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Περίληψη

Ο σκοπός της διπλωματικής αυτής εργασίας είναι η μελέτη αλγορίθμων για μια ενδιαφέρουσα παρ-

αλλαγή προβλημάτων συνδυαστικής βελτιστοποίησης στην οποία δε γνωρίζουμε με ακρίβεια τα

δεδομένα εισόδου, αλλά γνωρίζουμε μόνο μία πιθανοτική κατανομή πάνω σε αυτά. Τέτοια προβλή-

ματα εμπίπτουν στο ευρύτερο πεδίο της Στοχαστικής Βελτιστοποίησης. Σκοπός της Στοχαστικής

Βελτιστοποίησης είναι η μοντελοποίηση της αβεβαιότητας στα δεδομένα εισόδου ενός προβλήματος.

Η λήψη αποφάσεων σε συνθήκες αβεβαιότητας για τις μελλοντικές απαιτήσεις προκύπτει συχνά σε

πολλές περιοχές, όπως σε προβλήματα σχεδιασμού δικτύων οποιασδήποτε φύσης, στα οποία δεν

είναι ρεαλιστικό να θεωρήσουμε ότι γνωρίζουμε εξαρχής το ακριβές σύνολο των απαιτήσεων μας.

Σε τέτοιες περιπτώσεις λοιπόν, οι απαιτήσεις δε μας είναι γνωστές με ακρίβεια, αλλά μέσω μοντέλων

προσομοίωσης, ερευνών και μοντέλων προβλέψεων, μπορούμε να αποκτήσουμε στατιστικά δεδομένα

για αυτές. Επίσης, αν και μπορούμε να πάρουμε πιο αποτελεσματικές αποφάσεις όταν λάβουμε τις

ακριβείς πληροφορίες, το κόστος των αποφάσεων αυτών θα είναι τότε πιο ακριβό. Αυτό αντανακλά

την απόλυτα λογική αύξηση του κόστους για αποφάσεις που πρέπει να παρθούν και να υλοποιηθούν

πολύ άμεσα, σε αντίθεση με τις αποφάσεις που μπορούμε να λάβουμε εκ των προτέρων και οι οποίες

υλοποιούνται σε μεγαλύτερο βάθος χρόνου.

Η πληροφορία σε τέτοια προβλήματα μας δίνεται σταδιακά, σε διακριτές στιγμές στο χρόνο

που τις ονομάζουμε στάδια (stages). Θα ασχοληθούμε αρχικά με προβλήματα 2 σταδίων (2-
stage), τα οποία αποτελούν την αφετηρία για οποιονδήποτε θέλει να ασχοληθεί με το πεδίο αυτό,

και στη συνέχεια με προβλήματα πολλών σταδίων (multistage), και θα ορίσουμε τα προβλήματα

βελτιστοποίησης μας σε σχέση με τη μέση τιμή του κόστους που προκύπτει σε όλα τα στάδια.

Πιο συγκεκριμένα, ο στόχος μας είναι να κάνουμε την καλύτερη δυνατή επιλογή στο πρώτο στάδιο

ώστε η μέση τιμή του κόστους που θα προκύψει σε όλα τα στάδια να είναι η ελάχιστη δυνατή.

΄Ενα πολύ σημαντικό σημείο σε τέτοια προβλήματα είναι το πως μας δίνονται οι πιθανοτικές πληρο-

φορίες. Θα επικεντρωθούμε στο λεγόμενο black-box μοντέλο, το οποίο μας δίνει τη δυνατότητα να

μοντελοποιήσουμε αυθαίρετες κατανομές με κάθε είδους συσχετισμούς.

Την τελευταία δεκαετία έχει γίνει αρκετή δουλειά στην περιοχή αυτή και θα παρουσιάσουμε ένα

μέρος αυτής. Η δειγματοληψία (sampling) θα παίξει κεντρικό ρόλο καθώς είναι συνυφασμένη με

το black-box μοντέλο. Θα χρησιμοποιήσουμε πολλές και διαφορετικές τεχνικές από πεδία όπως η

θεωρία πιθανότητας και η γραμμική και κυρτή βελτιστοποίηση ώστε να προσεγγίσουμε τα προβλή-

ματα αυτά. Προσπαθήσαμε να κρατήσουμε τις μεθόδους που παρουσιάζουμε όσο πιο γενικές γίνεται,

με σύντομες αναφορές στις εφαρμογές τους, κυρίως σε προβλήματα κάλυψης (Set Cover, Vertex
Cover) και προβλήματα χωροθέτησης υπηρεσιών (Facility Location Problems). Ελπίζουμε ότι το

υλικό που θα παρουσιάσουμε θα επιτρέψει στον αναγνώστη να αποκτήσει μια καλή εικόνα για τα

συνδυαστικά προβλήματα στοχαστικής βελτιστοποίησης και να κατανοήσει τις εγγενείς δυσκολίες

που παρουσιάζουν και που πηγάζουν από το πιθανοτικό κομμάτι της εισόδου.





Abstract

The purpose of this thesis is the study of algorithms for an interesting class of variants of combi-
natorial optimization problems in which we do not know the exact input, but only probabilistic
information about it. Such problems fall under the broad field of Stochastic Optimization.
Stochastic Optimization attempts to model uncertainty in the input data. The concept of hav-
ing to make decisions under uncertainty about future requirements rises naturally in many areas,
including transportation models, logistics, financial instruments and network design, where it
is unrealistic to consider that the exact input is known in advance. In such scenarios, the de-
mand pattern is not known precisely at the outset, but one might be able to obtain, through
simulation models, surveys or market predictions, statistical information about the demands.
Also, while more effective decisions can be made when the actual requirements are given, the
decision-making costs are inflated until then. This reflects the increased cost of rapid-response,
as it is reasonable to assume that decisions that need to be implemented in short time are much
costlier than decisions that are implemented during longer periods of time.

Information in such problems is usually revealed in discrete moments in time, which we
call stages. We will focus on both 2-stage problems, which are the starting point for anyone
interested in the field, and multistage problems, and define our optimization problems in terms
of the expected cost incurred in all stages, i.e. our goal is to make the best possible choice in
the first-stage so that the expected cost incurred in all stages is as low as possible. A crucial
point in such problems is how the probabilistic information is revealed. We will focus on the
so-called black-box model, which allows us to model arbitrary distributions with any kinds of
correlations.

Much work has been done the last decade in the field and we will present a part of it.
Sampling will play central part as it goes hand-in-hand with the black-box model. Techniques
from various fields such as probability theory and linear and convex optimization theory will
be utilized in order to make these generally hard problems more tractable. We have tried to
keep the methods presented as generic as possible, with a brief discussion of their applications,
mostly on covering problems (Set Cover, Vertex Cover) and Facility Location Problems. We
hope that the presentation material will allow the reader to gain an insight of stochastic com-
binatorial optimization problems and the inherent difficulties that stem from the probabilistic
part of the input.

Keywords

stochastic combinatorial optimization, sampling, black-box model, boosted sampling framework,
sample average approximation, Steiner Tree, Facility Location, Set Cover, Vertex Cover
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Chapter 1

Introduction

1.1 What is Stochastic Optimization

The study of stochastic optimization dates back to the 1950’s and the work of Dantzig [10]
and Beale [3], and attempts to model uncertainty in the input data. Uncertainty is a facet of
many decision environments and rises naturally in many areas, including transportation models,
logistics, financial instruments and network design. In such situations, we have to make decisions
in order to satisfy some demands. There are various reasons that cause uncertainty in these
demands, such as unpredictable information revealed in the future, or inherent fluctuations
caused by noise. In such cases, the demand pattern is not known precisely at the outset, but
one might be able to obtain, through simulation models, surveys, market predictions or data-
mining techniques, a better understanding and quantification of the nature of future uncertainty
with statistical information about the demands. And, while more effective decisions can be made
when the actual requirements are given, the decision-making costs are inflated until then. This
reflects the increased cost of rapid-response and is the main reason that turns our attention to
such problems and makes us try to find ways to make the best possible decisions in advance,
and not wait until the exact demands are revealed. Thus, we can say that there is a trade-off
between committing initially, having only imprecise information while incurring a lower cost,
and deferring decisions to the future when we will have more precise information about the
input but the costs will be higher. Stochastic optimization provides a means to handle such
uncertainty by modeling it as a probability distribution over the input data.

We will turn our attention to stochastic variants of combinatorial optimization problems.
We hope to convince the reader that such problems are worth studying, not only for the sake
of theoretical interest, but for that we come across them in many realistic scenarios.

1.2 An example: the 2-stage Stochastic Uncapacitated Facility
Location Problem

We will now briefly present a common example of a stochastic problem. Think of a setting
where a company has to decide where to set up facilities to serve client demands. Typically
the demand pattern is not known precisely at the outset, but one might be able to obtain, as
already mentioned, statistical information about the demands. This motivates the following 2-
step decision process: in the first stage, given only distributional information about the demands
(and deterministic data for the facility opening costs), one must decide which facilities to open
initially; once the client demands are realized according to this distribution, we can extend
the solution by opening more facilities, incurring a recourse cost, and we have to assign the
realized demands to open facilities. This is the 2-stage Stochastic Uncapacitated Facility Location

1
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Problem. The recourse costs are usually higher than the original ones (because opening a facility
later would involve deploying resources with a small lead time); these costs could be different
for the different facilities, and could even depend on the realized scenario (i.e. set of demands).

We now proceed to introduce and explain some crucial concepts of stochastic optimization,
that will help us define and model our problem formally.

1.3 Modeling our problem

Before continuing, we should make again clear that we are going to focus on combinatorial
problems, and thus the solutions we are seeking belong to a finite set that describes all the
feasible solutions to our problem. This also means that with the term stochastic optimization,
we will almost always imply stochastic combinatorial optimization.

An important concept in stochastic optimization is that of a scenario. A scenario is any
possible requirement set that can be given as input, and the actual input is the one scenario
realized. Thus, the probabilistic information that we have mentioned is actually a probability
distribution over the set of scenarios. We assume that the set of scenarios is finite.

Another important concept is that of a stage. A stage can be thought of as a discrete
moment in time (for example, a single day) in which we obtain some new information about
the input. The idea is that there are k such different stages until the exact input is revealed.
This is the k-stage stochastic optimization problem. When the number of stages is 2, the
problem is called 2-stage stochastic. We refer to problems with 3 or more stages as multistage
stochastic. We have to point out that in each stage, the costs are different, and usually higher
compared to the previous stage, so that it will make sense to take a decision in stage i and not
postpone it until the next one. The factor by which the elements at each stage are costlier than
the elements in the previous stage is called the inflation factor.

The decisions made in each stage are called recourse actions. So, we actually name our
problems k-stage stochastic optimization problems with recourse.

We will now explain what our goal is. As it has already been clear, we consider minimization
or maximization problems. And, as we do not know the actual input from the beginning, the
best we can do is try to minimize, or maximize, the expected total cost incurred. In the
following, we will mostly consider minimization problems, but the exact same techniques apply
in maximization problems, too.

To make the picture more clear, we will introduce a simple model of an abstract combina-
torial minimization problem Π. The optimization problem Π is defined by U , the universe of
clients (or demands), the set X of elements we can purchase, and the cost function c : X → R.
For a subset F ⊆ X of elements, we extend the cost function c so that c(F ) =

∑
e∈F ce, which

is the cost of F . Given a set S of clients, a solution F that satisfies each client j ∈ S is labeled
feasible for S. The definition of satisfaction is obviously dependent on the problem.

Given a set S ⊆ U of clients, we let Sols(S) ⊆ 2X be the set of feasible solutions for S.
So, with client set S ⊆ U , the deterministic version Det(Π) of Π asks us to find a solution
F ∈ Sols(S) of minimum cost. We denote by OPT (S) the cost of this minimum cost solution.

We will now discuss the stochastic variant Stoc(Π) of the problem Π, where the set of
clients is not known in advance, but is revealed gradually. We proceed to build the solution
in stages; in each stage, we gain a more precise estimate of the requirements of clients, and
then can buy or extend a partial solution (at gradually increasing cost) in response to this
updated information. Ultimately, we learn the entire set S of clients, and then must complete
the existing partial solution to a feasible solution F ∈ Sols(S).

In this k-stage problem, we use σA1...i
i (e) to denote the inflation factor of element e in stage

i when the “partial” scenario A1...i has been revealed, i.e., how much more expensive each
element is in comparison to stage i − 1, which is a function σA1...i

i : X → R+. In many cases
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the function σA1...i
i is considered constant, so that each element is inflated by the same factor

in any scenario. In the more general case, the inflation factor is different for each element
and also scenario-dependent, which means that it depends on the outcomes of the previous
stages. We also assume that costs are non-decreasing, which corresponds to σA1...i

i (e) ≥ 1. For

completeness, we define σA1
1 (e) = 1.

To formalize the way in which information is revealed in each stage, we can think of the
client set S as a random variable S with a probability distribution π, and the information
obtained in each stage as random variables si correlated with S. After stage i, we know that
future information, as well as the set S of demands, will come from the conditional distribution
[π | s1 = s1, s2 = s2, ..., si = si], where s1, s2, ..., si are the realizations of the random variables
s1, s2, ..., si (note that s1 is a “dummy” signal and we just use it for convenience). So, when
information in stage i has been revealed, we can purchase some more elements Fi ⊆ X at cost∑

e∈Fi(
∏i
j=1 σ

A1...j

j (e)) · ce. Finally, in the kth stage, we observe the realization of the random

variable S = S, and have to buy the final set Fk so that
⋃k
i=1 Fi ∈ Sols(S). We should note here

that throughout this thesis, we assume that the uncertainty is not affected by the decisions taken
in previous stages, i.e. the signals si+1, ..., sk are conditionally independent of our decisions
F1, ..., Fi. There are problems which bear such a property of dependence (for example, some
stochastic scheduling problems) but they are out of the scope of this thesis.

So, what we actually have to do now is minimize the expected cost incurred in all stages
together, that is, ∑

e∈F1

ce + E
[ k∑
i=2

∑
e∈Fi

(
i∏

j=1

σ
A1...j

j (e)) · ce
]

The randomness here is embedded in the sets Fi of each stage i ≥ 2. Each partial solution
set Fi = Fi(s1, s2, ..., si) may depend on the random variables s1, s2, ...si, but not on any random
variable sj , j > i.

We have to point out here that minimizing (or maximizing) the expected value of the objec-
tive function is not always desirable, in cases when our decisions produce considerable variations
in the actual total costs. In such cases, we may want to take the variance of the random variable
into consideration. Such approach is out of the scope of this thesis, and from now on we will
care only for the expected value.

The reader should pay attention to the fact that, if we know the whole distribution, the above
problem becomes a fully deterministic one. However, we will see that it is not really useful
to consider problems where the distribution is completely known, as it usually has exponential
size. And this is the one thing that is left now to be explained; what we know of the distribution
π. Three different models are commonly used to describe the probabilistic part of our problem:

1. Explicit Scenarios: In this model we are explicitly given the whole description of the
distribution, that is, all the possible realizations of signals in each stage together with
their corresponding probabilities. In the special case of 2-stage problems, where it is
mostly used, the description is a finite set of scenarios a1, a2, ..., ak which can occur, each
with probability p1, p2, ..., pk.

2. Independent Decisions: In this model, each client j has a probability πj of arrival indepen-
dent of other clients. Again, it is mostly used in 2-stage problems (although it can also be
applied to multistage problems), where the probability π(S) of the set S materializing is
given by

∏
j∈S πj ·

∏
j /∈S(1−πj). It can be viewed as a special case of the black-box model

presented below. Its main problem is that many of the underlying stochastic applications
often involve correlated data (e.g., in stochastic facility location the client demands are
expected to be correlated due to economic and/or geographic factors), which this model
clearly fails to capture.
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3. Black-Box Model : This is the most commonly used model, in which we draw samples
from a black-box (efficiently), without needing to know the distribution π explicitly. More
specifically, in each stage we can sample signals of the following stages in order to get a
picture of how the distribution is approximately. It is the most general model, as it can
succinctly describe arbitrary distributions with exponential size support. Note that the
running time of an algorithm in the black-box model depends on the number of samples
drawn, as each call to the black-box is considered an elementary operation.

We are going to use solely the black-box model, which is the most general and widely
used one. However, some references to the polynomial-scenario model (that is, the “explicit
scenarios” with a polynomial number of scenarios) will be made, as some results concerning
that model will be utilized in order to reach approximation algorithms for 2-stage problems in
the black-box model. More details of this will be presented in chapter 5.

1.4 What can be found in this thesis - Organization of material

In this thesis, we have tried to cover a part of the research done in Stochastic Combinatorial
Optimization the last decade. We have focused on the black-box model, as it is the most powerful
one and it seems that it can model most problems encountered in practical applications.

The text is divided in two parts, the first dealing with 2-stage problems, while the second
dealing with multistage problems. Although our goal was to make these two parts readable
independently, it is strongly suggested that the unfamiliar reader begins with the first part, as
2-stage problems introduce most concepts of stochastic optimization in a much easier and clear
way. As regards the chapters of each part, these can definitely be studied out of order, although
we believe that the chosen order is the most adequate to build up in the ideas and techniques
presented.

Our purpose was to make this thesis as self-contained as possible, so that a reader who is
unfamiliar with the field can get a good grasp of it after reading it. Of course, since we deal
with approximation algorithms for variants of combinatorial problems that involve probabilistic
input, some basic familiarity with approximation algorithms, randomized algorithms and classic
combinatorial optimization techniques, such as LP formulations, relaxations and roundings,
is assumed. We will also need some notions and techniques from linear algebra and convex
optimization. For this, we have included two short appendices, which, although should in no
case be considered complete, we suggest the reader to go through them. In any case, we hope
that the references given will make amends for any vague parts of the text.



Part I

2-stage Stochastic Optimization
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Chapter 2

The 2-stage Stochastic Optimization
Problem

In the following chapters we will focus on algorithms for solving 2-stage stochastic variants of
combinatorial (minimization) problems. The 2-stage stochastic model with recourse is the most
widely used model in stochastic optimization and has been extensively studied the last decade.
We will restate the problem in its most famous paraphrase:

“On Monday, we only know the input distribution on the clients, and we can buy
some resources. On Tuesday, the client set is completely specified, but things are
more expensive. What we have to do now is buy any additional resources needed to
get a feasible solution to the instance.”

More formally, in the first stage we are given a probability distribution over possible scenarios
and we construct an anticipatory part of the solution, x, incurring a cost c(x). Then, in the
second stage, a scenario A materializes according to the distribution, and we may augment the
initial decisions x by taking recourse actions yA, if necessary, incurring a certain cost fA(x, yA),
such that x ∪ yA is a feasible solution for scenario A. Our goal is to choose the initial decisions
so as to minimize the expected total cost,

c(x) + EA[fA(x, yA)],

where the expectation is taken over all scenarios according to the given probability distribution.
Observe that in order to minimize the above expected total cost, when a particular scenario A

realizes and given a first-stage action x, we actually have to solve the deterministic minimization
problem

min
y∈R
{fA(x, y) | (x, y) is a feasible solution for scenario A},

where R is the set of recourse actions.
As already mentioned, one of the main issues that arise in such problems is how the scenario

distribution is represented. The simplest approach is to assume that we are given, as part
of the input, a list that explicitly enumerates each scenario and its probability of occurrence.
However, this causes a significant blow-up in the input size, as in most cases the distribution
has support of size exponential in the other input parameters, as it will be observed in the
problems we will discuss. Thus, to ensure that a polynomial time algorithm in this model has
running time polynomial in all input parameters, one must restrict oneself to distributions with
a polynomial-size support, which is a severe restriction.

One solution is to use the independent-decisions model (also known as independent-activation
model), where the scenario distribution is a product of independent distributions that are de-

6
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scribed explicitly in the input. This model allows one to succinctly specify a class of distribu-
tions with exponentially many scenarios. However, it fails to capture situations where data are
correlated, as already mentioned.

Thus, from now on we are going to use the black-box model, which is a more general way of
describing the distribution. In the black-box model one can use a procedure to sample scenarios
from the distribution. Each call to this procedure is treated as an elementary operation and the
running time of an algorithm is measured in terms of the number of such calls. The black-box
model incorporates the desirable aspects of both the previous models: it allows one to specify
distributions with exponentially many scenarios and correlation in a compact way that makes
it reasonable to talk about polynomial time algorithms. Note that the realization of a scenario
in the second stage is probabilistically equivalent to drawing an independent sample from the
black-box. This observation will prove useful.

We believe that the reader has reached the point where he can guess that stochastic opti-
mization problems are generally hard. In most cases, the computational difficulty stems from
the fact that the number of scenarios is exponential, a phenomenon often call the “curse of
dimensionality”. This, combined with the fact that the problems we are going to discuss are
NP-hard even in their deterministic counterparts, makes it clear that we are going to focus on
approximation and not exact algorithms.

More specifically, since the black-box model does not allow us to know the whole input, it
is obvious that any algorithm discussed will be randomized, in the sense that there can be no
deterministic algorithm when access to the input is only partial through sampling. So, ideally,
a “good” algorithm for a 2-stage stochastic problem must suggest a way to determine the first-
stage decisions with the least possible calls to the black-box so as to keep the expected total cost,
that is the cost of the first-stage and the expected cost of the second stage, as low as possible.
Once a particular scenario is realized, it should find an augmenting solution of minimum cost.
Note that the second-stage solutions need not be precomputed, and this actually is impossible
when we use the black-box model. The guarantee provided is in any case probabilistic, so we
should keep in mind that we are looking for algorithms that work well with high probability.



Chapter 3

The Boosted Sampling Framework

3.1 Introduction

We are going to start our overview of algorithms for 2-stage problems by presenting a general
technique, the Boosted Sampling framework, to adapt approximation algorithms for several
deterministic combinatorial problems to their 2-stage stochastic versions. This framework was
introduced by Gupta, Pál, Ravi and Sinha in [17], and it was the first work that dealt with
2-stage problems in the black-box model. Until then, research had been done only for the
“explicit scenarios” and “independent decisions” models. It provides a simple method that can
give algorithms with good performance guarantees (on expectation) for problems that satisfy
some restrictions. In its initial version, three restrictions are imposed: (a) the problems must
satisfy sub-additivity, (b) the inflation factor is constant, and (c) the deterministic analog has
an α-approximation algorithm A that admits a β-strict cost-sharing function. We will explain
all these in detail.

An extension of the framework for dealing with multistage stochastic optimization problems,
which will be presented in chapter 8, as well as for handling inflation factors arbitrarily correlated
with scenarios, was given one year later by Gupta etc. [18]. It is an open question whether
the framework can be extended to handle multiple inflation factors, that is, different inflation
factors for different elements in each scenario.

In this chapter, we will begin by analyzing the initial, simpler version of the framework
where all three restrictions are imposed, and then we will show how we can make some changes
in order to handle cases where the inflation factor is not constant. We will also see how this
framework can be applied to give the first constant-factor approximation algorithms for 2-stage
Stochastic Set Cover, Vertex Cover and Facility Location Problems in the black-box model.

3.2 Model

We are going to use the definition of an abstract deterministic combinatorial optimization
problem Π, as given in section 1.3. The 2-stage stochastic variant is now defined as follows:

• There will be two stages of purchasing. Let σ ≥ 1 be a given inflation parameter; every
element x ∈ X costs cx in the first stage and σcx in the second.

• In the first stage, we are given access to a black-box from which we can draw samples from
the probability distribution π : 2U → [0, 1] in time poly(|U |). We can then construct a
first-stage solution by buying a set of elements F0 at cost c(F0).

• In the second stage, one set S ⊆ U of clients is realized according to the distribution π
(the probability that S is realized is π(S)). We remind the reader of the assumption that

8
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this set S is conditionally independent of our actions in the first stage. Now, the second-
stage solution (or, the recourse solution) consists of a set FS purchased at the inflated
cost σc(FS), so that F0 ∪ FS ∈ Sols(S).

Our objective is to select a set F0 and then, given a set S from the distribution π, to select
the set FS so as to minimize the expected cost of the solution, that is:

min: c(F0) +
∑
S⊆U

π(S)σc(FS)

We are now going to explain the restrictions we mentioned above that we impose on our
problems (more precisely, on the deterministic versions of our problems).

3.2.1 Sub-additivity

Definition 3.1. Let Π be a combinatorial optimization problem, as already defined. The
problem Π is sub-additive, if for any sets S and S′ of clients with solutions F ∈ Sols(S) and
F ′ ∈ Sols(S′), (i) the set S ∪ S′ is a legal set of clients for Π, and (ii) F ∪ F ′ ∈ Sols(S ∪ S′).

For example, the Steiner Tree Problem in its general form is not sub-additive, as the set
F ∪ F ′ may be a forest and not a tree. To ensure sub-additivity, we require a root vertex r.
So, given a set S, we can view it as trying to solve the classic Steiner Tree Problem for the set
S ∪ {r}. This is the Rooted Steiner Tree Problem.

Sub-additivity expresses in a way the economies of scale. It simply means that the cost of
constructing a solution for S ∪ S′ is less than or equal to the cost of constructing solutions for
S and S′ independently, as the two independent solutions are also solutions for S ∪ S′.

3.2.2 Cost-sharing functions

Definition 3.2. Let χ : 2U × U → R≥0 be a function that, for every demand set S ⊆ U of our
problem Π, assigns a non-negative real value χ(S, e) to each client e ∈ S. The function is then
called a cost-sharing method. For convenience, we also define χ(S, e) = 0, ∀e /∈ S.

Loosely, a cost-sharing function is one that divides the cost of a solution F ∈ Sols(S) among
the client set S. Cost-sharing functions have long been used in the context of game-theory. We
will use a variant of the above definition and define our cost-sharing functions relative to an
approximation algorithm A for the problem Π.

Definition 3.3. A cost-sharing algorithm A for a problem Π takes an instance (X,S) of Π
and outputs

1. a solution F ⊆ X with F ∈ Sols(S), and

2. a real value ξ(X,S, j) ≥ 0 for each client j ∈ S (and ξ(X,S, j) = 0 for j /∈ S).

The value ξ(X,S, j) is called the cost-share of client j, and the function ξ(·, ·, ·) computed by
A is the cost-sharing function associated with A.

A useful property of cost-sharing functions is to provide a lower bound on the cost of the
optimal solution, so that we can use the cost-sharing function to provide bounds on the cost of
our solution.

Definition 3.4 (Competitiveness). A cost-sharing function ξ is competitive if for every client
set S, it holds that ∑

j∈S
ξ(X,S, j) ≤ OPT (X,S)
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Note 3.1. From now on, the notation OPT (X,S) will appear instead of OPT (S) to denote
the cost of the optimal solution for the demand set S, when we want to explicitly state the set
of elements X from which we construct our solution. Also, we define the function ξ(X,S,A) as
the sum

∑
j∈A ξ(X,S, j).

Intuitively, competitiveness tells us that dividing the cost of a solution among the client
set is done in such a way so as not to “overcharge” any demand j, and, as a result, not make
“overcharges” in total.

Another property, crucial to our analysis, is strictness, which relates the cost of extending
a solution on S so as to serve more clients T to the cost shares of T . Formally, given a set X
of elements and S of clients, let A(X,S) denote the solution found by algorithm A.

Definition 3.5 (Strictness). A cost-sharing algorithm A is β-strict if for any sets of clients S,
T , there exists a solution FT ⊆ X constructible in polynomial time such that A(X,S) ∪ FT ∈
Sols(T ) and c(FT ) ≤ β · ξ(X,S ∪ T, T ).

What we actually require with strictness is the existence of a polynomial time algorithm
AugA which can augment A(X,S) to a solution in Sols(T ) at cost at most β · ξ(X,S ∪ T, T ).
Observe that if the problem is sub-additive, then we also have that A(X,S)∪FT ∈ Sols(S∪T ).
Sub-additivity also gives the stricter inequality c(FT ) ≤ β ·ξ(X,S∪T, T \S), since augmenting a
solution A(X,S) to a solution in Sols(T \S) gives a solution in Sols(S∪ (T \S)) = Sols(S∪T ),
and, thus, it is also a solution in Sols(T ).

Intuitively, the β-strictness ensures that extending an existing solution to satisfy new de-
mands will not cost much more than knowing the whole set of demands from the beginning.
More precisely, we only pay a factor of β as far as the new clients are concerned, using the
augmenting algorithm.

The reader should also have in mind that in all known cases, approximation algorithms with
β-strict cost-sharing functions are obtained via the primal-dual scheme, and the cost-shares
are derived from the dual variables. Thus, boosted sampling can be viewed as a primal-dual
approach for designing approximation algorithms for stochastic problems.

Note 3.2. One obvious algorithm AugA can be obtained by just zeroing out the costs of elements
already picked in A(X,S), and running A again.

For the needs of this chapter, when we say that there is a cost-sharing function ξ that is
strict w.r.t. an approximation algorithm A, we mean that there is a competitive and β-strict
cost-sharing function ξ associated with A.

3.3 The Boosted Sampling Algorithm

3.3.1 The initial Boosted Sampling

We are now going to present the algorithm. Three restrictions, as already mentioned, are
imposed on the problem Π: sub-additivity, constant inflation factor, and that there is a cost-
sharing function ξ that is strict w.r.t. A. Given an instance of a stochastic problem Stoc(Π),
the goal of the first stage is to buy the elements that will be useful for the unknown client set
realized in the second stage. As we cannot see the future, the next best thing to do is to sample
from the distribution π (through the black-box), and use the samples as an indication of what
the future set will be. This very simple idea is the basis of this method.

A first attempt could be to sample once from the distribution and use the set obtained as
our prediction. However, this approach ignores the fact that the future is more expensive by a
factor of σ, and in cases when σ is large, our solution would not be good. In fact, we can see
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that, as σ →∞, the optimal solution would be to assume that every client in U will be realized
and must be accounted for in the first stage itself. We will see that in the end a number of bσc
samples is adequate. Intuitively, this tries to account for the σ inflation factor by sampling each
scenario A, in expectation, σ · pA times.

