CREANEIGH EONIKO METZOBIO NMOAYTEXNEIO

%,

W
Ellé

[)
»'

3.

%
S

2 XOAH HAEKTPOAOI QN MHXANIKQN
KAl MHXANIKQN YTIOAOTIZTQON

&
te

gTioR
@‘\ rﬂ. ANE
%\\a
| Y2l
" NPOMHBEVS .
X
nvpPopos

TOMEAZ NMAHPO®OPIKHZ KAI
2YZTHMATQON

SPARTAN-3 FPGA WITH PCI INTERFACE FOR MASS
MEMORY PCB-TESTER

AITIAQMATIKH EPT'AXIA

Adprpog Mrepoevtég

Empiénov : KIlexpeotin
Koabnyntg EMII

Athens, October 2010

EONIKO METZOBIO NMOAYTEXNEIO

WA
Bl%

" ‘q\,
| yare
‘
7 NPOMHOEVS .
Sl
nvp$opos

2 XOAH HAEKTPOAOI QN MHXANIKQN
KAl MHXANIKQN YTIOAOIIZTQON

1)

TOMEAZ NMAHPO®OPIKHZ KAI
2YZTHMATQON

SPARTAN-3 FPGA WITH PCI INTERFACE FOR MASS
MEMORY PCB-TESTER

AITIAQMATIKH EPT'AXIA

Adprpog MrepoevTég

Empiénov : KIlekpeotin
Kobnyntg EMII

K. IMekpeotln A. Xovvtpng I'. Owovopdkog
Kobnyntmg E.M.IL En.Kabnyntg E.ML.IL Aéxropog E.M.II.

Athens, October 2010

Mmrepoevtéc Adumpog
Aumhopotovyog Hiextpoddyog Mnyavikdg kot Mrnyavikdg Yroroyiotov E.MLIL.

Copyright © Mnepogvtég Adumpog, 2010

Me emeuiaén mtovtog dwcondpatoc. All rights reserved.

AmayopeheTol 1 avILypo@n, amobKevo Kot S10voun TG ToPOVGAS EPYOCING, €6 OAOKANPOV
N TWAHOTOG QVTHS, Yo EUmopikd okomd. Emitpéneton 1 avatdmmon, amoffikevon Kot dtovopn
Y10l GKOTO 1] KEPOOOKOTIKO, EKTOOEVTIKNG 1] EPEVVNTIKNG PVONGS, VIO TNV TPoLILOOESN Vvl
aVOQEPETAL 1] TTNYT TPOEAEVGONG Kot Vo, dlatnpeital To Tapdv uivopa. Epotipoto mov
aQOPOVV TN YPNON TNG EPYACILS Y10 KEPOOOKOTIKO OKOTO TPEMEL VO 0mELOVVOVTAL TPOG TOV
oLYYPOPEQ.

Ot amdWYELG KO TO, GUUTEPAGLOTO TOV TEPIEXOVTOL GE AVTO TO £YYPAPO EKPPALOvY TOV
OLYYPOPEN KOL OV TPETEL VO EPUNVELDEL OTL OVTITPOCHOTELOLV TIG EMioNEG OEGEIS TOV
ebvikoh MetadProv [Moivteyveiov.

IHeptinyn

H dumhopatikny epyacio enikevipdvetat otny meptoyn tov FPGA. Eva FPGA design
KOTOGKEVAGTNKE TO OTOI0 TPOGOUOLDVEL TO YPOVIGHO EVOG UIKPOETEEEPYOTT).
Xpnouonowwvtag owtd to design swvai duvatn 1 diéyepon ddpopwv PCBS mov givar
ouvdedepéva pe v Kapta. Ta PCBs ypnoonotobvtot yio mparypatikod ypdvou Kot LoKpag
dlapKeLag EAEYYO.

"Eva module katackevdotnke péoa oto FPGA design mov pmopel vo Aettovpynoet oe d0o
KOTOOTAGELS, €ite ¢ Master gite wc slave. Q¢ master, to orjpato ToV EKTEUTOVTOL
wpocouoldvovy) Asttovpyia evoc ERC32 pukpoeneepyaoty), Evd ot TIHEG TOV OCNUATOV
e€optdvtor and TG evIorég Tomov assembly mov divel o ypotg. AVTEG Ol EVIOLEG
uetapépovton péow tov PCI Interface oto FPGA. Q¢ slave, to FPGA design dgv
TPOCOUOIDVEL TAEOV TN Agttovpyia evog ERC32 puikpoemeepyaoty, aAld Aapufavel onpota
Tov £rovv dnuovpyndet amd Evav tétoto pkpoenesepyast. Mmopel va «petappdoswy to
ONUOTO KO VO EKTEAEGEL TNV AELTOVPYIO TOL CVTA TO GTLLOTA VTTOSNADVOLV.

"Eva software interface avamtoyOnike, to onoio divel amevbeiog kar ebkoin TpdcPacn oto véo
module, mov &yt vAomonbei péca oto FPGA.

Aé€arc Kierowa

FPGA design,Xpovioudc pikpoene&epaotn, Ilpocopoioon pukpoeneéepyaot, Eleyyoc PCB,
Egappoyéc mpaypotikov ypdvov,Channel-link,Space-Wire.

Abstract

The thesis deals with FPGA design. More concretely, a FPGA design is created, which
simulates a Microprocessor’s timing. Using this FPGA design, the stimulation of slave PCBs,
which are connected on the board is possible. The PCBs are used for real time and long term
tests.

Inside the FPGA design the module which is implemented can work in two modes, master
and slave. In master mode, the signals sent out, will simulate the work of an ERC 32
microprocessor and their values will depend on the input “Assembly type” commands given
from the user. These commands are transferred through the PCI Interface to the FPGA. In
slave mode, the FPGA design doesn’t simulate any more the work of an ERC 32
microprocessor but it receives signals which are produced by such a microprocessor. It can
translate these signals and it can carry out the operation these signals imply.

Finally, a user interface is developed, which gives a direct and easy access to the new module,
which is implemented inside the FPGA.

Keywords

FPGA design, microprocessor timing, microprocessor simulation, PCB testing, real-time
applications, Channel-link,Space-Wire.

Evyaprotieg

Evyap1otd T00¢ Yoveic Lov kot TNV adePPR} LOL TOV GTEKOVTOL TAVTO, TANL LLOV,
mv etoupeio EADS Astrium ko dwaitepa to k. Oliver Birk yo tnv moAvtiun
BonBetla Tovg kaBOAN ™ drdpKeld TEPATOONS TNG SUTAMUATIKNC KOODS Ko TOV

kaBnynt pov k.Ilexpetln yio m cvvepyoasio poc.

Table of contents

L0000 g VAN G L g 5
AN D10 01 D (N 1 VLN . NPT PTRTSTRRRRINE 5
F N I N I Y X O R 6
KEYWVORDS ...ttt ettt et e ettt e ettt e e s ab et e e ettt e e s eate e e s sabe e e s eabbeeeseabaaessabeeessabessesbbaeesssbbeeesseesessares 6
[70, 0N i D2 N 1 D) R 7
TABLE OF CONTENTSttt ittt ettt sttt e e ettt e e sttt e s st e e e s ebbeeeseabeseesbteassasbbesesbaseessbbeeesssbaeessbeasessares 8
LIST OF FIGURES ...ttt ettt ettt e e ettt e e et e e s bt e e e s eab e e e s eabeesesbbesesabbbeessabeaessbbeessssbaneeias 10
I S IO T 7Y =1 I T 11
I S IO Sl OO] BT 11
O L O 10 L O 1 1] R 13
1.1 MAIN POINTS AND BENEFITS OF THE RESEARCH.......ciitittttititeeiiiiititieeeesesssisbresesssssssssbsssssssssssnssssssssesssnnns 13
1.2 GENERAL INFORMATION ABOUT FPGASottt ettt s s sabbaa e e e e e s s nans 14
1.3 GENERAL INFORMATION ABOUT THE PCI CARD ..vvviiiiiiiiiitiiit ettt esiibet s e sibbba s e e s e s sabbaae e s e e s s nnnns 15
1.4 GENERAL INFORMATION ABOUT PCI TECHNOLOGYoocttiiiiiee ettt e e esititet e e e s e s sabbtete e s e s s s seabbaaeessesssans 16

2. HARDWARE ON THE CARDooii ottt ettt ettt e s ettt e e sttt e e e sttt e e s sttt e e s ettt e e s sabbeeesrreeessaees 17
2.1 XILINX SPARTAN-B FPGA ..ttt ettt e e e e et e e e e e e s s bbb et e e e e e s s st b b e b e e e s e e ssabbbbaeeeeaas 17
A A O =L 2SN o 1 =] K i TR 18
2R I I 5 1R TRRRTTT 18
2.4 PLUG-IN-BOARD CONNECTORS .. 1tttitiitiiittttittte et iiitbttteessessasisbbssssssssssistbsssessssssissssssessssssssissssssssesssasssresseens 19
2.5 PLUG-IN-BOARD HARDWARE.uttiiiiiiiiiitiiiiie e seittt et e e s e st e e e e s e e bbb et e e e e s s s st b b et e e e s e s sabbbbbaeeeesssabbbbaeeeeeas 21
2.6 INTERNAL EXPANSION PORT J2L 1oreiiiiiiiiiitiiiie ettt ettt e e e ettt e e e e e e st b et e e e e e s s ebb bbb e e e e e e s eaabbbaeeeeeas 24
2.7 LOCAL BUS SIGNALSutiiiiiiiiiiiitieii e ettt e s s ettt et e e e e s e e bbbt e e e e e e e bbb b et e e e e e e s sb b b e aeeesessaasbbabeeeeeessabbbbaneeeeas 24
2.8 JTAG INTERFACE ... cctttitiie e it ettt e e e e e ettt e e e e st et e e e e e e s e e b bbb et e e e e e e s bbb b eeeeeesssaa bbb abeeeeessabbbbbeeeeeessasbbbaneeeeeas 28
2.9 MEMORY INTERFACE ...utviiiiiiiiiitittiee e e et ieibatt e e e e e s s aabaaae e s e e s s aaa bbb e e e e e e e e e sia b bbb e e eeeesssab b b et e eesesssasbbbbeeeeeesaasbbbbaeeeeeas 28

P2 OIS o I < T 29

3. WISHBONE BUS ARCHITECTURE ...ttt sttt e ettt e s eae e e s st e e s eaaen e s e 30
3.1 GENERAL INFORMATION ABOUT WISHBONE BUSvvviiiieiiiiiitriiiieessesitteteeeessssssssssssssssssssssssessssssssssssssseess 30
3.1.1 WiShDONE TOPOIOGIES ...ttt bbbt b bbbttt ebe s 30

3.2 WISHBONE IMPLEMENTATION ON PCIS3BASEcuvttiiiieeeieiittiiteeessesiibteteeessssssssaaseessssssasrasesssesssasssssssssees 31
3.2.1 Wishbone topology USEd 0N PCISBDASE.cvieieiiitirieerie e 31

3.2.2 Basic wishbone files and MOTUIESoooiuuiiiiiiie et et 32

Kl Moo |l o TU RS To T: |SSS 33

3.2.4 WiShDONE SIGNAIScveeiieeie ettt et et e st e e be e e e s e s naesaeesaeesaeebeeneeensennee e 35

3.2.5 WiShDONE SIGNAI SIFUCLUIEccvviiviicie ettt ettt te e s e st e sae e s aeenbeeneeenbennee e 35

3.2.6 Relationship between wishbone and local bus SIgNals ... 36
3.2.6.1 DAtaflow frOM PC tO PCBoiiiiiceie ettt ettt ettt ettt ettt at et e s b e e bt e st e e eb e e e eeesateabeeeneas 37

3.2.6.2 DAtaflow froOM PCB 0 PC ...ttt ettt sttt ettt et et e st t e st e e et e e e ae e sateabeeeneas 37

3.2.7 Basic local bus control signals used from wishbone and their operationccccceveiiiiiinenn, 38

3.3 VHDL IMPLEMENTATION OF WISHBONE BUS ARCHITECTUREccciiiiittiiiieeeessiitteiee e s e s s ssivaiees s e s s essvrreneee s 39
3.3.1 WISHDONE IMOTUIE ...ttt ettt ettt st e e s st e e s s b bt e e s bt e e e s s b be e e sabbaesssabanessbbeeas 39

BB 2 TOP MOUUIE ...t b e et e b ettt sttt b et e bt bt bbb ne et 48

3.3 3 INEEICON IMOUUIE ...ttt ettt e e ettt e s et e e st e s eatb et e s sareeessasbeeesaneeessaneeeesarrees 54

3.3 4 MASEEr_PIX IMOTUIE ...ttt b et sttt st b e neens 55

RN €12 (@ 1Y, oo (] [T TR 58

3.4 TESTING WISHBONE BUS ARCHITECTURE WITH IMODELSIM ..vvviviiiiiiiiiiiiieee e e e seireiee e e e e seeivvaeeeeesssesssrsaenneees 61

4. MSS MODULE IMPLEMENTATION. ..ottt ettt ettt te e e et e e s et e e e st e s setaeeessraeessraeessasreeessnes 71

4.1 GENERAL INFORMATION ABOUT ERC32 MICROPROCESSOR........cuvtterteatesieaneeseessestessessesseaseessensessessesnesseesens 71

4.2 MSS COMMUNICATION INTERFACE TIMINGcccuutiiiitiieeiittiieeeteeeesesteeesssbeesssbesesssssesesssseessssssessssssesssssssenas 71
4.3 OVERVIEW OF IMSS IMODULEutiiiiiteie ettt e e sttt e e sttt e s s ettt e e s eatea s s st ee s s sabae s s aabeeessbbesesssbesessbbeesssnbenessbbenas 72
4.4 DEVELOPMENT OF IMISS IMODULE ..ottt ettt ettt ettt e ettt e s st e e s stb e s s eabaa s s s bbe s e s sabeeessnbaesessnbeeessneenas 74
N Y N Y F= T (=T OO URTRRRPP 74
A Y NI] Fo YR 75
S T 1 U N TR 76
4.5 DESIGN OF IMISS IMIODULEcceiiiiititti ettt ettt e e e e e e et bttt e e e e e s s bbbt e e e e e e s eab bbbt e s e e e e s ssbbbbeaeeaesessanbbeees 76
T Y S Y F= 1 =T SRR 78
A Y IR F= YRS 80
YA © 1 U N LR 81
4.6 VHDL IMPLEMENTATION OF IMSS IMODULEutiiiiitiie ettt ettt e sttt e ettte s sttt s s s esae e e s sbae e s sbtae s s snseeessnaeeas 82
T YT o oo L= Y (o Lo [V [T 82
3 o o N 1Y oo] S 85
ST] od (@ N1V, Lo Lo [0 [T 90
4.8.4 IMISS IMOGUIE......eeieeii ittt ettt s e e sb e e s b e e e bt e s ebe e s sbe s s sbessbasssbasssbesssbeesbesssbesesbbeans 90
4.6.4.1 MSS-MaSLEF QNG IMSS-SIAVE ...ttt ettt ettt et e st e e s ettt e e sba e e e sab e e s sbaaesssbbeeesabeeeseraneessnes 90
S 15 1 I N 102

4.7 TESTING MSS MODULE WITH IMODELSIM ...uutviiiieiiiiiiiiiiee e siiitrie e s e e s s siabbae s s s e s s ssaabbbasssesssssaabbasesssssssasssnns 112
. SOFTWARE INTERFACE IMPLEMENTATION ...ttt ettt 116
5.1 DESIGN OF THE SOFTWARE INTERFACEuttiiiiiiiiiiiiieiee e e s iiittbeiees e s s sibbbsteessssssbbasaessessssssbbsssesesssssssssesseesns 116
L Y oY IS0 10T L (I =] = T 116
5.1.2 Debugging SOtWAIe INTEITACEc.oiuiiiiiiiee e 118
5.2 IMPLEMENTATION IN CHoooiiiiiiieitiiii ettt ettt e e e e e st et e e e e s e s et bbbt e e s e e s sabb bbb e e e esssaasbbbbeeeseessasbtbeeseeeas 118
LI R O0 Lo [U (o1 (1] TR 119
5.2.2 Main SOfIWATE INEEITACE ...eeiivviie ittt ettt ettt s et e e sttt e e s ettt e e s st et e e sebbeeessabeessrreeessanes 119
5.2.3 Debugging SOftWAIe INTEITACEcouiiiiriiee e 121

. MSS MODULE ON SPARTAN-3 FPGA ...ttt ettt ettt e ettt e e s sta e e s s e e e s s eabe e e s eates 123
6.1 CODE STRUCTURE IN XILINX ISE ...iiiiiiiiitiiiii ittt e e sbb b b e e s e e s s s s bbb en e e e 123
6.2 FPGA IMPLEMENTATION REPORT ...iiiiitiitttitieeeetiiitbteteesessssbbssseessssssbbbatesseessabbsasesseessassbbbseesesssssssstbesseenns 123
6.3 TESTING IMISS MODULE ...eiiiiiiiititiei e e ettt e s e e etb et e e e e e s st b e b e e e e e e s et bbbt e e e e e s s abb b b be e s e e s s ea bbb baeeeeessaabbbeeeeeeas 124
5.3.1 TESHING PIOCESS ...vevveieeiteeitee it et et e st e e teeste e teesteasaesseesteesteesteesteesteenseesseassessseteestaesteesaeaneesneesneenreeneas 124
ORI B Lo 1T a1 (o Lo I (o BTt oo PSP 126
6.3.3 TESLING IMSS IMASTET ...tttk bbbt bbbt b bbbt 127
6.3.4 TESEING MSS SIAVE ...t bbbttt b et b ettt 129
Lo AV S T I 1Y 1 L 131
6.4.1 WIITE COMIMANGSeveeeiietiie ettt ettt ettt e e ettt e s et et e e st eseesbeeesebatessbbeeesasseeesssbaeeessabeaesssnbeessaseeeessanes 131
6.4.2 REAM COMMEANTSuviieiitiie ettt ettt e ettt e s et e e st e s e etb et e s et ateeseabeeesasseeessssaeeessabesessssbeessasneeessanes 134

L CONCLUSION. .ttt ettt e sttt e e ettt e s et eeseateeeeasbeeesaateteesateesaabateesaabaaesssbaeessasrenessanes 136
A AN = 11 oY = 1= N TSRO 136
7.2 FURTHER RESEARCH AND DEVELOPMENT .1vtttiiiiiiiittttttieeessiitbtsieesesssissbssessssssssbsssesssessssssssssssssssssssssesseess 136
7.3 SPACE WIRE INTERFACE ...iiiiiiitttiitie e et eiittbiet e e e e e e eitbae e e e e e st st b b s s e e e e e e s et b b et e e s e e e s s bbb abeeeeessaasbbbbeeeeeessaabbbeeeeeeas 136
T4 CHANNEL LINK Lottt ettt e e et e e e e e s s bbb e e e e e e e et et bbbt e e e e e s s ab b bbb eeeee s e s bbb b beeeeeesassbbbbeeeeeeas 139
(S 1S I L@ TR ¥ 2N ad o /R 141

List of figures

Figure 1 Plan of the PCI Card ... 14
FIQUrE 2 PIUG IN BOAIUcveeieciceee ettt e re e e 21
Figure 3 Dataflow from FPGA to 78-pin HD-Sub for PO.0 signalcccooviiniiiiiiicenn, 23
Figure 4 WISHBONE AICNITECIUIEooivieie et 32
Figure 5 Local Bus transactions for write and read CYCIecooveveiiiiiiniiniceecee, 35
Figure 6 WISHBONE DatatyPec.ccoueiieiieiieiieeiesie st see e eae e ste e e e ssae e nns 36
Figure 7 Dataflow process between PC and PCB...........cccccooveiieie s 37
Figure 8 INTERCON DatatyPeccueiuiiiiiiirieeiieieiesi ettt 47
Figure 9 Local Bus TeStDENCN.........cviiieiiee e 62
Figure 10 Local Bus-Wishbone Testhench PIC.1cccooiiiiiiiiiiiiieee e 67
Figure 11 Local Bus-Wishbone Testhench piC.3cccooveiiiiiiieie e 68
Figure 12 Local Bus-Wishbone Testhench PIC.4ccooiiiiiiiiiiiiciee e 69
Figure 13 Local Bus-Wishbone Testhench piC.5ccccoveviiiiiieiice e 70
Figure 14 Write Timing of MSS Communication Interfacecccoeveveiiniininiinicieee, 71
Figure 15 Read Timing of MSS Communication Interfacecccoocevveveiiiciieeveccc e 72
Figure 16 Updated WISHBONE AIChITECTUIEc.oeveiiiiiiiiiiiieeieee e 73
Figure 17 MSS MOAUIE DESION ...c.vveieiieieeee ettt sre e enes 77
FIgure 18 MSS-MaSLEr DESIGN.....cc.eiviitiriiriiiieeiieieie ettt bbbttt 78
FIGUIE 19 FSIM DESIGN ...ttt ettt e te e st e e e s te e te e eaneesreenneanes 79
FIgure 20 MSS-SIaVe DESIGNc.voviiiieiitiiii st 81
FIGUIE 21 DUT DESION ..veitieie ettt ettt s te e te e e sra e te e e e te e te e esnaesraenneanes 81
Figure 22 Wishbone-MSS Testhench PiC.L........cccoiiiiiiiiiieeeee e, 113
Figure 23 Wishbone-MSS TeSthench PIC.2.......ccooieiieiiiiciece e 114
Figure 24 Wishbone-MSS Testhench PiC.3........cooiiiiiiie e, 115
Figure 25 Main GUI OVEIVIEWccuviiviiieieie ettt sttt et ste e reenne e 117
Figure 26 Debugging GUI OVEIVIBW...........coiiiiiiieieiie et 118
FIGUIE 27 IMAIN GUI ...ttt sttt be et te et reeane e 119
Figure 28 Pressing Browse DULION ... 120
Figure 29 Use of Main GUIcc.ooiiiiiccec e 121
Figure 30 DebUGQING GUILL.....c.ooiiiiiii b 122
FIGUIE 31 CeSYS IMONITON ...ttt et st et be et e nne e 127
Figure 32 GUI IN IMASTEr MOTEocviiiiiiiitiieiee e 129
Figure 33 GUIIN SIAVE MOUEc.veeiieiece et 130
FIgure 34 MSS-TIMING 1 ..ot bbbt 131
FIQUIE 35 IMISS-TIMING 2 ..ottt ettt e b e re e sre e e raenre e 132
FIgure 36 MSS-TIMING 3 ..o bbbt 133
FIQUIE 37 IMSS-TIMING 4 ..ottt et te e saeeabeearae s 134
FIgure 38 MSS-TIMING 5 ..o e bbbt 135
Figure 39 Space-Wire ArChiteCIUIE.........covi i 138
Figure 40 Channel-Link BIOCK DIiagram..........ccoeiiriiriieieiisesesieeie e 140

10

List of Tables

Table 1 Spartan-3 FPGA TEALUIESccciiiieiieie ettt 18
Table 2 LED-FPGA CONNECHIONSocieiiiieiiesieeie e sieeie sttt st sses e see s sneeneesneesnens 18
Table 3 CON7 (Connection between FPGA and PIB)........cccoveieiieiicieie e 20
Table 4 CONS8 (Connection between HD-SUB Connector CON9 and PIB)ccccccevvinennen. 21
Table 5 Pinout PIB6410 0N PCIS3BASEccooiiiiieie et 23
Table 6 J21 Internal Expansion Connector-FPGA CONNECHIONS.........ccevererenirinenieieieen, 24
Table 7 Local BUS-FPGA CONNECLIONSc..uiiiieieieiesie et 27
Table 8 CONL-JTAG CONNEBCION.......ciieiiiiieiiesieeie et ete sttt snee e seeeseesreeneesneesreas 28
Table 9 SDRAM-FPGA CONNEBCLIONSccueiuiiiiiiieiieieiesie ettt st 29
Table 10 SP1 FLASH-FPGA CONNECLIONS.......ciiiiiiiieiieaiesiiesieeiesiee e sses e ee e e sie e e 29
Table 11 WISHBONE a0dress SITUCTUIE........cviiiieieieiie sttt 47
Table 12 WISHBONE slave devices address field ..o 47
Table 13 MSS timiNg CONSLANTScciiiiiieiie ittt e e nre s 72
Table 14 Updated WISHBONE slave devices address field...........ccooevviiniieieeieiiieneciennn 73
Table 15 MsS vector Dits defiNItiON...........coiiiiiiiice s 74
Table 16 MSS module registers used in Master MOdE.........cccccvevviieieeieiie e 74
Table 17 Cmd_o register bits definition...........cccoooi i 75
Table 18 MSS module debugging rEISLENSccveieriiiierieri e 75
Table 19 MSS module registers used in SIave MOUEccevveiieiieiieie e 76
Table 20 MSS module registers used in DUT ..o 76
Table 21 Advanced HDL Synthesis REPOIcccccuiiiiiieiiiie et 124
Table 22 Device UtIHzation SUMMATYccooviiiiiieiiensee e 124
Table 23 CON9-PIB POrts CONNECLIONcciviiiiiieeie ettt sre e 125
Table 24 CON9-MSS DUS CONNEBCTIONoivieiieieiieie e e 126
Table 25 CON9-DUT DUS CONNECHION........ciiiiieiieieieie et 126

List of Codes

Code 1 WISHBONE.VNAccoeiiicicicce ettt 46
Code 2 PCis3Dase_tOP.VNA.........cciiiiiieie ettt reere e 54
Code 3 WD _INTEICON. VNG, ..ottt esreenne e 55
Code 4 Wh_mMa_PIX.VN ...t re s 58
Code 5 WD _SI_gPI0.VIA ..o e 61
Code 6 TESTDENCN.VN ... e 64
(0000 S g =T (o[IR USSP TP P TP PP PRPRRPO 65
Code 8 Commandfile.tXt (GPIO)ccviiiieiieee et 66
Code 9 WISHBONE.VhA With MISS ..o 85
Code 10 Pcis3base_top.vhd With MSS ... 89
Code 11 Changes in WD_SI_gpio.Vhdcoveiiiieiieceee et 90
Code 12 WD S| MSS.VNA.....coiiiiiiie et 102
Code 13 PCH _teSEVNAo be e re e re e 112
Code 14 MSS CommanFile.EXEeoveiieieeieceee e sre e anes 112
Code 15 MSS Command filecoouiiiiiiei s 127
Code 16 Output log file in Master mode in case the input command file is code 15 128
Code 17 Output log file in Slave mode in case the input command file is code 15............... 130

12

1. Introduction

1.1 Main points and benefits of the research

The MSS timing is simulated depending on the commands which are executed. The Input
commands are sent to the MSS module where they are processed. These commands are
constructed by the user and they will be simply read out from a *.txt file by C#-SW. These
commands will be sent to the board through PCI and they will have the following form:

Command | Address(Hex) | Data(Hex)

WR 0005 FFAD

The ERC32 is one of the few microprocessors, which is available in radiation tolerant
technology, and therefore applicable for space electronics.

The FPGA on the Dig-10 Board is part of a PCB Test system, which will be used to stimulate
as many interfaces of the DUT as possible in an early phase. One of these interfaces is the
microprocessor (ERC32) interface. Later, the pretested PCB is integrated in the PDHU
(Payload Data Handling Unit) box and connected to the real ERC32 Microprocessor. The
implementation shall just simulate the access of the ERC32 Microprocessor to the slave PCB
(which has to be tested). It shall provide an easy way to generate read and write access to the
DUT without having the processor system running. It is not intended to have a full
replacement of the ERC32 by this test system.

The benefit of this work shall be, that the microprocessor interface can behave exactly like
the real microprocessor. This allows a seamless integration of the PCB into the box with no
timing problems. There is no need to have application software on the tester. What is more,
the real time applications in which this card will be used makes this card useful as it cannot
be replaced by typical 1/0-Cards which have slower data-rates and which therefore cannot
support such applications. The design shall be done in a way, that the particular
microprocessor timing can be exchanged easily if another processor is used in the project.

The following figure gives an overview of all stages which have to be accomplished.

13

1:1 Buffers -4+——RD
ll—WR
—ALE
{-ll——SEL
{-—ADDR/DATA——

< P Fpga
(Plugl] rd) Xilinx Spartan-3

A

IP Core

PCB

DUT

1093uu0d -'jod 8/
3
by}

Y
A

AAUAYAVAAYAVAAYAVYAYAAYANAAYANTANARTANAAUANAAUARANARANARANAAANY

ABDDR/DATA

PCI / PCI expr.
M

Figure 1 Plan of the PCI Card

1.2 General Information about FPGASs

Field-Programmable Gate Array is a type of logic chip that can be programmed. An FPGA is
similar to a PLD, but whereas PLDs are generally limited to hundreds of gates, FPGASs
support thousands of gates. They are especially popular for prototyping integrated circuit
designs. Once the design is set, hardwired chips are produced for faster performance. FPGAS
can be used to implement any logical function that an ASIC could perform. The ability to
update the functionality after shipping, partial re-configuration of the portion of the design
and the low non-recurring engineering costs relative to an ASIC design (not withstanding the
generally higher unit cost), offer advantages for many applications.FPGASs contain
programmable logic components called "logic blocks", and a hierarchy of reconfigurable
interconnects that allow the blocks to be "wired together"—somewhat like a one-chip
programmable breadboard. Logic blocks can be configured to perform complex
combinational functions, or merely simple logic gates like AND and XOR. In most FPGAs,
the logic blocks also include memory elements, which may be simple flip-flops or more
complete blocks of memory.

Applications of FPGAs include digital signal processing, software-defined radio, aerospace
14

and defense systems, ASIC prototyping, medical imaging, computer vision, speech
recognition, cryptography, bioinformatics, computer hardware emulation, radio astronomy,
metal detection and a growing range of other areas.

FPGAs originally began as competitors to CPLDs and competed in a similar space, that of
glue logic for PCBs. As their size, capabilities, and speed increased, they began to take over
larger and larger functions to the state where some are now marketed as full systems on chips
(SoC). Particularly with the introduction of dedicated multipliers into FPGA architectures in
the late 1990s, applications which had traditionally been the sole reserve of DSPs began to
incorporate FPGAs instead.

FPGAs especially find applications in any area or algorithm that can make use of the massive
parallelism offered by their architecture. One such area is code breaking, in particular brute-
force attack, of cryptographic algorithms.

FPGAs are increasingly used in conventional high performance computing applications where
computational kernels such as FFT or Convolution are performed on the FPGA instead of a
MICroprocessor.

The inherent parallelism of the logic resources on an FPGA allows for considerable
computational throughput even at a low MHz clock rates. The flexibility of the FPGA allows
for even higher performance by trading off precision and range in the number format for an
increased number of parallel arithmetic units. This has driven a new type of processing called
reconfigurable computing, where time intensive tasks are offloaded from software to FPGAs.

The adoption of FPGAs in high performance computing is currently limited by the complexity
of FPGA design compared to conventional software and the turn-around times of current
design tools.

Traditionally, FPGAs have been reserved for specific vertical applications where the volume
of production is small. For these low-volume applications, the premium that companies pay in
hardware costs per unit for a programmable chip is more affordable than the development
resources spent on creating an ASIC for a low-volume application. Today, new cost and
performance dynamics have broadened the range of viable applications.

1.3 General Information about the PCI card

Nowadays, the high demands for rapid development speed and flexibility in hardware design
are responsible for the fact that the PCIS3BASE board is so popular. On PCIS3BASE board
there is a FPGA installed, which belongs to SPARTAN-3 family. The 93 I/O Balls of this
FPGA are routed to the expansion connector of the Plug-In-Board(PIB) slot ,which on the
other side has connections to a 78-pin HD-SUB 1/O Connector. This HD-SUB 1/O Connector
makes possible the attachment of external Hardware to the FPGA.

