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Abstract 

 

 The purpose of the present diploma thesis is the co-design and 

implementation of a Digital Signal Processing (DSP) application on a Xilinx Virtex-5 

platform. The DSP application that was selected for this purpose was the JPEG2000 

image compression standard. The whole procedure is presented here split in two 

major parts. In the first part, the methodology that led to a specific 

hardware/software partitioning strategy is presented, including specification 

analysis and profiling of JasPer, an open-source software-based implementation of 

the JPEG2000 codec. A detailed set of timing profiles is presented for the JasPer code. 

Analysis of these profiles led to the decision of selecting the Inverse Discrete Wavelet 

Transform for implementation in hardware. Additionally, the first part contains a 

description of the hardware architecture that was implemented in VHDL and the 

respective simulation results that followed.  Furthermore, the first part includes a 

presentation of the Xilinx EDK tool set and the JPEG200 co-design architecture. The 

last chapter of the first part presents the implementation results. In the second part, a 

step-by-step guide is presented, which allows one to follow all the basic and essential 

steps in order to integrate the developed VHDL design into a larger System-on-Chip 

and implement it on a Xilinx Virtex-5 development platform. The system 

incorporates a MicroBlaze processor and was designed and implemented using the 

set of tools included in the Embedded Development Kit (EDK), which is provided by 

Xilinx.  

 

KeyWords 

Embedded Systems, FPGA, DSP, JPEG2000, Hardware/Software partitioning, 

Discrete Wavelet Transform, Xilinx EDK, Xilinx Virtex-5 
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Part 1 

Chapter 1  

Embedded Systems 

 

1.1   Definition 

Embedded systems are specialized, application-specific computing devices that are 

not deployed as general purpose computers. An embedded system is 

preprogrammed to perform a narrow range of functions with minimal end user or 

operator intervention, usually with real-time computing constraints. These systems 

are components of a larger complete device, often including hardware and 

mechanical parts. 

1.2   Some Examples 

The domain of embedded systems is thriving. From telecommunications to 

aerospace and medical electronic equipment, embedded systems span all aspects of 

modern life and there are many examples of their use. Some examples of devices that 

incorporate one or more embedded systems are given below: 

 Personal Digital Assistants (PDAs) 

 MP3 players, digital cameras, DVD players, mobile phones, printers 

 Videogame consoles 
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 Microwave ovens, washing machines 

 Avionics, inertial guidance systems, GPS receivers 

 Automotive systems, traction control systems, ABS 

 Medical equipment, PET, SPECT, CT, MRI 

 

1.3   Characteristics and Requirements 

Embedded computing is in many ways much more demanding than programming a 

PC or a workstation. Of course, functionality is important in both general-purpose 

computing and embedded computing, but embedded applications must meet many 

other constraints as well. Some major characteristics and requirements of embedded 

computing applications are: 

 Real time: Many embedded systems have to perform in real time and data 

need to be ready on time. In some cases, failure to meet a deadline is unsafe 

and can even endanger lives. In other cases, missing a deadline doesn’t create 

safety problems but does create unhappy customers. 

 Performance: The speed of the system is often a major consideration both for 

the usability of the system and for its ultimate cost. Performance may be a 

combination of soft performance metrics such as approximate time to 

perform a user-level function and hard deadlines by which a particular 

operation must be completed. 

 Cost: Cost typically has two major components: manufacturing cost includes 

the cost of components and assembly; and nonrecurring engineering (NRE) 

costs include the personnel and other costs of designing the system. 

 Power consumption: Power, of course, is important in battery-powered systems 

and is often important in other applications as well. Minimizing heat 
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production is also a major issue and one that is closely associated with power 

management. 

 Reliability: Embedded systems often reside in machines that are expected to 

run continuously for years without errors and in some cases recover by 

themselves if an error occurs. Therefore the software is usually developed 

and tested more carefully than that for personal computers, and unreliable 

mechanical moving parts such as disk drives, switches or buttons are 

avoided. 

 Upgradeability: The hardware platform may be used over several product 

generations or for several different versions of a product in the same 

generation, with few or no changes. However, we want to be able to add 

features by changing software. Therefore it is of major importance to design a 

system able to provide the required performance for software not yet 

developed. 

 Physical size and weight: The physical aspects of the final system can vary 

greatly depending upon the application. A handheld device typically has 

tight requirements on both size and weight that can ripple through the entire 

system design. 

 Complexity and user interfacing: The operations performed by the 

microprocessor may be highly sophisticated (i.e. complicated filtering 

functions etc.). Furthermore, these systems are frequently used to control 

complex user interfaces that may include multiple menus and many options 

(i.e. GPS navigation systems). 

 

1.4    Challenges and the Concept of Co-design 

Embedded systems incorporate Hardware (HW) and Software (SW) parts which 

affect the design process itself resulting in a HW/SW co-design flow. Mixed HW/SW 

systems are not new. What has considerably grown in recent years is the trend 
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toward methodologies that concurrently apply design techniques from different 

areas to develop mixed digital systems. When hardware is tuned to its software 

applications, and vice versa, during the design process, it is impossible to exploit the 

capabilities of such heterogeneous systems. HW/SW Co-design is the system design 

process that combines the hardware and software perspectives from the earliest 

stages to exploit design flexibility and efficient allocation of functions. The 

concurrent design of hardware and software has shown to be advantageous as long 

as HW and SW are considered as a whole instead of independent entities. Although 

benefits of hardware and software working together are evident, complex systems 

design involving both HW and SW is a non-trivial task due to the interaction of 

different kinds of system philosophies. 

Today the electronic market demands high-performance and low-cost products. Both 

performance and cost are essential to commercial competitiveness. Thus, the chip 

industry has faced two major challenges in order to satisfy the consumer needs: the 

increase in system complexity and the reduction in design times. High functionality 

on a single chip and reduced time-to-market are goals that can be achieved through 

co-design methodologies. 

 

1.5   Design Tasks 

Various design tasks have to be considered for the implementation of an embedded 

system. Some of the most typical tasks for the HW/SW co-design are listed in the 

following: 

 Design space exploration: Design Space Exploration (DSE) refers to the process 

of investigating implementation variants regarding their optimal solution. In 

the case of multiple objectives like minimization of time, area, and power not 

only a single optimal solution exists. 
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 HW/SW partitioning: HW/SW partitioning can in general be described as the 

mapping of the interconnected functional objects that constitute the behavior 

of the algorithm onto a chosen architecture model. 

 Platform based design: Platform based design focuses on a specific application 

domain. The platform embodies the hardware architecture, embedded 

software architecture, and design methodologies for IP authoring and 

integration. Derivative designs may be rapidly implemented from a single 

platform that has a fixed and a variable part. 

 Verification: Verification is the process of evaluating a system or component to 

determine whether the products of a given development phase satisfy the 

condition imposed at the start of the phase. This correctness can be verified 

by simulation or formal methods like for example equivalence-check. 

 Rapid prototyping: Rapid Prototyping describes the fast development of a 

working entity to prove that a new theory could really be applied and to have 

a first impression of the development effort for turning it into a product. Due 

to the high complexity of modern systems prototyping has become nearly as 

challenging as designing the product itself. 
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Chapter 2  

DSP and FPGAs 

 

2.1. General Information 

Digital Signal Processing (DSP) is closely related to the domain of Embedded 

Systems. It is used in a very wide range of applications from high-definition TV, 

mobile telephony, digital audio, multimedia, digital cameras, radar, sonar detectors, 

biomedical imaging, speech recognition, to name but a few. The topic has been 

driven by the application requirements which have only been possible to realize 

because of development in silicon chip technology. Developing both programmable 

DSP chips and dedicated system-on-chip (SoC) solutions for these applications, has 

been an active area of research and development over the past three decades. Indeed, 

a class of dedicated microprocessors has evolved particularly targeted at DSP, 

namely DSP microprocessors or DSPμs. 

The increasing costs of silicon technology have put considerable pressure on 

developing dedicated SoC solutions and means that the technology will be used 

increasingly for high-volume or specialist markets. An alternative is to use 

microprocessor style solutions such as microcontrollers, microprocessors and DSP 

micros, but in some cases, these offerings do not match well to the speed, area and 

power consumption requirements of many DSP applications. More recently, the 

field-programmable gate array (FPGA) has been proposed as a hardware technology 
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for DSP systems as they offer the capability to develop the most suitable circuit 

architecture for the computational, memory and power requirements of the 

application in a similar way to SoC systems. This has removed the preconception 

that FPGAs are only used as ‘glue logic’ platform and more realistically shows that 

FPGAs are a collection of system components with which the user can create a DSP 

system. 

 

2.2. Field-programmable Gate Arrays 

FPGAs emerged as simple ‘glue logic’ technology, providing programmable 

connectivity between major components where the programmability was based on 

either antifuse, EPROM or SRAM technologies. This approach allows design errors 

which had only been recognized at this late stage of development to be corrected, 

possibly by simply reprogramming the FPGA thereby allowing the interconnectivity 

of the components to be changed as required. Whilst this approach introduced 

additional delays due to the programmable interconnect, it avoids a costly and time-

consuming board redesign and considerably reduced the design risks. 

Like many other industries in the area of electronics, the creation and growth in the 

market has been driven by Moore’s law (1965), depicted in Figure 2.1. Moore’s law 

shows that the number of transistors has been doubling every 18 months. This 

massive growth has led to the creation of a number of markets and is the driving 

force between the markets of many electronic products such as mobile telephony, 

digital TV etc. This is because not only have the number of transistors increased 

dramatically, but the costs have not increased, thus reducing the cost per transistor at 

every technology advance. Under these ideal conditions the FPGA market has grown 

from nothing in just over 20 years to playing a major role in the IC industry with a 

market judged to be of the order of US$ 4.0 billion. 
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Figure 2.1 Moore’s law (1965)  

 

2.2.1 Short history of FPGAs 

The FPGA concept emerged in 1985 with the XC2064TM FPGA family from Xilinx. At 

the same time, a company called Altera were also developing a programmable 

device, later to become EP1200 device which was the first high-density 

programmable logic device. Altera’s technology was manufactured using 3-μm 

CMOS erasable programmable read-only-memory (EPROM) technology and 

required ultraviolet light to erase the programming whereas Xilinx’s technology was 

based on conventional static RAM technology and required an EPROM to sore the 

programming. The co-founder of Xilinx, Ross Freeman argued that with 

continuously improving silicon technology, transistors were going to increasingly 

get cheaper and could be used to offer programmability. This is was the start of an 

FPGA market which was then populated by quite a number of vendors, including 

Xilinx, Altera, Actel, Lattice, Crosspoint, Algotronix, Prizm, Plessey, Toshiba, 

Motorola, and IBM. The market has now grown considerably and Gartner Dataquest 

indicated a market size growth to 4.5 billion in 2006, 5.2 billion in 2007 and 6.3 billion 

in 2008. There have been many changes in the market, including a severe 
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rationalization of technologies with many vendors such as Crosspoint, Algotronix, 

Prizm, Plessey, Toshiba, Motorola, and IBM disappearing from the market and a 

reduction in the number of FPGA families as well as the emergence of SRAM 

technology as the dominant technology largely due to cost. The market is now 

dominated by Xilinx and Altera and more importantly, the FPGA has grown from 

being a simple glue logic component to representing a complete System on 

Programmable Chip (SoPC) comprising on-board physical processors, soft processor, 

dedicated DSP hardware, memory and high-speed I/O. In the 1990s, ASIC was still 

seen for the key mass market areas where really high performance and energy 

considerations were seen as key drivers such as mobile communications. Thus 

graphs comparing performance metrics for FPGA, ASIC and processor were 

generated and used by vendors to indicate design choices. 

The FPGA evolution is summarized in Table 2.1. It indicates three different eras of 

evolution of the FPGA. The age of invention where FPGAs started to emerge and 

were being used as system components. The age of expansion is where the FPGA 

started to approach the problem size and thus design complexity was key. The final 

evolution stage is described as the period of accumulation where FPGA started to 

incorporate processors and high-speed interconnection. 

 

 

Table 2.1 Three ages of FPGAs 
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2.2.2 Challenges of FPGAs 

The emergence of the FPGA as a DSP platform was accelerated by the application of 

distributed arithmetic (DA) techniques (Goslin 1995, Meyer-Baese 2001). DA allowed 

efficient FPGA implementations to be realized using the LUT-based/adder constructs 

of FPGA blocks and allowed considerable performance gains to be gleaned for some 

DSP transforms such as fixed coefficient filtering and transform functions suach as 

Fast Fourier Transform (FFT). Whilst these techniques demonstrated that FPGAs 

could produce highly effective solutions for DSP applications, the concept of 

squeezing the last aspect of performance out of the FPGA hardware and more 

importantly, spending several person months for the creation of such innovative 

designs, meant that there was a growing gap in the scope offered by current FPGA 

technology and the designer’s ability to develop efficient solutions using modern 

tools. This was similar to the ‘design productivity gap’ (ITRS 1999) identified in the 

ASIC industry where it was viewed that ASIC design capability was only growing at 

25% whereas Moore’s law growth was 60%. This is proved by even more recent data 

during the 2007 ITRS roadmap (Figure 2.2).  

 

Figure 2.2 The design productivity gap (ITRS 2007) 
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The problem is not as severe in FPGA implementation, because sub-micrometre 

design issues are missing. However, a number of key issues exist and include:  

 Design languages. Currently hardware description languages such as VHDL 

and Verilog and their respective synthesis flows are well established. 

However, users are now looking at FPGAs with the recent increase in 

complexity resulting in the integration of both fixed and programmable 

microprocessors cores as a complete system, and looking for design 

representations that more clearly represent system description. Therefore, 

there is an increased EDA focus on using C as a design language. 

 Understanding how to map DSP functionality into FPGA. Some of the aspects are 

relatively basic in this area, such as multiplications, additions and delays 

being mapped onto on-board multipliers, adder and registers and RAM 

components respectively. However, the understanding of floating-point 

versus fixed-point, word length optimization, algorithmic transformation 

cost functions for FPGA and impact of routing delay are issues that must be 

considered at a system level and can be much harder to deal with at this 

level. 

 Development and use of IP cores. With the absence of quick and reliable 

solutions to the design language and synthesis issues, the IP market in SoC 

implementation has emerged to fill the gap and allow rapid prototyping of 

hardware. Soft cores are particularly attractive as design functionality can be 

captured using HDLs and efficiently translated into the FPGA technology of 

choice in a highly efficient manner by conventional synthesis tools. In 

addition, processor cores have been developed which allow dedicated 

functionality to be added. The attraction of these approaches are that they 

allow application specific functionality to be quickly created as the platform 

is largely fixed. 

 Design flow. Most of the design flow capability is based around developing 

FPGA functionality from some form of higher-level description, mostly for 
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complex functions. The reality now is that FPGA technology is evolving at 

such a rate that systems comprising FPGAs and processors are starting to 

emerge as a SoC platform or indeed, FPGAs as a single SoC platform as they 

have on-board hard and soft processors, high-speed communications and 

programmable resource, and this can be viewed as a complete system. 

Conventionally, software flows have been more advanced for processors and 

even multiple processors as the architecture is fixed. Whilst tools have 

developed for hardware platforms such as FPGAs, there is a definite need for 

software for flows for heterogeneous platforms, i.e. those that involve both 

processors and FPGAs. 

 

2.3 DSP System Basics 

There is an increasing need to process, interpret and comprehend information, 

including numerous industrial, military, and consumer applications. Many of these 

involve speech, music, images or video, or may support communication systems 

through error detection and correction, and cryptography algorithms. This involves 

real-time processing of a considerable amount of different types of content at a series 

of sampling rates ranging from single Hz as in biomedical applications, right up to 

tens of MHz as in image processing applications. In a lot of cases, the aim is to 

process the data to enhance part of the signal, such as edge detection in image 

processing or eliminating interference such as jamming signals in radar applications, 

or removing erroneous input, as in the case of echo or noise cancellation in 

telephony. Other DSP algorithms are essential in capturing, storing and transmitting 

data, audio, images and video; compression techniques have been used successfully 

in digital broadcasting and telecommunications. Over the years, a lot of the need for 

such processing has been standardized, as illustrated by Figure 2.3 which gives an 

illustration of the algorithms required in a range of applications. In communications, 

the need to provide efficient transmission using orthogonal frequency division 

multiplexing (OFDM) has emphasized the need for circuits for performing the FFT. 

In image compression, the evolution initially of the joint photographic experts group 

(JPEG) and then the motion picture experts group (MPEG), led to the development of 

the JPEG and MPEG standards respectively; these standards involve a number of 

core DSP algorithms, specifically DCT and motion estimation and compensation. The 

appeal of processing signals digitally was recognized quite some time ago as digital 

hardware is generally superior and more reliable than its analogue counterpart; 
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analogue hardware can be prone to ageing and can give uncertain performance in 

production. DSP on the other hand, gives a guaranteed accuracy and essentially 

perfect reproducibility (Rabiner and Gold 1975). The main proliferation of DSP has 

been driven by the availability of increasingly cheap hardware, allowing the 

technology to be easily interfaced to computer technology, and in many cases, to be 

implemented on the same computers. The need for many of the applications 

mentioned in Figure 2.3 has driven the need for increasingly complex DSP systems 

which in turn has seen the growth of the research area involved in developing 

efficient implementation of some DSP algorithms. 

 

Figure 2.3 Some DSP applications 
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2.3.1 DSP System Definitions 

The basic realization of DSP systems given in Figure 2.2, shows how a signal is 

digitized using an analogue-to-digital (A/D) converter, processed in a DSP system 

before being converted back to an analogue signal. The digitised signal is obtained as 

shown in Figure 2.4 where an analogue signal is converted into a pulse of signals and 

then quantized to a series of numbers. The input stream of numbers in digital format 

to the DSP system is typically labelled x(n) and the output is given as y(n). The 

original analogue signal can be derived from a range of source such as voice, music, 

medical or radio signal, a radar pulse or an image. Obviously, the representation of 

the data is a key aspect and this is considered in the next chapter. A wide range of 

signal processing can be carried out, as illustrated in Figure 2.3, as digitizing the 

signal opens up a wide domain of possibilities as to how the data can be 

manipulated, stored or transmitted. 

 

Figure 2.4 Basic DSP system 

 

 

Figure 2.5 Digitization 

 

A number of different DSP functions can be carried out either in the time domain, 

such as filtering, or operations in the frequency domain by performing an FFT 

(Rabiner and Gold 1975). The DCT forms the central mechanism for JPEG image 

compression which is also the foundation for the MPEG standards. This algorithm 

enables the components within the image that are invisible to the naked eye to be 

identified by converting the spatial image into the frequency domain. They can then 

be removed using quantization in the MPEG standard without a discernible 

degradation in the overall image quality. By increasing the amount of data removed, 

greater reduction in file size is achievable at a cost in image quality. Wavelet 

transforms offer both time domain and frequency domain information and have 
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roles, not only in applications for image compression, but also for extraction of key 

information from signals and for noise cancellation. One such example is in 

extracting key features from medical signals such as the EEG. 
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Chapter 3  

The Platform 

 

Overview 

In this chapter we present the platform on which the JPEG2000 compression 

standard will be implemented. First, a basic outline of Xilinx FPGA technologies is 

presented and then the chapter focuses on the Virtex-5 FPGA family. 

3.1 Xilinx FPGA Technologies 

The first FPGA was the Xilinx XC2000 family developed in 1982. The basic concept 

was to have programmable cells, connected to programmable fabric which in turn 

were fed by programmable I/O as illustrated by Figure 3.1. This differentiated Xilinx 

FPGAs from the early Altera devices which were PLD-based; thus the Altera FPGAs 

did not possess the same high levels of programmable interconnect. The architecture 

comprised cells called logic cells or LCs. The interconnect was programmable and 

was based on the 6-transistor SRAM cell given in Figure 3.2. By locating the cell at 

interconnections, it could then provide flexible routing by allowing horizontal-to-

horizontal, vertical-to-vertical, vertical-to-horizontal and horizontal-to-vertical 

routing, to be achieved. The I/O cell had a number of configurations that allowed 

pins to be configured as input, output and bidirectional, with a number of interface 

modes. 

