
Υλοποίηση με γλώσσα περιγραυής σλικού VHDL τοσ

πρωτοκόλλοσ σσμπίεσης εικόνας JPEG-2000 σε πλατυόρμα

Xilinx Virtex-5

Εήζεο Παξαζθεπάο Υ. Πνύινο

ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ

ΥΟΛΖ ΖΛΔΚΣΡΟΛΟΓΩΝ ΜΖΥΑΝΗΚΩΝ

ΚΑΗ ΜΖΥΑΝΗΚΩΝ ΤΠΟΛΟΓΗΣΩΝ

ΣΟΜΔΑ ΣΔΥΝΟΛΟΓΗΑ ΠΛΖΡΟΦΟΡΗΚΗ ΚΑΗ ΥΠΟΛΟΓΙΣΤΩΝ

ΓΗΠΛΩΜΑΣΗΚΖ ΔΡΓΑΗΑ

Επιβλέπων: Γεκήηξηνο νύληξεο

 Αλ. Καζεγεηήο ΔΜΠ

Αζήλα, Απξίιηνο 2011

Εήζεο Παξαζθεπάο Υ. Πνύινο

Υλοποίηση με γλώσσα περιγραυής σλικού VHDL τοσ

πρωτοκόλλοσ σσμπίεσης εικόνας JPEG-2000 σε πλατυόρμα

Xilinx Virtex-5

ΔΘΝΗΚΟ ΜΔΣΟΒΗΟ ΠΟΛΤΣΔΥΝΔΗΟ

ΥΟΛΖ ΖΛΔΚΣΡΟΛΟΓΩΝ ΜΖΥΑΝΗΚΩΝ

ΚΑΗ ΜΖΥΑΝΗΚΩΝ ΤΠΟΛΟΓΗΣΩΝ

ΣΟΜΔΑ ΣΔΥΝΟΛΟΓΗΑ ΠΛΖΡΟΦΟΡΗΚΖ ΚΑΗ ΤΠΟΛΟΓΗΣΩΝ

ΓΗΠΛΩΜΑΣΗΚΖ ΔΡΓΑΗΑ

Επιβλέπων : Γεκήηξηνο νύληξεο

Αλ. Καζεγεηήο Δ.Μ.Π

Δγθξίζεθε από ηελ ηξηκειή εμεηαζηηθή επηηξνπή ηελ 8
ε
 Απξηιίνπ 2011.

Αζήλα, Απξίιηνο 2011

............................

Δημθτριος Σούντρης

Καιηγητθς Ε.Μ.Π.

............................

Κιαμάλ Πεκμεστζθ

Καιηγητθς Ε.Μ.Π.

............................

Γεώργιος Οικονομάκος

Κ Καιηγητθς Ε.Μ.Π.

1

...................................

Εήζεο Παξαζθεπάο Υ. Πνύινο

Γηπισκαηνύρνο Ζιεθηξνιόγνο Μεραληθόο θαη Μεραληθόο Τπνινγηζηώλ Δ.Μ.Π.

Copyright © Εήζεο Παξαζθεπάο Πνύινο , 2011.

Με επηθύιαμε παληόο δηθαηώκαηνο. All rights reserved.

Απαγνξεύεηαη ε αληηγξαθή, απνζήθεπζε θαη δηαλνκή ηεο παξνύζαο εξγαζίαο, εμ

νινθιήξνπ ή ηκήκαηνο απηήο, γηα εκπνξηθό ζθνπό. Δπηηξέπεηαη ε αλαηύπσζε,

απνζήθεπζε θαη δηαλνκή γηα ζθνπό κε θεξδνζθνπηθό, εθπαηδεπηηθήο ή εξεπλεηηθήο

θύζεο, ππό ηελ πξνϋπόζεζε λα αλαθέξεηαη ε πεγή πξνέιεπζεο θαη λα δηαηεξείηαη ην

παξόλ κήλπκα. Δξσηήκαηα πνπ αθνξνύλ ηε ρξήζε ηεο εξγαζίαο γηα θεξδνζθνπηθό ζθνπό

πξέπεη λα απεπζύλνληαη πξνο ηνλ ζπγγξαθέα.

