPT + Ω(lnn/ε).

3.3.3 k-Median

Let V be a set of points in R2 (|V | = n), d : V × V → R be a metric function
and D ⊆ V be a set of (private) demand points. The goal is to find a set of
points F , with |F | = k such that Cost(F) =

∑
v∈D d(v, F) is minimized. With

d(v, S) we denote the minimum distance of v and a point from S (even if it is
wrong, we use the same notation for distance between points and distance be-
tween a point and a set of points). An easy way to deal with this problem, is to
use "directly" the exponential mechanism, that is choose output R = (p1, ..., pk)

with probability proportional to e−ε
Cost(R)

2∆ where ∆ is the diameter of set V . It
is rather easy to observe that this mechanism is ε-differential private[11]. Ad-
ditionally, from Theorem 2 of section 3.2.2, for t = k lnn and ROPT = 1

(nk)
, it

follows that Pr[Cost(R)/2∆ > OPT/2∆ + 2k lnn/ε] ≤ 1
nk
. Thus E[Cost(R)] ≤

OPT +4∆k lnn/ε+ 1
nk
×|D|∆ ≤ OPT +4∆k lnn/ε+ ∆

nk−1 = OPT +O(∆k lnn/ε).

However the algorithm above is not efficient, as its complexity is Ω
((
n
k

))
. Thus,

we examine another another ε-differential private mechanism that even though its
expected output is worse, it is efficient (polynomial running time), and it can be
seen in Anupam Gupta et al [13].

9There is such u, it comes from Pigeonhole Principle
10To prove this, just use collusion resistance, the input G′ differs at d− 1 edges from G
11See theorem 1 from section 3.2.2, substitute ε for ε′/2∆

63

Algorithm Private k-median (PKM)

1. Let F1 ⊂ V arbitrarily with |F1| = k and ε′ ← ε/(2∆(T + 1)).
2. for i = 1 to T do
3. Select (x, y) ∈ Fi × (V \Fi) with probability proportional to

exp(−ε′ × Cost(Fi − {x}+ {y})).
4. Let Fi+1 ← Fi − {x}+ {y}.
5. end for
6. Select j ∈ {1, 2, ..., T + 1} with probability proportional to exp(−ε′ × cost(Fj)).
7. output Fj.

The algorithm works as follows. We define T + 1 (F1, ..., FT+1) possible set out-
comes by using exponential mechanism. The first set F1 is arbitrary and at step i,
Fi comes from Fi−1 by making a swap of a point x ∈ Fi−1 and a point y ∈ V \Fi−1.
Finally, we also use exponential mechanism to choose one of the T + 1 possible
outcomes. PKM gives ε-differential privacy and the expected cost of PKM is
6OPT +O(∆k2 log2 n/ε). This derives from a lemma of Arya et al [2]:

Lemma: For any set F ⊆ V with |F | = k, there exists a set of k swaps
(x1, y1), ..., (xk, yk), (that is we swap xi with yi), such that

k∑
i=1

(Cost(F)− Cost(F − {xi}+ {yi})) ≥ Cost(F)− 5OPT

Theorem 1: PKM gives ε-differential privacy.

Proof: Let D,D′ be two neighboring sets of points. Additionally, observe that
|CostD(Fi) − CostD′(Fi)| ≤ ∆. Then (assuming F1 is common) we have that for
step 3 the probability that the outcome is (F1, ..., FT+1) gives 2ε′∆T -differential pri-
vacy (it comes from theorem 1 from section 3.2.2 and composability). Finally, step
6 of PKM gives another 2ε′∆-differential privacy since |CostD(Fi)−CostD′(Fi)| ≤
∆ (also comes from use of theorem 1 from section 3.2.2). Hence, PKM gives
2ε′∆(T + 1)-differential privacy (composability), namely ε-differential privacy.

�

Theorem 2: E[PKM] ≤ 6OPT +O(∆k2 ln2 n/ε), for T = 12k lnn.