Algorithm 1: Boost-and-Sample(Π)

1. Draw bσc independent samples D1, D2, ..., Dbσc by sampling from the
distribution π. Let D =

⋃
i Di.

2. Using the algorithm A, construct an α-approximate first-stage solution
F0 ∈ Sols(D).

3. If the client set S is realized in the second stage, use the augmenting
algorithm AugA to compute FS such that F0 ∪ FS ∈ Sols(S).

Theorem 3.1. Consider a combinatorial optimization problem Π that is sub-additive, and let
A be an α-approximation algorithm for its deterministic version Det(Π) that admits a β-strict
cost-sharing function. Then, the algorithm Boost-and-Sample(Π) presented above is an (α+β)-
approximation algorithm for Stoc(Π).

Note 3.3. The approximation factor in the above algorithm concerns the expected value that
the algorithm returns, as there is some randomness involved in the first step of the algorithm,
in which we sample from our distribution. In any case, the solution returned is a feasible one
for the problem.

Proof. We are going to bound the expected costs of our first and second-stage solutions sepa-
rately. Let F ∗0 be the first-stage component of the optimal solution, and F ∗S be the second-stage
component if the set realized is S. Hence the optimal cost is:

Z∗ = c(F ∗0 ) + σ
∑
S

π(S)c(F ∗S)

First stage: The first-stage solution we use is an α-approximate solution for the demand
set D. Let F ∗D1

, F ∗D2
, ..., F ∗Dbσc be the optimal second-stage solutions when sets D1, D2, ..., Dbσc

realize, respectively. We have that F ∗0 ∪F ∗D1
∈ Sols(D1), F

∗
0 ∪F ∗D2

∈ Sols(D2), ..., F ∗0 ∪F ∗Dbσc ∈
Sols(Dbσc), and as the problem Π is sub-additive and D =

⋃
i Di, we get that F̂1 = F ∗0 ∪F ∗D1

∪
F ∗D2
∪ ... ∪ F ∗Dbσc ∈ Sols(D).

The cost of the solution F̂1 is c(F̂1) ≤ c(F ∗0 ) +
∑bσc

i=1 c(F
∗
Di

), and so we get that:

E[c(F̂1)] ≤ E[c(F ∗0 )] +

bσc∑
i=1

E[c(F ∗Di)]

= c(F ∗0 ) + bσc
∑
S

π(S)c(F ∗S)

≤ c(F ∗0 ) + σ
∑
S

π(S)c(F ∗S)

= Z∗

(Each Di is chosen independently from the probability distribution π, and this is why we have
E[c(F ∗Di)] =

∑
S π(S)c(F ∗S) for each i.)
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Since we use an α-approximation algorithm, our solution F0 satisfies c(F0) ≤ αc(F̂1), be-
cause, as we have already mentioned, F̂1 ∈ Sols(D), and so we get E[c(F0)] ≤ αZ∗.

Second stage: Let S be the set of realized clients, and let FS be the result of our algorithm
AugA such that F0 ∪ FS ∈ Sols(S). We are going to bound our expected second stage cost,
which is σ E[c(FS)]. From the β-strictness of the cost-sharing function and the sub-additivity
of our problems we get that c(FS) ≤ β ξ(X,D ∪ S, S \D), which gives

ES [c(FS)] ≤ β ED,S [ξ(X,D ∪ S, S \D)]. (3.1)

In order to bound the expectation in the right hand side of the above inequality, we are going
to consider an alternate probabilistic process to generate the sets Di and the set S, which is iden-
tically distributed to the original one. We draw bσc+ 1 independent samples D̂1, D̂2, ..., D̂bσc+1

from the distribution π. We now choose a random value K from 1, 2, ..., bσc+ 1, and set S = D̂K

and D =
⋃
i 6=K D̂i. This process is indeed identically distributed to the original one, as we pick

the sets independently (remember that realization of a scenario is identical to drawing an in-
dependent sample from the black-box). Let D̂ be the union of all the D̂i’s, and let D̂−i be the
union

⋃
l 6=i D̂l of all the sets except D̂i.

From the above definition, we can easily see that (D̂i \ D̂−i)∩ (D̂j \ D̂−j) = ∅ for i 6= j, and⋃
i (D̂i \ D̂−i) = D̂. Thus, using the competitiveness of the cost-sharing function we get that

ξ(X, D̂, D̂) ≤ OPT (D̂)⇒
bσc+1∑
i=1

ξ(X, D̂, D̂i \ D̂−i) ≤ OPT (D̂).

By our random choice of K, we get

EK [ξ(X, D̂, D̂K \ D̂−K)] =
1

bσc+ 1

bσc+1∑
i=1

ξ(X, D̂, D̂i \ D̂−i)

≤ 1

bσc+ 1
OPT (D̂)

Since the alternate process is probabilistically identical, as we have already mentioned, to
the one we used to pick D and S in our algorithm, we have

ED,S [ξ(X,D ∪ S, S \D)] = ED̂,K [ξ(X, D̂, D̂K \ D̂−K)]

≤ 1

bσc+ 1
ED̂[OPT (D̂)]

(3.2)

The last thing left to do now is bound ED̂[OPT (D̂)]. A feasible solution to D̂ is F̂2 =

F ∗0 ∪F ∗D̂1
∪F ∗

D̂2
∪ ...∪F ∗

D̂bσc+1
. Again, like the solution F̂1 defined in the first stage, F̂2 ∈ Sols(D̂)
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because Π is sub-additive. Thus, we have:

OPT (D̂) ≤ c(F̂2) ≤ c(F ∗0 ) +

bσc+1∑
i=1

c(F ∗
D̂i

)⇒

ED̂[OPT (D̂)] ≤ c(F ∗0 ) + ED̂[

bσc+1∑
i=1

c(F ∗
D̂i

)]

= c(F ∗0 ) +

bσc+1∑
i=1

E
D̂i

[c(F ∗
D̂i

)]

= c(F ∗0 ) + (bσc+ 1)
∑
S

π(S)c(F ∗S)

= c(F ∗0 ) +
bσc+ 1

σ
σ
∑
S

π(S)c(F ∗S)

≤ bσc+ 1

σ

(
c(F ∗0 ) + σ

∑
S

π(S)c(F ∗S)
)

=
bσc+ 1

σ
Z∗

Using this last inequality and (3.1) and (3.2) we get

ES [c(FS)] ≤ β 1

bσc+ 1

bσc+ 1

σ
Z∗

=
β

σ
Z∗.

Thus, the expected second stage cost is σES [c(FS)] ≤ βZ∗, and so we get a bound of (α+β)
for the total expected cost:

E[c(F0) + σc(FS)] ≤ (α+ β) Z∗

This completes our proof.

Note 3.4. The running time of the algorithm is polynomial in the input and in the inflation
factor σ. In most cases, it is reasonable to assume that σ is polynomial in the size of the
deterministic version of the problem, and can be considered a small number. In such cases, the
above algorithm is polynomial. However, when σ is very large, for example exponentially large
compared to a parameter n of the input, then the algorithm becomes exponential.

3.3.2 Correlated Inflation Factors: extending the Boosted Sampling frame-
work

We will now show how we can extend the basic Boosted Sampling framework in order to handle
cases where the inflation factor σ is a random variable arbitrarily correlated with the random
scenarios. This extension was given in [18].

Formally, let us assume that we have access to a distribution π′ over R≥1×2U , where π′(σ, S)
is the probability that the set S arrives and the inflation factor is σ. We assume that we know
an integer M ∈ Z which is an upper bound on the value of the inflation parameter σ, i.e., with
probability 1, it should be the case that σ ≤ M holds. We will see that in most algorithms
presented, this upper bound on the inflation parameter is required. However, we believe that
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it is a sensible assumption for most realistic problems. Note also that choosing a pessimistic
value of M will only increase the running time, but not degrade the approximation guarantee
of the framework.

The modified algorithm is now:

Algorithm 2: General-Boost-and-Sample(Π)

1. Draw M independent samples from the joint distribution π′ of (σ,S). Let
(σ1, S1), ..., (σM , SM ) denote this collection of samples.

2. For i = 1, ...,M , accept the sample Si with probability σi/M . Let Si1 , ..., Sik
be the accepted samples, and let S =

⋃
Sij .

3. Using the algorithm A, construct an α-approximate first-stage solution
F0 ∈ Sols(S).

4. If the client set T is realized in the second stage, use the augmenting
algorithm AugA to compute FT such that F0 ∪ FT ∈ Sols(T ).

Note that if σ is constant, then we get the original Boosted Sampling framework. To get
some intuition about the changes, observe that if the sampled inflation factor σi is large, this
indicates that we want to handle the associated Si in the first stage; on the other hand, if the
σi is small, we can afford to wait until the second-stage to handle the associated Si and this is
indeed what the algorithm does, albeit in a probabilistic way.

Theorem 3.2. Consider a sub-additive combinatorial optimization problem Π, and let A be an
α-approximation algorithm for its deterministic version Det(Π). If A admits a β-strict cost-
sharing function, then General-Boost-and-Sample(Π) is an (α + β)-approximation algorithm
for Stoc(Π).

Outline of the Proof. The main idea is to transform the random inflation stochastic problem
instance (X,π′) to one with a fixed inflation factor, and show that the original Boosted Sampling
framework runs the same way in this new instance as the General Boosted Sampling framework
in the initial instance (X,π′). For this reason, we define the distribution:

π̂(σ, S) = π′(σ, S)× (σ/M).

We have that
∑

σ,S π̂(σ, S) ≤ 1, and in order to have a well-defined probability distribution, we
increase the probability π̂(1, ∅) so that the above sum becomes exactly 1. The inflation factor
for this new instance is set to M , and hence the σ output by π̂ is only for expositional ease.
Note that the probability of a particular set of demands S now is

∑
σ(π′(σ, S) · σ/M), as we

take into account situations where we have instances (σ1, S), (σ2, S) with σ1 6= σ2.
The objective now for this new instance is to minimize the expected cost under this new

distribution, which is

c(F0) +
∑
σ,S

π̂(σ, S)Mc(FS).

This is equal to c(F0)+
∑

σ,S π
′(σ, S)(σ/M)Mc(FS) = c(F0)+

∑
σ,S π

′(σ, S)σc(FS), and, so, our
transformed problem objective function is identical to the original objective function. Thus,
the two problems are identical, and running Boost-and-Sample on this new distribution π̂ with
inflation parameter M would give us an (α+ β)-approximation.

However, in order to run the initial algorithm in the new distribution, this new distribution
must be “implemented” in some way. And this is exactly what General-Boost-and-Sample
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does. We can implement π̂ given black-box access to π′ by just rejecting any sample (σ, S) with
probability σ/M . Note that the rejected samples can be viewed as realizations of the null (∅)
scenario (we remind the reader here that we have increased the probability of the null scenario
in order for π̂ to be well-defined, and these empty samples occur with this exact probability),
and so, we actually have M samples, M − k of which are the empty set. With this in mind, the
first-part of Boost-and-Sample can run in this instance exactly as General-Boost-and-Sample
does.

The only thing left to comment on regards the realization of a scenario in the second stage.
The scenario that realizes in any case comes from the initial distribution π′. So, one could say
that we run into a problem here. However, we note that, while in π̂ each scenario has different
probability of occurrence compared to π′, the inflation factor that General-Boost-and-Sample
uses in any case is the inflation factor that realizes in the second stage according to π′. So,
while the initial Boost-and-Sample would use M as the inflation factor, by using the σ that
realizes we actually succeed in tweaking the distribution π′, so as to behave exactly as π̂ would
in the initial framework. The unconvinced reader can take some time and do the math in order
to see that this is indeed the case.

3.4 Applications

In this section, we will present some applications of the Boosted Sampling framework to prob-
lems that satisfy the restrictions needed. We will not go into any technical details regarding
individual problems.

3.4.1 The Rooted Steiner Tree Problem

Theorem 3.3. There exists a 2-approximation algorithm for the Steiner Tree Problem that
admits an 2-strict cost-sharing function.

The 2-approximation algorithm is simply Prim’s algorithm (which can be viewed as a primal-
dual algorithm) for finding a Minimum Spanning Tree (MST) over the required vertices plus
the root. Now, combining this with Boosted Sampling, we get the following theorem.

Theorem 3.4. There exists a 4-approximation algorithm for the 2-stage Stochastic Rooted
Steiner Tree Problem.

3.4.2 The Metric Uncapacitated Facility Location Problem

Before mentioning the results that we have for the problem, let us state the problem itself. In
the deterministic Metric Uncapacitated Facility Location (DMUFL) Problem, given a set of
candidate facility locations F and a set of clients D, we want to open facilities at a subset of the
locations in F , and assign each client to an open facility. Opening a facility at location i incurs
a cost of fi , and the cost of assigning client j to facility i is dj · cij where dj is the demand of
client j, cij is the distance between i and j, and the distances cij form a metric. The goal is to
minimize the total facility opening costs and client assignment costs.

In the deterministic problem one assumes that the client demands are precisely known
in advance; the 2-stage Stochastic Uncapacitated Facility Location (SUFL) Problem handles
settings where there is uncertainty in the demand, for example, due to macro-economic factors
such as competition, technology, or customer purchasing power. We are given a probability
distribution on tuples (d1, ..., d|D|) where dj ∈ {0, 1, ..., D} specifies the demand of client j and
D is some known upper bound on the demand. We can open some facilities in stage I paying a
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cost of f
(1)
i for opening facility i, then the actual scenario A with demands dAj is revealed, and

we may choose to open some more facilities in stage II, incurring a cost of σfi for each facility
i that we open in scenario A.

Theorem 3.5. The cost-sharing function given by Pál and Tardos [34] is 5.45-strict for the
3-approximation algorithm of Mettu and Plaxton [30]. Hence, there is a 8.45-approximation
algorithm for the 2-stage Stochastic MUFLP.

3.4.3 Vertex Cover

The Boosted Sampling Algorithm can also be used to give a constant-approximation for the
2-stage Stochastic Vertex Cover. In the 2-stage Stochastic Vertex Cover the edges correspond
to the demands, and the uncertainty is over which edges will actually be in our graph in the
second stage. The algorithm used is a standard primal-dual algorithm which gives cost-shares
that are 6-strict with respect to it. Thus, we get the following result.

Theorem 3.6. There exists a 2-approximation algorithm for Vertex Cover that admits a 6-strict
cost-sharing function. Thus, we get an 8-approximation algorithm for the 2-stage Stochastic
Vertex Cover.



Chapter 4

2-stage Stochastic LP’s and
rounding techniques

4.1 Introduction

In this chapter we are going to formulate our problem as an Integer Program, and then try
to find rounding techniques that can guarantee that a solution to the corresponding linear
relaxation could give a satisfactory solution to the initial problem. LP rounding is a very
common technique that gives approximation algorithms for many deterministic combinatorial
optimization problems. The reader can refer to [47] for more details.

Two recent works on two-stage stochastic optimization base their results on rounding frac-
tional solutions of LP’s, the first being the work of Gupta, Ravi and Sinha [19] and the second
the work of Shmoys and Swamy [38]. The first considers problems with a polynomial number of
scenarios, as well as risk-aversion problems (we will talk about them in the final chapter of this
thesis), and gives constant-factor approximation algorithms for the 2-stage Stochastic Steiner
Tree, for both risk-bounded and not risk-bounded variants.

We will focus on the work of Shmoys and Swamy and present their rounding scheme and
the ellipsoid-based algorithm they suggest to solve the linear relaxation of such problems. We
will work in the black-box model with arbitrary probability distributions and any number of
scenarios. More specifically, we will show that for a class of set cover instances there exist good
rounding techniques that can give an approximation guarantee. This motivates us to try and
solve the linear relaxation of such problems. Of course, such LP’s are not easy to solve. However,
we will manage to reach a Fully Polynomial Randomized Approximation Scheme (FPRAS) for
a wide class of 2-stage stochastic linear programs by utilizing the ellipsoid method. We will
mostly deal with the set cover problem, and at the end of the chapter we will generalize to
a wider class of stochastic programs. The main difference of this approach compared to the
boosted sampling framework of chapter 3 is that, although cost-shares are not required, suitable
LP-relaxation is needed with the ability to round each stage independently.

Before continuing to our analysis, we should mention that the results reached in this chapter
can also be obtained by utilizing the Sample Average Approximation Method (SAA), and we
will actually present this method in the following chapters. The SAA method is a more natural
and simple approach to such problems and can be shown to work well. In practice, it is much
more preferable and better implemented than the ellipsoid method. Swamy and Shmoys ([43])
use this method to obtain approximation algorithms for multistage stochastic problems, and as
a special case, they reach the same results that they obtain through the ellipsoid method for
two-stage stochastic problems, as their approach in both cases is based on the subgradients of
the objective value functions. Their SAA approach for two-stage problems can also be found in

17
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[42].
Another approach through the SAA method for two-stage problems can be found in [7], and

we will actually present this SAA approach in chapter 5. The reader can already guess that
the SAA is much more elegant and avoids the machinery of the ellipsoid algorithm. However,
we believe that both methods are worth studying, as each one reveals different aspects of the
problems in discussion and provides diverse tools in our attempt to solve them efficiently.

4.2 The Stochastic Set Cover

4.2.1 An initial approach

The deterministic weighted Set Cover Problem (DSC) is the following: given a universe U =
{e1, e2, ..., en} of elements and a collection of subsets of U , S = {S1, S2, ..., Sm}, with set Si ⊆ U
having weight wi, we want to choose a minimum-weight collection of sets so that every element
ej , j = 1, 2, ..., n, is included in some chosen set. The problem can be formulated as an integer
program with decision variables x1, x2, ..., xm, each one corresponding to a set Si and having
value 1 if this set is chosen, otherwise having value 0, and the integrality constraints can be
relaxed to yield the following linear program:

(SC-P):

min:
∑
S∈S

wSxS

subject to:
∑

S∈S:e∈S
xS ≥ 1 for all e

xS ≥ 0 for all S

In the 2-stage stochastic variant of the problem, the elements to be covered are not known in
advance. All we know is a probability distribution over scenarios, and each scenario specifies the
actual set of elements A ⊆ U to be covered. A scenario is just a subset of the elements. Thus,
the set of all possible scenarios (including the empty set) is the power set 2U . The probability
of scenario A is denoted pA.

Each set Si has a first-stage weight w
(1)
Si

and a second-stage weight w
(2)
Si
≥ w

(1)
Si

(it will be
shown in section 4.3 that the second stage costs can be scenario-dependent. However, for now,
we consider them independent of the distribution). In the first stage, we select some of these
sets. Then a scenario A realizes according to the distribution, and then additional sets may be
selected so as to ensure that A is covered in the union of the sets selected in both stages. The
aim is to minimize the expected total cost of the solution.

The problem can be formulated as an integer program and the integrality constraints can
be relaxed to yield the following linear program:

(SSC-P1):

min:
∑
S∈S

w
(1)
S xS +

∑
A

pA
∑
S∈S

w
(2)
S rA,S

subject to:
∑

S∈S:e∈S
xS +

∑
S∈S:e∈S

rA,S ≥ 1 for all A, e ∈ A

xS , rA,S ≥ 0 for all A,S

Variables xS indicate whether the set S is chosen in the first stage or not, and variables rA,S
indicate if the set S is chosen in the second stage when scenario A realizes. The constraints only
ensure that each element of A is covered in the first or second stage.
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One can see that, when pA is given explicitly for each scenario, one can solve exactly the
above problem. However, the number of scenarios is exponential to the number of elements of the
universe, and so an exact solution requires exponential time. Thus, we will try to approximate
the solution of the above relaxation. Before that, however, we must make sure that seeking a
solution for the relaxed program would help us find a good solution for the initial problem. The
following theorem makes this explicit.

Theorem 4.1. Suppose that we have a procedure that for every instance of (DSC) produces
a solution of cost at most p · OPTDet, where OPTDet is the cost of an optimal solution of the
linear relaxation of (DSC). Then, one can convert any solution (x, r) of (SSC-P1) to an integer
solution of cost at most 2p times the cost of (x, r). Thus, an optimal solution to (SSC-P1) gives
a 2p-approximation algorithm.

Proof. Let h(.) denote the objective function of (SSC-P1). We will argue that we can obtain
an integer solution (x̃, r̃) of cost at most 2p ·h(x, r). Our rounding approach is simple. Observe
that an element e is either covered to an extent of at least 1/2 in the first stage by the variables
xS , or it is covered to an extent of at least 1/2 by the variables rA,S in every scenario A
containing e. Let E = {e :

∑
S:e∈S xS ≥ 1/2}, i.e. the elements that are covered by at least

1/2 in the first stage. The vector (2x) is then a fractional solution of the (DSC) instance with

universe E, of cost
∑

S 2w
(1)
S xS , and, thus, one can obtain a solution x̃ for this instance of cost

at p ·OPTDet(E) ≤ p ·
∑

S 2w
(1)
S xS . Similarly, for any scenario A, the vector (2rA) is a fractional

solution of the (DSC) instance with universe A\E, of cost
∑

S 2w
(2)
S rA,S . Thus, one can obtain

a solution r̃A for this instance of cost at most p ·OPTDet(A \ E) ≤ p ·
∑

S 2w
(2)
S rA,S .

So, we have that
∑

S w
(1)
S · x̃S ≤ 2p ·

∑
S w

(1)
S xS and

∑
S w

(2)
S r̃A,S ≤ 2p ·

∑
S w

(2)
S rA,S ⇒

pA
∑

S w
(2)
S r̃A,S ≤ 2p · pA

∑
S w

(2)
S rA,S ⇒

∑
A pA

∑
S w

(2)
S r̃A,S ≤ 2p ·

∑
A pA

∑
S w

(2)
S rA,S . It is

obvious now that if we output x̃ as the first-stage decisions vector, we get a solution of cost at
most 2p · h(x, r).

The above theorem also implies the following:

Corollary 4.1. If the integrality gap of the linear relaxation of (DSC) is p, then the integrality
gap of (SSC-P1) is at most 2p.

It is well-known ([8]) that the greedy algorithm for the deterministic set cover returns a
solution of weight at most lnn ·OPTDet. Thus, the above theorem shows that if we could solve
(SSC-P1), we would get a 2 lnn-approximation algorithm for the Stochastic Set Cover.

4.2.2 Towards a compact convex programming formulation

From what has already been mentioned, it seems difficult to find an optimal solution to (SSC-
P1), since it has both an exponential number of variables and an exponential number of con-
straints; even writing out an optimal solution might take exponential space, and thus, time.
So, we have to make another approach to our problem. Observe that the rounding process
stated above involved only the examination of the first-stage vector x, and not the second-stage
vectors rA. This is important, as any rounding algorithm that needs information about each
second-stage vector is essentially exponential, due to the exponential number of scenarios. In
contrast, the above rounding process shows that if we could somehow solve the stochastic re-
laxation efficiently, then we would get a 2p-approximation algorithm. We should remind the
reader here that in any case, an efficient algorithm for a stochastic problem has to provide a
first-stage decisions vector and a well-defined way to tackle any scenario that arrives. It is not
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necessary, and in fact it should be avoided, to precompute each decision that the algorithm will
take for every scenario that may arrive. This observation motivates the following formulation
of our problem:

(SSC-P2):

min:
∑
S∈S

w
(1)
S xS + f(x) subject to xS ≥ 0 for all S

where f(x) =
∑
A⊆U

pAfA(x),

and fA(x) = min
∑
S∈S

w
(2)
S rA,S

s.t:
∑

S∈S:e∈S
rA,S ≥ 1−

∑
S∈S:e∈S

xS for all e ∈ A,

rA,S ≥ 0 for all S

It is straightforward to show that (SSC-P1) and (SSC-P2) are equivalent mathematical pro-
grams. The important thing however in the second formulation (SSC-P2) is that the objective
value function is only a function of the first-stage variables and not the second-stage variables.
More importantly, it expresses in the clearest way the whole idea behind 2-stage stochastic
optimization: choose a first-stage vector, and when a specific scenario occurs, augment the
first-stage solution to obtain a feasible solution for this scenario. Furthermore, each first-stage
vector gives a different value to the objective function. This is why we seek the best possible
one. The reader should however keep in mind that, in any case, we cannot even evaluate any
objective function value, as this would require exponential time.

The polynomial number of variables of the above formulation, combined with the fact that
the objective function of (SSC-P2) is convex, leads us to seek a convex optimization method to
solve our problem. This is where the ellipsoid method fits in very well.

4.2.3 Solving the convex program

The ellipsoid method can generally be used to solve convex optimization programs (readers not
familiar with the ellipsoid method are suggested to take a look at appendix B). In the ellipsoid
method, we start by containing the feasible region within a ball and then generate a sequence
of ellipsoids, each of successively smaller volume. In each iteration, one examines the center of
the current ellipsoid and obtains a specific half-space defined by a hyperplane passing through
the current ellipsoid center. If the current ellipsoid center is infeasible, then one uses a violated
inequality as the hyperplane, otherwise, one uses an objective function cut to eliminate (some
or all) feasible points whose objective function value is no better than the current center, and
thus make progress. A new ellipsoid is then generated by finding the minimum-volume ellipsoid
containing the half-ellipsoid obtained by the intersection of the current one with this half-space.
Continuing this way, and using the fact that the volume of the successive ellipsoids decreases
by a significant factor, one can show that after a polynomial number of iterations, the feasible
point generated with the best objective function value is a near-optimal solution.

Let P = P0 denote the initial polytope {x ∈ Rm : 0 ≤ xS ≤ 1 for all S}, and xi be
the current iterate. If the current iterate xi is feasible, then one could add the constraint
h(x) ≤ h(xi) while maintaining the convexity of the feasible region. But then, in subsequent
iterations, one would need to check if the current iterate is feasible, and generate a separating
hyperplane if not. However, without the ability to evaluate the objective function value, we
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cannot even decide whether the current point is feasible or not. Thus, finding a separating
hyperplane seems to put a significant barrier in our attempt. An alternate approach is to use
cuts generated by a subgradient, which can be seen as a measure of the “slope” of our functions
and which essentially plays the role of the gradient when the function is not differentiable.

Note 4.1. Before moving on, we should note that we will come across various algebraic notions
from now on. The reader who is unfamiliar with them can take a look at appendix A.

Definition 4.1. Let g : Rm → R be a function. We say that d ∈ Rm is a subgradient of g at
the point u if g(v)− g(u) ≥ d · (v − u), ∀v ∈ Rm.

If g is convex and differentiable, then its gradient at x is a subgradient. But a subgradient
can exist even when g is not differentiable at x, as illustrated in figure 4.1. The same example
shows that there can be more than one subgradients of a function g at a point x. A convex
function has a subgradient at x if there is at least one non-vertical supporting hyperplane to
epi g at (x, g(x)). This is the case, for example, if g is continuous. There are pathological convex
functions which do not have subgradients at some points, but we will assume in the sequel that
all convex functions that come up in our problems are subdifferentiable, which means that there
exists at least one subgradient at every point x in dom g.

There are several ways to interpret a subgradient. A vector d is a subgradient of g at x if
the affine function (of z) g(x) + d · (z − x) is a global underestimator of g. Geometrically, d is
a subgradient of g at x if (d,−1) supports epi g at (x, g(x)), as illustrated in figure 4.2.

Figure 4.1: At x, the convex function g is differentiable, and d1 (which is the derivative of g at
x) is the unique subgradient at x. At the point y, g is not differentiable. At this point, g has
many subgradients: two subgradients, d2 and d3, are shown.

Returning back to the ellipsoid method, one can see that if di is a subgradient at point xi,
then one could add the subgradient cut di · (x− xi) ≤ 0 and proceed with the smaller polytope
Pi+1 = Pi∩{x : di ·(x−xi) ≤ 0}. This is quite clear, because for any point x with di ·(x−xi) > 0,
we have that g(x) ≥ g(xi) + di · (x− xi) > g(xi), and thus such a point should be discarded, as
we are dealing with a minimization problem.

Unfortunately, even computing a subgradient at a point x is hard to do in polynomial time
for the objective functions that arise in stochastic programs. To deal with this problem, we are
going to use approximate subgradients, as defined below:

Definition 4.2. We say that d̂ ∈ Rm is an (ω,D)-subgradient of a function g : Rm → R at the
point u ∈ D if ∀v ∈ D, g(v)− g(u) ≥ d̂ · (v − u)− ωg(u).
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Figure 4.2: A vector d ∈ Rn is a subgradient of g at x if and only if (d,−1) defines a supporting
hyperplane to epi g at (x, g(x)).

We will only use (ω,P)-subgradients in the algorithm, which we abbreviate and denote as
ω-subgradients from now on. We will show that one can compute, with high probability, an
ω-subgradient of h(.) at any point x, by sampling from the black-box on scenarios. At a feasible
point xi, we compute an ω-subgradient d̂i and add the inequality d̂i · (x − xi) ≤ 0 to chop
off a region of Pi and get the polytope Pi+1. The first problem that rises is that by using an
approximate subgradient cut, we might discard points with objective function value better than
at the current iterate xi. However, we overcome this by showing that at a discarded point the
function value is not much better than h(xi). Continuing this way, we obtain a polynomial
number of points x0, x1, ..., xk such that xi ∈ Pi ⊆ Pi−1 for each i, and the volume of Pk is
“small”. Now, if the function h(.) has bounded variation on nearby points, then we can show
that mini h(xi) is close to the optimal value h(x∗) with high probability.

One last hurdle remains: how to compute mini h(xi), and thus x̄ = arg mini h(xi), when
we cannot even compute h at any point. Nonetheless, we manage to overcome this, too, by
computing a point x̄ in the convex hull of x0, x1, ..., xk, at which the objective function value
is close to mini h(xi). We are going to use approximate subgradients here, too. At the heart
of this procedure is a subroutine that given two points y1, y2, returns a point y on the line
segment connecting y1 and y2 such that h(y) is close to min(h(y1), h(y2)). Such a y is obtained
by performing a bisection search, using the subgradient to infer which direction to move along
the line segment. Iterating on this subroutine, we finally get a point x̄ such that h(x̄) is close
to mini h(xi).

