EOvixd Metobfo Ilohuteyvelo
Yyont) Hhextpohoyov Minyavixcdv xow Minyovixcyv Tnokoyotodyv
Topéag Texvoroyiag I npogopxic xar Troroyic v

Teyxvixeg PelTinong TNG ATOTEAECUATINOTNTAS
eVPEOTC AOWYV OE TEOYPAUUATA UECW
O TATLXNG AVAALONG

Armhopotixy Eoyaota

Ytadeouv Apwdyvn

Enprenov: Koothc Yaydhvoc
Av. Kofnyntic E.M.IL.

Epyacthpio Teyvoroylog Aoyiouixold
Ab7jva, Iavoudploc 2011

Efvixd Metodfio Tloruteyvelo

Yyonfy Hxextponoywv Minyavixcdv xouw Mrnyovixcyv Trokoyotodyv
Topéac Teyvoroylac IInpogopixric xou Troloyio Ty
Epyactipio Teyvoroylog Aoyiouxod

Teyxvixeg PelTinong TNG ATOTEAECUATINOTNTAS
elpeong Aabwyv O NTEOYPAUUATA LECW
O TATLXNG AVAAVOTNG

Armhopotix Epyaota

3tadpouv Apwv

Enprenov: Koothc Yaydvoc
Av. Kobnyntic E.M.IL

Eyxpifnxe and tnv teekn e€etactiny emtpony) v 7" Tavouagiov, 2011.

Koo g Sayodvog Nwdhaog Hanaondpou Kdotac Kovtoyidvvne
Av. Kabnynmic EM.IL. Emnux. Kabnyntic E.MIL Av. Kofnyntic E.M.IL

Ab7jva, Iovoudplog 2011

Ytadpog Apwdyvng
Awmhopoatolyoc Hiextpohdyoc Mryavixde xow Mnyovixde Yroroyiotodv E.M.IL

Copyright (©) — All rights reserved Xtalpoc Apdvng, 2011.
Me empONagn TavTo BIXoumUTOS.

Anoryopeleton 1 avtiypopy|, anobrixeucr xou dlavour| Tng mapolous epyaciag, €& ONOXAHPOU
1} TURUOTOC AUTAS, Yo eumopixd oxomd. Emtpéneton n avatinwon, anobrixeuor xat diavour
Yo OXOTO UM XEEOOOXOTIXO, EXTAUBEVTIXNAC 1) EPELVNTIXAC PUONS, UTO TNV Tpobmdbeon va
aVaPERETAL 1) TNV 1) TEOENELONG XAl VoL BlaTneelton To Topdy urvuua. EpwtAuata tou apopoldv
N xeHoM TG epyaciog Yo xepdooxomixd oxond TEENEL Vo aneLBivoVToL TEOS TOV CUYYEAUPEA.

Ov amddelc xou o GUUTERGOUNTA TIOLU TEPLEYXOVTOL GE oUTO TO €Yyypapo exPedlouy Tov
oLy ypapéa xou dev TEENEL VoL epunveLbel OTL avTinpocwrebouy Ti¢ enionues Béoeig Tou EOvixol
Metoofou Hloxuteyvelov.

ITepixndn

H aviyveuon xou 616pbwon Nabodv oe mpoypdupato efvar Uior SLadXacial TOU XATUVINWVEL
onuavTiXd Pépog Tou yeoévou xdbe mpoypaupatioth. Epyokeia mou Sieuxolivouv tov ev-
TOTOUO AoV elvan xprola TOCO GTOV TEPLOPLOUO TV TEAXWY Aabwv, 600 xou oTnv
oaduxaoior evTomopol xou 81ophnwong xotd TNV avamTUEY TOU TEOYEAUUATOS. LTNY TUPOUC
gpyooia mopouotdleton 1 eMEXTUOT TwV duVATOTNTOV ToU DIALYZER, €VOC TEOYEGUUATOS
TIOU YENOWOTOLEL GTATIXY AVEAUGT) Yo TNV oVl VEUST) \afV OE TROYEQUUIT GTN YADCO
ERLANG, pe TV eloorywyy) T0mwy Touns mou BEXTIVOLY onuavTixd tnyv axpeifelo tou epyaieiou
xaL TNV TEocHxn EMTAEOV BUVATOTATOV OYETIXWY YE TOV EVIOTULOUO NV GTNV o™ TV
behaviours, mTou AVTIOTOLXOOV CTIC APNONUEVES KAATES TWV AVTIXEWUEVOC TREPWY YAWCTOV
TEOYPUUUATIONOY. Ol EMEXTACELS AUTEC 0B YNOAUY GTOV EVIOTUOUO ONUAVTIXWOY NV GE o1
UTBEYOVTA XA EVOENEYMC ENEYHUEVO XWOLXAL.

AéEeigc KA\eoud

Yot avéivon, Luunepacudc tinwy, Torol touie, Agnenuéves xh\doeic, ERLANG, DIALYZER

Abstract

Detection and correction of bugs consumes a significant amount of every developer’s time.
Any tool designed with the intention to make this task easier is useful to both minimize
the final bugs present in the code and to detect and correct them before release. This
thesis describes the extension of DIALYZER, a static analysis tool designed to find dis-
crepancies in ERLANG programs, with the introduction of intersection types that lead to
impovements in its accuracy and the addition of a new module capable of finding errors
in the use of behaviours, which correspond to abstract classes as they appear in object-
oriented languages. These extensions lead to the detection of important errors in already
thoroughly tested code.

Keywords

Static analysis, Type inference, Intersection types, Behaviours, Abstract classes, ERLANG,
DiALYZER

Contents

IMepidndm
Abstract
Contents

List of Tables
List of Listings
1 Introduction

2 Preliminaries

21 ErwaNGand OTP oo
2.2 Behaviourso
23 DIALYZER e
2.3.1 Analysisphases Lo
2.3.2 Refinement of success typings
233 Contracts
2.4 Intersection types L L Lo o

3 Finding discrepancies in behaviour usage

3.1 Usage of behaviours
3.1.1 Declaration of a behaviour
3.1.2 Better declaration of a behaviour

3.2 Finding discrepancies in callbacks

3.3 Use of behaviour information to find more race conditions

4 Intersection Types Generation

4.1 Original type system and analysis
4.1.1 Typesystemo
4.1.1.1 Function type

4.1.1.2 Type operations

4.1.2 Original success typing analysis
4.1.2.1 Constraints

4.1.2.2 Processingo

4.1.2.3 Storing

4.2 Intersection typeso
4.2.1 Changes in the type system
4.2.1.1 Structure

10

11

13

15

17
17
17
18
18
18
19
19

21
21
21
23
23
24

10 Contents

4.2.1.2 Semanticso 33

4.2.1.3 Operations e 33

4.2.2 Analysiso 35
4.2.2.1 Changes in constraint processing 35

4.2.2.2 Changes in constraint generation 35

4.2.2.3 Changes in refinement 36

5 Using Intersection Types 39
5.1 Testing with PropEr o L 39
5.1.1 Generating random function types 39
5.1.2 Properties of function typeso 39
5.1.3 Sideresults 40

5.2 Performance issues L 40
5.3 Intersection analysis results oL 41
5.3.1 Generic discrepancies 41
5.3.2 Behaviour related results o o oL 42
5.3.3 Bonusresults 42

6 Related and Further Work 45
6.1 Related work L 45
6.1.1 Diamondback Ruby (DRuby) 45
6.1.2 Dylan and JavaScript oL oo 45
6.1.3 Refinement using control flow analysis 46

6.2 Further work 46
6.2.1 Behaviours 46
6.2.1.1 Automatic bypass of API for race detection 46

6.2.2 Intersections 46
6.2.2.1 Negative types Lo 46

6.2.2.2 Tighter coupling between type and code 46

6.2.2.3 Better refinement Lo 47

Bibliography 49

List of Tables

3.1 Common OTP behaviours 22
3.2 Behaviour Discrepancies in OTP Applications 24
3.3 OTP’s gen_server translations 25
4.1 Categories of Erlang terms L Lo 28
4.2 Built-in Erlang typeso 29
5.1 New Discrepancies in OTP Applications 42

11

List of Listings

2.1
2.2
2.3
3.1
3.2
3.3
4.1
4.2
4.3
4.4
4.5
4.6
5.1
5.2
5.3
5.4

Refining a local function L Lo 19
Permitted and non-permitted specso oo 19
Trivial error that can be detected with the use of intersection types 20
Generic server’s declaration of callbacks 22
Callback attributes 23
A false warning 25
Original function supremum example 29
Constraint examples e 31
Clauses reduction examples L0000 34
Normal form example 36
Disjunction for function calls oo oL 37
Refinement of the success typing of reverse/2 38
A self recursive numeric identity function 41
A call that will surely fail 43
A redundant catch-all clause 43
A path that endsinacalltoexit 44

13

Chapter 1

Introduction

DIALYZER is one of the most widely-used tools in the development of ERLANG programs.
Its name stands for DIscrepancy anALYZer for ERlang and it does exactly that: in an
inherently dynamically typed language such as ERLANG, DIALYZER is able to detect many
type related discrepancies using static analysis. The initial version reported type errors
using success typings but subsequent extensions allowed for verification of user contracts,
detection of violations of the opaqueness of certain abstract data types and recently even
warnings about race conditions |2, 10, 11, 12].