 

Figure 3.1 Early Xilinx FPGA technology 
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At this stage, FPGAs were viewed as glue logic devices with Moore’s law providing 

a continual expansion in terms of logic density and speed. The device architecture 

continued largely unchanged from the XC2000 right up to the XC4000; for example, 

 

Figure 3.2 Xilinx FPGA SRAM Interconnect 

 

the same LUT table size was used. The main evolution was the inclusion of the fast 

adder where manufacturers observed that, by including an additional multiplexer in 

the LE cell, a fast adder implementation could be achieved by mapping some of the 

logic into the fast carry adder logic, and some into the LUT. The principle is 

illustrated for the VirtexTM FPGA device in Figure 3.3. At this stage, the device was 

still being considered as glue logic for larger systems, but the addition of the fast 

adder logic started to open up the possibility of implementing a limited range of DSP 

systems, particularly those where multiplicative properties were required, but which 

did not require the full range of multiplicands. This formed the basis for a lot of early 

FPGA-based DSP implementation techniques. 

 

Figure 3.3 Adder implementation on Xilinx VirtexTM FPGA slice 
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At that time, a lot of FPGA products manufacturers faded away and there began a 

period defined as accumulation where FPGAs started to accumulate more complex 

components, starting with on-board dedicated multipliers, which appeared in the 

first Xilinx VirtexTM FPGA family (Figure 4.4), Power-PC blocks and gigabit 

transceivers with the Xilinx VirtexTM -II pro and Ethernet MAC with the VirtexTM -4. 

It can be seen from Figure 3.4, that the Xilinx FPGA was now becoming increasingly 

like a SoC with the main aim of the programmability to allow the connection 

together of complex processing blocks with the LCs used to implement basic logic 

functionality.  

 

 

Figure 3.4 VirtexTM -II Pro FPGA architecture overview 
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Figure 3.5 Power PC block architecture 

The fabric now comprised the standard series of LCs, allowing functions to be 

connected as before, but now complex processing blocks such as 18-bit multipliers 

and PowerPC processors (Figure 3.5), were becoming commonplace. The concept of 

platform FPGA was now being used to describe recent FPGA devices to reflect this 

trend. 

 

3.1.1 Xilinx VirtexTM -5 FPGA Technologies 

The VirtexTM -5 comes in a variety of flavours, namely the LX which has been 

optimized for high-performance logic, the LXT which has been optimized for high-

performance logic with low-power serial connectivity, and the SXT which has been 

optimized for DSP and memory-intensive applications with low-power serial 

connectivity. The Xilinx VirtexTM -5 family has a two speed-grade performance gain 

and is able to be clocked at 550MHz. It has a number of on-board IP blocks and a 

number of DSP48E slices which give a maximum of 352 GMACS performance. It also 

provides up to 600 pins, giving an I/O of 1.25Gbps LVDS and, if required, RocketIO 

GTP transceivers which deliver between 100Mbps and 3.2Gbps of serial connectivity. 

It also includes hardened PCI Express endpoint blocks and Tri-mode Ethernet 

MACs. 
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3.1.1.1 VirtexTM -5 Configurable Logic Block 

The logic implementation in the Xilinx device is contained within configurable logic 

blocks or CLBs. Each CLB is connected to a switch matrix for access to the general 

routing matrix as shown in Figure 3.6 and contains a pair of slices which are 

organized into columns, each with an independent carry chain. For each CLB, slices 

in the bottom of the CLB are labeled as SLICE(0), and slices in the top of the CLB, are 

labelled as SLICE(1) and so on. Every slice contains four logic-function generators (or 

LUTs), four storage elements, wide-function multiplexers, and carry logic and so can 

be considered to contain four of the logic cell logic as given in Figure 3.7. In addition 

to this, some slices, called SLICEM, support two additional functions: storing data 

using distributed RAM and shifting data with 32-bit registers. 

The basic logic cell configuration comprises a logic resource, a 6-input LUT 

connected to a single flip-flop, via a number of multiplexers, together with a circuit 

for performing fast addition. The basic logic cell has been designed to cope with the 

implementation of combinational and sequential logic implementations, along with 

some simple DSP circuits that use an adder. 

 

Figure 3.6 CLB Slices 

 

Figure 3.7 Logic cell functionality 
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The basic combination of LUT plus register has stayed with the Xilinx architecture, 

and has now been extended from a 4-input LUT in the Xilinx XC4000 series and 

VirtexTM-5 series FPGA family to a 6-input LUT; this is a reflection of improving 

technology as governed by Moore’s law. It is now argued in Xilinx Inc. (2007a) that a 

6-input rather than a 4-input LUT which went all the way back to the study by Rose 

et al. (1990), now provides a better return on silicon area utilization for the critical 

path needed within the design. The combination of LUTs, flip-flops (FFs), and special 

functions such as carry chains and dedicated multiplexers, together with the ways by 

which these elements are connected, has been termed ExpressFabric technology. 

The CLB can implement the following: a pure logic function by using the 6-input 

LUT logic and using the multiplexers to bypass the register; a single register using 

the multiplexers to feed data directly into and out of the register; and sequential logic 

circuits using the LUTs feeding into the registers. Scope is also provided to create 

larger combinational and sequential circuits, using the multiplexers to create large 

LUTs and registers. One special feature of the 6-input LUT is that it has two outputs. 

This allow the LUT to implement two arbitrarily defined, five-input Boolean 

functions, as long as these two functions share common inputs (Figure 3.8). This is an 

attempt to provide better utilization of the LUT resource when the number of inputs 

is smaller than six. This concept also allows the logic cell to implement a full adder, 

as shown in Figure 3.3 whilst at the same time, using the additional inputs and 

outputs to realize a 4-input LUT for some other function. This provides better 

utilization of the hardware in many DSP applications, where otherwise LUTs would 

be wasted to just provide a single gate implementation for an adder. 

 

Figure 3.8 Arrangement of slices within the CLB 
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In this technology, the register resource is very flexible, allowing a wide range of 

storage possibilities ranging from edge-triggered D-type flip-flops to level-sensitive 

latches, all with a variety of synchronous and asynchronous inputs for clocks, clock 

enables, set/reset. The D input can be driven directly from a number of sources, 

including the LUT output, other D-type flip-flops and external inputs. 

One of the advantages of the larger LUT in the Xilinx VirtexTM-5 device is that it 

provides larger distributed RAM blocks and SRL chains. A sample of the various 

distributed memory configurations is given in Table 3.1 which gives the number of 

LUTs needed to create the various memory configurations listed. The distributed 

RAM modules have synchronous write resources, and can be made to have a 

synchronous read by using the flip-flop of the same slice. By decreasing the clock-to 

out delay, this will improve the critical path, but adds an additional clock cycle 

latency. 

 

Table 3.1 Number of LUTs for various memory configurations 

 

A number of memory configurations have been listed. For the single-port 

configuration, a common address port is used for synchronous writes and 

asynchronous reads. For the dual-port configuration, the distributed RAM has one 

port for synchronous writes and asynchronous reads, which is connected to one 

function generator and another port for asynchronous reads, which is connected to a 

second function generator. In simple dual-port configuration, there is no read from 

the write port. In the quad-port configurations, the concept is expanded by creating 

three ports for asynchronous reads, and three function generators plus one port for 

synchronous writes and asynchronous reads, giving a total of four functional 

generators. 

The consideration of larger memory blocks is considered in the next section, but the 

combination of smaller distributed RAM, along with larger RAM blocks, provides 

the same memory hierarchy concept that was purported by the Altera FPGA, 
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admittedly in different proportions. The LUT can also provide a ROM capability, and 

as Chapter 6 will illustrate, the development of programmable shift registers. The 

VirtexTM-5 function generators and associated multiplexers some of which were 

highlighted in Figure 4.7, can implement one 4:1 multiplexers using one LUT, one 8:1 

multiplexers using two LUTs etc. 

 

3.1.1.2 VirtexTM -5 Memory Organization 

In addition to distributed RAM, the VirtexTM-5 device has a large number of 36kB 

block RAMs, each of which contain two independently controlled, 18 kB RAMs. The 

total memory configuration is given in Table 3.2. The 18 kB RAMs have been 

implemented in such a way, that the blocks can be configured to act as one 36 kB 

block RAM without the use of programmable interconnect. Block RAMs are placed 

in columns and can be cascaded to create deeper and wider RAM blocks. Each 18 kB 

block RAM, dual-port memory consists of an 18 kB storage area and two completely 

independent access ports along with other circuitry to allow the full expected RAM 

functionality to be achieved (Figure 3.9).  

 

Table 3.2 VirtexTM-5 memory types and usage 

 

The full definition in terms of access pins is given below, and represents a standard 

RAM configuration. 

 A clock for each 18 kB block RAM which can be configured to have rising or 

falling edge. All input and output ports are referenced to the clock. 

 An enable signal to control the read, write, and set/reset functionality of the 

port with an inactive enable pin, implying that the memory keeps the 

previous state. 

 An additional enable signal called the byte-wide write enable signal which 

controls the writing and reading of the RAM in conjunction with the enable 

signal. 
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 The register enable pin which controls the optional output register. 

 The set/reset pin which forces the data output latches to contain a set value. 

 The address bus which selects the memory cells for read or write; its data bit 

width is decided by the size of RAM function chosen. 

In latch mode, the read address is registered on the read port, and the stored data is 

loaded into the output latches after the RAM access time. When using the output 

register, the read operation will take one extra latency cycle. The write operation is 

also a single clock-edge operation with the write address being registered on the 

write port, and the data input is stored in memory. The additional circuitry 

highlighted in Figure 3.9, shows how inverted clock can be supported along with a 

registered output. The contents of the RAM can be initialized using the INIT 

parameter and can be indicated from the HDL source code. 

 

 

Figure 3.9 Block RAM logic diagram  

 

 

Table 3.3 Memory sizes for Xilinx VirtexTM-5 block RAM 
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The RAM provides a number of options for RAM configuration, some of which are 

listed in Table 3.3; the table shows how bit data width is traded off for memory 

depth, i.e. number of memory locations. 

Dedicated logic has also been included in the block RAM enables, to allow the 

creation of synchronous or asynchronous FIFOs; these are important in some high-

level design approaches, as will be seen later. This dedicated logic avoids use of the 

slower programmable CLB logic and routing resource, and generates the necessary 

hardware for the pointer write and read generation along with the setting of the 

various flags associated with FIFOs. A number of FIFO sizes can be inferred, 

including 8KX4, 4KX4, 4KX9, 2KX9, 2KX18, 1KX18, 1KX36, 512X36 and 512X72. 

 

 

3.1.1.3 VirtexTM-5 DSP Processing Resource 

In addition to the scalable adders in the CLBs, the VirtexTM-5 also provides a 

dedicated DSP processing block called DSP48E. The VirtexTM-5 can have up to 640 

DSP48E slices which are located at various positions in the FPGA, and supports 

many independent functions including multiply, MAC, multiply add, three-input 

add, barrel shifting, wide-bus multiplexing, magnitude comparator, bit-wise logic 

functions, pattern detect, and wide counter. The architecture also allows the multiple 

DSP48E slices to be connected together to form a wider range of DSP functions, such 

as DSP filters, correlators and frequency domain functions. 

A simplified version of the DSP48E processing block is given in Figure 4.10. The 

basic architecture of the DSP48E block is a multiply–accumulate core, which is a very 

useful engine for many DSP computations. However, in addition to the basic MAC 

function, the DSP48E block also allows a number of other modes of operation, as 

summarized below: 

 25-bit x 18-bit multiplication which can be pipelined 

 96-bit accumulation or addition or subtracters (across two DSP48E slices) 

 triple and limited quad addition/subtraction 

 dedicated bitwise logic operations 

 arithmetic support for overflow/underflow 
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Figure 3.10 DSP processing blocks called DSP48E 

Each DSP48E slice has a 25-bit X18-bit multiplier which is fed from two multiplexers; 

the multiplexers accept a 30-bit A input and a 18-bit B input either from the 

switching matrix or from the DSP48E directly below. These can be stored in registers 

(not shown in Figure 3.10) before being fed to the multiplier. Just before 

multiplication, the A signal is split and only 25 bits of the signal are fed to the 

multiplier. A fast multiplier technique is employed which produces an equivalent 43-

bit two’s complement result in the form of two partial products, which are then sign-

extended to 48 bits in the X multiplexer and Y multiplexer respectively before being 

fed into three input adder/subtracter for final summation. 

Many fast multipliers work on the concept of using fast carry-save adders to 

eventually produce a final sum and carry signals, and then using a fast carry ripple 

to perform the final addition. This final addition is costly, either in terms of speed or 

if a speed-up technique is employed, then area. By postponing the addition to the 

ALU stage, a two-stage addition can then be avoided for multiply–accumulation, by 

performing a three-stage addition to compute the final multiplication output and an 

addition for the accumulation input in one stage. Once again, for flexibility, the 

adder/subtracter unit has been extended to function as a arithmetic logic unit (ALU), 

thereby providing more functionality at little hardware overhead. As the final stage 

of the conventional multiplication is being performed in the second-stage adder, a 

three-input addition is required with the third input used to complete the MAC 

operation if required. 

The multiplexers allow a number of additional levels of flexibility to be added. For 

example, the P input can be used to feed in an input either from another DSP48E 

block from below using the PCIN in the Z multiplexer or looped back from the 
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current DSP48E block say, for example, if a recursion is being performed using the P 

input to the Z multiplexer. The multiplier can be bypassed if not required, by using 

the A:B input which is a concatenation of the two input signals A and B, 25-bit and 

18-bit words respectively; this gives a 43-bit word size which is the same as the 

multiplier output. Provision to initialize the inputs to the ALU to all 0s or all 1s, is 

also provided. To increase the flexibility of the unit, the adder can also be split into 

several smaller adders, allowing two 24-bit additions or four 12-bit additions to be 

performed. This is known as the SIMD mode, as a single operation namely addition, 

is performed on multiple data, thus giving the SIMD operation. The DSP48E slice 

also provides a right-wire-shift by 17, allowing the partial product from one DSP48E 

slice to be shifted to the right and added to the next partial product, computed in an 

adjacent DSP48E slice. This functionality is useful, when the dedicated multipliers 

are used as building blocks, in constructing larger multipliers. The diagram in Figure 

4.10 is only basic, and does not indicate that other signals are also provided, in 

addition to the multiply or multiply–accumulate output, P. 

From a functional perspective, the synthesis tools will largely hide the detail of how 

the design functionality is mapped to the FPGA hardware, but it is important to 

understand that the level of functionality that is available as it determines the design 

approach the user will adopt. A number of detailed examples are listed in the 

relevant user guide (Xilinx Inc. 2007c), indicating how performance can be achieved. 

 

3.1.1.4 Clock Networks and PLLs 

The Xilinx VirtexTM-5 FPGA family can provide a clock frequency of 550MHz. The 

clock domains in the VirtexTM-5 FPGA are organized into six clock management tiles 

or CMTs, each of which contain two digital clock managers (DCMs) and one PLL. In 

total, the FPGA has eighteen total clock generators. 

A key feature of the Xilinx VirtexTM-5 FPGA is the DCM, which provides a wide 

range of powerful clock management features including a delay-locked loop 

(DLL);this acts to align the incoming clock to the produced clock as described earlier. 

It also allows a range of clock frequencies to be produced, including a doubled 

frequency a range of fractional clock frequencies of the input clock. Coarse (90◦, 180◦ 

and 270◦) fine-grained phase shifting and various types of fine-grained or fractional 

phase-shifting are supported. 

The PLL’s main purpose is to act as a frequency synthesizer and to remove jitter from 

either external or internal clocks, in conjunction with the DCMs. With regard to clock 

generation, the six PLL output counters are multiplexed into a single clock signal for 

use as a reference clock to the DCMs. Two output clocks from the PLL can drive the 
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DCMs; for example, one could drive the first DCM while the other could drive the 

second DCM. Flexibility is provided to allow the output of each DCM output to be 

multiplexed into a single clock signal, for use as a reference clock to the PLL, but one 

DCM can be used as the reference clock to the PLL at any given time. 

 

3.1.1.5 I/O and External Memory Interfaces 

VirtexTM-5 FPGA supports a number of different I/O standard interfaces termed 

SelectIOTM drivers and receivers, allowing control of the output strength and slew 

rate and on-chip termination. As with the Altera FPGA, the I/Os are organized into a 

bank comprising 40 IOBs which covers a physical area that is 20 CLBs high, and is 

controlled by a single clock. The VirtexTM-5 FPGA also includes digitally controlled 

impedance (DCI) technology, allowing the output impedance or input termination to 

be adjusted, and therefore, accurately match the characteristic impedance of the 

transmission line. The need to effectively terminate PCB trace signals, is becoming an 

increasing important issue in high-speed circuit implementation, and this approach 

purports to avoid the need to add termination resistors on the board. A number of 

standards are supported, including low-voltage transistor–transistor logic (LVTTL), 

low-voltage complementary metal oxide semiconductor (LVCMOS), peripheral 

component interface (PCI) including PCIX, PCI33, PCI66, and low-voltage 

differential signalling (LVDS), to name but a few. 

Input serial-to-parallel converters (ISERDES) and output parallel-to-serial converters 

(OSERDES) are also supported. These allow very fast external I/O data rates such as 

SDR and DDR, to be fed into the internal FPGA logic which may be running an order 

of magnitude slower. This is essentially a serial-to-parallel converter with some 

additional hardware modules that allow reordering of the sequence of the parallel 

data stream going into the FPGA fabric, and circuitry to handle the strobe-to-FPGA 

clock domain crossover. 
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Chapter 4  

The Application 

 

Overview 

As seen in the second chapter, image and video compression is a major part of the 

domain of DSP applications. In this chapter some of the basic principles of image 

compression are introduced. Special focus is given of course in comparing two 

widely used and closely related compression methods: JPEG and JPEG2000; the last 

being the application that was implemented for the purposes of this thesis. The 

JPEG2000 algorithm is described more analytically in order to provide a more in-

depth background around this particular standard.   

 

4.1 Introduction 

Modern computers employ graphics extensively. Window-based operating systems 

display the disk’s file directory graphically. The progress of many system operations, 

such as downloading a file, may also be displayed graphically. Many applications 

provide a graphical user interface (GUI), which makes it easier to use the program 

and to interpret displayed results. Computer graphics is used in many areas in 

everyday life to convert many types of complex information to images. Thus, images 

are important, but they tend to be big! Modern hardware can display many colors, 

which is why it is common to have a pixel represented internally as a 24-bit number, 

where the percentages of red, green, and blue occupy 8 bits each. Such a 24-bit pixel 

can specify one of 224 ≈ 16.78 million colors. As a result, an image at a resolution of 

512×512 that consists of such pixels occupies 786,432 bytes. At a resolution of 

1024×1024 it becomes four times as big, requiring 3,145,728 bytes. Videos are also 

commonly used in computers, making for even bigger images. This is why image 

compression is so important. An important feature of image compression is that it 
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can be lossy. An image, after all, exists for people to look at, so, when it is 

compressed, it is acceptable to lose image features to which the eye is not sensitive. 