Proof: We consider the case that Cost(Fi) ≥ 6OPT . Then it is easy to see
from Lemma above that there is a swap (x, y) such that

64

Cost(Fi)− Cost(Fi+1) ≥ Cost(Fi)− 5OPT

k

≥ Cost(Fi)− (5/6)Cost(Fi)

k
=
Cost(Fi)

6k
⇒

Cost(Fi)

(
1− 1

6k

)
≥ Cost(Fi+1) (i)

By applying Theorem 2 from section 3.2.2, for t = 2 lnn and ROPT = 1
n2 (as there

are n2 swaps at each step) we have that Pr[Cost(Fi+1) > OPTCost(Fi+1)+4 lnn/ε′] ≤
1
n2 , conditionally on choosing (F1, ..., Fi). Thus from (i) we have that Cost(Fi+1) ≤
OPTCost(Fi+1) + 4 lnn/ε′ ≤ (1 − 1

6k
)Cost(Fi) + 4 lnn/ε′ with probability at least

(1 − 1
n2). Assume now that Cost(Fi) ≥ 6OPT + 48k lnn/ε′, then Cost(Fi+1) ≤

(1 − 1
6k

+ 1
12k

)Cost(Fi) with probability at least 1 − 1
n2 (ii). Applying (ii) to

F2, ..., FT+1 we have that Cost(Fi+1) ≤ (1 − 1
12k

)i × Cost(F1) with probability at
least (1 − 1

n2)i ≥ 1 − i
n2 (iii). Hence since Cost(F1) ≤ n∆ and for T = 12k lnn

we have that Cost(FT+1) ≤ (1 − 1
12k

)Tn∆ ≤ 1
e

lnn
n∆ = ∆ ≤ 6OPT + 48k lnn/ε′.

Thus either Cost(FT+1) ≤ 6OPT + 48k lnn/ε′ or there exists a smaller index
j > 1 such that Cost(Fj) ≤ 6OPT + 48k lnn/ε′ with probability at least 1 − T

n2

(applying (iii) for i = T). Finally for step 6 of the algorithm, assuming the
optimal cost is less than or equal to 6OPT + 48k lnn/ε′ and using Theorem 2
from section 3.2.2 for t = 2 lnn and ROPT = 1

T+1
we have that PKMcost ≤

6OPT + 48k lnn/ε′ + 2 lnn/ε′ + ln(T + 1)/ε′ with probability at least 1− 1
n2 . So,

E[PKM] ≤ 6OPT +O(k lnn/ε′) + T
n2 × n∆ = 6OPT +O(∆k2 ln2 n/ε).

�

3.4 Differential Privacy and Truthfulness

In Mechanism Design, most of the time we are interested in finding mechanisms-
algorithms that agents being truthful is a dominant strategy (incentive compatible
mechanisms). In this subsection, we prove that exponential mechanism is approx-
imate truthful and then we introduce the gap mechanism that achieves strong
truthfulness.

3.4.1 Approximate Truthfulness

Shummer in [27] defines and studies ε-dominance. Using that definition, we prove
that mechanisms that satisfy ε-differential privacy, make also truthfulness a (eε−1)-

65

dominant strategy. Informally, ε-dominance means that there is no agent that can
increase her utility function by more than an ε additive, when misreporting.

Definition 1. ε-improvement : Giving a utility function u, we say that agent i
has an ε-improvement if there exists profile θ′i such that ui(θi, θ−i) + ε ≤ ui(θ

′
i, θ−i)

where θi is i’s true profile-preference

Definition 2. ε-dominance: We say that function u provides ε-dominance if
there is no agent i that has ε-improvement.

Defining ε-dominance and assuming ui ∈ [0, 1], we prove now that a mechanism
that satisfies ε-differential privacy, makes truthtelling (eε − 1)-dominant strategy.
Because mechanisms that preserve differential privacy are randomized, we need to
show that the expected value of the utility function of agent i changes at most by
a factor eε if she deviates, from which follows that the expected value of the utility
function increases at most by eε − 1 (this is true because x + eε − 1 ≥ eε · x for
every x ∈ [0, 1], ε > 0).

Theorem 1: For any mechanismM giving ε-differential privacy, any non-negative
function u and any neighboring sets D1,D2 the following holds:

E[u(M(D1))] ≤ eε · E[u(M(D2))]

Proof: From the definition of E[u(x)] =
∑
R Pr[choose x] · u(x) occurs that

E[u(M(D1))] =
∑
R PrD1 [choose x] · u(x) ≤

∑
R e

ε · PrD2 [choose x] · u(x) =

eε · E[u(M(D2))]. The first inequality comes from the fact that M gives ε-
differential privacy (definition). In case range R is infinite, we use integrals instead
of sums.

�

Thus if agent i deviates, which means that neighboring sets D1,D2 differ at index
i, she gains no more than a factor of eε (for the expected utility score) from which
follows that she gains no more than an (eε − 1) additive term. A special case is
when ε = 0 , where we achieve strategy-proofness (it makes sense here as opposed
to ε in differential privacy).