Altough taking part in the development of such a tool is a pleasure in itself, this thesis
begun with a more concrete motivation: the extension of DIALYZER to detect discrepan-
cies in the use of ERLANG’s behaviours (more on these in Section 2.2), including simple
type-related checks and enabling the new race detection analysis to pass through them
undistracted. This goal was accomplished easily, as described in Chapter 3, but the cost
was that DIALYZER produced some false warnings that couldn’t be avoided using the ex-
isting type inference algorithm (see Section 3.2).

As this couldn’t be tolerated (one of DIALYZER’s cornerstones is that it is never wrong
about a warning it emits) the second part of this thesis came into focus. When one
designs a tool that promises to detect discrepancies in code soundly the main question
that needs to be addressed is not what to include but what to leave outside. One of the
greatest compromises made in DIALYZER’s initial design was that it would work with a
type system without intersection types for functions (see Section 2.3). This lead to its
inability to report glaring errors as the one presented in Section 2.4 and was the reason
behind the violation of soundness in behaviour analysis as well.

As in every happy story, this is no longer the case! Chapters 4 and 5 show how intersection
types can be generated and used. DIALYZER emerges stronger than before, able to catch
both abuses of behaviours and a whole new range of actual errors in code. What is more,
further improvements are now easily attainable and are presented in Section 6.2.

Organization

After some preliminary knowledge presented in Chapter 2, this thesis is organized in
two main parts. The first one (Chapter 3 describes the new handling of behaviours by
DiaLyZER. The second (Chapters 4 and 5) describes the design, implementation and
evaluation of intersection types in DIALYZER’s type system. Finally, Chapter 6 contains
related work in other languages and suggests further work on the topics of this thesis.

15

Chapter 2

Preliminaries

2.1 ERLANG and OTP

ERLANG is a strict, dynamically typed functional programming language with support
for concurrency, communication, distribution, fault-tolerance, on-the-fly code reloading,
automatic memory management and support for multiple platforms [1]. The number of
areas where ERLANG is actively used is increasing. However, its primary application area
is still in large-scale embedded control systems developed by the telecom industry.

The main implementation of the language, the ERLANG/OTP (Open Telecom Platform)
system from Ericsson, has been open source since 1998 and has been used quite successfully
both by Ericsson and by other companies around the world to develop software for large
commercial applications.

Nowadays, applications written in the language are significant both in number and in code
size making ERLANG one of the most industrially relevant declarative languages.

2.2 Behaviours

As expected from an industrially used framework, OTP provides components that make
the use of the language easier. Using these components developers are able to take ad-
vantage of the aforementioned language features. An excellent guide on how to develop a
fault-tolerant, distributed and concurrent application is available to help new developers
learn the language quickly [5].

One of the key elements of the framework are the behaviours. These correspond to the
abstract classes or interfaces found in object-oriented languages, like Java, as they divide
the functionality of a component into a generic part (the behaviour module) and a specific
part (the callback module).

OTP provides many behaviour modules. To implement a process such as a server for
example, the user only has to implement the callback module which should export a pre-
defined set of functions, the callback functions. It is also possible for a developer to design
his own behaviour, either by splitting the functionality of the program or by following a
known design pattern [3].

17

18 Chapter 2. Preliminaries

2.3 DIALYZER

DIALYZER is a static analysis tool included in the OTP since 2007. It can detect a wide
variety of discrepancies (i.e., type errors, software defects such as exception-raising code,
hidden failures, unsatisfiable conditions, redundancies such as unreachable code, race con-
ditions, etc.) in single modules or entire applications. Dialyzer is totally automatic,
extremely easy to use and particularly successful in identifying software defects which
may be hidden in Erlang code, especially in program paths which are not exercised by
testing.

In the heart of DIALYZER lies a soft typing system. Its purpose is essentially to capture
the biggest set of terms for which it can be proven that type clashes will occur. The
type signatures that DIALYZER infers, called success typings, are the complement of that
set of terms. Success typings are an over-approximation to the set of terms for which a
function can evaluate: the domain of the signature includes all possible values that the
function could accept as parameters, and its range includes all possible return values for
this domain. Success typings are guaranteed to capture all intended uses of a function,
along, perhaps, with some erroneous ones. Thus, any use of a function that is incompatible
with its success typing will definitely fail. In effect, success typings approach the type
inference problem from a direction opposite to that of type systems for statically typed
languages.

For the actual workings of DIALYZER more details can be found in the relevant bibliog-
raphy [6, 9, 10, 11, 16]. Only some key features will be presented concisely as they are
relevant with the modifications this thesis describes.

2.3.1 Analysis phases

DIALYZER operation can be split in two phases:

1. Find success typings: In this phase DIALYZER traverses the code of every function
included in the analysis and finds the success typing of each function. This requires
several iterations of simple constraint solving and dataflow analysis. In the end,
every function is assigned a final success typing.

2. Emit warnings: After the success typings have been fixed the code is traversed
one more time. In this run a warning is emitted whenever a discrepancy is detected.

2.3.2 Refinement of success typings

In the calculation of success typings, functions that are not exported undergo a further
refinement. The actual calls to these functions are used to calculate the effective domain.
This is possible, as all the calls are located in the module under analysis. Restricting the
domain may tighten the final success typing and possibly render some clauses unneeded.
In Listing 2.1 an example is provided. Even though foo’s initial type will be calculated
as number — number the final success typing will be 42 — 43 allowing a stricter return
type for test as well (initially number, finally 43).

2.4 Intersection types 19

-module (refine).
-export ([test/0]).

test() ->
foo (42).

foo(X) -> X + 1;
.

Listing 2.1: Refining a local function

2.3.3 Contracts

DIALYZER can take into account annotations placed by developers to further restrict the
success typings. These are called specs [9] and are used for both type checking (by
D1aLYZER) and documentation (by EDOC). The contracts may have more than one clauses,
as it can be seen in the examples in Listing 2.2. These clauses though should not overlap
(a certain call must belong in exactly one of them).

-
%% Permitted spec with one clause
-spec foo(number()) -> number ().

%% Permitted spec with two clauses
-spec foo(integer()) -> integer();
(float()) -> float().

%% Non-permitted spec. ’bar’ is an atom and overlaps with the 2nd clause
-spec foo(’bar’) -> ’ok’;

(atom()) -> ’error’.
L J

Listing 2.2: Permitted and non-permitted specs

2.4 Intersection types

Intersection types are types describing values that belong to both of two other given types.
For example, in most implementations of C the signed char has range -128 to 127 and the
unsigned char has range 0 to 255, so the intersection type of these two types would have
range 0 to 127. Such an intersection type could be safely passed into functions expecting
either signed or unsigned chars, because it is compatible with both types.

Most modern statically typed programming languages support overloaded functions. Such
functions execute different code depending on the type of the arguments they receive.
Intersection types are useful for describing the type of such functions: an example is a
function with type Int — Int|Float — Float. This function will return I'nt if called with
an Int argument and a Float if called with Float. Type checking is an essential part of
the semantic analysis of a statically typed language’s compiler.

However, ERLANG is a dynamically typed language, so type checking is not part of the
compilation. What is more, the relevant tool, DIALYZER, was designed without intersection
types. In Listing 2.3 we see a simple overloaded function, foo. DIALYZER using success

20 Chapter 2. Preliminaries

typings will find that the function succeeds for arguments a or b and the return may
be 1 or 2. Lacking intersection types, this will be expressed as a|lb — 1|2. This is an
overapproximation because foo will never return 2 if the argument is a¢ and vice-versa.
This will cause the error presented in the combination of foo with the other functions in

the example to pass undetected .

foo(a) -> 1;
foo(b) -> 2.

bar (1) -> ok.

buz (X) ->
bar (foo(X)).

test () ->
buz(b) .

Listing 2.3: Trivial error that can be detected with the use of intersection types

The goal of the second part of this thesis is the inference of intersection types and is

presented in Chapters 4 and 5.