We are now ready to proceed in the full analysis of our algorithm. Although it is quite
extensive, we believe it is worth studying as many interesting ideas are introduced in the attempt
to overcome the various obstacles on the way.

4.2.4 Algorithm details and analysis

We are going to describe the algorithm for an arbitrary convex function h(.) and an arbitrary
(rational) polytope P. Let OPT = min{h(x) : x ∈ P} denote the optimal solution value. We
use ‖u‖ to denote the l2 norm of u, i.e. (

∑
u2i )

1/2.
Throughout our analysis, we are several times going to use the convention that the objective

function has Lipschitz constant. It is sensible for the problems we are modeling, and we will
actually prove that this is the case for the functions we are studying.

Definition 4.3. Given a function g : Rm → R, we say that g has Lipschitz constant (at most)
K, if |g(v)− g(u)| ≤ K‖v − u‖ for all u, v ∈ Rm.

Lipschitz constant makes precise the notion of bounded variation, which is crucial in our
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analysis. Note that a function that has a Lipschitz constant is continuous, but is not necessarily
differentiable.

Let our objective function h : Rm → R have Lipschitz constant K. We assume that x ≥ 0
is a valid inequality for P. We also assume that the polytope P is contained in the ball
B(0, R) = {x : ‖x‖ ≤ R}, and contains a ball of radius r such that lnR and ln(1/r) are
polynomially bounded. These last two conditions are needed for the ellipsoid algorithm. For
all the optimization problems we consider, our initial polytope is P = {x ∈ Rm : 0 ≤ xS ≤ 1}
and, so, it is trivial to find such R and r. More details about these can be found in [14].
Finally, for reasons that will be made clear in the following, we set V = min(1, r) and define

λ = max
(

1,maxS
w

(2)
S

w
(1)
S

)
. We assume that λ or an upper bound on it is known to the algorithm.

The basic procedure we will use is FindOpt, which takes two parameters γ and ε and returns
a feasible solution x̄ such that h(x̄) ≤ OPT/(1 − γ) + ε, in time polynomial in the dimension
m and ln(KRmV ε ) (excluding the time to compute the ω-subgradients, which we will discuss later
on). This is the main procedure that uses the ellipsoid method and the notion of ω-subgradients
to get close to an optimal solution. It also uses a subroutine FindMin which takes a set of feasible
points x0, x1, ..., xk, and returns a feasible point having function value close to mini h(xi). The
main problem here, as we have already mentioned, is that we cannot evaluate h at any point x.
So we are seeking a point x̄ in the convex hull of x0, ..., xk, such that we can prove that h(x̄) is
close to minki=0 h(xi).

We give now a formal description of procedures FindOpt and FindMin, together with pictorial
descriptions in figures 4.3, and 4.4 and 4.5, respectively.

Procedure FindOpt(γ, ε)

(Returns a point x̄ such that h(x̄) ≤ OPT/(1− γ) + ε. Assume γ ≤ 1/2.)

Set k ← 0, y0 ← 0, N ← d2m2 ln(16KR
2

V ε )e, n← N log2(
8NKR
ε ), ω ← γ/(2n).

Let E0 ← B(0, R) and P0 ← P.

for i = 0, ..., N do
[We maintain the invariant that Ei is an ellipsoid centered at yi containing the
current polytope Pk.]

if yi ∈ Pk then

Set xk ← yi. Let d̂k be an ω-subgradient of h(.) at xk. Let H denote the half
space {x ∈ Rm : d̂k · (x− xk) ≤ 0}. Set Pk+1 ← Pk ∩H and k ← k + 1.

else
Let a · x ≤ b be a violated inequality, that is, a · yi > b, whereas a · x ≤ b for all
x ∈ Pk. Let H be the half-space {x ∈ Rm : a · (x− yi) ≤ 0}.

Set Ei+1 to be the ellipsoid of minimum volume containing the half-ellipsoid Ei ∩H.

Set k ← k − 1. We now have a collection of points x0, ..., xk such that each
xl ∈ Pl ⊆ Pl−1.
Return FindMin(ω;x0, ..., xk).

Before analyzing the above procedures, we mention some well known facts that we are going
to use. (see [14])

Lemma 4.1. The volume of the ball B(u,D) = {x ∈ Rm : ‖x−u‖ ≤ D} where u ∈ Rm, D ≥ 0,
is Dm vol(B(0, 1)).
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Figure 4.3: a) Cut derived from a violated inequality. b) Subgradient and ω-subgradient cuts.

Procedure FindMin(ω;x0, ..., xk)

Set p← ε/(4k), x̄← x0, N ′ ← dlog2(
8kKR
ε )e.

for i = 1, ..., k do

[We maintain the invariant that h(x̄) ≤ (mini−1l=0 h(xl) + (i− 1)p)/(1− ω)(i−1)N
′
.]

Set y1 ← x̄, y2 ← xi.
[We use binary search to find y on the x̄− xi line segment with value close to
min(h(x̄), h(xi)).]
for j = 1, ..., N ′ do

[We maintain that h(y1) ≤ h(x̄)/(1− ω)j−1, h(y2) ≤ h(xi)/(1− ω)j−1.]
Set y ← y1+y2

2 . Compute an ω-subgradient d̂ of h at the point y.

if d̂ · (y1 − y2) = 0 then
exit current loop

if d̂ · (y1 − y2) > 0 then
set y1 ← y

else
set y2 ← y

Set x̄← y.

Return x̄.

Figure 4.4: Inside loop of procedure FindMin.
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Figure 4.5: Point returned at the end of the outside loop of procedure FindMin.

Lemma 4.2. Let E ⊆ Rm be an ellipsoid and H ⊆ Rm be a half-space passing through the center
of E. Then there is a unique ellipsoid E′ of minimum volume containing the half-ellipsoid E∩H
and vol(E′)

vol(E) ≤ e
−1/(2m).

Lemma 4.3. Let T : Rm → Rm be an affine transformation with T (x) = Qx + t, where
det Q 6= 0. Then for any set S ⊆ Rm we have vol(T (S)) = |det Q|vol(S).

We are now going to prove some lemmas that will lead to our main result. We should observe
that the invariant of the for-loop of procedure FindOpt is clearly maintained.

Lemma 4.4. The points x0, ..., xk generated by procedure FindOpt satisfy minki=0 h(xi) ≤
(OPT + ε

4)/(1− ω).

Proof. Let x∗ be an optimal solution, that is, h(x∗) = OPT . If d̂l · (x∗ − xl) ≥ 0 for some
l, then x∗ was discarded with the ω-subgradient cut we used in that step. We have that
h(x∗)− h(xl) ≥ d̂l · (x∗ − xl)− ωh(xl), and thus h(x∗)− h(xl) + ωh(xl) ≥ 0, which means that
h(xl) ≤ h(x∗)/(1 − ω) < (h(x∗) + ε

4)/(1 − ω). Otherwise, we have that x∗ belongs to every
polytope Pi generated by the procedure. We are going to use a scaling argument here. We
will “shrink” the initial polytope around x∗ and prove that function h has value near to the
optimal in every point of this shrunken polytope. We will then prove that the last polytope Pk
produced by our procedure has a boundary generated by a hyperplane d̂l · (x−xl) that belongs
to the shrunken polytope, and so we can bound the value of function h at point xl using this
fact. We are now going to formalize all these ideas. A visualization of these is shown in figure
4.6.

Let t = ε
8KR , and consider the affine transformation T (x) = tIm(x−x∗)+x∗ = tx+(1−t)x∗,

where Im is the m × m identity matrix. Let W = T (P), so W is a shrunken version of P
“centered” around x∗. Observe the following facts:

1. W ⊆ P, because P is convex, and any point T (x) ∈W is a convex combination of x and
x∗, which both belong to P, and so T (x) ∈ P.

2. vol(W ) = vol(T (P)) = |det(tIm)|vol(P) = tm vol(P) ≥ (tV )m vol(B(0, 1)), using lemmas
4.1 and 4.3 and the fact that P contains a ball of radius V by assumption.

3. For any y = T (x) ∈ W , ‖y − x∗‖ = t‖x − x∗‖ ≤ ε
8KR · (2R) ≤ ε

4K , since x, x∗ ∈ P
and P ⊆ B(0, R). And since h has Lipschitz constant K, we get that |h(y) − h(x∗)| ≤
K‖y − x∗‖ ≤ ε

4 . Using now the fact that h(x∗) is the minimum value of h, we get that
h(y) ≥ h(x∗), and, thus, h(y) ≤ h(x∗) + ε

4 .
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Figure 4.6: Pictorial description of the scaling argument used in the proof of lemma 4.4.

We are now going to bound the volume of Pk. Since vol(Ei+1)
vol(Ei)

≤ e−1/(2m) for every i (lemma

4.2), and the volume of the initial ball E0 = B(0, R) that contains P is Rmvol(B(O, 1)), we get
that

vol(Pk) ≤ vol(EN )

≤ e−N/(2m)vol(E0)

=

(
1

e

)d2m2 ln( 16KR
2

V ε
)e/(2m)

Rmvol(B(O, 1))

≤
(

1

e

)2m2 ln( 16KR
2

V ε
)/(2m)

Rmvol(B(O, 1))

=

(
V ε

16KR2

)m
Rmvol(B(O, 1))

=

(
V ε

16KR

)m
vol(B(O, 1))

and using the fact that t = ε
8KR we get that

vol(Pk) ≤
(
V t

2

)m
vol(B(O, 1)) < (tV )m vol(B(0, 1)) ≤ vol(W ).

Thus, vol(Pk) < vol(W ), and since x∗ belongs in both sets, there must be a point y ∈ W
that lies on a boundary of Pk generated by a hyperplane d̂l ·(x−xl) = 0, otherwise W would be a
subset of Pk, which is impossible due to the volume inequality. This implies that d̂l ·(y−xl) = 0,
and since h(y) − h(xl) ≥ d̂l · (y − xl) − ωh(xl), we get that h(xl) ≤ h(y)/(1 − ω). Using now
the fact that for any z ∈ W, h(z) ≤ h(x∗) + ε

4 (proved above), and since y ∈ W , we get that
h(xl) ≤ (h(x∗) + ε

4)/(1− ω).

Lemma 4.5. Procedure FindMin returns a point x̄ such that h(x̄) ≤
[
(minki=0 h(xi)) + ε

4

]
/

(1− ω)kN
′
.

We are only going to give an outline of the proof, and not the formal proof itself, which can
be found in [38]. The main problem is that we cannot evaluate h at any point x. To overcome
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this, we are seeking a point x̄ in the convex hull of x0, ..., xk, such that we can prove that h(x̄)
is close to minki=0 h(xi). More precisely, we perform a bisection search using ω-subgradients on
the line segment connecting points x̄ and xi, where x̄ is close to mini−1l=0 h(xl), and we iterate for
all points xi. The final x̄ returned satisfies the above property. To prove this, we use induction
on the invariant conditions given as comments in the description of the procedure.

We are now going to prove the first significant result that will lead to our FPRAS.

Theorem 4.2. Procedure FindOpt returns a feasible point x̄ which satisfies h(x̄) ≤ OPT /
(1− γ) + ε, in time O

(
T (ω) ·m2 ln2(KRmV ε )

)
, where T (ω) denotes the time taken to compute an

ω-subgradient. Here ω has to be sufficiently small, more precisely ω = Θ
(
γ/(m2 ln2(KRmV ε ))

)
.

Proof. By Lemmas 4.4 and 4.5, we get that

h(x̄) ≤
(
OPT + ε/4

1− ω
+
ε

4

)
/(1− ω)kN

′

=
(
OPT +

ε

4
+ (1− ω)

ε

4

)
/(1− ω)kN

′+1

≤
(
OPT +

ε

2

)
/(1− ω)kN

′+1

Since kN ′ ≤ Ndlog2(
8NKR
ε )e, we get that kN ′ ≤ N log2(

8NKR
ε ) + N . Remember that

N log2(
8NKR
ε ) = n. Thus, we get that (1− ω)kN

′+1 ≥ (1− ω)n+N+1.
We will use the inequality (1 − x)n ≥ 1 − nx, ∀x ∈ (0, 1), that is true even if n ≥ 1 is not

integer. We can easily prove this by studying the function (of n) (1− x)n +nx− 1. So, we now
have that

(1− ω)kN
′+1 ≥ (1− ω)n+N+1

≥ 1− (n+N + 1)ω

= 1− n+N + 1

2n
· γ

≥ (1− γ)

≥ 1

2
(since we assumed that γ ≤ 1

2
)

We have used the fact that n ≥ N + 1 (observe that n − N − 1 = N log2(
8NKR
ε ) − N − 1 =

N log2(
8NKR

2ε ) − 1 ≥ 0), and, thus, (n + N + 1)/(2n) = 1/2 + (N + 1)/2n ≤ 1/2 + 1/2 ≤ 1.
Thus, we get that

h(x̄) ≤
(
OPT +

ε

2

)
/(1− γ)

= OPT/(1− γ) +
ε

2(1− γ)

≤ OPT/(1− γ) + ε.

As for the running time, in each iteration of the main loop of FindOpt we do at most one
calculation of an ω-subgradient. Thus, the time cost of the loop is O(N ·T (ω)). The procedure
FindMin takes time O(kN ′ · T (ω)). And, as proved above, kN ′ ≤ n + N , and, thus, the total

time required is O((n+N) ·T (ω)). We have that n = N log2(
8NKR
ε ) and N ← d2m2 ln(16KR

2

V ε )e,
and so we get that n = Θ

(
2m2 · ln2(KRmV ε )

)
. This also determines the values of ω = γ/(2n)

and gives ω = Θ
(
γ/(m2 · ln2(KRmV ε ))

)
. Plugging things together, we obtain a running time

O((n+N) · T (ω)) = O
(
m2 ln2(KRmV ε ) · T (ω)

)
.
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We are now going to convert the above guarantee into a purely multiplicative (1 + k)-
guarantee. To do this, we need to avoid situations where OPT = 0, and, so, we need to obtain
a lower bound on OPT . At this point, we make the mild assumption that the cost of every set
S, in stage I and in every stage II scenario, is at least 1. For integer costs, this simply means
that the cost of any non-null scenario is not 0. This helps us detect, by sampling O(λ) times,
whether the probability that some scenario A 6= ∅ occurs is at least 1/λ. If so, then OPT ≥ 1/λ,
otherwise x = 0 is an optimal solution (with high probability). More specifically, we use the
procedure ConvOpt, which samples and determines with high probability that either x = 0 is
an optimal solution, and returns this solution, or obtains a lower bound on OPT and then calls
FindOpt setting γ and ε appropriately.

Procedure ConvOpt(k, δ)

(Returns a point x̄ such that h(x̄) ≤ (1 + k) ·OPT with probability at least 1− δ. Assume
δ ≤ 1/2.)

Define λ = max(1,maxS w
(2)
S /w

(1)
S ).

if ln(1/δ) ∈ N then
set δ′ ← δ

else

set δ′ ← e
−dλ ln(1/δ)e

λ

Sample M = λ ln( 1
δ′ ) = dλ ln(1δ )e times from the distribution on scenarios.

Let X = number of times a non-null scenario occurs.

if X = 0 then
return x = 0

else

[With high probability, OPT ≥ p/λ, where p = δ′

ln(1/δ′) ]

set ε← kp/(2λ), γ ← k/3
return FindOpt(γ, ε)

Lemma 4.6. Procedure ConvOpt determines (correctly) with probability at least 1 − δ, that
OPT ≥ p/λ, or that x = 0 is an optimal solution.

Proof. Observe that we do not always use the input value δ, but a smaller one, δ′. We make
this slight change in the input data so that the number of samples given by the algorithm is
always a natural number (it also makes some technical details of the proof easier to handle).
In any case, we achieve a guarantee of at least 1 − δ′, and since δ′ ≤ δ ⇒ 1 − δ′ ≥ 1 − δ, we
get the desired guarantee of at least 1 − δ. Also, note that p ≤ 1 since δ′ ≤ δ ≤ 1/2. Since
we incur a cost of at least 1 in every non-null scenario, and the probability of occurrence of a
non-null scenario is q =

∑
A⊆U,A 6=∅ pA, we get that OPT ≥ q. Let r = Pr[X = 0] = (1 − q)M .

Since ∀x, ex ≥ 1 + x, we get that e−x ≥ 1− x and, thus, e−q ≥ 1− q ≥ 0⇒ e−qM ≥ (1− q)M .
So, we have that r ≤ e−qM . We also get that r ≥ 1 − qM , by using again the inequality
(1− x)n ≥ 1− nx, x ∈ (0, 1), n ∈ R≥1.

We now check three cases:

• If q ≥ 1/λ, then r ≤ e−(1/λ)M = e−(1/λ)λ ln(
1
δ′ ) = e− ln( 1

δ′ ) = δ′ ≤ δ. Now, since OPT ≥ q,
we get that OPT ≥ 1/λ, and, since p ≤ 1, we can say that with probability at least 1− δ,
we have that OPT ≥ p/λ.

• If q ≤ δ′/M (= δ′/(λ ln( 1
δ′ )) = p/λ ≤ 1/λ), then r ≥ 1 − δ′ ≥ 1 − δ. We now return

x = 0 as an optimal solution with probability at least 1− δ, which is an optimal solution,
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because q ≤ 1/λ implies that it is always at least as good to defer to stage II, since

the expected stage II cost of a set S is at most q · w(2)
S ≤ w

(1)
S . To make this more

clear, observe that if we decide not to choose a set S in stage I, then the expected cost

incurred in stage II for this decision is (
∑
pArA,S) ·w(2)

S . Even if rA,S = 1 ∀A, we get that

(
∑
pArA,S) ·w(2)

S ≤ (
∑
pA) ·w(2)

S ≤ q ·w
(2)
S ≤ w

(1)
S , and, thus, there is no point in choosing

this set in stage I. So, x = 0 is indeed an optimal solution.

• If δ′/M < q < 1/λ, then we always return a correct answer, since it is both true that
x = 0 is an optimal solution (because we still have that q < 1/λ), and OPT ≥ q > δ′/M =
δ′/(λ ln( 1

δ′ )) = p/λ.

We are now going to focus on the computation of ω-subgradients, and we will at the end
prove that the algorithm ConvOpt returns a (1 + k)-optimal solution with probability at least
1− δ in polynomial time.

Recall that our objective function is h(x) = w(1) · x + f(x), where f(x) =
∑

A⊆U pAfA(x),
and

fA(x) = min
∑
S∈S

w
(2)
S rA,S

s.t:
∑

S∈S:e∈S
rA,S ≥ 1−

∑
S∈S:e∈S

xS for all e ∈ A,

rA,S ≥ 0 for all S

We are now going to present the dual of the above program, which we will use during our
analysis. For an introduction to linear programming and duality, the reader can refer to [29].
By taking the dual we can write

fA(x) = max
∑
e∈U

(
1−

∑
S:e∈S

xS
)
zA,e

s.t:
∑
e∈S

zA,e ≤ w(2)
S for all S ∈ S,

zA,e = 0 for all e /∈ A,
zA,e ≥ 0 for all e

We now remind the reader about the two assumptions that we have taken and have already

mentioned: (i) λ = max
(
1,maxS w

(2)
S /w

(1)
S

)
is known, and (ii) function h has Lipschitz constant

K. The latter will indeed be proved to be valid for the functions that we study.
Our approach to computing ω-subgradients is the following:

• At first, we prove that any vector d̂ that component-wise approximates a subgradient at
x to within a certain accuracy is an ω-subgradient at x.

• Next, we show that at every point x there exists a “nice” subgradient with components

dS ∈ [−w(2)
S , w

(1)
S ]. This gives a bound on the Lipschitz constant and allows us to compute

an ω-subgradient by using a sampling procedure.

• Finally, we show that we can approximate this “nice” subgradient by using the aforemen-
tioned sampling with high probability.

We will then be in a position to prove that the algorithm ConvOpt gives an FPRAS for our
problem.
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Lemma 4.7. Let d be a subgradient of h(.) at the point x ∈ P, and suppose that d̂ is a vector

such that dS − ωw(1)
S ≤ d̂S ≤ dS for all S. Then d̂ is an ω-subgradient of h(.) at x.

The proof is pretty straightforward and can be found in appendix C.

Lemma 4.8. Consider any point x ∈ P and let z∗A be an optimal dual solution for scenario A

with x as the stage I vector. Then the vector d with components dS = w
(1)
S −

∑
A pA

∑
e∈S z

∗
A,e

is a subgradient at x, and ‖d‖ ≤ λ‖w(1)‖.

The proof can be found in appendix C.

Lemma 4.9. Suppose ‖d(x)‖ ≤ D for every x, where d(x) is a subgradient of h(.) at point x.
Then h(.) has Lipschitz constant (at most) D.

Proof. Consider any two points u, v ∈ Rm . Let d, d′ denote the subgradients at u, v respec-
tively, with ‖d‖, ‖d′‖ ≤ D. Then we have h(v)−h(u) ≥ d ·(v−u) ≥ −‖d‖ ‖v−u‖ ≥ −D‖v−u‖,
and similarly h(u) − h(v) ≥ −‖d′‖ ‖u − v‖ ≥ −D‖u − v‖ ⇒ h(v) − h(u) ≤ D‖v − u‖. So, we
get that |h(v)− h(u)| ≤ D‖v − u‖.

Lemmas 4.8 and 4.9 show that the functions that we study have Lipschitz constants that
can be bound by λ‖w(1)‖, which is a known real number for our problem. Note also that the
Lipschitz constant K of our functions is such that lnK is polynomially bounded.

We will now prove the following sampling lemma which shows that we can efficiently compute
an ω-subgradient of h(.) at any point x.

Lemma 4.10. Let X ∈ [−a, b] be a random variable, a, b > 0, computed by sampling from
a probability distribution π. Let µ = E[X] and k = max(1, a/b). Then for any c > 0, by

taking 100k2

3c2
ln
(
1
δ

)
independent samples from π, one can compute an estimate Y such that

µ− 2c · b ≤ Y ≤ µ with probability at least 1− δ.

Proof. Let q = max(a, b). The variance of X is σ2 = E[X2] − µ2 ≤ q2, since X2 ∈ [0, q2] ⇒
E[X2] ≤ q2. We divide the samples we have taken into s1 = 20

3 ln
(
1
δ

)
groups, each containing

s2 = 5k2/c2 samples. Let Xij be the value of X computed from the jth sample of group
i. Let Yi be the average of the Xij values of group i, i.e., Yi = (

∑s2
j=1Xij)/s2. We set

Y = median(Y1, ..., Ys1)−c·b. Observe that the variablesXij are iid with mean µ and variance σ2.

So we have that E[Yi] = (
∑s2

j=1 E[Xij ])/s2 = µ and Var[Yi] = Var
[
Xi1
s2

+...+
Xis2
s2

]
= s2 · σ

2

s22
= σ2

s2
.

By Chebyshev’s inequality, we get Pr[|Yi − µ| > c · b] ≤ σ2

s2(cb)2
≤ q2

s2c2b2
. If a > b then q = a and

k = a/b, else q = b and k = 1. In any case, we get Pr[|Yi − µ| > c · b] ≤ k2

s2c2
= 1

5 .

Now let Zi = 1 if |Yi − µ| > c · b, and 0 otherwise, and Z =
∑s1

i=1 Zi. Then E[Z] =∑s1
i=1 E[Zi] = s1 · Pr[|Yi − µ| > c · b] ≤ s1

5 and the variables Zi are independent. If Y > µ or
Y < µ− 2c · b, then at least s1/2 variables Zi must be set to 1. Therefore, by Chernoff bounds

we have Pr
[
Y /∈ [µ− 2c · b, µ]

]
≤ e−

3s1
20 ≤ δ.

Corollary 4.2. At any point x ∈ P, one can compute an ω-subgradient with probability at least
1 − δ using at most T (ω) = 400λ2

3ω2 ln
(
m
δ

)
independent samples from the probability distribution

on scenarios.

Proof. The proof is an easy corollary of lemmas 4.8, 4.9 and 4.10. We use the sampling process
described in lemma 4.10. Each time we sample and get a scenario A, we compute the quantities

XS = w
(1)
S −

∑
e∈S z

∗
A,e, where z∗A is an optimal dual solution (which can be computed in
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polynomial time) for scenario A with x as the first-stage vector. Observe that the vector d

with components dS = E[XS ] = w
(1)
S −

∑
A⊆U pA

∑
e∈S z

∗
A,e is, by lemma 4.8, a subgradient

at x. As we have already proved, XS ∈ [−w(2)
S , w

(1)
S ] for each S, so, using lemma 4.10 with

error probability δ/m and c = ω/2, we can estimate the expectation E[XS ] by d̂S using the

claimed number of samples, so that for each S we have that dS − 2 · ω2 · w
(1)
S ≤ d̂S ≤ dS ⇒

dS − ωw(1)
S ≤ d̂S ≤ dS with probability at least δ/m. Thus, the error probability for each d̂S is

at most δ/m, and, so, the probability that at least one d̂S is out of the expected interval is at

most m · δ/m = δ, that is, Pr[∀S, dS − ωw(1)
S ≤ d̂S ≤ dS ] ≥ 1− δ. So, by lemma 4.8, the vector

d̂ = {d̂S} is an ω-subgradient at x with probability at least 1− δ.

Now, we go back to theorem 4.2 and use the time bound T (ω) to get:

Lemma 4.11. Using the above procedure for computing ω-subgradients, procedure FindOpt finds
a feasible solution x̄ such that h(x̄) ≤ OPT/(1 − γ) + ε with probability at least 1 − δ in time
poly

(
input size, λ, 1γ , ln

(
1
ε

)
, ln
(
1
δ

))
.

Proof. Theorem 4.2 gives the performance guarantee and accounts for the time taken excluding
the time taken to compute an ω-subgradient. We now need to show that with high probability
every vector calculated is an ω-subgradient for ω = γ/(2n). The total number of times that we
need to calculate an ω-subgradient is at mostN+n. So, setting the error probability to δ/(N+n)

in corollary 4.2 we get that T (ω) = 400λ2·4n2

3γ2
ln
(m(N+n)

δ

)
= O

(
λ2n2

γ2
ln
(m(N+n)

δ

))
samples suffice

to ensure that each individual vector computed is an ω-subgradient with probability at least
1−δ/(N+n). Since we compute at most (N+n) subgradients, we get that the probability that
at least one computation fails is at most (N+n) ·δ/(N+n) = δ. Thus, with probability at least
1− δ all the subgradients computed are indeed ω-subgradients. As for the total time needed, it
is O

(
T (ω) ·m2 ln2(KRmV ε )

)
, which is polynomial in the input size, λ, 1γ , ln

(
1
ε

)
and ln

(
1
δ

)
.

All these lead to our main result.

Theorem 4.3. Procedure ConvOpt computes a feasible solution to (SSC-P2) of cost at most
(1 + k) · OPT with probability at least 1 − 2δ in time polynomial in the input size, λ, 1

k and
ln
(
1
δ

)
.

Proof. By lemma 4.6 we know that ConvOpt determines with probability at least 1−δ whether
OPT ≥ p/λ, and in this case calls FindOpt. The multiplicative guarantee and the time bound
now follow from lemma 4.11 by setting γ = k/3 and ε = kp/(2λ) (this can be easily verified
with simple calculations). The total error probability requires at least one error in one of the
procedures ConvOpt and FindOpt. And, since both have error probability at most δ, the total
error probability is at most 2δ.

We conclude this analysis by returning to our initial problem, the Stochastic Set Cover.
Using the rounding theorem 4.1 and the algorithm described above, one gets this:

Theorem 4.4. There exists a (randomized) (2 lnn+ε)-approximation algorithm for the 2-stage
Stochastic Set Cover.
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4.3 A general class of two-stage stochastic programs

We now proceed to apply the algorithm ConvOpt to a wide class of 2-stage stochastic linear
programs. The description that follows is the same as in §5 of [38]. Here x and rA denote, as
usual, the stage I decisions and the corresponding recourse actions in scenario A respectively.
Additionally, the formulation below captures settings where one might need to take some extra
decisions, which do not have corresponding first-stage actions, when a scenario A materializes;
e.g., in facility location, we need to assign the (random) demands of clients in a scenario to facil-
ities. We use variables sA, and constraints specified by BA, DA, hA, jA to encode such decisions.

(Stoc-P):

min: w(1) · x+ f(x) subject to x ∈ P ⊆ Rm≥0,

where f(x) =
∑
A∈A

pAfA(x),

and fA(x) = min: wA · rA + qA · sA
s.t: BAsA ≥ hA

DAsA + TArA ≥ jA − TAx
rA, sA ≥ 0, rA ∈ Rm, sA ∈ Rq.

(It was later ([43]) observed that constraints of the form BAsA ≥ hA are not needed, as they

are equivalent to
(
BA

DA

)
sA +

(
0
TA

)
rA ≥

(
hA

jA

)
−
(

0
TA

)
x. We decided however to keep the original

form, as stated in [38]).
Here A denotes the set of all possible scenarios, and P is the feasible region polytope. We

require that (a) TA ≥ 0 for every scenario A, and (b) at every point x ∈ P, f(x) ≥ 0 and
that the primal and dual problems corresponding to fA(x) be feasible for every scenario A.
A sufficient condition for (b) is to insist that 0 ≤ fA(x) < +∞ at every point x ∈ P and
every scenario A ∈ A. We can relax condition (a) somewhat and solve a more general class of
programs that allow one to incorporate upper bounds on the second-stage decisions rA, under
certain conditions. We assume that x = 0 lies in P, since we would like to be able to express
the option where one does nothing in the first stage and defers all decisions to stage II.