Example

Suppose we have an auction where we want to sell an item and the mechanism
we use gives 0.001-differential privacy. Bidder i can change the expected sell price
of the item so that the expected sell price if the bidder was truthful was at most

66

e0.001 times the expected sell price if the bidder was untruthful. Assuming that the
bid function bi ∈ [0, 1] and also ui = bi − p (if the item is sold to bidder i) or else
ui = 0 then u′i ≤ ui × e0.001 from which follows that u′i ≤ ui + (e0.001 − 1).

3.4.2 Combinatorial Public Projects

In CPP problem, we have n agents and m resources publicly known and a pa-
rameter k. Each agent i submits a (private) submodular[12] function fi over the
subsets of resources. The goal is to find a subset S of resources with |S| = k so as
to maximize F (S) =

∑n
i=1 fi(S). We assume w.l.o.g that the image of fi is [0, 1].

Papadimitriou et al. [23] introduced CPP problem and prove that there is no
efficient truthful algorithm that guarantees approximation ratio better than m

1
2
−ε

unless NP ⊆ BPP . Here, we demonstrate an inefficient and approximate truthful
mechanism that achieves a (1 − 1/e) factor of the optimal minus O(k logm/ε).
The algorithm (called ACPP) uses exponential mechanism k times and has the
same idea as k-median problem:

CPP Algorithm (ACPP)

1. S1 = ∅ , ε′ ← ε
2k

2. for i = 1 to k do
3. Select resource r /∈ Si with probability proportional to

exp(ε′ × (F (Si ∪ {r})− F (Si))).
4. Si+1 ← Si ∪ {r}
5. output Sk+1.

Theorem 1: ACPP gives ε-differential privacy

Proof: Let D,D′ be two sets that differ on a single agent i (the one set con-
tains him and the other doesn’t) and let Sk+1 = {r1, ..., rk} be an output of re-
sources. Then for the one iteration (let i) conditionally the previous iterations
ACCP chose the same elements, we have that PrD[choose ri] ≤ e2ε′ PrD′ [choose ri]
(Theorem 1 from section 2, ∀j.fj ∈ [0, 1]). Thus Pr[ACCPD = (r1, ..., rk)] ≤
e2kε′ Pr[ACCPD′ = (r1, ..., rk)]. However, we have considered an ordered output,
although the output is a set, so we use union bound. That is

12f is called submodular if for every A ⊂ B ⊂ S and x ∈ S, we have that f(A∪{x})−f(A) ≥ f(B∪{x})−f(B)

67

Pr[ACPPD = Sk+1] =
∑

permutations
Pr[ACCPD = (r′1, ..., r

′
k)]

≤ e2kε′
∑

permutations
Pr[ACCPD′ = (r′1, ..., r

′
k)]

= e2kε′ Pr[ACPPD′ = Sk+1]

Hence, ACCP gives 2kε′-differential privacy, namely ε-differential privacy.

�

Theorem 2: E[ACPP] ≥ (1− 1
e
)OPT +O(k2 lnmn/ε).

Proof: The proof consists of two parts. The first thing is to notice that F
is submodular, thus at iteration i we have that there is a resource r such that
F (Si ∪ {r})− F (Si) ≥ F (SOPT)−F (Si)

k
. To prove this assume SOPT\Si = {j1, ..., jg}

and Si\SOPT = {k1, ..., kv}. Then

F (SOPT ∪ Si)− F (Si) =

g∑
t=1

[F (Si ∪ {j1, ..., jt})− F (Si ∪ {j1, ..., jt−1})]

≤
g∑
t=1

[F (Si ∪ {jt})− F (Si)]

Additionally

F (SOPT ∪ Si)− F (SOPT) =
v∑
t=1

[F (SOPT ∪ {k1, ..., kt})− F (SOPT ∪ {k1, ..., kt−1})]

≥
v∑
t=1

[F (SOPT ∪ Si)− F ((SOPT ∪ Si)\{kt})]

Thus, by subtracting it occurs that F (SOPT) − F (Si) ≤
∑g

t=1[F (Si ∪ {jt}) −
F (Si)] =

∑
j∈SOPT \Si [F (Si∪{j})−F (Si)]. Hence there is a r ∈ SOPT\Si such that

[F (Si ∪{r})−F (Si)] ≥ F (SOPT)−F (Si)
g

≥ F (SOPT)−F (Si)
k

. So, there is resource r such
that F (SOPT)− F (Si ∪ {r}) ≤ (1− 1/k)(F (SOPT)− F (Si)).