In fact this will happen only if buz is exported. Otherwise the refinement described in Section 2.3 will

find that buz will be called with b only and will refine foo’s type with this info, catching the error.

Chapter 3

Finding discrepancies in
behaviour usage

As described in Section 2.2, behaviours are ERLANG’s equivalent of abstract classes, as they
appear in object-oriented languages like Java. When using abstract classes the developer
might make trivial mistakes such as forgetting to implement a particular abstract method
or implementing it incorrectly so that it “doesn’t fit” with those already provided. In
ERLANG the abstract methods are called callbacks. ERLANG’s compiler detects only the
lack of implementation of any callbacks but DIALYZER can be used to further aid the
developer by verifying whether his implementations have the expected success typings,
ensuring thus that they “fit well” with the already provided infrastructure. DIALYZER’s
recent feature, race analysis [2], can also be extended to detect races present in code that
uses behaviours. Each extension will be presented in a separate section.

3.1 Usage of behaviours

ERLANG developers use behaviours heavily as they readily provide some of the key features
of the language (concurrency, communication, distribution and fault-tolerance) and allow
the developer to focus on the particular aspects of his implementation, ignoring these
parameters. In Table 3.1 the most common behaviours in OTP are presented, along with
some of the callbacks they require.

Developers may also write their own behaviours, whenever a common infrastructure may
be used for many specific implementations.

3.1.1 Declaration of a behaviour

A module describing a behaviour exports a specific function: behaviour_info(callbacks).
This returns the expected callbacks in the form of a list of tuples containing the names of
the callback functions as atoms and their arity as integers. The example in Listing 3.1 is
taken from the gen_server behaviour.

21

22

Chapter 3. Finding discrepancies in behaviour usage

Module

|

Description

|

Callbacks

gen server.erl

Generic server behaviour. Contains a state
that is manipulated by calls (that require
a reply) and casts (that do not wait for a

init,
handle call,
handle cast,

reply). terminate
Finite state machine behaviour. A finite init, Statel,
number of states exist along with the State2, ...,
gen fsm.erl messages each state accepts, the replies StateN,
that are sent and the state change that terminate
may follow.
Generic event handler. Event handlers init,
gen event.erl register in a central event manager and handle event,
are notified for any event that arrives. terminate
ERLANG application. An application is a
application.er] collection of modules that implement some start,
specific functionality and can be started stop
and stopped as a whole.
A process which supervises other processes
called child processes. A child process can init

supervisor.erl

either be another supervisor or a worker
process.

Table 3.1: Common OTP behaviours

-export ([behaviour_info/1]).

behaviour_info(callbacks) ->

[{init,1}, {handle_call,3},
{terminate, 2}, {code_change, 3}].

{handle_cast,2},

%%% The user module should export:

hhh
hhh
hhh
hhh
hhh
hhh
hhh
hhh
hhh
hhh
hhh
hhh
hhh
hhh
hhh
hhh

hhh oo

init (Args)

==> {ok, State}
{ok, State, Timeout}
ignore

{stop, Reason}

handle_call(Msg, {From, Tagl}, State)

==>

{reply, Reply, State}

{reply, Reply, State, Timeout}
{noreply, State}

{noreply, State, Timeout}
{stop, Reason, Reply, State}

Reason =

normal | shutdown | Term

MORE COMMENTS FOR THE OTHER THREE CALLBACKS HERE

Listing 3.1: Generic server’s declaration of callbacks

3.2 Finding discrepancies in callbacks 23

3.1.2 Better declaration of a behaviour

Often, though not always, the behaviour module also contains some additional information
in the form of comments, as shown in Listing 3.1. The problem with comments is that
they are in free text form, often lacking some information as in the case above, and cannot
be trusted or mechanically processed.

Instead of the form described in the previous Listing, the behaviour_info(callbacks)
clause can be substituted with the attributes shown in Listing 3.2 which also specify the
types which are expected from these callbacks.

-callback init(Args :: term()) ->
{ok, State :: term()} |
{ok, State :: term(), timeout() | hibernatel} |
{stop, Reason :: term()} |
ignore.
-callback handle_call(Request :: term(), From :: {pid(), Tag :: term()},
State :: term()) ->
{reply, Reply :: term(), State :: term()} |
{reply, Reply :: term(), State :: term(), timeout() | hibernate} |
{noreply, State :: term()} |
{noreply, State :: term(), timeout() | hibernatel} |
{stop, Reason :: normal | shutdown | term(), Reply :: term(),
State :: term()} |
{stop, Reason :: term(), State :: term()}.
%%% MORE CALLBACK ATTRIBUTES %%%

Listing 3.2: Callback attributes

These attributes are identical with specs so DIALYZER can use these as a reference to
compare the inferred types of the callbacks. Incidentally, the above example shows various
interesting things:

1. Using the language of types and specs, one can provide information both for docu-
mentation purposes and for types as e.g. in From :: pid(), Tag :: term()

2. Comments are often incomplete or can easily become obsolete as e.g. the hibernate
value is nowhere mentioned.

3.2 Finding discrepancies in callbacks

DIALYZER’s extension to use these callback attributes was simple and straightforward.
After the success typings were calculated, they were compared against the attributes and
warnings were emitted when the latter were not subtypes of the former. In this way the
discrepancies shown in Table 3.2 were found !

'Only definite results are presented. Some more results need verification from the OTP team as the
documentation on which the callback attributes were based might be outdated.

24 Chapter 3. Finding discrepancies in behaviour usage

Application Description Behaviour Used | Discrepancies
inets Internet clients and servers SOL_SeTver 1
tftp 1
dist ac distributed application controller gen_ server 1
mnesia distributed DBMS gen server 2
ssh SSH application gen _server 2
error logger Stdlib’s error logger gen_server 1
Total discrepancies 8

Table 3.2: Behaviour Discrepancies in OTP Applications

All these discrepancies correspond to cases where a callback has a wider return type than
the one described in the relevant attribute. The most common warning was about the
return value of gen_server’s callbaks handle_cast and handle_info which sometimes
erroneously included {reply, ...}

Some special attention was given to the gen_server module, as its API returns de-
pended also on the success typings of the callbacks. Specifically for the API’s start
and start_link functions, “If callback init/1 fails with Reason, the function returns {er-
ror,Reason}. If callback init/1 returns {stop,Reason} or ignore, the process is terminated
and the function returns {error,Reason} or ignore, respectively.”. This was taken into ac-
count when calls to these functions were found, as otherwise false warnings were emitted
for the inets and other applications.

DIALYZER emitted some other false warnings as well. These warnings came from situations
where two or more callback functions used the result of a common underlying function as a
reply, or when one callback called directly another. The example presented in Listing 3.3,
from the mnesia application, falls into the latter category, as handle_info calls a specific
clause of handle_call. Using the existing algorithm for type inference this will result in
the inclusion of all of handle_call’s possible returns in handle_info’s return type. This
causes the warning shown in the end of the Listing to be emitted, as handle_call might
also return {reply, ..} in other clauses, even though this will never happen in the call from
handle_info (the returns of which are in lines 8, 11 and 23 and are all {noreply,..}).

This was the motivation for the second part of this thesis which deals with cases like
this, where a specific call’s return type is certainly narrower than the return type of the
function. See Chapters 4 and 5.

3.3 Use of behaviour information to find more race condi-
tions

D1ALYZER was recently extended with the ability to detect data races in Erlang pro-
grams [2]. This extension makes heavy use of the dataflow analysis as race conditions
appear when a value is obtained from two separate processes, modified and then written
back.

In cases where OTP’s behaviours are used, the flow of data is difficult to monitor because
the behaviours’ APIs use parameters obtained in runtime to make calls to functions in the

T = T, SO R R

R R R R R I R I I T ST iy U O S
L e e s T = T & R A — =R R = L BV =

3.8 Use of behaviour information to find more race conditions

25

-
handle_call({connect_nodes, Ns}, From, State) ->

case mnesia_monitor:negotiate_protocol(Check) of
busy ->
erlang:send_after (2, self(), {connect_nodes,Ns,From}),
{noreply, Statel};
a -
gen_server:reply(From, {[], AlreadyConnectedl}),
{noreply, Statel;
GoodNodes ->
mnesia_lib:add_list(recover_nodes, GoodNodes),
cast ({announce_all, GoodNodes}),
case get_master_nodes(schema) of
n -
Context = starting_partitioned_network,
mnesia_monitor:detect_inconcistency(GoodNodes, Context);
-> J% If master_nodes is set ignore old inconsistencies
ignore
end,
gen_server:reply(From, {GoodNodes, AlreadyConnectedl}),
{noreply,State}
end;

handle_info({connect_nodes, Ns, From}, State) ->
handle_call ({connect_nodes,Ns},From,State);
A% Produces the warning:
mnesia_recover.erl:850: The inferred return type of the handle_info/2

callback includes the type {’reply’,’ok’ | {’0k’,_},_} which is not a
valid return for the gen_server behaviour

Listing 3.3: A false warning

callback modules. Therefore any values provided as arguments to behaviour API calls may
end up in the callback module and cause a race condition that is impossible to detect as the
call from the API to the callback is dependent on runtime parameters. A special “bypass”
mechanism was added in the race detection that translates calls to the behaviour API of
OTP’s behaviours into the respective call to a callback function, as they are described in
the documentation. Examples of such translations for the gen_server module are given

in Table 3.3.
Call to APT’s ... is translated to a call to callback’s
start _link, start init
call, multi_call handle call
cast, abcast handle cast

Table 3.3: OTP’s gen_server translations

This extension caught a specific bug that escaped the existing race condition analysis. It

is currently being tested with other additions to the race analysis.