The essential property of this class of programs is that constraints DAsA+TArA ≥ jA−TAx
have the same matrix TA multiplying the recourse vector rA and the first-stage vector x in
every scenario A. This implies that the stage I decisions given by the vector x and the stage
II decisions for scenario A given by the vector rA act in the same capacity. Observe that
this class of stochastic programs is rich enough to model stochastic problems with scenario-
dependent recourse (that is, stage II) costs. To prevent an exponential blowup in the input,
we consider an oracle model where an oracle supplied with scenario A reveals the scenario-
dependent data (wA, qA, hA, jA, BA, DA, TA); procedure ConvOpt will need to query this oracle
only a polynomial number of times. We will see that the above class of programs can model
various practical problems, such as covering problems (Vertex Cover, Set Cover) and facility
location problems.

We will not go into any details about how we can use the algorithm ConvOpt to solve the
above class of programs. The analysis is very similar to the one presented in the previous
section regarding set cover, and can be found in [38]. We will only say that we again assume

that λ = max
(

1,maxA∈A,S
wAS

w
(1)
S

)
is known and also use the notion of non-null scenario with

total cost at least 1. To be more precise, we define a null-scenario to be a scenario A for which
fA(x) is minimized at x = 0, i.e., fA(0) = minx∈P fA(x). We can again reach a similar result.
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Theorem 4.5. Procedure ConvOpt can be used to obtain a feasible solution to (Stoc-P) of cost
at most (1 + k) ·OPT with probability at least 1− 2δ, in time poly

(
input size, λ, k, ln

(
1
δ

))
.

Note 4.2. The above theorem can be extended to problems where the second stage scenario is
specified by a parameter ξ that is continuously distributed with probability density function p(ξ).
In such problems all we have to do is replace the summations by integrals.

Before moving on to some applications of the above theorem, we will state one last result.
We will prove that a scheme with an approximation guarantee as the above has a running time
that necessarily depends on the inflation factor.

4.4 The dependence of the running time on the inflation factor

Both the techniques presented in chapters 3 and 4 have running time depending on the (maxi-
mum) inflation factor of the problem, which is considered to be known to the algorithms. We
will prove here that such a dependence is necessary, if we want to achieve a multiplicative
guarantee on our approximation.

To prove this, we will consider a simple instance of Stochastic Set Cover with a single set
and a single element. The example exposes the inherent limitation of using a black-box to infer
knowledge about the probability distribution on scenarios; it is straightforward to generalize
the example to construct lower bound instances for other stochastic problems.

Consider an instance of SSC with universe U = {e} and one set S = U , where w
(1)
S = 1 and

w
(2)
S = λ, and let p denote the probability that scenario {e} occurs (this probability is unknown

to our algorithm). The only decision that the algorithm has to make is whether to buy set S in
stage I or wait until stage II where the actual data will be revealed. Let AN denote an algorithm
that draws exactly N samples. Let O∗ denote the value of the integer optimum solution.

Theorem 4.6. If AN returns a (fractional) solution of cost at most c · O∗ with probability at
least 1− δ where 1 ≤ c < λ

2 , then it must be that N ≥ λ ln(1δ − 1)/(2c). The bound applies even
if AN returns only a fractional solution of cost at most c ·O∗.

Proof. In order to prove the above theorem, we will choose the parameters of our problem
in such a way so that any algorithm that tries to achieve approximation factor c with error
probability at most δ, and which samples fewer times than the number stated in the theorem,
fails. Let X be a random variable that denotes the number of times scenario {e} occurs in the
N samples. If X = 0, then AN must choose to defer to stage II with probability at least 1− δ
(the algorithm may flip coins), that is, it must return the integer solution x = 0 with probability
at least 1− δ. Otherwise, it will return a non-zero cost solution with probability at least δ, and
in the case where p = 0 and, so, O∗ = 0, AN will pick a non-zero fraction of set S in stage I
with probability at least δ and thus incur a non-zero cost, that is, a cost greater than c · O∗,
with probability at least δ.

Choose any ε > 0 such that c ≤ λ
2(1+ε) and consider any ε′ > 0 where ε′ ≤ ε. Set p = (1 +

ε′)c/λ ≤ 1
2 and define N0(ε

′) = (λ ln(1δ −1))/(2(1+ε′)c). Let r = Pr[X = 0] = (1−p)N > e−2pN

(this can be easily derived through simple calculus and since p ≤ 1/2). The optimal solution
is to pick S in stage I, and incur a cost of 1, since the objective function is h(x) = x + pλr =
x+(1+ε′)cr, where x+r ≥ 1. But if N < N0(ε

′), then r > e−2pN0(ε′) = δ
1−δ , so with probability

at least (1 − δ)r > δ, AN will choose the solution x = 0 and incur a cost of (1 + ε′)c > c · O∗,
since O∗ = 1. Therefore for AN to satisfy the required performance guarantee we must have
N ≥ N0(ε

′) for every ε′ ∈ (0, ε] which implies that N ≥ λ ln(1δ − 1)/(2c).
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Corollary 4.3. If algorithm AN returns a (fractional) solution of expected cost at most c ·O∗
where 1 ≤ c < λ

6 , then it must be that N ≥ (λ ln 2)/(6c).

Proof. Let Y ≥ 0 denote the cost of the solution returned by AN . We have that E[Y ] ≤ c ·O∗.
By Markov’s inequality, we get Pr[Y ≥ 3c · O∗] ≤ E[Y ]

3c·O∗ ≤
1
3 . Thus, AN returns a solution of

cost at most 3c · O∗ with probability at least 2
3 . The claim now follows from theorem 4.6 by

substituting δ with 1/3 and c with 3c.

4.5 Applications

We will now present some problems that can be modeled in the form of (Stoc-P). The class of
problems described by (Stoc-P) is, as already mentioned, quite general and can be applied to
multicommodity flow problems, covering problems, facility location problems and others.

4.5.1 Vertex Cover

The 2-stage (weighted) Stochastic Vertex Cover is a special case of the 2-stage Stochastic Set
Cover, which has already been analyzed. In general, Vertex Cover is the special case of Set
Cover in which the universe is the set of edges and each set that can be bought corresponds to
one vertex and includes all the edges that are adjacent to this vertex. In the case of the 2-stage
Stochastic Vertex Cover, we do not know the edge set to be covered, but only a distribution
over scenarios that are subsets of the edges.

The previous results known for this problem were an 8-approximation algorithm in the
black-box model (see section 3.4.3), and a 3-approximation algorithm in the setting where each
edge is independently activated; both results are based on the boosted sampling framework
presented in chapter 3 (more details in [17]) and are obtained under the restrictions imposed by
the framework. Ravi and Sinha ([35]) gave a 2-approximation algorithm when there are only
polynomially many scenarios, but the second-stage costs may be scenario dependent.

Since the stochastic vertex cover problem is, as already mentioned, a special case of the
stochastic set cover problem, and the deterministic vertex cover LP is known to have an inte-
grality gap of 2, by corollary 4.1, we obtain, for any ε > 0, a (4+ε)-approximation algorithm for
the stochastic version with black-box probability distributions and scenario-dependent second-
stage costs. This improves the result of Gupta etc, which also has the restriction that the
approximation factor regards the expected value returned, while with the techniques presented
in this chapter we can make the error probability as low as possible.

Theorem 4.7. For any ε > 0, there is a randomized (4 + ε)-approximation algorithm for the
2-stage Stochastic Vertex Cover Problem with arbitrary probability distributions and scenario-
dependent stage II costs.

4.5.2 The Metric Uncapacitated Facility Location Problem

The problem was defined in section 3.4.2. The difference now is that inflation factor can be

different for each facility. We can open some facilities in stage I paying a cost of f
(1)
i for opening

facility i, then the actual scenario A with demands dAj is revealed, and we may choose to open

some more facilities in stage II, incurring a cost of fAi for each facility i that we open in scenario
A. As indicated by the notation, the recourse costs fAi may in general be scenario-dependent.

The deterministic facility location problem can be cast as an instance of the set cover problem
where the sets corresponds to stars, each consisting of a facility and a set of clients assigned to
it, and the elements to be covered are the clients. However the stochastic version is not a special
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case of the stochastic set cover problem. This is because in the stochastic problem, whereas we
may decide to open some facilities in stage I, we are required to assign clients to these facilities
only after the scenario is revealed. That is, we do not specify the coverage of a first-stage
facility in stage I; in fact, this coverage will in general depend on the second-stage scenario.
Thus, opening a facility in stage I does not quite correspond picking a star (which determines
a fixed coverage) in stage I (rather one is picking a collection of stars), so the star-covering
formulation does not apply to the stochastic generalization.

For the special case where fAi = λf
(1)
i for each i ∈ F , Gupta et al. [17] gave an 8.45-

approximation algorithm in the black box model (see section 3.5) and a 6-approximation al-
gorithm in the setting where each client is activated independently. Ravi and Sinha [35] gave
an LP-rounding based 8-approximation algorithm for the polynomial scenarios setting that
can handle scenario-dependent facility opening and client assignment costs, where the assign-
ment cost in scenario A is cAij = γAcij for all i, j. This was improved by Mahdian [28] to a
factor of 3 via a primal-dual algorithm. However both of these algorithms need to explicitly
know scenario-specific information, which renders them unsuitable when there are exponentially
many scenarios. The rounding algorithm in [35] needs to know the optimal fractional solution
for each stage II scenario, whereas the primal-dual algorithm in [28] requires explicit knowledge
of pA, f

A
i ’s and dAj ’s for every scenario A.

The work of Shmoys and Swamy generalizes or improves upon these results. They consider
a convex programming relaxation of the problem and give a different rounding approach that
decides which facilities to open in stage I based on only the stage I fractional solution. Combined
with the algorithm to solve the convex program, this yields a 3.378-approximation algorithm in
the black-box model with scenario-dependent costs.

Theorem 4.8. There is a randomized (3.378 + ε)-approximation algorithm for SUFL based on
rounding.



Chapter 5

The Sample Average Approximation
Method

5.1 Introduction

A natural approach in the problems we have already considered, where the number of scenarios
is too large or infinite, is to take some number of samples from the distribution and solve the
sampled problem that occurs. In such cases, we hope that for a suitably chosen sample size, a
good solution to the sampled problem will also be a good solution to the initial problem. This
approach is called the Sample Average Approximation method (SAA). The SAA method is an
example of a scenario reduction technique, in that it replaces a complex distribution over a large
(or even infinite) number of scenarios by a simpler, empirical distribution over some observed
scenarios. Note that the SAA problem in any case remains a stochastic problem.

The SAA method is well known and falls under the broader area of Monte Carlo sampling. It
is used in practice and has been extensively studied and analyzed in the stochastic programming
literature. The interested reader can refer to [36] and [37].

Our goal here is to prove that a polynomial number of samples can give an (1 + ε)-
approximation to our problems. Such a result would mean that we can reduce our black-box
problem to a polynomial-scenario problem. However, as we will see, even the SAA problem
is usually hard to solve. Thus, in order to actually reach a useful result, we must show that
we can in some way use an approximation algorithm for the SAA problem and maintain the
approximation guarantee to the true problem.

We are going to present the approach of Charikar, Chekuri and Pál [7] who give a simple
proof relying on Chernoff bounds. The proof shows that the SAA method works because
of statistical properties of the objective function and its domain, and not on computational
properties of optimizing the function in this domain. This approach works both for the discrete
and the continuous case, in contrast to the approach of Swamy and Shmoys who reach the same
results ([42], [43]) but only in continuous spaces. In any case, we are going to present as well
the Swamy and Shmoys approach when we will talk about multistage stochastic problems (see
section 9.3.2).

We should mention here that these two works are the first to give a sample bound polynomial
in the input size, the maximum inflation factor λ, log(1/δ) and 1/ε (δ is the error probability).
Before that, the best result was due to [24] and gave a bound that depended on the variance of
a certain quantity that need not depend polynomially on the input size or λ. Another remark
here is that in any case, we cannot estimate the value f(x∗) of our objective value, but only
a solution x̄ such that the value f(x̄) is near to f(x∗). To get a (1 + ε)-approximation for the
value f(x∗), the aforementioned dependence on the variance of a certain random variable of our

36
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problem cannot be avoided.
We are now ready to proceed to our analysis. We remind the reader that we work in the

black-box model. We will use the notation used in [7]. The problems considered are of the form

min
x∈X

f(x) = c(x) + Eω[q(x, ω)]

where f is the objective value function that is written as a function of the first-stage decision
vector x ∈ X, and ω is a scenario. The first-stage cost is given by c : X → R≥0 and the cost of
the second stage in a particular scenario ω, given a first-stage vector x is the optimum of the
second-stage minimization problem, that is:

q(x, ω) = min
r∈R
{costω(r) | (x, r) is a feasible solution for scenario ω}

where R is the set of recourse actions. By taking now N independent samples ω1, ω2, ..., ωN we
can define the sample average function as:

f̂(x) = c(x) +
1

N

N∑
i=1

q(x, ωi)

We consider stochastic two stage problems that satisfy the following properties:

• Non-negativity : the functions c(x) and q(x, ω) are non-negative for every first stage action
x and every scenario ω.

• Empty first stage: we assume that there is an empty first-stage action, 0 ∈ X. The empty
action incurs no first-stage cost, i.e. c(0) = 0, but is least helpful in the second stage.
That is, for every x ∈ X and every scenario ω, q(x, ω) ≤ q(0, ω).

• Bounded inflation factor : we present the definition of the inflation factor that is given in
[7], that is, λ ≥ 1 is the least number such that for every scenario ω and every x ∈ X, we
have q(0, ω)− q(x, ω) ≤ λc(x).

The above definition of the inflation factor is quite general and captures the cases we have
already studied. Intuitively, it means that the profit that we can make by taking some first-
stage actions in any scenario is bounded by the cost of these first-stage actions multiplied by
the inflation factor, that is, profit is bounded because the costs are bounded by inflation.

We have already used X to denote the set of first-stage decisions. Let X be the set of
elements we can buy, so that X = {0, 1}X . We will prove that λ = maxω,y∈X

costω(y)
c(y) ⇒

q(0, ω)− q(x, ω) ≤ λc(x).
We have that costω(y) ≤ λc(y), ∀ω, y ∈ X . Let F0 be the set of recourse actions for a

scenario ω when the first-stage is empty, which means that q(0, ω) = costω(F0). Now let x be
any first-stage vector (translating to set Fx), and r be the corresponding second-stage recourse
(translating to set Fr). We have that (Fx ∪ Fr) ∈ Sols(ω) ⇒ q(0, ω) ≤ costω(Fx) + costω(Fr).
Observe that costω(Fr) = q(x, ω) and costω(Fx) ≤ λc(x). Thus, we get that q(0, ω) ≤ λc(x) +
q(x, ω)⇒ q(0, ω)− q(x, ω) ≤ λc(x).

5.2 The Discrete Case

We are here going to discuss the case where the first stage decision x ranges over a finite set of
choices X (that is the case for most combinatorial problems). Let x∗ denote an optimal solution
to the initial problem and Z∗ its value f(x∗). We also assume that ε is small, say ε < 0.1. Our
main result is:
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Theorem 5.1. Any exact minimizer x̄ of the function f̂(.) constructed with Θ(λ2 1
ε4

ln |X| ln 1
δ )

samples is, with probability 1− 2δ, a (1 +O(ε))-approximate minimizer of the function f(.).

The notion of exact and approximate minimizers is clarified below. The above theorem
states that if we can solve exactly the SAA problem, then we have a near-optimal solution to
the true problem. However, note that there is no guarantee that an approximate solution to
the SAA problem will be an approximate solution to the true problem. And, since the SAA
problems are usually hard, the above theorem cannot be utilized in most cases. We will show
that there are techniques to get such a result for approximate minimizers of the SAA function,
too.

Definition 5.1. An x∗ ∈ X is said to be an exact minimizer of the function f(.) if for all x ∈ X
it holds that f(x∗) ≤ f(x). An x̄ ∈ X is an α-approximate minimizer of the function f(.) if for
all x ∈ X it holds that f(x̄) ≤ αf(x).

The main tool that we will use in our analysis is the Chernoff bound. We will be using the
following version of the bound: (see [32] or [20] for more details)

Lemma 5.1 (Chernoff bound). Let X1, ..., XN be independent random variables with Xi ∈ [0, 1]
and let X =

∑N
i=1Xi. Then, for any ε ≥ 0, we have Pr[X −E[X] > εN ] ≤ e−ε2N . We also get

Pr[ |X −E[X]| > εN ] ≤ 2e−ε
2N .

The first and most natural approach towards the proof of theorem 5.1 is to try and show
that if N is large enough, then the functions f and f̂ will be close to each other, in that with
high probability |f(x)− f̂(x)| ≤ εf(x). Unfortunately, this is not the case, as for any particular
x the random variable q(x, ω) may have very high variance. However, intuitively, one can think
that the high variance of q(x, ω) is caused by a few “bad” scenarios of very high cost but low
probability, and whose cost is not very sensitive to the first-stage vector x. We will indeed prove
that this is the case, and so these scenarios do not affect the choice of x significantly.

To formalize this idea, we divide the scenarios into two classes. We call a scenario ω high,
if its second stage cost q(0, ω) exceeds a threshold M , and low otherwise. We will see that
M = λZ∗/ε works conveniently.

As already mentioned, we approximate function f by takingN independent samples ω1, ..., ωN .
We define the following two functions to account for the contributions of low and high scenarios
respectively.

f̂l(x) =
1

N

∑
i:ωi is low

q(x, ωi)

and

f̂h(x) =
1

N

∑
i:ωi is high

q(x, ωi).

Note that f̂(x) = c(x) + f̂l(x) + f̂h(x). We make a similar definition for the initial function
f(.). Let p = Prω[ω is a high scenario]. Then,

fl(x) = (1− p) ·E[q(x, ω) |ω is low] and fh(x) = p ·E[q(x, ω) |ω is high]

so that f(x) = c(x) + fl(x) + fh(x).
We are now going to bound the probability p.

Lemma 5.2. The probability mass p of high scenarios is at most ε
(1−ε)λ .
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Proof. Observe that for a high scenario ω we have that q(0, ω)−q(x∗, ω) ≤ λc(x∗) and q(0, ω) ≥
M , so we get that q(x∗, ω) ≥ M − λc(x∗). Also, Z∗ ≥ fh(x∗) = p · E[q(x∗, ω) |ω is high], and,
since q(x∗, ω) ≥ M − λc(x∗) for every high scenario ω, we get that E[q(x∗, ω) |ω is high] ≥
M − λc(x∗). Thus, Z∗ ≥ p · (M − λc(x∗)). Substituting M = λZ∗/ε and using the fact that
c(x∗) ≤ Z∗ we obtain

Z∗ ≥ Z∗
(1

ε
− 1
)
λp.

So, (1

ε
− 1
)
λp ≤ 1⇒ p ≤ ε

(1− ε)λ
.

In order to prove theorem 5.1 we show that each of the following properties hold with
probability at least 1− δ:

(P1) ∀x ∈ X, |fl(x)− f̂l(x)| ≤ εZ∗.

(P2) ∀x ∈ X, f̂h(0)− f̂h(x) ≤ 2εc(x).

(P3) ∀x ∈ X, fh(0)− fh(x) ≤ 2εc(x). (in fact, this property holds with probability 1)

We will now prove theorem 5.1 using the above properties.

Proof of theorem 5.1. Since the error probability of each of the properties (P1) and (P2) is
at most δ, we can assume that with probability at least 1 − 2δ all three properties hold. For
any x ∈ X we have

fl(x) ≤ f̂l(x) + εZ∗ (P1)

fh(x) ≤ fh(0) (since ∀ω, q(x, ω) ≤ q(0, ω))

0 ≤ f̂h(x) + 2εc(x)− f̂h(0) (P2)

Adding the above inequalities we get

(fl(x) + fh(x))− (f̂l(x) + f̂h(x)) ≤ εZ∗ + 2εc(x) + fh(0)− f̂h(0)⇒
f(x)− f̂(x) ≤ εZ∗+ 2εc(x) + fh(0)− f̂h(0)

(5.1)

By a similar reasoning and by using the inequalities

f̂l(x) ≤ fl(x) + εZ∗ (P1)

f̂h(x) ≤ f̂h(0)

0 ≤ fh(x) + 2εc(x)− fh(0) (P3)

we get
f̂(x)− f(x) ≤ εZ∗ + 2εc(x) + f̂h(0)− fh(0) (5.2)

Now, let x∗ and x̄ be minimizers of the functions f(.) and f̂(.) respectively. Setting x = x̄
in 5.1 and x = x∗ in 5.2 and adding them up we get

f(x̄)− f̂(x̄) + f̂(x∗)− 2εc(x̄) ≤ f(x∗) + 2εZ∗ + 2εc(x∗).

Since f̂(x̄) ≤ f̂(x∗), we get

f(x̄)− 2εc(x̄) ≤ f(x∗) + 2εZ∗ + 2εc(x∗).
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Note now that c(x) ≤ f(x), ∀x ∈ X, and Z∗ = f(x∗). Thus, we get

(1− 2ε)f(x̄) ≤ (1 + 4ε)f(x∗)⇒

f(x̄) ≤ 1 + 4ε

1− 2ε
f(x∗)⇒

f(x̄) ≤
(

1 +
6ε

1− 2ε

)
f(x∗)⇒

f(x̄) ≤ (1 +O(ε))f(x∗)

We now proceed to prove the above properties (P1 - P3). We will make repeated use of
the Chernoff bound stated in lemma 5.1. Properties (P2) and (P3) are an easy corollary of the
bounded inflation factor property once we realize that the probability of drawing a high sample
from the distribution π is small; and that the fraction of high samples we draw will be small as
well with high probability. The reader should notice here the similarity in the results obtained
for the functions fh and f̂h. Let Nh denote the number of high samples in ω1, ..., ωN .

Lemma 5.3. With probability 1− δ, Nh/N ≤ 2ε/λ.

Proof. Let Xi be the indicator variable that is equal to 1 if the sample ωi is high and 0
otherwise. Then, Nh =

∑N
i=1Xi is a sum of i.i.d. 0-1 variables and E[Nh] =

∑N
i=1 E[Xi] = Np.

We are going to use Chernoff bounds to bound the probability of the event Nh/N ≤ 2ε/λ. We
have that

Nh/N > 2ε/λ⇒
Nh > 2εN/λ⇒

Nh −E[Nh] > 2εN/λ− pN ⇒ (using lemma 5.2)

Nh −E[Nh] > 2εN/λ−N ε

(1− ε)λ

Using Chernoff bounds (lemma 5.1) we get

Pr

[
Nh −E[Nh] >

ε

λ
N
(
2− 1

1− ε
)]
≤ exp

(
− ε2

λ2
(1− 2ε)2

(1− ε)2
N

)
.

With ε < 1/3 and N chosen as in theorem 5.1, this probability is at most δ. Thus, with
probability at least 1− δ we have that Nh/N ≤ 2ε/λ (simple calculus confirms the result).

We can now prove properties (P2-P3).

Corollary 5.1. Property (P2) holds with probability 1− δ, and property (P3) holds with prob-
ability 1.

Proof. By lemma 5.3 we have that Nh ≤ 2Nε/λ, with probability at least 1− δ and ε < 1/3.
Then we have

f̂h(0)− f̂h(x) =
1

N

∑
i:ωi is high

(q(0, ωi)− q(x, ωi))

≤ Nh

N
λc(x)

≤ 2ε

λ
λc(x)

= 2εc(x),
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by using the fact that q(0, ω)− q(x, ω) ≤ λc(x). This proves property (P2).
Property (P3) can be proved in a similar way. We have

fh(0)− fh(x) = p ·E[q(0, ω) |ω is high]− p ·E[q(x, ω) |ω is high]

= p ·E[q(0, ω)− q(x, ω) |ω is high]

≤ pλ ·E[c(x) |ω is high]

= pλc(x) (using lemma 5.2)

≤ ε

1− ε
c(x)

≤ 2εc(x) (since ε < 1/2)

And, since all results used are true with probability 1, then property (P3) is also true with
probability 1.

We are now ready to prove that property (P1) holds with probability 1− δ. The following
proof is the only place where we use the fact that X is finite. In the next section we will see
that property (P1) holds even when X ⊆ Rn, under an assumption that the function c(·) is
linear and that q(·, ·) satisfies some certain Lipschitz-type property.

Lemma 5.4. With probability at least 1− δ it holds that for all x ∈ X,

|fl(x)− f̂l(x)| ≤ εZ∗.

Proof. We are again going to use Chernoff bounds. Consider at first that the first-stage vector
x is fixed. We can view f̂l(x) as the arithmetic mean of N independent copies Q1, ..., QN of the
random variable Q which is defined as

Q =

{
q(x, ω) if ω is low
0 if ω is high

Observe that fl(x) = E[Q]. Let Yi be the variable Qi/M and Y =
∑N

i=1 Yi. Note that Yi ∈ [0, 1]
and E[Y ] = N

M fl(x). We now have

|fl(x)− f̂l(x)| =
∣∣∣∣E[Q]− 1

N

N∑
i=1

Qi

∣∣∣∣
= M

∣∣∣∣E[Q]

M
− 1

N

N∑
i=1

Qi
M

∣∣∣∣
= M

∣∣∣∣E[Q]

M
− Y

N

∣∣∣∣
=
M

N

∣∣∣∣Y − N

M
E[Q]

∣∣∣∣
=
M

N
|Y −E[Y ]|

We want to calculate the probability of the event |fl(x)− f̂l(x)| > εZ∗. We have

|fl(x)− f̂l(x)| > εZ∗ ⇔
M

N
|Y −E[Y ]| > εZ∗ ⇔

|Y −E[Y ]| > N

M
εZ∗ ⇔

|Y −E[Y ]| > N

λ
ε2
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Using now the Chernoff bound of lemma 5.1 we get

Pr

[
|Y −E[Y ]| > N

λ
ε2
]
≤ 2exp

(
− ε4

λ2
N
)
.

With N as in theorem 5.1, this probability is at most δ/|X| (with δ sufficiently small).
Taking now the union bound over all x ∈ X, we obtain the desired claim.

5.3 Approximation algorithms and SAA

In many cases, as already stated, finding an exact minimizer of the sample function f̂(.), which
is needed in order to apply theorem 5.1, is computationally hard. In such cases we need to use
an approximate minimizer of the function f̂(.) which can be obtained through an approximation
algorithm.

We will now explore the performance of the SAA method, as already presented, used with
an α-approximation algorithm for minimizing the sample function f̂ . The lemma proved below
is an adaptation of theorem 5.1.

Lemma 5.5. Let x̄ be an α-approximate minimizer for f̂ . Then, with probability at least
(1− 2δ),

f(x̄)(1− 2ε) ≤ (1 + 4ε)αf(x∗) + (α− 1)(f̂h(0)− fh(0))

We use a similar argument to the one used in the proof of theorem 5.1 in order to prove
the above lemma. Its proof can be found in appendix C. We can see that f(x̄) is a good
approximation to f(x∗) if f̂h(0) − fh(0) is small. By using Markov’s Inequality, we get that

Pr[ |f̂h(x)| ≥ (1 + 1
k )fh(x) ] ≤ E[f̂h(x)]

(1+ 1
k
)fh(x)

= fh(x)

(1+ 1
k
)fh(x)

= k
k+1 . Thus, Pr[ f̂h(0) ≤ (1 + 1

k )fh(0) ] ≥

1− k
k+1 = 1

k+1 , and so if we want to achieve multiplicative error (1+ε), we must be content with
probability of success only proportional to 1/ε, and, in fact, we can easily construct distributions
where the Markov bound is tight.

In order to improve our probability of success, there are two alternative solutions. We can
boost our probability of success by repeating the sampling procedure and taking the “best”
sample function that occurs. The other solution is to try and ignore the high cost samples.
This does not affect significantly the quality of any solution while reducing the variance in
evaluating the objective function. We present the two results, omitting the proofs. These
results essentially mean that we have managed to reduce the black-box problems that we study
to polynomial-scenario problems.

5.3.1 Approximation algorithms and repeating SAA

Theorem 5.2. Consider a collection of k functions f̂1, f̂2, ...f̂k, such that k = Θ(ε−1 ln δ−1),
and the f̂ i are independent sample average approximations of the function f , using N =
Θ(λ2ε−4 · k · ln |X| ln δ−1) samples each. For i = 1, ..., k, let x̄i be an α-approximate mini-
mizer of the function f̂ i. Let i = argminj f̂

j(x̄j). Then, with probability 1 − 3δ, x̄i is an
(1 +O(ε))α-approximate minimizer of the function f(.).

The proof is quite straightforward and is based on the bounds obtained by Markov inequality,
the independence of the sampling events and lemma 5.5.



5.4. FROM THE DISCRETE TO THE CONTINUOUS 43

5.3.2 Approximation algorithms and Sampling with Rejection

Instead of repeating the SAA method, we can use it only once and ignore the high cost samples.
To make this idea more formal we will need the following lemma:

Lemma 5.6. Let g : X → R be a function satisfying |fl(x) + c(x) − g(x)| = O(ε)Z∗ for every
x ∈ X. Then, any α-approximate minimizer x̄ of the function g(.) is also an α(1 + O(ε))-
approximate minimizer of the function f(.).

Using the above lemma and the fact that with high probability we can bound the portion
of the high cost samples in our total sample (as also stated in lemma 5.3), we reach our main
result.

Theorem 5.3. Let ω1, ω2, ..., ωN be independent samples with N = Θ(λ2ε−4 · ln |X| ln δ−1).
Let ω′1, ω

′
2, ..., ω

′
N be a reordering of the samples such that q(0, ω′1) ≤ q(0, ω′2) ≤ ... ≤ q(0, ω′N ).

Then any α-approximate minimizer x̄ of the function f̄(x) = c(x) + 1
N

∑N ′

i=1 q(x, ω
′
i), with

N ′ = (1− 2ε/λ)N is a (1 +O(ε))α-approximate minimizer of f(.).