Οη απόςεηο θαη ηα ζπκπεξάζκαηα πνπ πεξηέρνληαη ζε απηό ην έγγξαθν εθθξάδνπλ ηνλ

ζπγγξαθέα θαη δελ πξέπεη λα εξκελεπζεί όηη αληηπξνζσπεύνπλ ηηο επίζεκεο ζέζεηο ηνπ

Δζληθνύ Μεηζόβηνπ Πνιπηερλείνπ.

2

Abstract

 The purpose of the present diploma thesis is the co-design and

implementation of a Digital Signal Processing (DSP) application on a Xilinx Virtex-5

platform. The DSP application that was selected for this purpose was the JPEG2000

image compression standard. The whole procedure is presented here split in two

major parts. In the first part, the methodology that led to a specific

hardware/software partitioning strategy is presented, including specification

analysis and profiling of JasPer, an open-source software-based implementation of

the JPEG2000 codec. A detailed set of timing profiles is presented for the JasPer code.

Analysis of these profiles led to the decision of selecting the Inverse Discrete Wavelet

Transform for implementation in hardware. Additionally, the first part contains a

description of the hardware architecture that was implemented in VHDL and the

respective simulation results that followed. Furthermore, the first part includes a

presentation of the Xilinx EDK tool set and the JPEG200 co-design architecture. The

last chapter of the first part presents the implementation results. In the second part, a

step-by-step guide is presented, which allows one to follow all the basic and essential

steps in order to integrate the developed VHDL design into a larger System-on-Chip

and implement it on a Xilinx Virtex-5 development platform. The system

incorporates a MicroBlaze processor and was designed and implemented using the

set of tools included in the Embedded Development Kit (EDK), which is provided by

Xilinx.