Chapter 4

Intersection Types Generation

As described in Section 2.3, DIALYZER has two distinct phases in its analysis: during the
first it calculates the success typings of all the functions and during the second it finds the
discrepancies in their use. In this chapter the calculation of intersectioned success typings
will be presented, leaving their usage in discrepancy detection for Chapter 5.

4.1 Original type system and analysis

Before describing the design and implementation of the intersection types as well as the
analysis needed to produce and use them, a brief overview of the existing ERLANG’s type
system will be given, focusing on the type of functions and the analysis performed by
DIALYZER to generate them. Further details, especially for the analysis, are available in
the Master thesis of Elli Fragkaki [6].

4.1.1 Type system

ERLANG’s type system includes types for all the basic term sets. These types form a
lattice, with the type any() being the top type and none() the bottom. Table 4.1 briefly
describes these sets and Table 4.2 contain the most commonly used ERLANG types. More
information on these can be found in the language manual and relevant publications and
bibliography [4, 9, 15].

4.1.1.1 Function type

Some special attention should be given to the form of the function type. As shown in
Table 4.2, a function’s type consists of two parts:

1. The first part describes the type of the function’s arguments. This can be either a
product of specific length, with one type for each of the function’s arguments, or the
type any() if we have no information about the number of arguments.

2. The second part describes the return type of the function. This can be a regular
type or the special type unit() for functions that are not supposed to return'.

'This is the case for example in a function that implements a server’s main loop

27

28 Chapter 4. Intersection Types Generation

’ Category \ Description ‘ Examples ‘
Integer A mathematical integer -31,0, 17, 42
Float A floating point number —0.123, 3.14
Atom A named constant hello, ‘World’
Binary An untyped series of bytes «255,0,98», «42»
Bitstring An untyped series of bits «99,3:2», «1:1,0:1», «4»
Pid A handle for referring to an Erlang process -
Port A handle for referring to an external program -

Reference | A term unique within a runtime environment -
fun(X) — X + 1 end,

Fun A callable function object .
fun lists:reverse/1
Tuple A compound term with {0,alabama,3.14},
a fixed number of elements {answer,42}
List A compound term with a variable number of [1,2,3], [42,answer]|,
elements (not necessarily of the same type) | [for,whom,the,bell tolls]

Table 4.1: Categories of Erlang terms

4.1.1.2 Type operations

Working with types requires special operators. The most important of them will be pre-
sented here (as these were the ones which were mainly affected by the introduction of
intersection types), along with the particular usage of them on function types.

Supremum: The supremum of two types is the smallest type that contains them both.
ERLANG supports union types as shown in Table 4.2 as well as special unions for
common types (like atoms, integers and tuples). DIALYZER may overapproximate a
union type in cases where detail exceeds a certain level to keep the success typings
analysis terminating and efficient. Such is the case with large sets of atoms for
example: the type of the single-character atoms corresponding to the lowercase
letters of the English alphabet is atom() andnota | b | ... | =z

The original calculation of two function types’ supremum is the main reason for
our inability to detect errors such as the one presented in Section 2.4. As the
type system has one field for the success typings of the arguments and one for
the function’s return, supremum simply creates the union of the arguments and the
result and stores them in the respective fields. This produces wider success typings
than desired (in the example shown in Listing 4.1 a function that takes an atom()
and returns a number() is included in the type, even though none of the original
members includes it). If the functions have different arity the domain type collapses
into any().

Infimum: The infimum of two types is the biggest type that is contained in both.
In function types of the same arity this means that the infimum will have the infimum

type for each argument and the infimum of the return types.

Equality: As there are no aliases in the representation of types, two types are equal if and
only if they are syntactically equal. This applies even to the internal representation

4.1 Original type system and analysis

29

’ Term Group

Related Types

Represented Terms

<Int> only a specific integer, <Int> (singleton type)
<Lo>..<Hi> integers between <Lo> and <Hi>
Integers integer|() all integers
non neg integer() | non-negative integers
pos_ integer() positive integers
neg_integer() negative integers
Floats float () all floats
<Atom> only a specific atom, <Atom> (singleton type)
Atoms
atom() all atoms
binary/() all binaries
Binaries «» only the empty binary (singleton type)
«_:<Base>» binaries of length <Base> (in bytes)
bitstring() all bitstrings
Bitstrings ‘ >‘<<<>> . 01'r11y t.he empty bitstring (sipgletpn type)
« 1 *<Unit>» bitstrings of length kx < Unit> (in bits)
« :, : *<U>» | bitstrings of length x <U> (in bits)
Pids pid() all pids
Ports port() all ports
References reference() all references
fun() all functions
Funs fun((...) — Type) functions of any arity returning Type
fun(() — Type) zero-arity functions returning Type
N-arity functions accepting arguments of types
fan((Th,... Tv) = R) Tl,...,%N and returning Rg i '
tuple() all tuples
Tuples {} only the zero-size tuple (singleton type)
{Typey,....,Typen } tuples of N elements, of types T'ypes,...,Typen
(] only the empty list (singleton type)
Lists [Type] lists with elements of type Type
[Type,...| non-empty lists with elements of type Type
any () all Erlang terms
— none|() no terms (special type)
T Ty | ... | Tn the union of all terms represented by T3, 75,
..., OT jyv
Table 4.2: Built-in Erlang types
Supremum:
Type A : fun((atom()) -> atom())
Type B : fun((number()) -> number())
Result : fun((atom() | number()) -> atom() | number())

Listing 4.1: Original function supremum example

30 Chapter 4. Intersection Types Generation

which keeps every particular set (like atom() or integer()), as well as mixed unions,
ordered.

Functions types are no exception and should also be syntactically equal to be equal.

Is Subtype: This operation is broken down to the calculation of the infimum of the two
types and the check for its equality with the subtype candidate.

There are also special operations for function types:

Function domain: Returns a list of types, one for each of the function’s arguments.

Function range: Returns the range of the function.

4.1.2 Original success typing analysis

DIALYZER begins the analysis by finding the calls between functions and creating the
respective callgraph. From this callgraph a partial ordering of the functions is obtained
and all functions’ success typings are calculated beginning from those which have no calls
and building on top of them.

The success typings analysis assigns a type variable to each of the code’s original vari-
ables and stores a mapping from each variable to a type. Functions get two variables, one
primary and a second one to be used in self-calls and calls within strongly connected compo-
nents (SCCs)?. After that, the code is traversed to generate constraints and subsequently
these are processed to obtain the final type for each function.

A Dbrief presentation of the main types of constraints and the processing algorithm will
be included here to show what needs to be changed. Further details are provided in the
relevant bibliograhy [6, 11].

4.1.2.1 Constraints
The constraints belong to one of the following kinds:

Simple constraints: The simplest form of constraint states that a certain type should
be equal to another or subtype of another. This is a natural requirement for function
arguments for example, which must be subtypes of the corresponding success typing,
calculated earlier in the analysis.

Conjunctive lists: The constraints generated from subsequent statements are stored in
conjunctive lists as all must be satisfied at the same time. In simple functions the
final constraint might be a conjunctive constraint list with simple constraints as
elements.

Disjunctive lists: When branches of any kind are present in the code, each side of the
branch generates a conjunctive list and all these lists are combined under a disjunc-
tion. After processing each of the conjunctions, the types for the disjunction are
calculated by getting the supremum of the types for each variable on each branch.

2These correspond to functions that call each other forming a circle of calls

4.1 Original type system and analysis

Constraint references: Funs without name generate these. These are special and not
affected by the intersection types extension so they are simply mentioned for com-

pleteness.

P
%%Sample code

bar (1) -> 5;
bar (2) -> 10.

foo(a) -> b;

foo(X) ->
Y = bar(X),
Y*X.