 

4.2 JPEG  

If you have ever built a web-page, taken photos with a digital camera or generally 

worked with digital images, then it’s likely you have had contact with JPEG image 

compression. This compression standard was developed by the Joint Photographic 

Experts Group, whose ‚JPEG‛ abbreviation has become synonymous with the 

standard itself. JPEG is a sophisticated lossy/lossless compression method for color 

or grayscale still images (not videos). It does not handle bi-level (black and white) 

images very well. It also works best on continuous-tone images, where adjacent 

pixels have similar colors. An important feature of JPEG is its use of many 

parameters, allowing the user to adjust the amount of the data lost (and thus also the 

compression ratio) over a very wide range. Often, the eye cannot see any image 

degradation even at compression factors of 10 or 20. There are two operating modes, 

lossy (also called baseline) and lossless (which typically produces compression ratios 

of around 0.5). Most implementations support just the lossy mode.  

 

4.3 Why JPEG2000? 

The image compression field is very active, with new approaches, ideas, and tech-

niques being developed and implemented all the time. JPEG is widely used for 

image compression but is not perfect. The use of the Discrete Cosine Transform 

(DCT) on 8×8 blocks of pixels results sometimes in a reconstructed image that has a 

blocky appearance (especially when the JPEG parameters are set for much loss of 

information). Despite the success of JPEG in the 1990s, a growing number of new 

applications such as high-resolution imagery, high-fidelity color imaging, 

multimedia and Internet applications etc., require additional, enhanced 

functionalities from a compression standard that JPEG cannot satisfy due to some of 

its inherent shortcomings and design points that were beyond the scope of JPEG 

when it was developed. This is why the JPEG committee has decided, as early as 

1995, to develop a new, wavelet-based standard for the compression of still images, 

to be known as JPEG 2000 (or JPEG Y2K). Perhaps the most important milestone in 

the development of JPEG2000 occurred in December 1999, when the JPEG committee 

met in Maui, Hawaii and approved the first committee draft of Part 1 of the JPEG 

2000 standard. At its Rochester meeting in August 2000, the JPEG committee 

approved the final draft of this International Standard. In December 2000 this draft 
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was finally accepted as a full International Standard by the ISO and ITU-T. This 

standard specifies the creation of a new image coding system for different types of 

still images (bilevel, gray level, color, multicomponent), with different characteristics 

(natural images, scientific, medical, remote sensing, rendered graphics, etc.) allowing 

different imaging models (client/server, real-time transmission, image library 

archival, etc.) preferably within a unified system. The standard could be used on a 

royalty and fee-free basis. This was important for the standard to become widely 

accepted, in the same manner as the original JPEG is now. 

The markets and applications better served by this standard are numerous, from 

multimedia devices (e.g., digital cameras, PDAs, 3G cell phones, scanners, printers 

etc.) and client/server communication (the internet), to many other specific 

applications such as military/surveillance and medical imagery.     

In order to have a first understanding of the most eye-catching difference between 

the JPEG and JPEG2000 compression methods, one can compare the two compressed 

images in Figure 4.1. 

 

 

Figure 4.1 JPEG2000 vs. JPEG 

 

Figure 4.1 shows an example of the superior performance of JPEG2000 over JPEG at 

very high compression ratios. JPEG2000 (middle) shows almost no quality loss from 

the original image, even at 158:1 compression ratio.  

The basic idea of JPEG2000 can be clearly illustrated in Figure 4.2. The idea is to 

compress an image once and decode the encoded bitstream in many different ways 

to fulfill various application requirements. This is a general concept not found in 

JPEG.  
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Figure 4.2 JPEG2000 features 

 

In order to become more specific, regarding the advantages of JPEG2000 over JPEG, 

we must point out some special characteristics of the JPEG2000 standard: 

 

 Superior compression performance: At high bit rates, where artifacts become just 

imperceptible, JPEG2000 has a compression advantage over JPEG by roughly 

20% on average. At lower bit-rates, JPEG2000 has a much more significant 

advantage over certain modes of JPEG. The compression gains over JPEG are 

attributed to the use of Discrete Wavelet Transform and more sophisticated 

entropy encoding scheme. 

 Multiple resolution representation: JPEG2000 provides seamless compression of 

image components each from 1 to 16 bits per component sample. With tiling, 

it can handle large image sizes in a single codestream. 

 Progressive transmission: it provides efficient codestream organizations which 

are progressive by pixel accuracy or by quality (SNR) and also by resolution 

and size. 

 Lossless and lossy compression: JPEG2000 provides both lossless and lossy 

modes form a single compression architecture with the use of an integer –and 

thus reversible- wavelet transform. 

 Random codestream access and processing (Region of Interest): the standard’s 

codestreams offer several mechanisms to support spatial random access or 

region of interest access at carrying degrees of granularity. 
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 Error resilience: JPEG2000 is robust to bit errors introduced by noisy 

communication channels such as wireless. This is accomplished by the 

inclusion of resynchronization markers, the coding of data in small 

independent blocks, and the use of special error spotting mechanism within 

each block. 

 Sequential build-up capability: JPEG2000 allows for encoding of an image from 

top to bottom in a sequential fashion. Thus, there is no need to buffer the 

entire image. 

 Flexible file format: the existing file formats (JP2 and JPX) allow for handling of 

color-space information, metadata, and for interactivity in networked 

applications.  

 

4.4 The JPEG2000 Compression Engine 

 

The JPEG2000 compression engine (encoder and decoder) is illustrated in block 

diagram form in Figure 4.3. 

 

Figure 4.3 General block diagram of the JPEG 2000 (a) encoder and (b) decoder. 

 

At the encoder, the discrete transform is first applied on the source image data. The 

transform coefficients are then quantized and entropy coded before forming the 

output code stream(bit stream). The decoder is the reverse of the encoder. The code 

stream is first entropy decoded, dequantized, and inverse discrete transformed, thus 

resulting in the reconstructed image data. Although this general block diagram looks 

like the one for the conventional JPEG, there are radical differences in all of the 
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processes of each block of the diagram. A quick overview of the whole system is as 

follows: 

 The source image is decomposed into components. 

 The image components are (optionally) decomposed into rectangular tiles. 

The tile-component is the basic unit of the original or reconstructed image. 

 A wavelet transform is applied on each tile. The tile is decomposed into 

different resolution levels. 

 The decomposition levels are made up of subbands of coefficients that 

describe the frequency characteristics of local areas of the tile components, 

rather than across the entire image component. 

 The bit planes of the coefficients in a code block (i.e., the bits of equal 

significance across the coefficients in a code block) are entropy coded. 

 The encoding can be done in such a way that certain regions of interest can be 

coded at a higher quality than the background. 

 Markers are added to the bit stream to allow for error resilience. 

 The code stream has a main header at the beginning that describes the 

original image and the various decomposition and coding styles that are used 

to locate, extract, decode and reconstruct the image with the desired 

resolution, fidelity, region of interest or other characteristics. 

 

4.4.1 Encoder Functionality 

Figure 4.4 shows the structure of the JPEG2000 encoder and its related coding steps 

more analytically. The Forward Transform and Entropy Encoding are split into more 

basic components. 
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(a) Blocks in JPEG2000 Encoder 

 

 

(b) Coding Steps in JPEG2000 

 

Figure 4.4 Structure of JPEG2000 Encoder 

 

Considering an image with multi-component segments, the encoding blocks 

performs the following functions below: 

 Forward multi-component transform (Inter/Intra-component 

transform): refers to the mapping of an image data from the RGB 

color space to the YCrCb color space. In lossy coding the transform is 

irreversible (real-to-real), whereas in lossless coding it is reversible 

(integer-to-integer). 

 Forward Discrete Wavelet Transform (FDWT): is a transform that 

analyzes a tile (image) component to decompose it into a number of 

subbands at different levels of resolution. Two-dimensional DWT (2D 

DWT) is performed by applying one-dimensional DWT row-wise and 

then column-wise in each component (Figure 4.4 (b)). The first level of 

decomposition results to the creation of four subbands LL1, HL1, LH1, 

and HH1. The low-pass subband (LH1) represents a 2:1 subsample in 

both vertical and horizontal dimensions, thus a low resolution version 
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of the original component. The LL1 subband can again be analyzed to 

produce four subbands LL2, HL2, LH2, and HH2. The higher level of 

decomposition may continue in a similar fashion. . In lossy coding the 

transform is irreversible (real-to-real), whereas in lossless coding it is 

reversible (integer-to-integer). The DWT will be further analyzed later 

in this thesis. 

 Quantization (Uniform quantizer with Dead-zone): all the subbands 

are quantized in lossy compression mode in order to reduce the 

precision of the subbands to aid in the achieving of compression. The 

block quantizes transform coefficients with dead-zone scalar 

quantizer. Dead-zone scalar quantizer with step size b means the 

width of the central quantization around the origin is 2b. In lossless 

coding the quantizer steps are forced to 1, thereby no actual 

quantization takes place. 

 Tier-1 Encoder: this is an entropy encoding process, particularly a 

combination of MQ-Coder and EBCOT. MQ-Coder is a form of 

arithmetic mean coder and EBCOT is a form of bit plane coding, 

abbreviated as Embedded Block Coding with Optimized Truncation. 

In tier-1 coding, quantizer indices related to each subband are 

partitioned into fixed-size code blocks to produce an embedded 

codestream using bit-plane coding. This algorithm (EBCOT) has benn 

built to exploit the symmetries and redundancies within and across 

the bit-planes so as to minimize the statistics to be maintained and 

minimize the coded bitstream that MQ Coder would generate. 

The bit-plane coding scheme functions as follows. If the precision of 

the elements in the code-block is p, then the code-block is decomposed 

into p bit-planes and they are encoded from the most significant bit-

plane to the least significant bit-plane sequentially. Each bit-plane is 

scanned in a particular scan pattern as shown in Figure 4.5. The scan 

pattern can be divided into sections (or stripes), each with four 

consecutive rows starting from the first row of a code-block. If the 

total number of rows of a code-block is not a multiple of 4, all the 

sections will have four consecutive rows except the very last section.  
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Figure 4.5 Scan pattern of each bit-plane in a code-block:  

(a) regular mode; 

(b) vertical causal mode 

 

There are three passes per bit plane: 

 significant propagation pass (SPP): During SPP, a bit is coded 

if its location is not significant, but at least one of its eight-

connected neighbors is significant. By significant, we mean 

that the bit is most significant bit of the corresponding sample 

in the code-block. 

 magnitude refinement pass (MRP): All the bits that have not 

been coded in SPP and became significant in a previous bit-

plane are coded in this pass. 

 cleanup pass (CUP): All the bits that have not been coded in 

either SPP or MRP are coded in this pass. CUP also performs a 

form of run-length coding to efficiently code a string of zeros. 

The symbols produced by the bit-plane encoder are coded using an 

adaptive binary arithmetic coder. Optionally, arithmetic coding can be 

bypassed for some symbols produced during processing of the less 

significant bit-planes. 
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 Tier-2 Encoder (Bit-stream organization): Bit plane coding passes are 

included for each block and the order of appearance of these in the 

final code stream are encoded along with the actual coding pass of 

data. Only subsets of the coding passes are included in the bit stream. 

Rate control is achieved through both the choice of quantizer step 

sizes and also the selection of the subset of coding passes to include in 

the final code stream. 

 

 

4.4.2 Decoder Functionality 

Each functional block in the decoder either exactly or approximately inverts the 

effects of its corresponding block in the encoder. The decoder structure essentially 

mirrors that of the encoder. Hence, with the exception of rate control, there is a one-

to-one correspondence between functional blocks in the encoder and decoder. Figure 

4.6 shows the structure of the JPEG2000 decoder, while Figure 4.7 shows its 

conceptual spatial and bit stream representations. 

 

 

Figure 4.6 Blocks in JPEG2000 Decoder 

 

 

 

Figure 4.7 Spatial and Bit Stream Representations form Tier-2 to Component 

Transform blocks 
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 Tier-2 decoder: The bit-plane coding passes for the various code 

blocks are extracted from the code stream. Except in the lossless case, 

not all coding passes for all code blocks are guaranteed to be present. 

 Tier-1 Decoder: The bit-plane coding passes for each of the code 

blocks is decoded, yielding the reconstructed quantizer indices. In the 

lossy case, not all of the bit-plane coding passes are typically present 

in the code stream, in which case the reconstructed quantizer indices 

are themselves only approximations to the original quantizer indices. 

 Dequantizer: The quantized transform coefficient values are obtained 

from the reconstructed quantizer indices. In the case of lossless 

coding, the transform coefficients are the same as the quantizer 

indices. 

 Inverse Discrete Wavelet Transform (IDWT): The inverse transform 

is applied –if need- to the data for each component. 

  Inverse multicomponent transform: The inverse multicomponent 

transform is applied to the image data. If the sample values for a 

component are unsigned, the original dynamic range is restored by 

adding bias. In the case of lossy coding, a clipping operation is 

performed on the sample to ensure that they do not exceed their 

allowable range. 
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Chapter 5 

HW/SW Partitioning 

 

Overview 

The purpose of this chapter is to map the computational parts of the JPEG2000 codec 

onto the components of the system architecture. First a software-based open-source 

implementation of JPEG2000 is selected and a timing analysis is performed. The 

profiling data are then analyzed in order to construct a Hardware/Software 

partitioning solution for the co-processing architecture.  

 

5.1 Software implementation selection 

A number of software implementations of JPEG2000 were assessed in order to 

determine which would be the most suitable basis for a co-processing system. Three 

implementations with available source-code were assessed –  JJ2000, Kakadu  and 

JasPer. Of these three, JasPer was chosen as best fitting the selection criteria imposed 

by the project. 

 

5.1.1 Selection Criteria 

The selection of a software implementation was based on several selection criteria. 

The most fundamental of these was availability of source code. Using the software 

for a co-processing implementation of JPEG2000 requires modification of the 

software codec and source code access was therefore necessary. The three 

implementations considered all fulfilled this fundamental prerequisite. 
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Cost was a consideration in software selection. Preference was given to 

implementations that were available at low-cost or free of charge.  

The architecture of each implementation was assessed, whenever these details were 

made available. Along with the architecture, consideration was given to the 

programming language in which the code was written. A related criterion to the 

architecture was the overall complexity of the implementation. These factors were of 

importance due to the need to make modifications to allow co-processing. The more 

complex the internal structure of the software, the greater the difficulty in modifying 

the code and the greater the scope for potential problems during development. 

 

5.1.2 JJ2000 Implementation 

JJ2000 has been developed in a joint effort between Canon Inc., Ecole Polytechnique 

Fédérale de Lausanne and Ericsson Inc. The source code for the software is made 

freely available from the project’s website. JJ2000 is written in Java. For the purposes 

of hardware coprocessing, this is a severe limitation. Being Java software, the code 

runs on a Java virtual machine. This introduces two key problems. Firstly, the 

software is slower to execute than an implementation that is native to a PC. More 

importantly, there is the issue of portability. Portability is a major strength of the Java 

language. However, providing hardware coprocessing for the software by its very 

nature ties the software to a specific hardware and operating system architecture. 

Portability of the software between platforms is therefore a less important issue for 

this thesis. For these reasons,  JJ2000 is not a suitable implementation upon which to 

base a co-processing JPEG2000 system. 

 

5.1.3 Kakadu Implementation 

Kakadu is a comprehensive JPEG2000 software toolkit developed by Dr. David 

Taubman of the University of New South Wales, Australia. The Kakadu software 

includes a Dynamic Link Libary (DLL) of core routines that provide JPEG2000 

compression and decompression. A set of basic utilities that make use of the core 

DLL is also provided. Kakadu is written in C++ and is presented as a well-designed 

system that seeks to provide an efficient implementation of the standard. It appears 

to be a complex framework, with a great deal of functionality included. An 

individual non-commercial license for Kakadu costs US$100, while a multi-user non-

commercial license costs US$500. Commitment to good design and performance are 

key advantages offered by Kakadu. However, it is the only implementation of the 

three considered that is available in exchange for payment. Additionally, the 
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substantial array of features it offers is beyond the scope of the thesis and would 

mostly remain unused. 

 

5.2.4 JasPer Implementation 

Image Power Inc. and the University of British Columbia developed the JasPer 

implementation of JPEG2000. The software’s chief architect, Michael Adams, was 

also involved in the JPEG2000 standardization process. The JasPer code is available 

free of charge and can be downloaded from the project’s web site. 

JasPer is written in C code. As a language, C is relatively low-level and is therefore 

well-suited to interfacing with co-processing hardware. The software is set up as a 

static library, suitable for compilation on most platforms that support the C 

language. The project is especially targeted for Windows and Unix-type systems. The 

JasPer library allows an input image to be compressed using JPEG2000, and for 

already compressed JPEG2000 files to be decompressed back again. A number of 

image formats are supported for input images files. In addition to the static library, 

JasPer includes a basic command-line utility program, which provides user access to 

the library functionality. 

The JasPer software has been designed in a reasonably modular manner, although in 

places the code is somewhat obscure and lacks commenting. It does not appear to 

have been as well designed as Kakadu. However, it is more than adequate as a basic 

program for compressing and decompressing images using the JPEG2000 standard. 

This fact, combined with being written in C and available free of charge, led to JasPer 

being selected as the software implementation of JPEG2000 that would be used for 

the basis of coprocessing work.  

The version of JasPer used in this thesis was JasPer 1.500.3. The JasPer manual states 

that the software consists of about 40,000 lines of C code in total . Development work 

was carried out on a PC running Windows Vista. The JasPer software was compiled 

using the Microsoft Visual C++ version 8.0 (MSVC) compiler.  The project and 

workspace files necessary for compilation under MSVC were provided with the 

JasPer distribution. 
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5.2 Profiling Background and Motivation 

The code for nearly all non-trivial programs is split into multiple functions, often 

across multiple source code files. Software ‘profiling’ is a general term for the 

analysis of which ‘sections’ of a program are actually executed, the number of times 

each section is executed and how long each section takes to run. This analysis is 

produced using dedicated profiling tools. 

Modifying JasPer to allow it to take advantage of co-processing requires replacing 

some of the JasPer code with processing performed by the hardware. The overall 

speed-up of the hybrid system over the software-only system is maximized when the 

most computationally intensive modules in JasPer are replaced by the FPGA. Thus 

the first aim of software profiling was to determine which parts of the JasPer 

software take the longest time to execute. 

The second aim of profiling was to use the profiling data generated in order to 

decide which routines in the JasPer code were best suited to execution on the FPGA. 

Three criteria were used in this decision. The first of these was obviously to select 

JasPer routines with large execution times. However, not all such software routines 

make sense to implement on an FPGA. Routines in this category include I/O transfers 

to and from disk as well as routines that require frequent and random access to large 

sections of the PC's main memory. For this reason, the second criterion was that the 

routines selected could indeed benefit from FPGA processing. Thirdly, it was desired 

that the routines selected were as far as possible a modular section of the overall 

JasPer compression utility. The motivation for this criterion was to reduce the 

frequency with which data would need to be transferred to and from the VirtexTM-5 

FPGA. Less modular sections of the program would require frequent interaction 

with other parts of JasPer. Consequently, more frequent bus transfers of data would 

become necessary. Bus transfers should be considered as overhead in the co-

processing system, since during the transfer time the FPGA will be unlikely to be 

performing any computation. This overhead can be minimized by selecting a 

modular section of JasPer for hardware processing. 

 

 

5.3 Profiling Strategy 

As discussed above, the results of profiling JasPer were used in order to determine 

which part of the algorithm the hardware processing would implement. It was 
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therefore important that the profiles generated were an accurate representation of  

JasPer’s execution. 

It was also important that profiling information be obtained for a broad range of 

compression scenarios. In this way, it was possible to isolate the computationally 

intensive parts of the software under a wide variety of input conditions. 

 

5.3.1 Scenarios 

The JPEG2000 algorithm’s flexibility provides for the user to specify a number of 

compression options, thus presenting a wide range of compression scenarios. It was 

desired that profiling would take the most significant of these options into account. 