The second thing is to use Theorem 2 from section 3.2.2 for t = 3 lnn and
ROPT = 1

m
. Let r be the chosen element at iteration i. We have that F (Si∪{r}) ≥

F (Si ∪ {ropt}) − (lnm + 3 lnn)/ε′ with probability at least 1 − 1/n3. Hence
OPT−F (Si+1) ≤ (1−1/k)(F (SOPT)−F (Si))+lnn3m/ε′ with probability at least
1− 1

n3 . So with probability at least (1− 1
n3)k ≥ 1− k

n3 (applying Bernoulli’s inequal-
ity) we have that OPT −F (Sk+1) ≤ (1− 1/k)k(OPT −F (S1)) +O(k lnnm/ε′) ≤

68

OPT
e

+ O(k lnnm/ε′). Thus E[ACCP] ≥ (1 − 1/e)OPT + O(k2 lnnm/ε) since
OPT ∈ o(n3).

�

In the statement of the problem, we mentioned that there is no truthful mechanism
that achieves good approximation ratio. Namely, we gave a game-theoretic notion
to the problem. From the view of game theory and mechanism design, in CPP, the
agents want to maximize their utility function, that is to maximize fi (for agent i).
In order to accomplish this, they may misreport their true submodular function fi
in order to have a better outcome. The ACCP algorithm, approximately prevent
this. This fact occurs from Theorem 1 of section 3.4.1. That is E[ACCP [fi]] ≤
e2εE[ACCP [f ′i]] ≤ E[ACCP [f ′i]] + e2ε − 1 (the two input sets have symmetric
difference 2, that’s why it is 2ε′). So we have approximate truthfulness. Notice
that the bound we proved above is assuming we have the true fi functions.

3.4.3 Gap Mechanism

Even though with exponential mechanism we achieve approximate truthfulness
((eε − 1)-dominance), there are problems where misreporting is a dominant strat-
egy. Nissim et al. [22] give such an example, a simplified version of an unlimited
supply auction where exponential mechanism’s expected revenue is far from opti-
mal. McSherry et al. [18] although, prove that the output of exponential mecha-
nism’s differs to a term at most O(log n)/ε with respect to the optimal revenue.
The problem is that McSherry et al. assumed that the bidders are truthful (how-
ever, the bidders are approximately truthful). The example is the following:

Assume an auction (digital goods) with n agents, each of whom wants to buy
a single unit. Let T = {0.5, 1} be the set of types and S = {0.5, 1} be the
set of alternatives (prices). Thus OPT = maxs∈S(s · |i : ti ≤ s|). Introducing
q(b, s) = s · (s · |i : bi ≤ s|) (b is the vector of announced bids), we have that
according to McSherry and Talwar the expected revenue of exponential mecha-
nism is OPT − O(log n/ε) (if agents are truthful) and that it gives 2ε-differential
privacy. However, a dominant strategy is everybody to bid 0.5. Thus for the worst
case that everybody has valuation 1, the exponential mechanism will return as a
price value 0.5 with probability ≈ 1− e−εn2 , thus the expected revenue is at most
n(0.5 + e−ε

n
2), although the OPT = n.

So Nissim et al. [22] introduce a combined mechanism of exponential mechanism
and another probabilistic mechanism that guarantees truthfulness and approxi-
mates well the optimal social welfare. Intuitively, the latter mechanism with prob-
ability q punishes the agents that deviate from reporting their true types. This is

69

feasible because in this model, we introduce for each agent i a set of post-actions
Ai after the alternative has been chosen.

Definition 1. Environment: Suppose n agents want to choose among a set S of
alternatives. Each agent i has a type Ti that is her private information. Choos-
ing a social alternative s, agent i has a finite set of available post-actions Ai
that can take advantage of picking s. Finally, each agent i has a utility function
ui : Ti × S × Ai → [0, 1]. Environment is defined as the tuple (T, S,A, u).

It is remarkable that a mechanism design except of the social alternative, it will
also choose a subset of Ai, ∀ agent i (an element of 2Ai\{∅}). Additionally, we
must mention that each agent i announces a type bi. If bi = ti then agent i tells
the truth (truthful) otherwise she misreports her true type. For example, suppose
a social planner wants to make two choices (create) among S = {train station
, port , airport , road} in order to help the citizens to commute. Each citizen
i has a type Ti that "shows" what they actually prefer. After the fact that the
citizens announce their types and the social planner picks the "ways" of travelling,
each citizen must choose which way to commute in order to maximize his utility
function. The goal of social planner is to maximize the social welfare.