%% Supposing we have alredy found the
%% bar(1 | 2) -> 5 | 10
%% The constraints for foo/l1 are:

Conjunctive List 1:

* var (1) eq fun(var(2)) -> var(3)

success typing:

All the comnstraints for foo
Tying foo type to it’s args and ret

* Disjunctive List 2: <- Due to the two clauses
* * Conjunctive List 3: <- Constraints for the first clause
* * * var(2) eq a
* *x *x var(3) eq b
* * Conjunctive List 4: <- Constraints for the second clause
* * * var(2) sub 1]2 <- X (var(2)) is used as argument of bar
* % x var(4) sub 5[10 <- A hidden variable (var(4)) for the result
* * x var(5) eq var(4) <- Assign the result to Y (var(5))
L

Listing 4.2: Constraint examples

In Listing 4.2 an example is given. The constraints of the function foo are collected in a
main conjunctive constraint list. In this list there exist some notable constraints:

1. Generic function constraint: This constraint has the form of the first element
in the conjunctive list 1 of Listing 4.2. Its purpose is to bind the function’s type
variable to the ones of the arguments and the result. In the example var(1) is the
type variable of a function with one argument (with type variable var(2)) whose
return type is var(3). This constraint is the actual constructor of the function’s

type.

2. Constraints from clauses: If the function has clauses, the list contains a disjunc-
tive list of the constraints generated in each of them (an example is the disjunctive
list 2 in Listing 4.2). If the function has only one clause the constraints of it are
added in the main conjunctive list as is.

3. Refined function constraint: This constraint comes from the dataflow analysis
and restricts the whole type of unexported functions according to the actual calls
that are present within the module. This constraint is omitted when the function
is exported or dataflow has not yet been performed (the example has no such con-
straint).

32 Chapter 4. Intersection Types Generation

The previous constraints are present in the form described above in every main conjunctive
list. Some other forms of constraints that are present in almost every function are these:

1. Branches: Branches such as case statements generate disjunctive lists, just like
clauses do.

2. Function calls: These produce a conjunctive list, requiring both the result’s and
the actual parameters’ type variables to be subtypes of the respective success types.

3. Self and SCC calls: These are treated specially: Initially these calls are supposed
to fail. On subsequent iterations the types calculated in the previous step are used
to extend the types of the argument and the result. In this way we begin to extract
the type from clauses that are sure to return and build on top of them to find wider
success typings. The overapproximations mentioned in Section 4.1.1.2 (Supremum
operator) make this procedure efficient, as after a certain limit the types collapse
into generic ones.

4.1.2.2 Processing

Processing is a fixpoint procedure when it comes to anything but simple constraints. The
latter simply restrain any variables they contain according to the operation they contain
(equality or subtype) and store the result in the mapping. Lists and refs store the old
mappings and compare the new ones against them to find a fixpoint as each element
may affect others. Self-recursive functions and SCCs also require special treatment as the
previously calculated types are fed back in to be further processed in the self or scc-related
calls.

4.1.2.3 Storing
After the success typings for all the functions in a module have been calculated, they are
stored in a Persistent Lookup Table (PLT) in order to be used by calls from other modules.

The PLT may be stored in a file and imported in subsequent analyses to serve as a trusted
starting point to analyze other modules that have calls to already analyzed ones.

4.2 Intersection types

In order to generate and use intersection types changes were required in the type repre-
sentation, operators and DIALYZER’s analysis.

4.2.1 Changes in the type system
4.2.1.1 Structure
We need the ability to store multiple domains with the respective ranges. Therefore we

will substitute the original two fields in the function type with a list of tuples of arity
2. Each tuple will contain a domain and a range and will be referred as a type clause.

4.2 Intersection types 33

DIALYZER took advantage of the simple old form and stored the type of the function in the
PLT using a tuple containing the two old parts. This had to be changed and a combined
function type to be stored instead.

4.2.1.2 Semantics

For simplicity the order of the clauses will have no special meaning. This is the main
difference with the ordinary ERLANG’s function clauses, where pattern matching is used
to select one and execute it while the others that follow are ignored. The consequence is
that for every operation described all the clauses have to be taken into account.

This also changes the semantics of the final type. The syntax is similar to that of specs,
but while in specs overlapping is not permitted (see Section 2.3), here it is allowed and
the return type of each specific call is calculated by taking the supremum of the return
types of every clause whose domain overlaps ? with the inferred types of the arguments
in the call.

4.2.1.3 Operations

The operations described in Section 4.1.1.2 are modified as follows, with regard to function
types:

Supremum: If the functions have different arities we maintain the old behaviour, collaps-
ing the domains to any and the range to the supremum of ranges. If the functions
have the same arity, we simply add their clauses together to form the supremum.
This produces an exact supremum. No issue arises in cases of duplicate domains as
all the clauses are taken into account for further calculations (in fact clauses with
equal domains are combined into one, as described later in this section).

Infimum: As each function might have more than one clauses, infimum is performed per
clause. This means that each clause is compared against all the clauses of the other
function and those who have infima that do not have none as an argument or return
are kept in the result.

Reduction of clauses: The calculation of supremum and infimum is almost certain to
produce types that are verbose. This makes the clauses list big, requirng both
memory to store it and time to perform further calculations. An extra step was
therefore introduced to reduce the number of clauses. Three separate methods of
reduction are used:

1. Combine domains: Clauses with the same domain should combine their
ranges with supremum. An example of this technique is given in Example
1 in Listing 4.3.

2. Combine ranges: Clauses with the same range may also be combined if this
does not overapproximate the domains. This happens when the domains differ
in exactly one position and the supremum of the types that differ contains

3This means that the infimum of every argument’s type in the call and the respective type in the clause is
not none

34 Chapter 4. Intersection Types Generation

only the original types (we don’t have overapproximations). This computation
requires a fixpoint termination condition as further reduction may be possible
in a successive pass. Examples 2 and 3 in Listing 4.3 illustrate this technique.

3. Remove subclauses: If both the domain and the range of a clause are sub-
types of another clause’s respective domain and range we can remove the clause,
as anything using it will also use the superclause. This causes intersections to
lose power in cases where catch-all clauses with return type any are present in
the code, as these will cause all the rest to be absorbed in them. A solution to
this issue is proposed in Section 6.2.2.1.

Example 1: Same domains in supremum
Type A : fun((a) -> b)

Type B : fun((a) -> c)

Result : fun((a) -> b; (a) -> ¢)
Reduced: fun((a) -> b | c)

Type A : fun((a) -> ¢)

Type B : fun((b) -> c)

Result : fun((a) -> c; (b) -> ¢)
Reduced: fun((a | b) -> ¢)

Example 3: Same ranges, 2 passes

Initial : fun((a,c) -> e; (a,d) -> e; (b,c) -> e; (b,d) -> e)
1st pass : fun((a,cld) -> e; (b,cld) -> e)

2nd pass : fun((alb,cld) -> e)

Listing 4.3: Clauses reduction examples

Sorting of clauses: The clauses are sorted according to the default ordering of ERLANG’s
terms both before and after the reductions are performed to control both the order
of the reductions and the final result. This destroys any relation between the original
clauses in the code and the resulting success typings but it’s important as it nor-
malizes the type and maintains the desired property of “equality requires syntactic
equality”.

Equality and subtyping: Equality maintains its simple, syntax based check. The rea-
sons behind this will become clearer after the presentation of the changes in the
inference algorithm. Clause sorting is essential to maintain this property. Subtyp-
ing is also calculated as described in Section 4.1.1.2.

Function range: As described in Section 4.2.1.2, when asking for a function’s range we
may provide information about the argument types and retrieve a narrower type.

Other special type functions had to be modified as well to be compatible with the new
representation. What is important to mention is that in any case where the inner types
might be modified reduction had to be performed as well to ensure the syntactic equality.

4.2 Intersection types 35

4.2.2 Analysis

The initial steps of the analysis are not changed. Functions are sorted as described in
Section 4.1.2 and the success typings are calculated per SCC. Changes are introduced in
both the generation of constraints and their processing to produce success typings. As the
most important change is implemented in the processing we will reverse the order of the
presentation.

4.2.2.1 Changes in constraint processing

As we already described in Section 4.1.2.1, each function has all the constraints organized
in a conjunctive list. This list contains disjunctive lists whenever a branch is present in
the code. Moreover each of these has conjunctive lists with local maps which are checked
for fixpoint and remain unaffected from the other sides of the branch. Therefore, the
simplest and most natural way to maintain the relation between the various type variables
(including those belonging to the arguments and the result) in each branch is within the
local maps themselves.