We must highlight the fact that in many situations, computing q(x, ω) (or even (q(0, ω))
requires us to solve an NP-hard problem. This makes the ordering that the above theorem
states impossible. However, if we have an approximation algorithm with ratio β for computing
q(·, ·), we can use it to order the samples instead. For the above theorem to work with such an
approximation algorithm, the number of samples N needs to increase by a factor of β2 and N ′

needs to be (1− 2ε/(βλ))N .

5.4 From the Discrete to the Continuous

So far we have assumed that X, the set of first-stage decisions, is a finite set. We will now show
that the above results can be extended in situations where X ⊆ Rn. Although our goal in this
thesis is algorithms for combinatorial problems, we present this extension so that the reader can
make the analogy with chapter 4, where we actually go the other way, that is, from continuous
to discrete.

Since all theorems depend on the validity of the three properties (P1 - P3), we only need
to prove that these three properties still hold when X ⊆ Rn. Observe that in the proofs of
properties (P2) and (P3) we did not use the fact that X was finite. Thus, they still hold for
any X. So, the only thing remaining to do is prove that (P1) also holds.

In order to do so, we need to make some assumptions about our functions. These assump-
tions are reasonable, and are very similar to the ones made by Swamy and Shmoys in chapter
4. We first assume that X ⊆ Rn≥0. We will need the fact that the first-stage cost function is

linear, that is, c(x) = cT · x, for some real vector c = (c1, ..., cn) with non-negative coefficients.
We are now going to introduce a Lipschitz-type property, which captures the notion of bounded
variation that we will need, as in chapter 4.

Definition 5.2. The recourse function q(·, ·) is (λ, c)-Lipschitz, if for every scenario ω we have:

|q(x, ω)− q(x′, ω)| ≤ λ
n∑
i=1

ci|xi − x′i|.

Note that any (λ, c)-Lipschitz recourse function q satisfies q(0, ω)− q(x, ω) ≤ λc(x) (this is
not always true if c(.) is non-linear). We assume that the recourse functions involved in our
problems are (λ, c)-Lipschitz, where c is the first-stage cost-vector.

We are going to use a standard meshing argument: if two functions f̂ and f do not differ
by much on a dense enough finite mesh, because of bounded gradient, they must approximately
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agree in the whole region covered by the mesh. This idea has been used in the context of
stochastic optimization by various authors. Swamy and Shmoys have used a similar argument
([42] and [43]), which we will present in chapter 9.

We will use an n-dimensional grid of points with ε/(nαλci) spacing in each dimension 1 ≤
i ≤ n. To bound this grid, we observe that the ith coordinate of any α-approximate minimizer
x̄ of f cannot be larger than αZ∗/ci, as otherwise we would have f(x̄) > ci ·αZ∗/ci = αZ∗. So,
we can assume that the feasible region lies within the box 0 ≤ xi ≤ αZ∗/ci, 1 ≤ i ≤ n. Thus,
our mesh is actually

X ′ =

{(
i1
εZ∗

nλc1
, ..., in

εZ∗

nλcn

) ∣∣∣∣ (i1, ..., in) ∈ {0, 1, ..., dnαλ/εe}n
}

We are now going to prove an analog of lemma 5.4 for continuous sets.

Lemma 5.7. If N ≥ Θ(λ2 1
ε4
n ln(nλ/ε) ln δ), then with probability at least 1 − δ we have that

|f̂l(x)− fl(x)| ≤ 3εZ∗ for every x ∈ X.

Proof. In order to prove the validity of the sample size, we only have to observe that the size
of X ′ is (1 + dnαλ/εe)n, and so ln |X ′| = O(n ln(nλ/ε)). Thus, by using lemma 5.4 we get that
with probability at least 1− δ, |f̂l(x′)− fl(x′)| ≤ εZ∗ for every x′ ∈ X ′.

Consider now any point x ∈ X. From the construction of the grid, we get that there is
a nearby mesh point x′ ∈ X ′ such that

∑n
i=1 ci|xi − x′i| ≤

∑n
i=1 ci

εZ∗

nλci
= εZ∗/λ. Using the

Lipschitz property we also get that |fl(x)−fl(x′)| ≤ εZ∗ and |f̂l(x)− f̂l(x′)| ≤ εZ∗. By triangle
inequality we now get

|f̂l(x)− fl(x)| = |f̂l(x)− f̂l(x′) + f̂l(x
′)− fl(x′) + fl(x

′)− fl(x)|
≤ |f̂l(x)− f̂l(x′)|+ |f̂l(x′)− fl(x′)|+ |fl(x′)− fl(x)|
≤ 3εZ∗.

Using the above results, one can now reach a similar theorem to theorem 5.1, for continuous
sets X.

5.5 Applications

The above results show that we can actually reduce black-box problems to polynomial-scenario
problems. Thus, we can use results from the polynomial-scenario model, which in many cases are
almost tight, i.e. the same as the deterministic counterparts, to get approximation algorithms
for various problems in the black-box model.

5.5.1 Set Cover

Using the O(log n)-approximation algorithm proposed by Ravi and Sinha in [35], we can get
the following result.

Theorem 5.4. There exists a randomized O(log n)-approximation algorithm for the 2-stage
Stochastic Set Cover with scenario-dependent costs and bounded inflation factor.
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5.5.2 The Metric Uncapacitated Facility Location Problem

As already mentioned in section 4.5.2, Mahdian [28] gave a 3-approximation to (SMUFLP) via
a primal-dual algorithm. Thus, using this algorithm we can get the following result, which
slightly improves the result of Shmoys, Swamy (see theorem 4.8).

Theorem 5.5. There exists a randomized (3 + ε)-approximation algorithm for the 2-stage SU-
FLP with scenario-dependent costs and bounded inflation factor.

5.5.3 Vertex Cover

Using the 2-approximation algorithm proposed by Ravi and Sinha in [35], we can get the
following result, which improves the result of Shmoys and Swamy (see theorem 4.7).

Theorem 5.6. There exists a randomized (2 + ε)-approximation algorithm for the 2-stage
Stochastic Vertex Cover with scenario-dependent costs and bounded inflation factor.



Chapter 6

Complexity of 2-stage Stochastic
Programs

6.1 Introduction

We conclude our overview of 2-stage problems by examining the complexity of some models of 2-
stage stochastic programs. We believe the reader is now in a position to understand the inherent
difficulties of stochastic optimization, and be convinced that these problems are indeed hard.
However, not much work has been done in the direction of proving theoretically this common
belief. We will here present the only work that has been done in the field of computational
complexity regarding stochastic programs. Dyer and Stougie in [13] prove that certain classes
of 2-stage stochastic programs are ]P-hard, and we are going through their ideas in this chapter.

6.2 A class of 2-stage programs

We will consider programs similar to the ones used in chapter 4. We will use the notation
used in [13] so we will talk about maximization problems here (the same apply to minimization
problems). The general formulation is the following:

max: c · x+Q(x)

s.t.: Ax ≤ b
x ∈ X ⊂ Rn≥0

with
Q(x) = E[ max{q · y |Wy ≤ h−Tx, y ∈ Y ⊂ Rn1

≥0} ]

Boldface characters are used to indicate random variables. Observe that the above formu-
lation is quite general and captures many of the problems already discussed. Introducing the
idea of scenarios, we get the deterministic equivalent problem, as it is often called, which is the
usual formulation we have encountered where we write the expectation of the second stage as
an explicit sum of scenarios and the corresponding probabilities. Each scenario is described by
a triple of random variables (q,T,h) and there are K scenarios, (q1, T 1, h1), ..., (qK , TK , hK),
in total, each one having probability of occurrence pi. Our problem can now be formulated as:

max: c · x+
K∑
k=1

pk(qk · yk)

s.t.: Ax ≤ b
T kx+Wyk ≤ hk, k = 1, ...,K

46
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A crucial point in examining the complexity of stochastic programs is how the random
parameters are described. If, as input of the problem, each scenario and its corresponding
probability is specified completely, then the problem is polynomially solvable in case the de-
cision variables have a convex feasible region (however, the reader should be careful whether
polynomial in the input size means efficient, in cases where we have an exponential number of
scenarios), and NP-complete if there are integrality constraints on the decision variables.

However, consider another extreme in which all parameters are independent identically
distributed random variables, each having a value α1 with probability p and α2 with probability
1−p. In that case, using m1 for the number of rows of the T -matrices, there are K = 2n1+m1n+m1

possible scenarios, but they can be encoded with a relatively small number of bits. The size of
the deterministic equivalent problem is exponential in the size of the input, and the complexity
changes correspondingly. As already mentioned in the previous chapters, most of stochastic
programming research focuses on methods to overcome this curse of problem size, which is
usually caused by specification of the scenarios as combinations of realizations of independent
random parameters. For example, the black-box model that we have used in conjunction with
the sample average approximation method does not require a full listing of all scenarios.

From now on we will consider models wherein the random parameters are independently
distributed. Of course, one can say that we are restricting ourselves to a small portion of all
possible distributions, but a hardness result for such distributions gives an indication of the
hardness for arbitrary distributions.

6.3 Complexity of 2-stage programs

We will focus on models with discretely distributed random parameters, as throughout this
thesis we are mostly interested in combinatorial problems. The interested reader can refer to
[13] for details about the treatment of continuously distributed parameters. We will establish
]P-hardness of the evaluation of the second-stage expected value function Q(x) for fixed x of
a two-stage stochastic programming problem with discretely distributed parameters using a
reduction from the problem Graph Reliability, ]P-completeness of which has been proved in
[46].

But let us first explain what the class ]P is. A counting problem is a problem where we are
interested in the number of solutions rather than in finding a specific solution. For example, the
counting version of the Hamilton Path problem asks for the number of different Hamilton paths
in the given graph. So, informally, the complexity class ]P is the set of the counting problems
associated with the decision problems in the class NP. In other words, ]P consists of counting
problems, for which membership in the set of items to be counted can be decided in polynomial
time. We should mention here that, even in cases in which a decision problem is polynomial,
the corresponding counting problem may be hard to solve (one such example is the Matching
problem).

To give the reader a more formal description we can say that ]P consists of all functions f
such that f(x) is the number of accepting paths of a nondeterministic Turing machine running
in polynomial time on input x. More details about this class can be found in [33] or [2]. Strictly
speaking, none of the stochastic programming problems we study can belong to this complexity
class. We use the term ]P-hard for an optimization problem in the same way as NP-hard is
used for optimization problems whose recognition version is NP-complete.

We are now ready to proceed with our reduction.

Definition 6.1 (Graph Reliability). Given a directed graph G = (V,E) with m edges (|E| = m)
and n vertices, determine the reliability of the graph, defined as the probability that two given
vertices u and v are connected, if each edge e ∈ E fails independently with probability 1/2.
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This is equivalent to the problem of counting the number of subgraphs of G, from among
all 2m possible subgraphs, that contain a path from u to v.

Theorem 6.1. Two-stage stochastic programming with discrete distributions on the parameters
is ]P-hard.

Proof. Take any instance of Graph Reliability, i.e. a network G = (V,A) with two fixed vertices
u, v ∈ V . We introduce an extra edge from v to u, and for each edge (i, j) ∈ A we introduce a
variable yij . We then give each edge a random weight qij , except for the edge (v, u) that gets
a deterministic weight of 1. Let the weights be independent and identically distributed (i.i.d.)
with distribution Pr{qij = −2} = Pr{qij = 0} = 1/2. The event {qij = −2} corresponds to a
failure of the edge (i, j) in the Graph Reliability instance.

Observe now that if the network has a path from u to v, then there is a path from u to v
consisting of edges with weight 0 only and vice versa. Denote A′ = A ∪ (v, u). We now define
the following two stage stochastic programming problem:

max{−cx+Q(x) | 0 ≤ x ≤ 1}

with

Q(x) = E[max{
∑

(i,j)∈A

qijyij + yvu
∣∣

∑
i:(i,j)∈A′

yij −
∑

k:(j,k)∈A′
yjk = 0 ∀j ∈ V,

0 ≤ yij ≤ x ∀(i, j) ∈ A′}],

where c is a parameter, which will be specified in the following. Looking at the above program
more carefully, we can see that for a realization of the random variables, the second stage
problem can have value at most x, because qij ≤ 0 in any case, and this happens when yvu = x.
And, moreover, the only case where we can have a positive value is when yvu > 0. Observe that
the restrictions imposed guarantee that for each vertex, the ingoing “flow” must be equal to
the outgoing, if we think of the variables yij as the flow between two vertices through a specific
edge. So, if at least one variable yij is non-zero, then there must be a closed path of edges with
corresponding variables yij ’s non-zero.

Suppose now that for a realization of the failures of the edges there is a path from u to v
in the network. As we have already stated, each edge of such a path has cost qij = 0. For such
a realization, and having in mind the above observation about the flows, the optimal solution
of the second-stage problem is obtained by setting all yij ’s corresponding to edges (i, j) on this
path and yvu equal to x, and setting yij = 0 for all edges not on the path. This yields a solution
of value x for this realization.

On the other hand, consider a realization in which the graph does not have a path from u
to v. This means that on each path between u and v there is at least one edge with weight -2
(and vice versa). Then, the optimal solution has value 0, since yvu cannot be positive because
that would imply that a closed path between u and v exists, and this optimal solution of value
0 is obtained by setting all yij = 0 and yvu = 0.

Therefore, the network has reliability R if and only if Q(x) = Rx. This implies immediately
that evaluation of Q in a single point x > 0 is ]P-hard. We continue to prove that the two-stage
stage problem is ]P-hard (it is not excluded that finding the optimal solution to a two-stage
problem requires any evaluation of the objective function).

Notice that Q(x) = Rx implies that the objective function value of the two-stage problem is
(R−c)x. Thus, if c < R then the optimal solution is x = 1 with value (R−c), and if c ≥ R then
the optimal solution is x = 0 with value 0. Suppose now that we can solve the above stochastic
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program. Since R can take only 2m possible values, then we could perform a bisection search
on the values of c and this would allow us to compute the exact value of R by solving only at
most m two-stage stochastic programs, since a value 0 would mean that c is on the right half of
the interval examined, and a value z would allow us to compute R = z + c. Thus, if one could
solve the two-stage stochastic programming problem then one could solve the ]P-hard Graph
Reliability problem.

The reader may have noticed that the second stage of the two-stage stochastic programming
problem used in the proof is not a recourse problem. A similar reduction shows that also the
more special class of two-stage stochastic recourse problems are ]P-hard.

The same reduction can also show that the two-stage stochastic integer programming prob-
lem with discretely distributed parameters, i.e. the problem in which second-stage decision
variables are restricted to have integer values, is ]P-hard.

In the two-stage linear programming problem evaluation of Q at any point x is ]P-easy,
since for any realization of the second-stage random parameters a linear program remains to be
solved. Given a ]P-oracle for evaluating Q at any point x, solving two-stage stochastic linear
programming problems (with discretely distributed random variables) will require a polynomial
number of consultations of the oracle, since Q is a concave function in x, and maximizing a
concave function over a convex set is known to be easy [14]. Thus, two-stage stochastic linear
programming is in the class P]P, which is essentially equivalent to ]P ([33]).

Given a ]P-oracle for evaluating Q at any point x, a two-stage stochastic integer program-
ming problem lies in NP. In this case the expected value function is in general not convex but
discontinuous piecewise linear with a finite number of points x that are candidate for optimality
(see [40]). Thus, two-stage stochastic integer programming is in the class NP]P = P]P ([45]).

Regarding two-stage stochastic programming problems with continuously distributed pa-
rameters, ]P-hardness of an evaluation of the expected value function Q can be established
under even the mildest conditions on the distributions. For the proof, a reduction from the
problem of computing the volume of the knapsack polytope is used, ]P-completeness of which
has been proved in [12].

The main result follows:

Theorem 6.2. Evaluation of Q(x) of a two-stage stochastic programming problem with con-
tinuously distributed parameters is ]P-hard, even if all stochastic parameters have the uniform
[0, 1] distribution.

Membership of this problem in ]P would require additional conditions on the input distri-
butions.
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Chapter 7

The k-stage Stochastic Optimization
Problem

It is now time to move on and study stochastic problems with more than 2 stages. Extending
the paraphrase of 2-stage problems, one would naturally ask “and what about Wednesday?”.
The reader should already sense that k-stage problems are generally hard problems, although
we will see that there has been some progress and there are some positive results.

A motiving example that may convince the reader that k-stage stochastic problems are
indeed worth studying is given in [5]. Consider that we want to minimize the expected cost of
operating a water reservoir where one can decide, in each time period, the amount of irrigation
water to be sold while maintaining the level of the reservoir within a specified range (where
penalties are incurred for violating this constraint). The source of uncertainty is, of course, the
variability in rainfall, and there is a simulation model that provides a means to sample from
the distribution of inputs (of rainfall amounts per time period within the planning horizon).
Observe that it is important to model this as a multistage process, rather than as a 2-stage one,
since it allows us to capture essential conditional information, such as given a drought over the
previous period, the next period is more likely to continue these conditions.

More formally, in the k-stage problem, information concerning the input is revealed gradually
in each of the k stages. In the first stage we are given a probability distribution over possible
scenarios and we construct an anticipatory part of the solution, x, incurring a cost c(x). Then,
at each stage i > 1 new information is received and one can buy some extra elements to augment
the current solution. As in 2-stage problems, the cost in each stage increases compared to the
previous one.

Our goal is to minimize the expected cost incurred in all stages together. We should make
some points clear here. In order to better understand what is actually an optimal solution for
a k-stage problem, we can view an optimal solution as a process which suggests a certain and
deterministically specified first-stage solution, and then, in each consecutive stage, and taking
into account the information received up to that stage, suggests a partial solution, so that in the
final stage, where all information is revealed, we have a feasible solution for the scenario realized.
In each stage, the solution Z∗i is a function of the signals s1, ..., si, that is Z∗i = Z∗i (s1, ..., si). So,
choosing these partial solutions leads to a minimization of the expected cost in all stages. In the
case where we have the total description of the distribution, and all the conditional probabilities
that may occur in each stage, our problem becomes a fully deterministic one.

A more illustrative way to describe the k-stage problem is by using a tree. Each level i
corresponds to the stage i, and the children of each node in level i correspond to the possible
realizations of the signal si+1 from the conditional distribution that is uniquely defined when
we follow the path from this node to the root. This also makes explicit that in each stage
i we actually have to solve a remaining (k − i + 1)-stage problem. Observe that an optimal
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solution to our problem “includes” the optimal solutions of all (k − j)-stage subproblems that
can occur, that is, at any node of the tree, the optimal solution of the subproblem that this
node defines is part of the optimal solution of the initial problem. In any case, the main issue
for any algorithm that deals with k-stage problems is how to choose a first-stage vector so as
to minimize the expected cost in all stages.

The last thing to comment on before moving on to algorithms for such problems is how a
black-box is defined for such problems. As in 2-stage problems, all algorithms presented will
be in the black-box model. In the k-stage problem, a black-box is defined as follows: it has
k − 2 input parameters, corresponding to signals s2, s3, ..., sk−1 (we remind the reader that
signal s1 is a dummy signal and signal sk is the realization of the actual input), and depending
on the input given, it can give a sample of the next-stage signal according to the conditional
distribution defined by the input. More specifically, if until stage i we have the realization
(s2, ..., si) = (s2, ..., si), then giving as input this exact vector, the black-box will return a
sample si+1 of the signal si+1 from the conditional distribution π[s2 = s2, ..., si = si]. We can
then emulate the next stages by giving as input consecutively the values sj of the signals sj ,
j > i, produced from the black-box , until we reach a sample S of the actual demands.



Chapter 8

The Multistage Boosted Sampling
Algorithm

8.1 Introduction

In this chapter we are going to present an extension of the Boosted Sampling framework pre-
sented in chapter 3 that will allow us to deal with k-stage stochastic problems. The extension
was given by Gupta etc [18] and led to constant-factor approximations for various problems
provided that the number of stages is considered fixed and not part of the input.

8.2 Model

We are again going to use the definition of an abstract deterministic combinatorial optimization
problem Π, as given in section 1.3. We will work under the assumption that the inflation factors
σi ≥ 1 in each stage are constants and deterministically known in advance. This restriction can
be waived, in a similar way that was done in the original Boosted Sampling algorithm.

At the beginning of the ith stage (where 1 ≤ i ≤ k−1), we receive a signal si that represents
the information gained about future demands that will arise. After this observation si, we know
that future signals, as well as the set S of eventual demands, will come from a revised distribution
conditioned on seeing this signal. After observing the signal si, we can purchase some more
elements Fi at cost (

∏i
j=1 σj)c(Fi). Finally, in the kth stage we observe the realization of the

random variable S = S of demands, and have to buy the final set Fk so that
⋃k
i=1 Fi ∈ Sols(S).

Our goal is to minimize the expected cost incurred in all stages together, that is

E
[ k∑
i=1

(
∏
j≤i

σj)c(Fi)
]
.

We will work with problems that are sub-additive (definition 3.1). We are also going to need
the notion of cost-shares, introduced in section 3.2.2. The reader who has not gone through
that section is suggested to do so before continuing here. We are now going to give some extra
properties for cost-sharing functions, that we will need.

Definition 8.1 (Cross-monotonicity). A cost-sharing function ξ is cross-monotone if for every
pair of clients S ⊆ T and client j ∈ S, we have ξ(X,T, j) ≤ ξ(X,S, j).

This property just states that no demand can cause greater cost, when seen in a superset of
demands.
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We will now present a subtly different notion of strictness than that presented in section
3.2.2. We create a new reduced instance of the problem Π by zeroing out the cost of all elements
in F . This instance is denoted by X/F .

Definition 8.2 (c-strictness). Let S, T ⊆ U be sets of clients, and let X be an instance of Π.
The cost-sharing function ξ given by an algorithm A is β-c-strict if

ξ(X/A(X,S), T, T ) ≤ β · ξ(X,S ∪ T, T ).

This notion of strictness tells us that when we have a solution for a client set S, the cost-
shares for a client set T that occur when we try to augment our solution to a solution for T are
not much costlier than the cost-shares for T when we know from the start the total client set
S ∪ T . It is similar to the notion of β-strictness, but it is a bit more relaxed condition, as no
reference is made to the actual cost of the augmenting solution.

We should note here that a competitive and β-strict cost-sharing function is β-c-strict.
This is easily derived as follows. Since ξ is β-strict, there is an augmenting solution FT such
that c(FT ) ≤ β · ξ(X,S ∪ T, T ). Observe that the augmenting algorithm cannot do better
than OPT (X/A(X,S), T ). Thus, OPT (X/A(X,S), T ) ≤ c(FT ) ⇒ OPT (X/A(X,S), T ) ≤
β · ξ(X,S ∪ T, T ). Using now the fact that ξ is competitive, we get ξ(X/A(X,S), T, T ) ≤
β · ξ(X,S ∪ T, T ), and, thus, ξ is β-c-strict.

We will also need the following property which goes hand-in-hand with c-strictness.

Definition 8.3 (approximation w.r.t ξ). An algorithm A with cost-sharing function ξ is an
α-approximation algorithm with respect to ξ if

c(A(X,S)) ≤ αξ(X,S, S).

Observe that if ξ is competitive, then ξ(X,S, S) ≤ OPT (S), and so an α-approximation al-
gorithm w.r.t ξ gives a stronger guarantee, and also is an α-approximation algorithm. Moreover,
an α-approximation algorithm w.r.t a β-c-strict ξ, is (αβ)-strict. This is also easily provable.
As already mentioned, a simple augmenting algorithm to convert a solution in S to a solution in
T is to solve the instance (X/A(X,S), T ). Thus, in this case c(FT ) = c(A(X/A(X,S), T )). So,
c(FT ) ≤ αξ(X/A(X,S), T, T ), and ξ(X/A(X,S), T, T ) ≤ β · ξ(X,S ∪ T, T ). Combining these
two we get that there exists an augmenting solution FT such that c(FT ) ≤ αβ · ξ(X,S ∪ T, T ).

8.3 The Multi-Boost-and-Sample Algorithm

We will now proceed to the main result of [18]. The idea is the same as the two-stage algorithm.
In each stage i, we sample bσi+1c times from the black-box and we augment the existing solution
so as to satisfy the union of the new samples. Finally, in the kth stage the real set of demands
is revealed and we augment our solution to get a feasible solution for the realized set.

We present here the algorithm Multi-Boost-and-Sample(Π, i) to be executed in stage i.
Note that the algorithm is to be executed in every stage of the problem. Also, observe that
in the special case of 2-stage problems, we get back precisely the original Boosted Sampling
framework.

Having explained how the black-box operates in a k-stage problem, the reader should be in a
position to imagine how a typical sampling procedure for our problem is. Recursion here fits in
very well. What we actually have to do in stage i is emulate bσi+1c executions in the remaining
(k − i)-stages. This way, we can obtain a collection of bσi+1c sampled sets of clients. The
number of calls to the black-box in stage i, as it will become obvious, is

∏k
j=i+1bσjc. Observe

that the total number of samples generated in the kth level of the tree is the number of total
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Algorithm 6: Multi-Boost-and-Sample(Π, i)

1. If i < k, observe the signal si.
If i = k, observe the required set of clients S instead.

2. If i = k, let Dk := S. Else i < k, and then use procedure
Recur-Sample(Π, i, s1, ..., si) to obtain a sample set of clients Di.

3. Let Bi =
⋃i−1
i=1 Fj be the elements that were bought in earlier rounds.

Set the costs of elements e ∈ Bi to zero. Using algorithm A, find a set of
elements Fi ⊆ X \Bi to buy so that (Fi ∪Bi) ∈ Sols(Di).

Algorithm 7: Recur-Sample(Π, i, s1, ..., si)

1. If i = k, draw one sample set of clients Sk from the conditional
distribution [π | s1, ..., sk]. Return the set Sk .

2. If i < k, draw bσi+1c samples of the signal si+1 from the conditional
distribution [π | s1, ..., si]. Let s1, ...sn be the sampled signals
(where n = bσi+1c).

3. For each sample signal sj , j = 1, ..., n, recursively call
Recur-Sample(Π, i+ 1, s1, ..., si, s

j) to obtain a sample set of
clients Sj . Return the set Si =

⋃n
j=1 S

j .

calls in the black-box. However, the procedure Recur-Sample returns unions of samples so we
actually get bσi+1c samples when we call it in the ith stage.

We now state the main results obtained.

Theorem 8.1. Given a problem Π, if A is an α-approximation algorithm w.r.t. a β-c-strict
cost-sharing function ξ, and if ξ is cross-monotone, then Multi-Boost-and-Sample(Π) is an
α ·
∑k−1

i=0 β
i-approximation algorithm for the k-stage stochastic problem Stock(Π).

Note that the approximation guarantee is on expecation. We should mention here that
the additional assumption of cross-monotonicity can be removed at the expense of somewhat
worse approximation ratio. Although many problems have cross-monotone cost-shares, there are
others in which cross-monotone cost-sharing functions with good guarantees are not available
(like Vertex Cover; the interested reader can check [22]). In such cases, we provide the following
theorem.

Theorem 8.2. Given a problem Π, if A is an α-approximation algorithm w.r.t a β1-c-strict
cost-sharing function ξ that is also β2-strict, then algorithm Multi-Boost-and-Sample(Π) is an
α ·
∑k−1

i=0 (β1β2)
i approximation algorithm for the k-stage stochastic problem Stock(Π).

We are now going to prove theorem 8.1, and then explain how the proof can be modified in
order to prove theorem 8.2. As in the proof of the corresponding 2-stage theorem of chapter
3, we will try to separately bound the expected cost of the solution Fi in stage i. However, a
similar approach to the one used in the 2-stage theorem does not succeed here, since we have to
move between the cost-shares and the cost of the solutions Fi, which causes us to lose factors
of ≈ α at each step (observe that the α-approximation w.r.t a β-c-strict function implies, as
already mentioned, a (αβ)-strict function, and thus we would have a loss factor αβ in each
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stage). Instead, we bound all costs incurred in terms of the ξ’s, which can be done since the
approximation algorithm is w.r.t. a cost-sharing function. We first argue that the expected
sum of cost-shares paid in the first stage is no more than the optimum total expected cost Z∗,
and then bound the sum of cost-shares in each consecutive stage in terms of the expected cost
shares from the previous stage (with a loss of a factor of β at each stage). Finally, we bound
the actual cost of the partial solution constructed at stage i by α times the expected cost-shares
for that stage, which gives us the geometric sum claimed in the theorem.

The proof will be presented in steps, as two lemmas will make it much easier. The first
concerns the cost of the first-stage and the other the cost of stage i. Let F ∗ be an optimal
solution to the given instance of Stock(Π). We denote by F ∗i the partial solution built in stage
i; recall that F ∗i = F ∗i (s1, s2, ..., si) is a function of the set of all possible i-tuples of signals that
could be observed before stage i. The expected cost of this solution can be expressed as

Z∗ = σ1E[c(F ∗1 (s1))] + σ1σ2E[c(F ∗2 (s1, s2))] + ...+ σ1...σkE[c(F ∗k (s1, s2, ..., sk))].

Lemma 8.1. The expected cost-share E[ξ(X,D1, D1)] is at most the total optimum cost Z∗.

Proof. Let D1 be the sample set of clients returned by Recur-Sample(Π, 1, s1). We will prove
that there is a solution F̂ (D1) ∈ Sols(D1) such that E[c(F̂ (D1))] ≤ Z∗ (where the expectation
is over the execution of the procedure Recur-Sample). Consider now the tree of recursive calls
of the procedure Recur-Sample. Each call Recur-Sample(Π, i, s1, ..., si) corresponds to a node
in level i of the tree. For each such node we add the set of elements F ∗i (s1, ..., si) to our solution.
Since the optimal solution is a feasible solution for any particular realization of the signals (in
fact, it is a function of these signals, as any other non-trivial solution), it is obvious that the
solution reached, F̂ (D1), is a feasible solution for the set D1. Now, since ξ is competitive, we
have that ξ(X,D1, D1) ≤ OPT (D1) ≤ c(F̂ (D1)). Thus, the expected cost is

E[ξ(X,D1, D1)] ≤ E[c(F̂ (D1))] ≤ E
[ k∑
i=1

(∏
j≤i

σj
)
c(F ∗i )

]
= Z∗.