Furthermore, different image types, sizes and characteristics were taken into 

consideration. Table 4.1 lists all the factors that were taken into account. 

 

 Lossy vs. Lossless compression 

 Image size 

 Encoder vs. Decoder 

 Grayscale vs. Color Images 

 

Table 5.1 Profiling scenario factors 

 

5.3.2 Test Images 

In order to perform profiling, four different images were used as input to the 

JPEG2000 compression engine. These test images were passed to JasPer in Portable 

Pixel Map/Portable Gray Map (PPM/PGM) format, and are presented in Figure 5.1. 
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  ‚Lena‛ (256x256, 8-bit grayscale)                        ‚Airplane‛ (512x512, 8-bit grayscale) 

 

                                  

   ‚Peppers‛ (512x512, 24-bit color)            ‚Text‛ (256x256, 8-bit grayscale) 

 

Figure 5.1 Test Images 

 

5.3.3 Profiling Testcases 

In order to estimate as adequately as possible the impact of the previously presented 

performance factors, 6 different testcase scenarios have been followed. For each 

testcase scenario, four profiles were generated. In each scenario certain input 

variables have been held constant, while one or two other variables were modified 

between individual profiles. The following table (Table 5.2) provides a detailed 

description for each scenario. 
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Profile Scenario 1: 

Image sizes vs. other 

performance factors 

Constants: 

 Encoding process 

 Lossy Compression 

 Color Image 

Variable: 

 Image size 

Profile Scenario 2: 

Image sizes vs. other 

performance factors 

Constants: 

 Decoding process 

 Lossy Compression 

 Color Image 

Variable: 

 Image size 

 

Profile Scenario 3: 

Image sizes vs. other 

performance factors 

Constants: 

 Encoding process 

 Lossless Compression 

 Color Image 

Variable: 

 Image size 

 

Profile Scenario 4: 

Image sizes vs. other 

performance factors 

Constants: 

 Decoding process 

 Lossless Compression 

 Grayscale 

Variable: 

 Image size 

 

Profile Scenario 5: 

Image Content vs. 

other performance 

factors 

Constants: 

 Encoding process 

 Lossless Compression 

 Grayscale(512x512x8bit) 

Variable: 

 Image content 

type (sharp edges, 

photo, synthetic, 

text) 

 

Profile Scenario 6: 

Image Content vs. 

other performance 

factors 

Constants: 

 Decoding process 

 Lossless Compression 

 Color(512x512) 

Variable: 

 Image content 

type (sharp edges, 

photo, synthetic, 

text) 

Table 5.2 Profile Scenarios 
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5.3.4 Profiling Procedure 

Profiling was performed using the profiler distributed with Microsoft Visual Studio 

2008 version 9.0 and was carried out from within the MSVC development 

environment itself. The specifications of the profiling system are shown below in 

Table 5.3: 

 

Processor Intel Core 2 Duo T9400, 2.53 GHz 

System RAM 4 GB 

OS Windows Vista 

Profiling Tool Microsoft Visual Studio 2008 Profiler, 

version 9.0 

Software JasPer 1.900.1 

  

Table 5.3 Profiling System Specifications 

 

5.3.5 Profiling Results 

The following tables present the timing profiles for the different scenarios that were 

mentioned above. It must be specified that those modules and functions of the 

JPEG2000 encoder/decoder that did not account for over 1% of the total execution 

time in any of the testcases, are not presented seperately; instead, they are all 

accumulated into a seperate class named ‚Others‛.   

Before proceeding to the presentation of the time profiles we remind that Tier-1 

Coder consists of 2 basic components: EBCOT (Coefficient Bit Modeling stage) and 

Arithmetic Entropy Coding (MQ-Coder) as described in Chapter 4 and seen in 

Figure 5.2. For the purposes of calculating execution times, those 2 components have 

been evaluated seperately in order to provide more specific results.  By simply 

adding the execution times of these components we get the total execution time for 

Tier-1 Coding.  

Finally, the abbreviations used in the tables are: DWT: Discrete Wavelet Transform, 

MCT: Multi-Component Transform,  AEC: Arithmetic Entropy Coding (MQ-Coder).   
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Figure 5.2: Tier-1 Coder Components 

 

Timing Profiles: 

 

Image 

Size 

(pixels) 

Total 

execution 

time (ms) 

 

MCT 

 

DWT 

 

EBCOT 

 

AEC 

 

Others 

128x128 34.41 2.8% 26.5% 49.0% 12.3% 9.4% 

256x256 90.72 2.6% 25.5% 43.0% 14.9% 14.0% 

512x512 292.20 3.9% 27.2% 44.1% 12.0% 12.8% 
1024x1024 507.69 3.2% 30.9% 44.3% 11.5% 10.1% 

Table 5.4 Time Profile 1 (Lossy 10:1, Encoder, Color) 

 

Image 

Size 

(pixels) 

Total 

execution 

time (ms) 

 

MCT 

 

DWT 

 

EBCOT 

 

AEC 

 

Others 

128x128 11.28 2.4% 22.7% 49.5% 15.6% 9.8% 

256x256 49.08 2.7% 22.3% 46.5% 16.9% 11.6% 

512x512 150.92 2.8% 23.8% 46.0% 15.4% 12.0% 
1024x1024 247.81 2.7% 23.1% 45.9% 15.1% 13.2% 

Table 5.5 Time Profile 2 (Lossy 10:1, Decoder, Color) 

 

Image 

Size 

(pixels) 

Total 

execution 

time (ms) 

 

MCT 

 

DWT 

 

EBCOT 

 

AEC 

 

Others 

128x128 30.17 4.2% 11.8% 57.5% 19.7% 6.8% 

256x256 149.22 4.6% 11.9% 56.5% 20.8% 6.2% 

512x512 250.71 4.6% 12.5% 56.0% 19.1% 7.8% 
1024x1024 484.09 4.5% 13.4% 55.9% 19.8% 6.4% 

Table 5.6 Time Profile 3 (Lossless, Encoder, Color) 

Tier-1 Coder 

      EBCOT 

        

      AEC 
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Image 

Size 

(pixels) 

Total 

execution 

time (ms) 

 

MCT 

 

DWT 

 

EBCOT 

 

AEC 

 

Others 

128x128 20.74 0.8% 29.8% 43.1% 15.7% 10.6% 

256x256 91.70 0.7% 30.8% 43.7% 15.3% 9.5% 

512x512 174.42 0.6% 29.2% 42.0% 16.0% 12.2% 
1024x1024 337.12 0.6% 29.0% 41.3% 16.1% 13.0% 

Table 5.6 Time Profile 4 (Lossless, Decoder, Grayscale) 

 

Image 

Size 

(pixels) 

Total 

execution 

time (ms) 

 

MCT 

 

DWT 

 

EBCOT 

 

AEC 

 

Others 

Photo 221.40 0.7% 22.1% 45.0% 15.4% 16.8% 

Synthetic 199.09 0.7% 25.7% 49.1% 13.8% 10.7% 

Edges 230.88 0.7% 23.5% 44.5% 15.5% 15.8% 

Text 247.57 0.8% 22.8% 43.6% 16.8% 16.0% 

Table 5.7 Time Profile 5 (Lossy 10:1, Encoder, Grayscale 512x512x8 bits) 

 

Image 

Size 

(pixels) 

Total 

execution 

time (ms) 

 

MCT 

 

DWT 

 

EBCOT 

 

AEC 

 

Others 

Photo 151.59 5.7% 9.9% 54.5% 21.9% 9.0% 

Synthetic 144.00 5.3% 10.5% 53.5% 22.0% 8.7% 

Edges 152.23 5.4% 10.7% 54.0% 20.9% 9.0% 

Text 160.44 4.9% 11.2% 53.9% 21.5% 8.5% 

Table 5.8 Time Profile 6 (Lossless, Decoder, Color 512x512) 

 

The percentage of the total execution time that each of the above components 

consumes, is presented in the following diagrams (Figure 5.3 and Figure 5.4). The 

diagrams refer to Time Profile 1 (Table 5.4) and Time Profile 6 (Table 5.8) 

respectively. It is clearly observed that DWT and Tier-1 Coding (EBCOT and AEC) 

are the most time consuming components, accounting for above 80% of the total 

execution time in every testcase. 
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Figure 5.3: Time Profile 1 Execution Percentage Diagram 

 

Figure 5.4: Time Profile 4 Exeution Percentage Diagram 

 

5.3.6 Result Analysis and Conclusions 

The time profiles that were extracted in the previous step can provide us with a first 

estimation of what kind of HW/SW partitioning solution would be the most wise to 

apply in terms of implementing the most time consuming functions in hardware; 

thus providing a speed-up factor to the whole compression engine.  However, 

finding the most suitable solution is not straighforward.  For this reason we have to 

take into cosideration the three selection criteria that were mentioned in paragraph 

5.3.  The conclusions one can draw by combining the profiling results and the nature 

of the algorithms and functions used in the software implementation, are presented 

in the following paragraphs.  
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5.3.6.1 Encoder vs. Decoder 

The profile sets that were used in order to extract the required time profiles, also 

provided us with a first major conclusion; it was observed that the compression 

process (encoder) is more time-consuming in comparison to the decompression 

process (decoder). More specifically, the time spent in decoding the image is 

approximately 60% of the total time consumed in encoding the image. 

  

5.3.6.2 Time-significant Routines 

The total body of profile data generated clearly shows that there are a number of 

routines in which JasPer spends most of its execution time. These functions will be 

said to be ‘time-significant’. A list of time-significant routines is given in Table 5.9. 

This list represents a summary of the overall results from all profile sets. 

 

Category 

 

Encoder 

 

Decoder 

Utilities bitstoint() inttobits() 

pgxwordtoint() 

jasmalloc() 

bitstoint() inttobits() 

pgxwordtoint() 

jasmalloc() 

Image Transfer jas_image_writecmpt() 

jas_image_readcmpt() 

jas_image_writecmpt() 

jas_image_readcmpt() 

EBCOT jpc_encsigpass() 

jpc_encrefpass() 

jpc_encclnpass() 

jpc_decsigpass() 

jpc_decrefpass() 

jpc_decclnpass() 

DWT jpc_ft_analyze() jpc_ft_synthesize() 

AEC jpc_mqenc_codelps() 

jpc_mqenc_codemps2() 

jpc_mqdec_codelps() 

jpc_mqdec_codemps2() 

 

Table 5.9: Time-significant routines in JasPer Encoder and Decoder 
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5.3.6.3 Assessment of time-significant routines 

Each category of time-significant functions was assessed for its suitability for 

implementation in hardware. As discussed in Section 5.3, it was desirable that if at all 

possible a modular section of JasPer be implemented on the FPGA. 

 Utility Routines. The jas_malloc() utility routine performs memory allocation 

of the PC’s main memory. It is not possible to implement such a routine on 

the FPGA. The other time-significant utility routines in Table 5.9 are very 

short – they contain very few lines of code. If these routines were 

implemented on the FPGA, the bus transfer overhead would be so great as to 

eliminate any potential speedup. 

 Image Transfer Routines. The jas_image_writecmpt() and 

jas_image_readcmpt() functions are responsible for moving image 

component data between a matrix in memory and an I/O stream on disk. 

They are both I/O intensive functions and consequently are not good 

candidates for FPGA implementation. 

 Coefficient Bit Modelling Routines (EBCOT). The three routines 

jpc_encsigpass(), jpc_encrefpass() and jpc_encclnpas() perform the three 

coding passes in the coefficient bit modelling stage of the JPEG2000 encoder 

algorithm. The same applies in the case of decoding where the routines are 

those presented in Table 5.9. This section of the algorithm is quite complex. It 

also requires a degree of random access to code blocks being processed in 

order to examine the neighbors of the current sample being processed. Thus, 

although JasPer spends a large proportion of its time in this section, 

implementing the section’s functions on the FPGA would be a considerably 

complex task. 

 Wavelet Transform Routines (DWT). The wavelet transform is a modular 

section of the algorithm and another area where JasPer spends significant 

time, though not as much time as for the coefficient bit modeling. 

Implementing the wavelet transform stage on the FPGA would involve the 

creation of a complex data path. The JasPer implementation involves copying 

substantial blocks of data in main memory, which suggests that a hardware 

implementation would also require extensive access to local memory.  

 Arithmetic Entropy Coding Routines (AEC). Along with coefficient bit modeling 

and wavelet transform, JasPer spends a great deal of its time in the arithmetic 

entropy encoding routines. This is especially true when larger images are 

being compressed. Compared to other stages of the JPEG2000 algorithm, the 

arithmetic encoding stage is relatively simple. The stage is fed a stream of bits 
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as input, along with ‘context’ information to be used in the encoding of those 

bits. The primary output of the stage is a stream of compressed bytes. In 

addition to a manageable level of complexity, the arithmetic encoder is very 

modular. It relies on almost no other part of the JPEG2000 algorithm. 

 

 

5.3.7 Partitioning Solution 

 

In order to decide which components will be ported to HW, three criteria were used, 

as stated before in this chapter: 

 

 

 

 

 

 

Every single one of these criteria can be assumed as a ‚filter‛ that promotes or rejects 

components of the compression engine as candidates for porting to HW. The 

following table (Table 5.10) demonstrates this methodology according to the 

previously presented profiling results and the assessment of time significant routines 

in the previous paragraph.    

It has to be underlined that, although the table presents a sequential assessment of 

the different components according to the above criteria, the modularity and 

complexity/potential speed-up of every component have been separately assessed. 

However time significance is the most important factor that overshadows the impact 

of the other two criteria, therefore it is presented at the top of this hierarchy.    

 

 

 

 

 Time significance 

 Modularity 

 Complexity/Potential 

speed-up 

 

 



61 

 

Criteria MCT DWT EBCOT AEC 

 

Time significance 

 

LOSER 

 

 

WINNER 

 

WINNER 

 

LOSER 

Modularity - WINNER WINNER - 

 

Complexity/Potential 

speed-up 

 

- 

 

WINNER 

 

LOSER 

 

- 

 

             HARDWARE 

Table 5.10 

Summarizing, it is clearly seen that the EBCOT and DWT stages are the most time 

consuming ones in the JPEG2000 compression engine, with AEC following.  After 

assessing each category of time-significant functions, it was decided to port the 

Discrete Wavelet Transform stage of JPEG2000 in HW. A large amount of JasPer’s 

execution time was spent in the routines of this stage. Furthermore, the DWT’s 

complexity, although being considered high, is not an overhead when taking into 

account the potential speed up in execution time. Whereas, a solution that would 

suggest porting the even more complex EBCOT algorithm in HW could not be 

justified for the purposes of this thesis when taking into account possible execution 

time speed-ups. The modularity of the wavelet transform was an additional 

advantage over the other stages considered. Finally, for complexity reasons the 

Inverse DWT for lossless compression was decided to be implemented in HW rather 

than the Forward DWT, therefore HW/SW partitioning solution refers to the 

JPEG2000 Decoder in lossless mode. Figure 5.5 illustrates the partitioning solution 

for this co-design project.  

 

5.3.8 Scheduling 

The next step in the architecture exploration process involves scheduling, which 

determines the orders of executing the behaviors on SW (Microblaze soft processor) 

and HW (FPGA fabric core). The scheduler ensures that the line-up of tasks does not 

breach any dependencies imposed by the specification. The highest level of the codec 

specification model requires serialization of concurrent behavior tasks. Figure 5.6 
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illustrates the scheduling of the JPEG2000 Decoder. The decoder blocks represent the 

main program that runs in synchronization with an external compressed image 

stream. 

 

Figure 5.5: HW/SW Partitioning Solution 
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Figure 5.6: JPEG2000 Decoder Scheduling  
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Chapter 6 

Implementation of the Inverse Discrete 

Wavelet Transform 

 

Overview 

This chapter discusses the development of a VHDL design that implements an 

Inverse Discrete Wavelet Transform core, which will then be attached to a larger 

Microblaze based system that implements the JPEG2000 codec on the Xilinx Virtex-5 

board. Prior to presenting the design methodology that was followed and the 

respective simulation results, a description of the Discrete Wavelet Transform 

algorithm is given. 

6.1 Introduction to Discrete Wavelet Transform 

The term wavelet was originally used in the field of seismology to describe 

disturbances that emanate and proceed out of sharp seismic impulse. Properties of 

Fourier representation of signals is known to be effective in analysis of time-invariant 

(stationary) periodic signals. In contrast to sinusoidal function, properties of wavelet 

allow for both time and frequency analysis of signals simultaneously due to the fact 

that energy in wavelet is concentrated both in time and still possesses the wave-like 

(periodic) features. As a result, wavelet representation gives a versatile mathematical 

tool to analyze transient, time-variant (non-stationary) signals that may be 

statistically predictable especially at the regions of discontinuities – a special feature 

for that is typical of images having discontinuities at the edges. 

Wavelets are functions generated from one single function (basis function) called the 

prototype or mother wavelet by the dilations (scaling) and translations (shifts) in time 

(frequency) domain. If the mother wavelet is denoted by ψ(t) the other wavelet ψa,b 

can be  expressed as:  

  (6.1) 
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Where a and b are real numbers. The variables a and b represent the parameters for 

the dilations and translations respectively in the time axis.  From Eq. 6.1 we can 

derive that: 

 (6.2) 

As shown in the Eq. 6.2 ψa,0 (t) is time-scaled and amplitude-scaled. The parameter a 

causes contraction of ψ(t) in the time axis when a<1 and expansion or stretching 

when a>1 . For a<0, the function ψa,b (t) leads time reversal with dilation. The function 

ψa,b (t) is ashift in the left along the time axis by an amount b when  b>0, whereas it is 

a shift in right along the time axis by the amount b  when  b<0. Therefore variable b 

represents the translation in time (shift in frequency) domain. 

 

Figure 6.1: Illustration of mother wavelet and its dilations in time domain. (a) mother 

wavelet ψ(t), (b) ψ(t/a): 0<a<1, (c) ψ(t/a): a>1 

Figure 6.1 is an illustration of a mother wavelet and its dilations in time domain. 

Signal contraction and expansion in time axis is shown in figure 6.1(b) and 6.1(c) 

respectively. Based on this definition, wavelets transform (WT) of the function (signal) 

f(t) is represented by: 

 (6.3) 

The inverse transform to reconstruct f(t) from W(a,b) is mathematically represented 

by: 

 (6.4) 

Where 
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And Ψ(w) is the Fourier transform of the mother wavelet ψ(t). 

If a and b are two continuous variables and f(t) is also a continuous function W(a,b) is 

called continuous wavelet transform. 

6.2 Discrete Wavelet Transform 

The discrete wavelet transform (DWT) refers to wavelet transforms for which the 

wavelets are discretely sampled. The discrete wavelets can be represented in Eq. 6.5 

 (6.5) 

After substituting  a = a0m and b = nb0a0m  into Eq. 6.1. We choose a0 = 2 and b0 = 1, then 

we can represent the discrete wavelet in Eq. 6.6. 

 (6.6) 

And hence for dyadic decomposition, the wavelet coefficients can be given as: 

(6.7) 

This permits us to reconstruct the signal f(t)  from Eq. 6.7 as: 

(6.8) 

When the input function and its wavelet parameters are represented in discrete form, 

the such transformation is called DWT of signal f(t). The introduction of multi-

resolution representation of signals based on wavelet decomposition gave DWT the 

recognition as a very versatile signal processing tool. The method of multi-resolution 

represents a function as a group of coefficients, each of which gives information 

about the position and frequency of signal (function). The usefulness of DWT over 

Fourier transform is its performance of multi-resolution analysis of signals. Therefore 

DWT decomposes a digital signal into different subbands so that the lower frequency 

subbands have finer frequency resolution and rough time resolution in contrast to 

higher frequency subbands. The DWT is used in image compression because DWT 

can be applied to features like progressive image transmission (by quality and 

resolution), flexibility of compressed image manipulation, region of interest coding 

etc. 
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6.3 The Concept of Multi-resolution Analysis 

The theory of multi-resolution analysis introduces a systematic approach to generate 

the wavelets. The design of multi-resolution analysis is to approximate a function f(t) 

at different levels of resolution. In this analysis, we consider the mother wavelet ψ(t) 

and the scaling factor φ(t). The dilated (scaled) and translated (shifted) 

variant/version of the scaling function is given by  

 

The set of scaling functions φm,n (t) are orthonormal when m is fixed. We generate a 

set of functions in Eq. 6.9 by the linear combination of the scaling functions and its 

translations.  