KeyWords

Embedded Systems, FPGA, DSP, JPEG2000, Hardware/Software partitioning,

Discrete Wavelet Transform, Xilinx EDK, Xilinx Virtex-5

3

Table of Contents

Part 1

1. Embedded Systems .. 8

1.1 Definition .. 8

1.2 Some Examples .. 8

1.3 Characteristics and Requirements ... 9

1.4 Challenges and the concept of co-design ... 11

1.5 Design Tasks ... 11

2. Digital Signal Processing and FPGAs .. 13

2.1 General Information .. 13

2.2 Field-programmable Gate Arrays ... 14

2.2.1 Short History of FPGAs ... 15

2.2.2 Challenges of FPGAs ... 17

2.3 DSP System Basics ... 19

2.3.1 DSP System Definitions ... 21

3. The Platform .. 23

3.1 Xilinx FPGA Technologies.. 23

3.1.1 Xilinx VirtexTM-5 FPGA Technologies ... 26

 3.1.1.1 VirtexTM-5 Configurable Logic Block..<<<<<<<<<<<<.<27

 3.1.1.2 VirtexTM-5 Memory Organization<...<<<<<<<<<<<<.. ...30

 3.1.1.3 VirtexTM-5 DSP Processing Resource .<<<<<<<<<<<<.<32

 3.1.1.4 Clock Networks and PLLs<<<<<<<<<<<<<<<<<<34

 3.1.1.5 I/O and External Memory Interfaces<..<<<<<<<<<<<<35

4

4. The Application .. 36

4.1 Introduction .. 36

4.2 JPEG ... 37

4.3 Why JPEG2000? .. 37

4.4 The JPEG2000 Compression Engine ... 40

4.4.1 Specifications - Encoder Functionality .. 41

4.4.2 Specifications - Decoder Functionality .. 45

5. HW/SW partitioning…………………………………………………………………....47

5.1 Software implementation selection ... 47

5.1.1 Selection Criteria ... 47

5.1.2 JJ2000 Implementation ... 48

5.1.3 Kakadu Implementation .. 48

5.1.4 JaSper Implementation .. 49

5.2 Profiling background and motivation .. 50

5.3 Profiling Strategy ... 50

5.3.1 Scenarios .. 51

5.3.2 Test Images .. 51

5.3.3 Profiling Testcases .. 52

5.3.4 Profiling Procedure .. 54

5.3.5 Profiling Results .. 54

5.3.6 Result Analysis and Conclusions ... 57

 5.3.6.1 Encoder vs. Decoder .. 58

 5.3.6.2 Time-significant Routines.. 58

 5.3.6.3 Assessment of Time-significant Routines ... 59

5.3.7 Partitioning Solution .. 60

5.3.8 Scheduling ... 61

5

6. Implementation of the Inverse Discrete Wavelet Transform..…………………….64

6.1 Introduction to Discrete Wavelet Transform ... 64

6.2 Discrete Wavelet Transform... 66

6.3 The Concept of Multi-resolution Analysis ... 67

6.3.1 Two-Dimensional Signals in DWT .. 67

6.4 Lifting Implementation of DWT .. 69

6.4.1 Lifting Scheme .. 70

6.4.2 Data Dependency Diagram for Lifting Computation 71

6.5 Lifting-based DWT in JPEG2000 ... 71

6.6 Motivation for Applying Lifting-based DWT in JPEG2000 72

6.7 Implementation Requirements .. 73

6.7.1 JPEG2000 Specifications Regarding the Inverse DWT 73

6.7.2 JasPer’s Implementation of the IDWT ... 74

6.8 Proposed IDWT architecture ... 75

6.9 Simulation Results ... 76

6.10 Synthesis Results.. 78

7. The Xilinx Embedded Development Kit (EDK)…………………………………….81

7.1 Introduction to EDK .. 81

7.1.1 Xilinx Platform Studio (XPS)... 84

7.1.2 Software Development Kit (SDK) .. 85

7.1.3 Other EDK Components .. 85

7.2 The MHS and MSS Description Files .. 85

7.2.1 The MHS File and PlatGen .. 85

7.2.2 The MSS File and LibGen .. 87

8. JPEG2000 Co-design using EDK………………………………………………………90

8.1 Introduction .. 90

8.1.1 The Microblaze Procesor ... 90

8.1.2 Bus Interfaces .. 92

6

 8.1.2.1 Processor Local Bus (PLB) ... 93

 8.1.2.2 Local Memory Bus (LMB) ... 93

8.1.3 Xilkernel Operating System ... 93

8.2 Co-design Architecture ... 95

8.2.1 Communication Protocol... 96

8.2.2 Microblaze/IDWT Interface ... 97

 8.2.2.1 Master Bus Protocol ... 98

 8.2.2.2 Slave Bus Protocol .. 98

9. Implementation Results………………………………………………………………101

9.1 Synthesis Design Goals and Strategies ... 101

9.2 IDWT Core Results .. 102

9.2.1 Slice Utilization Results ... 102

9.2.2 Performance Results ... 106

9.2.3 Power Consumption Results .. 109

9.3 System on Chip Results .. 110

9.3.1 Slice Utilization Results ... 111

9.3.2 Performance Results ... 113

9.3.3 Power Consumption Results .. 115

9.4 JPEG2000 Speed-up ... 116

10. Conclusions & Future Work ... 118

10.1 Conclusions .. 118

10.2 Future Work ... 119

Part 2

11. Step-by-step Guide .. 121

11.1 Creating a new project .. 121

11.2 The XPS GUI ... 124

7

11.3 Creating and Importing the Peripheral .. 127

11.4 Creating a new software project .. 140

11.5 Testing the design .. 146

APPENDIX ... 150

Εσταριστίες

Γηα ηελ εθπόλεζε ηεο παξνύζαο δηπισκαηηθήο ζα ήζεια λα επραξηζηήζσ θαηά θύξην ιόγν

ηνλ θαζεγεηή θ. Γεκήηξην νύληξε γηα ηελ επθαηξία πνπ κνπ έδσζε λα δνπιέςσ ζε έλα

αληηθείκελν πνπ κε ελδηαθέξεη ηδηαίηεξα θαη γηα ηηο ζεκαληηθέο ζπκβνπιέο ηνπ θαζ’ όιε ηε

δηάξθεηα ηεο δηπισκαηηθήο εξγαζίαο. Δπίζεο, ζα ήζεια λα επραξηζηήζσ ηνλ θαζεγεηή θ. Κ.