Suppose for the rest of this section that we deal with a non-trivial environment,
that is for any i and ∀ti 6= t′i, there is some alternative s such that ai(ti, s) ∩
ai(t

′
i, s) = ∅ where ai(ti, s) denotes the set of optimal post-actions of agent i with

type ti when alternative s has already been chosen.

Definition 2. gap: Let P be a probability distribution over the set of alternatives,
then

GAPP (T, S,A, u) = min
i,ti 6=bi

E[ui(ti, s, ai(ti, s))− ui(ti, s, ai(bi, s))]

If we take the maximum of GAPP (T, S,A, u) over all probability distributions P
of S we define the gap of environment (T, S,A, u).

Intuitively, gap is the maximal loss (over all probability distributions) if an agent’s
strategy (i for example) is to report a type bi 6= ti (ti is i’s true type). We are
interested in non-trivial environments in order the gap to be non-zero.

Gap mechanism: Let P be the probability distribution that maximizes
GAPP (T, S,A, u). Mgap mechanism is defined as follows :

Mgap(T, S,A, u) = choose s according to P

The post-action of agent i is then an element of ai(bi, s) where s is the chosen
alternative and bi is i’s announced type.

70

It is rather straightforward to prove that the mechanism above is truthful
(truthtelling is a dominant strategy).

Lemma 1: For any agent i with type ti and announced type bi 6= ti and ev-
ery announced type vector b−i the following inequality holds:

EMgap(ti,b−i)[ui(ti, s, ai(ti, s))] > EMgap(bi,b−i)[ui(ti, s, ai(bi, s))] +GAP (T, S,A, u)

Proof: Let i be an arbitrary agent and P the probability distribution that max-
imizes GAP (T, S,A, u). Then EMgap(ti,b−i)[ui(ti, s, ai(ti, s)) − ui(ti, s, ai(bi, s))] >
GAPP (T, S,A, u) (definition). Equivalently, EMgap(ti,b−i)[ui(ti, s, ai(ti, s))] >
EMgap(ti,b−i)[ui(ti, s, ai(bi, s))] + GAPP (T, S,A, u). Finally by definition follows
that GAPP (T, S,A, u) = GAP (T, S,A, u) and also EMgap(ti,b−i)[ui(ti, s, ai(bi, s))] =
EMgap(bi,b−i)[ui(ti, s, ai(bi, s))] becauseMgap mechanism is independent of the an-
nounced types (it depends only on T, S,A, u)

�

We are ready now to introduce the combined mechanism that is strategy-proof.
For the rest of this section we consider that social welfare function F ∈ [0, 1]
and F is 1-sensitive, that is for every pair of types t, t′ differing on a single user
|F (t, s)−F (t′, s)| ≤ 1

n
so as to n∆F ≤ 1. This is a necessary hypothesis in order the

exponential mechanismMε/2(nF, t) to preserve ε-differential privacy (this follows
from Theorem 2 in section 3.2.2). It is remarkable that the social welfare function
F also depends on the types of the agents. Additionally, we should mention that
F is not strongly correlated to each particular agent (if agent i changes her type,
F changes by a O(1

n
)). A common example is F =

∑
i ui
n

where ui ∈ [0, 1] for every
agent i.

Combined mechanism: Let q be a real number such that 0 ≤ q ≤ 1. The
combined mechanism is denoted by

Mcomb(F, t, ε) = (1− q)Mε/2(nF, t) + qMgap(t)

whereMε/2(nF, t) is the exponential mechanism as defined in section 3.2.2.

Theorem 1: Let a non-trivial environment (T, S,A, u) with gap γ, a social wel-
fare function F and qγ ≥ 2ε. The combined mechanism is truthful.