(6.9) 

Let’s consider the representation of an image with few pixels at consecutive levels of 

approximation. The wavelet coefficients is assumed as an extended information 

required to move from coarse to finer approximation. Therefore in each level of 

decomposition the signal can be decomposed into two parts, one is coarse of the 

signal in the lower resolution and the other is the detail information that was lost due 

to approximation. This can be represented in Eq. 6.10, where fm  denotes the value of 

input function at resolution 2m , cm+1,n  is the detail information and am+1,n  is the coarser 

approximation of the signal at resolution 2m+1. The functions φm+1,n  and ψm+1,n  are the 

dilation and wavelet basis functions (orthonormal). 

(6.10) 

 

6.3.1 Two-Dimensional Signals in DWT 

A two-dimensional signal can be represented by two-dimensional array X[M,N] with 

M rows and N columns. Where M and N are non-negative integers. The 

implementation of two-dimensional DWT is to perform one-dimensional DWT row-

wise to produce an intermediate result and then perform the same one-dimensional 

DWT column-wise on this same intermediate result to generate a final result. This 

approach is shown in figure 6.2(a). This is possible because the two-dimensional 

scaling functions can be expressed as separable functions that are product of two-

dimensional scaling functions such as φ2(x,y) = φ1(x)φ1(y). The same applies for 

wavelet function ψ(x,y).  
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Figure 6.2: Row-Column Computation of 2D DWT 

Two subbands in each row are produced after applying one-dimensional 

transformation in each row. When the low frequency of all rows (L) are put together 

this results into a zone of MxN/2 the size of the input signal as we can see in Figure 

6.2(a). Similarly, putting together the higher frequency subbands of all rows 

produces the H subband (again of size MxN/2) which predominantly contains the 

high-frequency information around discontinuities (edges in an image) of the input 

signal. Applying a one-dimensional (1D) DWT column-wise on these L and H 

subbands produces LL, LH, HL, and HH subbands of size MxN/4 each. LL is the 

coarser version of the original input signal (image) whilst LH, HL, HH form the high 

frequency subband that contains the detail information. The same result is obtained 

when applying 1D DWT column-wise and then row-wise. 

Multi-resolution decomposition is illustrated in Figure 6.2(b). The first level of 

decomposition generates four subbands LL1, HL1, LH1, and HH1. For an image, the 

LL1 subband can be considered as a 2:1 subsampled (both horizontally and 

vertically) version of the original image. The other three subbands HL1, LH1, HH1 

contain much higher frequency detail information. These spatially oriented subbands 

mostly contain detail information of discontinuities in the image and a bulk of the 

energy in each of these three subbands is concentrated in the neighborhood of areas 

realting to edge activities in the original image. LL1 has similar spatial and statistical 

characteristics to the original image because it is a coarser approximation of the 

imput. Therefore it can further be decomposed into four subbands LL2, HL2, LH2, 

and HH2 as shown in Figure 6.2(b). Accordingly the image can be decomposed into 

ten subbands LL3, HL3, LH3, HH3, LL2, HL2, LH2, HH2, HL1, LH1, and HH1 as 

shown in figure 6.2(c). Even more levels of decomposition can be applied.  
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The application of DWT with 3 levels of decomposition in a real image (‚Lena‛) is 

shown in Figure 6.3. 

 

Figure 6.3: DWT with 3 decomposition levels applied on ‚Lena‛ image. 

 

6.4 Lifting Implementation of DWT 

DWT has traditionally been implemented by convolution or FIR filter bank 

structures. In contrast to block based implementation in discrete cosine transform 

(DCT), DWT is frame-based. Such an implementation requires both large number of 

arithmetic computations and a large memory for storage – a feature that is 

undesirable for high speed or low-power video processing applications. The 

introduction of the lifting-based wavelet transform requires fewer computations 

compared to the convolution based one. It promises reduction of computational 

complexity up to 50%, ‘in-place’ computation of DWT, integer-to-integer wavelet 

transform (IWT), symmetric forward and inverse transform requiring no extension, 

etc. The main feature of this scheme is to break up the high-pass and low-pass 

wavelet filters into a sequence of small filters that in turn can be converted to a 

sequence of upper and lower triangular matrices. In traditional forward DWT using 

filter banks, the input signal (x) is filtered separately by a low-pass filter (ĥ) and a 

high-pass filter (ĝ) at each transform level. The two output streams are then 

subsampled by dropping alternate output samples in each stream to produce a low-

pass (yL) and a high-pass (yH) subband. These two filters form the analysis filter bank. 

The original signal can be reconstructed by the synthesis filter bank (h,g) starting 

from yL and yH. The procedure is shown in Figure 6.4 and Figure 6.5.    

 

Figure 6.4: Row-Column computation of 2D DWT 
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Figure 6.5: 3–level lifting schema 

 

6.4.1 Lifting Scheme 

There are two kinds of lifting and they are: 

Primal Lifting: is defined as the computation of the upper triangular matrix of a 

resulting DWT polyphase matrix, hence lifting the low-pass subband with the help of 

the high-pass subband. 

Dual Lifting: is defined as the computation of the lower-triangular matrix of a 

resulting DWT polyphase matrix so that the high-pass subband is lifted with the help 

of the low-pass subband.  

These lifting steps are often called Update and Predict. In Figure 6.6 a lifting based 

forward DWT schema is presented where steps P and U refer to Predict and Update 

stages respectively. 

 

Figure 6.6: Lifting based FDWT 
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6.4.2 Data Dependency Diagram for Lifting Computation 

Computation of lifting-based DWT can be described using the diagram in Figure 6.7. 

The lifting requiring four ‘lifting’ factors, such as (9,7) filter, are done in four stages. 

For the DWT filters that require only two lifting factors, such as (5,3) filter, the 

intermediate two stages are bypassed. The outcome produced in the first stage of the 

data dependency diagram is stored in the registers containing odd samples of the 

input data because these samples may not be used in later stages of the computation. 

In the same way, results produced in the second stage can be stored back to the 

registers assigned to the even samples of the input data. Following the same pattern, 

the high-pass (low-pass) output samples are stored into the registers where the odd 

(even) samples of the input data are originally stored at the beginning of the 

computation. Therefore no extra memory is required at any stage. This property of 

the lifting-based computation is called ‚in-place computation’. 

 

Figure 6.7: Data dependency with four lifting factors 

 

6.5 Lifting-based DWT in JPEG2000 

In JPEG2000, the DWT is implemented using a lifting-based scheme, as described 

before. The transform that is applied both in lossy and lossless compression uses the 

(5,3) filter (Le Gall). In fact (5,3)-DWT is the only one that allows for lossless 

compression as it is an integer-to-integer transform, and thus can be inverted. The 

(9,7) (Daubechies) filter is used mainly in lossy compression, leads to a real-to-real 

transform, and is of higher complexity as it uses all 4 lifting stages. As it was 

described previously, 2D DWT is achieved by sequentially applying 1D DWT row-

wise and then column-wise. In (5,3) filter only one Predict and one Update stage are 

needed for each application of 1D DWT. If x(n) is the sequence of spatial coefficients 

of the input signal, then the Forward DWT coefficients y(n) are given by the 

following equations: 
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Whereas the Inverse DWT is computed using the inverse system: 

 

 

6.6 Motivation for applying lifting-based DWT in JPEG2000 

The advantages of lifting-based DWT over convolution ones are outlined below: 

 Computational efficiency: Lifting-based DWT requires less computation (up to 

55%) compared to convolution based one.  

 Memory savings: In lifting implementation, no additional memory buffer is 

needed due to in-place computation feature of lifting. 

 Integer-to-integer transform: This offers integer-to-integer transformation which 

is suitable for lossless image compression. 

 No boundary extension: Is avoided due to the fact that the original data can be 

reconstructed using the integer-to-integer transform. 

 

Analysis of the JasPer source code and its specifications showed that the DWT stage 

is implemented using the lifting scheme described above using both (9,7) and (5,4) 

filters. Therefore our VHDL implementation should be based on the same lifting-

based architecture after analyzing and thoroughly examining the JPEG2000 

specification model. 

 

 

 

   



73 

 

6.7 Implementation Requirements 

The primary requirement of the VHDL implementation was one of compliance. The 

code written was required to conform to the JPEG2000 standard for the IDWT stage. 

Additionally, it was required that the VHDL design be written in synthesizable code. 

If the code failed to conform to the JPEG2000 standard or failed to be synthesizable, 

the co-processing system could not function correctly. 

 

6.7.1 JPEG2000 Specifications regarding Inverse DWT  

The first step in the development process was to analyze thoroughly the JPEG2000 

specification for the Inverse Discrete Wavelet Transform. By its very nature, the 

standard is unambiguous in regard to the algorithm the transform must carry out. 

Analyzing the standard led to a good knowledge of the internal workings of the 

DWT stage as well as to initial ideas about how a hardware implementation could be 

designed. 

The JPEG2000 standard explains basic data inputs and outputs of the IDWT as 

shown in Figure 6.8. In Table 6.1 gives a short description of the information passed 

to and from the IDWT stage. As expected, the JPEG2000 specification model follows 

the lifting-based DWT architecture that was previously described in this section. 

 

Figure 6.8: Inputs and outputs of the IDWT procedure 

 

ab(ub,vb) Coefficients of sub-bands (compressed 

image pixels) 

NL Levels of decomposition 

I(x,y) Shifted tile component samples 

(reconstructed image pixels) 

 

Table 6.1 Basic inputs and outputs of IDWT 
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6.7.2 JasPer’s Implementation of the IDWT 

Following an examination of the JPEG2000 specification itself, the JasPer software 

implementation of the IDWT was assessed. Most of the code for this stage of the 

algorithm is contained in the file ‘jpc_qmfb.c’, though several other source code files 

were referred to as well. Each function in the JasPer implementation was compared 

to the JPEG2000 standard. This step was carried out for a number of reasons. Firstly, 

to ensure that JasPer followed the standard accurately. This was indeed found to be 

the case. Secondly, examining a working implementation of the IDWT was a 

valuable way to reinforce an understanding of its internal operation. Thirdly, 

examining the JasPer code was necessary to determine the nature of the interface 

JasPer expects the IDWT stage to service. Table 6.2 summarizes the functional role of 

specific functions used in the software implementation of IDWT and more 

specifically of the (5,3) filter that was implemented for the purposes of this thesis. 

 

Functions Role 

jpc_ft_synthesize() Basic function that implements IDWT on 

a MxN image matrix by calling functions 

that manage 1D IDWT column-wise and 

row-wise 

jpc_ft_invlift_row() 

jpc_qmfb_join_row() 

Functions that implement 1D IDWT row-

wise. As required by the (5,3) filter, only 

the Predict and Update lifting steps are 

implemented. 

jpc_ft_invlift_colgrp() 

jpc_qmfb_join_colgrp() 

Functions that implement 1D IDWT 

column-wise on 16xN tiles. Column 

group of 16 is an implementation specific 

strategy for the JasPer codec. Again, only 

the Predict and Update lifting steps are 

implemented. 

jpc_ft_invlift_colres() 

jpc_qmfb_join_colres() 

Functions that implement 1D IDWT 

column-wise on the remaining columns 

(as M in not always a multiple of 16). 

 

Table 6.2: Basic software functions that implement IDWT 
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Finally, the JasPer code was examined to determine where the IDWT was accessed in 

the overall decoding process. This was performed with a view to determining where 

data buffering between JasPer and the Virtex-5 board could occur. 

 

6.8 Proposed IDWT architecture 

In this section we discuss the architecture proposed and used in this project. The 

architecture is a modified version of the one hinted in [11]. The global architecture is 

shown in Figure 6.9. 

 

 

Figure 6.9: Proposed IDWT architecture 

 

As shown in Figure 6.9 the IDWT unit consists of two control units implemented as 

FSM: 1-D Controller unit for horizontal (row-wise) and another 2-D Controller for 

vertical (column-wise) transforms. The IDWT Core (Predict and Update) is designed 

to accomplish the arithmetic operations of Predict and Update steps. To process an 

image, all rows are transferred to the IDWT Core from the internal memory and 

transformed on the fly by the horizontal 1-D Controller unit. Then the vertical 
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transform takes place by the 2-D Controller unit. This allows a pipelined approach 

because the intermediate results do not have to be transposed. The control units 

coordinate steps in order to process the whole image and are responsible for 

generating enable signals, address lines, etc. At the end, the inverse transformed 

image coefficients are available in the internal memory. All necessary boundary 

information is included in the computation. Level of decomposition is controlled by 

a 3-bit ‚level‛ signal (the architecture supports up to 7 levels of decomposition). 

IDWT implementation requires 2 data inputs at a time in order to calculate an output 

coefficient. The architecture proposed accommodates this by introducing appropriate 

pipeline/delay stages for the data inputs within the IDWT core. 

The 1-D Controller module is performing data multiplexing that also generate the 

address for memory reads and writes. The image height and width are passed as 

parameters to the 2-D Controller module. The IDWT Core module computes the 

transform coefficients of the input image pixels obtained by the memory read 

operation. After the computation, the high-pass and low-pass coefficients are passed 

to the right memory location. After each level of decomposition, the roles of memory 

banks are swapped. The input and output address are generated through the 2-D 

Controller module during vertical operation. These generated addresses are supplied 

to necessary memory address input and output buses to the internal memory. The 

internal ram accepts the write addresses generated by the 1-D Controller module and 

the coefficients produced by the IDWT Core. A single execution of this module 

writes the two coefficients to the right memory bank. 

The aforementioned architecture was implemented in VHDL, and in a top-down 

hierarchical and behavioral fashion.  

6.9 Simulation Results 

For verification purposes the design was simulated using Modelsim SE 6.3f. It is 

known that this particular tool only offers functional (logical) simulation of a specific 

VHDL design, thus not providing a ‚realistic‛ simulation of the system that depends 

on timing constraints associated to the target implementation platform (FPGA). 

However, it is the first stage to verify that our systems presents an accepted behavior 

and that will eventually work after synthesis, probably with some alterations 

regarding timing constraints.   

The task of creating a test bench for this simulation needed a careful approach. A 

trivial test bench would initialize the system’s memory with image data that have 

been transformed by FDWT (implemented in Matlab or C), wait for the IDWT 

system to finish the computations, then read back the reconstructed image data and 

compare them to the expected output, which again could probably be produced by a 



77 

 

C or Matlab program that applies DWT on an image. However, the fact that our 

VHDL design is part of a HW/SW Co-design system implies that the system should 

be tested with actual data generated from the JasPer software. Therefore, the JasPer 

software was modified to allow it to produce a log file of its activity and any data 

transfers during the IDWT stage, and specifically the input matrices and the output 

matrices of the IDWT stage, along with any information regarding the current level 

of decomposition. In this way, several text files were produced containing pixel 

values of a different set of images. These text files were used to initialize the system’s 

memory or be compared to the output that the system generated during simulation. 

The VHDL implementation of the IDWT successfully passed all of these tests on real 

image data (4 different images x 3 different sizes each) with 100% accuracy on 

generated pixel values. 

The following figure (Figure 6.10) shows a snapshot of the simulation in Modelsim, 

at the time frame when signal ‚ready‛ becomes high, marking the end of the IDWT 

process. In the waveform view one can see the addresses generated, the registers that 

contain the samples that undergo computation by the IDWT core, the output 

coefficients that are written to memory and the current level of decomposition. This 

simulation was performed on a 256x256 grayscale image with 5 levels of 

decomposition (JasPer also uses 5 levels by default).  

   

Figure 6.10: Simulation of IDWT core 

Part of the memory contents after the end of all computations and data transfers are 

presented in Figure 6.11. 
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Figure 6.11: Memory contents 

 

 

6.10 Synthesis Results  

The second and most important stage of the implementation procedure was to 

synthesize our system on the Virtex-5 ML506 FPGA (XC5VSX50T). This was 

accomplished using Xilinx ISE 12.1. Passing successfully the synthesis stage means 

that our design can be downloaded on the FPGA fabric. Furthermore the ISE tool 

provides us with useful reports containing information regarding maximum allowed 

frequency, resource utilization, area cost, etc. 

Figure 6.12 presents the device utilization summary that was generated by Xilinx 

ISE. Figure 6.13 shows the timing summary generated, including maximum allowed 

frequency. Figure 6.14 presents the schematic of the IDWT core as it was generated 

again by Xilinx ISE. 
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Figure 6.12: Device utilization summary 

 

 

 

Figure 6.13: Timing Summary 

 

These results are presented here only as a sample. They are produced by an 

instantiation of the core that uses a 256x25x8 bit Block Ram to store image pixels, 

therefore being able to apply the inverse wavelet transform in a 256x256 grayscale 

image. Detailed results are presented in Chapter 9 ‚Results and conclusions‛.  
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Figure 6.14: IDWT core schematic 
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Chapter 7  

The Xilinx Embedded Development 

Kit (EDK) 

 

Overview 

Now that we have completed and tested the VHDL design, we need a set of tools 

that will bring HW and SW together, and that will help us manage the co-design 

flow in order to implement the JPEG2000 decoder on the Xilinx Virtex-5 ML506 

board. The task of making the HW part communicate with the SW part and vice 

versa, and simultaneously meeting the requirements and constraints that are set at 

the early stages of the design, seems to be an extremely complex and time-

consuming task. However, the Xilinx Embedded Development Kit (EDK) is a set of 

tools that provides the designer with the power to control the whole co-design flow, 

by automating tasks that would otherwise be almost impossible for the designer to 

accomplish within possible deadlines. Furthermore combining all the needed tools in 

one suite, and having them co-operate, significantly decreases the complexity of the 

HW/SW co-design. In this Chapter, a short description of the aims and capabilities of 

the EDK tool set is presented, and then a step-by-step guide is included that 

describes the whole procedure of implementing the JPEG2000 decoder on the board 

using the EDK tool set.    

7.1 Introduction to EDK 

The Xilinx Embedded Development Kit (EDK) is a suite of tools and Intellectual 

Property (IP) that enables you to design a complete embedded processor system for 

implementation in a Xilinx Field Programmable Gate Array (FPGA) device. 

Embedded systems are somewhat complex. Getting the hardware and software 

portions of an embedded design to work are projects in themselves. Merging the two 

design components so they function as one system brings additional challenges. Add 

an FPGA design project to the mix, and the situation has the potential to become 

very confusing indeed. For example, a typical Microblaze-based system (Figure 7.1) 

consists of a Microblaze soft-logic processor, an FPGA fabric, various IPs (RS232, 

Ethernet, LCD controllers, custom IPs), external memories (SRAM), a software that 

runs on Microblaze, C drivers for the hardware, etc. Similarly complex is a PowerPC 
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based system (Figure 7.2). The description of all these components and their correct 

integration in a final working embedded system is a complex task indeed.  