PIBs carry a functionality, which may be specific depending on the board will be installed on
or can be even defined from an engineer personally according to the job he wants to carry out.
Plug-In-Boards can carry various interfaces such as ADC, DAC, TTL LEVEL I/O, RS232,
RS485, LVDS, Camera Link or user-defined interface standards.

Apart from the FPGA and the PIB on PCIS3BASE board there are 32 MByte SDRAM, Serial
Flash Memory, a bus-master PCI bridge on board and JTAG interface. Each of these
interfaces will be described thoroughly.

15

A 50 MHz clock oscillator supplies the basic clock that can be used by the FPGA. Besides,
additional clock sources can be present on PIBs.

It should be underlined, that the PCI Interface is not implemented inside the FPGA, in other
words no PCI IP-Core is needed. However, a PCI-Bridge Chip is responsible for this
implementation. Spartan-3 FPGA connects to its local bus and this is how the communication
between the PC and the FPGA is possible.

1.4 General Information about PCI Technology

During the early 1990s, Intel introduced a new bus standard for consideration, the Peripheral
Component Interconnect (PCI) bus. It provides direct access to system memory for connected
devices, but uses a bridge to connect to the front side bus and therefore to the CPU.

Front side bus is actually a physical connection between the processor and the other hardware
components such as RAM, hard drives and PCI Slots. The PCI bridge chip is responsible for

the speed regulation of the PCI bus independently of the CPU’s speed. This provides a higher
degree of reliability and ensures PCI-hardware manufactures know exactly what to design for.

Generally, PCI operates at 33 MHz using a 32-bit local bus. PCI cards use 47 pins to connect
to the bus. The PCI bus is able to work with so few pins due to hardware multiplexing. That
means, the device sends more than one signal over a single pin. What is more, PCI supports
devices that use either 5 Volts or 3.3 Volts.

Plug and Play (PnP) is a main feature that made PCI cards really popular since Windows 95
OS released as this was the first OS which supported this technology. Plug and Play means
that once you connect a device or insert a card into your computer, it is automatically
recognized and configured to work in your system.

The new breakthrough idea in computer bus technology which is likely to replace PCl as it is
nowadays, is the point-to-point switching connection. AMD took into advantage this idea
and leaving behind the shared bus technology, developed the Hypertransport, a new standard
in which, for each session between nodes two point-to-point links are provided. Intel
introduced the new version of PCI, which implements a point-to-point switching connection.
Its name is PCI-Express and seems to be the new cutting edge in computer technology as its
benefits can bring a revolution not only in the performance of computers, but also the very
shape and form of home computer systems.?

! http://www.cesys.com/resources/CE031.pdf
2 http://computer.howstuffworks.com/pci.htm

16

http://www.cesys.com/resources/CE031.pdf
http://computer.howstuffworks.com/pci.htm

2. Hardware on the card

PCIS3BASE board consists of the following Hardware features:

* XILINX Spartan-3 FPGA 1.5 MIO system gates (XC3S1500-4FGG456C)
* PCI host bridge supports 3,3 Volt and 5 Volt PCI (PLX PCI9056BA66)

* High performance, up to 120 MByte/s data rate on PCI bus possible

* 32 MByte SDRAM (MICRON 48LC16M16A2)

* SPI Serial Flash Memory 4 MBit (512 KBytes x 8)

* PCI 2.1 compliant device (Plug-and-Play)

« 78-pin external 1/0 connector

* PIB6410 board included (64 I/O signals on ext. I/O connector, 5
Volt TTL)

» Allocated space for plug-in-board with two 100 pin connectors
* Internal expansion port RM 2,54 mm (28 I/O pins)

* 8 Leds connected to the FPGA

* JTAG connector for debugging and configuration

* Driver for Windows XP and test-program included

2.1 Xilinx Spartan-3 FPGA

Spartan 3 family of FPGAs is specifically designed to meet the needs of high volume, cost-
sensitive consumer electronic applications. This specific FPGA has a density of 1.5 Million
system gates. Spartan 3 family in comparison with its ancestor Spartan-11E family has an
increased amount of logic resources, increased capacity of internal RAM and improved clock
management functions. The previous enhancements combined with advanced process
technology make Spartan-3 FPGAs really popular and what is more, they set new standards in
the programmable logic industry.®

The most important feature of this FPGA family is their exceptionally low cost. That makes
them ideally suit to a wide range of consumer electronics applications such as home
networking, digital television equipment etc.

3 http://www.xilinx.com/support/documentation/data_sheets/ds099.pdf

17

http://www.xilinx.com/support/documentation/data_sheets/ds099.pdf

SPARTAN-3 FPGA which is used on the board has the following features:

Device XC3S1500-4FGG456C
System Gates 1500k

Configurable Logic Blocks 64 x 52

Logic cells 29,952

Block Ram Bits 576k

Distributed Ram Bits 208k

DCMs 4

Multipliers 32

Table 1 Spartan-3 FPGA features

All FPGA VCCO-Pins on the board are connected to 3.3 Volt. It must be taken into account
that higher Voltage signals (5 Volt for instance) would cause the destruction of the FPGA.
Even 3.3 Volt signals with long traces or cables in conjunction with improper termination
resulting overshoot and undershoot can be destructive as well.

2.2 Cesys PIB Slot

This PIB Slot consists of two 100-pin connectors. The one connector is wired to FPGA 1/0
Balls while the second one is wired to an external 78-pin HD-Sub connector. The Plug-In-
Board (P1B6410) which comes as standard with PCIS3BASE consists of 64 10s with 5V
tolerant buffers.

2.3 LEDs

The PCIS3BASE is equipped with eight LEDs, four green and four yellow. Upon successful
configuration the LEDs light up and stay on providing that the device is configured.

Below the connections between the LEDs and the corresponding FPGA 1/0 balls are shown:

LEDs Comment

LED1 Green FPGA 1/0 Ball U2
LED2 Green FPGA 1/0O Ball U3
LED3 Green FPGA 1/0 Ball U4
LED4 Green FPGA 1/0 Ball U5
LED1 Yellow FPGA 1/0 Ball V1
LED2 Yellow FPGA 1/0 Ball V2
LED3 Yellow FPGA 1/0 Ball V3
LED4 Yellow FPGA 1/0 Ball V4
CFG LED Configuration LED

Table 2 LED-FPGA Connections

18

2.4 Plug-In-Board Connectors

On the PIB there are two 100-pin external expansion connectors of type female.

An overview of the connections between the two connectors and other interfaces on the board
follows below.

PIN Signal name FPGA 1/0 PIN Signal Name FPGA I/O
1 PIB 100 Al4 51 PIB 10 43 T6
2 PIB 101 B14 52 PIB_10 44 T5
3 PIB 102 D14 53 PIB 10 45 T4
4 GND 54 PIB_IO 46 T2
5 PIB 103 El4 55 PIB 10 47 Tl
6 PIB_ 104 Al3 56 PIB_10 48 N4
7 PIB_ 105 B13 57 PIB_10 49 N3
8 PIB 10 6 C13 58 PIB 10 50 N2
9 PIB_ 107 D13 59 PIB_10 51 N1
10 PIB 108 E13 60 PIB 10 52 M6
11 PIB 109 F13 61 PIB_10 53 M5
12 PIB 10 10 Al2 62 PIB 1054 M4
13 PIB 1011 B12 63 PIB 10 55 M3
14 PIB_10 12 C12 64 PIB_1O 56 M2
15 PIB 1013 D12 65 PIB 10 57 M1
16 PIB_10 14 E12 66 PIB_1O 58 L1
17 PIB 10 15 F12 67 PIB 10 59 L2
18 PIB_10 16 All 68 PIB_10 60 L3
19 PIB 10 17 B11l 69 PIB 10 61 L4
20 PIB 10 18 Cl1 70 PIB 10 62 L5
21 PIB_10 19 D11 71 PIB_10 63 L6
22 PIB 10 20 Ell 72 PIB 10 64 K1
23 GND 73 PIB_10O 65 K2
24 PIB 10 21 F11 74 PIB 10 66 K3
25 PIB_10 22 Al10 75 PIB_10 67 K4
26 PIB_10 23 B10 76 PIB_10 68 H5
27 PIB 10 24 C10 77 PIB 10 69 Gl
28 PIB_10 25 D10 78 PIB_10 70 G2
29 PIB 10 26 E10 79 PIB 1071 Gb
30 PIB_10 27 F10 80 PIB_10 72 G6
31 PIB 10 28 A9 81 PIB 1073 F2
32 PIB 10 29 B9 82 PIB 1074 F3
33 PIB 10 30 D9 83 PIB_I10 75 F4
34 PIB 10 31 E9 84 PIB 10 76 F5
35 PIB_10 32 F9 85 PIB_I10 77 F6
36 PIB 10 33 A8 86 PIB 1078 El
37 PIB_10 34 B8 87 PIB_10 79 E2
38 PIB 10 35 C7 88 PIB 10 80 E3
39 PIB 10 36 D7 89 PIB 10 81 E4
40 PIB_10 37 E7 90 PIB_10 82 E6

19

41 PIB_10 38 F7 91 PIB_ 10 83 D1
42 PIB_10 39 A5 92 PIB_10 84 D2
43 PIB_10 40 A3 93 PIB_10 85 D3
44 PIBCLK(50MHz) | --- 94 PIB_10 86 D4
45 GND 95 PIB_10 87 D5
46 PIB 1041 B5 96 PIB_10 88 D6
47 PIB_10 42 B6 97 PIB_10 89 Cil
48 +3.3V 98 PIB_10 90 C2
49 +3.3V 99 PIB_ 1091 C5
50 +3.3V 100 PIB_10 92 C6

Table 3 CON7 (Connection between FPGA and PIB)
PIN HD-Sub Comment PIN HD-Sub Comment
1 GND 51 +12 Volt
2 GND 52 +12 Volt
3 GND 53 +12 Volt
4 HD-SUB PIN 39 Pair 0 54 +5 Volt
5 HD-SUB PIN 20 Pair 0 55 +5 Volt
6 HD-SUB PIN 38 Pair 1 56 +5 Volt
7 HD-SUB PIN 19 Pair 1 57 GND
8 HD-SUB PIN 37 Pair 2 58 GND
9 HD-SUB PIN 18 Pair 2 59 GND
10 HD-SUB PIN 36 Pair 3 60 HD-SUB PIN 41
11 HD-SUB PIN 17 Pair 3 61 HD-SUB PIN 42
12 HD-SUB PIN 35 Pair 4 62 HD-SUB PIN 43
13 HD-SUB PIN 16 Pair 4 63 HD-SUB PIN 44
14 HD-SUB PIN 34 Pair 5 64 HD-SUB PIN 45
15 HD-SUB PIN 15 Pair 5 65 HD-SUB PIN 46
16 HD-SUB PIN 33 Pair 6 66 HD-SUB PIN 47
17 HD-SUB PIN 14 Pair 6 67 HD-SUB PIN 48
18 HD-SUB PIN 34 Pair 7 68 HD-SUB PIN 49
19 HD-SUB PIN 13 Pair 7 69 HD-SUB PIN 39
20 HD-SUB PIN 12 70 HD-SUB PIN 60
21 HD-SUB PIN 31 71 HD-SUB PIN 61
22 HD-SUB PIN 11 72 HD-SUB PIN 62
23 HD-SUB PIN 30 73 HD-SUB PIN 63
24 HD-SUB PIN 10 74 HD-SUB PIN 64
25 HD-SUB PIN 9 75 HD-SUB PIN 65
26 HD-SUB PIN 8 76 HD-SUB PIN 66
27 HD-SUB PIN 7 77 HD-SUB PIN 67
28 HD-SUB PIN 6 78 HD-SUB PIN 68
29 HD-SUB PIN 5 79 HD-SUB PIN 69
30 HD-SUB PIN 4 80 HD-SUB PIN 50
31 HD-SUB PIN 3 81 HD-SUB PIN 70
32 HD-SUB PIN 2 82 HD-SUB PIN 51 Pair 15

33 HD-SUB PIN 29 — 83 HD-SUB PIN 71 Pair 15
34 HD-SUB PIN 28 --- 84 HD-SUB PIN 52 Pair 14
35 HD-SUB PIN 27 --- 85 HD-SUB PIN 72 Pair 14
36 HD-SUB PIN 26 --- 86 HD-SUB PIN 53 Pair 13
37 HD-SUB PIN 25 --- 87 HD-SUB PIN 73 Pair 13
38 HD-SUB PIN 24 --- 88 HD-SUB PIN 54 Pair 12
39 HD-SUB PIN 23 --- 89 HD-SUB PIN 74 Pair 12
40 HD-SUB PIN 22 --- 90 HD-SUB PIN 55 Pair 11
41 HD-SUB PIN 21 --- 91 HD-SUB PIN 56 Pair 11
42 GND --- 92 HD-SUB PIN 76 Pair 10
43 GND --- 93 HD-SUB PIN 57 Pair 10
44 GND --- 94 HD-SUB PIN 77 Pair 9
45 +5 Volt --- 95 HD-SUB PIN 58 Pair 9
46 +5 Volt --- 96 HD-SUB PIN 78 Pair 8
47 +5 Volt --- 97 HD-SUB PIN 59 Pair 8
48 +12 Volt --- 98 GND ---

49 +12 Volt --- 99 GND ---

50 +12 Volt --- 100 GND ---

Table 4 CONS8 (Connection between HD-SUB Connector CON9 and PIB)

2.5 Plug-In-Board Hardware

i SR o

T Yo

i &8 wman

Figure 2 Plug In Board

The PIB6410 functions as daughterboard to the CESY'S base series cards. It provides 64 TTL
compatible 10s, organized in 8 banks. Each bank can be switched between input and output
mode. Each bank has its own enable signal. Each of the 4 ICs on the PIB implements 2 of
these banks. In both sides of the PIB there are installed two 100-pin connectors (CON7 +
CONS8) which connect the PIB with the FPGA balls and external 78-pin HD-Sub respectively.
It is already described in 2.4 analytically every single connection of these connectors.

21

All in all the PIB consists of the following hardware features:

8 banks x 8 10s (5 Volt TTL compatible)

Each bank configurable as Input or Output

Individual output-enable for each bank

Typical output scew per bank < 250 ps

ESD > 2000V per MIL-STD-883, Method 3015

ESD > 200V using machine model (C=200pF, R=0)

Balanced output drivers = 24mA

Uses quadruple of 74FCT162245 Fast CMOS bidirectional transceiver

Regarding the information flow from the FPGA balls to the output pins of the external 78-pin
HD-Sub, it is written down on the table below which FPGA ball speaks to which PIB port and
to which pin of 78-pin HD-Sub.

Signal FPGA 1/O ball# | HD SubD Signal name | FPGA I/O ball# HD
name Pin# SubD
Pin#
P0.0 F9 10 P4.0 All 39
PO.1 L1 9 P4.1 F4 38
P0.2 A8 8 P4.2 B11l 37
P0.3 M1 7 P4.3 F3 36
P0.4 B8 6 P4.4 Cl1 35
P0.5 M2 5 P4.5 F2 34
P0.6 C7 4 P4.6 D11 33
P0.7 M3 3 P4.7 G6 32
DIR PO E9 -- DIR P4 G5 --
#OE PO L2 -- #OE P4 E11 --
P1.0 D7 29 P5.0 C12 20
P1.1 M4 28 P5.1 E2 19
P1.2 E7 27 P5.2 D12 18
P1.3 M5 26 P5.3 El 17
P1.4 F7 25 P5.4 E12 16
P1.5 M6 24 P5.5 F6 15
P1.6 A5 23 P5.6 F12 14
P1.7 N1 22 P5.7 F5 13
DIR P1 N2 -- DIR P5 B12 --
#OE P1 A3 -- #OE P5 E3 --
P2.0 E10 49 P6.0 C13 59
P2.1 K1 48 P6.1 D3 58
p2.2 F10 47 P6.2 D13 57
P2.3 L6 46 P6.3 D2 56
P2.4 A9 45 P6.4 E13 55
P2.5 L5 44 P6.5 D1 54
P2.6 B9 43 P6.6 F13 53
p2.7 L4 42 P6.7 E6 52
DIR P2 L3 -- DIR P6 E4 --
#OE P2 D9 -- #OE P6 Al2 --

22

P3.0 Al0 68 P7.0 D14 78
P3.1 H5 67 P7.1 C2 77
P3.2 B10 66 P7.2 El4 76
P3.3 K4 65 P7.3 D6 75
P3.4 C10 64 P7.4 Al3 74
P3.5 K3 63 P7.5 D5 73
P3.6 D10 62 P7.6 B13 72
P3.7 K2 61 P7.7 D4 71
DIR P3 F11 -- DIR P7 B14 --
#OE P3 Gl #OE P7 C5 --

Table 5 Pinout PIB6410 on PCIS3BASE

Having already an overview of the connections between the FPGA and the PIB ports, it is
time to present a figure which describes the dataflow for the PIN F9 of the FPGA which
corresponds to the bit O of port O (signal name =P0.0).

Local bus

Pin F9

FPGA

100-PIN 100-PIN 78-PIN
CON7 CONS8 CON9
Pin 35 — |
P0.0 > > | pin10
Pin 24
IC 1
PIB

Figure 3 Dataflow from FPGA to 78-pin HD-Sub for P0.0 signal

Signal P0.0 (bit0 of port0) speaks to PIN F9 of the FPGA through PIN 35 of CON7 and
simultaneously it also speaks to PIN10 of HD-SUB through PIN 24 of CONS8. The
connections of signal P0.0 can be verified from Table 5 written just above. What is more,
looking on tables of CON7 and CONS8 (Table 3, 4) the other 2 connections can be verified as
well. 1t should be underlined that Figure 2 only gives a plain description of the hardware
inside the PIB. For more information you can refer to the documentation of PIB under the
name CEO035.pdf.*

* http://www.cesys.com/resources/C1050-3506_P1B6410 UserManual.pdf

23

http://www.cesys.com/resources/C1050-3506_PIB64IO_UserManual.pdf

2.6 Internal Expansion port J21

The Internal expansion port J21 is of type male and the pins are directly connected to the
FPGA 1/0 Balls. These pins are not 5V tolerant. Through J21 28 FPGA 1/O are accessible, 24
of which are routed as 12 pairs to support differential signalling. 3.3 Volt power supply is also
available, so it is even possible to power active devices on boards connected to J21. Current
supplied over J21 should not exceed 100mA.

PIN FPGA 1/O ball Comment PIN FPGA 1/O ball Comment

1 E21 Bank2 1021N 18 D18 Bankl 1009P
2 E21 Bank2 1021P 19 GND

3 D21 Bank2 I017N 20 GND

4 D22 Bank2 1017P 21 Al8 Bankl I010N
5 C22 22 B18 Bankl IO10P
6 F17 23 D17 Bankl I015N
7 E19 Bank2 I020N 24 E17 Bankl I015P
8 E20 Bank2 1020P 25 E16

9 GND 26 F16

10 GND 27 B17 Bankl I016P
11 D19 Bank2 1016P 28 C17 Bankl I016N
12 D20 Bank2 IO16N 29 3.3 Volt

13 E18 Bank2 I019N 30 3.3 Volt -

14 F18 Bank2 1019P 31 D15 Bankl 1024N
15 Al9 Bank1l IO06N 32 E15 Bankl 1024P
16 B19 Bank1l 1009P 33 Al5 Bankl 1025N
17 C18 Bankl1l IO09N 34 B15 Bankl 1025P

Table 6 J21 Internal Expansion Connector-FPGA Connections

2.7 Local Bus Signals

In this section, there is a short description of the interface between Spartan-3 FPGA and PLX
PCI9056. In general, PC19056 supports three types of local bus processor interfaces. However
for PCIS3BASE only J mode with multiplexed address/data bus is available. From the three
existing data transfer modes of PCI19056, direct slave mode and DMA mode are implemented.
For data transmission, 32-bit single read/wrote and DMA single and continuous burst cycles

are supported.

The following spreadsheet gives an overview of the local bus signals and to which FPGA 1/0
balls they are connected.

FPGA 1/0 I/O Standard Signal Name | External pull | Comment
up/down
w4 LVCMOS33 ADS# pull —up Address strobe
Y18 LVCMOS33 ALE pull —down Address latch enable

24

W5 LVCMOS33 BIGEND# pull —up Big endian select

W1 LVCMOS33 BLAST# pull —up Burst last

W2 LVCMOS33 BREQIi pull —down Bus request in

AAL LVCMOS33 BREQo pull —up Bus request out

u10 LVCMOS33 BTERM# pull —up Burst terminate

U6 LVCMOS33 CCS# pull —up Configuration
register select

W6 LVCMOS33 DACKO# DMA channel 0
demand mode
acknowledge

u7 LVCMOS33 DACK1# DMA channel
1demand mode
acknowledge

W18 LVCMOS33 DEN# pull —up Data enable

W9 LVCMOS33 DPO pull —down Data parity 0

Y1 LVCMOS33 DP1 pull —down Data parity 1

AA8 LVCMOS33 DP2 pull —-down Data parity 2

V9 LVCMOS33 DP3 pull —down Data parity 3

Y5 LVCMOS33 DREQO# pull —up DMA channel 0
demand mode
request

V7 LVCMOS33 DREQ1# pull —up DMA channel
1demand mode
request

V18 LVCMOS33 DT/R# pull —up Data transmit/receive

AA4 LVCMOS33 EOT# pull —up End of transfer for
current DMA
channel

AAl4 LVCMOS33 LAD 0 pull —up Multiplexed data
address bus

AB14 LVCMOS33 LAD 1 pull —up Multiplexed data
address bus

Uiz LVCMOS33 LAD 2 pull —up Multiplexed data
address bus

V12 LVCMOS33 LAD 3 pull —up Multiplexed data
address bus

w1l LVCMOS33 LAD 4 pull —up Multiplexed data
address bus

V11 LVCMOS33 LAD 5 pull —up Multiplexed data
address bus

AB9 LVCMOS33 LAD 6 pull —up Multiplexed data
address bus

AA9 LVCMOS33 LAD 7 pull —up Multiplexed data
address bus

Y10 LVCMOS33 LAD 8 pull —up Multiplexed data
address bus

V10 LVCMOS33 LAD 9 pull —up Multiplexed data
address bus

w10 LVCMOS33 LAD 10 pull —up Multiplexed data

address bus

25

AA10 LVCMOS33 LAD 11 pull —up Multiplexed data
address bus

V13 LVCMOS33 LAD 12 pull —up Multiplexed data
address bus

Y13 LVCMOS33 LAD 13 pull —up Multiplexed data
address bus

W13 LVCMOS33 LAD 14 pull —up Multiplexed data
address bus

AA13 LVCMOS33 LAD 15 pull —up Multiplexed data
address bus

Uil LVCMOS33 LAD 16 pull —up Multiplexed data
address bus

AB10 LVCMOS33 LAD 17 pull —up Multiplexed data
address bus

AB11 LVCMOS33 LAD 18 pull —up Multiplexed data
address bus

ui13 LVCMOS33 LAD 19 pull —up Multiplexed data
address bus

AB15 LVCMOS33 LAD 20 pull —up Multiplexed data
address bus

AA15 LVCMOS33 LAD 21 pull —up Multiplexed data
address bus

W16 LVCMOS33 LAD 22 pull —up Multiplexed data
address bus

Y16 LVCMOS33 LAD 23 pull —up Multiplexed data
address bus

AB13 LVCMOS33 LAD 24 pull —up Multiplexed data
address bus

V14 LVCMOS33 LAD 25 pull —up Multiplexed data
address bus

W14 LVCMOS33 LAD 26 pull —up Multiplexed data
address bus

ui4 LVCMOS33 LAD 27 pull —up Multiplexed data
address bus

V16 LVCMOS33 LAD 28 pull —up Multiplexed data
address bus

ul16 LVCMOS33 LAD 29 pull —up Multiplexed data
address bus

ui7 LVCMOS33 LAD 30 pull —up Multiplexed data
address bus

AAL7 LVCMOS33 LAD 31 pull —up Multiplexed data
address bus

V17 LVCMOS33 LBEO# pull —up Local byte enable 0

AA18 LVCMOS33 LBE1# pull —up Local byte enable 1

Y17 LVCMOS33 LBE2# pull —up Local byte enable 2

AB18 LVCMOS33 LBE3# pull —up Local byte enable 3

- LVCMOS33 LCLK pull —up Local processor
clock(66MHz)

AB4 LVCMOS33 LHOLD pull -down Local hold request

26

W3 LVCMOS33 LHOLDA pull -down Local hold
acknowledge

V6 LVCMOS33 LINTi# pull —up Local interrupt input

Y6 LVCMOS33 LINTo# pull —up Local interrupt
output

V5 LVCMOS33 LRESET# pull —up Local bus reset

w8 LVCMOS33 LSERR# pull —up Local system error
interrupt output

W17 LVCMOS33 LW/R# pull —up Local write/read

ABS8 LVCMOS33 READY# pull —up Ready 1/0

V8 LVCMOS33 WAIT# pull —up Wait 1/0

Table 7 Local Bus-FPGA Connections

Detailed description of some signals:

ADSH#

Indicates a valid address and start of a new Bus access. ADS# asserts for the first clock of the
Bus access.

LCLK

Local clock input. Sourced by onboard 50MHz oscillator.

LHOLD

Asserted to request use of the Local Bus.

LHOLDA

The external Local Bus Arbiter asserts LHOLDA when bus ownership is granted in response
to LHOLD. The Local Bus should not be granted to PCI 9056, unless requested by LHOLD.

LINTo#

Synchronous output that remains asserted as long as the interrupt is enabled and the interrupt
condition exists.

LW/R#

Asserted low for reads and high for writes.

27

READY#

A Local slave asserts READY# to indicate that Read data on the bus is valid or that a Write
Data transfer is complete. READY# input is not sampled until the internal Wait State
Counter(s) expires (WAIT# output de-asserted).

2.8 JTAG Interface

In addition to configuration via PCI, it is possible to download configuration data using a
JTAG interface. The PCIS3BASE is equipped as standard with a 2- row 14- pin connector to
plug in the Parallel Cable IV from XilinxTM. The JTAG interface is not only suitable to
download designs for testing purposes but enables the user to check a running design by the
help of software tools provided by XilinxTM.

Pin Comment
1,3,5,7,9,11,13 GND

2 + 2.5V

4 TMS

6 TCK

8 TDO

10 TDI

12,14 Not Connected

Table 8 CON1-JTAG Connector

2.9 Memory Interface

The PCIS3BASE card is equipped with 32MByte of dynamic high speed RAM.
The following spreadsheet gives an overview of the signals’ names and which FPGA 1/0 ba
they are connected to.

lls

Signal Name FPGA I/0 BALL Comment

A0 K20 Multiplexed row/column address input
Al G22 Multiplexed row/column address input
A2 G19 Multiplexed row/column address input
A3 G17 Multiplexed row/column address input
A4 G18 Multiplexed row/column address input
A5 G21 Multiplexed row/column address input
A6 K19 Multiplexed row/column address input
A7 K21 Multiplexed row/column address input
A8 L17 Multiplexed row/column address input
A9 L19 Multiplexed row/column address input
Al10 K22 Multiplexed row/column address input
All L21 Multiplexed row/column address input
Al2 L22 Multiplexed row/column address input
BAO L20 Bank Address Input

BAl L18 Bank Address Input

28

DQO Y21 Data input/output

DQ1 W21 Data input/output

DQ2 W19 Data input/output

DQ3 V21 Data input/output

DQ4 V19 Data input/output

DQ5 U20 Data input/output

DQ6 Ui8 Data input/output

DQ7 T21 Data input/output

DQ8 T22 Data input/output

DQ9 ui19 Data input/output

DQ10 U2l Data input/output

DQ11 V20 Data input/output

DQ12 V22 Data input/output

DQ13 W20 Data input/output

DQ14 W22 Data input/output

DQ15 Y22 Data input/output

CS# N19 Chip Select input

WE# R18 Write Enable

CAS# N22 Column Address Strobe

RAS# N20 Row Address Strobe

CKE# N21 Clock Enable Input

Clock Y11 SDRAM CLK Input

DQMH T17 Input/Output Data Mask

DQML T18 Input/Output Data Mask
Table 9 SDRAM-FPGA Connections

2.10 SPI Flash

In addition to 32MByte dynamic SDRAM, 4MBit nonvolatile memory in form of a SPI Flash

from STMicroelectronis is available. This flash memory is not intended for storing FPGA

configuration bitstreams (no connection to FPGA configuration logic is available) but to give
the user the opportunity to store board specific data directly onboard.

The following table gives information about 10 usage:

Signal Name FPGA 1/0 Ball Comment

FLASH #CS F20 Chip Select

FLASH SO F19 Serial Data Output
FLASH_SI M22 Serial Data Input
FLASH SCK F21 Serial Clock

FLASH #HOLD Active-Low Hold Signal
FLASH_#WP Active-Low Write

Protect Signal

Table 10 SPI FLASH-FPGA Connections

29

3. Wishbone bus architecture

3.1 General Information about Wishbone bus

The WISHBONE bus is an open source hardware computer bus allowing the connection of
different cores to each other inside of a chip.

WISHBONE is intended to be a “logic bus”, which instead of specifying electrical
information or bus topology, the specification is written in terms of signals, clock cycles and
high/low levels.

WISHBONE is defined to have 8, 16, 32 and 64-bit buses. All signals are synchronous to a

single clock but some slave responses must be generated asynchronously for maximum
performance.

3.1.1 Wishbone Topologies

WISHBONE is really flexible and adapts well to common topologies such as point-to-point,
many-to-many, hierarchical, or even switched fabrics such as crossbar switches. Normally
WISHBONE requires a bus controller or arbiter, but devices still maintain the same interface.
We can see below some topologies in which WISHBONE can be adopted.’

Shared bus
WISHBCHNE WISHBONE WISHBONE WISHBONE WISHEONE WISHEQNE
SLAVE SLAVE SLAVE SLAVE MASTER MESTER
IP QCRE IP GORE IP GORE IP GORE IP ©ORE IP QORE

LT Jawel []

® http://en.wikipedia.org/wiki/Wishbone (computer bus)

30

http://en.wikipedia.org/wiki/Wishbone_(computer_bus)

IP CORE 'A' IP CCRE 'B'
— 1@ =) =)
5 B8 (CJBs BE X
- % = é =
| DIRECTION OF DRTR FLOW
Cross bar switch
IP CURE IP CCRE
MASTER MASTER
IMAI IMBI
4 NOTE: DOTTED LINBS %
I INDICATE ONE POSSIBLE I
I COMNECTION OPTICN I
S TS 7 cmosser |
I SWITCH |
[—————— 'T\ ——————— -4
| |
| |
+ + |
IP CCRE IP OCRE IP CCRE
SLAVE SLAVE SIAVE
ISAI ISBI l&’:l

3.2 Wishbone implementation on pcis3base

A 32-bit WISHBONE based shared bus architecture is implemented on the pcis3base. All
devices of the WISHBONE system support only single READ/WRITE cycles. Files and
modules having something to do with the WISHBONE system are labelled with the prefix

“wb_”. WISHBONE master is labelled additionally with the prefix “ma_” and the slaves with
the prefix “sl_”.

3.2.1 Wishbone topology used on pcis3base

First of all, an image of this architecture will make clear how the WISHBONE architecture is
built.