Proof: Let i be an arbitrary agent with true type ti and announced type bi 6= ti.
Then E[ui(ti)] = (1 − q)EMε/2(nF,(ti,b−i))[ui(ti)] + qEMgap(ti,b−i)[ui(ti)]. Addition-
ally from lemma 1 and Theorem 1 of section 3.3.1 follows that E[ui(ti)] > (1 −
q)e−εEMε/2(nF,(bi,b−i))[ui(bi)] + q(EMgap(bi,b−i)[ui(bi)] + γ). By observing the fact

71

that e−εx ≥ x + e−ε − 1 ≥ x − 2ε (x ∈ [0, 1], using derivatives) we have that
E[ui(ti)] > (1− q)EMε/2(nF,(bi,b−i))[ui(bi)] + q(EMgap(bi,b−i)[ui(bi)]− 2ε(1− q) + qγ ≥
E[ui(bi)] + 2εq. Thus E[ui(ti)] > E[ui(bi)]

�

Except of the truthfulness, we are interested in exploring how close to the optimal
(OPT = maxs′ F (t, s′)) is the outcome of the combined mechanism. The following
theorem answers this question.

Theorem 2: Using the combined mechanism Mcomb with ε =
√

γ
n
·
√
ln(nγe

2
|S|)

and q = 2ε/γ the following inequality holds:

E[F (s, t)] ≥ max
s′

F (s′, t)− 4

√
1

γn
·
√
ln(

nγe

2
|S|)

where |S| is the number of the alternatives.

Proof: Firstly, using the fact that F ≥ 0 we conclude that E[F (s, t)] ≥ (1 −
q) · EMε/2(nF,t)[F (s, t)]. Let B be the set of alternatives such that F (s, t) <

maxs′ F (s′, t)− δ. From Theorem 2 in section 3.2.2, assuming that ROPT is nor-
malized and choosing 2t/nε = δ or equivalently t = nε

2
δ it occurs that Pr[s ∈ B] ≤

|B| ·e−nε2 δ ≤ |S| ·e−nε2 δ. Thus EMε/2(nF,t)[F (s, t)] ≥ (1−|S|e−nε2 δ) ·(OPT−δ). Since
F (s, t) ≤ 1 so is OPT − δ < 1 and the inequality becomes EMε/2(nF,t)[F (s, t)] ≥
OPT − δ − |S|e−nε2 δ. By choosing δ = 2

nε
ln(nε|S|

2
) it follows that

EMε/2(nF,t)[F (s, t)] ≥ OPT − 2

nε
ln(

nε|S|e
2

)

So E[F (s, t)] ≥ (1 − 2ε
γ

)(OPT − 2
nε
ln(nε|S|e

2
)) ≥ OPT − 2

nε
ln(nε|S|e

2
) − 2ε

γ
. Thus

substituting ε and using the fact that for large n, ε ≤ γ we have that E[F (s, t)] ≥
OPT − 4

√
1
γn

√
ln(γne

2
|S|).

�

From our analysis, it is obvious that γ < 1. For larger γ from theorem above we
have better approximation with respect to the optimal (maximum) social welfare.
So, when we deal with problems, if we can find a lower bound for γ, assume l,
then it follows that E[F (s, t)] ≥ OPT −4

√
1
ln
·
√
ln(nle

2
|S|) (we substitute γ for l).

Additionally, it is sometimes inefficient to find the probability distribution P on S
which realizes the gap γ. Instead we can find another probability distribution P ′
(see problem below) such that GAPP ′(T, S,A, u) = γ′ ≤ γ and then useMgap and
Mcomb according to P ′ (then obviously we substitute γ for γ′ to the Theorem 2).

72

Application to auctions for digital goods

Assume a seller faces n bidders each of whom wants to buy a unit of a digital
good. The seller must decide a fixed price p ∈ {0, 1

m
, ..., m−1

m
, 1} = S such that

the bidders will pay to acquire the item (if they are willing to). Each bidder has
a type Ti ∈ {0, 1

m
, ..., m−1

m
, 1} that shows how willing he is to buy the good. The

set of post actions for each bidder i is Ai = {”buy”, ”not buy”}, his post-action
function and his utility function are denoted respectively by

ai(bi, p) =

{
”buy” if bi ≥ p
”not buy” if bi < p

ui(ti, p, ai) =

{
ti − p if ai = ”buy”
0 if ai = ”not buy”

Furthermore, assume that each bidder i can’t announce bi > ti (only bi ≤ ti is
allowed) and let F (p, t) = p

n
· |i : ti ≥ p| which is obviously 1-sensitive. Consider P

distribution to be uniform over S. We use the combined mechanism Mcomb where
Mgap chooses p ∈ S according to P . We will prove that GAPP = γ ≥ 1

m(m+1)
. Let

an arbitrary bidder i and ti 6= bi. Equivalently ti ≥ bi + 1
m
, thus for bi ≤ p < ti

we have that ui(ti, p, ai(ti, p)) − ui(ti, p, ai(bi, p)) = ti − p ≥ 1
m
. The probability

of choosing p ∈ [bi, ti) is at least 1
m+1

(in case ti = bi + 1
m
, else it is larger), thus

γ ≥ 1
m(m+1)

. So from Theorem 2 it follows that E[F (p, t)] ≥ OPT − 4
√

m(m+1)
n
·√

ln(ne
2m(m+1)

|S|).