Lemma 8.2. Let F̂ = F1∪ ...∪Fi−1 be the solution constructed in a particular execution of the
first i − 1 stages, and let si and si+1 be the signals observed in stages i and i + 1 respectively.
Let Di and Di+1 be the random variables denoting the samples returned by the procedure Recur-
Sample in stages i and i + 1, and let Fi be the (random) solution constructed by A for the set
of clients Di. Then,

E[ξ(X/(F̂ ∪ Fi), Di+1, Di+1)] ≤
β

bσi+1c
·E[ξ(X/F,Di, Di)].

Proof. Recall that the sampling procedure Recur-Sample(Π, i, s1, ..., si) gets n = bσi+1c inde-
pendent samples s1, s2, ..., sn of the signal si+1 from the distribution π conditioned on s1, ..., si,
and then for each sampled signal calls itself recursively to obtain the n sets S1, ..., Sn. Note
that the set Di =

⋃n
j=1 Sj is simply the union of these n sets. On the other hand, the set Di+1

is obtained by observing the signal si+1 (which is assumed to come from the same distribution
[π | s1, ..., si]), and then calling Recur-Sample with the observed value of si+1.

In a similar way as done in the proof of the 2-stage theorem, we will consider an alternate,
probabilistically equivalent, view of this process. We first take n + 1 samples s1, ..., sn+1 of
the signal si+1 from the distribution [π | s1, ..., si]. Calling the procedure Recur-Sample(Π, i+
1, s1, ..., si, s

j) for each sj we obtain the sets S1, ..., Sn+1. We now pick an index j uniformly at
random from the set {1, ..., n + 1}. Let Di+1 = Sj , and let Di be the union of the remaining
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n sets. This process of randomly constructing the pair of sets (Di, Di+1) is equivalent to the
original process, as a realization of a signal is equivalent to drawing a sample from the black-box.
Note that Di ∪Di+1 =

⋃n+1
l=1 S

l.

For simplicity of notation, let us denote X/F̂ by X̂. By the definition of β-c-strictness, we
first get

ξ(X̂/Fi, Di+1, Di+1) ≤ β · ξ(X̂,Di ∪Di+1, Di+1).

Taking into account that Di+1 is equivalent to Sj sampled uniformly from n + 1 alternates in
the equivalent process above and that Di is the union of the remaining n sets, we have

E[ξ(X̂,Di ∪Di+1, S
j)] ≤ E

[
1

n
· ξ(X̂,Di ∪Di+1, Di)

]
.

Now we use cross-monotonicity of the cost shares and finally get

E[ξ(X̂,Di ∪Di+1, Di)] ≤ E[ξ(X̂,Di, Di)].

By consecutively using the above inequalities we get our result.

Proof of theorem 8.1. Recall that the expected cost of the solution given by the algorithm
Multi-Boost-and-Sample is

E[Z] = E

[ k∑
i=1

( i∏
j=1

σj
)
c(Fi)

]
.

Using cross-monotonicity and the algorithm A in the instance (X/Bi, Di), where A is an α-
approximation algorithm w.r.t the β-c-strict cost-shares ξ, we have

E[Z] ≤ αE

[ k∑
i=1

( i∏
j=1

σj
)
ξ(X/Bi, Di, Di)

]
.

We can now use lemma 8.2 inductively on ξ(X/Bi, Di, Di) to get that ξ(X/Bi, Di, Di) ≤
βi−1∏i
j=1bσjc

ξ(X,D1, D1). Using this inequality in the bound for E[Z] we get

E[Z] ≤ αE

[ k∑
i=1

βi−1ξ(X,D1, D1)

]
.

Using lemma 8.1 in the above inequality gives our result.

In order now to prove theorem 8.2, which requires no cross-monotone cost-shares, we need
to prove a variation of lemma 8.2. We state the lemma below. The proof is omitted, as it is very
similar to the one of lemma 8.2 and we do not believe it gives any more insight of cost-shares.

Lemma 8.3. Let F̂ = F1∪ ...∪Fi−1 be the solution constructed in a particular execution of the
first i − 1 stages, and let si be the signal observed in stage i. Let Di and Di+1 be the random
variables denoting the samples returned by the procedure Recur-Sample in stages i and i + 1,
and let Fi be the (random) solution constructed by A for the set of clients Di. Then,

E[ξ(X/(F̂ ∪ Fi), Di+1, Di+1)] ≤
β1β2
bσi+1c

·E[ξ(X/F̂ ,Di, Di)].
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8.4 Applications

In this section, we will see some applications of the framework presented in this chapter. We
will not go into any technical details regarding individual problems.

8.4.1 The Rooted Steiner Tree Problem

Theorem 8.3. There is a 2-approximation algorithm for the Minimum Steiner Tree problem
w.r.t. a 1-c-strict cost-sharing function ξ. Furthermore, this ξ is also cross-monotone.

The cost-sharing function ξ for Steiner Tree given by Jain and Vazirani [23] is cross-
monotone, and the minimum spanning tree heuristic is 2-strict w.r.t it. Moreover, it can be
shown to be 1-c-strict. So, we get the following result:

Theorem 8.4. There is a 2k-aproximation algorithm for the k-stage Stochastic Rooted Steiner
Tree Problem.

8.4.2 The Metric Uncapacitated Facility Location Problem

Theorem 8.5. There is a 3-approximation algorithm for the Metric Uncapacitated Facility
Location problem w.r.t a 2-c-strict cost-sharing function ξ. Furthermore, this ξ is also cross-
monotone.

The cost-sharing function used is a slight variant of the cost-sharing function defined by Pál
and Tardos [34]. We get the following result:

Theorem 8.6. There is a 3(2k−1)-approximation algorithm for the k-stage Stochastic MUFLP.

8.4.3 Vertex Cover

Theorem 8.7. There is a 2-approximation algorithm for the Vertex Cover problem w.r.t. a
2-strict and competitive (and hence 2-c-strict) cost-sharing function ξ.

The cost-sharing function used is given in [17]. Note that this function is not cross-monotone,
and thus we use the weaker version of our theorem. We get the following result:

Theorem 8.8. There is a 2
3(4k − 1)-approximation algorithm for the k-stage Stochastic Vertex

Cover.



Chapter 9

The SAA Method for Multistage
Problems

9.1 Introduction

In this chapter, we are going to see how the SAA method can be applied in multistage stochastic
optimization problems. We are going to go through the work of Swamy and Shmoys [43],
who prove that polynomial bounds on the sample size are adequate in order to yield a fully
polynomial approximation scheme for a broad class of multistage stochastic linear programs
with any constant (i.e. not part of the input) number of stages. This, combined with rounding
techniques, can give approximation algorithms for various combinatorial problems. We will
see the results obtained from both the deterministic rounding Swamy and Shmoys suggest in
[38, 43] and the randomized rounding Srinivasan uses in [39] for covering and facility location
problems.

Many ideas presented here are based on techniques developed in chapter 4, and although we
will try to make this chapter as self-contained as possible, we will make some references to that
chapter, so the reader who has skipped it is suggested to take a look at it before proceeding
here.

9.2 An outline of our approach

We once again consider black-box problems. We describe briefly the SAA approach for multi-
stage problems: sample some N times from the distribution on scenarios, estimate the actual
distribution by the distribution induced by the samples, and solve the multistage problem spec-
ified by the approximate distribution. For 2-stage programs, as already presented, we just
estimate the probability of scenario A by its frequency in the sampled set; for k-stage programs
we construct an approximate k-level distribution tree by sampling repeatedly for each level: we
sample T2 times to obtain some stage 2 outcomes, for each such outcome we sample T3 times
from the conditional distribution given that outcome to generate some stage 3 outcomes and so
on, and for each sampled outcome we estimate its conditional probability of occurrence given
the previous-stage outcome by its frequency in the sampled set. The multistage problem spec-
ified by the approximate distribution is called the sample average problem, and its objective
function is called the sample average function. If the total number of samples N is polynomially
bounded, then since the approximate distribution has support of size at most N , the sample
average problem can be solved efficiently by solving a polynomial size linear program.

Our goal is to prove that a polynomial sample size suffices so that with high probability,
every optimal solution to the SAA problem is near-optimal to the true problem. We are going to
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deal with linear programs, which can be viewed as relaxations of integer programs corresponding
to combinatorial problems. So, reaching such a result would mean that an optimal solution to
the SAA problem, which is a polynomial size problem and thus easily solvable, would be a
“good” solution to the true problem.

An initial approach towards this would be to try and prove that the values of the SAA
function and the true function are close to each other. Observe that this would imply that
we can approximate the value of the true function at any point. This however immediately
runs into problems since the variance in the scenario costs could be exponentially large, so
that one cannot hope to estimate the true function value to within a reasonable accuracy with
a polynomial number of samples. This is due to some extremely low-probability high cost
outcomes which contribute significantly towards the cost in the true problem, but will almost
never be sampled with only a polynomial number of samples, and so they contribute nothing
to the SAA function. We remind the reader that such an observation was also made in chapter
5, where we used a somewhat weaker notion of high cost samples. The key fact here is that
such rare outcomes do not significantly influence the first-stage decision, since it is reasonable
to defer decisions for such outcomes till later.

Taking into account the results obtained in chapter 4, we could try convex optimization
techniques in order to show the near-equivalence of the two problems. The minimizer of a
convex function is determined by its “slope” (i.e. its gradient or subgradient). In our case,
and as already suggested in chapter 4, we can use subgradients as a measure of the “slope”
of our functions and show that they are close to each other. We can then argue that this is
sufficient to prove the aforementioned near-equivalence of the two (true and SAA) minimization
problems. More specifically, we identify a notion of closeness between any two functions based
on their subgradients so that if two functions are close under this criterion, then minimizing one
is approximately equivalent to minimizing the other. Next, we show that the objective functions
of the original multistage problem, and the sample average problem with polynomially bounded
sample size, satisfy this “closeness-in-subgradients” property with high probability, and thus we
obtain the desired result.

To get some intuition about this “closeness-in-subgradients” property, one can think of
the ellipsoid algorithm of Shmoys and Swamy presented in chapter 4. Remember that our
goal there was to solve the problem: minx∈P h(x), where h is a convex function defined in a
(convex) polytope P. As we were not able to calculate any value of h, the algorithm used
only information about the subgradient of h in order to make progress. Thus, two functions
that satisfy this ”closeness-in-subgradients” property in a (convex) polytope P, would make the
algorithm run identically on the corresponding minimization problems. And although this only
proves that one (and not every) optimal solution is near optimal to the other problem, we will
formalize this “closeness-in-subgradients” property and prove that it is a sufficient condition to
prove the near-equivalence of the two problems, even when satisfied only in a (dense) finite grid
of polytope P.

We now turn our attention to choosing an appropriate subgradient that will be convenient in
proving the “closeness” property. We remind the reader here of the “nice” subgradient presented
in lemma 4.8, and the fact that we could component-wise approximate it through a sampling
process. We will try to expand this idea. The crucial point which makes things more difficult in
multistage problems compared to 2-stage problems is that the above subgradient is constructed
from the dual of the recourse problem. In 2-stage problems, the true problem and the SAA
problem have the same recourse problem, which is a standard LP, and so the property is not
hard to prove. However, for k ≥ 3 stages, the recourse problem is a (k− 1)-stochastic problem,
and so the true recourse and the SAA recourse are different because of the difference of their
distributions (the first having the true distribution, while the second having the sampled one
produced by the SAA method).
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We will now describe how we can get over this difficulty by focusing on a 3-stage problem.
The recourse problem in such a case is a 2-stage stochastic problem. What we need to show
is that by solving the dual of the SAA recourse we have a good solution for the true dual.
In other words, we need to show an SAA theorem for the 2-stage recourse problems, which
leads us to try and prove the closeness property for the max-subgradients of the two problems.
However, we cannot do so, as the duals have generally different feasible region (this is due to
the polynomial approximation of the original distribution). So, what we actually need is to
formulate the recourse problems differently. By using a Lagrangian dual of the recourse, we
formulate the dual as a concave maximization problem with a 2-stage primal LP embedded in
it. Now, a max-subgradient of the dual can be calculated from this embedded 2-stage LP. Thus,
the only thing left to prove is an SAA theorem for these embedded 2-stage primal programs,
which can be done.

Using this idea inductively, one can generalize in k-stage problems, where k is any fixed
number. We will see all these in more detail in the following section. But before proceeding
to our analysis, we should make one last comment. The main idea of our approach is the
“closeness-in-subgradients” property that the true and the SAA function satisfy. One can look
at it in a different way. Since we want to actually solve a simpler problem, we need to prove
that the true problem is near-equivalent to a simpler one. The properties of subgradients can
guide us to look for simpler objective functions which have subgradients that are approximate
subgradients for the true function. Now, by observing that approximate subgradients of the
true function can be calculated through sampling and averaging, we are led to try the SAA
function. And we see that it really fits in very well.

9.3 Analysis

We now proceed to see all the ideas mentioned above in more detail. We at first give some
definitions that we are going to need. We will need a slightly different, weaker definition
of approximate subgradients than the one given in 4.2. Note that the algorithm presented in
chapter 4 can be implemented by using this notion of approximate subgradient. Let g : Rm → R.

Definition 9.1. We say that d̂ is an (ω,∆,D)-subgradient of g at the point u ∈ D if for every
v ∈ D, we have that g(v)− g(u) ≥ d̂ · (v − u)− ωg(u)− ωg(v)−∆.

We will consider convex minimization problems minx∈P g(x) where P ⊆ Rm≥0 is a polytope
and g(.) is convex. We remind the reader of the definition of Lipschitz constant 4.3 and a
relevant lemma 4.9.

We will also encounter concave maximization problems maxx∈P g(x), where g(.) is concave.
Analogous to the definition of a subgradient, we define a max-subgradient and an approximate
version of a max-subgradient.

Definition 9.2. We say that d is a max-subgradient of a function g : Rm → R at u ∈ Rm if
for every point v ∈ Rm, we have g(v)− g(u) ≤ d · (v − u). We say that d̂ is an (ω,∆,D)-max-
subgradient of g(.) at u ∈ D if for every v ∈ D we have g(v)− g(u) ≤ d · (v − u) + ωg(u) + ∆.

When D is clear from the context, we abbreviate (ω,∆,D)-subgradient and (ω,∆,D)-max-
subgradient to (ω,∆)-subgradient and (ω,∆)-max-subgradient respectively. If ∆ = 0, we
will use (ω,D)-subgradient and (ω,D)-max-subgradient, instead of (ω,∆,D)-subgradient and
(ω,∆,D)-max-subgradient respectively. We will frequently use (ω,∆,P)-subgradients which we
abbreviate and denote as (ω,∆)-subgradients from now on.

We will also need the following sampling lemma which is proved using simple Chernoff
bounds (we remind the reader of the similar lemma 4.10).
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Lemma 9.1. Let Xi, i = 1, ..., N = 4(1+k)2

c2
ln
(
2
δ

)
be iid random variables where each Xi ∈

[−a, b], a, b > 0, k = max(1, a/b), and c ∈ [0, 1]. Let X = (
∑

iXi)/N and µ = E[X] = E[Xi].
Then Pr

[
X ∈ [µ− cb, µ+ cb]

]
≥ 1− δ.

Proof. Let Yi = Xi+a ∈ [0, a+b] and Y =
∑

i Yi. Let µ′ = E[Yi] = µ+a. We want to calculate
the probability of the events [X > µ+ cb] and [X < µ− cb]. We have E[Y ] = N(µ+ a), so

X > µ+ cb⇔∑
i

Xi > Nµ+Ncb⇔∑
i

Yi > Nµ+Ncb+Na⇔

Y > E[Y ] +Ncb⇔

Y > E[Y ]
(

1 +
Ncb

N(µ+ a)

)
⇔

Y > E[Y ]
(

1 +
cb

µ′

)
Let v = cb/µ′. Thus we have that Pr[X > µ+ cb] = Pr[Y > E[Y ](1 + v)]. In a similar way

we get Pr[X < µ− cb] = Pr[Y < E[Y ](1− v)]. Note that µ′ ≤ a+ b. Since the variables Yi are
independent we can use Chernoff bounds. We have that Pr[X < µ− cb] = Pr[Y < E[Y ](1− v)]

is at most e
− v

2Nµ′
2(a+b) = e

− (cb)2N

2µ′(a+b) ≤ δ
2 . To bound Pr[Y > E[Y ](1 + v)] we consider two cases. If

v > 2e−1, then this quantity is at most 2−
(1+v)Nµ′

a+b which is bounded by 2−
vNµ′
a+b
≤ δ

2 . If v ≤ 2e−1,

then the probability is at most e
− v

2Nµ′
4(a+b) = e

− (cb)2N

4µ′(a+b) ≤ δ
2 . So, using the union bound, we get

that Pr
[
X /∈ [µ− cb, µ+ cb]

]
≤ δ.

We are now ready to prove that the “closeness-in-subgradients” property is sufficient for our
goal.

9.3.1 Sufficiency of closeness in subgradients

Let g : Rm → R and ĝ : Rm → R be two functions with Lipschitz constant (at most) K. Let
P ⊆ Rm≥0 be the bounded feasible region, R be a radius such that P is contained in the ball
B(0, R) = {x : x ≤ R}, and V be a radius such that P contains a ball of radius V (where V ≤ 1
without loss of generality). Let z be a point in P. Let ε, γ > 0 be two parameters with γ ≤ 1.
Set N = log2(

2KR
ε ) and ω = γ

8N .
As already mentioned, we will prove the “closeness-in-subgradients” property in a finite

grid. For this purpose, we will define two grids of the polytope P. Let G′ = {x ∈ P :

xi − zi = ni ·
(

εV
8KNR

√
m

)
, ni ∈ Z for all i = 1, ...,m}. This is an orthogonal grid with cell

size εV
8KNR

√
m

in each dimension. We now extend this grid in the following way. Set G =

G′ ∪ {x+ t(y − x), y + t(x− y) : x, y ∈ G′, t = 2−i, i = 1, ..., N}.
We call G′ and G the εV

8KNR
√
m

-grid and the extended εV
8KNR

√
m

-grid of the polytope P,

respectively, keeping in mind that these two grids are always “around” a fixed point in P.
We will now prove two useful properties of our grid. Let volm denote the volume of the unit

ball in m dimensions.

Lemma 9.2. Let G′ be an ε-grid of P around some z ∈ P, and G be the corresponding extended
grid. Then, the volume of a grid cell of G′ is at least

(
ε
2

)m
volm. Hence, |G′| ≤

(
2R
ε

)m
and

|G| ≤ N |G′|2, where |G′| and |G| denote the number of cells that each grid contains.
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Proof. Each grid cell of G′ has size ε in each dimension, and thus it contains a ball of radius
ε/2. So, the volume of the cell is at least

(
ε
2

)m
volm (see also lemma 4.1). Since the cells of G′ are

pairwise disjoint and taking into account that the polytope P is contained in the ball B(0, R)
which has volume Rmvolm, we get that |G′| ≤ Rmvolm

(ε/2)mvolm
=
(
2R
ε

)m
. Now, by the definition of G

we get |G| ≤ |G′|+ 2N
(|G′|

2

)
≤ N |G′|2.

The following lemma now shows that the grid we have chosen is sufficiently dense.

Lemma 9.3. Let G′ be the εV
8KNR

√
m

-grid of P around z. Then for every x ∈ P, there exists

x′ ∈ G′ such that ‖x− x′‖ ≤ ε
KN .

We omit the formal proof, as the techniques used are very similar to the ones used in lemma
4.4. We again use a scaling argument and shrink our initial polytope around x. We then use
the center of the ball B(0, R) that contains polytope P and which has the property that each
other point of P is at distance at most R from it, and by taking advantage of the scaling in
distances in the shrinked polytope we prove that there exists a point in our grid that is near to
x.

We are ready to state the “closeness-in-subgradients” property in a more formal way. Fix
∆ > 0. We first consider minimization problems. We say that g and ĝ satisfy property (A) if

∀x ∈ G, ∃d̂x ∈ Rm : d̂x is a subgradient of ĝ(.) and an (ω,∆)-subgradient of g(.) at x. (A)

We should mention here that we could replace the grid G′ defined above by any grid suffi-
ciently dense so that is satisfies lemma 9.3, and use the corresponding extended grid. The only
restriction we will need for multistage programs is that ln |G′| (and hence ln |G|) should be
polynomially bounded. The following lemma now shows that the “closeness-in-subgradients”
property is sufficient to prove that an every optimal solution for function ĝ is near-optimal for
function g.

Lemma 9.4. Suppose g and ĝ are functions that satisfy property (A). Let x∗, x̂ ∈ P be points
that respectively minimize g(.) and ĝ(.) over P, and suppose g(x∗) ≥ 0. Then, g(x̂) ≤ (1 +
γ)g(x∗) + 6ε+ 2N∆.

Proof. Let x̃ be the point in G′ closest to x∗, so ‖x̃− x∗‖ ≤ ε
KN (by lemma 9.3). Since g has

Lipschitz constant K we get that g(x̃) ≤ g(x∗) + ε. We will consider two cases. Consider first
the case when x̂ ∈ G′. We will argue that there is a point x near x̂ such that g(x) is close to
g(x∗), and from this it will follow that g(x̂) is close to g(x∗).

Let y = x̂
(
1− 1

2N

)
+
(

1
2N

)
x̃ ∈ G, since both x̂, x̃ ∈ G′. From property (A) we get a subgradient

d̂y at point y for function ĝ. From the definition of subgradients, we have ĝ(x̂)−ĝ(y) ≥ d̂y ·(x̂−y).

Since x̂ is an optimal solution, it must be that d̂y · (x̂ − y) ≤ 0. Observing the “direction” of
vectors x̂− y and x̃− y, or by simply substituting x̂ in the above inequality with the equation
that defines y, we get d̂y · (x̃− y) ≥ 0.

By the definition of an (ω,∆)-subgradient we have

g(y) ≤ (1 + ω)g(x̃) + ∆

1− ω

≤ (1 + 4ω)(g(x̃+ ∆)

(
since ω =

γ

8N
≤ 1

4

)
≤ (1 + γ)(g(x∗) + ε+ ∆)

≤ (1 + γ)g(x∗) + 2ε+ 2∆ (γ ≤ 1)
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Also, ‖x̂ − y‖ = ‖x̂−x̃‖
2N

≤ ε
K since ‖x̂ − x̃‖ ≤ 2R. So, due to the Lipschitz constant we get

g(x̂) ≤ g(y) + ε ≤ (1 + γ)g(x∗) + 3ε+ 2∆.
Consider now the case when x̂ /∈ G′. Let x̄ be the point in G′ closest to x̂, so that ‖x̄− x̂‖ ≤

ε
KN , and ĝ(x̄) ≤ ĝ(x̂) + ε

N . For any y ∈ G, if we consider d̂y given by property (A), it need not

be that d̂y · (x̄ − y) ≤ 0, so we have to argue a little differently. Observe however that, since

ĝ(x̄) ≤ ĝ(x̂)+ ε
N , we have that for any y ∈ G, d̂y·(x̄−y) ≤ ε

N , otherwise x̂ would not be an optimal
solution. So, we consider the set of points yi, with y0 = x̃ and yi = (x̄+yi−1)/2, for i = 1, ..., N .
Note that each yi ∈ G. Thus, we have d̂yi · (yi−1 − yi) = −d̂yi · (x̄− yi) ≥ − ε

N . Since d̂yi is an
(ω,∆)-subgradient of g(.) at yi, by simple calculus we get g(yi) ≤ (1 + 4ω)

(
g(yi−1) + ε

N + ∆
)
.

This implies that g(yN ) ≤ (1 + 4ω)N (g(x̃) + ε + N∆) ≤ (1 + γ)g(x∗) + 4ε + 2N∆. So g(x̂) ≤
g(yN ) + 2ε ≤ (1 + γ)g(x∗) + 6ε+ 2N∆.

As a corollary of the above lemma, we get the following result concerning approximate and
not exact minimizers of function ĝ.

Corollary 9.1. Suppose g and ĝ are functions that satisfy property (A). Let x∗, x̂ ∈ P be points
that respectively minimize g(.) and ĝ(.) over P, and suppose g(x∗) ≥ 0. Also, let x′ ∈ P be such
that ĝ(x′) ≤ ĝ(x̂) + p. Then, g(x′) ≤ (1 + γ)g(x∗) + 6ε+ 2N∆ + 2Np.

The proof is very similar to the proof of lemma 9.4 and it is omitted. Also, with similar
reasoning we can get analogous results for maximization problems. We state the corresponding
property for such problems. We say that g and ĝ satisfy property (B) if

∀x ∈ G, ∃d̂x ∈ Rm : d̂x is a max-subgradient of ĝ(.) and an (ω,∆)-max-subgradient

of g(.) at x. (B)

The analogous result is now this.

Lemma 9.5. Suppose g and ĝ are functions that satisfy property (B). Let x∗, x̂ ∈ P be points
that respectively maximize g(.) and ĝ(.) over P, and suppose g(x∗) ≥ 0. Then, g(x̂) ≤ (1 −
γ)g(x∗)− 4ε−N∆.

We now focus on finding a “nice” subgradient that will let us prove the closeness property.
We will begin by studying 2-stage problems. The next section is dedicated to proving this for
2-stage problems, and it is the only section of this part that could actually be moved in the first
part of this thesis, where we dealt with 2-stage problems exclusively. However, we have decided
to put the analysis here, as we think it will help the reader to better understand the difficulties
that occur for problems of 3 or more stages by making the comparison between such problems.
In any case, the section that follows could be put side by side with chapter 5.

9.3.2 The SAA bound for 2-stage programs

We will now consider the class of problems that we have studied in section 4.3. We restate the
problem.

(2Gen-P):

min: h(x) = wI · x+
∑
A∈A

pAfA(x) subject to x ∈ P ⊆ Rm≥0,

where fA(x) = min: wA · rA + qA · sA
s.t: DAsA + TArA ≥ jA − TAx

rA ∈ Rm≥0, sA ∈ Rn≥0.
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We remind the reader of the assumptions made, (a) TA ≥ 0 for every scenario A, and (b)
for every x ∈ P,

∑
A∈A pAfA(x) ≥ 0 and the primal and dual problems corresponding to fA(x)

are feasible for every scenario A. It is assumed that P ⊆ B(0, R) and P contains a ball of
radius V (V ≤ 1) where ln(R/V ) is polynomially bounded. To prevent an exponential blowup
in the input, we consider an oracle model where an oracle supplied with scenario A reveals the
scenario-dependent data (wA, qA, jA, DA, TA). We also define λ = max(1,maxA∈A,S w

A
S /w

I
S),

which we assume it is known. Let OPT be the optimum value and I denote the input size.
The sample average function is now ĥ(x) = wI · x +

∑
A∈A p̂AfA(x) where p̂A = NA/N ,

with N being the total number of samples and NA being the number of times scenario A is
sampled. The sample average problem is minx∈P ĥ(x). Observe that the recourse problem
for each scenario realized is the same for both the true problem and the sample average one.
We will now show that with a polynomially bounded N , h(.) and ĥ(.) satisfy property (A)
(“closeness-in-subgradients”) with high probability.

To do so, we will use the “nice” subgradient that is calculated from the dual recourse
programs. We remind the reader of lemmas 4.7 and 4.8. As the latter lemma was about
the stochastic set cover formulation, the subgradient for the above more general program is
calculated from a similar formula. More specifically, if (z∗A) is an optimal solution to the dual
of fA(x) then dx = wI −

∑
A pA(TA)T z∗A is a subgradient of h at x. With similar reasoning, we

get that d̂x = wI−
∑

A p̂A(TA)T z∗A is a subgradient of ĥ at x, and we also have that E[d̂x] = dx,
where the expectation is over the random samples (the reader can also check corollary 4.2).
Now, since the vector wI − (TA)T z∗A lies in [−λwIS , wIS ], we can use the sampling lemma 9.1 to
show that property (A) holds. So, we reach the following result:

Theorem 9.1. For any ε, γ > 0 (γ ≤ 1), with probability at least 1 − δ, any optimal solution

x̂ to the SAA problem constructed with poly
(
I, λ, 1γ , ln

(
1
ε

)
, ln
(
1
δ

))
samples satisfies h(x̂) ≤

(1 + γ) ·OPT + 6ε.

Proof. We only need to show that property (A) holds with probability at least 1 − δ with a
polynomial sample size; the rest follows from lemma 9.4. We will use the grid that we have
already defined, i.e. we set N = log2

(
2KR
ε

)
, ω = γ

8N , and the extended εV
8KNR

√
m

-grid G of

P. Note that log
(
KR
V

)
is polynomially bounded in the input size. Let n = |G|. From lemma

9.2 we get that n = O
(
N
(
2R
ε

)2m)
. We are now going to use the sampling lemma 9.1. Observe

that each random variable lies in [−λwIS , wIS ]. Since we need total error probability δ, we can
think as follows. We fix a point x ∈ G. We want to calculate an approximate subgradient at
this point. Since we work in m dimensions, we need error probability δ′/m for each coefficient
of the subgradient, so as the total error probability by union bound is at most δ′. Note that
property (A) states that at every point x in the grid we need the “closeness-in-subgradients”.
Thus, again using union bound, in order to have total error probability δ we must have δ′ = δ/n.
Thus, we plug the error probability value δ/(mn) in the sampling lemma. Also, note that the
random variable defined in the lemma as the average of the N iid random variables corresponds
exactly to the formula wI−

∑
A p̂A(TA)T z∗A produced by the SAA problem in order to calculate

the subgradient. Thus, using this sampling lemma we achieve exactly what we want.