Πεθκεζηδή γηα ηελ παξνρή ηεο πιαηθόξκαο αλάπηπμεο θαη ηνλ ιέθηνξα θ. Γ. Οηθνλνκάθν γηα

ηηο πνιύ ζεκαληηθέο ζπκβνπιέο ηνπ. Θα ήζεια λα επραξηζηήζσ, επίζεο, όιν ην πξνζσπηθό

ηνπ εξγαζηεξίνπ γηα ηηο ρξήζηκεο ζπκβνπιέο ηνπο πάλσ ζηελ εξγαζία κνπ θαη ηδηαίηεξα ηνπο

Κ. ηώδην, Γ. Γηακαληόπνπιν θαη Γ. Μπεθηάξε. Σέινο ζεσξώ ρξένο κνπ λα επραξηζηήζσ ηελ

νηθνγέλεηά κνπ θαη ηνπο θίινπο κνπ γηα ηελ ςπρνινγηθή αιιά θαη πιηθή ππνζηήξημε ηνπο.

8

Part 1

Chapter 1

Embedded Systems

1.1 Definition

Embedded systems are specialized, application-specific computing devices that are

not deployed as general purpose computers. An embedded system is

preprogrammed to perform a narrow range of functions with minimal end user or

operator intervention, usually with real-time computing constraints. These systems

are components of a larger complete device, often including hardware and

mechanical parts.

1.2 Some Examples

The domain of embedded systems is thriving. From telecommunications to

aerospace and medical electronic equipment, embedded systems span all aspects of

modern life and there are many examples of their use. Some examples of devices that

incorporate one or more embedded systems are given below:

 Personal Digital Assistants (PDAs)

 MP3 players, digital cameras, DVD players, mobile phones, printers

 Videogame consoles

9

 Microwave ovens, washing machines

 Avionics, inertial guidance systems, GPS receivers

 Automotive systems, traction control systems, ABS

 Medical equipment, PET, SPECT, CT, MRI

1.3 Characteristics and Requirements

Embedded computing is in many ways much more demanding than programming a

PC or a workstation. Of course, functionality is important in both general-purpose

computing and embedded computing, but embedded applications must meet many

other constraints as well. Some major characteristics and requirements of embedded

computing applications are:

 Real time: Many embedded systems have to perform in real time and data

need to be ready on time. In some cases, failure to meet a deadline is unsafe

and can even endanger lives. In other cases, missing a deadline doesn’t create

safety problems but does create unhappy customers.

 Performance: The speed of the system is often a major consideration both for

the usability of the system and for its ultimate cost. Performance may be a

combination of soft performance metrics such as approximate time to

perform a user-level function and hard deadlines by which a particular

operation must be completed.

 Cost: Cost typically has two major components: manufacturing cost includes

the cost of components and assembly; and nonrecurring engineering (NRE)

costs include the personnel and other costs of designing the system.

 Power consumption: Power, of course, is important in battery-powered systems

and is often important in other applications as well. Minimizing heat

10

production is also a major issue and one that is closely associated with power

management.

 Reliability: Embedded systems often reside in machines that are expected to

run continuously for years without errors and in some cases recover by

themselves if an error occurs. Therefore the software is usually developed

and tested more carefully than that for personal computers, and unreliable

mechanical moving parts such as disk drives, switches or buttons are

avoided.

 Upgradeability: The hardware platform may be used over several product

generations or for several different versions of a product in the same

generation, with few or no changes. However, we want to be able to add

features by changing software. Therefore it is of major importance to design a

system able to provide the required performance for software not yet

developed.

 Physical size and weight: The physical aspects of the final system can vary

greatly depending upon the application. A handheld device typically has

tight requirements on both size and weight that can ripple through the entire

system design.

 Complexity and user interfacing: The operations performed by the

microprocessor may be highly sophisticated (i.e. complicated filtering

functions etc.). Furthermore, these systems are frequently used to control

complex user interfaces that may include multiple menus and many options

(i.e. GPS navigation systems).

1.4 Challenges and the Concept of Co-design

Embedded systems incorporate Hardware (HW) and Software (SW) parts which

affect the design process itself resulting in a HW/SW co-design flow. Mixed HW/SW

systems are not new. What has considerably grown in recent years is the trend

11

toward methodologies that concurrently apply design techniques from different

areas to develop mixed digital systems. When hardware is tuned to its software

applications, and vice versa, during the design process, it is impossible to exploit the

capabilities of such heterogeneous systems. HW/SW Co-design is the system design

process that combines the hardware and software perspectives from the earliest

stages to exploit design flexibility and efficient allocation of functions. The

concurrent design of hardware and software has shown to be advantageous as long

as HW and SW are considered as a whole instead of independent entities. Although

benefits of hardware and software working together are evident, complex systems

design involving both HW and SW is a non-trivial task due to the interaction of

different kinds of system philosophies.