 

Figure 7.1: A typical Microblaze-based embedded system 

 

 

Figure 7.2: A typical PowerPC-based embedded system 

 

To simplify the design process, Xilinx offers several sets of tools, mainly ISE (which 

was used previously to synthesize our VHDL design) and EDK. The development 
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tools included in the EDK tool set can be classified into two major categories: those 

that manage HW design and those that are used for the development of SW. Xilinx 

Platform Studio (XPS) and Software Development Kit (SDK) are the basic 

development environments for each category. The tools provided with EDK are 

designed to assist in all phases of the embedded design process, as illustrated in 

Figure 7.3. 

 

Figure 7.3: Basic Embedded Design Process Flow 

The terms ‚Software Development‛ and ‚Hardware Development‛ that are present 

in Figure 7.3 are explained below. 

Hardware Development 

Xilinx FPGA technology allows the user to customize the hardware logic in the 

processor subsystem. Such customization is not possible using standard off-the-shelf 

microprocessor or controller chips. The term, ‚Hardware platform‛, describes the 

flexible, embedded processing subsystem the user is creating with Xilinx technology 

for her/his application needs. The hardware platform consists of one or more 

processors and peripherals connected to the processor buses. EDK captures the 

hardware platform in the Microprocessor Hardware Specification (MHS) file.  

Software Development 

A software platform is a collection of software drivers and, optionally, the operating 

system on which to build an application. The software image created consists only of 

the portions of the Xilinx library that the user uses in her/his embedded design. EDK 

captures the software platform in the Microprocessor Software Specification (MSS) 

file. The user can create multiple applications to run on the software platform. 
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7.1.1 Xilinx Platform Studio (XPS) 

XPS provides an integrated environment for creating software and hardware 

specification flows for embedded processor systems based on MicroBlaze and 

PowerPC processors. XPS also provides an editor and a project management 

interface to create and edit source code. It offers customization of tool flow 

configuration options and provides a graphical system editor for connection of 

processors, peripherals, and buses. It is available on Windows®, Solaris®, and Linux 

platforms. There is also a batch mode invocation of XPS available. From XPS, the 

user can run all embedded system tools needed to process hardware and software 

system components. The designer can also perform system verification within the 

same environment. Figure 7.4 is a simple illustration of the managing role that XPS 

plays in HW/SW co-design and co-verification. 

 

 

Figure 7.4: Xilinx Platform Studio (XPS) 

  

 

XPS offers the following features: 

• Ability to add cores, edit core parameters, and make bus and signal connections to 

generate an MHS file 

• Ability to generate and modify the MSS file 

• Ability to generate and view a system block diagram and/or design report 

• Multiple-user software applications support 

• Project management 

• Process and tool flow dependency management 
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7.1.2 Software Development Kit (SDK) 

The Xilinx Platform Studio SDK is a complementary GUI to XPS (Xilinx Platform 

Studio) and provides a development environment for software application projects. 

SDK is based on the Eclipse open-source standard. Platform Studio SDK features 

include: 

• Feature-rich C/C++ code editor and compilation environment 

• Project management 

• Application build configuration and automatic makefile generation 

• Error navigation 

• Well integrated environment for seamless debugging and profiling of embedded 

targets 

• Source code version control 

 

7.1.3 Other EDK Components 

Following is a list of some of the other EDK elements. 

• Hardware IP for the Xilinx embedded processors  

• Drivers and libraries for embedded software development  

• GNU Compiler and debugger for C/C++ software development targeting the 

MicroBlaze™ and PowerPC™ processors  

• Sample projects 

 

7.2 The MHS and MSS Description Files 

7.2.1 The MHS file and PlatGen 

As stated before, the hardware platform is fully described by the Microprocessor 

Hardware Specification (MHS) file (ASCII text). The MHS file is integral to the 

design process. It contains all peripheral instantiations along with their parameters. 

The MHS file defines the configuration of the embedded processor system and 

includes information on the bus architecture, peripherals, processor, connectivity, 

and address space (see Figure 7.5). Peripherals are either provided from EDK as 
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Intellectual Property (IPs) or are developed and described by the user following 

specific instructions. The Hardware platform development is illustrated in Figure 7.6. 

 

 

Figure 7.5: Microprocessor Hardware Specification (MHS) 

 

 

Figure 7.6: Hardware Platform Development 

 

The Platform Generator (PlatGen) tool creates the hardware platform using MHS as 

its input. Platgen also reads various processor core (IP core) hardware description 

files (MPD, PAO) from the EDK library and any user IP repository. Platgen produces 

the top-level HDL design file for the embedded system that stitches together all the 

instances of parameterized IP cores contained in the system. In the process, it 
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resolves all the high-level bus connections in the MHS into the actual signals 

required to interconnect the processors, peripherals and on-chip memories. It also 

invokes the XST (Xilinx Synthesis Technology) compiler to synthesize each of the 

instantiated IP cores. PlatGen generates all the netlist files (NGC, EDIF) plus VHDL 

files that allow the user to add custom logic to the system. These files along with 

other tools (like XST,) that can be seen in Figure 7.7 (end of chapter) generate the 

bitstream that will eventually configure the device. 

 

7.2.2 The MSS file and LibGen 

Like MHS, XPS creates an analogous software system description in the 

Microprocessor Software Specification (MSS) file. The MSS file, together with the 

user’s software applications, are the principal source files (written in C/C++ or 

assembly) representing the software elements of the embedded system (Figure 7.7).  

 

Figure 7.7: Microprocessor Software Specification (MSS) 

This collection of files, used in conjunction with EDK installed libraries and drivers, 

and any custom libraries and drivers for custom peripherals the user provides allows 

SDK to compile the applications. The compiled software routines are available as an 

Executable and Linkable Format (ELF) file. The ELF file is the binary ones and zeros 
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that are run on the processor hardware. Figures 7.5 and 7.6 illustrate the software 

platform development and the files and flow stages that generate the ELF file. 

 

 

Figure 7.8: Software platform development 

 

 

 

 

Figure 7.9: ELF file generation 
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Figure 7.10: Embedded Development Kit Tools (EDK) Architecture 
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Chapter 8  

JPEG2000 Co-design using EDK 

 

Overview 

In this chapter we present the basic components of the co-design architecture and 

introduce some basic structures that are essential to the whole system. This chapter 

also aims to provide a first understanding of the steps that are going to be presented 

in the step-by-step guide that follows. 

 

8.1 Introduction 

Before proceeding to the co-design architecture and the step-by-step guide that will 

follow in the next chapter, it would be wise to provide some information regarding 

some basic system components such as the Microblaze soft-logic processor, the 

Processor Local Bus (PLB), the Xilinx Kernel Operating System, etc.  

 

8.1.1 The Microblaze Processor 

The MicroBlaze™ embedded processor soft core is a reduced instruction set 

computer (RISC) optimized for implementation in Xilinx® Field Programmable Gate 

Arrays (FPGAs). Figure 8.1 shows a functional block diagram of the MicroBlaze core. 
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Figure 8.1: MicroBlaze Core Block Diagram 

Features 

The MicroBlaze soft core processor is highly configurable, allowing the user to select 

a specific set of features required by her/his design.  

The fixed feature set of the processor includes: 

 Thirty-two 32-bit general purpose registers 

 32-bit instruction word with three operands and two addressing modes 

 32-bit address bus 

 Single issue pipeline 

 

Memory Architecture 

MicroBlaze is implemented with a Harvard memory architecture; instruction and 

data accesses are done in separate address spaces. Each address space has a 32-bit 

range (that is, handles up to 4-GB of instructions and data memory respectively). The 

instruction and data memory ranges can be made to overlap by mapping them both 

to the same physical memory. The latter is useful for software debugging. Both 

instruction and data interfaces of MicroBlaze are 32 bits wide and use big endian, bit-

reversed format. MicroBlaze supports word, half-word, and byte accesses to data 

memory. 
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Data accesses must be aligned (word accesses must be on word boundaries, halfword 

on half-word boundaries), unless the processor is configured to support unaligned 

exceptions. All instruction accesses must be word aligned. MicroBlaze does not 

separate data accesses to I/O and memory (it uses memory mapped I/O). The 

processor has up to three interfaces for memory accesses:  

 Local Memory Bus (LMB) 

 Processor Local Bus (PLB) or On-Chip Peripheral Bus (OPB) 

 Xilinx CacheLink (XCL) 

The LMB memory address range must not overlap with PLB, OPB or XCL ranges. 

MicroBlaze has single cycle latency for accesses to local memory (LMB) and for cache 

read hits, except with area optimization enabled when data side accesses and data 

cache read hits require two clock cycles. A data cache write normally has two cycles 

of latency (more if the posted-write buffer in the memory controller is full). 

The MicroBlaze instruction and data caches can be configured to use 4 or 8 word 

cache lines. When using a longer cache line, more bytes are prefetched, which 

generally improves performance for software with sequential access patterns. 

However, for software with a more random access pattern the performance can 

instead decrease for a given cache size. This is caused by a reduced cache hit rate due 

to fewer available cache lines. 

 

8.1.2 Bus Interfaces 

The MicroBlaze core is organized as a Harvard architecture with separate bus 

interface units for data and instruction accesses. The following three memory 

interfaces are supported: Local Memory Bus (LMB), the IBM Processor Local Bus 

(PLB) or the IBM On-chip Peripheral Bus (OPB), and Xilinx® CacheLink (XCL). The 

LMB provides single-cycle access to on-chip dual-port block RAM. The PLB and OPB 

interfaces provide a connection to both on-chip and off-chip peripherals and 

memory. The CacheLink interface is intended for use with specialized external 

memory controllers. MicroBlaze also supports up to 16 Fast Simplex Link (FSL) 

ports, each with one master and one slave FSL interface. 
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Features 

 A 64-bit version of the PLB V4.6 interface (see IBM’s 128-Bit Processor Local 

Bus Architectural Specifications, Version 4.6). 

 A 64-bit version of the OPB V2.0 bus interface (see IBM’s 64-Bit On-Chip 

Peripheral Bus,  

 Architectural Specifications, Version 2.0) 

 LMB provides simple synchronous protocol for efficient block RAM transfers 

 FSL provides a fast non-arbitrated streaming communication mechanism 

 XCL provides a fast slave-side arbitrated streaming interface between caches 

and external memory controllers 

 Debug interface for use with the Microprocessor Debug Module (MDM) core 

 Trace interface for performance analysis 

 

8.1.2.1 Processor Local Bus (PLB) 

The Xilinx 128-bit Processor Local Bus (PLB) v4.6 provides bus infrastructure for 

connecting an optional number of PLB masters and slaves into an overall PLB 

system. It consists of a bus control unit, a watchdog timer, and separate address, 

write, and read data path units, as well as an optional DCR (Device Control Register) 

slave interface to provide access to its bus error status registers. 

 

8.1.2.2 Local Memory Bus (LMB) 

The LMB is a synchronous bus used primarily to access on-chip block RAM. It uses a 

minimum number of control signals and a simple protocol to ensure that local block 

RAM are accessed in a single clock cycle. LMB signals and definitions are shown in 

the following table. All LMB signals are active high. 

 

8.1.3 Xilkernel Operating System 

Xilkernel is a small, robust, and modular kernel. It is highly integrated with the 

Platform Studio framework and is a free software library that you get with the Xilinx 

EDK. It allows a very high degree of customization, letting users tailor the kernel to 
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an optimal level both in terms of size and functionality. It supports the core features 

required in a lightweight embedded kernel, with a POSIX API. Xilkernel works on 

both the MicroBlaze™ and PowerPC™ 405 processors. Xilkernel IPC services can be 

used to implement higher level services (such as networking, video, and audio) and 

subsequently run applications using these services. 

 

Key Features 

 A POSIX API targeting embedded kernels. 

 Core kernel features such as: 

 POSIX threads with round-robin or strict priority scheduling 

 POSIX synchronization services - semaphores and mutex locks 

 POSIX IPC services - message queues and shared memory 

 Dynamic buffer pool memory allocation 

 Software timers 

 User level interrupt handling API 

 Highly robust kernel, with all system calls protected by parameter validity 

checks and proper return of POSIX error codes. 

 Highly scalable kernel that can be accommodated into a given system 

through the inclusion or exclusion of functionality as required. 

 Complete kernel configuration, deployment within minutes from inside of 

Platform Studio 

 Statically creating threads that startup with the kernel. 

 System call interface to the kernel. 

 Support for creating processes out of separate executable Executable Link 

Files (ELF) 
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Figure 8.2 shows the various modules of Xilkernel 

 

 

Figure 8.2: Xilkernel Modules 

 

 

8.2 Co-design Architecture 

The system architecture is decided after HW/SW partitioning. As stated before, 

Microblaze was selected as the target processor to run the software (JasPer) and an 

FPGA fabric core called IDWT, was synthesized to implement the Inverse Discrete 

Wavelet Transform functions that were ported to HW. Figure 8.3 illustrates an 

abstract architectural model of the system. Bus interfaces are not introduced yet. 
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Figure 8.3: Architectural Model 

 

The final System on Chip (SoC) included an SRAM in order to store the input and 

output images, a DDR2 SDRAM in order to store the executable ELF file (1,3MB), 

and a RS232 UART serial port for sending the output image to the host PC. The final 

block diagram is presented at the end of this chapter. 

 

8.2.1 Communication Protocol 

In Figure 8.3 an abstract architectural model of the system was presented. Figure 8.4 

shows the communication model after insertion of communication protocols. The 

Local Memory Bus (LMB) and Processor Local Bus (PLB) protocols that were 

presented previously are used in this project. The Microblaze soft processor, IDWT, 

and BRAM are interconnected via the system bus. All components connected to the 

same bus are clocked at the same speed. Interfaces are inserted between bus and 

components. PLB is the interface between Microblaze and the system bus, whilst the 

one between the BRAM and Microblaze is LMB. The interface negotiates between 

components to ensure a successful completion of data transfers. 
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Figure 8.4: Communication Model 

 

8.2.2 Microblaze/IDWT Interface 

The communication between the Microblaze soft processor and IDWT (which is an 

external device) is based on the Processor Local Bus protocol of the Xilinx Virtex-5 

platform. The protocol has 2 representations: Master and Slave bus protocols. PLB 

peripherals are created to work either as slaves or masters for the PLB. A peripheral 

connected to the master ports of the PLB pushes data and control signals onto the 

bus, whereas a peripheral that is connected to the slave ports reads and pops data 

and control signals from the PLB. The working idea behind the PLB bus system is 

shown in Figure 8.5 with an example of PLB connections in a system with three 

masters and three slaves. 
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Figure 8.5: PLB interface 

 

8.2.2.1 Master Bus Protocol 

The Processor Local Bus protocol that was used for this project is too complex to 

present a detailed list of the essential master bus signals that hook up the Microblaze 

soft processor on the system bus. It would be also futile to present just a subset of the 

master bus signals as this wouldn’t provide a realistic understanding of the working 

idea behind PLB. 

 

8.2.2.2 Slave Bus Protocol 

In contrast to the master bus signals for Microblaze, a subset of the slave bus signals 

can be presented and still provide a clear and simple view of how the external device 

(IDWT) communicates via the PLB with Microblaze. This is mostly due to the fact 

that EDK uses what is called PLB slave and burst peripherals to implement common 

functionality among various processor peripherals. These PLB slave and burst 

peripherals can act as bus masters or bus slaves. The PLB slave and burst peripherals 

are verified, optimized, and highly parameterizable interfaces. They also provide a 



99 

 

set of simplified bus protocols. This is all IP Interconnect (IPIC), which is much easier 

to work with when compared to operating on the PLB or FSL bus protocols directly. 

Figure 8.6 illustrates the relationship between the bus, a simple PLB slave peripheral, 

IPIC and the user IP design. 

 

 

Figure 8.6: PLB Slave Module 

 

A subset of the slave bus signals is presented below: 

Bus2IP_Clk: slave device clock 

Bus2IP_Reset: slave device reset 

Bus2IP_Addr: bus to IP address for writing to and reading from user IP memory 

Bus2IP_Data: bus to IP data bus, which pushes data into the user design 

Bus2IP_RNW: bus to IP read/not write 

Bus2IP_BE: bus to IP byte enables  

Bus2IP_CS: bus to IP chip select for user IP memory selection 
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Bus2IP_RdCE: bus to IP read chip enable 

Bus2IP_WrCE: bus to IP write chip enable 

IP2Bus_Data: IP to Bus data bus, which pops data back to the main bus 

IP2Bus_RdAck: IP to Bus read transfer acknowledgement 

IP2Bus_WrAck: IP to Bus write transfer acknowledgement 

IP2Bus_Error: IP to Bus error response 

Using the above protocol the IDWT IP core is able to exchange data with Microblaze 

and connect to appropriate control signals that trigger the beginning of processing or 

mark the end of processing by the core.   

The following figure (Figure 8.7) illustrates the final System on Chip (SoC), including 

basic components, memories and bus communication protocols.  

 

Figure 8.7: Final System on Chip 
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Chapter 9  

Implementation Results 

 

Overview 

In this chapter we present a set of detailed results for the IDWT core that has been 

designed and the final SoC that has been developed for the JPEG2000 compression 

standard. The results refer to power consumption, slice utilization and performance 

in terms of maximum frequency achieved. For the purposes of this thesis, the final 

SoC was implemented and tested on a Virtex-5 XC5VSX50T board (Virtex-5 SX sub-

family). However, results have been acquired and analyzed for other platforms as 

well. These include: Virtex-5 XC5VLX110T (Virtex-5 LX sub-family), Virtex-6 

XC6VLX75T (Virtex-6 LX sub-family), Virtex-6 XC6VSX315T (Virtex-6 SX sub-family) 

and Spartan 6 XC6SLX100. Finally, the speed-up of the JPEG2000 decoder is 

calculated, after we implement the application on the Virtex-5 SX development 

platform. 

 

9.1 Synthesis Design Goals and Strategies 

In order to evaluate the impact of different implementation strategies on area, speed 

and power estimations we used three different and predefined by XST 

implementation strategies: 

Area Reduction: this strategy sets an area-oriented goal for the synthesizer. The area 

reduction strategy will try to minimize area while enabling the physical synthesis 

options available in map. The tools perform logical optimizations on the design in 

order to achieve area requirements. 

Timing Performance: this strategy sets a speed-oriented goal for the synthesizer. 

The timing performance strategy will try to achieve timing closure while enabling 
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the physical synthesis options available in map. It can also try to achieve timing 

closure while packing registers into the IOBs if possible. 

Power Optimization: this strategy sets a power-oriented goal for the synthesizer. 

The power optimization strategy will try to minimize power while enabling the 

physical synthesis options available in map. The tools perform logical optimizations 

on the design in order to achieve power reduction. 

 

 

9.2 IDWT Core Results  

The application specific nature of the JPEG2000 implementation requires the 

embedding of the IDWT core to the final SoC as an instantiation that can manage 

64x64 image tiles. However, the core can be altered in order to be able to manipulate 

other image sizes, and more specifically 128x128, 256x256 and 512x512 grayscale 

images. The following results refer to 4 different instantiations of the core being 

implemented on the platforms mentioned above. For the extraction of these results, 

ISE 12.1 design suite was used. All results are extracted after Place And Route (PAR) 

has taken place. 

 

 

9.2.1 Slice Utilization Results   

The following diagram (Figure 9.1) depicts the slice utilization on different platforms 

and different instantiations of the IDWT core that can manage different image sizes. 

For this set of results, the synthesizer’s goal was set to be speed-oriented and the 

optimization effort was set to ‚High‛.  
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Figure 9.1: Slice utilization (speed-oriented optimization) 

A first conclusion is that the IDWT core utilizes only 0.5% - 1.5% of the total slices 

available in every case. This is not the case with BRAM resources that are used, as the 

instantiation that manages 512x512 image sizes requires more than 80% of the total 

BRAMs available in every device, apart from the Virtex-6 SX FPGA. This means that 

the core cannot be set to work on 1024x1024 images in the rest devices. 