31

SYSCON

- =

SLAVE :
SDRAM
S SLAVE :
Wlsh_bone bus g FLASH
signals (]
=
=
SLAVE :
GPIO
SLAVE :
TIMER

Figure 4 WISHBONE Architecture

A thorough description of each .vhd file which is a member of this WISHBONE based shared
bus architecture will follow and will clarify how WISHBONE architecture works.

3.2.2 Basic wishbone files and modules

src/wishbone.vhd

A package containing data types, constants, components, signals and information needed for
the WISHBONE system.

src/pcis3base_top.vhd

The top module of our design. WISHBONE components are instantiated here and internal
VHDL signals are mapped to the 100 pin connector of the PIB.

src/wb_syscon.vhd
It provides two basic WISHBONE system signals: rst and clk.
src/wb_intercon.vhd

Through this module it is possible to exist a communication between the modules through
intercon signal. All WISHBONE devices are connected to this shared bus interconnection
logic. Some MSBs of the address (logz(number_of_slave_Devices)) define which slave device
is selected each time.

32

src/wb_ma_plx.vhd

There is only one master device in the WISHBONE architecture which is responsible for
generating the WISHBONE signals having as input the signals from local bus.

src/wb_sl sdr.vhd

This entity represents the low level SDRAM controller sdr_ctrl.vhd for the 32MB/16-bit
SDRAM.

src/wb_sl_flash.vhd

This entity represents the low level FLASH controller flash_ctrl.vhd for the 4Mbit SPI
FLASH memory.

src/wb_sl_gpio.vhd

This is the basic slave device which is most alike to the new slave device (wb_sl_mss.vhd). It
is responsible for communicating with the 8 PIB ports. That means that through this module
the direction of the PIB ports (Input or Output) is defined and what is more, due to this
module information packages can be sent or received through the PIB ports. In other words, in
this module the dual 8-bit bus transceiver circuits are controlled. The 8 LEDs and the 28
bidirectional 1/Os at the internal 34-pin connector are controlled by this module as well.

src/wb_sl timer.vhd

This entity represents a 32-bit timer with programmable period (20 ns), which generates an
interrupt at overflow time.

3.2.3 Local bus signals

The unique master device (wh_ma_plx) uses the local bus signals in order to arbitrate the
generation of the WISHBONE related signals. As a result, it is obvious that the local bus
signals are the signals which judge whether information should be received or should be sent
from and to PIB transceiver circuits. A deep understanding of the local bus signals’ values in
both reading and writing bus transactions will make it easier afterwards to explain the values
of the WISHBONE related signals.

These are the local bus signals:

LW/R#
It defines if a write (LW/R# =1) or read (LW/R# =0) cycle is in progress.

ADSH#
It defines if the address is valid (if asserted low) or not.

33

READY#
Indicates a successful data transfer for writing and valid data on bus for reading by asserting
this signal low.

LAD[31:0]
It is the multiplexed (Address/Data) piece of information which is sent or received.

LHOLD
It is driven by plx and is used for local bus arbitration.

LHOLDA
It is also used for local bus arbitration but it is driven by the FPGA.

From the following two images, it can be easier understood not only which values the local
bus signals have in a write and a read cycle, but also the relationship between local bus and
WISHBONE signals’ values. WISHBONE related signals will be described in the following
subchapter.

Write Cycle:

J_l_l_l_l_l_I_LZJ_I_I_I_I_I_I_L
el T
B IZXAX B I A - N— 1/

I—_/ N T T
e 12777 T X7
wonowr | 77777777IX B>>2 . __A>»2 X[77777 \
onr.oovn | Z77777TTIX T o X777
arr v 17777777777777777 7777777777777777

ACK_I I |

Y

WISHBONE MASTER IPLX Local Bus

b=

34

Read Cycle:

CLK

nnnngEnnnnn

o TN e
avs# 17T N/ - | =

FPGA drives LAQ[31:0] i i4 > §
wosto | SS// A D X/ 77 >
Reaovs | P &
oo T L/ AN I N W
wo T 777777777 777777777 @
sorowa | 777777777X A>>2 A>+2 . =
owrovvar | 777777777TTTTTTZ 77777777 S
-y T | /\ J =

Figure 5 Local Bus transactions for write and read cycle

3.2.4 Wishbone signals

WISHBONE signals can be divided in two main categories:

e Signals from master devices to slaves :

AN N NANEN

STB_O : Indicates valid data and control signals.

WE_O : Indicates a write or read cycle.

CYC _O : Defines which slave device will be active (CYC_O="1").
ADR_O : Address where the Data package will be written.
DAT_O : 32-bit data out bus for data transportation from master to slaves.

e Signals from slave devices to master (plx device) :
v' DAT _I: 32-bit data in bus for data transportation from slaves to master.

v' ACK_I: Handshake signal, which indicates a successful data transfer for

writing and valid data on bus for reading.

3.2.5 Wishbone signal structure

As already showed above in both illustrations, the WISHBONE signals are written as simple
bit types or bit vector types, but in the VHDL code these signals could be encapsulated in

extended data types like arrays or records. As WISHBONE related signals will be regularly

referred throughout this text, it is worth writing down the WISHBONE data type structure.

35

type rec_syscon_port is record
rst : std_logic;
clk : std_logic;
end record;

type rec_master_port is record
cyc : std_logic;
stb : std_logic;
we : std_logic;
adr : std_logic_vector(rng_adr);
dat : std_logic_vector(rng_dat);
end record;

type rec_slave_port is record
ack : std_logic;
dat : std_logic_vector(rng_dat);
end record;

type rec_wishbone_signal is record
syscon : rec_syscon_port;
master : rec_master_port;
slave : rec_slave_port;
end record,;

rec_wishbone_signal wishbone;

For better understanding of the data type definition refer to the figure below:

wishbone
syscon master slave
rst clk cyc stb we adr dat ack dat

Figure 6 WISHBONE Datatype

3.2.6 Relationship between wishbone and local bus signals

In order to make it easier for the reader to understand how the WISHBONE signals are
generated, the whole process will be displayed below in which the local bus signals are
translated to WISHBONE bus signals and the opposite.

36

pix_lad input<=plx_lad.io gpiomoduleport.output(ij<=ext_output(i

‘ext_output(x downto x-31)<:wishbone.master.dal%

wishbone.master.data<=plx_lad.input gpiomoduleport.io(i)<=gpiomoduleport.output(i)

pix_lad_io

PC PCllocal bus ma_pix Wishbone gpio Top Module) | 78-Pin HD-Sub

pix_lad.io<=plx_lad.output gpiomoduleport input(i)<=gpiomoduleport.io(i)

<Nishbone,slaver.datacext_input(x downto x-31) \

plx_lad.output<=wishbone.slave.data extinput(ij<=gpiomoduleport.input(

Figure 7 Dataflow process between PC and PCB

3.2.6.1 Dataflow from PC to PCB

In case a data package is sent to the PCB which will be connected to PC through the 78-Pin-
HD-Sub, the data package will be embedded in the “plx_lad i0” signal, which is an
input/output type (i/o type) of signal. Obviously here the “plx_lad io” is used as an input
signal. Thus, firstly its info is passed to the “plx_lad.input” help signal and then the data
package is transmitted to WISHBONE bus through “wishbone.master.data” signal.

Depending on which pins of the 78-Pin-HD-Sub the data package is sent through, the package
will be further transmitted either to “ext_output(31 downto 0)” signal or “ext_output(63
downto 32)” signal. Unfortunately, it is not possible to send data simultaneously to all ports as
the implemented WISHBONE bus has 32 bit width, in other words the signal
“wishbone.master.data” is a std_logic_vector(31 downto 0). Therefore, as every port has 8-
bits width the user is able to send in one clock cycle a data package either in the first four
ports or in the last four ports of the PIB. For the first four ones is responsible the
“ext_output(31 downto 0)” signal and for the last four the “ext_output(63 downto 32)”. As the
data package information has been passed to “ext_output”, the final step of the dataflow
process is ready to begin. The “gpiomoduleport.io” signal as its name implies, is a
bidirectional 92-bit signal (i/o type) which sends or receives data from the PIB ports through
CONT7 external expansion connector. In this case this signal is used as an output signal in
order to send the data package to the PIB ports.

3.2.6.2 Dataflow from PCB to PC

Describing the dataflow in the opposite direction and beginning from the 78-Pin-HD-Sub
from which the PCIS3BASE card receives a data package, the information received flows
through some of the PIB ports and then its context is embedded in the “gpiomoduleport.io”
signal, which in this case is an input signal. As in the previous description of the dataflow
towards PCB there was the “ext_output()” signal, here another signal is responsible for
carrying the information. This signal is the “ext_input()” which as soon as receives the data
package info from “gpiomoduleport.io”, it is ready to pass on the information in the
WISHBONE bus through “wishbone.slave.data” signal. In the last step of the dataflow

37

process towards PC, in ma_plx module the data package is embedded in the local bus as the
information is carried by “plx_lad i0” which is an output signal in this occasion.

3.2.7 Basic local bus control signals used from wishbone and their
operation

In the bus transactions of Read and Write Cycle, there are several local bus signals used,
which made possible the generation of WISHBONE bus signals, which were shown in the
previous subchapter. Here, the basic points are referred inside the code where this job is done.

First of all, starting from the master device connected to the WISHBONE bus, plx_ads_n
signal is a control signal which is responsible for passing the 32-bit data package, carried by
plx_lad.io signal, either on wishbone.master.adr signal or on wishbone.master.dat signal.
More specifically, if the pIx_ads_i is '0 'then the content of the local bus address is translated
as the WISHBONE address for the WISHBONE bus (wishbone.master.adr <= plx_lad_io)
and accordingly if the signal plx_ads_i is '1' then the content corresponds to the data package
of the WISHBONE bus (wishbone.master.dat <= plx_lad_io). The above function is evident
in the following code segment of file “wb_ma_plx.vhd”:

if pIx_ads_n(0) ='0' then

wishbone.master.adr <= b"00" & plIx_lad.input(31 downto 2);
else

wishbone.master.dat <= plx_lad.input;
end if;

Moreover, as already showed in section 3.2.5 the master device has various control signals
(cyc, we, stb) whose values are in turn based on values of the respective local bus signals.
Starting with the signal wishbone.master.we, it receives the value of signal pIx_lw_r_i of the
local bus.

wishbone.master.we <= pIx_Iw_r_n;

Additionally, the value of signal wishbone.master.stb depends also on the value of signal
plx_ads_n of the local bus.

if wishbone.master.we ='1' then
if pIx_ads_n(1) ='0' then
wishbone.master.stb <="1";
elsif wishbone.slave.ack = '1' then
wishbone.master.stb <="'0";
end if;
else
if pIx_ads_n(0) ='0" then
wishbone.master.stb <="1";
elsif wishbone.slave.ack = '1' then
wishbone.master.stb <="'0";
end if;
end if;

38

It is worth stressing out that the value of wishbone.master.cyc signal is always '1' as this
signal indicates the particular device selected for use in the WISHBONE bus and since there
is only one master device, it must be permanently in use.

wishbone.master.cyc<="1";

Regarding the values of the slave devices’ control signals (ack), the signal
wishbone.slave.ack has a specific value based on the values of signals wishbone.master.cyc
and wishbone.master.stb as the following segment of code shows (wb_sl_gpio.vhd):

if wishbone.slave.ack = '1' then
wishbone.slave.ack <='0";

elsif (wishbone.master.cyc and wishbone.master.stb) = '1' then
wishbone.slave.ack <="1";

end if;

Finally, it should be noted that there are signals on the local bus whose value depends on the
corresponding value of signals which belong to the WISHBONE bus. Such signals are for
instance plx_lad.oe, pIx_ready n and plx_lad.output. The following code snippet comes
from the source file of the unique master device connected to the WISHBONE bus.

plx_lad.oe <= wishbone.slave.ack and (not wishbone.master.we);
pIx_ready n <= not wishbone.slave.ack;
plx_lad.output <= wishbone.slave.dat;

3.3 Vhdl implementation of Wishbone Bus Architecture

In this subchapter the basic points of the VHDL implementation of WISHBONE bus
architecture will be analyzed. However, the whole structure of this architecture will not be
presented as it is represented in vhdl, but only the modules on which the further extension of
the architecture will be based with final goal the implementation of the data bus of the
microprocessor.

The main points of each module will be highlighted and reading the comments inside the code
will make it easier to get a closer view of how each component of WISHBONE architecture
works. With the prefix MSS it is made clear in which parts of the code there have to be some
changes in the values of constants/signals or even it has to be written additional code so that
the MSS module can fit properly inside the WISHBONE bus. °

3.3.1 Wishbone Module

First of all, the basic data types used throughout the code will be mentioned and their
importance will be explained. The file “wishbone.vhd” is the one which includes not only all
the data types but also the definition of the components of the WISHBONE structure. It is a
package containing as well constants, signals and information for software developers needed
for the WISHBONE system. What is more, there are C/C++ -style “#define”’s with important

® Cesys PCIS3BASE PCI Card sourcecode
39

addresses and values to copy and paste into the software source code after VHDL
comments(“--"").The code of file “wishbone.vhd” follows below.

library IEEE
use IEEE.STD_LOGIC_1164.all
use IEEE.NUMERIC_STD.all;

package wishbone is

constant nr_of_masters : positive := 1;
subtype rng_masters is natural range (nr_of_masters-1) downto 0;

constant nr_of_slaves : positive := 4;
subtype rng_slaves is natural range (nr_of_slaves-1) downto O;

constant adr_width : positive := 32;
subtype rng_adr is natural range (adr_width-1) downto 0;
constant dat_width : positive := 32;
subtype rng_dat is natural range (dat_width-1) downto 0;

constant nr_of_irqdevs : positive := 5;
subtype rng_irqdevs is natural range (nr_of_irqdevs-1) downto 0;

constant nr_of_irgs : positive := 1;
subtype rng_irgs is natural range (nr_of_irgs-1) downto 0;

type arr_irqos is array(natural range <>) of std_logic_vector(rng_irgs);
signal irqos : arr_irqos(rng_irqdevs) := (others => (others =>'0"));

signal irgs : std_logic_vector(rng_irgs) := (others =>"'0";

type rec_syscon_port is record
rst : std_logic;
clk : std_logic;
end record;
constant syscon_default : rec_syscon_port :=
(
rst =>"'0',
clk =>"'0'
);

type arr_syscon_port is array(natural range <>) of rec_syscon_port;

type rec_master_port is record
cyc : std_logic;
stb : std_logic;
we : std_logic;
adr : std_logic_vector(rng_adr);
dat : std_logic_vector(rng_dat);
end record;
constant master_default : rec_master_port :=

(

40

cyc =>'0',
stb =>'0',
we =>"'0',
adr => (others =>'0"),
dat => (others =>'0")
)i

type arr_master_port is array(natural range <>) of rec_master_port;

type rec_slave_port is record
ack : std_logic;
dat : std_logic_vector(rng_dat);
end record;
constant slave_default : rec_slave_port :=
(
ack =>'0',
dat => (others =>'0")
)i

type arr_slave_port is array(natural range <>) of rec_slave_port;

type rec_wishbone_signal is record
Syscon : rec_syscon_port;
master : rec_master_port;
slave : rec_slave_port;
end record;
constant wishbone_default : rec_wishbone_signal :=
(
syscon => syscon_default,
master => master_default,
slave => slave_default

);

type rec_masters_signal is record
syscon : arr_syscon_port(rng_masters);
master : arr_master_port(rng_masters);
slave : arr_slave_port(rng_masters);
end record;
constant masters_default : rec_masters_signal :=
(
syscon => (others => syscon_default),
master => (others => master_default),
slave => (others => slave_default)

);

type rec_slaves_signal is record
syscon : arr_syscon_port(rng_slaves);
master : arr_master_port(rng_slaves);
slave : arr_slave_port(rng_slaves);
end record,;
constant slaves_default : rec_slaves_signal :=
(
syscon => (others => syscon_default),
master => (others => master_default),
slave => (others => slave_default)

);

type rec_intercon_signal is record
syscon : rec_syscon_port;
masters : rec_masters_signal;
slaves : rec_slaves_signal;
end record;
constant intercon_default : rec_intercon_signal :=
(
syscon => syscon_default,
masters => masters_default,
slaves => slaves_default

);

41

component wb_intercon is
generic

(
nr_of_dbgports : positive := 1
);
port
(
SYSCON_I : in rec_syscon_port;
SYSCON_MA_O : out arr_syscon_port(rng_masters);
MASTER_I : in arr_master_port(rng_masters);
SLAVE_O : out arr_slave_port(rng_masters);
SYSCON_SL_O : out arr_syscon_port(rng_slaves);
MASTER_O : out arr_master_port(rng_slaves);
SLAVE_I : in arr_slave_port(rng_slaves);

debug : inout std_logic_vector((nr_of_dbgports-1) downto 0)
)i

end component;

signal intercon : rec_intercon_signal := intercon_default;

subtype rng_slave_select is natural range 29 downto 26;

component wh_syscon is
generic

(
nr_of_dbgports : positive := 1

port

SYSCON_O : out rec_syscon_port;

Ibus_rst_i : in std_logic;

sysclk_i : in std_logic;

sdr_clk_o : out std_logic;

sdr_clk_fb_i : instd_logic;

debug : inout std_logic_vector((nr_of_dbgports-1) downto 0)
);
end component;

signal lbus_rst : std_logic :='0";

42

constant ma_plx_id : natural :=0;
component wh_ma_plx is
generic
(
nr_of_irgiports : positive := 1;
nr_of_irqoports : positive := 1;
nr_of_dbgports : positive := 1
)i
port
(
SYSCON_I : in rec_syscon_port;
MASTER_O : out rec_master_port;
SLAVE_I : in rec_slave_port;

IRQ_I :instd_logic_vector((nr_of _irgiports-1) downto 0);
IRQ_O : out std_logic_vector((nr_of_irqoports-1) downto 0);
pIx_lreset_n_i : in std_logic;

plx_lhold_i : in std_logic;

pIx_lholda_o : out std_logic;

pIx_ads_n_i : in std_logic;

pIx_lw_r_n_i : in std_logic;

pIx_lad_io : inout std_logic_vector(31 downto 0);

pIx_ready _n_o : out std_logic;

pIx_linti_n_o : out std_logic;

Ibus_rst_o : out std_logic;

debug : inout std_logic_vector((nr_of_dbgports-1) downto 0)
);
end component;

constant irqdev_plx_id : natural := 0;

constant sdr_baseadr : std_logic_vector(rng_adr) := x"0000_0000";
constant sdr_highadr : std_logic_vector(rng_adr) := x"007F_FFFF";

subtype rng_sdr_adr is natural range 22 downto O;
constant sdr_cmd_offset : std_logic_vector(rng_adr) := x"0080_0000";
subtype rng_sdr_cmd is natural range 1 downto 0;

constant sdr_cmd_val_nop : std_logic_vector(rng_dat) := x"0000_0000";

constant sdr_cmd_val_precharge : std_logic_vector(rng_dat) := x"0000_0001";
constant sdr_cmd_val_loadmoderegister : std_logic_vector(rng_dat) := x"0000_0002";
constant sdr_cmd_val_operation : std_logic_vector(rng_dat) := x"0000_0003";

constant sl_sdr_id : natural := TO_INTEGER(unsigned(sdr_baseadr(rng_slave_select)));
component wh_sl_sdr is
generic

(
43

nr_of_irqoports : positive := 1;
nr_of_irgiports : positive := 1;
nr_of_dbgports : positive := 1

port

SYSCON_I : in rec_syscon_port;

MASTER_I : in rec_master_port;

SLAVE_O : out rec_slave_port;

IRQ_I :instd_logic_vector((nr_of _irgiports-1) downto 0);
IRQ_O : out std_logic_vector((nr_of_irqoports-1) downto 0);
sdr_clk_o : out std_logic;

sdr_cke_o : out std_logic;

sdr_cs_n_o : out std_logic;

sdr_we_n_o : out std_logic;

sdr_cas_n_o : out std_logic;

sdr_ras_n_o : out std_logic;

sdr_dgm_o : out std_logic_vector(1 downto 0);

sdr_ba_o : out std_logic_vector(1 downto 0);

sdr_adr_o : out std_logic_vector(12 downto 0);

sdr_dq_io : inout std_logic_vector(15 downto 0);

debug : inout std_logic_vector((nr_of_dbgports-1) downto 0)
);
end component;

constant irqdev_sdr_id : natural :=1;

constant flash_baseadr : std_logic_vector(rng_adr) := x"0400_0000";
constant flash_highadr : std_logic_vector(rng_adr) := x"0401_FFFF";

subtype rng_flash_adr is natural range 16 downto 0;
constant flash_cmd_offset : std_logic_vector(rng_adr) := x""0002_0000";
subtype rng_flash_cmd is natural range 0 downto O;

constant flash_cmd_val_erase : std_logic_vector(rng_dat) := x"0000_0000";

constant sl_flash_id : natural := TO_INTEGER(unsigned(flash_baseadr(rng_slave_select)));
component whb_sl_flash is
generic
(
nr_of_irqoports : positive := 1;
nr_of_irgiports : positive := 1,
nr_of_dbgports : positive := 1
);
port

SYSCON_I : in rec_syscon_port;

MASTER_I : in rec_master_port;

SLAVE_O : out rec_slave_port;

IRQ_I : in std_logic_vector((nr_of_irgiports-1) downto 0);
IRQ_O : out std_logic_vector((nr_of_irgoports-1) downto 0);
flash_s_n_o: out std_logic;

flash_c_o : out std_logic;

flash_hold_n_o : out std_logic;

44

flash_w_n_o : out std_logic;

flash_d_o : out std_logic;

flash_qg_i : instd_logic;

debug : inout std_logic_vector((nr_of_dbgports-1) downto 0)
).

end component;
constant irqdev_flash_id : natural := 2;

constant gpio_baseadr : std_logic_vector(rng_adr) := x"0800_0000";
subtype rng_gpio_adr is natural range 2 downto 0;

constant gpio_ext0_offset : std_logic_vector(rng_adr) := x"0000_0000";
constant gpio_extl_offset : std_logic_vector(rng_adr) := x"0000_0001";
constant gpio_extoe_offset : std_logic_vector(rng_adr) := x"0000_0002";
subtype rng_gpio_extoe is natural range 7 downto 0;

constant gpio_int_offset : std_logic_vector(rng_adr) := x"0000_0003";
subtype rng_gpio_int is natural range 27 downto 0;

constant gpio_intoe_offset : std_logic_vector(rng_adr) := x"0000_0004";
subtype rng_gpio_intoe is natural range 27 downto 0;

constant gpio_led_offset : std_logic_vector(rng_adr) := x"0000_0005";

subtype rng_gpio_led is natural range 7 downto O;

constant sl_gpio_id : natural := TO_INTEGER(unsigned(gpio_baseadr(rng_slave_select)));
component wb_sl_gpio is
generic
(
nr_of_irgiports : positive := 1;
nr_of_irqoports : positive := 1;
nr_of_dbgports : positive := 1

port

SYSCON_I : in rec_syscon_port;

MASTER_I : in rec_master_port;

SLAVE_O : out rec_slave_port;

IRQ_I :instd_logic_vector((nr_of _irgiports-1) downto 0);

45

IRQ_O : out std_logic_vector((nr_of_irqoports-1) downto 0);
led_o : out std_logic_vector(7 downto 0);

ext_oe_0: outstd_logic_vector(7 downto 0);

ext_input_i : in std_logic_vector(63 downto 0);

ext_output_o : out std_logic_vector(63 downto 0);

gpio_io : inout std_logic_vector(27 downto 0);

debug : inout std_logic_vector((nr_of_dbgports-1) downto 0)
)i
end component;

constant irqdev_gpio_id : natural := 3;

signal ext_oe : std_logic_vector(7 downto 0) := (others =>'0);
signal ext_input : std_logic_vector(63 downto 0) := (others =>'0");
signal ext_output : std_logic_vector(63 downto 0) := (others =>'0");

constant timer_baseadr : std_logic_vector(rng_adr) := x"0C00_0000";

subtype rng_timer_adr is natural range 0 downto 0;

constant timer_limit_offset : std_logic_vector(rng_adr) := x"0000_0000";
constant timer_limit_val_disable : std_logic_vector(rng_dat) := x"0000_0000";
constant timer_irqack_offset : std_logic_vector(rng_adr) := x"0000_0001";
subtype rng_timer_irgack is natural range 0 downto 0;

constant timer_irgack_val_acknowledge : std_logic_vector(rng_dat) := x"0000_0000";

constant sl_timer_id : natural := TO_INTEGER(unsigned(timer_baseadr(rng_slave_select)));
component wb_sl_timer is

generic

(

nr_of_irgiports : positive := 1,

nr_of_irqoports : positive := 1;

nr_of_dbgports : positive := 1
);
port
(
SYSCON_I : in rec_syscon_port;

MASTER_I : in rec_master_port;
SLAVE_O : out rec_slave_port;

IRQ_I :instd_logic_vector((nr_of_irgiports-1) downto 0);
IRQ_O : out std_logic_vector((nr_of_irqoports-1) downto 0);
debug : inout std_logic_vector((nr_of_dbgports-1) downto 0)
)i
end component;
constant irqdev_timer_id : natural := 4;
constant irg_progtime_id : natural := 0; -- the one and only IRQ source

end wishbone;

Code 1 WISHBONE.vhd

In the code written above, there is only one master device and four slave devices connected to

the WISHBONE bus. There are specific data types defined, which are responsible for the

46

implementation of the interconnection logic between the devices. An overview of intercon

data type follows in the figure below.The structure of WISHBONE data type is already
described in detail in subsection 3.2.5. As it is mentioned above, the most important slave
device connected to the WISHBONE bus, meaning that it is the only slave device which
communicates straight with the PIB ports, is the GPIO slave device. In this device there is
implemented not only the communication of the local bus with the 8 ports of the PIB but also
with the Internal Expansion Port J21 and with the LEDs. This device will be further analyzed,
when the module “wb_sl_gpio.vhd” will be presented, in which it is developed. Its
importance lies on the fact that it looks similar with the module “wb_sl_mss.vhd”, which will
implement the Microprocessor timing (MSS timing).

syscon

N\

intercon

/

maste s

Ja

syscon

master

/
/

V

rst clk cyc stb we adr dat

slave

\
\
\

V

ack dat

Figure 8 INTERCON Datatype

rst clk

slaves

/
/
‘

syscon master

LN

/
/
/

/

/
/

/

/

cyc stb we adr

dat

Furthermore, it is defined inside Code 1, that the WISHBONE address length is equal to 32
bits. The WISHBONE address has a specific structure which is depicted in Table 11.

31-30

29-26

25-0

unused

slave device select

slave device address field

Table 11 WISHBONE address structure

As a result, theoretically the WISHBONE bus can support the definition of up to 2* slave
devices and each slave device can have a maximum number of 2% addresses. Each slave
device connected to the WISHBONE bus, occupies a specific address field which is displayed

in Table 12.