Although the values of the type variables are being kept separate in that way, the type
of the function itself is constructed in the main conjunctive list taking into account the
supremum of all the values, as this is the correct way to handle the types in a disjunctive
list. We need to “push” the constraint that binds the type variables of the arguments and
the result with the type variable of the function into each local map. Taking the disjunctive
normal form of the original constraint list accomplishes this goal in a natural way and
separates all the interleavings where nested disjunctive lists are present (for example a case
statement in a branch of a multi-clause function). An example is provided in Listing 4.4.
In this way we generate the correct partial type in every branch and combine them all in
the end using supremum which maintains the separation. The disjunctive normal form
is already used in the generation of constraints from guards to gain precision. Another
benefit we gain is that whenever a function is too complicated, the calculation of the
disjunctive normal form can detect it and return the original constraint list which when
further processed will return the old-fashioned collapsed type.

4.2.2.2 Changes in constraint generation

To gain the benefits of the disjunctive normal form when function calls are present we need
to generate a disjunctive list as a constraint when processing them. The way this should
be done is obvious: for every clause in the function type a separate conjunctive list is to
be generated, binding the argument and result type variables to the respective success
types in the clause. These conjunctive lists are then placed in a disjunctive list and the
constraint is ready to be handled by the normalization (see Listing 4.5 for an example).

This is simple in cases where the success typing of the called function is calculated and
fixed, as the generation of the disjunctive constraint can take place immediately. The hard
case is the self-recursive functions along with those that belong in SCCs. For these we
introduced a new dynamic constraint which is to be substituted before the calculation of
the disjunctive normal form by the disjunctive list derived by the latest success type of
the respective function.

36 Chapter 4. Intersection Types Generation

%%hSample code

bar (1) -> 5;
bar(2) -> 10.

foo(a) -> b;

foo(X) ->
Y = bar(X),
Y*xX.

%% Supposing we have alredy found the success typing:
%% bar(1 | 2) -> 5 | 10
%% The constraints for foo/1 are:

Conjunctive List 1:

* var (1) eq fun(var(2)) -> var(3)
* Disjunctive List 2:

* x Conjunctive List 3:

* var(2) eq a

* var(3) eq b

Conjunctive List 4:

* var(2) sub 12

* var (4) sub 510

* var (3) eq var(4)

* X ¥ X ¥ ¥
* X X X ¥ ¥

%% Disjunctive normal form of the list:

Disjunctive List 1:
* Conjunctive List 2:
* * var(1l) eq fun(var(2)) -> var(3)
* x var(2) eq a
* x var(3) eq b
* Conjunctive List 3:
* x var(1l) eq fun(var(2)) -> var(3)
* * var(2) sub 1]2
* x var(4) sub 5|10
* x var(3) eq var(4)

Listing 4.4: Normal form example

The usage of intersections simplified the generation of constraints from contracts as well,
as a similar disjunctive list can be used for them as well.

4.2.2.3 Changes in refinement

The use of intersectioned types allowed for a small improvement in the refinement of
success typings as well. The previous approach was monovariant in the sense that all the
calls to the unexported functions were found and the types of the actual arguments were
combined in a union that restricted the success typing. This restriction was taken into
account in a new calculation of the success typing by solving the default constraints with
the addition of the refinement constraint.

Allowing for intersection types, we can keep each call separate and expect better results
from the refinement. This is closer to a polyvariant control flow analysis. The argument

4.2 Intersection types 37

-
%%Sample code

bar (1) -> 5;
bar(2) -> 10.

foo(a) -> by

foo(X) ->
Y = bar(X),
Y*xX.

%% Supposing we have alredy found the success typing:
%% bar (1) -> 5; (2) -> 10
%% The new constraints for foo/l1 are:

Conjunctive List 1:

* var (1) eq fun(var(2)) -> var(3)
Disjunctive List 2:

* Conjunctive List 3:

* var(2) eq a

* var(3) eq b
Conjunctive List 4:

* Disjunctive List 5:
* Conjunctive List 6:
* var(2) sub 1
* var(4) sub 5
Conjunctive List 7:
* var(2) sub 2

* x var(4) sub 10
var (3) eq var(4)

* X ¥ *x

*
*
* ok
* ok
* ok
* ok
* ok
* ok
* ok
* ok
* ok
* ok
* ok

*
*
*
*
*
*
*

Listing 4.5: Disjunction for function calls

types from each call generate a conjunctive list and all these lists are placed under a
disjunctive list where they can be handled by the normal form transformation in the usual
way.

As an example take the simple reversal of lists, presented in Listing 4.6. The one-argument
function is exported while the other is kept local and can therefore be refined. The initial
success typing is very generic because the first clause doesn’t restrict the second argument.
Using the union of the types from the two calls we learn that the second argument is a
list, so the result must be a list as well but no distinction is made. Only by separating the
calls and solving each case separately can we obtain the maximum information from this
code.

38 Chapter 4. Intersection Types Generation

reverse(List) ->
reverse(List, []).

reverse([1, Acc) -> Acc;
reverse ([H| T], Acc) -> reverse(T, [H| Accl).

%% Initial success typing for reverse/2 is:
-spec reverse([_], _) -> any().

%% Using (_,[_]) as a refinement for the arguments yields:
-spec reverse([_], [_1) -> [_].

-spec reverse([_]) -> [_].

%% Using separate (_,[]) and (_,[_,...]) as a refinement
%% for the arguments yields:
-spec reverse([_,...1,[_])y > [_,...]1;
([S ose 1) > [_,...1;
g , []) -> [1.
-spec reverse([_,...]1) -> [_,...1;
g) > [].

Listing 4.6: Refinement of the success typing of reverse/2

Chapter 5

Using Intersection Types

5.1 Testing with PropEr

Testing the implementation of intersection types proved to be an excellent opportunity to
show the shine of another tool developed in SoftLab: PropEr [15]. Types are inherently
an abstract data type with its own operators and properties that should be satisfied by
them. A brief overview of the testing using PropEr will be given in this section.

5.1.1 Generating random function types

Property-based testing requires a generator for random input for the tests. Using PropEr
we were able to create a generator for intersectioned function types with ease taking into
consideration parameters as:

e Covering all the simple types for both arguments and result
e Testing operators for both same arity and differing arity functions
e Helping PropEr’s reduction with simple primitive types (like 'a’ for atoms)

e Pretty printing of failing tests using PropEr’'s TWHENFAIL directive

Using PropEr was a very creative and fun experience as ideas could be tested quickly
against the properties required.

5.1.2 Properties of function types

As the actual implementation was a result of experimentation, trivial properties as well
as stronger ones were tested. Some of them:

1. Simple function types combine correctly into an intersection
2. The supremum/infimum of F with F is equal to F

3. Subtracting F from F yields none

39

40 Chapter 5. Using Intersection Types

4. F is subtype of F
5. If Inf is the infimum of F1 and F2 then Inf is a subtype of both of them
6. If Sup is the supremum of F1 and F2 then F1 and F2 are subtypes of Sup

7. If Sup is the supremum of F1 and F2, Infl is the infimum of Sup and F1, Inf2 is the
infimum of Sup and F2 then Infl is equal to F1 and Inf2 is equal to F2

8. The supremum /infimum of F1 and F2 is equal to the supremum /infimum of F2 and
F1

9. If Inf is the infimum of F1 and F2 then the infimum of F1 and Inf is equal to Inf

10. If F1 is subtype of F2 and F2 is subtype of F1 then they are equal

5.1.3 Side results

Using these properties and some early implementations with no syntactic equality (as
presented in Section 4.1.1.2) we found a two minor omission in the type system of Erlang,
in an operator that returned all the simple types contained in a composite type:

1. Lists did not break down in simpler types as the empty list and the nonempty list
with the same contents.

2. The number() type did not break down to integer() and float() types.

Fixing the first omission led to the detection of many loose contracts in OTP (where
nonempty list was sure to be returned whereas the contract included the empty list as a
possible return).

5.2 Performance issues

Sparsely in the previous secrions we mentioned the need for limits in the geneneration
of intersections. These limits were imposed when the analysis was under risk to become
needlessly time consuming. The recent parallelization of Dialyzer [17] enables a more
efficient utilization of the modern multicore machines and should push these limits further.

Number of clauses: In the calculation of the disjunctive normal form, in cases where
too many clauses or deep nesting of branches is present it is possible for the normal
form to have too many branches. A limit was put to the number of them to maintain
both efficiency and usability, as a very long success typing would alse be impractical
to present to the user. This limit requires that the disjunctive normal form has no
more than 100 clauses.

Size of SCCs: The analysis of SCCs requires a separate fixpoint and the substitution
of the dynamic constraints mentioned in Section 4.2.2.2 each time using the latest
type. This becomes impractical when the SCC is particularly big so another limit
was placed in the size of it. This limit requires that any SCC has no more than 30
members.