Second, it is clearly seen that the implementation on Virtex-6 and Spartan-6 devices 

requires less slices in comparison to implementing the design on Virtex-5 devices. 

This difference is attributed to the fact that Virtex-5 slices contain 4 6-input LUTs and 

4 Flip Flops each, whereas Virtex-6 and Spartan-6 technologies utilize slices that 

contain 4 6-input LUTS and 8 Flip Flops each. The increase in the number of Flip 

Flops leads to fewer slices being utilized in these devices. 

The following diagrams (Figure 9.2, Figure 9.3 and Figure 9.4) illustrate the slice 

utilization results for each of the above FPGA families separately. However, in these 

diagrams the impact of the synthesizer’s goal can be observed, as it switches between 

area-oriented and speed-oriented settings.  The optimization effort is kept to ‚High‛. 
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Figure 9.2: Slice utilization – Virtex-5 

 

 

Figure 9.3: Slice utilization – Virtex-6 
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Figure 9.4: Slice utilization – Spartan 6 

 

The above diagrams show that there is a decrease factor in slice number when the 

algorithm switches from speed to area oriented, especially in Virtex-5 and Spartan 6 

devices. More precisely: 

Virtex-5: 10% slice number reduction 

Virtex-6: 2% slice number reduction 

Spartan 6: 9% slice number reduction 
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9.2.2 Performance Results 

In order to evaluate the performance on each device the maximum frequency 

(minimum clock period) was estimated in each case. The following diagram (Figure 

9.5) illustrates the maximum frequency achieved when the IDWT core is 

implemented on Virtex-5, Virtex-6 and Spartan 6 devices. For this set of results, the 

synthesizer’s goal was set to be speed-oriented and the optimization effort was set to 

‚High‛. 

 

 

Figure 9.5: Maximum frequency (speed-oriented optimization) 

 

From the above diagram it is clearly observed that Virtex-5 and Virtex-6 technologies 

achieve much higher clock frequencies in comparison to Spartan 6 technology. From 

Spartan 6 to Virtex-5 there is a speed improvement of 85% and from Virtex-5 to 

Virtex-6 a further 20% speed improvement. However, this comes with a cost to 

power consumption, as it will be presented later in this chapter. Furthermore, it is 

worth noticing that no significant differences between LX/SX FPGA sub-families 

were found to be, as far as speed is concerned. 

The diagrams that follow (Figure 9.6, Figure 9.7 and Figure 9.8) illustrate the slice 

utilization results for each of the above FPGA families separately. In these diagrams 

the impact in maximum frequency is estimated by setting different goals to the 

synthesizer. 
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Figure 9.6: Maximum frequency – Virtex-5 

 

 

Figure 9.7: Maximum frequency – Virtex-6 
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Figure 9.8: Maximum frequency – Spartan 6 

 

The above diagrams show that there is an increase factor in maximum frequency 

when the algorithm switches from speed to area oriented, especially in Virtex-5 and 

Spartan 6 devices. More precisely: 

Virtex-5: 15% speed increase 

Virtex-6: 12% speed increase 

Spartan 6: 13% speed increase 
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9.2.3 Power Consumption Results 

The power consumption of the design was evaluated on the same boards by using 

the Xpower tool. As it was shown in the slice utilization diagrams only a small fractal 

of the total number of slices available in each device was utilized (around 1%). This 

means that FPGA leakage (static power) is going to overshadow the design’s power 

consumption. Consequently, no noticeable changes in total power consumption were 

found to be as image size increases, and therefore total power consumption remains 

almost the same in every case. The following diagram (Figure 9.8) presents the 

power consumption estimates that were extracted using Xpower. The IDWT core is 

set to work on 256x256 size images and the clock frequency in every device is 

constrained to 180MHz. For the synthesizer’s goals, optimization is set to be area-

oriented, power reduction option is selected, and optimization effort is set to ‚High‛. 

 

 

Figure 9.9: Power consumption 

 

After evaluating the results and observing the above diagram, some clear 

conclusions come out.  

First, Spartan 6 is obviously the low-power, low-cost solution for implementing the 

design, presenting a power consumption that is almost 10% of the one presented by 
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Virtex-5 SX (the board that was used for implementation). The differences in 45nm 

logic process (Spartan 6) and 65nm process (Virtex-5), being the reason for this 

significant decrease in power consumption. 

Second, Virtex-5 SX consumes less power than Virtex-5 LX. This is important, 

because the Virtex-5 LX device that was selected (XC5VLX110T) is the ‚smallest‛ 

device from the LX sub-family, on which the design can fit when instantiated for 

512x512 image sizes. Furthermore, in the previous speed diagrams it was shown that 

maximum frequencies achieved are the same for these devices. Therefore, Virtex-5 

SX sub-family proves to be a better solution in comparison to Virtex-5 LX sub-family, 

especially when we wish to exploit large image sizes. 

On the other hand, between Virtex-6 LX and Virtex-6 SX, the LX device proves to be 

a better solution as it combines lower power consumption (75% power reduction) in 

comparison to SX, while the maximum frequencies achieved are approximately the 

same in both devices. 

Lastly, the benefits of the novel 40nm copper process technology on which Virtex-6 is 

built, are depicted in the diagram by the difference in power consumption between 

Virtex-5 and Virtex-6 families. Virtex-6 LX has 120% the capacity of Virtex-5 SX in 

slice number, but consumes 15% less power. Even the power-hungry Virtex-6 SX 

FPGA presents a 200% increase in power consumption compared to Virtex-5 SX, 

while though providing 6 times the area capacity of the Virtex-5 SX FPGA.   

For the purposes of estimating power consumption, changing the synthesizer’s goals 

as far as area, speed and power is concerned, did not have any impact on the final 

estimation. This is because, as stated before, the IDWT core utilizes only 1% of the 

total available slices in each device; therefore FPGA leakage is literally the only factor 

affecting the total power consumption estimation. 

 

9.3 System on Chip Results 

In this section, the final results regarding SoC slice utilization, performance and 

power consumption are presented.  Apart from the Virtex-5 SX on which the 

JPEG2000 codec was implemented and tested, two more devices (Spartan 6 

XC6SLX100 and Virtex-5 XC5VLX110T) were evaluated.  
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9.3.1 Slice utilization results 

The following diagram (Figure 9.10) shows the number of slices used to implement 

the SoC on Virtex-5 SX, Virtex-5 LX and Spartan 6 devices. For this set the 

synthesizer’s goal is set to be speed-oriented and optimization effort is set to ‚High‛. 

 

Figure 9.10: Slice utilization (speed-oriented optimization) 

The same conclusions are reached here as in the previous section that was referring 

to the IDWT core. Spartan 6 technology requires fewer slices to implement the SoC, 

due to the fact that slices in Spartan 6 and Virtex-6 contain double the number of Flip 

Flops in comparison to Virtex-5 technology. 

The diagrams that follow (Figure 9.11, Figure 9.12 Figure 9.13) illustrate the slice 

utilization results for each of the above FPGA families separately. In these diagrams 

the impact in maximum frequency is estimated by setting different goals to the 

synthesizer. The decrease in number of slices is noticeable. More precisely: 

Virtex-5 SX: 7% slice utilization decrease 

Virtex-5 LX: 3% slice utilization decrease 

Spartan 6: 9% slice utilization decrease 

Virtex-6: 8% slice utilization decrease 
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Figure 9.11: Slice utilization – Virtex-5 

 

 

Figure 9.12: Slice utilization – Spartan 6 
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Figure 9.13: Slice utilization – Virtex-6 

9.3.2 Performance results 

The speed diagram in Figure 9.14 shows the maximum frequency achieved by 

Virtex-5 SX/LX, Virtex-6 LX/SX and Spartan 6 boards. The synthesizer’s goal switches 

between speed-oriented and area-oriented and the optimization effort is set to 

‚High‛. 

 

Figure 9.14: Maximum frequency (speed–oriented optimization) 
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As it was expected Virtex-6 SX achieves the highest speed, while Spartan 6 achieves 

the lowest one. What is more interesting though is that the SoC speed is almost half 

the speed achieved when we only implement the IDWT core on the same boards. The 

existence of a DDR2 SDRAM memory, which is essential in order to download the 

software application, is the defining factor. The speed bottleneck is the DDR2 

SDRAM Multi-Port Multi-Channel Controller (MPMC) as it can be easily seen in the 

slack histogram below (Figure 9.15), which was generated using the PlanAhead 12.1 

tool. The endpoint setup slack for the IDWT core is around 5 ns in every case. 

Therefore, the IDWT core is not contributing to the decrease in speed when it is 

embedded into the SoC. 

 

 

 

Figure 9.15: Slack histogram 

 

For the same reason that was explained above, no significant speed up could be 

achieved when changing the synthesizer’s goal to be speed oriented.  
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9.3.3 Power consumption results 

The power consumption of the final SoC was again estimated by using the Xpower 

tool. The following diagram (Figure 9.16) shows the differences is power 

consumption among Spartan 6, Virtex-5 and Virtex-6 development boards. As 

previously discussed, the existence of the IDWT core does not affect the final 

estimation. 

 

Figure 9.16: SoC power consumption 

 

Again Spartan 6 device proves to be, as expected due to 45nm process technology, 

the low power, low cost solution for the implementation of the SoC. The power 

consumption estimate in the Spartan 6 device is 22% of the power consumption 

estimate for the Virtex-5 SX device and 20% of the power consumption estimate for 

Virtex-5 LX device. The same conclusions that applied to the IDWT core apply here 

as well. Virtex-5 SX series proves to be a better solution to Virtex-5 LX series, as far as 

performance and power trade-offs are concerned. This is again, because larger 

devices of the LX series need to be used in order to fit the design when it is set to 

work on larger images. Last, Virtex-6 LX FPGA consumes 63% less power compared 

to Virtex-5 LX and 58% less power compared to Virtex-5 SX. The Virtex-6 SX device 

has approximately the same power consumption estimate compared to Virtex-5 

families, while being capable to fit a much larger design. Apart from the 45nm and 

40nm copper process technologies that have great impact on power in Spartan 6 and 

Virtex-6 FPGAs, the SoC that is implemented on these devices consumes less energy 
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as it also incorporates a DDR3_SDRAM instead of the DDR2_SDRAM that was used 

in Virtex-5 SX, which consumes 30% more power.  

 

 

9.5 JPEG2000 Speed-up 

In order to estimate the potential speed-up of the JPEG2000 Decoder after porting the 

Inverse Discrete Wavelet Transform to hardware, we performed several executions 

of the application, for different image sizes, with and without the partitioning that 

was implemented. 

First, the JasPer software was downloaded on the development board and run on 

Microblaze at 100MHz. Using Xilinx Microprocessor Debugger we managed to 

acquire cycle results both for the whole execution of the application as well as the 

execution of the Inverse Discrete Wavelet functions alone. After mapping these 

functions on the FPGA fabric, we performed respective executions for the partitioned 

application and acquired relevant cycle results. The diagram below (Figure 9.17) 

shows the cycle results that were acquired, for different image sizes (8-bit grayscale) 

and Microblaze running at 100MHz (same frequency means that execution time 

results are straightly analogous to cycle results).  

 

Figure 9.17: Cycle results for IDWT 
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The above diagram shows an increasing gain in speed as the image size increases. 

For 64x64 image sizes the hardware implementation of the IDWT performs its 

computation in 48% of the processing time taken by the JasPer IDWT stage. In other 

words, we gain a 52% speed-up in execution time. This gain increases up to 63% for 

512x512 image sizes.  

The impact of this improvement in execution time was also calculated for the whole 

decoding stage. The following diagram (Figure 9.18) shows the cycle results for the 

execution of the JPEG2000 decoding stage, as a software-only and as a 

software/hardware implementation. 

 

 

Figure 9.17: Cycle results for JPEG2000 Decoder 

It is clear by this diagram that the JPEG2000 Decoder stage benefited from the 

decision to port the IDWT stage to hardware. We calculated a decrease in cycles, and 

thus a decrease in execution time, that ranges between 16% and 20%, slightly 

increasing as the image size increases. As the image size increases, the software 

implemented IDWT stage performs even more memory accesses, thus becoming 

even more computationally intensive. Therefore, the implementation of the IDWT on 

FPGA fabric has even greater impact when we decompress large images. 
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Chapter 10 

Conclusions & Future Work 

 

10.1 Conclusions 

In this thesis we presented the co-design and implementation of the JPEG2000 still 

image compression standard on a Xilinx Virtex-5 development platform. The whole 

procedure, from the early stages of specification analysis and hardware/software 

partitioning to the latest stages of implementation and verification, provided a first 

understanding of the capabilities that are given to the designer by modern CAD 

design tools, but also the many challenges that are yet to be taken. 

Modern CAD design tools, like the Xilinx ISE design suite and the Xilinx EDK tool 

set that were used for the implementation stage in this thesis, offer great flexibility 

and automation in hardware/software co-design and co-verification. This brings 

rapid prototyping to the next level and allows for short time-to-market deadlines to 

be achieved with greater efficiency. However, big challenges for the designer still 

exist. Decisions that have to be taken early in the design stage, such as 

hardware/software partitioning, have eventually great impact on the final result. 

Therefore, design strategies that are espoused before implementation will almost 

surely require for the implementation stage to be more flexible. This issue is 

something that is covered by modern tools generally. However, the stages of co-

debug and co-verification of HW/SW systems, as it was also the case in this project, 

prove to be the most time consuming ones. This especially affects Embedded 

Systems as the integration of dedicated software running on dedicated hardware 

bridges these two domains, presenting new challenges not traditionally found on 

hardware-only systems. Thus, the design tasks of verification and debug of h/w and 

s/w systems that are written from two different sets of designs -with possibly 

incomplete specifications-, become even more challenging. 
The co-design and implementation of the JPEG2000 compression standard also 

showed the benefits of implementing a DSP application on FPGA fabric in terms of 

speed-up gains. An Inverse Discrete Wavelet Transform core was designed in order 

to map a time consuming and computationally intensive function of the JPEG2000 

compression engine on FPGA fabric. The result was an improvement in speed, up to 



119 

 

a factor of 20%. Such gains in speed are often critical for DSP applications, where 

throughput is essential.   

For the purposes of this thesis, both the IDWT core and the final System-on-Chip 

were evaluated as far as area utilization, power consumption and speed is 

concerned. It was found that when the IP core is integrated in the larger SoC then its 

maximum speed potential is almost halved down, due to the stricter implementation 

constraints of a system incorporating a ‚soft‛ processor, other IPs, memories, IOs, 

etc.  

Performance, power consumption and area utilization results were also estimated for 

other modern platforms provided by Xilinx, apart from the Virtex-5 SX (65nm logic 

process) subfamily that was the development platform for implementing the 

JPEG2000 standard. More specifically, estimates were extracted for the Spartan 6 

(45nm logic process) and Virtex-6 (40nm logic process) FPGA families. This provided 

us with some conclusions. First, the Spartan 6 FPGA family offers a low-cost, low-

power solution for the System-on-Chip that was developed. The differences between 

45nm process and 65nm process, as expected, had a great impact on power 

consumption, reducing power up to 500%. Second, the Virtex-6 FPGA families with 

40nm process seem to be a better solution regarding speed and power trade-offs, in 

comparison to the Virtex-5 FPGA families, as a 30% improvement in speed and a 

60% reduction in power consumption were estimated.  

Last but not least, in the second part of the present thesis, a step-by-step guide has 

been presented that allows one to follow or get familiar with some basic steps and 

procedures regarding the Xilinx Embedded Development Kit. This guide is a good 

example of the way this tool-set can aid the designer by greatly automating critical 

parts of the implementation phase.   

 

10.2 Future Work 

Obviously there are more ideas to be improved or investigated in this project. The 

following have been considered for investigation in future work: 

  FPGAs are a powerful and compelling option for high-performance, 

demanding digital signal processing (DSP) applications, whether as part of a 

co-processing acceleration system or a dedicated hardware implementation. 

In the future, other modern DSP applications (such as H.264 for broadcast) 

could be investigated for co-design and implementation on DSP-oriented 

FPGA platforms.  
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 In this thesis, as far as the HW/SW partitioning solution is concerned, it was 

decided to port the Inverse Discrete Wavelet Transform to hardware. 

However, this is not the optimal partitioning solution. Design Space 

Exploration methodologies can be used in order to broaden the search for 

possible potential design solutions, including the Encoder stage. This means 

porting Tier-1 Coder, FDWT, ROI and MCT sub-functions to hardware. 

  For the implementation of the JPEG2000 standard, we created an IP core that 

was integrated into a larger SoC. The PLB bus communication protocol was 

used to establish communication between the Microblaze processor and the 

IDWT core. In the future, the potential gains of using the FSL bus protocol 

could be investigated. 

 Implementation of the JPEG2000 compression standard on Virtex-7 FPGA 

families could give interesting results regarding the novel 28nm logic process. 

 Investigating the implementation of the Discrete Wavelet Transform in ASIC.  
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Part 2 

Chapter 11  

Step-by-step Guide  

Overview 

In this chapter a step-by-step guide is presented that describes the whole procedure 

of implementing and testing our JPEG2000 co-design on the Xilinx Virtex-5 ML506 

FPGA (XC5VSX50T). It is assumed that Xilinx EDK 12.1 and Xilinx ISE 12.1 are 

properly installed and all the standard libraries are generated as described in 

Embedded System Tools Reference Manual by Xilinx [15]. 

HARDWARE DEVELOPMENT 

11.1 Creating a new project 

In order to create a new project, we will use the Base System Builder (BSB) wizard 

that quickly and efficiently establishes a working design that can then be further 

customized. Xilinx recommends using the BSB Wizard to create the foundation for 

any new embedded design project, as it saves a lot of time by automating basic 

hardware and software platform configuration tasks common to most processor 

designs. 

Steps 

1.1 Open XPS. From the dialog box, select "Base System Builder wizard" and OK. 

1.2 Click "Browse" and create a new folder for the project. Click "OK". 
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1.3 We are given the choice to create a new project or to create one using the 

template of another project. Tick "I would like to create a new design" and click 

"Next". 

1.4 On the "Board" page, select "Xilinx" as the board vendor. Then select the board 

"Virtex 5 ML506 Evaluation Platform" board. Select "1" as the board revision. 

Click "Next". 

 

 

 

1.5 On the ‚System‛ page, select ‚Single-Processor System‛ 

1.6 On the "Processor" page, we normally have a choice between using the PowerPC 

"hard" processor, or the Microblaze "soft" processor. Since the Virtex-5 does not 

contain any PowerPCs, we can only select Microblaze. Leave ‚System Clock 
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Frequency‛ and ‚Local Memory‛ in their default values (125.00 MHz and 8KB 

respectively). Click "Next". 

 

 

 

1.7 On the ‚Peripheral‛ page, use ‚Add‛ and ‚Remove‛ buttons to add or remove 

peripherals. Leave RS232_Uart_1, SRAM, DDR2_SDRAM, dlmb_cntlr and 

ilmb_cntlr in the ‚Peripherals‛ list. Click "Next". 

1.8 On ‚Cache‛ and ‚Application‛ pages, click ‚Next‛. 

1.9 On ‚Summary‛ page, click ‚Finish‛ and the basic working design is established. 
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11.2 The XPS GUI 

 

Now that the basic configuration has been completed and the basis for our design 

has been established using BSB, it is time to explain some of the most essential tasks 

that can be accomplished through the XPS GUI and take a closer look on what 

information can be straightly provided to the designer by using this GUI. 

The XPS main window is divided into three different areas (Figure 11.1): 

 Project Information Area 

 System Assembly View 

 Console Window 
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Figure 11.1: XPS GUI 

 

Project Information Area 

The Project Information Area offers control over and information about the project. It 

is divided into three tabs:   

 Project Tab: lists all project related files such as the MHS, MSS, User 

Constraints File (UCF), iMPACT command files, Device, HDL and Netlist 

options, log files, etc. 