Slave device | Start address | End address
SDRAM 0000 0000 | 007F FFFF
FLASH 0400 0000 | 0401 FFFF
GPIO 0800_0000 | 0800 0005

TIMER 0C00_0000 | 0C00 0001

Table 12 WISHBONE slave devices address field

47

slave

3

ack dat

3.3.2 Top Module

Having already defined the modules which constitute the structure of WISHBONE, the

signals of each module will be instatiated in “pcis3base_top.vhd*. This is the top level entity

of the design.What is more, the internal VHDL signals are mapped to the 100 pin connector

CONT7 of the general purpose I/O plug in boards, so the pinout of the user constraints file does

not need to be changed for other plug in boards. The code of file “pcis3base_top.vhd” with

the necessary comments follows below.

library IEEE;
use IEEE.STD_LOGIC_1164.all;
use work.wishbone.all;

entity pcis3base_top is
generic

nr_of_dbgports : positive := 1

)i
port
(
pin_sysclk_i in std_logic;
pin_plx_lreset n_i :in std_logic;
pin_plx_lhold_i :in std_logic;
pin_plx_lholda_o :out std_logic;
pin_plx_ads_n_i :in std_logic;
pin_pIx_Ilw_r_n_i :in std_logic;
pin_plx_lad_io - inout std_logic_vector(31 downto 0);

pin_plx_ready n_o :out std_logic;
pin_plx_linti_n_o :out std_logic;
pin_flash_s n_.o :out std_logic;

pin_flash_c_o rout std_logic;

pin_flash_d_o ;out std_logic;

pin_flash_q_i 1in std_logic;

pin_led_o sout std_logic_vector(7 downto 0);
pin_gpiomoduleport_io : inout std_logic_vector(92 downto 0);
pin_gpio_io > inout std_logic_vector(27 downto 0);
pin_sdr_clk_o Tout std_logic;

pin_sdr_cke_o sout std_logic;

pin_sdr_cs_n_o sout std_logic;

pin_sdr_we_n_o ;out std_logic;

pin_sdr_cas_n_ o :out std_logic;
pin_sdr_ras_n_o :out std_logic;

pin_sdr_dgm_o rout std_logic_vector(1 downto 0);

pin_sdr_ba o rout std_logic_vector(1 downto 0);

pin_sdr_adr_o rout std_logic_vector(12 downto 0);

pin_sdr_dq_io :inout std_logic_vector(15 downto 0);
pin_sdr_clk_fb i :in std_logic;

pin_debug_io : inout std_logic_vector((nr_of_dbgports-1) downto 0)
)i

end pcis3base_top;

architecture RTL of pcis3base_top is

signal sysclk :std_logic =04
signal pIx_Ireset_n : std_logic =04
signal pIx_lhold : std_logic =04
signal pIx_lholda : std_logic =04
signal pIx_ads_n :std_logic =04
signal pIx_Iw_r_n :std_logic =04
signal pIx_ready n :std_logic =04
signal pIx_linti_n : std_logic =05
signal flash_s_n : std_logic =15

48

signal flash_c :std_logic ='04

signal flash_d :std_logic ='04

signal flash_q :std_logic ='04

signal led . std_logic_vector(7 downto 0) := (others =>'0");
constant INPUT : std_logic =04

constant OUTPUT : std_logic :=not INPUT;

type rec_gpiomoduleport is record
oe :std_logic_vector(92 downto 0);
input : std_logic_vector(92 downto 0);
output : std_logic_vector(92 downto 0);
end record;
constant gpiomoduleport_default : rec_gpiomoduleport :=

oe =>(others => INPUT),
input => (others =>'0"),
output => (others =>'0")

signal gpiomoduleport : rec_gpiomoduleport := gpiomoduleport_default;
signal sdr_clk : std_logic =04
signal sdr_cke - std_logic =04
signal sdr_cs_n - std_logic =04
signal sdr_we_n : std_logic =04
signal sdr_cas_n :std_logic =04
signal sdr_ras_n :std_logic =04
signal sdr_dgm : std_logic_vector(1 downto 0) := (others =>"'0");
signal sdr_ba : std_logic_vector(1 downto 0) := (others =>'0";
signal sdr_adr : std_logic_vector(12 downto 0) := (others =>'0");
signal sdr_clk_fb : std_logic =04

begin
sysclk <= pin_sysclk_i;

pIx_lreset_ n <= pin_plx_lreset_n_i;
plx_lhold <= pin_plx_lhold_i;
pin_plx_lholda_o <= pIx_lholda;
plx_ads_n <= pin_plx_ads_n_i;
pIx_Iw_r_n <= pin_pIx_lw_r_n_i;
pin_plx_ready n_o <= pIx_ready n;
pin_plIx_linti_n_o <= plx_linti_n;

pin_flash_s n_o <=flash_s_n;
pin_flash_c_o <=flash_c;
pin_flash_d_o <= flash_d;
flash_q <= pin_flash_q_i;

pin_led_o <= led,;

process(gpiomoduleport)
begin
for i in gpiomoduleport.output'range loop
if gpiomoduleport.oe(i) = OUTPUT then
pin_gpiomoduleport_io(i) <= gpiomoduleport.output(i);
else
pin_gpiomoduleport_io(i) <="'Z";
end if;
end loop;
end process;
gpiomoduleport.input <= pin_gpiomoduleport_io;
-- ports of SDRAM
pin_sdr_clk_o <=sdr_clk;
pin_sdr_cke o <=sdr_cke;

49

pin_sdr_cs_n_o <=sdr_cs_n;
pin_sdr we n_ o <=sdr_we_n;
pin_sdr_cas n_o <=sdr_cas_n;
pin_sdr_ras n 0 <=sdr_ras_n;
pin_sdr_dgm_o <=sdr_dgm;
pin_sdr_ba_o <=sdr_ba;
pin_sdr_adr_o <=sdr_adr;
sdr_clk_fb <=pin_sdr_clk_fb_i;

inst_wb_intercon : wh_intercon

generic map

(
nr_of_dbgports => 1

)

port map

(

SYSCON_I => intercon.syscon,
SYSCON_MA_O => intercon.masters.syscon,
MASTER_| => intercon.masters.master,
SLAVE_O => intercon.masters.slave,
SYSCON_SL_O => intercon.slaves.syscon,
MASTER_O => intercon.slaves.master,
SLAVE_I =>intercon.slaves.slave,
debug =>open

);

inst_wb_syscon : wb_syscon
generic map

(
nr_of_dbgports => 1

port map

SYSCON_O => intercon.syscon,
Ibus_rst_i =>lbus_rst,

sysclk_i =>sysclk,

sdr_clk_ o =>sdr_clk,
sdr_clk_fb_i =>sdr_clk_fb,

debug => open
)i
inst_wb_ma_plx : wb_ma_plx
generic map
(

nr_of_irgiports => nr_of_irgs,
nr_of_irgoports => nr_of_irgs,
nr_of_dbgports =>1

)

port map

SYSCON_I => intercon.masters.syscon(ma_plx_id),
MASTER_O => intercon.masters.master(ma_plx_id),
SLAVE_I => intercon.masters.slave(ma_plx_id),

IRQ_I =>irgs,
IRQ_O => irqgos(irqdev_plx_id),

pIx_lreset_n_i => plx_lreset_n,
pIx_lhold_i => pIx_lhold,
plx_lholda_o => pix_lholda,
plx_ads_n_i =>plx_ads_n,
pIx_Iw_r n_i =>pIx_lw_r_n,
pIx_lad_io => pin_plx_lad_io,
plx_ready_n_o => pIx_ready_n,
pIx_linti_n_o => plx_linti_n,

50

Ibus_rst_o => lbus_rst,

debug => open

inst_wb_sl_sdr: wb_sl_sdr
generic map
(
nr_of_irgiports => nr_of _irgs,
nr_of_irqoports => nr_of _irgs,
nr_of_dbgports =>1

port map

SYSCON_I => intercon.slaves.syscon(sl_sdr_id),
MASTER_I => intercon.slaves.master(sl_sdr_id),
SLAVE_O => intercon.slaves.slave(sl_sdr_id),

IRQ_I =>irgs,
IRQ_O => irqos(irqdev_sdr_id),

sdr_clk_o =>open,
sdr_cke_o =>sdr_cke,
sdr_cs_n_o =>sdr_cs_n,
sdr_we_n_o =>sdr_we_n,
sdr_cas_n_o =>sdr_cas_n,
sdr_ras_n_o =>sdr_ras_n,
sdr_dgm_o =>sdr_dgm,
sdr_ba_ o =>sdr_ba,
sdr_adr_o =>sdr_adr,
sdr_dq_io => pin_sdr_dq_io,

debug => open

);

inst_ wb_sl_flash : wh_sl_flash
generic map
(
nr_of_irgiports => nr_of _irgs,
nr_of_irqoports => nr_of_irgs,
nr_of_dbgports =>1
)

port map

SYSCON_I => intercon.slaves.syscon(sl_flash_id),
MASTER_I => intercon.slaves.master(sl_flash_id),
SLAVE_O => intercon.slaves.slave(sl_flash_id),

IRQ_I =>irgs,
IRQ_O => irqos(irqdev_flash_id),

flash s n o =>flash_s n,
flash c o =>flash_c,
flash_hold_n_o => open,
flash_w_n_o => open,
flash_d_o =>flash_d,
flash_qg_i =>flash_q,

debug => open

);

inst_wb_sl_gpio : wb_sl_gpio
generic map
(
nr_of_irgiports => nr_of _irgs,
nr_of_irqoports => nr_of_irgs,
nr_of_dbgports =>1
)

51

port map

(
SYSCON_I => intercon.slaves.syscon(sl_gpio_id),
MASTER_I => intercon.slaves.master(sl_gpio_id),
SLAVE_O => intercon.slaves.slave(sl_gpio_id),

IRQ_I =>irgs,
IRQ_O => irqos(irqdev_gpio_id),

led_o =>led,

ext_oe_o =>ext_oe,
ext_input_i =>ext_input,
ext_output_o => ext_output,

gpio_io => pin_gpio_io,

debug => open

);

inst_ wb_sl_timer : wh_sl_timer
generic map
(
nr_of_irgiports => nr_of_irgs,
nr_of_irqoports => nr_of_irgs,
nr_of_dbgports =>1
)

port map

SYSCON_I => intercon.slaves.syscon(sl_timer_id),
MASTER_I => intercon.slaves.master(sl_timer_id),
SLAVE_O => intercon.slaves.slave(sl_timer_id),

IRQ_I =>irgs,
IRQ_O => irqos(irqdev_timer_id),

debug => open

irgs(irg_progtime_id) <= irqos(irqdev_timer_id)(irq_progtime_id);

gpiomoduleport.oe <=
(

1 => OUTPUT,
2t05 =>ext_oe(7),
6t09 =>ext_oe(6),
10to 11 => OUTPUT,
12 to 15 => ext_oe(5),
16 to 19 => ext_oe(4),
20 to 21 => OUTPUT,

52

2210 25 => ext_oe(3),
26 to 29 => ext_oe(2),
30 to 31 => OUTPUT,
32 to 35 => ext_oe(0),
36 to 39 => ext_oe(1),
40 =>OUTPUT,
50 =>OQUTPUT,
51 to 54 => ext_oe(1),
55 to 58 => ext_oe(0),
59 to 60 => OUTPUT,
61 to 64 => ext_oe(2),
65 to 68 => ext_oe(3),
69 =>OUTPUT,
71 =>OQUTPUT,
7210 75 => ext_oe(4),
76 to 79 => ext_oe(5),
80to 81 => OUTPUT,
82 to 85 => ext_oe(6),
86 to 88 => ext_oe(7),
90 =>ext_oe(7),
91 =>OUTPUT,
others =>INPUT

);

gpiomoduleport.output(1l) <=ext_oe(7);
gpiomoduleport.output(10) <='0;
gpiomoduleport.output(11) <= ext_oe(5);
gpiomoduleport.output(20) <="'0;
gpiomoduleport.output(21) <= ext_oe(3); --
gpiomoduleport.output(30) <='0;
gpiomoduleport.output(31) <= ext_oe(0);
gpiomoduleport.output(40) <=0,
gpiomoduleport.output(50) <= ext_oe(1);
gpiomoduleport.output(59) <='0;
gpiomoduleport.output(60) <= ext_oe(2);
gpiomoduleport.output(69) <="0;
gpiomoduleport.output(71) <= ext_oe(4);
gpiomoduleport.output(80) <="0';
gpiomoduleport.output(81) <= ext_oe(6);
gpiomoduleport.output(91) <=0,

gpiomoduleport.output(86) <= ext_output(7*8+7);
gpiomoduleport.output(87) <= ext_output(7*8+5);
gpiomoduleport.output(88) <= ext_output(7*8+3);
gpiomoduleport.output(90) <= ext_output(7*8+1);
ext_input(7*8+7) <= gpiomoduleport.input(86);
ext_input(7*8+5) <= gpiomoduleport.input(87);
ext_input(7*8+3) <= gpiomoduleport.input(88);
ext_input(7*8+1) <= gpiomoduleport.input(90);

process(ext_output, gpiomoduleport)
begin
foriin0to 3 loop

gpiomoduleport.output(2+i) <= ext_output(7*8+2*i);
ext_input(7*8+2*i) <= gpiomoduleport.input(2+i);
gpiomoduleport.output(6+i) <= ext_output(6*8+2*i);
ext_input(6*8+2*i) <= gpiomoduleport.input(6+i);
gpiomoduleport.output(12+i) <= ext_output(5*8+2*i);
ext_input(5*8+2*i) <= gpiomoduleport.input(12+i);
gpiomoduleport.output(16+i) <= ext_output(4*8+2*i);
ext_input(4*8+2*i) <= gpiomoduleport.input(16+i);
gpiomoduleport.output(22+i) <= ext_output(3*8+2*i);
ext_input(3*8+2*i) <= gpiomoduleport.input(22+i);
gpiomoduleport.output(26+i) <= ext_output(2*8+2*i);
ext_input(2*8+2*i) <= gpiomoduleport.input(26+i);
gpiomoduleport.output(32+i) <= ext_output(0*8+2*i);
ext_input(0*8+2*i) <= gpiomoduleport.input(32+i);

53

gpiomoduleport.output(36+i) <= ext_output(1*8+2*i);
ext_input(1*8+2%i) <= gpiomoduleport.input(36+i);
gpiomoduleport.output(54-i) <= ext_output(1*8+(2*i+1));
ext_input(1*8+(2*i+1)) <= gpiomoduleport.input(54-i);
gpiomoduleport.output(58-i) <= ext_output(0*8+(2*i+1));
ext_input(0*8+(2*i+1)) <= gpiomoduleport.input(58-i);
gpiomoduleport.output(64-i) <= ext_output(2*8+(2*i+1));
ext_input(2*8+(2*i+1)) <= gpiomoduleport.input(64-i);
gpiomoduleport.output(68-i) <= ext_output(3*8+(2*i+1));
ext_input(3*8+(2*i+1)) <= gpiomoduleport.input(68-i);
gpiomoduleport.output(75-i) <= ext_output(4*8+(2*i+1));
ext_input(4*8+(2*i+1)) <= gpiomoduleport.input(75-i);
gpiomoduleport.output(79-i) <= ext_output(5*8+(2*i+1));
ext_input(5*8+(2*i+1)) <= gpiomoduleport.input(79-i);
gpiomoduleport.output(85-i) <= ext_output(6*8+(2*i+1));
ext_input(6*8+(2*i+1)) <= gpiomoduleport.input(85-i);
end loop;
end process;
end RTL;

Code 2 Pcis3base_top.vhd

Apart from the instantiation of the WISHBONE components, in the “Pcis3base_top.vhd*
module there is also defined with which pads of the FPGA the PIB ports are speaking. Based
on this information, the value of each bit of the 8 ports can afterwards be checked straight in
the 78-pin CON9.

3.3.3 Intercon Module

Although the Intercon module will not change when the MSS module will be added to the
WISHBONE bus, it is worth writing down its code, as it is the heart of the communication
between the components of WISHBONE architecture. All WISHBONE devices are connected
to this shared bus interconnection logic. Some MSBs of the address are used to select the
appropriate slave. The code of file “wb_intercon.vhd” with the necessary comments follows
below.

library IEEE;

use IEEE.STD_LOGIC_1164.all;
use IEEE.NUMERIC_STD.all;
use work.wishbone.all;

entity wb_intercon is
generic

nr_of_dbgports : positive := 1
)i
port

SYSCON_I :in rec_syscon_port;
SYSCON_MA_O : out arr_syscon_port(rng_masters);
MASTER_I :in arr_master_port(rng_masters);
SLAVE_O :out arr_slave_port(rng_masters);
SYSCON_SL_O:out arr_syscon_port(rng_slaves);
MASTER_O :out arr_master_port(rng_slaves);

SLAVE_I :in arr_slave_port(rng_slaves);
debug > inout std_logic_vector((nr_of_dbgports-1) downto 0)
)i

end wb_intercon;

54

architecture RTL of wb_intercon is

signal intercon : rec_intercon_signal := intercon_default;
signal wishbone : rec_wishbone_signal := wishbone_default;

begin

intercon.syscon <= SYSCON_I;

SYSCON_MA O <= intercon.masters.syscon;
intercon.masters.master <= MASTER_1I;

SLAVE_O <= intercon.masters.slave;
SYSCON_SL_O <= intercon.slaves.syscon;
MASTER_O <= intercon.slaves.master;

intercon.slaves.slave <= SLAVE_lI;

wishbone.syscon <= intercon.syscon;
intercon.masters.syscon <= (others => wishbone.syscon);
intercon.slaves.syscon <= (others => wishbone.syscon);

wishbone.master <= intercon.masters.master(ma_plx_id);
intercon.masters.slave <= (others => wishbone.slave);

process(wishbone, intercon)

begin
wishbone.slave <= slave_default;
intercon.slaves.master <= (others => wishbone.master);

for i in rng_slaves loop

intercon.slaves.master(i).cyc <="'0";

if i = TO_INTEGER(unsigned(wishbone.master.adr(rng_slave_select))) then
intercon.slaves.master(i).cyc <="'1";
wishbone.slave <= intercon.slaves.slave(i);

end if;

end loop;
end process;
end RTL;

Code 3 Wb_intercon.vhd

Reading the code above, apparently the signal cyc is the most important one as by default is

set to null (‘0”) and only in case a slave device is selected, it is set to one(‘1’). By this signal,

the master device knows on which slave device it has to send the data package.

3.3.4 Master plx Module

As in the case of Intercon module, so in the case of Master_plx there will not be any change

inside the code when the new slave device will be added on. However, it should be analysed

how this module behaves as it is the only one master device connected to the WISHBONE

55

bus. What also makes this device extremely significant, is the fact that all the data transferred
on the local bus are passed on it and it is, in turn, responsible for sending the data to the
selected slave device (the intercon module is responsible for this selection as shown above).
The code of file “wb_ma_plx.vhd” with the necessary comments follows below.

library IEEE;
use IEEE.STD_LOGIC_1164.all;
use work.wishbone.all;

entity wh_ma_plx is
generic
(
nr_of_irgiports : positive := 1,
nr_of_irqoports : positive := 1;
nr_of_dbgports : positive :=1

port

SYSCON_I :in rec_syscon_port;

MASTER_O :out rec_master_port;

SLAVE_I 1in rec_slave_port;

IRQ_I :in std_logic_vector((nr_of_irgiports-1) downto 0);
IRQ_O sout std_logic_vector((nr_of_irqoports-1) downto 0);

pIx_lreset_n_i:in std_logic;

pIx_lhold_i :in std_logic;

plx_lholda_o :out std_logic;

plx_ads_n_i :in std_logic;

pIx_lw_r_n_i :in std_logic;

pIx_lad_io :inout std_logic_vector(31 downto 0);
pIx_ready n_o :out std_logic;

pIx_linti_n_o :out std_logic;

Ibus_rst o :out std_logic;

debug - inout std_logic_vector((nr_of_dbgports-1) downto 0)
);

end wb_ma_plx;

architecture RTL of wb_ma_plx is

signal wishbone : rec_wishbone_signal := wishbone_default;
signal irgi : std_logic_vector((nr_of_irgiports-1) downto 0) := (others =>'0");
signal irqo :std_logic_vector((nr_of_irgoports-1) downto 0) := (others =>'0");
signal pIx_Ireset_n : std_logic =05

signal pIx_lhold : std_logic =04

signal pIx_lholda : std_logic =04

signal pIx_ads_n : std_logic_vector(1 downto 0) := (others =>'0");
signal pIx_Iw_r_n :std_logic =05

constant INPUT : std_logic =04

constant OUTPUT : std_logic = not INPUT;

type rec_plx_lad is record
oe :std_logic;
input : std_logic_vector(31 downto 0);
output : std_logic_vector(31 downto 0);
end record;
constant plx_lad_default : rec_plx_lad :=

oe =>INPUT,
input => (others =>'0"),
output => (others =>'0")

signal pIx_lad :rec_plx_lad := pIx_lad_default;
signal pIx_ready n : std_logic :='0";

signal pIx_linti_n : std_logic :="'0";

signal lbus_rst :std_logic :='0";

56

begin

wishbone.syscon <= SYSCON_I;
MASTER_O <= wishbone.master;
wishbone.slave <= SLAVE_];

irgi <= IRQ_I;
IRQ_O <= irqo;

pIx_lIreset n <=plx_lreset_n_i;
pIx_lhold <=pix_lhold_i;
plx_lholda_o <= plx_lholda;
plx_ads_n(0) <=plx_ads n_i;
pIx_Iw rn <=plx_Iw_r n_i
process(plx_lad)
begin
if pIx_lad.oe = OUTPUT then
plx_lad_io <= pIx_lad.output;
else
pIx_lad_io <= (others =>'Z");
end if;
end process;
pIx_lad.input <= plx_lad_io;
plx_ready n_o <=plx_ready n;
pIx_linti_n_o <= plx_linti_n;

lbus_rst o <= lbus_rst;

lbus_rst <= not plx_lIreset_n;

process(wishbone)
begin
if wishbone.syscon.rst = '1' then
plx_lholda <=0,
plx_ready_n <='1%
wishbone.master.sth <="'0';
plx_lad.oe <=0,
plx_ads_n(1) <="1%
elsif wishbone.syscon.clk'event and wishbone.syscon.clk = '1' then

pIx_linti_n <= not irqi(irq_progtime_id);
plx_ads_n(1) <= plx_ads_n(0);

if pIx_ads_n(0) ='0' then
wishbone.master.adr <= b"00" & plx_lad.input(31 downto 2);

else
wishbone.master.dat <= pIx_lad.input;
end if;
wishbone.master.we <= pIx_Iw_r_n;
plx_lad.oe <= wishbone.slave.ack and (not wishbone.master.we);
plx_ready_n <= not wishbone.slave.ack;
plx_lad.output <= wishbone.slave.dat;

57

plx_lholda <= pix_lhold;

if wishbone.master.we ='1' then
if pIx_ads_n(1) ='0" then
wishbone.master.stb <="1";
elsif wishbone.slave.ack = '1' then
wishbone.master.stb <="'0";
end if;

else
if pIx_ads_n(0) ='0" then
wishbone.master.stb <="1";
elsif wishbone.slave.ack = '1' then
wishbone.master.stb <="'0";
end if;
end if;
end if;
end process;
end RTL;

Code 4 Wb_ma_plx.vhd

Furthermore, reading the code above it is obvious that apart from passing on the
data(wishbone.master.adr, wishbone.master.dat) to the slave device, this module has to
accomplish another work, which is the correct translation of the local bus control
signals(plx_Iw_r_n,plx_Ihold,plx_ads_n) to the corresponding WISHBONE control
signals(wishbone.master.sth,wishbone.master.we).As stated in the top module previously,

the address which is transferred on the local bus is not equal to the address which is passed on
the WISHBONE bus. Specifically, it is four times greater (local bus address=WISHBONE
bus address << 2). This relationship between the local bus address and WISHBONE bus
address is defined in the master module.

3.3.5 GPIO Module

At the begin of subchapter 3.3 it was mentioned, that the GPIO Module is the most important
slave device connected to the WISHBONE bus in matters of the new slave device which will
be developed. It will be also the only slave device whose function will be explained in this
subsection as the others are irrelevant to the new module which has to be implemented.

The GPIO slave device implements the communication of the WISHBONE with the 8 ports
of the PIB, with the LEDs and with the Internal Expansion Port J21. In other words, the GPIO
module is the last stage in the process before the data package, sent to the FPGA from PC
through local bus, goes to the PIB ports and then to the CONO9 pins. The code of file
“wb_sl_gpio.vhd” with the necessary comments follows below.

library IEEE;
use IEEE.STD_LOGIC_1164.all;
use work.wishbone.all;

entity wh_sl_gpio is
generic
(
nr_of_irgiports : positive := 1,
nr_of_irqoports : positive := 1;
nr_of_dbgports : positive := 1

porf
58

SYSCON_I :in rec_syscon_port;

MASTER_I :in rec_master_port;

SLAVE_O :out rec_slave_port;

IRQ_I in std_logic_vector((nr_of_irgiports-1) downto 0);
IRQ_O rout std_logic_vector((nr_of_irqoports-1) downto 0);
led_o sout std_logic_vector(7 downto 0);

ext_ oe_ o :out std_logic_vector(7 downto 0);
ext_input_i :in std_logic_vector(63 downto 0);
ext_output_o : out std_logic_vector(63 downto 0);

gpio_io :inoutstd_logic_vector(27 downto 0);
debug : inout std_logic_vector((nr_of_dbgports-1) downto 0)
);

end wb_sl_gpio;

architecture RTL of wb_sl_gpio is

constant INPUT : std_logic =04

constant OUTPUT : std_logic :=not INPUT;
constant LEDOFF : std_logic ='0"

constant LEDON : std_logic = not LEDOFF;
constant INPORT : natural =0;

constant INBUFF : natural =1,

signal wishbone : rec_wishbone_signal := wishbone_default;

signal irgi : std_logic_vector((nr_of_irgiports-1) downto 0) := (others =>'0");
signal irgo : std_logic_vector((nr_of_irqoports-1) downto 0) := (others =>'0");

signal led - std_logic_vector(7 downto 0) := (others =>'0";

signal ext_oe :std_logic_vector(7 downto 0) := (others => INPUT);
type arr_std64 is array(natural range <>) of std_logic_vector(63 downto 0);

signal ext_input : arr_std64(1 downto 0) := (others => (others =>'0"));
signal ext_output : std_logic_vector(63 downto 0) := (others =>'0";

type arr_std28 is array(natural range <>) of std_logic_vector(27 downto 0);
type rec_gpio is record
oe :std_logic_vector(27 downto 0);
input : arr_std28(1 downto 0);
output : std_logic_vector(27 downto 0);
end record;
constant gpio_default : rec_gpio :=

oe =>(others => INPUT),
input => (others => (others =>'0"),
output => (others =>'0")
);
signal gpio : rec_gpio := gpio_default;

begin

wishbone.syscon <=SYSCON_I;
wishbone.master <= MASTER I,

SLAVE_O <= wishbone.slave;
irgi <=IRQ_I;

IRQ_O <=irqo;

-- LEDs

led_o <= led;

ext_oe o <=ext_oe;

ext_input(INPORT) <= ext_input_i;
ext_output 0 <=ext_output;

process(gpio)
begin
for i in gpio.output'range loop
if gpio.oe(i) = OUTPUT then
gpio_io(i) <= gpio.output(i);

59

else
gpio_io(i) <="Z";
end if;
end loop;
end process;
gpio.input(INPORT) <= gpio_io;

process(wishbone, ext_input, ext_oe, gpio, led)
begin

if wishbone.syscon.rst = '1' then
wishbone.slave.ack <="'0";

ext_oe <= (others => INPUT));
ext_output <= (others =>'0";
gpio.oe <= (others => INPUT);
gpio.output <= (others =>'0");
led <= (others => LEDOFF);

elsif wishbone.syscon.clk'event and wishbone.syscon.clk = '1' then

if wishbone.slave.ack = '1' then
wishbone.slave.ack <="0";

elsif (wishbone.master.cyc and wishbone.master.stb) = '1' then
wishbone.slave.ack <="'1";

end if;

if (wishbone.master.cyc and wishbone.master.stb and wishbone.master.we) = '1' then
case wishbone.master.adr(rng_gpio_adr) is

when gpio_ext0_offset(rng_gpio_adr) =>
ext_output(31 downto 0) <= wishbone.master.dat;

when gpio_extl_offset(rng_gpio_adr) =>
ext_output(63 downto 32) <= wishbone.master.dat;

when gpio_extoe_offset(rng_gpio_adr) =>
ext_oe <= wishbone.master.dat(rng_gpio_extoe);

when gpio_int_offset(rng_gpio_adr) =>
gpio.output <= wishbone.master.dat(rng_gpio_int);

when gpio_intoe_offset(rng_gpio_adr) =>
gpio.oe <= wishbone.master.dat(rng_gpio_intoe);

when gpio_led_offset(rng_gpio_adr) =>
led <= wishbone.master.dat(rng_gpio_led);
when others => null;
end case;
end if;

ext_input(INBUFF) <= ext_input(INPORT);
gpio.input(INBUFF) <= gpio.input(INPORT);
end if;

wishbone.slave.dat <= (others =>'0"); -- default value
case wishbone.master.adr(rng_gpio_adr) is

when gpio_ext0_offset(rng_gpio_adr) =>
wishbone.slave.dat <= ext_input(INBUFF)(31 downto 0);

60

when gpio_extl_offset(rng_gpio_adr) =>
wishbone.slave.dat <= ext_input(INBUFF)(63 downto 32);

when gpio_extoe_offset(rng_gpio_adr) =>
wishbone.slave.dat(rng_gpio_extoe) <= ext_oe;

when gpio_int_offset(rng_gpio_adr) =>
wishbone.slave.dat(rng_gpio_int) <= gpio.input(INBUFF);

when gpio_intoe_offset(rng_gpio_adr) =>
wishbone.slave.dat(rng_gpio_intoe) <= gpio.oe;

when gpio_led_offset(rng_gpio_adr) =>
wishbone.slave.dat(rng_gpio_led) <= led;
when others => null;
end case;
end process;
end RTL;

Code 5 Wb _sl_gpio.vhd

In the GPIO Module, a register can be either written (send out information), or be read. As far
as the ports of the PIB are concerned the state (Input / Output) of each port is defined by
ext_oe register.

3.4 Testing Wishbone Bus Architecture with Modelsim

Having already explained the main WISHBONE components the next step in order to clarify
how the WISHBONE architecture works is to develop a testbench that would actually
simulate the local bus. In other words the testbench will replace the local bus. In such a way
the exact dataflow can be produced, which is already depicted in Figure 5 for both cases of
write and read cycle.

In Figure 9 follows an overview of how the whole system looks like starting from PC(local
bus) up to the CON9 connector.

61

PLX-RCI

Local Bus
()]
. prd
» Wishbone @)
» TESTBENCH » Architecture » PIB > %
(Picture 4) o
o0]
N~
.TXT FILE
FPGA

Figure 9 Local Bus Testbench

Obviously, the main goal for writing this testbench is to communicate directly with the
WISHBONE bus and in this way to conceive how it works. Using this testbench the engineer
is independent from PLX/PCI as he himself can produce the local bus signals which are sent
to the WISHBONE architecture and stimulate its components.

The code of the testbench, which will also be used later in the simulation of the MSS module,
is presented below.

library ieee;

use ieee.std_logic_1164.all;

use ieee.std_logic_arith.all;

use ieee.std_logic_unsigned.all;
use work.iuic_fpga_tb_package.all;
library std;

use std.textio.all;

entity cmd_if is
generic(

62

g_cmd_file : string := "C:\Users\toshiba\Desktop\commandfile.txt";
clk_period : time :=20ns

end' cmd_if;

architecture behave of cmd_if is

signal clk > std_logic :="0";
signal counter sinteger =1,
signal lhold, Iholda, rst, lwr, ads, ready : std_logic;
signal lad . std_logic_vector(31 downto 0);
signal led . std_logic_vector(7 downto 0);
signal gpio . std_logic_vector(92 downto 0);
component pcis3base_top is

generic

nr_of_dbgports : positive := 1

)i
port
(
pin_sysclk_i ;in std_logic;
pin_plx_lreset_ n_i :in std_logic;
pin_plx_lhold_i :in std_logic;
pin_plx_lholda_o :out std_logic;
pin_plx_ads_n_i :in std_logic;
pin_pIx_Ilw_r_n_i :in std_logic;
pin_plx_lad_io : inout std_logic_vector(31 downto 0);

pin_plx_ready n_o :out std_logic;
pin_plx_linti_n_o :out std_logic;

pin_led_o sout std_logic_vector(7 downto 0);
pin_gpiomoduleport_io : inout std_logic_vector(92 downto 0);
pin_gpio_io : inout std_logic_vector(27 downto 0);
pin_debug_io s inout std_logic_vector((nr_of_dbgports-1) downto 0)
);
end component;
begin

clk <= not clk after clk_period/2;

stimuli : pcis3base_top port map(clk, rst, Ihold, Iholda, ads, Iwr, lad, ready, open, led, gpio, open, open);
stimuli : process

file INFILE : text open read_mode is g_cmd_file;
variable CMD : string(1 to 5);
variable IN_LINE - ling;

variable STRING_IN :string (1 to 255);
variable string_in_len : integer := 0;

variable a_str : string (1 to 8);
variable d_str : string (1 to 8);
variable ADR : std_logic_vector(31 downto 0);
variable DATA > std_logic_vector(31 downto 0);
begin
lhold <='0"
rst <=0,
lwr <="1"
ads <='1"
lad <="ZZ777777777777777777 777777777

wait for 100 ns;

programm : while not endfile(INFILE) loop

str_read(INFILE, STRING_IN, string_in_len);

63

counter <= counter+1;

if ((counter mod 4 = 1 and counter /= 1) or counter = 10) then
wait for 2000 ns;

end if;

INLOOP :

while (STRING_IN(1) ="-") loop
report STRING_IN(1 to string_in_len);
str_read(INFILE, STRING_IN, string_in_len);
end loop INLOOP;
CMD := STRING_IN(1 to 5);
report "COMMAND-FILE: " & STRING_IN(1 to string_in_len);

if (CMD(1 to 2) = "wr") then
a_str:= STRING_IN(4 to 11);
d_str := STRING_IN(13 to 20);
ADR :=str2vector(a_str);
DATA = str2vector(d_str);
report "MSS write ADR: " & a_str & " Data: " & d_str;
lhold <="1";
ads <='04
lad <= ADR;
wait for clk_period;
ads <='1"%
lad <= DATA;
wait for 8*clk_period;
lad <="777777777777777777777777
wait for clk_period;
end if;

if (CMD(1 to 2) = "rd") then
a_str:= STRING_IN(4 to 11);
ADR :=str2vector(a_str);
lhold <="1";
lwr <='0"
wait for clk_period;
ads <='0
lad <= ADR;
wait for clk_period;
lad <="7272777 277 /7777777777777777",
ads <="'1%
wait for 8*clk_period,;
lad <="Z72727727727727777 277777777777";
wait for clk_period;
lwr <='1";
wait for clk_period;
end if;
end loop programm;
wait;
end process STIMULL;
end architecture behave;

Code 6 Testbench.vhd

Using this testbench a text file is read, which contains 2 type of commands, write and read.
For reading each line of this file, it is used the function str_read() which has three operands.
The first one is the name of the text file, the second one is a line of this file and the third one
the length of this line. The code of this function is included in package iuic_fpga_tb_package
and follows below.