Today the electronic market demands high-performance and low-cost products. Both

performance and cost are essential to commercial competitiveness. Thus, the chip

industry has faced two major challenges in order to satisfy the consumer needs: the

increase in system complexity and the reduction in design times. High functionality

on a single chip and reduced time-to-market are goals that can be achieved through

co-design methodologies.

1.5 Design Tasks

Various design tasks have to be considered for the implementation of an embedded

system. Some of the most typical tasks for the HW/SW co-design are listed in the

following:

 Design space exploration: Design Space Exploration (DSE) refers to the process

of investigating implementation variants regarding their optimal solution. In

the case of multiple objectives like minimization of time, area, and power not

only a single optimal solution exists.

12

 HW/SW partitioning: HW/SW partitioning can in general be described as the

mapping of the interconnected functional objects that constitute the behavior

of the algorithm onto a chosen architecture model.

 Platform based design: Platform based design focuses on a specific application

domain. The platform embodies the hardware architecture, embedded

software architecture, and design methodologies for IP authoring and

integration. Derivative designs may be rapidly implemented from a single

platform that has a fixed and a variable part.

 Verification: Verification is the process of evaluating a system or component to

determine whether the products of a given development phase satisfy the

condition imposed at the start of the phase. This correctness can be verified

by simulation or formal methods like for example equivalence-check.

 Rapid prototyping: Rapid Prototyping describes the fast development of a

working entity to prove that a new theory could really be applied and to have

a first impression of the development effort for turning it into a product. Due

to the high complexity of modern systems prototyping has become nearly as

challenging as designing the product itself.

13

Chapter 2

DSP and FPGAs

2.1. General Information

Digital Signal Processing (DSP) is closely related to the domain of Embedded

Systems. It is used in a very wide range of applications from high-definition TV,

mobile telephony, digital audio, multimedia, digital cameras, radar, sonar detectors,

biomedical imaging, speech recognition, to name but a few. The topic has been

driven by the application requirements which have only been possible to realize

because of development in silicon chip technology. Developing both programmable

DSP chips and dedicated system-on-chip (SoC) solutions for these applications, has

been an active area of research and development over the past three decades. Indeed,

a class of dedicated microprocessors has evolved particularly targeted at DSP,

namely DSP microprocessors or DSPμs.

The increasing costs of silicon technology have put considerable pressure on

developing dedicated SoC solutions and means that the technology will be used

increasingly for high-volume or specialist markets. An alternative is to use

microprocessor style solutions such as microcontrollers, microprocessors and DSP

micros, but in some cases, these offerings do not match well to the speed, area and

power consumption requirements of many DSP applications. More recently, the

field-programmable gate array (FPGA) has been proposed as a hardware technology

14

for DSP systems as they offer the capability to develop the most suitable circuit

architecture for the computational, memory and power requirements of the

application in a similar way to SoC systems. This has removed the preconception

that FPGAs are only used as ‘glue logic’ platform and more realistically shows that

FPGAs are a collection of system components with which the user can create a DSP

system.

2.2. Field-programmable Gate Arrays

FPGAs emerged as simple ‘glue logic’ technology, providing programmable

connectivity between major components where the programmability was based on

either antifuse, EPROM or SRAM technologies. This approach allows design errors

which had only been recognized at this late stage of development to be corrected,

possibly by simply reprogramming the FPGA thereby allowing the interconnectivity

of the components to be changed as required. Whilst this approach introduced

additional delays due to the programmable interconnect, it avoids a costly and time-

consuming board redesign and considerably reduced the design risks.

Like many other industries in the area of electronics, the creation and growth in the

market has been driven by Moore’s law (1965), depicted in Figure 2.1. Moore’s law

shows that the number of transistors has been doubling every 18 months. This

massive growth has led to the creation of a number of markets and is the driving

force between the markets of many electronic products such as mobile telephony,

digital TV etc. This is because not only have the number of transistors increased

dramatically, but the costs have not increased, thus reducing the cost per transistor at

every technology advance. Under these ideal conditions the FPGA market has grown

from nothing in just over 20 years to playing a major role in the IC industry with a

market judged to be of the order of US$ 4.0 billion.