5.3 Intersection analysis results 41

Iterations in SCCs and self-recursive: Before intersection types DIALYZER’s overap-
proximations guaranteed that fixpoint would be reached in a reasonable amount of
iterations. This is no longer the case. Consider the example in Listing 5.1. The
iterative process will infer that the function returns 0 for input 0, 1 for input 1 and
so forth, without any reason to stop or any mean to find a fixpoint (previously after
a few iterations both success types would collapse into integer()). A limit of 10 tries
for SCCs and 30 for self-recursive functions is applied here.

id(0) -> 0;
id(N) -> 1 + id(0)

Listing 5.1: A self recursive numeric identity function

In all these cases we simply skip the tranformation to the normal form after a fixed
number of iterations. This causes the success typing to collapse as the combination of
the arguments’ and the return types happens in the end (as described in Sections 4.1.2
and 4.2.2.1).

5.3 Intersection analysis results

The actual usage of the success typings for discrepancy detection happens in a final
dataflow pass on the code under inspection. We won’t go into detail here on the vari-
ous warnings that may be emitted as these are covered in detail in the relevant publica-
tions [6, 11, 10].

The only change we implemented is the substitution of the generic lookup for the return
type of function calls with a lookup that takes into consideration the types of the argu-
ments. In this way we can easily detect discrepancies like the one in the initial example
(Section 2.4).

5.3.1 Generic discrepancies

Using the extended DIALYZER the results presented in Table 5.1 were found. They are
divided in the following categories:

Failing calls: These are calls that are certain to fail. This is usually the result of a
particular combination of arguments. This category includes calls that are supposed
to fail but no spec is provided so that dialyzer knows not to worry (See Listing 5.2).

Unneeded cases: These are case statements that have an unneeded error-catching or
catch-all clause (See Listing 5.3.

Exit calls: Calls that result in an erlang:exit. These come from error-handling functions
that do not always fail. When such calls are present, user should specify that the
function may not return (See Listing 5.4).

Nonmatching clauses: These are nonmatching clauses that are not catch-alls.

42 Chapter 5. Using Intersection Types

Deriving warnings: In some cases a root failure may cause several more warnings to be
emitted. These are listed with this category. An example is functions that won’t
be called due to an error earlier in the flow of control. Fixing the root cause will
eliminate these warnings as well.

Application Description \ Category Discrepancies
asnl Abstract Syntax Notation 1 tools Exit call 1
auth Network Authentication Server Deriving warnings 9
edoc Documentation generator Failing call 1

. Failing calls 2
erts Erlang Run-Time System Derivinggwarnings 17
file File Interface Module Deriving warnings 25
hipe High Performance compiler Unneeded case 1
Failing calls 2
inets Internet clients and servers Exit call 1
Nonmatching clause 1
. o Exit calls 7
mnesia distributed DBMS Ummeodod case 1
ssh SSH application Unneeded case 1
Failing calls 2
ssl Interface for Secure Socket Layer Unneeded case 1
Deriving warnings 1

raphical examination of
v gElPS and Mnesia tables Unneeded case L
Total original errors 22

Table 5.1: New Discrepancies in OTP Applications

5.3.2 Behaviour related results

The introduction of intersection types removed all the false positives from the previously
collected results on behaviour usage. The reason for this is precisely the one described in
Section 3.2: intersection types were assigned to the functions that handled all the requests
and the analysis was able to discern whether a particular call could end in each result
instead of assuming all results were possible. None of the other warnings were affected.

5.3.3 Bonus results

In Section 5.1.3 we mentioned how the correction of a small omission produced warnings
about overspecified functions. Another such small error regarded the relation between the
none and unit types. The infimum of the two was considered to be unit. The correction
of this error unearthed a heap of “Function X has no local return”.

5.3 Intersection analysis results 43

httpd_request_handler.erl:439: The call
httpd_response:send_status (ModData: :#mod{data::[], method::[any()],
request_line::nonempty_maybe_improper_list(),
parsed_header::[any()], connection::boolean()},501, [1..255,...])
will never return since it differs in the 2nd and/or 3rd argument from
the success typing arguments: (#mod{socket_type::’ip_comm’ |
{’essl’,_} | {’0ss1’,_} | {’ss1l’,_3}},100 | 304 | 400 | 408 | 413 |
416 | 500 | 503,any()) or (#mod{socket_type::’ip_comm’ | {’essl’,_} |
{’0ss1’,_} | {’ss1’,_3},301 | 403 | 404 | 414,[any()]) or
(#mod{socket_type::’ip_comm’ | {’essl’,_} | {’0ssl’>,_} |
{’ss1’,_}},400 | 401 | 412,’none’) or (#mod{socket_type::’ip_comm’
{%essl’,_} | {%0ss1’,_} | {’ss1’,_3}},501,{atom() |
[any ()], [any O], lanyO1})

%% A rather esoteric warning about the 501 Not Implemented HTTP status message
x J

Listing 5.2: A call that will surely fail

con_desc(E) ->
case cerl:type(E) of
cons -> {?cons_id, 2};
tuple -> {?tuple_id, cerl:tuple_arity(E)};
binary -> {?binary_id, cerl:binary_segments(E)};
literal ->
case cerl:concrete(E) of
[_1_] -> {?cons_id, 2};
T when is_tuple(T) -> {?tuple_id, tuple_size(T)};
V -> {?literal_id(V), 0}
end;
->
throw ({bad_constructor, E})

end.
%% Produces the warning

cerl_pmatch.erl:338: The variable can never match since previous clauses

completely covered the type ’binary’ | ’cons’ | ’literal’ | ’tuple’
L J

Listing 5.3: A redundant catch-all clause

44 Chapter 5. Using Intersection Types

T I
2 | check_if_valid_tag(<<>>, _, OptOrMand) ->

3 check_if_valid_tag2(false,[],[],0ptOrMand);
1

5

6 | check_if_valid_tag2(_Class_TagNo, [], Tag, MandOrOpt) ->
7 check_if_valid_tag2_error (Tag,MandOrOpt);

11 | check_if_valid_tag2_error(Tag,mandatory) ->

12 exit ({error,{asnl,{invalid_tag,Tagl}}});
13 | check_if_valid_tag2_error(Tag,_) ->
14 exit ({error,{asnl,{no_optional_tag,Tag}}}).

16 | 44 Produces the warning

18 | asnlrt_ber_bin.erl:3: The call

19 | asnlrt_ber_bin:check_if_valid_tag2(’false’,[],[],0ptOrMand::any()) will never
20 | return since it differs in the 2nd argument from the success typing arguments:
21 | (’false’ | {’APPLICATION’,_} | {’CONTEXT’,_} | {’PRIVATE’,_} |

22 | {’UNIVERSAL’,_},nonempty_maybe_improper_list(),[] | {_,_,_},any())

Listing 5.4: A path that ends in a call to ezit

Chapter 6

Related and Further Work

6.1 Related work

There is almost no other known cases where tools need to make checks like the ones
implemented for ERLANG’s behaviours, either in their generic usage or in the detection of
races through them. Object-oriented languages that use the equivalent abstract classes,
virtual methods and interfaces have static typing (C++, Java, OCaml, ...) which ensures
the fitting of implementations in every case.

On the subject of intersection types in a dynamically typed programming language, only
DRuby is a known analog and is presented below. Other related work has been centered
around Dylan and JavaScript and is briefly mentioned as well.

Finally, the changes in the refinement procedure are related to a formal approach to control
flow analysis, also described below

6.1.1 Diamondback Ruby (DRuby)

Diamondback Ruby (DRuby)[7] is a recent tool that blends Ruby’s dynamic type system
with a static typing discipline. It uses a similar approach as DIALYZER generating con-
straints for the variables then applying a set of rewrite rules exhaustively. Intersection
types are included from the beginning in it’s type system, but it cannot infer them auto-
matically. As a result they need to be annotated by the developer placing them on the
same level as DIALYZER’s contracts (specs).

6.1.2 Dylan and JavaScript

Dylan is a dynamically typed object-centered programming language inspired by Com-
mon Lisp and ALGOL. In a recent publication Mehnert proposed an extension providing
function types and parametric polymorphism to the language[13]. The function types
specialize from the previous generic ones but do not include intersections. Powerful para-
metric polymorphism is provided though.

JavaScript is the main scripting language for Web browsers, and it is essential to modern
Web applications. Applying type analysis to JavaScript is a subtle business because, like

45

46 Chapter 6. Related and Further Work

most other scripting languages, JavaScript has a weak, dynamic typing discipline which
resolves many representation mismatches by silent type conversions. In their publication|8]
Jensen, Mgller and Thiemann develop such a type analyzer which like DIALYZER is fully
automatic but is designed for soundness with regard to the absense of certain errors.