64

procedure str_read(file in_file: text;
res_string : out string;
res_len :outinteger) is

variable lead_ws : boolean :=true;
variable ws_count : integer :=0;
variable res_len_cnt : integer :=0;
variable | : line;

variable ¢ : character;

variable is_string : boolean;

begin
readline(in_file, I);

for i in res_string'range loop
res_string(i) :="'+}

end loop;

res_len_cnt:=0;

res_len :=0;

ws_count :=0;

for i in res_string'range loop
read(l, c, is_string);

if not is_string then -- found end of line
res_string(i - ws_count) :='#;
exit;

else

if lead_ws then

if ((c="") or (c = ht)) then
ws_count :=ws_count + 1;
else
lead_ws := false;
res_string(i - ws_count) :=c;
res_len_cnt:=res_len_cnt + 1;
end if;

else
if ((c ="") or (c = ht)) then
lead_ws :=true;

end if;

res_string(i - ws_count) :=c;
res_len _cnt:=res len _cnt+1;

end if;
end if;

end loop;
res_len :=res_len_cnt;

end str_read;

Code 7 Str_read()

In the testbench source file above, the code of the top module is simplified, as all the unused
slave devices are erased, meaning the SDRAM, SPI FLASH and TIMER slave devices.
Obviously, the SYSCON device is also erased as the testbench itself provides all the other
devices with the clock signal. Furthermore, the clock frequency used in the testbench is equal

65

to the clock frequency of the clock oscillator supplied to the FPGA. In both cases (wr & rd) of
assembly commands written in the text file the source code generates the whole signal values
sequence already showed in Figure 5. It will be presented step by step below in the simulation
environment of Modelsim, how the local bus signals values are translated to the
corresponding WISHBONE bus signals.

First of all, it is mentioned in Code 8, which assembly commands are written in
the“‘commandfile.txt” which will be read by the testbench.

wr 20000008 000000FF
wr 20000000 04030201
wr 20000004 08070605
rd 20000004
rd 20000000

Code 8 Commandfile.txt (GP10)

Taking a look inside the code of the WISHBONE package defined in Code 1 it can be
understood that the addresses written inside the text file are the addresses which correspond to
the GPIO module. It has to be mentioned that the addresses in “Commandife.txt” are the local
bus addresses which will be translated to the corresponding WISHBONE bus addresses inside
the master device connected to the WISHBONE bus. For instance, the local bus address
20000008 is equal to the WISHBONE bus address 08000002 as in general, the local bus
address is equal to the WISHBONE bus address when the latter is left shifted two times.

It is high time to present the simulation, which will give an overview of the local bus-
WISHBONE relationship.

Step 1

wr 20000008 000000FF

The testbench reads the first command and passes on its information to the wishbone and
ext_oe signals.

66

Messages
—Lnd&m&glds—
4 Jand ik L
B fond flad mm
* fand e 1
* Jand iffads 1
o feady 1
— WISHBONE Bus Signals —
P T T TCF)
B’ fuishhonefext input [ZZZZIITIETEITL
B fishbone/ext output {1000000000000200 [20010
B Jon ffstmulfnst.. |{0 1} {10 1 {00000 o070
4 01

Figure 10 Local Bus-Wishbone Testbench pic.1

There are 10 signals included in the waveform. CIK is the clock signal, the next 4 signals
(Iwr,lad,ads,ready) belong to the local bus and the last 5 signals belong to the WISHBONE
module. Ext_oe is a 8 bit std_logic_vector signal which shows the 1/O state of each of the 8
ports in the PIB (1 for output, O for input). It has to be clarified that meaning output is the
direction from FPGA towards the ports of the PIB and meaning input is the opposite
direction. Ext_input is a 64 bit std_logic_vector signal which has the values of the 64 10s
when they receive information from outside through the CON9 connector. Starting from bit 0,
the first 8 bits (bit0-bit7) is the information sent through Port 0 towards FPGA, the next 8 bits
(bit8-bit15) is the information sent through Port 1 etc. Ext_output is also a 64 bit
std_logic_vector signal, which respectively has the values, which will be sent to the 64 10s
from the FPGA. Gpio is a 93 bit std_logic_vector signal, which shows the value of each of
the 93 pins of the CON7 connector between the FPGA and the PIB. However, the most
important signal in the waveform above is the wishbone as it is the signal with which all
WISHBONE modules communicate.

It is obvious that the command cycle depicted in Figure 10 is a write cycle as the Iwr signal
has always the value ‘1°. Observing the lad signal, it can be immediately conceived that the
address is equal to 2000_0008 and the data package is equal to 0000_00FF. What is more, it is
displayed above, how the lad signal’s value is multiplexed, as in case when the control signal
ads is equal to ‘0’ the lad signal’s value is passed on the wishbone.master.adr, while in case
when the signal ads is equal to ‘1’ the lad signal’s value is passed on the
wishbone.master.dat. As already mentioned, the address value passed on the
wishbone.master.adr (0800_0002) is equal to the value carried by signal lad (2000_0008)
right shifted two times. The address is multiplexed correctly as the data package (0000_00FF)
is passed on register ext_oe which corresponds to address 0800_0002. It was stated earlier,
that register ext_oe shows if a port is behaving as input or as output. As all bits of this signal
are set to ‘1’ all ports of PIB are outputs.

67

Step 2

| wr 20000004 08070605 |

The testbench reads the third command and passes on its information to the wishbone and
ext_output signals.

108070805

Figure 11 L ocal Bus-Wishbone Testbench pic.3

Exactly as before, the command cycle depicted in Figure 11 is a write cycle as the lwr signal
has always the value ‘1°. The lad signal carries now however a different address (2000_0004)
, Which corresponds to the 32 MSBs of register ext_output. The data packages 05, 06, 07 and
08 are sent in Ports 4,5,6,7 respectively.

Step 3

| rd 20000004 |

The testbench reads the fourth command and passes on its information to the wishbone and
lad signals.

68

Messages

— Local s nals ——

! fod ek !

! fod e 0

! fod s

! fod ety
— WISHBONE Bus Sgnals —
B hidboekitoe |

1
1

B fwishbonefext ouput |0807060504030201 030708
B fond ifctmulfinst s (0 0 {00 (080000 T 57,70 1171, To0T (1. ML L L L 0 L e . L. L L. L. 0. 0L
::-' FE I 10 TR T TR TR TR
-/ master 100 08000000} {2110 00
4 e 1
4 sh 0
4 e 0
- atl 18000000
oot |
- | dave 0 {03001}

4 ak 0
- dat 4030201

— 100 pin CON7 ——
B fod ifigpio 20K 14T

Figure 12 L ocal Bus-Wishbone Testbench pic.4

The command cycle depicted in Figure 12 is a read cycle as the lwr signal has the value ‘0.
The lad signal carries the address “2000_0004” which matches to the 32 MSBs of register
ext_output. Inside the master module connected to the WISHBONE bus, which is described
in Code 4, the value of signal wishbone.slave.dat is passed on the local bus signal lad.
Apparently, in this case the value of of signal wishbone.slave.dat is equal to the information
stored in address “0800 0001 of WISHBONE.

Step 4

| rd 20000000 |

The testbench reads the fifth command and passes on its information to the wishbone and lad
signals.

69

Messzges
! Jnd 1
& fod flad il
! ond fhwe 0
! lmiffls |
! i ety |t
— WISHBONE Bus Signals —
n-‘ fhishbonefext 0e [FF

B fuihhoneext output|DB0T0R0504030201 [oe0
-3 fmmﬂmim_ {M}{lw{m
4 sysn 01
b
4

4 1 ne
- ad
B b
e 0 st}
4k 0
-t 4030201
— 100 CON ——
B g |DOBNNADO

B fihhonefext iput {OBOGOS040R00E| oTen 0

Ty — |

120000000

|
.......

Figure 13 Local Bus-Wishbone Testbench pic.5

The command cycle depicted in Figure 13 is also a read cycle as the lwr signal has the value
‘0’. The lad signal carries the address “2000 0000 which matches to the 32 LSBs of register
ext_output. The value of signal wishbone.slave.dat, which corresponds now to address
“0800_0000” of WISHBONE is passed on the local bus signal lad when the control signal
ready takes the value ‘0’. The value of signal ready is also defined in the master module
(Code 4), and has always the opposite value in compare with signal wishbone.slave.ack. It
should be underlined, that there is always one clock cycle delay in the information passed on
from signal wishbone.slave.ack to signal ready.

70

4. MSS Module implementation

4.1 General Information about ERC32 microprocessor

ERC32 is a radiation-tolerant 32-bit RISC processor developed for space applications. Two
versions have been manufactured, the ERC32 Chip Set (Part Names: TSC691, TSC692,
TSC693), and the ERC32 Single Chip (Part Name: TSC695). These implementations follow
SPARC V7 specifications. The radiation-tolerant feature of ERC32 makes it very popular in
space electronics applications, as it is one of the few microprocessors, which are available in
radiation tolerant technology.’

ERC32 microprocessor has been developed under the ESA contract at the end of the 90’s and
it is now commercialised by Atmel. This microprocessor is implemented on the 0.5 micron
Radiation Tolerant CMOS process of Atmel.

There were several design revisions during the development and evaluation phase of ERC32
microprocessor, as there have been found several deficiencies of the design. The final
iteration of ERC32 that is nowadays commercialised by Atmel is the F iteration. Although
some of the previous E iterations have been in field, it is strongly advised to discontinue their

use.®

4.2 MSS Communication Interface Timing

In this subchapter, it will be described how the timing interface of ERC32 Microprocessor
looks like. From this point on, the name MSS will be used instead of any other specific
microprocessor’s name. The Write and Read Timing of MSS are displayed below:

.

Tli‘!".ﬂ:

Tyss™ * Tyr ™

AD[7:0]

Figure 14 Write Timing of MSS Communication Interface

" http://en.wikipedia.org/wiki/ERC32
8

http://microelectronics.esa.int/erc32/Hardware%20and%20Documentation%20Status%200f%20the%20ERC32
%20Single%20Chip%20ilrla.pdf

71

http://en.wikipedia.org/wiki/ERC32
http://microelectronics.esa.int/erc32/Hardware%20and%20Documentation%20Status%20of%20the%20ERC32%20Single%20Chip%20i1r1a.pdf
http://microelectronics.esa.int/erc32/Hardware%20and%20Documentation%20Status%20of%20the%20ERC32%20Single%20Chip%20i1r1a.pdf

T

Jr'j .

iz _/_\\

_*_Tuss_' - THSH/_
Hel
B N /
ED T N
* Texm Tos. +TD.2:E:.
ra
appal____ > as < D[7.0]

Figure 15 Read Timing of MSS Communication Interface

The timing constants definition follows in the next table:

Symbol | Parameter Min number of clock Max number of clock
cycles cycles
Tcyc access cycle time 4,0 -
Tmss select active to ALE inactive 0,5 -
time
Tmsh | access inactive to select 0,5 -
inactive time
Tas address to ALE low set up time | 0,5 -
Tah address hold time 0,5 -
Tdsw | write high data set up time 1,5 -
Tdhw | write high data hold time 0,5 -
Tdsr read low to data valid time - 1,0
Tdzr read high data hold time 0 -
Twr WR_N pulse length - 1
Tale ALE pulse length - 1

Table 13 MSS timing constants

The control bus timing values are set, taking first into account that the MSS clock cycle
duration is 66,7 ns = 15 Mhz frequency. It should be underlined that the precise adjustment of
the timing parameters is beyond the scope of the research carried out. That means, that there
will not be any change in the clock frequency of 50 Mhz which is used by the FPGA.

From Figure 15 and Figure 16 can be concluded, that the MSS Communication Interface
consists of 4 “1-bit”control signals(ale, sel, wr, rd). It should be highlighted that the
multiplexed address and data information has length 16 bits and not 8 bits as it is shown in
the two figures above. As a result, the whole MSS bus has 20 bits length.

4.3 Overview of MSS Module

Within this chapter the MSS Module is described. Having already given in subchapter 3.2.1 in
Figure 4 an image of the WISHBONE architecture, it is clear that up to this point the
WISHBONE structure consists of one master device and four slave devices. The MSS module

72

will be the fifth slave device which will be connected to the WISHBONE bus. As the MSS
module is the fifth slave device in WISHBONE architecture, Table 12 must be updated with

the new slave device addresses. The updated table follows in Table 14.

Slave Device | Start address | End address
SDRAM 0000 0000 | 007F FFFF
FLASH 0400 0000 | 0401 FFFF
GPIO 0800 _0000 | 0800 0005
TIMER 0C00_0000 | 0C00 0001
MSS 1000 0000 | 1000 0007

Table 14 Updated WISHBONE slave devices address field

The MSS slave device following the example of GPIO slave device can function either in
Master or in Slave mode, meaning that it can send out or receive data packages. As the only
way of communication is through the PIB ports, 20 of the 64 TTL 10s must be reserved for
the MSS module. For testing purposes, inside the MSS module another device is developed,
which is the DUT. Consequently, inside the MSS module there are two devices, the MSS and
the DUT, which speak with each other through the PIB ports. Obviously, when the one device
is functioning as master, the other functions as slave and the opposite. The GPIO module
cannot speak anymore with all 8 ports installed on the PIB but only with 2 of them as the
other 6 ports are reserved for the MSS module. Figure 16 shows the new structure of
WISHBONE and what is more, it makes evident with which ports of the PIB, speaks each

slave device.

MASTER

PLX

-

SYSCON

-

SDRAM

FLASH

TIMER

INTERCON

> ves

Figure 16 Updated WISHBONE Architecture

> GPIO

Bits 4-7 of Port 4 (P2) and Port 6 (P6) are unused as the MSS module has 20 bits length. Each
mode of MSS module will be analyzed separately below.

73

MSS bus is defined by a vector signal called mss. Depending on the state of MSS module the
mss signal is either an input (slave mode) or an output (master mode) signal. Its structure
remains the same in both cases and is shown in Table 15.

Bits 19| 18 | 17 | 16 15-0
Signal Name | Sel | Ale | Wr | Rd | Address/Data

Table 15 Mss vector bits definition

4.4 Development of MSS Module

4.4.1 MSS-Master

In this subchapter, these elements will be described, which the MSS slave device needs in
order to operate in master mode. The MSS module will now simulate a real microprocessor
and will generate its data bus, which is displayed in Figure 14 and Figure 15.

First of all, some registers will be used, in order to store the information which will be used,
either for the stimulation of the control signals of MSS bus or as the address/data, which will
be embedded into the MSS bus. Table 16 includes all registers which are used from the MSS
module in master mode.

Name Address Description

Adr o 1000_0000 | Address on MSS bus

Data_ma o | 1000 0001 | Data package on MSS bus, which is sent out (Write Command)

Data_ma_i | 1000 0002 | Received data package on MSS bus (Read Command)

Cmd_o 1000 0003 | Command executed

Conf o 1000_0004 | Configuration information

Table 16 MSS module registers used in Master mode

Using the registers above, the information carried by local bus or generated inside MSS
module can be transmitted to the PIB ports. The first three registers involve information
which will be embedded in MSS bus. That means that a connection between the first three
registers and the PIB ports has to be implemented so that the MSS bus information can reach
the CON9 connector.

As the multiplexed address/data information on MSS bus has length 16 bits, the registers
Adr_o, Data_ma_o, Data_ma_i are vectors of 16 bits. Register Adr_o contains the address
to be included in MSS bus, register Data_ma_o contains the data package which will be
included in MSS bus, in case a ‘Write” command is executed. Register Data_ma_i contains
the 16 bits information package, which is received either through connector CON9 or from
MSS_Regs, in case a ‘Read’ command is executed. In the next subchapter register
Data_ma_i will be discussed more analytically. The other two registers are used as arbitrators
of the FSM, which implements the MSS timing. The first one (register Cmd_o) contains the
command which is executed and the second one (register Conf_o) contains the configuration

74

which sets the duration of each stage of the command. Register Cmd_o has 8 bits length and
can take specific values which determine, first of all, if the MSS module is in use or not, if it
is in master or slave mode and last but not least, which command (Write/Read) will be
executed. Table 17 explains the function of register Cmd_o. Register Conf_o has 24 bits
length and its use can be understood looking at Figure 18 in subchapter 4.5.1. The 20 LSBs of
Conf_o are used for the MSS timing, while the 4 MSBs have debugging use.

its | Use definition

If ‘0’/’1° MSS module executes read/write command.
Unused

Unused

Unused

Unused

If ‘0°/’1” MSS module is functioning in Master/Slave mode.
If ‘1’ then MSS module is functioning

Unused

~No|lohlw|N R |olm

Table 17 Cmd_o register bits definition

Apart from the previous registers, which have a direct relationship with the MSS timing,
another two registers are implemented which are used as debugging registers showing how
many clock cycles a MSS command takes (Register Counter_Cycles) and how many orders
have already been executed (Register Counter_Orders). These debugging registers can
fuction only in master mode. A short description of these two registers follows in Table 18.

Name Address Description
Counter_Cycles | 1000 0006 | Number of clock cycles per order
Counter_Orders | 1000_0007 | Number of orders executed

Table 18 MSS module debugging registers

4.4.2 MSS-Slave

In slave mode, the only register from Table 16, which may be used is register Data_ma_i. As
it is depicted in Figure 17, this register can receive data either from MSS-Master or from
MSS-Slave. The source depends on the configuration register Conf_o. If the 4 MSBs of this
register are set to ‘1°, then register Data_ma_i receives a 16-bit data package from MSS-
Slave. In any other case the source remains the MSS-Master. As already said, the register
Data_ma_i receives data only in case of a ‘Read’ command. The option to receive data from
MSS-Slave has been developed, as in this way it can be judged, if command ‘Read’ works
properly, as up to this point there is no PCB connected to the PCI card, which would normally
be the source of the data package.

The only registers, which are constructed especially for MSS-Slave are the MSS_Regs. These
are a bank of 128 registers, where the data received from the PCB can be saved. The choice of
the correct register relies on the bits 4 to 10 of WISHBONE address. Some features about this
register bank follow in Table 19.

75

Name Address Description
PCB_Regs | 1000 _0005 | Register Bank

Table 19 MSS module registers used in Slave mode

4.4.3 DUT

The registers, which are constructed especially for the DUT are the PCB_Regs and the
Data_Pcb_in. The first one is a bank of 128 registers. In this register bank the data received
from the MSS (master mode) can be saved. The second register stores the data package
received from MSS-Slave in a read command. The choice of the correct member of the
register bank relies on the bits 4 to 10 of WISHBONE address. Some features about these
registers follow in Table 20.

Name Address Description
PCB _Regs | 1000 0008 | Register Bank for data received from MSS
Data_Pcb_in | 1000 0009 | Received data package from MSS (Read Command)

Table 20 MSS module registers used in DUT

4.5 Design of MSS Module

As the basic elements, created inside the MSS module, are already defined in the previous
subsection, it is high time to present the design of MSS slave device, on which its VHDL

implementation will be based afterwards. Figure 17 gives an outline of the design of MSS
module.

The distinction between WISHBONE and MSS slave device is made clear in Figure 17. What
is more, the function of all registers is shown, figuring out at the same time which register is
related to which of the three devices inside the MSS slave device.

It should be stressed out, that one of the main differences between master and slave mode is
the fact that slave mode is always in use in contrast to master mode. It was shown in Table 17,
that master mode is active only if the third MSB of register cmd_o is set to ‘0’. As far as the
slave mode is concerned, the same bit of register cmd_o defines from where the MSS-Slave
receives the twenty MSS bus input bits. If the master mode is active (cmd_o(5)=’0’) the
MSS bus generated from MSS-Master is sent not only to the PIB ports but also to the MSS-
Slave. If the master mode is inactive (cmd_o(5)="1") the MSS bus input information to the
MSS-Slave comes from the PIB ports.

The fact that the two devices inside the MSS slave device are correlated, gives to the user the
opportunity to control the content of the register bank members, which belong to MSS-Slave,
as he is able through MSS-Master to write a data package to a specific register, which will
also be sent to the DUT. The connection of the MSS-Master with the DUT device is achieved
over the PIB ports thanks to the use of a loop-back connector which creates a short-circuit
between the ports 0-2,1-3,4-6 and 5-7 of the PIB.

76

Adr_o

Data_ma_o

Y

Data_ma_i

Conf_o

Cmd_o

o | Counter_

Cycles

Counter_

>
Orders

» MSS_Regs

» PCB_Regs

» Data_pcb_i

Wishbone

Figure 17 MSS Module Design

77

4.5.1 MSS-Master

Within this subchapter will be explained, how the MSS works in master mode. A design of
MSS-Master will clarify its function.

START (Cmd(6))—————— P
CMD ———————Master/Slave (Cmd(5)—————»
Read/Write (Cmd(0)y————————|
en_wr_1
—conf(3:0)—p| Cntwr_1
wr_1_ready L
< en_wr_.
+——conf(7:4)— Cnt_wr_2
wr_2_ready o
oo en_wr_3
—conf(11:8)-{ Cnt.wr_3
wr_3_ready L
4=t en_wr_4
——conf(15:12)= Cnt_wr_4 FSM
wr_4_ready o
CONFIG <
——conf(3:0)—m cnt rd 1
- rd_1_ready o
|t en_rd_:
—COnf(7Z4)—> Cnt rd 2
- rd_2_ready o
4=t en_rd_3
’—conf(11:8)—> Cnt_rd_3
rd_3_ready o
|t en_rd_4
——conf(15:12)# Cnt_rd_4
rd_4_ready o
g en_rd_5
—conf(19:16)» Cnt_rd_§
rd_5_ready o

Figure 18 MSS-Master Design

Looking at the figure above, it is obvious, that register Cmd_o plays a crucial role in MSS
module, as it is the register which determines the function of FSM (Finite State Machine) and
defines the state of MSS module (Master/Slave).

Each of the two commands (Write/Read) is divided in a number of steps or, in other words, in
a number of FSM states. In each state there is a change in the value of one or more bits of the

78

MSS bus. More specifically, ‘Write’ command consists of 4 states, while ‘Read’ command
consists of 5 states. Each of these states and the function of FSM as well, are presented in the

Figure 19.
Cmd(6)="0" or Cmd(5)="1"
State_wr_1 gmggié
_ready="0" Ccmd(0)="1"
ALE="1"
SEL="0'
ADR_WR_0 MSS[15:0]=ADRESS
State_wr_1
_ready="1'
State_wr_2
_ready="0'
ALE='0'
ADR_WR_1
State_wr_2
_ready="1'
WR=0'
State_wr_3 SS[15:0]=DATA_OUT
_ready="0"
DATA_WR_0
State_wr_3
_ready="1'
State_wr_4
_ready="0'
State_wr_4_
ready="1"
DATA_WR_1
WR="1'

MSS[15:0]=DATA_OUT

State_rd_5_|
ready="1"

RD="1'

MSS[15:0]=DATA_IN

Figure 19 FSM Design

ALE="1'
SEL="0'
WR=1"
RD="1
MSS[15:0]="Z’
Cmd(6)="1'
Cmd(5)="0’
Cmd(0)=0"
State_rd_1_
ready="0"
ADR_RD_0
ALE="1'
SEL=0'
MSS[15:0]=ADRES$
State_rd_1_
ready="1"
State_rd_2_
ready="0"
ADR_RD_1
State_rd 2
ready="1"
State_rd_3_
ready="0"
DATA_RD_0
RD:
State_rd_3_
ready="1'
State_rd_4_
ready="0"
DATA RD_1
MSS[15:0]=DATA_IN
State_rd_4_
ready="1"
State_rd_5_
DATA_RD_2 ready=0

79

Looking at Figure 18, it is made clear how register Conf_o influences the MSS timing. Its 24
bits are divided in 6 parts of 4 bits each. The last 5 parts which belong to the 20 LSBs of
Conf_o set the duration of a ‘Read’ command, while the last 4 parts which belong to the 16
LSBs of Conf_o set the duration of a ‘Write’ command. As it is already mentioned, the 4
MSBs of Conf_o define the source of the data package which will be stored in register
Data_ma_i.

For each state of the FSM there is a separate counter defined, which is initialised from the
corresponding 4 bits part of register Conf_o. Each counter signal is counting down till zero
only if an enable signal is received from the FSM. Obviously, only one state of the FSM can
be activated in every single clock cycle. When a counter is equal to zero, a ready signal is sent
back to the FSM, informing the Finite State Machine that the corresponding state to which the
ready signal belongs, has already lasted the exact number of clock cycles the Conf_o register
defines.

In Figure 19, the signals-members of MSS bus, whose value is changed, are mentioned near
each state of FSM. The FSM stays in state ‘START’ until the moment when the next
command (Write/Read) comes. It should be highlighted, that the FSM functions only in case
the MSS slave device works in master mode, or ,in other words, only if the third MSB of
register Cmd_o is set to ‘0’.

4.5.2 MSS-Slave

MSS-Slave design is more simplistic in comparison with the MSS-Master design. In Slave
mode, the MSS module receives a 20 bit vector signal which represents the Microprocessor
bus. The responsibility of MSS-Slave is to translate the values of the control signals of MSS
bus according to the diagrams which were presented in Figure 14 and Figure 15. By the
correct translation of the control signals, the MSS-Slave is enabled to execute the
corresponding operation these signals imply.

As stated earlier, MSS-Slave is always in use regardless of the value of register Cmd_o. The
value of register Cmd_o regulates only the source from which the MSS-Slave receives the
MSS bus bits.

Figure 21 shows a simplified image of MSS-Slave design.

80

PIB
MSS-Master Ports 0,1,4

|

» Cmdo _ cmdo®—— 2
mux
» MSS Reg 4—— = | | MSS_Bank
7 sd
A%
o MSS-Slave
&S
OO
Data_ma_i/
Wishbone
Figure 20 MSS-Slave Design
4.5.2 DUT

The device under test functions similar as the Master device as it generates the MSS timing
which is sent towards the MSS master device. So the Figure 18 and Figure 19 can also
describe the function of DUT.

Figure 21 shows a simplified image of DUT design.

MSS- MSS-
Master Slave
A
\J
PIB
(Ports 0,1,4)
* A
» PCBRegst¢—— — || PCB_Bank —— ADR
A
DUT

- Data_pch_i [@———

Wishbone

Figure 21 DUT Design

81

4.6 VHDL Implementation of MSS Module

In this subchapter the basic points of the VHDL implementation of MSS module will be
analyzed. Apart from the new slave device’s code, all changes inside the other modules of
WISHBONE will be explained, so that the MSS slave device can fit in the WISHBONE
architecture correctly.

4.6.1 Wishbone Module

First of all, starting from file “wishbone.vhd”, all the changes inside WISHBONE module
will be mentioned. As the code of file “wishbone.vhd” is already referred in 3.3.1, within this
subchapter only the changes in the code will be underlined.

The changes inside the code of file “wishbone.vhd” follow below.

constant nr_of_masters : positive := 1;

subtype rng_masters is natural range (nr_of_masters-1) downto 0;
constant nr_of_slaves : positive := 5;

subtype rng_slaves is natural range (nr_of_slaves-1) downto O;

constant adr_width : positive := 32;
subtype rng_adr is natural range (adr_width-1) downto 0;
constant dat_width : positive := 32;
subtype rng_dat is natural range (dat_width-1) downto 0;

constant nr_of_irqdevs : positive := 6;
subtype rng_irgdevs is natural range (nr_of_irqdevs-1) downto 0;

component wh_sl_gpio is
generic
(
nr_of_irgiports : positive := 1,
nr_of_irqoports : positive := 1;
nr_of_dbgports : positive := 1
)i
port
(
SYSCON_I : in rec_syscon_port;
MASTER_I : in rec_master_port;
SLAVE_O : out rec_slave_port;

IRQ_I :instd_logic_vector((nr_of _irgiports-1) downto 0);
IRQ_O : out std_logic_vector((nr_of_irgoports-1) downto 0);

led_o : out std_logic_vector(7 downto 0);
ext_gpio_oe_o : out std_logic_vector(7 downto 0);

ext_gpio_input_i : in std_logic_vector(15 downto 0);
ext_gpio_output_o : out std_logic_vector(15 downto 0);

82

gpio_io : inout std_logic_vector(27 downto 0);
debug : inout std_logic_vector((nr_of_dbgports-1) downto 0)
).

end component;

signal ext_gpio_oe : std_logic_vector(7 downto 0) := (others =>"'0";
signal ext_gpio_input : std_logic_vector(15 downto 0) := (others =>"'0");
signal ext_gpio_output : std_logic_vector(15 downto 0) := (others =>'0");

type reg128 bank_int is array(0 to 127) of std_logic_vector (15 downto 0);
constant reg128_bank_default :reg128_bank_int:=(others =>(others =>'0");

constant mss_baseadr : std_logic_vector(rng_adr) := x"1000_0000";
subtype rng_mss_adr is natural range 2 downto 0;

constant mss_adress_offset : std_logic_vector(rng_adr) := x"0000_0000";
subtype rng_mss_adress is natural range 15 downto 0;

constant mss_data_out_offset : std_logic_vector(rng_adr) := x"0000_0001";
constant mss_data_in_offset : std_logic_vector(rng_adr) := x"0000_0002";
subtype rng_mss_data is natural range 15 downto 0;

constant mss_cmd_offset : std_logic_vector(rng_adr) := x"0000_0003";
subtype rng_mss_cmd is natural range 7 downto 0;

constant mss_conf_offset : std_logic_vector(rng_adr) := x"0000_0004";
subtype rng_mss_conf is natural range 23 downto 0;

subtype rng_mss_length is natural range 19 downto 0;

constant mss_bank_offset : std_logic_vector(rng_adr) := x"0000_0005";

constant pch_bank_offset : std_logic_vector(rng_adr) := x"0000_0008";

constant mss_data_slave_in_offset : std_logic_vector(rng_adr) := x"0000_0009";

83

constant sI_mss_id : natural := TO_INTEGER(unsigned(mss_baseadr(rng_slave_select)));
component wh_sl_mss is
generic
(
nr_of_irgiports : positive := 1,
nr_of_irqoports : positive := 1;
nr_of_dbgports : positive := 1

port

SYSCON_I : in rec_syscon_port;
MASTER_I : in rec_master_port;
SLAVE_O : out rec_slave_port;

IRQ_I :instd_logic_vector((nr_of _irgiports-1) downto 0);
IRQ_O :outstd_logic_vector((nr_of_irqoports-1) downto 0);

adr_o :outstd_logic_vector(15 downto 0);
data_ma_o : out std_logic_vector(15 downto 0);
data_ma_i : in std_logic_vector(15 downto 0);
cmd_o :outstd_logic_vector(7 downto 0);
conf_o :outstd_logic_vector(23 downto 0);

sel_n_i :instd_logic;

ale_i :instd_logic;

wr_n_i :instd_logic;

rd_n_i :instd_logic;

data_sl_o : out std_logic_vector(15 downto 0);

sel_n_o: out std_logic;
ale_o :outstd_logic;
wr_n_o :out std_logic;
rd_n_o :outstd_logic;

pcb_reg_i :inregl28_bank_int;
reg_o :outregl28 bank_int;

mss_bus_i :in std_logic_vector(19 downto 0);
mss_bus_o :out std_logic_vector(19 downto 0)

);
end component;
constant irgdev_mss_id : natural := 5;

component pch_test is
port
SYSCON_I : in rec_syscon_port;
pcb_adr_i :in std_logic_vector(15 downto 0);
pcb_data_ma_i : in std_logic_vector(15 downto 0);
pcb_cmd_i : in std_logic_vector(7 downto 0);
pcb_conf_i : in std_logic_vector(23 downto 0);

pcb_reg_o : out reg128_bank _int;

data_read_o: out std_logic_vector(15 downto 0);

pcb_bus_i : in std_logic_vector(19 downto 0);

pcb_bus_o : out std_logic_vector(19 downto 0)

);

end component;

Code 9 WISHBONE.vhd with MSS

Inside the updated file “wishbone.vhd” the number of slave devices is now equal to five. The
number of master devices doesn’t change and remains equal to one. Another constant which is
updated is the one, which defines the number of devices connected to the interrupt bus. Inside
the code above there are two new constants. The first one (sl_mss_id) is the identity of mss
slave device, so that the mss slave device can be either activated or inactivated. The second
one (irqgdev_mss_id) is the identity of mss slave device in the interrupt bus.