15

Figure 2.1 Moore’s law (1965)

2.2.1 Short history of FPGAs

The FPGA concept emerged in 1985 with the XC2064TM FPGA family from Xilinx. At

the same time, a company called Altera were also developing a programmable

device, later to become EP1200 device which was the first high-density

programmable logic device. Altera’s technology was manufactured using 3-μm

CMOS erasable programmable read-only-memory (EPROM) technology and

required ultraviolet light to erase the programming whereas Xilinx’s technology was

based on conventional static RAM technology and required an EPROM to sore the

programming. The co-founder of Xilinx, Ross Freeman argued that with

continuously improving silicon technology, transistors were going to increasingly

get cheaper and could be used to offer programmability. This is was the start of an

FPGA market which was then populated by quite a number of vendors, including

Xilinx, Altera, Actel, Lattice, Crosspoint, Algotronix, Prizm, Plessey, Toshiba,

Motorola, and IBM. The market has now grown considerably and Gartner Dataquest

indicated a market size growth to 4.5 billion in 2006, 5.2 billion in 2007 and 6.3 billion

in 2008. There have been many changes in the market, including a severe

16

rationalization of technologies with many vendors such as Crosspoint, Algotronix,

Prizm, Plessey, Toshiba, Motorola, and IBM disappearing from the market and a

reduction in the number of FPGA families as well as the emergence of SRAM

technology as the dominant technology largely due to cost. The market is now

dominated by Xilinx and Altera and more importantly, the FPGA has grown from

being a simple glue logic component to representing a complete System on

Programmable Chip (SoPC) comprising on-board physical processors, soft processor,

dedicated DSP hardware, memory and high-speed I/O. In the 1990s, ASIC was still

seen for the key mass market areas where really high performance and energy

considerations were seen as key drivers such as mobile communications. Thus

graphs comparing performance metrics for FPGA, ASIC and processor were

generated and used by vendors to indicate design choices.

The FPGA evolution is summarized in Table 2.1. It indicates three different eras of

evolution of the FPGA. The age of invention where FPGAs started to emerge and

were being used as system components. The age of expansion is where the FPGA

started to approach the problem size and thus design complexity was key. The final

evolution stage is described as the period of accumulation where FPGA started to

incorporate processors and high-speed interconnection.

Table 2.1 Three ages of FPGAs

17

2.2.2 Challenges of FPGAs

The emergence of the FPGA as a DSP platform was accelerated by the application of

distributed arithmetic (DA) techniques (Goslin 1995, Meyer-Baese 2001). DA allowed

efficient FPGA implementations to be realized using the LUT-based/adder constructs

of FPGA blocks and allowed considerable performance gains to be gleaned for some

DSP transforms such as fixed coefficient filtering and transform functions suach as

Fast Fourier Transform (FFT). Whilst these techniques demonstrated that FPGAs

could produce highly effective solutions for DSP applications, the concept of

squeezing the last aspect of performance out of the FPGA hardware and more

importantly, spending several person months for the creation of such innovative

designs, meant that there was a growing gap in the scope offered by current FPGA

technology and the designer’s ability to develop efficient solutions using modern

tools. This was similar to the ‘design productivity gap’ (ITRS 1999) identified in the

ASIC industry where it was viewed that ASIC design capability was only growing at

25% whereas Moore’s law growth was 60%. This is proved by even more recent data

during the 2007 ITRS roadmap (Figure 2.2).

Figure 2.2 The design productivity gap (ITRS 2007)

18

The problem is not as severe in FPGA implementation, because sub-micrometre

design issues are missing. However, a number of key issues exist and include:

 Design languages. Currently hardware description languages such as VHDL

and Verilog and their respective synthesis flows are well established.

However, users are now looking at FPGAs with the recent increase in

complexity resulting in the integration of both fixed and programmable

microprocessors cores as a complete system, and looking for design

representations that more clearly represent system description. Therefore,

there is an increased EDA focus on using C as a design language.