Plugging things together, we get that N = 4(1+λ)2

3ω2 ln
(
2mn
δ

)
samples are sufficient in order

for property (A) to hold with probability at least (1 − δ). We can easily now get that N =

O
(
mλ2 log2

(
2KR
ε

)
ln
(
2KRm
εV δ

)
/γ2
)

= poly
(
I, λ, 1γ , ln

(
1
ε

)
, ln
(
1
δ

))
.

One can convert the above guarantee into a purely multiplicative (1 + z)-approximation
guarantee by setting γ and ε appropriately, provided that we have a lower bound on OPT (that
is at least inverse exponential in the input size). As shown in chapter 4 and the procedure
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ConvOpt presented there, an initial sampling step is sufficient in order to obtain such a lower
bound (with high probability). Using this we obtain that (under some mild assumptions) the
SAA method returns a (1 + z)-optimal solution to (2Gen-P) with high probability. This is
essentially equivalent to the result stated in theorem 4.3.

9.3.3 Towards multistage problems: the 3-stage stochastic set cover

Before handling k-stage problems, we will focus on the 3-stage Stochastic Set Cover. The ideas
presented in this section will be then generalized so as to prove a polynomial bound on k-stage
problems.

One way of formulating multistage problems is as exponentially large LP’s. However, such
a representation does not help, as has already been obvious in the special case of 2-stage Set
Cover, studied in section 4.2. Thus, we are going to try a similar approach to the one made in
the 2-stage problem, and write our objective function as a function of the first-stage vector.

More formally, in the Stochastic Set Cover Problem, we are given a universe U of n elements
and a family S of m subsets of U , and the set of elements to cover is determined by a probability
distribution. In the 3-stage problem this distribution is specified by a 3-level tree. We use
A to denote an outcome in stage 2, and (A,B) to denote a stage 3 scenario where A was
the stage 2 outcome. Let A be the set of all stage 2 outcomes, and for each A ∈ A let
BA = {B : (A,B) is a scenario}, that is BA is the set of all possible outcomes of stage 3 if the
outcome of stage 2 is A. Let pA and pA,B be the probabilities of outcome A and scenario (A,B)
respectively, and let qA,B = pA,B/pA . Note that

∑
A∈A pA = 1 =

∑
B∈BA qA,B for every A ∈ A.

We have to cover the (random) set of elements E(A,B) in scenario (A,B), and we can buy a
set S in stage 1, or in stage 2 outcome A, or in scenario (A,B) incurring a cost of wIS , wAS and

wA,BS respectively. We assume that λ = maxS,A∈A,B∈BA max
(
1,

wAS
wS
,
wA,BS

wAS

)
is known.

Let x, yA and zA,B denote the decisions in stage 1, outcome A and scenario (A,B), respec-
tively. The relaxed 3-stage Set Cover can now be written as follows:

(3SSC-P):

min: h(x) =
∑
S

wISxS +
∑
A∈A

pAfA(x) subject to 0 ≤ xS ≤ 1 for all S,

where

fA(x) = min
{∑

S

wAS yA,S +
∑
B∈BA

qA,BfA,B(x, yA) : yA,S ≥ 0 for all S
}
, (3SSCR-P)

and

fA,B(x, yA) = min
zA,B∈Rm≥0

{∑
S

wA,BS zA,B,S :
∑
S:e∈S

zA,B,S ≥ 1−
∑
S:e∈S

(xS + yA,S) ∀e ∈ E(A,B)
}
.

In order to get a better understanding of the above program, observe that the recourse
problem (3SSCR-P) is a 2-stage Set Cover instance. Let P = {x ∈ Rm : 0 ≤ xS ≤ 1, for all S}
and OPT = minx∈P h(x). Note that P contains a ball of radius V = 1/2, and is contained
in B(0, R) where R =

√
m. The sample average problem is parameterized by (i) the sample

size T2 used to estimate probability pA by the frequency p̂A = T2;A/T2, and (ii) the number
of samples T3 generated from the conditional distribution of scenarios in BA for each A with
p̂A > 0 to estimate qA,B by q̂A,B = T3;A,B/T3. So the total sample size is T2 · T3. The sample
average problem is similar to (3SSC-P) with p̂A replacing pA, and q̂A,B replacing qA,B in the

recourse problem fA(x). We use f̂A(x) = minyA≥0

(
wA · yA +

∑
B∈BA q̂A,BfA(x, yA)

)
to denote
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the sample average recourse problem for outcome A, and ĥ(x) = wI · x +
∑

A∈A p̂Af̂A(x) to
denote the sample average function.

Observe now that the recourse problems of the true problem and the sampled problem are
different for each outcome A. This is a crucial point, as it makes the analysis much more difficult
for k ≥ 3 stages. As already stated, in order to prove the “closeness-in-subgradients” property,
we focus on a certain subgradient computed from the solutions of the dual of the recourse prob-
lem. Since the recourse problems are different, so are their duals and thus we cannot proceed
without modifying these duals. Our goal is to modify them in such a way so that we can prove
that solving one dual to optimality is equivalent to solving the other to near-optimality, that is,
we need to show an SAA theorem for these two duals. To achieve this, we first formulate the
dual as a compact concave maximization problem, then slightly modify the two dual programs
and show that the dual objective functions become close in terms of their max-subgradients,
and then use lemma 9.5 to obtain the required SAA theorem (for the duals). A max-subgradient
of the dual objective function is obtained from the optimal solution of a 2-stage primal problem
and we use theorem 9.1 to prove the closeness in max-subgradients of the sample average dual
and the true dual. This method can be then applied inductively to prove an SAA bound for a
large class of k-stage stochastic LPs.

A parenthesis: the Lagrangian relaxation

We will now introduce the notion of Lagrangian relaxation, from which we formulate the La-
grangian dual. Lagrangian relaxation is a technique well suited for problems where the con-
straints can be divided into two sets:

• “good” constraints, with which the problem is solvable very easily

• “bad” constraints that make it very hard to solve.

The main idea is to relax the problem by removing the “bad” constraints and putting them
into the objective function, assigned with weights (the Lagrangian multipliers). Each weight
represents a penalty which is added to a solution that does not satisfy the particular constraint.
We will give a simple example in order to get some intuition about this technique. Consider an
LP problem x ∈ Rn, A ∈ Rm,nRn, c ∈ Rn and b ∈ Rn of the following form:

min: cT · x
s.t.: Ax ≥ b

If we split the constraints in A such that A1 ∈ Rm1,n, A2 ∈ Rm2,n and m1 + m2 = m we may
write the system:

min: cT · x
s.t.: A1x ≥ b1

A2x ≥ b2

We assume now that optimizing over the first set of constraints can be done very easily, whereas
adding the “bad” constraints A2x ≥ b2 makes the problem intractable. Therefore, we introduce
a dual variable for every constraint of A2x ≥ b2. The vector λ ≥ 0 is the vector of dual
variables (the Lagrangian multipliers) that has the same dimension as vector b2. For a fixed
λ ≥ 0, consider the relaxed problem

Z(λ) = min{cT · x+ λT (b2 −A2x) : A1x ≥ b1}.
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By assumption, we can efficiently compute the optimal value for the relaxed problem with a
fixed vector λ. Observe that since λ ≥ 0, we get penalized if we violate the “bad” constraints,
and we are also rewarded if we satisfy the constraint strictly. The above system is called the
Lagrangian Relaxation of our original problem.

Of particular use is the property that for any λ, the optimal result to the Lagrangian
Relaxation problem will be smaller than the optimal result to the original problem, i.e. Z(λ)
provides lower bounds to the optimal value of the initial problem (weak duality). This is easily
provable. Now, if we seek the highest lower bound, we formulate the problem

P (λ) = max{Z(λ) : λ ≥ 0}.

The above program is called the Lagrange dual.
A Lagrangian Relaxation algorithm thus proceeds to explore the range of feasible λ val-

ues while seeking to maximize the result returned by the inner Z problem. Each value re-
turned by Z is a candidate lower bound to the problem, the highest of which is kept as
the best lower bound. If we additionally employ a heuristic, probably seeded by the val-
ues returned by Z, to find feasible solutions to the original problem, then we can iterate
until the best lower bound and the cost of the best feasible solution converge to a desired
tolerance. The interested reader can refer to [6] for more information on Lagrange duality.

Returning back to our problem, we will formulate the dual of the recourse problem as a La-
grangian dual. Let fA(0;W ) (respectively f̂A(0;W )) denote the recourse problem fA(0) (respec-
tively f̂A(0)) with costs wA = W , that is, fA(0;W ) = minyA≥0

(
W ·yA+

∑
B∈BA qA,BfA,B(0, yA)

)
.

To produce the dual, we do the following:

• We add the (redundant) constraints xS + yA,S ≥ rS to fA(x).

• We then write the objective function of fA(x) as
∑

S w
A
S yA,S +

∑
B∈BA qA,BfA,B(0, r).

• We finally take the Lagrangian dual of the resulting program by dualizing (i.e. labeling
as “bad”) only the xS + yA,S ≥ rA,S constraint using αA,S as the Lagrangian multiplier.

The resulting duals of the true and the sample average recourse problems are:

LDA(x) = max
0≤αA≤wA

lA(x;αA) and L̂DA(x) = max
0≤αA≤wA

l̂A(x;αA)

where lA(x;αA) = −αA · x+ fA(0;αA) and l̂A(x;αA) = −αA · x+ f̂A(0;αA).
The above formulation will prove really convenient. The first result obtained is strong

duality. More formally:

Lemma 9.6. At any point x ∈ P and outcome A ∈ A, fA(x) = LDA(x) and f̂A(x) = L̂DA(x).

The proof is omitted. As a note to the reader, for the rest of this chapter, most proofs will
be omitted, as there are many intermediate results to be proved in order to reach our goal and
moreover, many of the proofs become even more technical than the ones presented in chapter 4,
and so we believe that analytical presentation of each proof would discourage the reader. The
very interested reader can refer to the paper itself to delve into these technical details. However,
we will try to present some of their basic ideas and get some intuition of the results obtained.

We will now use the above lemma to prove that we can computer a nice subgradient from
the optimal solution to the dual constructed (we again remind the reader of lemmas 4.7 and
4.8).
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Lemma 9.7. Fix x ∈ P. Let αA be a solution to LDA(x) of value lA(x;αA) ≥ (1− ε)LDA(x)−
εwI · x − ε′ for every A ∈ A. Then, (i) d = wI −

∑
A pAαA is an (ε, ε′)-subgradient of h(.)

at x with ‖d‖ ≤ λ‖wI‖; (ii) if d̂ is a vector such that d − ωwI ≤ d̂ ≤ d + ωwI , then d̂ is an
(ε+ ω, ε′)-subgradient of h(.) at x.

The proof of the above lemma is pretty straightforward. Now, since ĥ(.) is of the same form
as h(.), we can use the above lemma to show that d̂x = wI −

∑
A p̂Aα̂A is a subgradient of ĥ(.)

at x where α̂A is an optimal solution to L̂DA(x). The above lemma also shows that both h
and ĥ have Lipschitz constant at most λ‖wI‖. Observe now that if we prove that any optimal

solution to L̂DA(x) is a near-optimal solution to LDA(x), then by using the same approach
used in the 2-stage problem, we can prove that the expected value of d̂x is an approximate
subgradient of h(.), and so, by utilizing the sampling lemma again we will be able to prove the
“closeness-in-subgradients” of h and ĥ.

However, in our attempt to prove that any optimal solution to L̂DA(x) is a near-optimal
solution to LDA(x) we run into some technical difficulties. We could try to argue this by showing
that lA(x; .) and l̂A(x; .) are close in terms of their max-subgradients (that is, satisfy property

(B)) because LDA(x) and L̂DA(x) are maximization problems, however some problems arise
here. A max-subgradient of lA(x; .) at αA is obtained from a solution to the 2-stage problem
given by fA(0;αA) (we will see this in detail in lemma 9.11), and to show closeness in max-
subgradients at αA we need to argue that an optimal solution ŷA to f̂A(0;αA) is a near-optimal
solution to fA(0;αA). The first thing that comes to mind is theorem 9.1 since we now have a
2-stage problem, but this statement need not be true (with a polynomial sample size) since the

ratio maxS

(
wA,Bs
αA,S

)
of the second and first-stage costs in the 2-stage problem fA(0;αA), could

be unbounded. To tackle this, we modify the feasible region of αA so as to bound this ratio,
and so we consider instead the modified dual problems

LDA;p(x) = max
pwI≤αA≤wA

lA(x;αA) and L̂DA;p(x) = max
pwI≤αA≤wA

l̂A(x;αA)

for a suitable p ∈ (0, 1). More precisely, we should define the feasible region of LDA;p(x) and

L̂DA;p(x) as {αA ∈ Rm : pmin{wI , wA} ≤ αA ≤ wA} to ensure that the feasible region is
non-empty; we assume for simplicity for now on that wI ≤ wA. Observe that we have achieved
to bound the cost ratio in the 2-stage problem fA(0;αA) by λ2

p for any A ∈ A.
We can now prove the following SAA theorem for the above modified duals.

Lemma 9.8. For any parameters ε, ε′ > 0, p ∈ (0, 1), any x ∈ P, and any outcome A ∈ A, if
we use T (ε, p, ε′, δ) = poly

(
I, λ

pε′ , ln(1ε ), ln(1δ )
)

samples to construct the recourse problem f̂A(x),

then any optimal solution α̂A to L̂DA;p(x) satisfies lA(x; α̂A) ≥ (1− ε′)LDA;p(x)− ε′wI · x− ε
with probability at least 1− δ.

We now define the modified objective value functions hp(x) = wI · x+
∑

A pALDA;p(x) and

ĥp(x) = wI · x +
∑

A p̂AL̂DA;p(x). As in lemma 9.7, one can show that near-optimal solutions
αA to LDA;p(x) for every A ∈ A yield an approximate subgradient of hp(.) at x. So using

lemma 9.8 we can show the closeness in subgradients of hp(.) and ĥp(.), and this will suffice to

show that if x̂ minimizes ĥ(.) then it is a near-optimal solution to h(.). Thus we get an SAA
bound for our class of 3-stage programs.

More formally, the lemma below proves the closeness in subgradients of hp(.) and ĥp(.) with
probability at least 1− δ.

Lemma 9.9. Consider the sample average function generated by taking N2 = T2(ω, δ) =
16(1+λ)2

ω2 ln
(
4m
δ

)
samples from stage 2, and T

(
ε, p, ω2 ,

δ
2N2

)
samples from stage 3 for each out-
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come A with p̂A > 0. At any point x ∈ P, subgradient d̂x of ĥp(.) is an (ω, ε)-subgradient of
hp(.) with probability at least 1− δ.

The proof is omitted. It is quite technical because if we consider the random variable
taking the value wS − α̂A,S when outcome A is sampled, where α̂A is an optimal solution to

L̂DA;p(x), then the random variables corresponding to the different samples from stage 2 are
not independent since we always use the same solution α̂A.

We will also need the result below that relates the values of hp(.) and h(.) (and, respectively,

ĥp(.) and ĥ(.)).

Lemma 9.10. For any x ∈ P, hp(x) ≤ h(x) ≤ hp(x) + pwI · x. Similarly, ĥp(x) ≤ ĥ(x) ≤
ĥp(x) + pwI · x.

Proof. We prove this for h(.) and hp(.). The second statement is proved identically. The
first inequality comes directly from the definition of h(.) and hp(.). Since we are maximizing
over a larger feasible region in LDA(x), we have that LDA(x) ≥ LDA;p(x) for any x and A,
and so hp(x) ≤ h(x). Consider now the optimal solution α∗A of lA(x; .), that is LDA(x) =
lA(x;α∗A). We now choose an α′A in the feasible region of LDA;p by shifting α∗A, so we consider
α′A = min(α∗A + pwI , wA). We now have LDA;p(x) ≥ lA(x;α′A) ≥ lA(x;α∗A)− pwI · x. The last
inequality holds because fA(0;αA) is increasing in αA and x,w ≥ 0. So, hp(x) ≥ h(x)− pxI ·x.

We can state our main theorem now.

Theorem 9.2. For any ε, γ > 0 (γ ≤ 1), one can construct ĥ with poly
(
I, λ, 1γ , ln

(
1
ε

)
, ln
(
1
δ

))
samples, and with probability at least 1 − δ any optimal solution x̂ to minx∈P ĥ(x) satisfies
h(x̂) ≤ (1 + 3γ) ·OPT + 16ε.

Outline of the Proof. The proof has two parts. We first show that a near-optimal solution to
minx∈P ĥp(x) yields a near-optimal solution to minx∈P hp(x). To do so, we prove that property
(A) holds in the extended-grid that we have already mentioned. Then, we use lemma 9.4 and
get that hp(x̃) ≤ (1+γ)OPTp+6ε+2Nε′ with high probability, where x̃ is an optimal solution to

minx∈P ĥp(x) and OPTp = minx∈P hp(x). Since ĥp(x̂) ≤ ĥp(x̃)+pwI ·x̃, i.e. x̂ is an approximate

minimizer of ĥp, we use corollary 9.1 and obtain

hp(x̂) ≤ (1 + γ)OPTp + 6ε+ 2N(pwI · x̃+ ε′)

The second part of the proof is to show that minimizing h(.) and ĥ(.) over P is roughly the
same as approximately minimizing hp(.) and ĥp(.) respectively over P, a fact which explains

why the closeness in subgradients of hp(.) and ĥp(.) that we had mentioned before suffices in

order to show that if x̂ minimizes ĥ(.) then it is a near-optimal solution to h(.). The bound of
lemma 9.10 implies that (1 − p)h(x̂) ≤ hp(x̂). Also, we have wI · x̃ ≤ hp(x̃). Now using the
bound OPTp ≤ OPT and the bound on hp(x̃) and plugging ε′ and p in the above equation, we
get that

h(x̂) ≤ (1 + 3γ)OPT + 16ε.

In order to get a multiplicative guarantee, we will again need an initial sampling procedure,
which works under some mild conditions, that is for every scenario (A,B) with E(A,B) 6= ∅, for
every x ∈ P and yA ≥ 0 the total cost wI · x+wA · yA + fA,B(x, yA) is at least 1. In such cases
a sampling procedure similar to the one used for 2-stage programs (we will formally define it
in the next section, where we will generalize about k-stage problems) gives a lower bound on
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OPT . Thus we obtain a (1 + z)-optimal solution to (3SSC-P) with the SAA method (with high
probability) using polynomially many samples.

One last thing now remains, how are subgradients are computed from the duals we have
formulated. As observed, we only need to compute subgradients of the functions hp(x) and

ĥp(x). The following lemma gives the solution.

Lemma 9.11. Fix x ∈ P and αA ∈ DA. Let ω′ = ω
λ . If yA is a solution to fA(0;αA) of value

g(αA; yA) ≤ (1 + ω′)fA(0;αA) + ε′, then d = yA − x is an (ω, ωwI · x + ε′)-max-subgradient of
lA(x; .) at αA.

9.3.4 A class of solvable 3-stage programs

The analysis presented above naturally extends to a wide class of 3-stage programs. We use the
same notation as above and consider the following class of 3-stage problems.

(3Gen-P):

min: h(x) = wI · x+
∑
A∈A

pAfA(x) subject to x ∈ P ⊆ Rm≥0,

where

fA(x) = min
yA∈Rm≥0

{
wA · yA +

∑
B∈BA

qA,BfA,B(x, yA) : TAyA ≥ jA − TAx
}
, (3Rec-P)

and

fA,B(x, yA) = min
zA,B∈Rm≥0

sA,B∈Rn≥0

{
wA,B · zA,B + cA,B · sA,B :

DA,BsA,B + TA,BzA,B ≥ jA,B − TA,B(x+ yA)
}
.

where for every outcome A ∈ A and scenario (A,B), (a) TA, TA,B ≥ 0; (b) for every x ∈ P,

and yA ≥ 0, 0 ≤ fA(x), fA,B(x, yA) < +∞. Let λ = maxS,A∈A,B∈BA max
(

1,
wAS
wS
,
wA,BS

wAS

)
. As

before, we assume that λ is known, that P ⊆ B(0, R) and that P contains a ball of radius V ≤ 1,
where ln(R/V ) is polynomially bounded. Further we assume that for any x ∈ P and any A ∈ A,
the feasible region of fA(x) can be restricted to B(0, R) without affecting the solution quality,
that is, there is an optimal solution to fA(x) lying in B(0, R). These assumptions are fairly
mild and unrestrictive; in particular, they hold trivially for the fractional relaxations of many
combinatorial optimization problems. Let OPT be the optimum value and I be the input size.

The sample average problem is of the same form as (3Gen-P), where pA and qA,B are replaced
by their estimates p̂A and q̂A,B respectively, the frequencies of occurrence of outcome A and

scenario (A,B) in the appropriate sampled sets. Let ĥ(x) = wI · x+
∑

A∈A p̂Af̂A(x) denote the
sample average function where

f̂A(x) = min
yA≥0

{
wA · yA +

∑
B∈BA

q̂A,BfA,B(x, yA) : TAyA ≥ jA − TAx
}

(3SARec-P)

is the sample average recourse problem.
Let fA(0;W ) (respectively fA(0;W )) denote the recourse problem (3Rec-P) (respectively

(3SARec-P)) with x = 0 and costs wA = W . The dual of the recourse problem is formulated
as before, LDA(x) = max0≤αA≤wA lA(x;αA) where lA(x;αA) = −αA · x + fA(0;αA). We use

L̂DA(x) and l̂A(x;αA) to denote the corresponding quantities for the sample average problem.
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The analysis is almost identical, except the lemma that proves strong duality in the new
dual representation. At the end, we manage to reach the following result.

Theorem 9.3. For any parameters ε, γ > 0 (γ ≤ 1), one can construct the sample average

problem ĥ using poly
(
I, λ, 1γ , ln

(
1
ε

)
,
(
1
δ

))
samples so that, with probability at least 1 − δ, any

optimal solution x̂ to ĥ has value h(x̂) ≤ (1 + 3γ) ·OPT + 16ε.

In the general case we do not have multiplicative guarantee. However, for the subclass of
(3Gen-P) where the recourse problem fA(x) does not have any constraints, an initial sampling
allows us to get a (1 + z)-guarantee.

9.3.5 The SAA bound for k-stage programs

We will now define a class of k-stage programs and see that a polynomial sample size suffices to
give an approximation scheme. We consider k to be a fixed constant and not part of the input.
The running time of our algorithm will be exponential to k. The description is the same as in
§7 of [43].

In order to better understand our approach, we should bring back in mind the visualization
of a k-stage problem as a tree. We start at the root r of this tree at level 1, which represents
the first-stage. Let level(i) denote the set of nodes at level i, so level(1) = {r}. Each such node
u represents an outcome in stage i and its ancestors correspond to the outcomes in the previous
stages; so node u represents a particular evolution of the uncertainty through stages 1, ..., i. At
a leaf node, the uncertainty has completely resolved itself and we know the input precisely. A
scenario will always refer to a stage k outcome, that is, a leaf of the tree. The goal is to choose
the first stage elements so as to minimize the total expected cost, i.e.,

∑k
i=1 E[stage i cost]

where the expectation is taken over all scenarios.
As already mentioned, each node at level i corresponds to a remaining (k − i + 1)-stage

problem. This observation will help us define our problem recursively. Let path(u) be the set
of all nodes (including u) on u’s path to the root. Let child(u) be the set of all children of
u; this is the set of possible outcomes in the next stage given that u is the current outcome.
Let pu be the probability that outcome u occurs, and qu be the conditional probability that
u occurs given the outcome in the previous stage. We do not assume anything about the
distribution, and it can incorporate various correlation effects from previous stages. Note that
pu =

∏
v∈ path(u) qv. Clearly we have pr = qr = 1, for any i we have

∑
v∈ level(i) pv = 1, and for

any node u,
∑

v∈ child(u) qv = 1.
We use yu to refer to the decisions taken in outcome u and wu to denote the costs in

outcome u; thus the costs may depend on the history of outcomes in the previous stages. Note
that yu may only depend on the decisions in the previous outcomes, that is, on the yv’s where
v ∈ path(u). For convenience we use x ≡ yr to denote the first-stage decisions, and wI to
denote the first-stage costs. We now consider the following generic k-stage linear program.

fk,r = min h(x) = wI · x+
∑

u∈ child(r)

qufk−1,u(x) subject to x ∈ P ⊆ Rm≥0 (kGen-P)

where fk−1,u(x) gives the expected cost of stages 2, ..., k given the first-stage decision x and
when u is the stage 2 outcome. Thus fk−1,u(x) is the cost of the (k − 1)-stage problem that
is obtained when u is the second-stage outcome, and x is the first-stage decision. In general,
consider an outcome u ∈ level(i) and let v ∈ level(i − 1) be its parent. Let yv = (yr, ..., yv),
where {r, ..., v} = path(v), denote the collective tuple of decisions taken in the previous stages;
for the root r, yr ≡ yr ≡ x. The function fk−i+1,u(yv) is (the cost of) the (k − i + 1)-stage
stochastic program that determines the expected cost of stages i, ..., k given the decisions in the
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previous stages yv, and when u is the outcome in stage i. We believe that the above description
is quite clear and matches the tree representation of the problem. We now define function
fk−i+1,u(yv) recursively as

fk−i+1,u(yv) = min
{
wu·yu+

∑
u′∈ child(u)

qu′fk−1,u′(yv, yu) : yu ∈ Rm≥0, T uyu ≥ ju−
∑

t∈ path(v)

T uyt
}
,

for a non-leaf node u ∈ level(i), 2 ≤ i ≤ k. For a leaf u at level k,

f1,u(yv) = min
{
wu · yu + cu · su : yu ∈ Rm≥0, su ∈ Rn≥0, Dusu + T uyu ≥ ju −

∑
t∈ path(v)

T uyt
}
.

The variables su appearing in f1,u(.), capture the fact that at a scenario u when we know the
input precisely, one might need to make some additional decisions. We require that (a) T u ≥ 0
for every node u; (b) 0 ≤ fk−i+1,u(yv) < ∞ for every node u ∈ level(i) with parent v, and
feasible decisions yv - this ensures that the primal problem fk−i+1,u(yv) and its dual are feasible
for every feasible yv; and (c) there are R and V ≤ 1 with ln(R/V ) polynomially bounded such
that for every internal node u, the feasible region fk−i+1,u(yv) contains a ball of radius V , and
can be restricted to B(0, R) without affecting the solution quality (so P ⊆ B(0, R) and contains
a ball of radius V ); that is, for each fk−i+1,u(yv) there is some optimal solution y∗u such that

‖y∗u‖ ≤ R. Let I denote the input size, λ be the ratio max
(
1,maxv,u∈ child(v),S

wuS
wvs

)
, and K be

the Lipschitz constant of h(.). Define OPT = fk,r.
The sample average problem is of the same form as (kGen-P), where the probability qu is

replaced by its estimate q̂u, which is the frequency of occurrence of outcome u in the appropriate
sampled set. It is constructed as follows: we sample T2 times from the entire distribution and
estimate the probability qu of a node u ∈ level(2) by its frequency of occurrence q̂u = T2;u/T2;
for each u such that q̂u > 0, we sample T3 times from the conditional distribution of scenarios
in the tree rooted at u and estimate the probability qu′ for each u′ ∈ child(u) by the frequency
q̂u′ = T3;u′/T3 . We continue this way, sampling for each node u such that q̂u > 0, the leaves of
the tree rooted at u to estimate the probabilities of the children of u, till we reach the leaves of
the distribution tree. Let p̂u =

∏
v∈ path(u) q̂v denote the probability of occurrence of outcome

u in the sample average problem. We use f̂k,r to denote the k-stage sample average problem;

correspondingly for node u ∈ level(i) (where p̂u > 0) with parent v, f̂k−i+1,u(yv) is the (k−i+1)-
stage program in the sample average problem that determines the expected cost of stages i, ..., k
when outcome u occurs and given the decisions yv in the previous stages. Note that for a leaf
u, f1,u(yv) is simply a (1-stage) deterministic linear program, so f̂1,u(yv) = f1,u(yv). Let ĥ(x)

be the objective function of the k-stage sample average program, so f̂k,r = minx∈P h(x).
We are now in position to extend the argument used in the previous sections inductively

to prove an SAA bound for the k-stage problem fk,r. We can show that assuming inductively
a polynomial SAA bound Nk−1 for the (k − 1)-stage problem fk−1,r, one can construct the

sample average problem f̂k,r with a sufficiently large polynomial sample size, so that, with high

probability, any optimal solution to f̂k,r is a near-optimal solution to fk,r. Combined with the
previous results which provide the base case in this argument, this establishes a polynomial
SAA bound for k-stage programs of the form (kGen-P).

We won’t go into any details about the proof. We will only state that again our goal is to
prove the “closeness-in-subgradients” property. Finally, we reach the result:

Theorem 9.4. For any ε, γ > 0, (γ < 1), with probability at least 1 − δ, any optimal solution

x̂ to the k-stage sample average problem constructed using poly
(
I, λγ , ln

(
1
εδ

))
samples satisfies

h(x̂) ≤ (1 + γ) · fk,r + ε.
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To obtain a multiplicative guarantee, we must again consider a subclass of the above class
of problems, where the recourse problem fk−i+1,u(x,yu) does not have any constraints. The
desired subclass is the following:

gk,r = min h(x) = wI · x+
∑

u∈ child(r)

qugk−1,u(x) subject to x ∈ P ⊆ Rm≥0 (kSub-P)

where

gk−i+1,u(yv) = min
{
wu · yu +

∑
u′∈ child(u)

qu′gk−1,u′(yv, yu) : yu ∈ Rm≥0,
}
,

for u ∈ level(i), 2 ≤ i ≤ k,
and

g1,u(yv) = min
{
wu · yu + cu · su : yu ∈ Rm≥0, su ∈ Rn≥0, Dusu + T uyu ≥ ju −

∑
t∈ path(v)

T uyt
}
.