3.5 Conclusion

In this chapter, we examined the idea of differential privacy. First of all we dis-
cussed about exponential mechanism, a mechanism that is "universal", a nice
technique two solve problems in a privacy manner. Furthermore, we saw differ-
ential privacy’s applications to combinatorial optimization problems and also to
game-theoretic ones. Finally, even though exponential mechanism can achieve
approximate truthfulness as far as mechanism design is concerned, we used gap
mechanism in order to create a combined mechanism that has good approximation
and is "exact" truthful.

73

74

References

[1] Alon Noga, Fischer Felix,Procaccia Ariel D., and Tennenholtz Moshe.
Sum of Us: Strategyproof Selection from the Selectors. Working paper

[2] Arya V., Garg N., Khandekar R., Meyerson A., Munagala K., and Pan-
dit V.. Local search heuristics for k- median and facility location prob-
lems. SIAM J. Comput., 33(3):544-562, 2004.

[3] Bartholdi J.; Tovey, C. A.; and Trick, M. A. 1989. The computational
difficulty of manipulating an election. Social Choice and Welfare 6:227-
241.

[4] Brams S. J. and Fishburn P. C. Approval Voting. Springer, 2nd edition,
2007.

[5] Caragiannis I. Kaklamanis C., Karanikolas N. and Procaccia A. D..
Socially Desirable Approximations for Dodgson’s Voting Rule.

[6] Clarke E. H. Multipart pricing of public goods. Public Choice, 11(1),
September 1971.

[7] Conitzer V., and Sandholm, T. 2003. Universal voting protocol tweaks
to make manipulation hard. In Proc. of 18th IJCAI, 781- 788.

[8] Conitzer V., and Sandholm, T. 2006. Nonexistence of voting rules that
are usually hard to manipulate. In Proc. of 21st AAAI, 627-634.

[9] Dwork C., McSherry F., Nissim K., and Smith A. Calibrating noise to
sensitivity in private data analysis. In S. Halevi and T. Rabin, editors,
TCC, volume 3876 of Lecture Notes in Computer Science, pages 265-
284. Springer, 2006.

[10] Gibbard A. 1973. Manipulation of voting schemes: A general result.
Econometrica, 41:587-602, July 1973.

[11] Gibbard A. 1977. Manipulation of schemes that mix voting with chance.
Econometrica 45:665-681.

[12] Groves T. Incentives in teams. Econometrica, 41:617-631, 1973.

75

[13] Gupta A., Ligett K., McSherry F., Roth A., Talwar K.: Differentially
Private Combinatorial Optimization. SODA 2010 :1106-1125

[14] Hemaspaandra, E., and Hemaspaandra, L. A. 2007. Dichotomy for vot-
ing systems. Journal of Computer and System Sciences 73(1):73-83.

[15] Karger D. R.. Global min-cuts in RNC, and other ramifications of a
simple min-cut algorithm. In Proceedings of the Fourth Annual ACM-
SIAM Symposium on Discrete Algorithms (Austin, TX, 1993), pages
21-30, New York, 1993. ACM.

[16] Laslier Jean-Francois, Sanver M. Remzi. Handbook on Approval Voting

[17] Maskin Eric. Mechanism Design: How to Implement Social Goals.
February 2008

[18] McSherry F. and Talwar K. Mechanism Design via Differential Pri-
vacy. In Foundations of Computer Science, 2007. FOCS’07. 48th Annual
IEEE Symposium on, pages 94-103, 2007.

[19] Motwani R., Raghavan P.: Randomized Algorithms

[20] Nemhauser G. L. ,Wolsey L. A., and Fisher M. L. An analysis of approxi-
mations for maximizing submodular set functions ii.Math. Programming
Study 8, pages 73-87, 1978.