  Applications Tab: lists all software application option settings, header files, 

and source files that are associated with each application project. 

 IP Catalog Tab: lists all the EDK IP cores and any custom IP cores. 

 

System Assembly View 

The System Assembly View allows the user to view and configure system block 

elements. XPS provides Bus Interface, Ports, and Addresses tabs in the System 

Assembly View (Figure 11.2), to organize information about the design and allow the 

designer to more easily edit the hardware platform. The Connectivity Panel that 

accompanies the Bus Interface tab is a graphical representation of the hardware 

platform interconnects.  
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Figure 11.2: System Assembly View – Bus Interface tab and Connectivity Panel 

 

 A vertical line represents a bus, and a horizontal line represents a bus 

interface to an IP core. 

 If a compatible connection can be made, a connector is displayed at the 

intersection between the bus and IP core bus interface. 

 The lines and connectors are color-coded to show bus compatibility. 

 Differently shaped connection symbols indicate whether IP blocks are bus 

masters or bus slaves. 

 A hollow connector represents a connection that you can make, and a filled 

connector represents a connection made. To create or disable a connection, 

the user can simply click the connector symbol. 
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11.3 Creating and Importing the Peripheral 

 

The next step after having established a basic working design is to import the IDWT 

VHDL design in order to create a new Intellectual Property (IP) core and import it as 

a slave peripheral in the embedded system. EDK offers the Create and Import 

Peripheral (CIP) Wizard, which simplifies the procedure by automating many critical 

steps, like the creation of a slave interface for the IP, proper updating of the MHS and 

MPD file, etc. 

In order to follow the steps bellow it is assumed that the .vhd source files for the 

IDWT core are available to the user. 

 

Create the IDWT Peripheral-Steps 

3.1 Select from the menu "Hardware->Create or Import Peripheral". Click "Next". 

3.2 Select "Create templates for a new peripheral" and click "Next". 
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3.3 We must now decide where to place the files for the peripheral. They can be 

placed within this project, or they can be made accessible to other projects. Select "To 

an XPS project". Click "Next". 

 

 

 

3.4 On the "Name and Version" page, type "idwt" for the peripheral name. Click 

"Next". Notice the logic logical library that is created: idwt_v1_00_a. All HDL files, 

both user created and tool generated, must be compiled into this logical library name 

above.  

3.5 On the "Bus Interface" page, select "Processor Local Bus" (PLB) and click "Next". 
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3.6 On the "IPIF Services" page, we can make the Peripheral Wizard generate our 

VHDL template to include different features. We need a software reset to give us the 

ability to reset the IDWT peripheral in the software application, software accessible 

registers for debugging and user memory space to store the data that our peripheral 

needs. Select ‚Software Reset‛, ‚User logic software register‛, and ‚User logic 

memory space‛, un-tick everything else and click "Next".  

 

 

 

3.7 On the "Slave Interface" page, click "Next". 

3.8 On the ‚User S/W Register‛ page, select 2 software accessible registers to be 

instantiated with our design. 
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3.9 On the ‚User Memory Space‛ select 1 ‚User address range‛. Click ‚Next‛.  

3.10 On the "IP Interconnect" page we can customize our connection to the PLB but 

we will leave everything as is for simplicity. Click "Next".  

 

3.11 On the "Peripheral Simulation Support" page, we can specify if we want the 

wizard to create a simulation platform for our peripheral. Click "Next" without 

ticking the option to generate.  

 

3.12 After the "Peripheral Implementation Support" page, the wizard will generate all 

the template files for us. Tick "Generate ISE and XST project files" and "Generate 

template driver files". Click "Next".  

 

3.13 Click "Finish". Now our templates are created. 
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Create the IDWT core in VHDL - Steps 

3.14 In this step we have to import our VHDL design in XPS. The source code files 

are assumed to be available already to the user. The files are: ‚IDWT_pkg.vhd‛, 

‚IDWT_top.vhd‛, ‚Controller1D.vhd‛, ‚Controller2D.vhd‛, ‚PU.vhd‛ and 

‚Clock_buf.vhd‛. 

3.15 The files should then be placed in "pcores\idwt_v1_00_a\hdl\vhdl" folder, 

which has been already created by XPS into our project directory.    

 

Modifying the .PAO file – Steps 

The .pao file contains a list of all the source files that compose our peripheral. We use 

this list when we run the Peripheral Wizard in Import mode. Now that we have 

added source files to the project, we must include it in the .pao file. 

3.16 In XPS select "File->Open" and browse to the "pcores\idwt_v1_00_a\data" 

folder. Select the file "idwt_v2_1_0.pao" and click "Open". 

3.17 At the bottom of this file you will see these two lines: 

lib idwt_v1_00_a user_logic vhdl 

lib idwt_v1_00_a idwt vhdl 

 

3.18 Now, in a similar format, we have to import the files that we created before. We 

have to insert the lines that ‚point‛ to our files just above these two lines. After that, 

the .pao file should look like the picture in the following page. Notice that the .pao 

file lists the source files in hierarchical order. Thus if we have a VHDL design 

consisting of multiple files (like the IDWT core), it is important to know the 

hierarchical order of the components. The components at the top of the chain are 

listed at the bottom of the file. 

3.19 Save the .pao file. 

 

 



133 

 

 

 

Modifying the Peripheral – Steps 

Now we will add code in our peripheral template to instantiate an IDWT core and 

we will connect it to the system bus (PLB). 

3.20 Select from the menu "File->Open" and look in the project folder.  

 

3.21 Open the folders: "pcores\idwt_v1_00_a\hdl\vhdl". This folder contains two 

source files that describe our peripheral "my_multiplier.vhd" and "user_logic.vhd". 

The first file is the main part of the peripheral and it implements the interface to the 

PLB. The second file is where we place our custom logic to make the peripheral do 

what we need it to do. This part is instantiated by the first file. 

3.22 Open the file "user_logic.vhd". We will need to modify this source code to 

instantiate the IDWT and connect it to the user address memory and PLB slave bus 

protocol signals. It is supposed that the ‚user_logic.vhd‛ is already available to the 

user. Paste the contents over the original code in the file we opened. Then save the 

file. 
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Importing the Peripheral – Steps 

 

Now we will use the Peripheral Wizard in Import mode. 

3.23 Select from the menu "Hardware->Create or Import Peripheral" and click "Next".  

 

3.24 Select "Import existing peripheral" and click "Next". 

 

 

3.25 Select "To an XPS project", ensure that the folder chosen is the project folder, and 

click "Next". 

3.26 For the name of the peripheral, type "idwt". Tick "Use version" and select the 

same version number that we originally created. Click "Next". It will ask if we are 

willing to overwrite the existing peripheral and we should answer "Yes". 

3.27 Now we are asked about the files that make up our peripheral. Tick "HDL 

source files" and click "Next". 

3.28 Select "Use existing Peripheral Analysis Order file (*.pao)" and click "Browse". 

From the project folder, go to "pcores\idwt_v1_00_a\data" and select the 

"idwt_v2_1_0.pao" file. Click "Next". 
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3.29 On the HDL analysis information page, if you scroll down, you will see the .vhd 

source files we added along with the 2 generated files (‚idwt.vhd‛ and 

‚user_logic.vhd‛) listed in the bottom. Click "Next". The wizard will mention if any 

errors are found in the design. 

3.30  On the Bus Interfaces page, tick "PLB Slave" and click "Next". 

3.31  On the SPLB: Port page, click "Next". 

3.32 On the "Parameter Attributes" page, in the register space field, select 

‚C_HIGHADDR‛ for ‚Parameter determine high address‛ and click "Next". 

3.32  On the "Port Attributes" page, click "Next". 

3.33  Click "Finish". 

The multiplier peripheral should now be accessible through the "IP Catalog->Project 

Local pcores" in the XPS interface. 
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Create an Instance of the Peripheral – Steps 

Follow these steps to create an instance of the peripheral in the project. 

3.35 From the "IP Catalog" find the "idwt" IP core in the "Project Repository" group. 

Right click on the core and select "Add IP". 

 

3.36 From the "System Assembly View" using the "Bus Interface" filter, connect the 

"idwt_0" to the PLB bus. 
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3.37 Click on the "Addresses" filter. Change the "Size" for "idwt_0" to 64K for 

BASEADDR and to 512K for C_MEM0_BASEADDR. These sizes refer to register and 

memory space respectively. Also change DDR2_SDRAM size to 32M. Then click 

"Generate Addresses". 

 

 

 

 

Now we have an instance of the IDWT peripheral in our project, so our hardware 

design is complete for now. In Figure 11.3 the block diagram of the hardware design 

is illustrated. It can be observed by clicking on the ‚Block Diagram‛ tab of the XPS 

GUI and it shows all the bus connections, bus types, peripherals and their instance 

names, memories, clock generators and the processor of our design. Notice that the 

IDWT peripheral is hooked up to the PLB along with the UART, the SRAM, etc. 

Finally, notice the LMB that connects the on-chip Block Ram to the Microblaze soft 

processor and the distinction between instruction and data ports (Harvard 

architecture).  

In the next section we will proceed with the software development part of the co-

design process. During the procedure we might need to apply changes to the 

hardware design. Therefore the above hardware design is not final. However, any 

changes that will apply would be better presented in the next steps to demonstrate 

the close relation and the constraints between SW and HW and how software 

development decisions affect hardware design and vice versa. 
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Figure 11.3: Block Diagram 
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SOFTWARE DEVELOPMENT 

For the software development stage of the design process we can follow two ways: 

continue using XPS or use SDK instead. SDK is suggested for building big software 

projects from scratch. However, we will proceed by using XPS, as it is assumed that 

the software design, which is a modification of the JasPer software, is already 

available to the user. This will also provide a wider understanding of the XPS and 

XPS GUI functionalities and capabilities. 

 

11.4 Creating a new software project 

In this section we will create a new software project and import it as a new 

application using XPS.  

Steps 

4.1 In the ‚Applications‛ tab double click on ‚Add Software Application Project‛. 

4.2 In the ‚Project name‛ field type ‚jpeg2000_sw‛ and click ‚OK‛. A project named 

‚jpeg2000_sw‛ is immediately added in the ‚Applications‛ list. 

 

 

4.3 Browse into the project’s directory (for this case ‚C:\ML506\JPEG2000‛) and 

create a file named ‚jpeg2000_sw‛. In this file, XPS will store the linker script file and 

the ELF file. Open the new file and copy the ‚src‛ file that is included in the modified 

software directory.  
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4.4 From the "Applications" tab, right-click on "Sources" within the "Project: 

jpeg2000_sw" tree. Click ‚Add Existing Files...‛ and add all the .c source files that are 

included in the modified JasPer software directory. 

4.5 Again, from the "Applications" tab, right-click on "Headers" within the "Project: 

jpeg2000_sw" tree. Click ‚Add Existing Files...‛ and add all the .h header files that 

are included in the modified JasPer software directory. 

 

 

Setting the library path - Steps 

4.6 Right-click on "Project: jpeg2000_sw" and click ‚Set Compiler Options‛. 

4.7 In the ‚Paths and Options‛ tab, click ‚Browse‛ for Library search paths and open 

the folder named ‚jasper‛ (C:/ML506/JPEG2000/jpeg2000_sw/src/jasper, for this 

project). This way we set the search path for our library.   
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Setting and configuring the Xilkernel OS – Steps 

Xilkernel, as explained in the previous chapter, is a highly customizable and 

lightweight kernel that also allows for (). Follow these steps to set and configure the 

kernel. 

4.8 From the XPS software, select ‚Software->Software Platform Settings‛. 

4.9 From the ‚Software Platform Settings‛ window, select ‚Software Platform‛. 

Under ‚OS & Library Settings‛, change ‚standalone‛ to ‚xilkernel‛. 

 

 

4.10 Again from the ‚Software Platform Settings‛ window, select ‚OS and Lib 

Configuration‛. Under ‚Configuration for OS‛, expand ‚xilkernel‛, expand 

‚sys_tmr_spec‛ and for ‚sys_tmr_dev‛ select ‚xps_timer_0‛. 
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4.11 At the bottom of the same sub-window, spot ‚stdin‛ and ‚stdout‛ selections. 

Select ‚mdm_0‛ for both of them. This will redirect the standard input and output to 

the Xilinx Microprocessor Debugger, which we will use to test our design. 

 

 

 

4.12 Click ‚OK‛. Notice that the MSS file has changed and has been saved by XPS. 

 

 

Generating the linker script – Steps 

The next steps will help us create a custom linker script that will map different 

sections of the ELF executable file (.text, .heap, .stack, etc.) to memory. Our software 

project is generally big (the ELF file has a size of 1.2 MB), so it will be downloaded in 

the DDR2_SDRAM and be executed from there. The on-chip BRAM is initialized 

with a boot-loader application (along with boot and vector sections), that branches to 

the starting address of the DDR2_SDRAM where our main application will be 

downloaded. It is worth noticing that we will use large sized heap and stack sections, 

because the software uses memory allocation functions extensively, and manipulates 

large data arrays. 

 

4.8 Right-click on "Project: jpeg2000_sw" and click ‚Generate Linker Script‛.  
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4.9 In ‚Sections View‛, for each section double click on the ‚Memory‛ fields and 

select ‚DDR2_SDRAM_C_MPMC_BASEADDR‛. This will load the sections to the 

SDRAM when we download the ELF file on the board.  

4.10 In the ‚Heap and Stack View‛, both for heap and stack, double click on the 

‚Size‛ field and change it to 0x40000. Double-click on the ‚Memory‛ fields and select 

‚DDR2_SDRAM_C_MPMC_BASEADDR‛.  
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Initialize BRAMs and download bitstream – Steps  

 

4.11 From the ‚Applications‛ tab, right click on ‚Default: microblaze_0_bootloop‛ 

and select ‚Mark to Initialize BRAMs‛.  

 

 

 

4.12 Turn on the ML506 board. 

4.13 From the XPS software, select "Device Configuration->Download Bitstream". 

 

 

11.5 Testing the design 

 

Testing the application by using XMD – Steps  

Follow these steps to test the application using Xilinx Microprocessor Debugger. The 

system decompresses an input image that is in JPEG2000 format (‚lena256.jp2‛) and 

produces an output log file via the serial port that can then be opened with an image 

viewer. The image viewer (for example Irfanview) will automatically convert the file 

to PNM format (‚lena256.pnm‛). It is assumed that the input image (and any other 

images that we may want to use as a test-case) are located into the 

C:/ML506/JPEG2000/jpeg2000_sw folder. 
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5.1 From the XPS software, select ‚Debug->Launch XMD‛. 

 

 

5.2 The XMD console opens and the connection is set, and the user can view the 

configuration of the Microblaze soft processor. In the console type the directory of 

the software project. For this project: ‚cd C:/ML506/JPEG2000/jpeg2000_sw‛. 

 

 

5.3 Now use the ‚dow‛ command to download the software program on the 

DDR2_SDRAM. Type ‚dow executable.elf‛. If you have created the ELF file with a 

different name then use the correct ELF name for this command. After the program 

is downloaded you can view the way that the different sections of the program have 

been mapped on the memory. 
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5.4 Open a hyperterminal (i.e TeraTerm or Hyperterminal) in order to establish a 

connection from the host PC to the FPGA device via the serial port. For this project 

the hyperterminal settings are: 

 

 

5.5 Now use the ‚xdownload‛ command in order to download the input image in 

SRAM. Type ‚xdownload 0 -data lena256.jp2 0x8A300000‛. ‚0x8A300000‛ is the base 

address of the SRAM for this project (it can be viewed in the System Assembly 

window and in the xparameters.h header file).  
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5.6 Prepare the hyperterminal to receive a file or create a log file.  

5.7 Now the program is ready to run and send the output file via the RS232 to the 

host PC. In the XMD console type ‚run‛. The time needed to complete the transfer 

depends on the baud rate that has been set for the RS232 UART. 

5.8 After the output file is received, open it with an image viewer software, such as 

Irfanview. De-compression is complete! 
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APPENDIX 

 

In this section we present some of the issues and bugs that had to be dealt with 

during the implementation of JPEG2000. Some hints and tips are also given, 

regarding decisions that had to be taken during the design of the project.  

 

Issue #1 - XPS vs. SDK for software development 

Prior to version 11.x, SDK had always been dependent on XPS. In 12.x XPS continues 

to offer a basic software development IDE. However, Xilinx has focused on SDK for 

s/w development and XPS for h/w development, therefore s/w development on XPS 

is deprecated in latest versions. The flow should be: do h/w development in XPS, 

export the hardware specification, and move on to SDK for software development. 

Unfortunately this is not made ‚clear‛ by the tools. One example is that SDK doesn’t 

make clear that it has a separate copy of the MSS file. Therefore, building some basic 

software in XPS and exporting the design to SDK does not mean that changes in XPS 

reflect changes in SDK. For the purposes of this thesis, using XPS to build an already 

developed software application was enough. However, when it comes to building 

big software projects from scratch SDK should be the only tool used, as it offers more 

software-oriented capabilities (for example, GNU debugger is no longer supported in 

XPS, but only in SDK).  

 

Issue #2 – Memory allocation issues in Microblaze 

MicroBlaze currently does not have a memory-management unit (MMU) in 

hardware or any memory management support in the basic libraries, as a hardware 

MMU would utilize a great deal more hardware resources. Malloc already works 

properly in that it allocates memory while memory is available and returns NULL if 

all memory is used. Free is very system-specific and is only an indication to the 

memory management subsystems that a given set of memory is no longer needed in 

the given program. It is up to the system to implement the actual functionality of 

free.  Often, a memory management subsystem does not free memory right away, 

but rather only performs a freed memory sweep when malloc indicates that the 

available memory has fallen below a predetermined lower boundary. Only then will 

the memory manager actually de-allocate all memory that was pre-marked for 

freeing by calls to free. For code size reasons, free simply does nothing for now. The 
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only safe way to write code that works on any system is to make sure that what 

malloc returns is greater than NULL. For the purposes of this thesis these memory 

allocation issues, taking into account the extensive use of malloc() functions in the 

JasPer software implementation, were simply solved by greatly increasing program 

heap size. However, when building a small project from scratch, it is wise to allocate 

memory only once and reuse this allocated memory as often as possible. 

 

Issue #3 – The “xil_io_out32” and ”xil_io_in32” bugs 

If a peripheral is created by using the CIP Wizard in XPS and ‚user logic software 

registers‛ are enabled, then the ‚undefined reference to xil_io_out32” and 

‚undefined reference to xil_io_in32” errors occur when the automatically created 

drivers compile.  

This is a bug that can be solved by manually changing the function call from 

xil_io_out32 to XIo_Out32 and from xil_io_in32 to XIo_In32. These changes have to 

be done in the ‚</microblaze_0/include/your_peripheral_name.h‛ header file. This 

problem has already been fixed in ISE 12.4 software. 

 

Issue #4 – Xilkernel OS and sleep() functions 

For the purposes of this thesis, the Xilkernel OS was used, as it provided 

functionalities that were critical in order to estimate the speed-up of the JPEG2000 

decoder after the co-design and implementation on Virtex-5 SX. More specifically, 

Xilkernel provides functions that can count the number of clock cycles needed in 

order for a function or number of functions to finish their execution. However, 

during the software development phase it was also decided to implement the 

XMODEM file transfer protocol that would secure an error resilient transmission of 

the test images via the UART RS232 serial port. This could not be accomplished for 

this software design, because the sleep functions that are essential for the XMODEM 

protocol could not function properly, unless they were called within threads. The 

JasPer software could not allow such changes. The commenting on this issue is that if 

the software application or project needs sleep functions in order to work properly, 

then Xilkernel could be avoided by running uLinux on Microblaze instead.       
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