We once again make the usual assumptions, that (a) x = 0 lies in P, and (b) for every
scenario u with parent v, either g1,u(yv) is minimized by setting yt = 0 for all t ∈ path(v), or
the total cost

∑
t∈ path(u)w

tyt + cusu ≥ 1 for any feasible decisions (yu, su). For example, for
the 3-stage set cover problem considered before, (a) just requires that we are allowed to not
pick any set in the first-stage, (b) is satisfied if the total cost incurred in every scenario (A,B)
with E(A,B) 6= ∅ is at least 1. Under these assumptions, we show that we can sample initially
to detect if OPT is large.

We can now reach the following lemma.

Lemma 9.12. By sampling M = λk ln
(
1
δ

)
times, one can detect with probability at least 1− δ

(δ < 1/2), that either x = 0 is an optimal solution to (kSub-P), or that OPT ≥ δ
M .

Thus, we can convert the above guarantee to a purely multiplicative (1 + z)-guarantee.

9.4 An overview of our results

We will now explain in brief what we have actually achieved with the analysis in the previous
section as regards combinatorial problems. The polynomial size sample bounds that we have
proved allow us to solve the SAA problem instead of the true problem, and hope that the
solution reached will be a good solution for the true problem. The SAA problem can be seen
as a polynomial size LP, and thus it is easily solvable. So, obtaining a good solution vector x
for the first-stage, we can proceed with rounding techniques and convert it to an integer one.
As the problem progresses, in each stage i we have a (k − i + 1)-stage problem, and thus we
can use the SAA method repeatedly to solve each such problem and then convert the fractional
solution into an integer one. An important note here is that the above description’s running
time depends on k, and it is polynomial only in the case where k is considered constant and is
not part of the input. Otherwise, we have an exponential running time on k (observe that the
sample size depends exponentially on k).

We now proceed to see what guarantees we can get with deterministic and randomized
rounding techniques for covering and facility location problems.
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9.5 Applications

9.5.1 Covering Problems

We believe that the generalization of Set Cover and Vertex Cover to their k-stage variants is
pretty clear. The target set of elements to cover is determined by a probability distribution, and
becomes known after a sequence of k stages. Using an extension of the rounding theorem 4.1, we
can show that one can use a p-approximation algorithm for the deterministic analogue, where
the guarantee is with respect to its natural LP relaxation, to round any fractional solution to the
k-stage problem to an integer solution losing a factor of p because of each stage. Since there are
k stages, we have a total loss factor kp, and using this with the SAA algorithm described above,
one gets an (kp + ε)-approximation algorithm (note that we have a multiplicative guarantee
since we deal with covering problems, which belong in the suitable subclass discussed above).
As stated above, in order to compute the decisions in a stage i outcome, we solve a (k− i+ 1)-
stage problem and round the solution. All these give the following results.

Theorem 9.5. Using the SAA theorem 9.4 in conjunction with the rounding theorem 4.1 and
the greedy algorithm [8], we get (with high probability) a (k lnn + ε)-approximation algorithm
for the k-stage Stochastic Set Cover Problem.

Theorem 9.6. In a similar way as described in theorem 9.5, we get (with high probability) a
(2k + ε)-approximation algorithm for the k-stage Stochastic Vertex Cover.

We will now see that the randomized rounding suggested by Srinivasan in [39] gives better
results than these presented above, and actually manages to weigh the multiplicative dependence
of the approximation on the number of stages. We will at first study the Set Cover problem,
and then generalize to a class of covering problems.

Let U = {e1, ..., en} be our universe and S = {S1, ..., Sm} the family of subsets of U . Let
x∗l = (x∗1,l, x

∗
2,l, ..., x

∗
m,l) be the optimal fractional solution of stage l. We suggest the following

randomized rounding approach: for a suitable t ≥ 1 and independently for all (j, l) set x′j,l = tx∗j,l
and define the rounded value yj,l to be

• dx′j,le, with probability x′j,l − bx′j,lc,

• bx′j,lc, with probability 1− (x′j,l − bx′j,lc).

Observe that the above randomized rounding “tends” to round in the integer value that is closer
to the real value, no matter whether it is the floor or the ceil of the real value. Also, note that
E[yj,l] = x′j,l. We now set t = lnn+ ψ(n), where ψ(n) is an arbitrarily slowly growing function
of n such that limn→∞ ψ(n) = ∞, and run the above rounding scheme. Consider any finally
revealed element ei, and let Ei be the event that our rounding leaves this element uncovered.
Let Ai be the family of sets that contain ei. We should note that the fractional solution satisfies∑

j∈Ai,l x
∗
j,l ≥ 1. Now, if x′j,l ≥ 1 for some pair (j ∈ Ai, l), then yj,l ≥ 1 with probability 1, and,

so ei is covered in such cases. Otherwise, we have that x′j,l < 1 for all pairs (j ∈ Ai, l). In this
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case, we have

Pr[Ei] =
∏
j∈Ai,l

Pr[yi,l = 0]

=
∏
j∈Ai,l

(1− x′j,l) (since bx′i,jc = 0)

=
∏
j∈Ai,l

(1− tx∗j,l)

≤ exp
(
−
∑
j∈Ai,l

t · x∗j,l
)

(since e−x ≥ 1− x)

≤ exp(−t)
(

since
∑
j∈Ai,l

x∗j,l ≥ 1
)

= e−ψ(n)/n

= o(1/n).

Thus, applying a union bound over the (at most n) finally revealed elements ei, we see that the
probability that at least one is not covered is o(1). We now turn to the expected cost incurred
in each stage. In each stage l, we have E[cT · y] = cT ·x′ = t(cT ·x∗). So the expected total cost
EXP of the above process, conditioned on the event that all elements are covered is

EXP ≤ t ·OPT
1− o(1)

= (1 + o(1)) · t ·OPT,

where OPT is the cost of the optimal solution. Thus, we get an (1 + o(1)) · lnn-approximation
algorithm. However, there is a crucial detail that the reader must have noticed in our analysis
above. The above algorithm does not guarantee success, i.e. we are not sure if at the end we will
have a feasible solution to our problem. Such algorithms are known as Monte Carlo algorithms.
This is the first Monte Carlo algorithm we present, as all the previous algorithms presented
were randomized in the sense that their performance guarantee was probabilistic, while the
feasibility of the solution was guaranteed with probability 1. Note also that is is not clear how
to eliminate such a possibility of failure without losing much in the approximation guarantee.

The above analysis can be extended to general covering integer programs (CIP’s). Such
a (CIP) can be seen as a “hidden” covering problem of the form “minimize cT · x subject to
Ax ≥ b, with all variables in x be non-negative integers”. This program, as well as a feasible
fractional solution x∗ is revealed to us in k stages as follows. In each stage l (1 ≤ l ≤ k), we
are given the lth-stage fractional values {x∗j,l : 1 ≤ j ≤ m} of the variables, along with their
columns in the coefficient matrix A, and their coefficient in the objective function c.

So, we finally get the following theorem.

Theorem 9.7. We obtain randomized (Monte Carlo) t-approximation algorithms for k-stage
stochastic CIP’s for fixed k, with running time polynomial for any fixed k and t independent
of k. More specifically, (i) for general CIP’s with the linear system scaled so that all entries

of the matrix A lie in [0, 1] and mini bi = B, we have t = 1 + O
(

min
{

lnn
B ,
√

lnn
B

})
. (ii) For

Set Cover with element-degree (maximum number of given sets containing any element of the
ground set) at most b, we have t = b + ε, where ε can be I−C with I being the input size and
C > 0 being any constant.

Note 9.1. The “+ε” term appears in part (ii) since the fractional solution obtained by the SAA
method is an (1 + ε)-approximation to the actual LP. We do not mention this term in part (i),
by absorbing it into the big-Oh notation.
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9.5.2 The Metric Uncapacitated Facility Location Problem

Adapting the rounding scheme of Swamy and Shmoys ([38]), we can get the following result.

Theorem 9.8. There is a randomized 1858(k − 1) + 1.52 + ε = O(k)-approximation algorithm
for the k-stage stochastic MUFLP.



Chapter 10

Conclusion

10.1 Summary - Open questions

Reaching the end of this text, we hope that the reader has gained some understanding of the
challenging field of stochastic combinatorial optimization and the various techniques utilized in
order to come up with efficient algorithms. We have presented general methods that can be
applied in many different problems. However, regarding applications, our attention was turned
mostly to the Rooted Steiner Tree, Set Cover, Vertex Cover and Facility Location Problems.
Much work has been done concerning other problems, especially 2-stage ones. These include
the stochastic versions of the bin-packing [21, 35], the unrooted Steiner Tree [16], Steiner Forest
[15] and minimum spanning tree [11], among others.

A number of interesting questions still remains open, especially as regards multistage prob-
lems. As already seen, all the approximation algorithms obtained for k-stage problems depend
on k, which is considered to be fixed and not part of the input. For both the Boosted Sampling
Framework of Gupta etc. and the SAA method of Swamy and Shmoys, the approximation ratios
obtained depend on k. Removing this dependence on k is an open problem. For covering and
facility location problems, it should be possible to obtain a guarantee for the k-stage problem
that almost matches the deterministic guarantee, since one can show that the integrality gap
of the k-stage LP, for Set Cover, Vertex Cover, and Facility Location, is close to that of the
deterministic LP. We remind the reader here that we have actually achieved to remove such
dependence for a large class of covering problems (see section 9.5.1).

Furthermore, both [18] and [43] require a sample size that is exponential in k. A very
interesting and challenging problem is to obtain bounds, for linear or integer programs, that are
polynomial in k. This may not be possible in the black-box model, but it would be interesting
to prove such a bound even for distributions where the different stages are independent. Such
results have been obtained in the setting of stochastic inventory control problems in [27] and
(with a stronger black box) in [26].

Moreover, it would be interesting to see if the SAA method of Charikar etc. [7] can be
extended for multistage problems. As their 2-stage approach actually proves a reduction from
the black-box to the polynomial-scenario model for a wide class of integer programs, it would
be very useful to obtain such a result for the multistage framework.

There are also interesting variants of stochastic problems that offer many challenges. The
simple stochastic recourse model measures the expected cost associated with the first-stage
decisions, but often in applications one is also interested in the risk associated with the first-
stage decisions, where risk is some measure of the variability (e.g., variance) in the (random)
cost incurred in later stages. Gupta etc. in [19] for example consider the use of budgets that
bound the cost of each scenario, as a means of guarding against (one-sided) risk, but their
results are limited to 2-stage problems with polynomial-scenario distributions. It would be
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interesting to explore stochastic models that incorporate risk, while allowing for a broader class
of distributions (with exponentially many scenarios). The most extensive work in this field of
risk-aversion, and the first that we are aware of that gives results in the black-box model is the
work of Swamy [41].

Another research avenue, which brings us closer to Markov Decision Problems, is to investi-
gate problems where the uncertainty is affected by the decisions taken. Throughout this thesis
we have dealt only with problems in which the underlying distributions are conditionally inde-
pendent of the recourse actions taken in the previous stages. However, there are problems where
the assumption of such independence is not always accurate. Stochastic scheduling problems,
where the scheduling decisions interact with the evolution of the random job sizes, provide a
fertile ground for such problems.

10.2 Relation to Leasing Problems

The last thing we will talk about is an interesting connection of stochastic problems with
another class of problems, known as leasing problems, proposed by Anthony and Gupta [1]. To
understand what leasing problems are about, we start with a description taken from [1]. The
reader can also look at the result of Meyerson concerning the Parking Permit Problem [31], or
for a more thorough discussion of the subject in [25].

Consider a network design problem. Traditional network design problems require us to
make decisions about how to send data, and how to provision bandwidth on various links of
the network. A standard feature in most models for network design that have been considered,
and in the algorithms that have been developed, has been the permanence of the bandwidth
allocation—and this has been true even in cases where demands arrive online: once some amount
of bandwidth is allocated on an edge, this bandwidth can be used at any time in the future
(perhaps by paying some additional incremental “routing cost” per unit of flow). Some works
have also considered the question of buying versus renting, but the simplifying assumption again
has been that buying gives permanent access to the commodity. But what if we are allowed
only to lease bandwidth on the links of the network for fixed lengths of time: which leases on
which network links should we obtain over time to satisfy our demands, which vary over time?

Given a situation with multiple lease lengths, it is natural to assume that a longer lease is
a cheaper one (per day), and that we pay more dearly for the flexibility of short-term leases.
Hence, if our traffic consists of some stable parts and other bursty parts, we can use long-term
leases to satisfy the stable traffic, and the short term leases to handle the more volatile demands:
a clever leasing strategy can reduce costs substantially over a naive one. Note that solving this
problem requires us to simultaneously perform clustering over space (in order to figure out
which edges to allocate bandwidth on) and over time (to figure out which traffic is stable and
requires longer leases, and which is bursty and is best served by shorter leases).

The question of finding good leasing strategies is relevant in the context of other problems
as well: in planning for demands arriving over multiple periods in classical facility location
problems, one might want to lease warehouses/plants for varying lengths of time. Moreover,
the idea that leases of varying lengths are available is fairly natural: even in situations where
there is a standard lease length, the presence of a secondary market for reselling or sub-letting
might naturally give rise to situations with multiple lease lengths.

The result that Anthony and Gupta reached shows that leasing problems with k lease types
can be reduced to k-stage stochastic optimization problems. This immediately allows one to use
any algorithm obtained in the multistage optimization framework to solve the corresponding
leasing variants of the problems. However, although it seems that stochastic problems are more
difficult than leasing problems, it is still an open question whether the reverse reduction is
possible or not.
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Appendix A

Some algebra

We will present here some algebraic notions that we have used in our text. The presentation
should in no case be considered complete.

Definition A.1. The epigraph of a function f : Rn → R is the set of points lying on or above
its graph:

epi f = {(x, µ) : x ∈ Rn, µ ∈ R, µ ≥ f(x)} ⊆ Rn+1

Definition A.2. A set X ⊆ Rn is convex if for every two points x,y ∈ X it also contains the
straight line segment connecting x and y. Expressed differently, for every x,y ∈ X and every
t ∈ [0, 1] we have tx + (1− t)y ∈ X.

(b)(a)
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Figure A.1: (a) S1 is convex, (b) S2 is non-convex

If S is a convex set, then, for any u1,u2, ...,ur ∈ S, and any non-negative numbers
λ1, λ2, ..., λr such that λ1 + λ2 + ... + λr = 1, the vector

∑r
k=1 λkuk is in S. A vector of

this type is known as a convex combination of u1,u2, ...,ur.
The collection of convex subsets of a vector space has the following properties:

1. The empty set and the whole vector-space are convex.
2. The intersection of any collection of convex sets is convex.
3. The union of a non-decreasing sequence of convex subsets is a convex set.

(For the preceding property of unions of non-decreasing sequences of convex sets, the restriction
to nested sets was important: the union of two convex sets need not be convex.)

81



82 APPENDIX A. SOME ALGEBRA

Definition A.3. Let X be a convex subset of some vector space. A function f : X → R is called
convex if for every x,y ∈ X and every t ∈ [0, 1] we have f(tx + (1− t)y) ≤ tf(x) + (1− t)f(y).

An alternative definition for a convex function is this:

Definition A.4. A function is convex if its epigraph is a convex set.

Definition A.5. Let X ⊆ Rn be a set. The convex hull of X is the intersection of all convex
sets that contain X. Thus it is the smallest convex set containing X, in the sense that any
convex set containing X also contains its convex hull. Algebraically, it equals the set

C̃ =
{ m∑
i=1

tixi : m ≥ 1,x1, ...,xm ∈ X, t1, ..., tm ≥ 0,

m∑
i=1

ti = 1
}

of all convex combinations of finitely many points of X.

Definition A.6. Let V be a vector space over a field K, and let A be a nonempty set. Now
define addition p+ a ∈ A for any vector a ∈ V and element p ∈ A subject to the conditions:

1. p+ 0 = p.

2. (p+ a) + b = p+ (a + b).

3. For any q ∈ A, there exists a unique vector a ∈ V such that q = p+ a.

Here, a,b ∈ V . Note that (1) is implied by (2) and (3). Then A is an affine space and K is
called the coefficient field.

Intuitively, an affine space is what is left of a vector space after you have “forgotten” which
point is the origin.

Definition A.7. An affine transformation (or affine map) between two vector spaces (strictly
speaking, two affine spaces) consists of a linear transformation followed by a translation:

x 7→ Ax+ b.

Definition A.8. A hyperplane in Rn is an affine subspace of dimension n− 1. In other words,
it is the set of all solutions of a single linear equation of the form

a1x1 + a2x2 + ...+ anxn = b

where a1, a2, ..., an are not all 0.

A hyperplane divides Rn into two half-spaces and it constitutes their common boundary.
For the hyperplane with equation a1x1 + a2x2 + ... + anxn = b, the two half-spaces have the
following analytic expression:

{x ∈ Rn : a1x1 + a2x2 + ...+ anxn ≤ b}

and

{x ∈ Rn : a1x1 + a2x2 + ...+ anxn ≥ b}.

More exactly, these are closed half-spaces that contain their boundary.

Definition A.9. A convex polyhedron is an intersection of finitely many closed half-spaces in
Rn .
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A half-space is obviously convex, and hence an intersection of half-spaces is convex as well.
Thus convex polyhedra bear the attribute convex by right.

A half-space is the set of all solutions of a single linear inequality (with at least one nonzero
coefficient of some variable xj ). The set of all solutions of a system of finitely many linear
inequalities, a.k.a. the set of all feasible solutions of a linear program, is geometrically the
intersection of finitely many half-spaces, alias a convex polyhedron. (We should perhaps also
mention that a hyperplane is the intersection of two half-spaces, and so the constraints can be
both inequalities and equations.)

Let us note that a convex polyhedron can be unbounded, since, for example, a single half-
space is also a convex polyhedron. A bounded convex polyhedron, i.e. one that can be placed
inside some large enough ball, is called a convex polytope.

The dimension of a convex polyhedron P ⊆ Rn is the smallest dimension of an affine subspace
containing P . Equivalently, it is the largest d for which P contains points x0,x1, ...,xd such
that the d-tuple of vectors (x1 − x0,x2 − x0, ...,xd − x0) is linearly independent.
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The Ellipsoid Algorithm

The ellipsoid method was invented in 1970 by Shor, Judin, and Nemirovski as an algorithm for
certain nonlinear optimization problems. In 1979 Leonid Khachyian outlined, in a short note,
how linear programs can be solved by this method in provably polynomial time. This was the
first algorithm that proved that LP’s can be solved in polynomial time. Although the algorithm
is theoretically better than the Simplex algorithm, which has an exponential running time in
the worst case, it is very slow practically and not competitive with Simplex. Nevertheless, it is
a very important theoretical tool for developing polynomial time algorithms for a large class of
convex optimization problems, which are much more general than linear programming. More
information can be found in [14], [29], or any other book about linear programming.

The ellipsoid algorithm solves a feasibility problem. More precisely, in its initial description
it solves the following problem:

Problem 1. Given a polyhedron P ⊆ Rn, written as Ax ≤ b, find a point in P .

We will describe the algorithm for this case, and then we will see how we can adapt it to
solve optimization problems. We assume that the constraints are non-degenerate, so that P is
either empty or has a non-zero volumed denoted by vol(P ). In other words we can find a lower
bound Vl on vol(P ). We start off with an ellipsoid of volume Vu guaranteed to bound P if it is
finite. If vol(P ) is infinite, we start with a suitable Vu and we will eventually get to a feasible
point anyway. In our case, the initial bounding ellipsoid is a sphere (ball) in Rn . A single step
of the algorithm either finds a point in P , in which case we have proved feasibility, or finds
another ellipsoid bounding P that has a volume that is substantially smaller than the volume
of the previous ellipsoid. We iterate on this new ellipsoid. In the worst case we need to iterate
until the volume of the bounding ellipsoid gets below Vl, in which case we can conclude that
the system is infeasible.

Before proceeding to a more formal description of the algorithm, we need to define what an
ellipsoid is.

Definition B.1. An ellipsoid can be defined as an affine transformation of a ball. We let
Bn = {x ∈ Rn : xTx ≤ 1} be the n-dimensional ball of unit radius centered at 0. Then an
n-dimensional ellipsoid is a set of the form

E = {Mx+ s : x ∈ Bn},

where M is a nonsingular n× n matrix and s ∈ Rn is a vector.
An alternative definition is this: Given a center a, and a positive definite matrix A, the

ellipsoid E(a,A) is defined as

E(a,A) = {x ∈ Rn : (x− a)TA−1(x− a) ≤ 1}
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We remind the reader here that a real n×n matrix A is positive definite if it is symmetric and
xTAx > 0 for all non-zero vectors x. Moreover, a real symmetric matrix A is positive definite
iff there exists a real nonsingular (i.e. invertible) matrix M such that A = MMT (which gives
A−1 = (M−1)TM−1).

The ellipsoid algorithm can be stated now as follows:

Algorithm 8: The Ellipsoid Algorithm

1. Start with a ball E0 centered at 0 and containing the set P .

2. At the ith-iteration, check whether the center of the current ellipsoid zi is in P .

• YES. Output zi as the feasible point.

• NO. Find a constraint for P , ak · x ≤ bk, violated by zi . Recurse on Ei+1,
the minimum volume ellipsoid containing Ei ∩ {x | ak · x ≤ ak · zi}.

A pictorial description is given below:

Figure B.1: A singe iteration of the ellipsoid algorithm

Observe that the algorithm halts when a point zi is found to be within P . It must halt,
since at any step i, P is a subset of Ei , and we can prove that after each step, the volume of
Ei+1 has decreased by an appreciable amount. For some value of i, the volume of Ei will be
smaller than the volume of P , so the algorithm must halt before reaching this point. We should
notice here that we need to deal with the case when P has no volume (i.e. P has just a single
point), and also check when we can stop and be sure that either we have a point in P or we
know that P is empty. However, we will not go into such details here, and we will only say
that there are ways to handle all such cases. The interested reader can refer to the suggested
bibliography. Regarding the volume of succeeding ellipsoids, we have:

Lemma B.1. Let E ⊆ Rn be an ellipsoid and H ⊆ Rn be a half-space passing through the center
of E. Then there is a unique ellipsoid E′ of minimum volume containing the half-ellipsoid E∩H
and vol(E′)

vol(E) ≤ e
−1/(2m).

Thus, for each iteration of the ellipsoid algorithm we get vol(Ei+1)
vol(Ei)

≤ e−1/(2m). To run the
ellipsoid algorithm, we need to be able to decide, given x ∈ Rn, whether x ∈ P or find a violated
inequality. One of the ways to handle this is by introducing the notion of the separating oracle.
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Definition B.2. A polynomial time Separating Oracle for a convex set K is a procedure which,
given x, either tells that x ∈ K or returns a hyperplane separating x from K. The procedure
should run in polynomial time.

Note that this idea allows us to use the ellipsoid algorithm in a much more general setting,
convex programming, in which the main question is: given a convex set K, find a point x in K.
The main thing we need for our algorithm is to be able to answer the question of whether zi is
in P or not and find a separating hyperplane in the latter case. The beauty here is that we do
not necessarily need a complete and explicit description of P in terms of linear inequalities. In
fact, there are examples in which we can even apply this to exponential-sized descriptions. In
any case, it can be shown that for linear programming there always exists such a polynomial
time separating oracle.

So, what has only been left to discuss now is how the ellipsoid algorithm can solve LP’s. The
problem of optimizing an objective function can be reduced to a series of feasibility problems
as follows. Consider for example a maximization problem. We start of with an estimate of the
maximum value, say c0 and check for the feasibility of the following system

cTx ≥ c0
Ax ≤ b
x ≥ 0

If the system is infeasible, we know that the optimum is lesser than c0. We may now decrease
c0, say by a factor of 2 and check for feasibility again. If this is true, we know that the optimum
lies in [c0/2, c0). This is essentially a binary search to find the optimum with higher accuracies.
We get the optimum in a number of steps polynomial in the input size, each step being a call
to a feasibility checking algorithm.
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Some missing proofs

Proof of lemma 4.7. Let y ∈ P. Since the polytope P has x ≥ 0 as a valid constraint, it
follows that xS , yS ≥ 0 for all S. We have that h(y)−h(x) ≥ d·(y−x) = d̂·(y−x)+(d−d̂)·(y−x).
Since dS−d̂S ≥ 0 and yS ≥ 0 for all S, we get that h(y)−h(x) ≥ d̂·(y−x)+(d−d̂)·y−(d−d̂)·x ≥
d̂ · (y−x)− (d− d̂) ·x. Observe that dS − d̂S ≤ ωw(1)

S ⇒ (dS − d̂S)xS ≤ ωw(1)
S xS ⇒ (d− d̂) ·x ≤

ωw(1) · x⇒ −(d− d̂) · x ≥ −ωw(1) · x. Now using the fact that f(x) ≥ 0 (recall the definition of
our objective function h) we get that −(d − d̂) · x ≥ −ω(w(1) · x + f(x)) = −ωh(x). Thus, we
have that h(y)− h(x) ≥ d̂ · (y − x)− ωh(x), and, so, d̂ is an ω-subgradient of h(.) at x.

Proof of lemma 4.8. Let y ∈ P. We have to show that h(y) − h(x) ≥ d · (y − x). We know
that h(x) = w(1) · x +

∑
A pAfA(x), and fA(x) =

∑
e∈U (1 −

∑
S:e∈S xS)z∗A,e for every scenario

A. Also, observe that fA(y) ≥
∑

e∈U (1 −
∑

S:e∈S yS)z∗A,e, since z∗A,e is a feasible solution for
fA(y) (no restriction of the dual program depends on the first stage vector). So, we get that
h(y) ≥ w(1) · y +

∑
A pA(

∑
e∈U (1−

∑
S:e∈S yS)z∗A,e). We rewrite the last term as follows:∑

A

pA
(∑
e∈U

(
1−

∑
S:e∈S

yS
)
z∗A,e

)
=
∑
A

pA
(∑
e∈U

z∗A,e −
∑
e∈U

( ∑
S:e∈S

yS
)
z∗A,e

)
=
∑
A

pA
∑
e∈U

z∗A,e −
∑
A

pA
(∑
e∈U

( ∑
S:e∈S

ySz
∗
A,e

))
=
∑
A

pA
∑
e∈U

z∗A,e −
∑
A

pA
(∑
S∈S

yS
(∑
e∈S

z∗A,e
))

=
∑
A

pA
∑
e∈U

z∗A,e −
∑
S∈S

yS
(∑

A

pA
(∑
e∈S

z∗A,e
))

and therefore we get that

h(y) ≥
∑
S∈S

ySw
(1)
S +

∑
A

pA
∑
e∈U

z∗A,e −
∑
S∈S

yS
(∑

A

pA
(∑
e∈S

z∗A,e
))

=
∑
S∈S

yS
(
w

(1)
S −

(∑
A

pA
∑
e∈S

z∗A,e
))

+
∑
A

pA
∑
e∈U

z∗A,e

We can also express h(x) in a similar way replacing yS with xS and using equality, and, thus,
we get

h(x) =
∑
S∈S

xS
(
w

(1)
S −

(∑
A

pA
∑
e∈S

z∗A,e
))

+
∑
A

pA
∑
e∈U

z∗A,e

Setting dS = w
(1)
S −

∑
A pA

∑
e∈S z

∗
A,e and subtracting the two terms we get h(y) − h(x) ≥∑

S∈S(yS − yS)dS . Now, to bound ‖d‖, since z∗A,e ≥ 0 for all A, e, we get that dS ≤ w
(1)
S .
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Also, since
∑

e∈S z
∗
A,e ≤ w

(2)
S for all S, we get dS ≥ w

(1)
S −

∑
A pAw

(2)
S = w

(1)
S − w

(2)
S

∑
A pA =

w
(1)
S − w

(2)
S ≥ w

(1)
S − λw

(1)
S = (1− λ)w

(1)
S . Therefore |dS | ≤ λw(1)

S , and hence ‖d‖ ≤ λ‖w(1)‖.

Proof of lemma 5.5. We assume that inequalities 5.1 and 5.2 hold with probability at least
1−2δ. Let x̄ be an α-approximate minimizer for f̂ and x∗ be a minimizer of f(.). We set x = x̄
in 5.1 and x = x∗ in 5.2, and we get

f(x̄)− f̂(x̄) ≤ εZ∗ + 2εc(x̄) + fh(0)− f̂h(0)

and
f̂(x∗)− f(x∗) ≤ εZ∗ + 2εc(x∗) + f̂h(0)− fh(0)

Multiplying the second with α and adding them up together we get

f(x̄) + αf̂(x∗)− f̂(x̄)− 2εc(x̄) ≤ αf(x∗) + (1 + α)εZ∗ + 2αεc(x∗) + (α− 1)(f̂h(0)− fh(0))

and since c(x) ≤ f(x), as already mentioned, and f̂(x̄) ≤ αf̂(x∗), we get

f(x̄)− 2εf(x̄) ≤ αf(x∗) + (1 + α)εf(x∗) + 2αεf(x∗) + (α− 1)(f̂h(0)− fh(0))⇒
(1− 2ε)f(x̄) ≤ αf(x∗) + (1 + α)εf(x∗) + 2αεf(x∗) + (α− 1)(f̂h(0)− fh(0))⇒

(1− 2ε)f(x̄) ≤ (α+ ε+ αε+ 2αε)f(x∗) + (α− 1)(f̂h(0)− fh(0)).

Using the fact that α ≥ 1 we finally get

(1− 2ε)f(x̄) ≤ (1 + 4ε)αf(x∗) + (α− 1)(f̂h(0)− fh(0)).
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