Furthermore, three signals in entity “wb_sl_gpio” have been renamed, in order to be able to
set apart which module is speaking to the ports of the PIB. These three signals are the
“ext_oe”, “ext_input” and “ext_output”, which receive respectively the names
“ext_gpio_oe”, “ext_gpio_input” and “ext_gpio_output”. What is more, it is defined that
the GPIO module speaks now to only 2 ports of the PIB. Two new entities are defined under
the names “wb_sl_mss” and “pcb_test”. The first one implements the MSS module. There
are nine new constants defined, which represent the nine addresses related to the MSS
module. Moreover, the data type reg128 bank represents the register bank which consists of
128 registers. The second new entity implements the DUT device.

4.6.2 Top Module

The source file “pcis3base_top.vhd” must also be updated in order to contain the
instantiation of the MSS module.

The changes inside the code of file “pcis3base_top.vhd” follow below.

signal adr :std_logic_vector(15 downto 0) := (others =>'0");
signal data_ma_in - std_logic_vector(15 downto 0) := (others =>'0");
signal data_ma_out :std_logic_vector(15 downto 0) := (others =>'0");

signal data_sl_out, data_read : std_logic_vector(15 downto 0) := (others =>'0");

signal cmd : std_logic_vector(7 downto 0) := (others =>"'0");
signal conf : std_logic_vector(23 downto 0) := (others =>'0");
signal mss_ma, mss_sl : std_logic_vector(19 downto 0) := (others =>'0");
signal pcb_ma, pcb_sl > std_logic_vector(19 downto 0) := (others =>'0");
signal reg_bank, pcb_reg_bank : reg128_ bank_int :=reg128 bank_default;
signal ext_mss_gpio_oe :std_logic_vector(7 downto 0) := (others =>'0";
signal ext_mss_input : std_logic_vector(23 downto 0) := (others =>'0");
signal ext_mss_output - std_logic_vector(23 downto 0) := (others =>'0");
signal ext_pch_input : std_logic_vector(23 downto 0);

signal ext_pcb_output :std_logic_vector(23 downto 0) := (others =>'0");
signal wr_ma, wr_sl : std_logic =1

signal rd_ma, rd_sl - std_logic =1

85

signal ale_ma, ale_sl > std_logic =04
signal sel_ma, sel_sl - std_logic =15

inst_wh_sl_mss : wh_sl_mss

generic map

(
nr_of_irgiports => nr_of _irgs,
nr_of_irqoports => nr_of _irgs,
nr_of_dbgports =>1
)

port map

(
SYSCON_I => intercon.slaves.syscon(sl_mss_id),
MASTER_I => intercon.slaves.master(sl_mss_id),
SLAVE_O => intercon.slaves.slave(sl_mss_id),

IRQ_I =>irgs,
IRQ_O => irqos(irqdev_mss_id),

adr o =>adr,

data_ma_o => data_ma_out,
data_ma_i => data_ma_in,
cmd_o =>cmd,

conf_ o =>conf,

sel n_i =>sel sl,
ale_i =>ale_sl,
wr ni =>wr_sl,
rdni =>rdsl,

data_sl_o =>data_sl_out,
data_read_i => data_read,

sel_n_o =>sel_ma,
ale_o =>ale_ma,
Wr_n_o =>Wwr_ma,
rd n_o =>rd_ma,

reg_o =>reg_bank,
pcb_reg_i => pcb_reg_bank,

mss_bus_o0 =>mss_ma,
mss_bus_i =>mss_sl

);

inst_pch_test : pch_test
port map(

SYSCON_I => intercon.slaves.syscon(sl_mss_id),
pcb_adr_i =>adr,

pcb_data_ma_i => data_ma_out,

pcb_cmd_i =>cmd,

pcb_conf_i => conf,

pcb_reg_o =>pch_reg_bank,
data_read_o => data_read,

pcb_bus_i =>pcb_sl,
pcb_bus_o =>pcb_ma

);

86

gpiomoduleport.oe <=

1 => QUTPUT,

2to5 =>ext_mss_gpio_oe(7),
6t09 =>ext_mss_gpio_oe(6),
10to 11 => OUTPUT,

12 to 15 => ext_mss_gpio_oe(5),
16 to 19 => ext_mss_gpio_oe(4),
20to 21 => OUTPUT,

22 to 25 => ext_mss_gpio_oe(3),
26 to 29 => ext_mss_gpio_oe(2),
30to 31 => OUTPUT,

32 to 35 => ext_mss_gpio_oe(0),
36 to 39 => ext_mss_gpio_oe(1),
40 =>OUTPUT,

50 =>OUTPUT,

51 to 54 => ext_mss_gpio_oe(1),
55 to 58 => ext_mss_gpio_oe(0),
59 to 60 => OUTPUT,

61 to 64 => ext_mss_gpio_oe(2),
65 to 68 => ext_mss_gpio_oe(3),
69 =>OUTPUT,

71 =>OUTPUT,

72 to 75 => ext_mss_gpio_oe(4),
76 to 79 => ext_mss_gpio_oe(5),
80 to 81 => OUTPUT,

82 to 85 => ext_mss_gpio_oe(6),
86 to 88 => ext_mss_gpio_oe(7),
90 =>ext_mss_gpio_oe(7),
91 =>OUTPUT,

others =>INPUT

);

gpiomoduleport.output(1) <=ext_mss_gpio_oe(7);
gpiomoduleport.output(10) <="0';
gpiomoduleport.output(11) <= ext_mss_gpio_oe(5);
gpiomoduleport.output(20) <='0";
gpiomoduleport.output(21) <= ext_mss_gpio_oe(3);
gpiomoduleport.output(30) <=0,
gpiomoduleport.output(31) <= ext_mss_gpio_oe(0);
gpiomoduleport.output(40) <="0';
gpiomoduleport.output(50) <= ext_mss_gpio_oe(1);
gpiomoduleport.output(59) <=0,
gpiomoduleport.output(60) <= ext_mss_gpio_oe(2);
gpiomoduleport.output(69) <=0,
gpiomoduleport.output(71) <= ext_mss_gpio_oe(4);
gpiomoduleport.output(80) <='0";
gpiomoduleport.output(81) <= ext_mss_gpio_oe(6);
gpiomoduleport.output(91) <=0,

gpiomoduleport.output(86) <= ext_gpio_output(1*8+7);
gpiomoduleport.output(87) <= ext_gpio_output(1*8+6);
gpiomoduleport.output(88) <= ext_gpio_output(1*8+5);
gpiomoduleport.output(90) <= ext_gpio_output(1*8+4);
ext_gpio_input(1*8+7) <= gpiomoduleport.input(86);
ext_gpio_input(1*8+6) <= gpiomoduleport.input(87);
ext_gpio_input(1*8+5) <= gpiomoduleport.input(88);
ext_gpio_input(1*8+4) <= gpiomoduleport.input(90);

87

data_read_register : process(intercon.syscon)

begin
if intercon.syscon.rst = '1' then
data_ma_in <= (others =>'0";
elsif rising_edge(intercon.syscon.clk) then
if rd_ma ="0"then
if conf(23 downto 20) /= X"F" then
data_ma_in <= ext_mss_input (15 downto 0);
else

data_ma_in <= reg_bank(conv_integer(adr(6 downto 0)));

end if;
end if;
end if;
end process data_read_register;

MSS_Ports_DUT_communication : process(
mss_ma,

rd_ma,
rd_sl,
sel_sl,
cmd,
ext_mss_input,
data_sl_out,
ext_gpio_oe,
conf,
ext_pch_input,
pcb_ma)

begin
ext_mss_gpio_oe <="00010011";

ext_mss_output(23 downto 0) <= x"0" & mss_ma;
ext_pch_output(23 downto 0) <= x"0" & pcbh_ma;

sel_sl <= ext_mss_input(19);
ale_sl <= ext_mss_input(18);
wr_sl <=ext_mss_input(17);
rd_sl <= ext_mss_input(16);

mss_sl(19 downto 0) <=ext_mss_input (19 downto 0);
pcb_sl(19 downto 0) <=ext_pch_input (19 downto 0);

if cmd(6) = '1' then -- Start Bit is set to '1' for the very first command sent.

if cmd(5) ='0" then
ext_mss_output(23 downto 0) <= x"0" & mss_ma;

if cmd(0) ='1' then -- Write
ext_mss_gpio_oe <= "00010011";
else

if rd_ma ="0"then
if conf(23 downto 20) /= x"F" then
ext_mss_gpio_oe <="00011100";

88

end if;
end if;
end if;

else
ext_mss_gpio_oe <="01001100";
if rd_sl ='0" then
ext_mss_gpio_oe <="00100011";
ext_mss_output(15 downto 0) <= data_sl_out;
end if;
end if;

else
ext_mss_gpio_oe(7) <= ext_gpio_oe(7);
ext_mss_gpio_oe(5) <= ext_gpio_oe(5);
end if;

end process;

CONB9_connection :process(ext_mss_output, ext_gpio_output, ext_pcb_output, gpiomoduleport)

begin
foriin0to 3 loop
gpiomoduleport.output(2+i) <= ext_gpio_output(1*8+i);
ext_gpio_input(1*8+i) <= gpiomoduleport.input(2+i);
gpiomoduleport.output(6+i) <= ext_pch_output(2*8+i);
ext_pch_input(2*8+i) <= gpiomoduleport.input(6+i);
gpiomoduleport.output(12+i) <= ext_gpio_output(0*8+i);
ext_gpio_input(0*8+i) <= gpiomoduleport.input(12+i);
gpiomoduleport.output(16+i) <= ext_mss_output(2*8+i);
ext_mss_input(2*8+i) <= gpiomoduleport.input(16+i);
gpiomoduleport.output(22+i) <= ext_pcb_output(0*8+i);
ext_pch_input(0*8+i) <= gpiomoduleport.input(22+i);
gpiomoduleport.output(26+i) <= ext_pch_output(1*8+i);
ext_pch_input(1*8+i) <= gpiomoduleport.input(26+i);
gpiomoduleport.output(36+i) <= ext_mss_output(1*8+i);
ext_mss_input(1*8+i) <= gpiomoduleport.input(36+i);
gpiomoduleport.output(32+i) <= ext_mss_output(0*8+i);
ext_mss_input(0*8+i) <= gpiomoduleport.input(32+i);
gpiomoduleport.output(58-i) <= ext_mss_output(0*8+(4+i));
ext_mss_input(0*8+(i+4)) <= gpiomoduleport.input(58-i);
gpiomoduleport.output(54-i) <= ext_mss_output(1*8+(4+i));
ext_mss_input(1*8+(i+4)) <= gpiomoduleport.input(54-i);
gpiomoduleport.output(64-i) <= ext_pch_output(1*8+(4+i));
ext_pcb_input(1*8+(4+i)) <= gpiomoduleport.input(64-i);
gpiomoduleport.output(68-i) <= ext_pch_output(0*8+(4+i));
ext_pch_input(0*8+(4+i)) <= gpiomoduleport.input(68-i);
gpiomoduleport.output(75-i) <= ext_mss_output(2*8+(4+i));
ext_mss_input(23 downto 20) <= (others =>"'0");
gpiomoduleport.output(79-i) <= ext_gpio_output(0*8+(4+i));
ext_gpio_input(0*8+(4+i)) <= gpiomoduleport.input(79-i);
gpiomoduleport.output(85-i) <= ext_pch_output(2*8+(4+i));
ext_pch_input(23 downto 20) <= (others =>"'0");
end loop;
end process CON9_connection;
end RTL;

Code 10 Pcis3base_top.vhd with MSS

89

First of all, as already mentioned in file “wishbone.vhd”, there are some signals whose name
should be changed, so that the communication of the two slave modules (gpio,mss) with the
PIB ports can be better understood. Apart from the three signals written in the previous
subchapter, there is another one signal, whose name is “ext_oe”, which is now renamed to the
name “ext_mss_gpio_oe”.

Moreover, there are two new processes added inside the file “pcis3base_top.vhd”, which
implement the connection of the MSS module with the six PIB ports.

4.6.3 GPIO Module

The source file “wb_sl_gpio.vhd” must also be updated as the GPIO module speaks now with
only 2 of the 8 ports. In other words, the connection of the GPIO slave device with the PIB
ports must be updated.

The changes inside the code of file “wb_sl_gpio.vhd” follow below.

when gpio_extl_offset(rng_gpio_adr) =>
ext_gpio_output(15 downto 0) <= wishbone.master.dat(15 downto 0);

when gpio_extl_offset(rng_gpio_adr) =>
wishbone.slave.dat(15 downto 0) <= ext_gpio_input(INBUFF)(15 downto 0);

Code 11 Changes in Wb_sl_gpio.vhd

4.6.4 MSS Module

4.6.4.1 MSS-Master and MSS-Slave

Within this subchapter, the code of MSS-Master and MSS-Slave will be referred. The code of
file “wb_sl_mss.vhd” follows below.

library IEEE;

use IEEE.STD_LOGIC_1164.all;
use ieee.std_logic_arith.all;

use ieee.std_logic_unsigned.all;

use work.wishbone.all;

entity wh_sl_mss is
generic
(
nr_of_irgiports : positive := 1;
nr_of_irqoports : positive := 1;
nr_of_dbgports : positive := 1

);
port
(
SYSCON_I :in rec_syscon_port;
MASTER_I :in rec_master_port;
SLAVE_O :outrec_slave_port;
IRQ_I :in std_logic_vector((nr_of_irgiports-1) downto 0);

IRQ_O :outstd_logic_vector((nr_of_irqoports-1) downto 0);
90

adr_o :out std_logic_vector(15 downto 0);
data_ma_o : outstd_logic_vector(15 downto 0);
data_ma_i :in std_logic_vector(15 downto 0);
cmd_o :out std_logic_vector(7 downto 0);
conf_ o :outstd_logic_vector(23 downto 0);

sel_n_i :in std_logic;
ale_i s in std_logic;

wr_n_i :in std_logic;
rd_n_i :in std_logic;

data_sl_ o :outstd_logic_vector(15 downto 0);
data_read_i : in std_logic_vector(15 downto 0);

sel_n_o :outstd_logic;
ale_o :out std_logic;

wr_n_o :outstd_logic;
rd_n_o :outstd_logic;

reg_o :out reg128 bank_int;
pcb_reg_i :in regl28 bank_int;

mss_bus_i :in std_logic_vector(19 downto 0);
mss_bus_o :outstd_logic_vector(19 downto 0)
);

end wb_sl_mss;

architecture RTL of wh_sl_mss is

type STATE_TYPE is (
START,
ADR_WR_0,
ADR_WR_1,
DATA_WR_
DATA_WR_
ADR_RD 0,
ADR_RD 1,
DATA_RD 0,
DATA RD 1,
DATA RD 2
);

0,
1

signal current_state : STATE_TYPE;
signal next_state : STATE_TYPE;

constant INPUT - std_logic =04
constant OUTPUT : std_logic :=not INPUT;
signal wishbone

: rec_wishbone_signal := wishbone_default;

signal irgi :std_logic_vector((nr_of _irgiports-1) downto 0) := (others =>'0");
signal irqo :std_logic_vector((nr_of_irqoports-1) downto 0) := (others =>'0";
signal en_wr_1, en_wr_2 : std_logic =04

signal en_wr_3, en_wr_4 : std_logic =04

signal en_rd_1, en_rd_2 : std_logic =04

signal en_rd_3,en_rd_4 - std_logic =04

signal en_rd_5 : std_logic ='04

signal state_wr_1_ready, state_wr_2_ready : std_logic =04

signal state_wr_3_ready, state_wr_4_ready : std_logic =04

signal state_rd_1_ready, state_rd_2_ready : std_logic =04

signal state_rd_3_ready, state_rd_4_ready : std_logic =04

signal state_rd_5_ready :std_logic =04

signal done . std_logic ‘0"

91

signal adr : std_logic_vector(15 downto 0) := (others =>'0");

signal data_out, data_in : std_logic_vector(15 downto 0) := (others =>'0";

signal data_sl_out : std_logic_vector(15 downto 0) := (others =>'0");

signal data_read_in : std_logic_vector(15 downto 0) := (others =>'0");

signal adress_reg 2 std_logic_vector(15 downto 0);

signal data_reg : std_logic_vector(15 downto 0) := (others =>'0");

signal cmd :std_logic_vector(7 downto 0) := (others =>'0");

signal wr_fifo :std_logic_vector(3 downto 0);

signal conf : std_logic_vector(23 downto 0) := (others =>'0");

signal counter_orders, counter_cycles : std_logic_vector(15 downto 0) := (others =>'0";

signal state_rd_1_cnt, state_rd_2_cnt : integer =0;

signal state_rd_3_cnt, state_rd_4_cnt : integer =0;

signal state_rd_5_cnt : integer =0;

signal state_wr_1_cnt, state_wr_2_cnt : integer =0;

signal state_wr_3_cnt, state_wr_4_cnt : integer =0;

banks

signal reg_bank, pch_reg_bank :reg128 bank_int :=reg128_bank_default;

signal wr_in, rd_in, sel_in : std_logic =1

signal wr_out, rd_out, sel_out : std_logic =15

signal ale_in, ale_out : std_logic =04

signal mss_in, mss_out : std_logic_vector(19 downto 0) := (others =>'Z");
begin

wishbone.syscon <= SYSCON_I;
wishbone.master <= MASTER_I;
SLAVE_O <= wishbone.slave;

irgi <=1RQ_I,;
IRQ_O <=irqo;

adr o <=adr;
data_ma o0 <=data_out;
data_in <=data_ma_i;
data_sl o <=data_sl_out;
data_read_in <= data_read_i;
cmd_o <=cmd;

conf o <= conf;

Wr_in <=wr_n_i;
rd_in <=rd_n_i;
sel_in<=sel_n_i;
ale_in <=ale_i;
mss_in <= mss_bus_i;

Wr_n_ o <=wr_out

92

rd n_o <=rd_out;
sel_n_o <=sel_out;
mss_bus_o <= mss_out;
ale_o <=ale_out;

reg_o <= reg_bank;
pcb_reg_bank <= pcb_reg_i;

mss_out(19) <= sel_out;
mss_out(18) <= ale_out;
mss_out(17) <= wr_out;
mss_out(16) <= rd_out;

Wishbone_bus : process(
counter_orders,
counter_cycles,
wishbone.syscon.rst,
wishbone.syscon.clk,
wishbone.master.adr,
cmd,
data_in,
data_out,
conf,
adr,
reg_bank,
pcb_reg_bank,
data_read_in)

begin
if wishbone.syscon.rst = '1' then
wishbone.slave.ack <="'0";
elsif wishbone.syscon.clk'event and wishbone.syscon.clk = '1' then

if wishbone.slave.ack = '1' then
wishbone.slave.ack <="0";

elsif (wishbone.master.cyc and wishbone.master.stb) = '1' then
wishbone.slave.ack <="1";

end if;

if (wishbone.master.cyc and wishbone.master.stb and wishbone.master.we) = '1' then
cmd <= (others =>'0";
case wishbone.master.adr(rng_mss_adr) is

when mss_adress_offset(rng_mss_adr) =>
adr <= wishbone.master.dat(rng_mss_adress);

when mss_data_out_offset(rng_mss_adr) =>
data_out <= wishbone.master.dat(rng_mss_data);

when mss_cmd_offset(rng_mss_adr) =>
cmd <= wishbone.master.dat(rng_mss_cmd);

when mss_conf_offset(rng_mss_adr) =>
conf <= wishbone.master.dat(rng_mss_conf);
when others => null;
end case;
end if;
end if;

93

wishbone.slave.dat <= (others =>'0");
case wishbone.master.adr(rng_mss_adr) is

when mss_data_in_offset(rng_mss_adr) =>
wishbone.slave.dat(rng_mss_data) <= data_in;

when mss_adress_offset(rng_mss_adr) =>
wishbone.slave.dat(rng_mss_adress) <= adr;

when mss_data_out_offset(rng_mss_adr) =>
wishbone.slave.dat(rng_mss_data) <= data_out;

when mss_cmd_offset(rng_mss_adr) =>
wishbone.slave.dat(rng_mss_cmd) <= cmd;

when mss_conf_offset(rng_mss_adr) =>
wishbone.slave.dat(rng_mss_conf) <= conf;

when mss_bank_offset(rng_mss_adr) =>
wishbone.slave.dat(rng_mss_data) <= reg_bank(conv_integer(wishbone.master.adr(10 downto 4)));

when mss_cnt_cycle_offset(rng_mss_adr) =>
wishbone.slave.dat(rng_mss_data) <= counter_cycles;

when mss_cnt_orders_offset(rng_mss_adr) =>
wishbone.slave.dat(rng_mss_data) <= counter_orders;

when pcb_bank_offset(rng_mss_adr) =>
wishbone.slave.dat(rng_mss_data) <= pcb_reg_bank(conv_integer(wishbone.master.adr(10 downto 4)));

when mss_data_slave_in_offset(rng_mss_adr) =>
wishbone.slave.dat(rng_mss_data) <= data_read_in;
when others => null;
end case;
end process Wishbone_bus;

adr_latch : process(wishbone.syscon.rst, ale_in)

begin
if wishbone.syscon.rst = '1' then
adress_reg <= (others =>'0");
elsif falling_edge(ale_in) then
adress_reg <= mss_in(15 downto 0);
end if;
end process adr_latch;

data_latch : process(wishbone.syscon.rst, wr_in)

begin
if wishbone.syscon.rst = '1' then
data_reg <= (others =>"'0");
elsif rising_edge(wr_in) then
if sel_in='0"then
data_reg <= mss_in(15 downto 0);
end if;
end if;
end process data_latch;

94

read_mss_slave_reg_bank : process(adress_reg, reg_bank)

begin
data_sl_out <=reg_bank(conv_integer(adress_reg(6 downto 0)));
end process read_mss_slave_reg_bank;

write_fifo_timing : process(wishbone.syscon.rst, wishbone.syscon.clk)

begin
if wishbone.syscon.rst = '1' then
wr_fifo <= (others =>'1");
elsif rising_edge(wishbone.syscon.clk) then
wr_fifo(2 downto 0) <= wr_fifo(3 downto 1);
wr_fifo(3) <=wr_in or sel_in;
end if;
end process write_fifo_timing;

write_mss_slave_reg_bank : process(wishbone.syscon.rst, wishbone.syscon.clk)

begin
if wishbone.syscon.rst = '1' then
reg_bank <= (others => (others =>'0"));
elsif rising_edge(wishbone.syscon.clk) then
if wr_fifo(3 downto 2) = "10" then
reg_bank(conv_integer(adress_reg(6 downto 0))) <= data_reg;
end if;
end if;
end process write_mss_slave_reg_bank;

fsm_en_start_clock : process (wishbone.syscon.rst, wishbone.syscon.clk)

begin
if (wishbone.syscon.rst = '1") then
done <="1"
elsif (wishbone.syscon.clk'event and wishbone.syscon.clk = '1") then
if cmd = x"00" and done = "1" then
done <="0";
else
if state_wr_4_ready ='1' or state_rd_5_ready ='1' then
done <='1"
counter_orders <= counter_orders+1;
end if;
end if;
end if;
end process fsm_en_start_clock;

fsm_en_wr_1_clock : process (wishbone.syscon.rst, wishbone.syscon.clk)

begin
if (wishbone.syscon.rst = '1") then
state_wr_1_ready <="'0";
elsif (wishbone.syscon.clk'event and wishbone.syscon.clk = '1") then
state_wr_1_ready <="'0";
ifen_wr_1="1"then

95

state_wr_1 _cnt <=state_wr_1_cnt-1;
if state_wr_1_cnt <=0 then
state_wr_1 ready <="1";
end if;
else
state_wr_1_cnt <= conv_integer (conf(3 downto 0))-1;
end if;
end if;
end process fsm_en_wr_1_clock;

fsm_en_wr_2_clock : process (wishbone.syscon.rst, wishbone.syscon.clk)

begin
if (wishbone.syscon.rst = '1") then
state_wr_2_ready <="'0";
elsif (wishbone.syscon.clk'event and wishbone.syscon.clk = '1") then
state_wr_2_ready <="'0";
ifen_wr_2 ="1"then
state_wr_2 _cnt <=state_wr_2_cnt-1;
if state_wr_2_cnt <=0 then
state_wr_2_ready <="1";
end if;
else
state_wr_2_cnt <= conv_integer (conf(7 downto 4))-1;
end if;
end if;
end process fsm_en_wr_2_clock;

fsm_en_wr_3_clock : process (wishbone.syscon.rst, wishbone.syscon.clk)

begin
if (wishbone.syscon.rst = '1') then
state_wr_3_ready <=0
elsif (wishbone.syscon.clk’event and wishbone.syscon.clk = '1") then
state_wr_3_ready <="0";
ifen_wr_3="1"then
state_ wr_3 cnt <=state_wr_3 cnt-1;
if state_wr_3_cnt <=0 then
state_wr_3_ready <="1';
end if;
else
state_wr_3_cnt <= conv_integer (conf(11 downto 8))-1;
end if;
end if;
end process fsm_en_wr_3_clock;

fsm_en_wr_4_clock : process (wishbone.syscon.rst, wishbone.syscon.clk)

begin
if (wishbone.syscon.rst = '1") then
state wr_4 ready <="'0";
elsif (wishbone.syscon.clk'event and wishbone.syscon.clk = '1") then
state_wr_4 ready <="'0";
if en_wr_4 ="1"then
state_wr_4 cnt <=state_wr_4 cnt-1;
if state_wr_4_cnt <=0 then
state_wr_4_ready <=1},
end if;
else
state_wr_4 cnt <= conv_integer (conf(15 downto 12))-1;
end if;
end if;
end process fsm_en_wr_4_clock;

96

fsm_en_rd_1_clock : process (wishbone.syscon.rst, wishbone.syscon.clk)

begin
if (wishbone.syscon.rst = '1") then
state_rd_1 ready <="0";
elsif (wishbone.syscon.clk'event and wishbone.syscon.clk = '1") then
state_rd_1_ready <="0";
ifen_rd_1="1"then
state_rd_1 cnt <=state_rd 1 cnt-1;
if state_rd_1 cnt <=0 then
state_rd_1_ready <="1";
end if;
else
state_rd_1_cnt <= conv_integer (conf(3 downto 0))-1;
end if;
end if;
end process fsm_en_rd_1_clock;

fsm_en_rd_2_clock : process (wishbone.syscon.rst, wishbone.syscon.clk)

begin
if (wishbone.syscon.rst ='1") then
state_rd_2_ready <="0";
elsif (wishbone.syscon.clk'event and wishbone.syscon.clk = '1") then
state_rd_2_ready <="0";
ifen_rd 2 ="1"then
state_rd_2 cnt <=state_rd_2 cnt-1;
if state_rd_2_cnt <=0 then
state_rd_2_ready <="1';
end if;
else
state_rd_2_cnt <= conv_integer (conf(7 downto 4))-1;
end if;
end if;
end process fsm_en_rd_2_clock;

fsm_en_rd_3_clock : process (wishbone.syscon.rst, wishbone.syscon.clk)

begin
if (wishbone.syscon.rst ='1") then
state_rd_3_ready <="'0";
elsif (wishbone.syscon.clk'event and wishbone.syscon.clk = 1) then
state_rd_3_ready <="0";
ifen_rd 3="1"then
state_rd_3_cnt <=state_rd_3 cnt-1;
if state_rd_3_cnt <=0 then
state_rd_3_ready <="1";
end if;
else
state_rd_3_cnt <= conv_integer (conf(11 downto 8))-1;
end if;
end if;
end process fsm_en_rd_3_clock;

fsm_en_rd_4_clock : process (wishbone.syscon.rst, wishbone.syscon.clk)

begin
if (wishbone.syscon.rst = '1") then
state_rd_4 ready <="0";
elsif (wishbone.syscon.clk'event and wishbone.syscon.clk = '1") then
state_rd_4_ready <="'0";
if en_rd_4 ="1"then
state_rd_4 cnt <=state_rd_4 cnt-1;
if state_rd_4_cnt <=0 then
state_rd_4 ready <=1}

97

end if;
else
state_rd_4_cnt <= conv_integer (conf(15 downto 12))-1;
end if;
end if;
end process fsm_en_rd_4_clock;

fsm_en_rd_5_clock : process (wishbone.syscon.rst, wishbone.syscon.clk)

begin
if (wishbone.syscon.rst = '1") then
state_rd 5 ready <="0";
elsif (wishbone.syscon.clk'event and wishbone.syscon.clk = '1") then
state_rd_5_ready <="0";
ifen_rd_5="1"then
state_rd_5 cnt <=state_rd 5 cnt-1;
if state_rd_5 cnt <=0 then
state_rd 5 ready <="1";
end if;
else
state_rd_5_cnt <= conv_integer (conf(19 downto 16))-1;
end if;
end if;
end process fsm_en_rd_5_clock;

clocked_proc : process (wishbone.syscon.rst, wishbone.syscon.clk)

begin
if (wishbone.syscon.rst = '1') then
current_state <= START;
elsif (wishbone.syscon.clk'event and wishbone.syscon.clk = '1") then
if cmd = "00" then
counter_cycles <= (others =>'0);
else
if (sel_out ='0") then
counter_cycles <= counter_cycles+1;
end if;
end if;
current_state <= next_state;
end if;
end process clocked_proc;

nextstate_proc : process (
current_state,
cmd,
done,
adr,
data_out,
data_in,
state_wr_1 ready,
state_wr_2_ready,
state_wr_3_ready,
state_wr_4_ready,
state_rd_1_ready,
state_rd_2_ready,
state_rd_3_ready,
state_rd_4_ready,
state_rd_5_ready)

begin
mss_out(15 downto 0) <= (others =>'Z");
ale_out <='0%
sel_out <='1%
wr_out <="14
rd_out <="1"

98

en_wr_1 <='04
en_wr_2 <='04
en_wr_3 <='04
en_wr_4 <='04
en_rd 1 ='04
en_rd_2 <='0%
en_rd_3 <='0%
en_rd_4 <='0%
en_rd_5 <='0%
next_state <= START;

case current_state is
when START =>
if cmd(6) ='0' then
next_state <= START;
else

if cmd(5) ='0' then
if done ='0' then
if cmd(0) ='1' then

next_state <= ADR_WR_0;
else

next_state <= ADR_RD _0;
end if;
else
next_state <= START;
end if;
end if;
end if;

when ADR_WR_0 =>
if state_wr_1_ready ='1' then
en_wr_2 <='"1"

mss_out(15 downto 0) <= adr;

sel_out <='0%

next_state <= ADR_WR_1;
else

en_wr 1 <='"1%

ale_out <='1%

mss_out(15 downto 0) <= adr;

sel_out <='0%

next_state <= ADR_WR_0;
end if;

when ADR_WR_1 =>
if state_wr_2_ready ='1' then
en_wr_3 <='1,

wr_out <="0"
mss_out(15 downto 0) <= data_out;

sel_out <='0%

next_state <= DATA_WR_0;
else

en_wr_2 <='1Y

99

sel_out <="'0"
mss_out(15 downto 0) <= adr;

next_state <= ADR_WR_1;
end if;

when DATA_WR_0 =>
if state_wr_3_ready ='1' then
en_wr 4 <='"14

mss_out(15 downto 0) <= data_out;

sel_out <="'0"

next_state <=DATA_WR_1,
else

en_wr_3 <='1Y

wr_out <="0"

mss_out(15 downto 0) <= data_out;

sel_out <='0%
next_state <= DATA_WR_0;
end if;

when DATA WR_1 =>
if state_wr_4_ready ='1' then
next_state <= START;
else
en_wr_4 <='1"

sel_out <='0"
mss_out(15 downto 0) <= data_out;

next_state <=DATA_WR_1,
end if;

when ADR_RD_0 =>
if state_rd_1 ready ='1' then

en_rd_2 <='1%
ale_out <="'0"
sel_out <="'0"

mss_out(15 downto 0) <= adr;

next_state <= ADR_RD 1;
else

en_rd_1 <="1"

ale_out <='1%

sel_out <='0%

mss_out(15 downto 0) <= adr;

next_state <= ADR_RD 0;
end if;

when ADR_RD 1 =>
100

if state_rd_2_ready ='1' then
en_rd 3 <=1}

rd_out <='0%

sel_out <='07

next_state <= DATA_RD_0;
else

en_rd_2 <="1"

sel_out <="0"
mss_out(15 downto 0) <= adr;

next_state <=ADR_RD_1;
end if;

when DATA_RD 0 =>
if state_rd_3 ready ='1' then
en_rd_4 <="1"

mss_out(15 downto 0) <= data_in;

rd_out <='0%

sel_out <=0

next_state <=DATA_RD_1;
else

en_rd_3 <=1,

rd_out <='0%

sel_out <='07

next_state <= DATA_RD_0;
end if;

when DATA_RD_1 =>
if state_rd_4 ready = '1' then

en_rd 5 <='1"

mss_out(15 downto 0) <= data_in;

sel_out <='0%

next_state <=DATA_RD_2;
else

en rd 4 <='1"

mss_out(15 downto 0) <= data_in;

rd_out <='0%

sel_out <='0%

next_state <= DATA_RD_1;
end if;

when DATA RD 2 =>
if state_rd_5 ready ='1' then
next_state <= START;
else
en_rd_5 <="1}

101

mss_out(15 downto 0) <= data_in;

sel_out <='0%
next_state <=DATA_RD_2;
end if;
end case;

end process nextstate_proc;

end RTL;

Code 12 Wb_sl_mss.vhd

Code 12 is divided in three main parts. In the first one, the communication of WISHBONE
with the registers of the new module is implemented. In the second one the MSS-Slave device
is developed, while in third one the MSS-Master device is implemented. Each of the last two
parts is further divided into other processes each of which implements a specific function.