[21] Nisan Noam, Roughgarde Tim, Tardos Eva, and V. Vazirani Vijay. Al-
gorithmic Game Theory

[22] Nissim Kobbi, Smorodinsky Rann and Tennenholtz Moshe. Approxi-
mately Optimal Mechanism Design via Differential Privacy. April 2010.
Draft version

[23] Papadimitriou C., Schapira M., and Singer Y. On the Hardness of Being
Truthful. In Foundations of Computer Science, 2008. FOCS’08. 49th
Annual IEEE Symposium on, 2008.

[24] Procaccia A. D., and Tennenholtz, M. 2009. Approximate mechanism
design without money. In Proc. of 10th EC, 177-186.

[25] Procaccia A.D. Can Approximation Circumvent Gibbard-
Satterthwaite? In Proc. 24th AAAI Conference on Artificial In-
telligence, pp. 836-841, Jul 2010.

[26] Satterthwaite M. 1975. Strategy-proofness and Arrow’s conditions: Ex-
istence and correspondence theorems for voting procedures and social
welfare functions. Journal of Economic Theory 10:187-217.

76

[27] Schummer J. Almost-dominant strategy implementation. Games and
Economic Behavior, 48:154-170, 2004.

[28] Vazirani V. Approximation algorithms. Springer-Verlag, 2001.

[29] Vickrey W. Counterspeculation, auctions, and competitive sealed ten-
ders. The Journal of Finance, 16(1):8-37, 1961.

[30] Vodak Jan. A note on concentration of submodular functions (2010)

[31] Yao A. C. 1977. Probabilistic computations: Towards a unified measure
of complexity. In Proc. of 17th FOCS, 222-227.

[32] Notes on Randomized Algorithms, Berkeley.

[33] Aggel c Ge¸rgioc. Computational Considerations of Voting Rules.
Diplwmatik ErgasÐa, 2010.

77

78

Appendix

Missing Proofs

Theorem 1: Rearrangement inequality:

Let a1, ..., an, b1, ..., bn be two non-decreasing sequences of positive real numbers
and b′1, ..., b′n be a permutation of sequence bn. Then the following inequality holds

n∑
i=1

aibi ≥ aib
′
i

Proof: Suppose the contrary. Let j be the smallest index such that b′j > b′j+1 and
aj < aj+1 (if there is no such j then the inequality holds). Then the right part
of the inequality is equal to

∑j−1
i=1 aib

′
i + ajb

′
j + aj+1b

′
j+1 +

∑n
i=j+2 aib

′
i. However

ajb
′
j + aj+1b

′
j+1 < ajb

′
j+1 + aj+1b

′
j because (aj+1 − aj)(b′j − b′j+1) > 0. This leads to

contradiction because we found a larger sum by swapping b′j, b′j+1.

�

Theorem 2: BCS inequality:

Let a1, ..., an, b1, ..., bn be two sequences of positive real numbers. The following
inequality holds (

n∑
i=1

a2
i

)
·

(
n∑
i=1

b2
i

)
≥

(
n∑
i=1

aibi

)2

Proof: After operations we have that

(
n∑
i=1

a2
i

)
·

(
n∑
i=1

b2
i

)
−

(
n∑
i=1

aibi

)2

becomes

equivalently
1

2

∑
1≤i≤n

∑
1≤j≤n,j 6=i

(aibj − ajbi)2 ≥ 0

�

79

Theorem 3: (Yao’s Minimax Principle) Let A (set of deterministic algorithms)
and I (set of inputs) be nonempty sets and k : A×I → R be a cost function, and
let σ and τ be probability distributions on A and I. Let Aσ be a random variable
with values in A and distribution σ and let Iτ be a random variable with values
in I and distribution τ . Then we have

min
A∈A

E[k(A, Iτ)] ≤ max
I∈I

E[k(Aσ, I)]

Proof: Let k =
∑

(A,I)∈A×I Prσ[A] · Prτ [I] · k(A, I). We have the following:

min
A∈A

E[k(A, Iτ)] = min
A∈A

∑
I∈I

Pr τ [I] · k(A, I)

≤
∑
A∈A

Pr σ[A]
∑
I∈I

Pr τ [I] · k(A, I)

= k

=
∑
I∈I

Pr τ [I]
∑
A∈A

Pr σ[A] · k(A, I)

≤ max
I∈I

∑
A∈A

Pr σ[A] · k(A, I)

= max
I∈I

E[k(Aσ, I)]

It is remarkable, that this inequality stands for minimization problems. For max-
imization ones, the inequality becomes

max
A∈A

E[k(A, Iτ)] ≥ min
I∈I

E[k(Aσ, I)]

and the proof is the same.

�

80