DIALYZER’s success typings approach is mentioned in both these attempts to provide static
typing and discrepancy detection to dynamically typed languages.

6.1.3 Refinement using control flow analysis

In their publication, Palsberg and Pavlopoulou [14] propose an approach to control flow
analysis that goes one step further than the changes proposed in this thesis (Section
4.2.2.3). Instead of using the types of the arguments as they are presented in the various
calls, a computation is performed to obtain “covers” from them and use these covers instead
in the polyvariant refinement. For this idea to be applicable we need to figure out if the
actual calls can be reduced to some elementary sets such that each call is exactly covered
by some of them.

6.2 Further work

6.2.1 Behaviours
6.2.1.1 Automatic bypass of API for race detection

The “bypass” mechanism was designed to be extensible, allowing other behaviour API’s
to be connected with the respective callbacks. Anyone with a better understanding of
the other behaviours may document the rest OTP’s behaviours easily by adding code in
dialyzer behaviours module. It would be even better if this connection was tranferred in
each behaviour’s file, as a new attribute or as an extension on the callback attribute that
was introduced in this thesis.

6.2.2 Intersections
6.2.2.1 Negative types

The next logical extension to the type system would be negative types. Examples would
be “any term except the integer 42” or “any atom except o”. With this infrastructure,
when DIALYZER generates disjunctive lists it will be able to eliminate the types already
covered in previous clauses in the following ones. Thus a “catch-all” will not have type any
but “anything but X, Y and Z” where X, Y and Z will be the types already covered by
previous clauses.

6.2.2.2 Tighter coupling between type and code

Using normal form and sorting on the function’s type has an impact on the relation between
the type of the function and the actual code that generated it. Even though it was easy

6.2 Further work 47

to find the cause of all the warnings emitted when intersection types were used, it might
be better to narrow down a warning to a particular clause instead of the generic pointer
to the first line of the function.

6.2.2.3 Better refinement

In the current form, if a lot of calls are present in the code the refinement analysis might
fail due to the added effect of the disjunctive refinement constraint. The ideas presented in
Palsberg and Pavlopoulou [14] might reduce the elements of the constraint in such cases,
maintaining strictness.

Bibliography

[1] Joe Armstrong, Robert Virding, Claes Wikstrom, and Mike Williams. Concurrent
Programming in Erlang. Prentice Hall Europe, second edition, 1996.

[2] Maria Christakis and Konstantinos Sagonas. Static Detection of Race Conditions in
Erlang. In Manuel Carro and Ricardo Pena, editors, Practical Aspects of Declarative
Languages (PADL’2010), volume 5937 of Lecture Notes in Computer Science, pages
119-133. Springer, January 2010.

[3] Ulf Ekstrom. Design Patterns for Simulations in Erlang/OTP. Master’s thesis, Com-
puting Science, Dept. of Information Technology, Uppsala University Sweden, 2000.

[4] Ericson AB. Erlang Reference Manual User’s Guide, December 2010. Version 5.8.1,
http://www.erlang.org/doc/design_principles/users_guide.html.

[5] Ericson AB. OTP Design Principles User’s Guide, December 2010. Version 5.8.1,
http://www.erlang.org/doc/reference_manual/users_guide.html.

[6] Elli Fragkaki. Explanation of Success Typing Violations in Erlang Programs. Un-
dergraduate thesis, Department of Electrical and Computer Engineering, National
Technical University of Athens, 2010.

[7] Michael Furr, Jong-hoon (David) An, Jeffrey S. Foster, and Michael Hicks. Static
type inference for Ruby. In Proceedings of the 2009 ACM symposium on Applied
Computing, SAC 09, pages 1859-1866, New York, NY, USA, 2009. ACM.

[8] Simon Jensen, Anders Mgller, and Peter Thiemann. Type analysis for JavaScript.
In Jens Palsberg and Zhendong Su, editors, Static Analysis, volume 5673 of Lecture
Notes in Computer Science, pages 238-255. Springer Berlin / Heidelberg, 20009.

[9] Miguel Jimenez, Tobias Lindahl, and Konstantinos Sagonas. A Language for Specify-
ing Type Contracts in Erlang and its Interaction with Success Typings. In Proceedings
of the 2007 SIGPLAN Workshop on Erlang, pages 11-17. ACM, 2007.

[10] Tobias Lindahl and Konstantinos Sagonas. Detecting Software Defects in Telecom
Applications Through Lightweight Static Analysis: A War Story. In Wei-Ngan Chin,
editor, Programming Languages and Systems, volume 3302 of Lecture Notes in Com-
puter Science, pages 91-106. Springer Berlin / Heidelberg, 2004.

[11] Tobias Lindahl and Konstantinos Sagonas. Practical type inference based on success
typings. In Proceedings of the 8th ACM SIGPLAN Symposium on Principles and
Practice of Declarative Programming, pages 167-178, New York, NY, USA, 2006.
ACM Press.

49

http://www.erlang.org/doc/design_principles/users_guide.html
http://www.erlang.org/doc/reference_manual/users_guide.html

50

Bibliography

[12]

[13]

[14]

[15]

[16]

[17]

Manouk-Vartan Manoukian. Detection of Opaque Violations in Erlang Using Static
Analysis. Diploma thesis, Department of Electrical and Computer Engineering, Na-
tional Technical University of Athens, 20009.

Hannes Mehnert. Extending Dylan’s type system for better type inference and error
detection. In Proceedings of the 2010 international conference on Lisp, ILC '10, pages
1-10, New York, NY, USA, 2010. ACM.

Jens Palsberg and Christina Pavlopoulou. From polyvariant flow information to in-
tersection and union types. In Proceedings of the 25th ACM SIGPLAN-SIGACT
symposium on Principles of programming languages, POPL ’98, pages 197-208, New
York, NY, USA, 1998. ACM.

Emmanouil Papadakis. Automatic Random Testing of Function Properties from Spec-
ifications. Undergraduate thesis, Department of Electrical and Computer Engineering,
National Technical University of Athens, 2010.

Konstantinos Sagonas and Daniel Luna. Gradual Typing of Erlang Programs: A
Wrangler Experience. In Proceedings of the 7th ACM SIGPLAN Workshop on Erlang,
pages 73-82, New York, NY, USA, September 2008. ACM Press.

Ypatia Tsavliri. Parallelizing Dialyzer: a Static Analyzer that Detects Bugs in Erlang
Programs. Undergraduate thesis, Department of Electrical and Computer Engineer-
ing, National Technical University of Athens, 2010.

	Περίληψη
	Abstract
	Contents
	List of Tables
	List of Listings
	1 Introduction
	2 Preliminaries
	2.1 Erlang and OTP
	2.2 Behaviours
	2.3 Dialyzer
	2.3.1 Analysis phases
	2.3.2 Refinement of success typings
	2.3.3 Contracts

	2.4 Intersection types

	3 Finding discrepancies in behaviour usage
	3.1 Usage of behaviours
	3.1.1 Declaration of a behaviour
	3.1.2 Better declaration of a behaviour

	3.2 Finding discrepancies in callbacks
	3.3 Use of behaviour information to find more race conditions

	4 Intersection Types Generation
	4.1 Original type system and analysis
	4.1.1 Type system
	4.1.1.1 Function type
	4.1.1.2 Type operations

	4.1.2 Original success typing analysis
	4.1.2.1 Constraints
	4.1.2.2 Processing
	4.1.2.3 Storing

	4.2 Intersection types
	4.2.1 Changes in the type system
	4.2.1.1 Structure
	4.2.1.2 Semantics
	4.2.1.3 Operations

	4.2.2 Analysis
	4.2.2.1 Changes in constraint processing
	4.2.2.2 Changes in constraint generation
	4.2.2.3 Changes in refinement

	5 Using Intersection Types
	5.1 Testing with PropEr
	5.1.1 Generating random function types
	5.1.2 Properties of function types
	5.1.3 Side results

	5.2 Performance issues
	5.3 Intersection analysis results
	5.3.1 Generic discrepancies
	5.3.2 Behaviour related results
	5.3.3 Bonus results

	6 Related and Further Work
	6.1 Related work
	6.1.1 Diamondback Ruby (DRuby)
	6.1.2 Dylan and JavaScript
	6.1.3 Refinement using control flow analysis

	6.2 Further work
	6.2.1 Behaviours
	6.2.1.1 Automatic bypass of API for race detection

	6.2.2 Intersections
	6.2.2.1 Negative types
	6.2.2.2 Tighter coupling between type and code
	6.2.2.3 Better refinement

	Bibliography