4.6.4.2 DUT

Within this subchapter, the code of DUT device will be referred. The code of file
“pcb_test.vhd” follows below.

library IEEE;

use IEEE.STD_LOGIC_1164.all;
use ieee.std_logic_arith.all;

use ieee.std_logic_unsigned.all;

use work.wishbone.all;

entity pcb_test is

port
(
SYSCON_I :in rec_syscon_port;
pcb_adr_i :in std_logic_vector(15 downto 0);
pcb_data_ma_i : in std_logic_vector(15 downto 0);
pcb_cmd_i :in std_logic_vector(7 downto 0);
pcb_conf_i :in std_logic_vector(23 downto 0);

pcb_reg_o :outregl28 bank_int;

data_read_o : outstd_logic_vector(15 downto 0);

pcb_bus_i :in std_logic_vector(19 downto 0);
pcb_bus_o :outstd_logic_vector(19 downto 0)
)i

end pch_test;
architecture RTL of pcb_test is

type STATE_TYPE is (
START,
ADR_WR_0,
ADR_WR_1,
DATA_WR_0,
DATA_WR_1,

102

signal current_state : STATE_TYPE;
signal next_state : STATE_TYPE;

constant INPUT
constant OUTPUT

. std_logic =04
:std_logic :=not INPUT;
signal wishbone

: rec_wishbone_signal := wishbone_default;

signal en_wr_1, en_wr_2 > std_logic =04

signal en_wr_3, en_wr_4 :std_logic =04
signalen_rd_1,en_rd_2 . std_logic =04

signal en_rd_3, en_rd_4 : std_logic =04

signal en_rd_5 : std_logic =04

signal state_wr_1_ready, state_wr_2_ready : std_logic =04
signal state_wr_3_ready, state_wr_4_ready : std_logic =04
signal state_rd_1_ready, state_rd_2_ready : std_logic =04
signal state_rd_3_ready, state_rd_4_ready : std_logic =04
signal state_rd_5_ready :std_logic =04

signal done : std_logic =05

signal adr : std_logic_vector(15 downto 0) := (others =>'0");

signal data_pcb_out, data_sl_out - std_logic_vector(15 downto 0) := (others =>'0");

signal adress_reg, pcb_adr_in : std_logic_vector(15 downto 0);

signal data_reg, pcb_data_in : std_logic_vector(15 downto 0);

signal data_read_out

: std_logic_vector(15 downto 0);

signal cmd : std_logic_vector(7 downto 0) := (others =>'0");
signal wr_fifo :std_logic_vector(3 downto 0);

signal conf : std_logic_vector(23 downto 0) := (others =>'0");
signal state_rd_1_cnt, state_rd_2_cnt : integer =0;

signal state_rd_3_cnt, state_rd_4_cnt : integer =0;

signal state_rd_5_cnt : integer =0;

signal state_wr_1_cnt, state_ wr_2_cnt : integer =0;

signal state_wr_3_cnt, state_ wr_4_cnt : integer =0;

signal pcb_reg_bank

signal wr_in, rd_in, sel_in
signal wr_out, rd_out, sel_out

signal ale_in, ale_out

signal pcb_bus_in, pcb_bus_out

begin

: reg128_bank_int :=reg128_bank_default;

- std_logic =15
: std_logic =14
. std_logic =04

: std_logic_vector(19 downto 0) := (others =>'Z");

wishbone.syscon <= SYSCON_I;

103

pcb_adr_in <=pch_adr_i;
pch_data_in <=pcb_data_ma_i;
cmd <=pch_cmd_i;

conf <=pch_conf_i;

data_read_ o <=data_read_out;

pcb_bus in <=pch_bus_i;
pcb_bus_ 0o <=pcb_bus_out;

pcb_reg o <=pch_reg_bank;

sel_in <=pch_bus_in(19);
ale_in <= pch_bus_in(18);
wr_in <= pcb_bus_in(17);
rd_in <= pch_bus_in(16);

pch_bus_out(19) <= sel_out;
pch_bus_out(18) <= ale_out;
pcb_bus_out(17) <= wr_out;
pcb_bus_out(16) <= rd_out;

DUT _adr_data_reqg : process (cmd, adress_reg, pcb_bus_in, pcb_adr_in, data_sl_out)

begin
if cmd(5) ='0" then
adr <= adress_reg;
data_pcb_out <= data_sl_out;
else
adr <=pchb_adr_in;
data_pcb_out <= pcb_bus_in(15 downto 0);
end if;

end process DUT_adr_data_reg;

adr_latch : process(wishbone.syscon.rst, ale_in)

begin
if wishbone.syscon.rst = '1' then
adress_reg <= (others =>'0");
elsif falling_edge(ale_in) then
adress_reg <= pcb_bus_in (15 downto 0);
end if;
end process adr_latch;

data_latch : process(wishbone.syscon.rst, wr_in)

begin
if wishbone.syscon.rst = '1' then
data_reg <= (others =>"'0";
elsif rising_edge(wr_in) then
if sel_in='0"then
data_reg <=pcb_bus_in (15 downto 0);
end if;
end if;
end process data_latch;

read_mss_slave_reg_bank : process(adress_reg, reg_bank)

104

begin
data_sl_out <= pcb_reg_bank(conv_integer(adress_reg(6 downto 0)));
end process read_mss_slave_reg_bank;

write_fifo_timing : process(wishbone.syscon.rst, wishbone.syscon.clk)

begin
if wishbone.syscon.rst = '1' then
wr_fifo <= (others =>'1");
elsif rising_edge(wishbone.syscon.clk) then
wr_fifo(2 downto 0) <= wr_fifo(3 downto 1);
wr_fifo(3) <=wr_in or sel_in;
end if;
end process write_fifo_timing;

write_dut_slave_reg_bank : process(wishbone.syscon.rst, wishbone.syscon.clk)

begin
if wishbone.syscon.rst = '1' then
reg_bank <= (others => (others =>'0"));
elsif rising_edge(wishbone.syscon.clk) then
if cmd(5)="0" then
if wr_fifo(3 downto 2) = "10" then
pch_ reg_bank(conv_integer(adress_reg(6 downto 0))) <= data_reg;
end if;
end if;
end if;
end process write_mss_slave_reg_bank;

fsm_en_start_clock : process (wishbone.syscon.rst, wishbone.syscon.clk)

begin
if (wishbone.syscon.rst = '1") then
done <="1"
elsif (wishbone.syscon.clk'event and wishbone.syscon.clk = '1") then
if cmd = x"00" and done = "1" then
done <="0";
else
if state_wr_4_ready ='1' or state_rd_5_ready ='1' then
done <="1"
counter_orders <= counter_orders+1;
end if;
end if;
end if;
end process fsm_en_start_clock;

fsm_en_wr_1_clock : process (wishbone.syscon.rst, wishbone.syscon.clk)

begin
if (wishbone.syscon.rst = '1") then
state_wr_1_ready <="'0";
elsif (wishbone.syscon.clk'event and wishbone.syscon.clk = '1") then
state_wr_1_ready <="'0";
if en_wr_1="1"then
state wr_1 cnt <=state wr_1 cnt-1;

105

if state_wr_1_cnt <=0 then
state_wr_1 ready <="1";
end if;
else
state_wr_1_cnt <= conv_integer (conf(3 downto 0))-1;
end if;
end if;
end process fsm_en_wr_1_clock;

fsm_en_wr_2_clock : process (wishbone.syscon.rst, wishbone.syscon.clk)

begin
if (wishbone.syscon.rst = '1") then
state_wr_2_ready <="'0";
elsif (wishbone.syscon.clk'event and wishbone.syscon.clk = '1") then
state_wr_2_ready <="'0";
ifen_wr_2 ="1"then
state_ wr_2 cnt <=state_wr_2_cnt-1;
if state_wr_2_cnt <=0 then
state_wr_2_ready <="'1";
end if;
else
state_wr_2_cnt <= conv_integer (conf(7 downto 4))-1;
end if;
end if;
end process fsm_en_wr_2_clock;

fsm_en_wr_3_clock : process (wishbone.syscon.rst, wishbone.syscon.clk)

begin
if (wishbone.syscon.rst = '1") then
state_wr_3_ready <="'0";
elsif (wishbone.syscon.clk’event and wishbone.syscon.clk = '1") then
state_wr_3_ready <=0
ifen_wr_3="1"then
state_ wr_3 cnt <=state_ wr_3 cnt-1;
if state_wr_3_cnt <=0 then
state_wr_3_ready <="1";
end if;
else
state_wr_3_cnt <= conv_integer (conf(11 downto 8))-1;
end if;
end if;
end process fsm_en_wr_3_clock;

fsm_en_wr_4_clock : process (wishbone.syscon.rst, wishbone.syscon.clk)

begin
if (wishbone.syscon.rst = '1") then
state wr_4 ready <="'0";
elsif (wishbone.syscon.clk'event and wishbone.syscon.clk = 1) then
state_wr_4 ready <="'0";
if en_wr_4 ="1"then
state_wr_4 cnt <=state_wr_4 cnt-1;
if state_wr_4_cnt <=0 then
state_wr_4_ready <="1";
end if;
else
state_wr_4 cnt <= conv_integer (conf(15 downto 12))-1;
end if;
end if;
end process fsm_en_wr_4_clock;

fsm_en_rd_1_clock : process (wishbone.syscon.rst, wishbone.syscon.clk)

106

begin
if (wishbone.syscon.rst = '1") then
state_rd_1 ready <="0";
elsif (wishbone.syscon.clk'event and wishbone.syscon.clk = '1") then
state_rd_1_ready <="0";
ifen_rd_1="1"then
state_rd_1 cnt <=state_rd 1 cnt-1;
if state_rd_1_cnt <=0 then
state_rd_1_ready <="'1";
end if;
else
state_rd_1_cnt <= conv_integer (conf(3 downto 0))-1;
end if;
end if;
end process fsm_en_rd_1_clock;

fsm_en_rd_2_clock : process (wishbone.syscon.rst, wishbone.syscon.clk)

begin
if (wishbone.syscon.rst ='1") then
state_rd_2_ready <="0";
elsif (wishbone.syscon.clk'event and wishbone.syscon.clk = '1') then
state_rd_2_ready <="0";
if en_rd_2 ="1"then
state_rd_2 cnt <=state rd_2_cnt-1;
if state_rd_2_cnt <=0 then
state_rd_2_ready <="1";
end if;
else
state_rd_2_cnt <= conv_integer (conf(7 downto 4))-1;
end if;
end if;
end process fsm_en_rd_2_clock;

fsm_en_rd_3_clock : process (wishbone.syscon.rst, wishbone.syscon.clk)

begin
if (wishbone.syscon.rst ='1") then
state_rd_3_ready <="'0";
elsif (wishbone.syscon.clk'event and wishbone.syscon.clk = '1) then
state_rd_3_ready <="0";
ifen_rd 3="1"then
state_rd_3 cnt <=state rd_3 cnt-1;
if state_rd_3_cnt <=0 then
state_rd_3_ready <="1";
end if;
else
state_rd_3_cnt <= conv_integer (conf(11 downto 8))-1;
end if;
end if;
end process fsm_en_rd_3_clock;

fsm_en_rd_4_clock : process (wishbone.syscon.rst, wishbone.syscon.clk)

begin
if (wishbone.syscon.rst = '1") then
state_rd_4 ready <="0";
elsif (wishbone.syscon.clk'event and wishbone.syscon.clk = '1") then
state_rd_4 ready <="0";
if en_rd_4 ="1"then
state_rd_4 cnt <=state_rd_4 cnt-1;
if state_rd_4_cnt <=0 then
state_rd_4_ready <="1";
end if;

107

else
state_rd_4_cnt <= conv_integer (conf(15 downto 12))-1;
end if;
end if;
end process fsm_en_rd_4 _clock;

fsm_en_rd_5_clock : process (wishbone.syscon.rst, wishbone.syscon.clk)

begin
if (wishbone.syscon.rst = '1") then
state_rd 5 ready <="0";
elsif (wishbone.syscon.clk'event and wishbone.syscon.clk = '1") then
state_rd_5_ready <="0";
ifen_rd_5="1"then
state_rd_5 cnt <=state_rd 5 cnt-1;
if state_rd_5_cnt <=0 then
state_rd 5 ready <="1";
end if;
else
state_rd_5_cnt <= conv_integer (conf(19 downto 16))-1;
end if;
end if;
end process fsm_en_rd_5_clock;

clocked_proc : process (wishbone.syscon.rst, wishbone.syscon.clk)

begin
if (wishbone.syscon.rst ='1") then
current_state <= START;
elsif (wishbone.syscon.clk'event and wishbone.syscon.clk = '1") then
if cmd ="00" then
counter_cycles <= (others =>'0");
else
if (sel_out ='0") then
counter_cycles <= counter_cycles+1;
end if;
end if;
current_state <= next_state;
end if;
end process clocked_proc;

nextstate_proc : process (
current_state,
cmd,
done,
adr,
pcb_data_in,
data_pch_out,
state_wr_1_ready,
state_wr_2_ready,
state_wr_3_ready,
state_wr_4_ready,
state_rd_1_ready,
state_rd_2_ready,
state_rd_3_ready,
state_rd_4_ready,
state_rd_5_ready)

begin
pcb_bus_out (15 downto 0) <= (others =>'Z");
ale_out <='0%
sel_out <="1%
wr_out <=1}
rd_out <='1%
en wr 1 <="0}

108

en_wr_2 <='04
en_wr_3 <='04
en_wr_4 <='0}
en_rd 1 <="0"%
en_rd 2 <="0"%
en_rd_3 <="'0%
en_rd_4 <='0%
en_rd_5 <='0%
next_state <= START;

case current_state is
when START =>
if cmd(6) ='0' then
next_state <= START;
else
if cmd(5) ='0' then
if done ='0" then
if cmd(0) ='0' then

next_state <= ADR_RD_O0;

end if;

else
next_state <= START,;

end if;

else

if done ='0' then

if cmd(0) = "1 then

next_state <= ADR_WR_0;
else

next_state <= ADR_RD_0;
end if;
else
next_state <= START,;
end if;
end if;
end if;

when ADR_WR_0 =>
if state_wr_1_ready ='1' then
en_wr_2 <='"1%

pch_bus_out(15 downto 0) <= adr;

sel_out <='0%

next_state <= ADR_WR_1;
else

en_wr 1 <='"1%

ale_out <="'1"

pch_bus _out(15 downto 0) <= adr;

sel_out <='0%

next_state <= ADR_WR_0;
end if;

when ADR_WR_1=>
if state_wr_2_ready ='1' then
en_wr_3 <='1,

wr_out <='0%
pch_bus _out(15 downto 0) <= pcb_data_int;

109

sel_out <='0%

next_state <=DATA_WR_0;
else

en_wr_2 <='14

sel_out <="'0"

mss_out(15 downto 0) <= adr;

next_state <= ADR_WR_1;
end if;

when DATA_WR_0 =>
if state_wr_3_ready ='1' then
en_wr_4 <="1"

pch_bus _out(15 downto 0) <= pcb_data_in;

sel_out <=0

next_state <=DATA_WR_1,
else

en_wr_3 <='1}

wr_out <='0%

pcb_bus _out(15 downto 0) <= pch_data_in;

sel_out <='04
next_state <= DATA_WR_0;
end if;

when DATA WR_1 =>
if state_wr_4_ready = '1' then
next_state <= START;
else
en_wr_4 <='1"

sel_out <='0%
pch_bus _out(15 downto 0) <= pcb_data_in;

next_state <=DATA_WR_1;
end if;

when ADR_RD 0 =>
if state_rd_1 ready ='1' then

en_rd_2 <="1"
ale_out <='0%
sel_out <='0%

pch_bus _out(15 downto 0) <= adr;

next_state <= ADR_RD 1;
else

enrd 1 <="1"

ale_out <='1%

sel_out <='0%

pch_bus _out(15 downto 0) <= adr;

110

next_state <= ADR_RD_0;
end if;

when ADR_RD_1 =>
if state_rd_2_ready ='1' then
en_rd_3 <=1}
rd_out <='0%

sel_out <='07

next_state <= DATA_RD_0;

else
en_rd_2 <="1};
sel_out <="0"%

pch_bus _out(15 downto 0) <= adr;

next_state <= ADR_RD 1,
end if;

when DATA_RD_0 =>
if state_rd_3 ready ='1' then
en_rd 4 <="'1"
pcb_bus _out(15 downto 0) <= data_pcb_out;

rd_out <='0%
sel_out <='0%

next_state <=DATA_RD_1;
else

enrd 3 <='1}

rd_out <='0%

sel_out <='07

next_state <= DATA_RD_0;
end if;

when DATA_RD_1 =>
if state_rd_4 ready ='1' then

en_rd_5 <="1}
pch_bus _out(15 downto 0) <= data_pcb_out;
sel_out <="'0"
next_state <= DATA RD_2;
else
en_rd_4 <="1"

pch_bus _out(15 downto 0) <= data_pch_out;

rd_out <="0"

sel_out <="'0"

next_state <= DATA _RD _1;
end if;

111

when DATA_RD_2 =>
if state_rd_5 ready ='1' then

next_state <= START;
else

en_rd 5 <="1"
pch_bus _out(15 downto 0) <= data_pcb_out;
sel_out <="'0"
next_state <=DATA_RD_2;
end if;
end case;

end process nextstate_proc;

end RTL;

Code 13 Pcb_test.vhd

It is obvious, that the code inside the file of “pcb_test.vhd” is similar to the code which
implements the MSS-Master and MSS-Slave device. The main difference is that the FSM
inside the DUT can function either the DUT is in master (MSS is in slave mode) or in slave
mode.

4.7 Testing MSS Module with Modelsim

Having already explained, how the MSS module is developed, the next step in order to clarify
how the MSS slave device works, is to use the testbench already referred in Code 6, which
simulates the local bus. In such a way it can be understood how the MSS module works either

in master or in slave mode.

First of all, the master mode will be explained. The testbench will read the following text file,
which includes assembly commands.

Master

wr 40000000 O000FF7F
wr 40000004 0000FFFO
wr 40000010 00062222
wr 4000000C 00000041
wr 40000000 00000F71
wr 40000004 0000FFFF
wr 4000000C 00000041
wr 40000000 0O0000F7F
wr 4000000C 00000040
Slave

wr 40000000 0000FF7E
wr 40000004 0000FFFO
wr 40000010 00062222
wr 4000000C 00000061
wr 40000000 0000FF7D
wr 40000004 0000FFF2
wr 40000010 00062222
wr 4000000C 00000061

Code 14 MSS Commandfile.txt

112

Taking a look inside the code of the WISHBONE package defined in Code 9 it can be
understood that the addresses written inside the text file are the addresses which correspond to
the MSS module. It has to be mentioned that the addresses in “MSS Commandife.txt” are the
local bus addresses which will be translated to the corresponding WISHBONE bus addresses
inside the master device connected to the WISHBONE bus. For instance, the local bus
address 40000004 is equal to the WISHBONE bus address 10000001 as in general, the local
bus address is equal to the WISHBONE bus address when the latter is left shifted two times.

It is time to present the simulation, which will give an overview of the WISHBONE-MSS
relationship.

Step 1

wr 40000000 OOOOFF7F
wr 40000004 0000FFFO
wr 40000010 00062222
wr 4000000C 00000041

The testbench reads the first command group and passes on its information to register 127 of
MSS-Slave and DUT register bank.

Messages

— Local Bus

* femd _ifjck
g Jond_iflad
— DUt
B Jomd_iffstimuilfnst_peh_testfdata read_o
B Jomd iffstimuilfnst_pcb_testjpch reg_o {0000} {00007 0001700007 {0000} §0000 {0000 {0000 {0000} {0000} {0 00Y £0000} {0000} {0000} 0000} {0000} {0000} 0000} {0000} {00
1+ 4 /omd_if stmuifinst_pch_testfpch_req_o(126) 0000 00
0 fond_iffstmuiifnst_peb_testipc reg_o(127) 0000
B fond _iffstmuiifnst_peh_testipch bus i 2771

Jemd_iffstimulfinst_pch_testfpch bus o 2277

T —

Jemd_fjstimuifinst_wb_sl_mss/mss_bus_i B7777

Jemd_iffstimulfinst_wh_s_mssfmss_bus_o 7277

Jemd_iffstimulfinst_wb_sl_mssfreq_bank {000 {000 0... |{000
Jemd_fjstimuiinst_wb_sl_mesfreg_bank(126)

Jemd_fjstimuiiinst_wb_sl_mesfreg_bank(127)

Jemd_iffstimulfinst_wb_sl_mssfadr o

Jemd_ifstimulnst_wb_sl_mssfdata_ma_o

Jemd_iffstmulfinst_wb_sl_mssfamd_o

Jemd_iffstimulfinst_wb_sl_mssfconf_o 20
Jemd_iffstmulfinst_wb_sl_mss/data_ma_i
Jemd_ifjstimulfnst_wb_sl_mssfdata_sl_o

Jemd _iffstimulfinst_wb_sl_mss/data_read i

Jemd _ifstimulnst_wb_sl_mssfdata_ma_o

Jemd _iffstimulfinst_wb_s|_mss/data_ma_i

730 ns B00ns 850ns 900 ns 530 ns

Now 40000 ns

Cursor 1

Figure 22 Wishbone-MSS Testbench pic.1
In the figure above it is shown a write command in master mode. That means that the address
7F not only of the DUT register bank but also of the MSS-Slave register bank will store the
data package FFFO.

113

Step 2

wr 40000000 00000F7F
wr 4000000C 00000040

The testbench reads the second command group and reads the address 7F of DUT register
bank.

femd_iffstimulfinst_pch_test/data_read_o
femd_ifstimuiifinst_pch_test/pch_reg_o
femd_ifstimulifinst_pch_test/pch_reg_o(126)
femd_ifstimulifinst_pch_test/pch_reg_o(127)
femd_ifstimuiifinst_peh_test/peh_bus i
femd_ifstimulifinst_peh_testpch_bus o

femd_iffstimulfinst_wb_s|_mss/mss_bus_i
femd_iffstimulfinst_wb_s|_ms/nss_bus_o
femd_iffstimulfinst_wb_s|_ms/feg_bank
femd_iffstimulfinst_wb_s|_ms/req_bank(125)
femd,_fstimuifinst_b_sl_mss|reg_bank(127)

Jemd_if fstimuli/inst_wb_s|_mss/adr_o

femd_ifstimulifinst_wb_s|_mss/data_ma_o

femd_ifstimuiifinst_wh_sl_mss/cmd o

femd_ifstimuiifinst_wh_sl_mss/conf_o

femd_ifstimuiifinst_wh_sl_mss/data_ma i

femd_iffstimulifinst_wb_s|_mss/data_s_o FFO
femd_iffstimulfinst_wb_s| mss/data_read i

femd_iffstimuli/inst_wb_s|_mss/data_ma_o

femd_ifstimuifinst_wh_sl_mss/data_ma i

Cursor 1 21200 ns

Figure 23 Wishbone-MSS Testbench pic.2

In the figure above it is shown a read command in master mode. Inside the red cycle is shown
that the register data_ma_i receives the data package that was read during the execution of
the read command cycle.

Step 3

wr 40000000 0000FF7E
wr 40000004 0000OFFFO
wr 40000010 00062222
wr 4000000C 00000061

The testbench reads the third group of commands and passes on its information to register 126
of MSS-Slave register bank.

114

— Local Buz

¢ Jemd_iffck
o Jand iffad
] —
B Jand_if stimulifinst_pch_test/data_read_o FFFO
B Jand ifjstimulfinst_pch_testjpch_reg_o
B Jand iffstimulfinst_pch_testjpch_reg of12)
B Jand iffstimulfinst peb_testjpch reg_o(127)
B Jand _if/stimuifinst peb_ testfpch bus i]

emd_iffstimuiinst_pch_testpch_bus o FFE [fFR | i

[
Jemd iffstimufnst_nb_s|_mesfmss._bus i e [TFE | (A
Jemd _iffstimulifinst_wb_sl_mss/mes_bus_o
Jemd _if fatimuli/inst_wb_s|_mss/req_bank 00} {0000} {000 ! | 0000} {000
femd_if/stimulifinst_wb_s_mss/req_bank(125)
famd_if/stimulifinst_wb_s_mssfreg_bank(127)
Jemd_iffstimulifinst_ab_s_mssfadr_o
Jemd _if/stimulifinst_wb_sl_mss/data_ma_o
femd_iffstimulifinst_ab_sl_mss/cmd_o
Jemd _if/stimuiifinst_nb_s|_mss/conf_o 062220
Jernd _iffstimuiifinst_wb_sl_mss/data_ma_i FFFO
femd iffstimuifinst_wb_s_mssfdata sl o FFPO | [e TR0
Jemd _iffstimulfinst_wb_sl_mss/data_read i FFFO
Jemd _if/stimulifinst_wb_sl_mss/data_ma_o FFFO
Jemd _iffstimulifinst_wb_sl_mss/data_ma_i FFFO

how q000ns |

Cursor 1 23820 ns

Figure 24 Wishbone-MSS Testbench pic.3
In the figure above a write command in slave mode is shown. It has to be stressed out, that

only the register 126 of MSS-Slave register bank received the data package as the DUT
functions in this case as a master device.

115

5. Software Interface implementation

In this chapter, the communication interface with the PCIS3BASE card will be described. The
communication interface is developed in C#. The development of the software Interface
didn’t start from scratch but was based on another implementation with which the
communication with the 8 PIB ports was possible. Starting from that point, the MSS Graphic
User Interface (GUI) was developed in such a way, that the user is able to give the MSS
commands through a text file, which will be executed by the MSS module.

5.1 Design of the Software Interface

Two GUIs are implemented. The first one is used as the main GUI used from the user and the
second one is used for debugging purposes. It should be taken into consideration that it is not
possible to use both GUIs simultaneously as there is only one socket connection established
and there is a conflict when both software interfaces try to connect with the FPGA on the
PCIS3BASE.

5.1.1 Main Software Interface

First of all, the main features of the main software Interface will be described. On these
features the software Interface will be based to accomplish the communication between the
PC-user and the CON9 connector through the MSS module. This GUI will not demand from
the user to speak separately to each register of the MSS module. As input it will accept only a
text file which will contain assembly commands. Reading this text file, the information
gathered is related automatically to the corresponding MSS registers which are responsible for
passing on finally the information to the CON9 pins. What is more, depending on the
requirements of the user, the assembly commands inside the text file can be executed either
one by one or all together with one button click. Obviously, some extra utilities must be added
inside the GUI which will give the opportunity to the user to control the function of the MSS
module.

v" The user should be able to choose the state of the MSS module.

v" The user should be able to control with a self-test button if the MSS module works
properly.

v’ The user should be able to see the content of register data_ma_i in case the MSS-
Slave device receives a data package.

v The user should be able to see the content of register data_read i in case the DUT
device receives a data package.

v" Four text fields must be added, which will show either the content of a specific
PCB/MSS-Slave register (a member of the register bank) or a field of registers in the
PCB/MSS-Slave register banks starting from a specific address and ending to another
specific address.

116

v Another two text fields must be added, which will be used for debugging purposes as

they will show the content of registers counter_orders (number of orders) and
counter_cycles (number of clock cycles of the last order).

A figure follows below, showing an overview of the Main GUI.

Choose Text File

Read_By_Step

Read_All

Self Test

Master/Slave

Data_ma_in

MSS_Reg

MSS_Reg Field

Data_Pcb_In

PCB_Reg

PCB_Reg Field

Count_Orders

Count_Cycles

Main GUI

Figure 25 Main GUI overview

For instance, the user can use the Choose Text File button to upload a text file and that’s why
the arrow is directed towards the Choose Text File button. The button Data_Ma _In is used
only to read the content of register Data_ma_in and therefore, the arrow is directed towards
the user. If the user can write and read a text field, such as PCB_Reg, the arrow is

bidirectional.

117

5.1.2 Debuqgging Software Interface

In this GUI the user is able to control the content of every single register inside the MSS
module. Apart from some of the text fields mentioned above, there are some extra text fields
which show the content of registers Adr_o, Data_ma_o, Conf_o and Cmd_o.

Another figure follows below, which gives an overview of the Debugging GUI.

Adr_O

Data_Ma_O

Data_Ma_In

Conf_O

Cmd_O

JLIAN

MSS_Reg

PCB_Reg

Count_Orders

Count_Cycles

Debugging GUI

Figure 26 Debugging GUI overview

5.2 Implementation in C#

Within this subchapter both GUISs as well as the code structure will be explained.

118

5.2.1 Code structure

The main components of the API will be shown below and the function of each source file
will be explained.

e wishbone_pcis3base.cs : Contains all the constants which represent specific addresses
of the slave devices.

e UdmsHandler.cs : Implements the communication with the PIB ports.

e s3base.cs : The FPGA design is read and the communication with the MSS registers is
implemented

e Program.cs : Includes the method main() and the GUI is called.

e GPIO_Tool _MainWindow.cs : Implements the function of every button of the GUI
which doesn’t belong to the Table defined in GP1O_Tool_MainWindow.Designer.cs

e GPIO_Tool_MainWindow.Designer.cs : Defines the design of the GUI.

e GPIO_Commands_UserControl.cs : Implements the function of the buttons which
belong to the Table of the GUI.

e GPIO_Commands_UserControl.Designer.cs : Defines the elements of each line of
the Table in the GUI.

5.2.2 Main Software Interface

The figure shows the GUI which is generated from the main API.

browss] sxe_step sxec_all
' Counter
" Master
& Shift
* SGlave
ok Self Test
e T T —
Hexalue
DataMa i [

Star_Ad End_Adr
PCE_Regs Lﬁdl PCE_Reg read

Start_Adr End_Adr

M55_Slave_Regs read M55 _Reg read

XXXXXXXXXXXXXXXXXXXXXXXXXXXXXX DEBUGGING INTERFACE mreesmssmmmosmmorseszsoees

Hexalue (Dinly in Master mode)
Counter_Orders

Counter_Cycles

EventLog: _uI 2|E|
D ate/ Time [User [Type [Message

HEUT 0-08-05 15:42:29.328 Adrnin Intormation UDMS Handler started on Port 5000, GPIO Command Tool APID is 2046

Figure 27 Main GUI
119

By default the MSS module is set to slave mode. The user is able to change the mode of the
MSS module by using the radio-button. Moreover, pressing the browse button a new window
pops out which gives the opportunity to choose a text file from the computer’s file system.

The figure below shows exactly what happens when the browse button is pressed.

_[5ix]

File Help

o QEADING FROM ToT FILE =eeesmmsmmnessmesmmmesrccsss

browse I enec_step exec_al

€ Counter
' Haster
- oa 21
Suchen i | (@ Desktop Hio @ 2 E
oK
—I | Eigene Dateien |-) PCE-Browse- Debugaing Interface C#
y 4§ Arbeitsplatz I pcis3base
& dhetzwerkumgebung I3 Fga wikhaut M55 SLAYE MODE
EOMMAND INTERFACE |Backup GRIO_Cammand_Tadl [Cithesis
HexValue |-)Backup LB:_testbench 1) Thesis Interface
Dats Ma In |-5)Dsbugaing Tnterfacs C# I3 Thesis-Diebugaing Interface
- |22 GPIO._Command_Taal 2] 1.kxt
|3 hdl 2] Commands. kxt
Data_Peb_In _ | Interface C# 2] mss_arder.bxt
| Kopis von peisabaset
Stat Adr End Adr Sl | opie von Thesis-Debugging Interface
— — |CoILE_testhench
FEELIRERS |\o)Leds Tnterface
Star_Adr End_Adr |Simss
MSS_Slave_Regs l— l— |5y mss home without MSS SLAVE MODE
W Dateiname: [=l Uffnen |
wo DEBLIGGING INTERFACE moossssossmmmunns
Dateityp [t fes (et | Abbrechen
Hexalue (Only in Master made) g
Counter_Orders
Counter Cycles [
EventLog il =
Date/ Time [User [Tope [Message |
2010-08-06 16.34.02.578 Admin Information UDMS Handler started on Port 5000, GFIO Command T ool AFID is 2046
Hzoo0e05183408.218 Admin Information

Figure 28 Pressing Browse button

The button read_step executes one by one the commands included inside the text file while
the button read_all executes all the commands in one click.

Data_ma_in is a text field which shows the content of register Data_ma_in. The same
happens also with the text fields Cnt_Cycle, Cnt Orders, PCB_Reg, MSS_Reg which show
the content of registers counter_orders, counter_cycles and a specific member of the register
banks of MSS-Slave and DUT respectively. MSS_Slave_Regs and DUT_Regs show the
content of a field of registers inside the register banks of MSS-Slave and DUT respectively .

More information about the use of the main GUI follows in the next figure.

120

Execute all
orders with
one click

Choose
Command
File

Salf tast of
MEE medule

Choose M55
mode

Data package
receiad in“read”
cmd{MASTER)

Data package
recaived in‘read”
cmd(SLAVE)

Field of MSS Slave | &%

Content of specific
MSSE Slave / PCB
Register

almiE

and PCB Registers

Mumber of orders
already executed
(READ OMLY)

umber of clocl
cycles of the last
command (READ
OMLY)

Eventlog
Information

Figure 29 Use of Main GUI

5.2.3 Debuqgging Software Interface

The next figure shows the GUI which is generated from the API which is, in turn, developed

for debugging purposes.

121

[20100803 15:27.28.921 oliver mat UDMS Handler started on Port 5000, GFIOD Command Tool APID is 2045

Figure 30 Debugging GUI

Looking at the figure above is obvious that the user has now access to every single register of
the MSS module. Consequently, he is able either to write a register or read the content of a

register whose content may have been earlier influenced by a command executed from the
Main GUI.

122

6. MSS module on Spartan-3 FPGA

In chapter 4, is already explained, how the MSS module works in the simulation environment

of Modelsim. Now, within the chapter 6, it is time to take advantage of Spartan-3 FPGA
resources and implement the MSS slave device in the FPGA. For the implementation the

Xilinx enviroment ISE 10.1 will be used.

6.1 Code structure in Xilinx ISE

In the programming enviroment of Xilinx ISE the following code structure is used:

e Pcis3base_top.vhd

v" Wb _intercon.vhd
v" Whb_syscon.vhd
v Whb_ma_plx.vhd
v Whb_sl_sdr.vhd

v' Whb_sl_flash.vhd
v Whb_sl_gpio.vhd
v Whb_sl_mss.vhd

v’ Pch_test.vhd

v' Whb_sl_timer.vhd

v’ Pcis3base.ucf

6.2 FPGA implementation report

In the table below the number of several types of hardware elements which are used inside the

Spartan-3 FPGA is depicted.

Adders/Subtractors 8
3-bit subtractor 1
32-bit adder 1
5-bit subtractor 10
7-bit adder 1
Counters 21
16-bit up counter 2 2
32-bit down counter 18
9-bit up counter 1
Registers 2664
Flip-Flops 2664
Comparators 11
32-bit comparator equal 1
32-bit comparator lessequal | 9
32-bit comparator not equal | 1
Multiplexers 36

123

1-bit 8-to-1 multiplexer 32
16-bit 128-to-1 multiplexer | 3
32-bit 4-to-1 multiplexer 1

Table 21 Advanced HDL Synthesis Report

The device utilization summary follows in the table below.

Logic Utilization Used | Available | Utilization
Number of Slice 5614 | 26624 21%
Flip Flops

Number of 4 7380 | 26624 27%
Input LUTS

Logic Distribution

Number of 7855 | 13312 35%
occupied Slices

Number of Slices 7855 | 7855 100%
containing only

related logic

Number of Slices 0 7855 0%

containing unrelated logic
Total Number of 4 input | 7465 | 26624 28%

LUTs

Number used as logic 7380

Number used as a 85

Route-thru

Number of bonded IOBs | 200 | 333 60%
IOB Flip Flops 1

Number of BUFGMUXs |1 8 12%
Number of DCMs 2 4 50%

Table 22 Device Utilization Summary

6.3 Testing MSS module

Having already described the hardware features that are generated in the design process in the
FPGA and having successfully generated the .bin programming file, the next step is to control
the MSS module function using the software interface which was described in chapter 5.

6.3.1 Testing process

First of all, it will be mentioned what other hardware elements were used in the testing
procedure of MSS module.

v" A breakout box is used in order to control the value of each of the 78 CON9
connector’s pins.

124

v" A cable harness is used for the connection between the breakout box and the CON9
connector.

v’ The oscilloscope Tektronix TDS 784D is used for the control of MSS timing

v A loop-back 78-pin connector is used for testing the MSS module in Slave mode.

The use of the breakout box was really significant not only for the control of the MSS timing
but also for the control of every single bit on the MSS bus. The following table makes evident

the relationship between the CON9 pins and the PIB ports. It shows which pin of CON9
connector corresponds to a specific bit of the PIB ports.

Ports
Bits 0 1 3 4 5 6 7
0 10 29 39 20 78
1 8 27 37 18 76
2 6 25 35 16 74
3 4 23 33 14 72
4 9 28 38 19 58 77
5 7 26 36 17 56 75
6 5 24 34 15 54 73
7 3 22 32 13 52 71

As the MSS bus is speaking only to three PIB ports, the user has to take into consideration

Table 23 CON9-PIB ports connection

GPIO PINS

MSS PINS
Unused PINS

only the first two and the fourth column from the table above and what is more, as the MSS
bus has length equal to 20 bits, the bits 4,5,6 and 7 of the fourth column (port 4) can be

ignored. The pins of CON9 which will be most tested, are obviously the control signals of

MSS bus which correspond to the first four bits of port 4.

The table below shows the relationship between MSS bus and CON9 connector’s pins.

MSS bus bits | Information CONQ pins
0 Adr/Data bit 0 10
1 Adr/Data bit 1 8
2 Adr/Data bit 2 6
3 Adr/Data bit 3 4
4 Adr/Data bit 4 9
5 Adr/Data bit 5 7
6 Adr/Data bit 6 5
7 Adr/Data bit 7 3
8 Adr/Data bit 8 29
9 Adr/Data bit 9 27
10 Adr/Data bit 10 25
11 Adr/Data bit 11 23
12 Adr/Data bit 12 28

125

The table below shows the relationship between DUT bus and CON9 connector’s pins.

13 Adr/Data bit 13 | 26
14 Adr/Data bit 14 24
15 Adr/Data bit15 | 22
16 Rd control signal | 39
17 Wr control signal | 37
18 Ale control signal | 35
19 Sel control signal | 33

Table 24 CON9-MSS bus connection

MSS bus bits | Information CON@9 pins
0 Adr/Data bit 0 49
1 Adr/Data bit 1 47
2 Adr/Data bit 2 45
3 Adr/Data bit 3 43
4 Adr/Data bit 4 48
5 Adr/Data bit 5 46
6 Adr/Data bit 6 44
7 Adr/Data bit 7 42
8 Adr/Data bit 8 68
9 Adr/Data bit 9 66
10 Adr/Data bit 10 | 64
11 Adr/Data bit 11 62
12 Adr/Databit12 | 67
13 Adr/Data bit 13 | 65
14 Adr/Data bit 14 | 63
15 Adr/Data bit 15 | 61
16 Rd control signal | 59
17 Wr control signal | 57
18 Ale control signal | 55
19 Sel control signal | 53

Table 25 CON9-DUT bus connection

6.3.2 Download the Design

For the downloading of the design into the FPGA the Cesys Software tool cesys-Monitor is

used.

126

[cesys-Monitor (c) 200 08 Cesys GmbH, version 1.1.0.708 - Mar 12 2008

Download Design

LI

Reset FPGA Current:
Item <D
Register Tj0) | ssign

Exit I

Desiqr

Conf

Design =C:
Data Transfer | Configuration

<13 deviceis) detected.
path : C:iDocoments and Settings|AdminDesktop

Settings\Admin\Deskkop|FPGA Designipeis3base_top.bin> selected.

'and Settings\AdminiDesktop|FPGA Designipeisabase_top, bin> selected,

Figure 31 Cesys Monitor

6.3.3 Testing MSS Master

Taking for granted that the MSS module works in master mode (Master radiobutton must be

checked and then click OK), first of all the user should choose the command text file.

conf 027777
wr 0001 0077
wr 0005 0009
wr 0002 000A
wr 0004 0007
wr 0005 0077
rd OF04

rd OF02

rd OF01

wr 0F11 0002
rd 0005

rdv 0011 0001
rdv OF11 0002

Code 15 MSS Command file

127

Afterwards, it can be defined, whether all commands should be executed instantly using the
exec_all button or should be executed step by step using the exec_step button.

Pressing the exec_step button an output log file is received which informs the user what kind
of command is executed and its parameters. For instance, when the command wr 0005 0077
is executed, the output log file (report.txt)* MASTER Cmd: wr A: 0005 D: 0077 is
receiced . That means that a data package is sent from the MSS-Master towards the DUT
register bank and in particular to the address 0005.

Pressing the exec_all button an output log file (report_all.txt) is received showing all the
commands which were executed.

MASTER
MASTER
MASTER
MASTER
MASTER
MASTER
MASTER
MASTER
MASTER
MASTER
MASTER
MASTER
MASTER

Cmd:
Cmd:
swr A: 0005 D: 0009
Cmd:
Cmd:
Cmd:
Cmd:
Cmd:
Cmd:
Cmd:
Cmd:
Cmd:
Cmd:

Cmd

conf Cnfg: 027777
wr A: 0001 D: 0077

wr A: 0002 D: 000A

wr A: 0004 D: 0007

wr A: 0005 D: 0077

rd A: 0004 D: 0007

rd A: 0002 D: 000A

rd A: 0001 D: 0077

wr A:0F11 D: 0002

rd A: 0005 D: 0077

rdv A: 0011 D: 0002 FALSE
rdv A: OF11 D: 0002 OK

Code 16 Output log file in Master mode in case the input command file is code 15

As the MSS module works in master mode, in the case of a read command, the register
Data_Ma_in receives the data package which was sent from the DUT. For instance, at the
execution of the command rd 0004 the GUI image is the following.

128

M8S_Command_Tool

File Help

xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx READING FROM .TXT FILE ®essmommmmmmesmunmansn

browse | exec_step I exec_all

1+ Master

™ Slave

" Counter

% Shift

Self Test |

xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx COMMAND INTERFACE mesessesmomommmmsennso

e (G

Daiapebin |GG

Start_Adr End_Adr
PCB_Regs read | FCE_Reg | read
Start_Adr End_Adr
MS5_Slave_Fegs read | MS5_Req read
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx DEBUGGING INTERFADE =

Hex*alue [Only in Master mode)

Counter_Orders

Counter_Cyctes [ATENI

Event Log:

| el El

Figure 32 GUI in Master mode

6.3.4 Testing MSS Slave

Taking now for granted that the MSS module works in slave mode (Slave radiobutton must be
checked and then click OK), and giving as input command file the same file as in Code 15,
the user presses at first the exec_step button. If the command wr 0005 0077 is executed, the
output log file (report.txt) “SLAVE Cmd: wr A: 0005 D: 0077 is received. That means
that a data package is sent from the DUT towards the MSS-Slave register bank and in
particular to the address 0005.

Pressing now the exec_all button another output log file (report_all.txt) is received showing
all the commands which were executed.

| Date/ Time | Usger I Type | Message | :I

2010-0812 10:27:35.968 Admin Information

20100812 10:27:36. 218 Admin Infarmation Crnd: wir D005 D003 has been executed
20100812 10:27:36. 218 Admin Infarmation

2010-081210:27:33.093 Admin Information Crnd: vir 0002 D004 has been executed
2010-0812 10:27:38.093 Admin Information

2010-081210:27:38.750 Admin Information Crnd: var 0004 0007 has been executed
20100812 10:27:38 760 Admin Infarmation

20100812 10:27:39 626 Admin Infarmation Crnd: wir D008 D077 has been executed
2010-081210:27:33.640 Admin Information

2010-0812 10:27:40.531 Admin Information Crnd: 1d 0004 has been executed

SLAVE Cmd:
SLAVE Cmd:
SLAVE Cmd:
SLAVE Cmd:
SLAVE Cmd:
SLAVE Cmd:
SLAVE Cmd:
SLAVE Cmd:

conf Cnfg: 027777

wr A: 0001 D: 0077
wr A: 0005 D: 0009
wr A: 0002 D: 000A
wr A: 0004 D: 0007
wr A: 0005 D: 0077
rd A: 0004 D: 0007
rd A: 0002 D: 000A

129

SLAVE Cmd: rd A: 0001 D: 0077

SLAVE Cmd: wr A:0F11 D: 0002
SLAVE Cmd: rd A: 0005 D: 0077

SLAVE Cmd: rdv A: 0011 D: 0002 FALSE
SLAVE Cmd: rdv A: OF11 D: 0002 OK

Code 17 Output log file in Slave mode in case the input command file is code 15

As the MSS module works now in slave mode, in the case of a read command, the register
Data_Pcb_in receives the data package which was sent from the DUT. For instance, at the
execution of the command rd 0002 the GUI image is the following.

MSS_Command_Tool

File Help

xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx READING FROM .TT FILE

bowse | [emecsten |

exec_all

" Master

&+ Slave

XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX COMMAND INTERFACE

Hex\alue

Data_Ma_In

Start_adr End_Adr
PCE_Regs
Start_adr End_adr
MSS_Slawe_Regs
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx DEBUGGING INTERFACE »eswesssmemsa

' Counter

& Shift

Self Test I

read PCB_Fieg read
e |
iead MSSRea [icad

Hex\Walue [Only in Master mode]

Counter_Orders

Counter Cycle: [RERDR

_a;lﬂllz"

Event Log:

| Diates Time | User | Type | Message |
2010-08-12 10:27:38.093 Audrniny Infarmation
2010-08-12 10:27:38.750 Audrniny Infarmation Crnd: wr 0004 0007 has been executed
2010-08-12 10:27:38.750 Audrniny Infarmation
2010-08-12 10:27:39.625 Audrniny Infarmation Crnd: wr 0003 0077 has been executed
2010-08-12 10:27:39.640 Audrniny Infarmation
2010-08-12 10:27:40.531 Audrin Infarmation Crd: rd 0004 has been executed
2010-08-12 10:27:40.531 Audrin Infarmation
2010-08-12 10:28:1 2,687 Audrin Infarmation CHANGED: Slave Mode
2010-08-12 10:28:1 2,687 Audrin Infarmation
2010-08-12 10:28:14.390 Audrin Infarmation Cmd: rd 0002 has been executed

Figure 33 GUI in Slave mode

130

6.4 MSS Timing

Within this subchapter the MSS timing, which the MSS-Master module generates, will be
shown depending on the input commands of the user. As it is already mentioned, the most
important role, in matters of the timing specifications, plays the content of the configuration
register. The user can adjust the configuration register using the command config X. X stands
for a 24 bit vector which is divided in 6 groups of 4 bits each of which defines the duration of
each stage of the command. The last 4 groups define the duration of each of the four stages of
a write command and the last 5 groups define the duration of each of the five stages of a read
command.

Below some captures from the oscilloscope are shown, which depict the MSS timing which is
generated by the execution of some groups of commands.

6.4.1 Write commands

1st Command group:
conf 024744
wr 0001 0077

Tek A Single Seq 1.00G5/5
=

o I +

seL 1 A VNV WA e
ulil.d!l-,_" i s
ALE M vl TN I PP P ST RN IS D R
B A -
WR
ChT 500V M 50.0ns ChT % 1.7V 9 Aug 2010
3.00V

12:24:30
Figure 34 MSS-Timing 1

The duration of the low level of sel control signal defines how long the command cycle lasts (
how long the microprocessor is selected). Comparing the duration of the low level of sel
control signal with the sum of the last four hex numbers of configuration register can be
understood that the config register really defines how long the command lasts.

131

2nd Command group:
conf 024448
wr 0001 0077

Tek EIGIE single Seq 1.00G5/5
[

ho ™
.1‘
A
SEL 1= ,W\;’WW
'l'"‘uw.-"“ e N }
ALE I]l l
m._ - | f" E"'\ s T R X _I.""\.__
WR el e g
Ch1 500V] .00 MS0.0ns Chl . 1.7V
W 300V 9 Aug 2010

12:25:39

Figure 35 MSS-Timing 2

Comparing the last two figures can be understood that the ale control signal stays longer in
high level in the last figure. This happens due to the fact that the last hex number of the config
register in the second command group has a greater value in comparison with the last hex
number of the config register in the first command group.

132

3rd Command group:
conf 024848
wr 0001 0077

Tek HINE Single Seq 1.00G5/5
[T 1

seL 1+

ALE

(IRY 2 S.00V M50.0ns ChT L 1.7V 9 Aug 2010
oV 12:27:44

Chi 5.0
(5.0
Figure 36 MSS-Timing 3
Comparing the last two figures, the wr control signal stays two times longer in low level in

the last figure, as the third hex number starting from the end in the last command group is two
times greater in comparison with the same hex number in the previous command group.

133

6.4.2 Read commands

4th Command group:
conf 022422
rd 0001

Tek HIOHE single Seq 1.00G5/5
[T

% f “
SEL 1= 5&\#\me|
I:I l| i t ™
R | -'l_r_‘_-v‘.,.\..-*.‘.'_J..f__:_- i Pt g
.-_|-
RO 2+F b A e
Chi 500V : 5. 00 M 50.0ns ChT ™ 1.7V
W 300V 9 Aug 2010

12:29:24
Figure 37 MSS-Timing 4

As the read command is divided in five stages, its duration is defined from the last five hex
numbers of config register. That means, that in this case its duration must be equal to 12*20
ns (20 ns is the clock cycle) and that is true as the duration of the low level of sel control
signal is also equal to 240ns.

134

5th Command group:
conf 026622
rd 0001

Tek FEEE single Seq 1.00G5/5
[7

sgL 1+ Wﬂfﬁﬁ,{w&w ‘

ALE N T P T T R SN SN SR DO

I';I I.l i %,
Eﬂ"“ ! IL_.' 4 P “‘”"v"‘"*{-’*‘"«-f‘"‘“-?a- e AL T T s WP
RD 2+ """
Chi 500V 2 5,000 M50.0ns Chi 1 1.7V
[500 9 Aug 2010

12:30:19
Figure 38 MSS-Timing 5

Comparing now the last two read commands, it can be mentioned that the rd control signal
stays two times longer in low level in the last figure, as the sum of the third and the fourth hex
number starting from the end of config register in the last command group is two times
greater in comparison with the same sum of hex numbers in the previous command group.

135

7. Conclusion

To sum up, the achievements and the further research opportunities will be mentioned.

7.1 Achievements

First of all, the MSS module, which was implemented, succeeded to simulate a
Microprocessor’s timing. Using the interface implemented, it is now possible to test
thoroughly slave PCBs. That means, that the slave PCBs can be integrated inside the PDHU
(Payload Data Handling Unit) box seamlessly. Last but not least, using the new Software
interface the whole testing procedure is shortened, as the testing process can now function
automatically.

7.2 Further research and development

The module implemented lays the fundamentals for further research as it gives the
opportunity to develop new interfaces such as Channel Link, Space Wire etc.What is more,
taking advantage of the Digital Clock Manager (DCM) faster and more exact timing
specifications can be implemented.

7.3 Space Wire Interface

SpaceWire is a spacecraft communication network based in part on the IEEE 1355 standard of
communications. It is coordinated by the European Space Agency (ESA) in collaboration with
international space agencies including NASA, JAXA and RKA. Within a SpaceWire network
the nodes are connected through low-cost, low-latency, full-duplex, point-to-point serial links
and packet switching wormhole routing routers. SpaceWire covers two (physical and data-
link) of the seven layers of the OSI model for communications.

The scope of the Spice Wire Standard is the physical connectors and cables, electrical
properties, and logical protocols that comprise the SpaceWire data link. SpaceWire provides a
means of sending packets of information from a source node to a specified destination node.
SpaceWire does not specify the contents of the packets of information.

The Space Wire Standard covers the following protocol levels:

+ Physical level: Defines connectors, cables, cable assemblies and printed circuit board
tracks.

« Signal level: Defines signal encoding, voltage levels, noise margins, and data signaling
rates.

+ Character level: Defines the data and control characters used to manage the flow of
data across a link.

» Exchange level: Defines the protocol for link initialization, flow control, link error
detection and link error recovery.

+ Packet level: Defines how data for transmission over a SpaceWire link is split up into
packets.

» Network level: Defines the structure of a SpaceWire network and the way in which
packets are transferred from a source node to a destination node across a network. It

136

also defines how link errors and network level errors are handled.

Furthermore, SpaceWire utilizes asynchronous communication and allows speeds between 2
Mbit/s and 400 Mbit/s.SpaceWire also has very low error rates, deterministic system behavior,
and relatively simple digital electronics.. SpaceWire replaced old PECL differential drivers in
the physical layer of IEEE 1355 DS-DE by low-voltage differential signaling. However, one
of its main features is that it supports automatic failover. That means that it lets data find
alternate routes, so a spacecraft can have multiple data buses, and be made fault-tolerant.

The purpose of the SpaceWire standard is:

« to facilitate the construction of high-performance onboard data handling systems,
* to help reduce system integration costs,

 to promote compatibility between data handling equipment and subsystems, and
* to encourage re-use of data handling equipment across several different missions.

Use of the SpaceWire standard ensures that equipment is compatible at both the component
and sub-system levels. Processing units, mass-memory units and down-link telemetry systems
using SpaceWire interfaces developed for one mission can be readily used on another mission.
This:

« reduces the cost of development (Cheaper),

* reduces development timescales (Faster),

» improves reliability (Better),

* increases the amount of scientific work that can be achieved within a limited budget
(More).

Payload processing involves several functions:

 Controlling instruments

« Calibrating instruments

 Collecting data from instruments

« Storing the instrument data

* Processing the data

» Compressing the data

» Sending the data to the down-link telemetry transmitter

SpaceWire is able to support many different payload processing architectures using point-to-
point links and SpaceWire routing switches. An architecture can be tuned to the requirements
of specific missions.

An example architecture is shown in the diagram below, which uses SpaceWire routers to
provide the interconnectivity between instruments, memory and processing modules.

137

Data-Handling Sub-System
------- I Pttt o o
Instrument C::g:ity i Context !] Data .
. 5 . :
M Saving ' 1+ Compression !
emory |1 ' Modul i
el - eI RN L. oo
D |
Instrument ' S e e e -
}_“f°_d_“'_°_: ¢ '~ Telemetry |
SseW . [spw i Fommatter | :
Router Router <~ /Encryption 1| | rensmitter
Complex Instrument ¢ ‘\l t ' _ Module_ _,
— jmm =y X, LV V.
i RTC Control |! Dedicated ;! DSP |
EAN N S Processor |+ Processor |1 Processor ;
bus module |} module ;] module
-------- L L
FoTTTEEE TS
: optional DPU -
Instrument Spacecraft control bus
poco Modules e 1 , 2 y
based on basedon | ' ©OPtonal ! gpaceWire Control
Hi-Rel coTS | Module links busfliine
R e

Figure 39 Space-Wire Architecture

The Instrument in the top left-hand corner is a high data-rate instrument. A SpaceWire point-
to-point link is used to stream data from this instrument directly into the High Capacity
Memory Module. This Memory Module is also connected into the rest of the payload
processing architecture by a SpaceWire link to a SpaceWire Router. Data from other
instruments can be stored in the High Capacity Memory Module using this link. The data
stored in memory from the high data rate instrument can also be accessed using this link, for
processing, compression and sending to the down-link telemetry transmitter.

A second Instrument is connection to an input/output (I/O) module. This module is used to
connect to instruments that do not have direct SpaceWire connections. The instrument passes
data to the I/0O module, possibly over a parallel data bus. The I/O module forms this data into
SpaceWire packets and sends them to the required destination over the SpaceWire network.
This may be the High Capacity Memory Module, a Processor Module, or a Data Compression
Module.

The third instrument, the Complex Instrument, has many sub-systems that have to be
controlled separately. To do this a low data rate bus, for example the CAN bus, is used, to
control and collect data from the various sub-systems. A Remote Terminal Interface (RTI) is
used to provide the bridge between SpaceWire and the local bus (e.g. CAN). The Remote
Terminal Computer device has been specifically designed to support this function.

The final instrument is an instrument that requires substantial processing so may include its
own Data Processing Unit (DPU). The DPU is connected to the SpaceWire network providing
processed data to the High Capacity Memory Module for storage before being sent to the
down-link telemetry system.

There are four different processing modules shown in the example architecture. The Control
Processor module controls the complete set of payload instruments according to commands
sent over the Spacecraft Control Bus. The DSP Processor module performs digital signal

138

processing on the instrument data to extract important information or to help implement
computationally intense control loops for the instruments. It may also perform compression of
the payload data if the data rates are low. For higher data rate instruments a dedicated Data
Compression may be necessary and for instruments that require specific, demanding
processing a Dedicated Processor module may be used.

Data from the instruments, High Capacity Memory and processing units can be sent over the
SpaceWire network to the Telemetry Formatter/Encryption module under control of the
Control Processor module. The Telemetry Formatter/Encryption module sends the data to a
ground station via the down-link Transmitter.

A Context Saving Memory is also shown in the architecture diagram. This memory can be
used for periodically saving the context of the payload processing system, so that in the event
of a failure a previous context can be restored.

Additional SpaceWire links can be added in the network to provide additional bandwidth or to
support fault tolerance. The SpaceWire routers may be stand alone units or may be integrated
into the memory, processing or other modules. SpaceWire allows standard instruments,
memory systems and processing modules to be developed and reused on several missions.

7.4 Channel Link

Channel-Link (C-Link) is a high-speed interface for cost-effectively transferring data at rates
from 250 megabits/second to 6.4 gigabits/second over backplanes or cables.

Apart from Spacewire, Channel-Link as well uses LVDS(Low-Voltage Differential
Signaling.) and comes in three configurations with three, four, or eight parallel data transfer
lanes plus the source-synchronized clock for each configuration. In cable applications, it uses
one twisted pair in order to transmit a clock signal, and on the remaining differential pairs it
transmits digital data at a bit rate that is seven times the frequency of the clock signal. The
backplane applications work the same way except for using differential traces instead of
twisted pairs.

The three Channel-Link chipset configurations provide varying user interfaces. For example,
the three-lane chipset has 21 single-ended inputs and outputs for the user interface, and the
four-lane chipset has 28 single-ended inputs and outputs. The eight-lane chipset has 48 single
ended inputs and outputs because it uses one of the 7 serialized bits/lane to DC-balance the
other six bits.

Channel-Link is a general-purpose data pipe with no overhead for protocol or
encoding.Therefore, there are many system applications for this efficient data transfer
technology,such as Camera Link,Multi-faction printers and telecommunication access-
aggregator equipment.

We can see below the Channel-Link Chipset Block Diagram :

139

TX LVDS Cable RX

DSYOCR285 (media dependent) DS90CR286

A \ DATA (LVDS)
[\ \ s
[! q

TxIN RxOUT
0 0

Yy

M EvEviviviv
Y YYVYY

CMOS/

vy

25
27

25
27

CLOCK (LVDS)

TxCLK — RxCLK

GND

L\ / v "

SHIELD

PCB

Figure 40 Channel-Link Block Diagram

140

Bibliography
The Designers Guide to VHDL ,Peter J. Ashenden
Circuit Design with VHDL, Volnei A. Pedroni

http://www.cesys.com/resources/CEQ31.pdf

http://computer.howstuffworks.com/pci.htm

http://www.xilinx.com/support/documentation/data sheets/ds099.pdf

http://www.cesys.com/resources/C1050-3506 PI1B6410 UserManual.pdf

http://en.wikipedia.org/wiki/Wishbone (computer bus)

Cesys PCIS3BASE PCI Card sourcecode

http://en.wikipedia.org/wiki/Channel-link

http://en.wikipedia.org/wiki/ERC32

http://microelectronics.esa.int/erc32/Hardware%20and%20Documentation%20Status%200f%

20the%20ERC32%20Single%20Chip%20ilrla.pdf

http://spacewire.esa.int/content/Standard/Standard.php

141

http://www.cesys.com/resources/CE031.pdf
http://computer.howstuffworks.com/pci.htm
http://www.xilinx.com/support/documentation/data_sheets/ds099.pdf
http://www.cesys.com/resources/C1050-3506_PIB64IO_UserManual.pdf
http://en.wikipedia.org/wiki/Wishbone_(computer_bus)
http://en.wikipedia.org/wiki/Channel-link
http://en.wikipedia.org/wiki/ERC32)
http://microelectronics.esa.int/erc32/Hardware%20and%20Documentation%20Status%20of%20the%20ERC32%20Single%20Chip%20i1r1a.pdf
http://microelectronics.esa.int/erc32/Hardware%20and%20Documentation%20Status%20of%20the%20ERC32%20Single%20Chip%20i1r1a.pdf
http://spacewire.esa.int/content/Standard/Standard.php