 Understanding how to map DSP functionality into FPGA. Some of the aspects are

relatively basic in this area, such as multiplications, additions and delays

being mapped onto on-board multipliers, adder and registers and RAM

components respectively. However, the understanding of floating-point

versus fixed-point, word length optimization, algorithmic transformation

cost functions for FPGA and impact of routing delay are issues that must be

considered at a system level and can be much harder to deal with at this

level.

 Development and use of IP cores. With the absence of quick and reliable

solutions to the design language and synthesis issues, the IP market in SoC

implementation has emerged to fill the gap and allow rapid prototyping of

hardware. Soft cores are particularly attractive as design functionality can be

captured using HDLs and efficiently translated into the FPGA technology of

choice in a highly efficient manner by conventional synthesis tools. In

addition, processor cores have been developed which allow dedicated

functionality to be added. The attraction of these approaches are that they

allow application specific functionality to be quickly created as the platform

is largely fixed.

 Design flow. Most of the design flow capability is based around developing

FPGA functionality from some form of higher-level description, mostly for

19

complex functions. The reality now is that FPGA technology is evolving at

such a rate that systems comprising FPGAs and processors are starting to

emerge as a SoC platform or indeed, FPGAs as a single SoC platform as they

have on-board hard and soft processors, high-speed communications and

programmable resource, and this can be viewed as a complete system.

Conventionally, software flows have been more advanced for processors and

even multiple processors as the architecture is fixed. Whilst tools have

developed for hardware platforms such as FPGAs, there is a definite need for

software for flows for heterogeneous platforms, i.e. those that involve both

processors and FPGAs.

2.3 DSP System Basics

There is an increasing need to process, interpret and comprehend information,

including numerous industrial, military, and consumer applications. Many of these

involve speech, music, images or video, or may support communication systems

through error detection and correction, and cryptography algorithms. This involves

real-time processing of a considerable amount of different types of content at a series

of sampling rates ranging from single Hz as in biomedical applications, right up to

tens of MHz as in image processing applications. In a lot of cases, the aim is to

process the data to enhance part of the signal, such as edge detection in image

processing or eliminating interference such as jamming signals in radar applications,

or removing erroneous input, as in the case of echo or noise cancellation in

telephony. Other DSP algorithms are essential in capturing, storing and transmitting

data, audio, images and video; compression techniques have been used successfully

in digital broadcasting and telecommunications. Over the years, a lot of the need for

such processing has been standardized, as illustrated by Figure 2.3 which gives an

illustration of the algorithms required in a range of applications. In communications,

the need to provide efficient transmission using orthogonal frequency division

multiplexing (OFDM) has emphasized the need for circuits for performing the FFT.

In image compression, the evolution initially of the joint photographic experts group

(JPEG) and then the motion picture experts group (MPEG), led to the development of

the JPEG and MPEG standards respectively; these standards involve a number of

core DSP algorithms, specifically DCT and motion estimation and compensation. The

appeal of processing signals digitally was recognized quite some time ago as digital

hardware is generally superior and more reliable than its analogue counterpart;

20

analogue hardware can be prone to ageing and can give uncertain performance in

production. DSP on the other hand, gives a guaranteed accuracy and essentially

perfect reproducibility (Rabiner and Gold 1975). The main proliferation of DSP has

been driven by the availability of increasingly cheap hardware, allowing the

technology to be easily interfaced to computer technology, and in many cases, to be

implemented on the same computers. The need for many of the applications

mentioned in Figure 2.3 has driven the need for increasingly complex DSP systems

which in turn has seen the growth of the research area involved in developing

efficient implementation of some DSP algorithms.

Figure 2.3 Some DSP applications

21

2.3.1 DSP System Definitions

The basic realization of DSP systems given in Figure 2.2, shows how a signal is

digitized using an analogue-to-digital (A/D) converter, processed in a DSP system

before being converted back to an analogue signal. The digitised signal is obtained as

shown in Figure 2.4 where an analogue signal is converted into a pulse of signals and

then quantized to a series of numbers. The input stream of numbers in digital format

to the DSP system is typically labelled x(n) and the output is given as y(n). The

original analogue signal can be derived from a range of source such as voice, music,

medical or radio signal, a radar pulse or an image. Obviously, the representation of

the data is a key aspect and this is considered in the next chapter. A wide range of

signal processing can be carried out, as illustrated in Figure 2.3, as digitizing the

signal opens up a wide domain of possibilities as to how the data can be

manipulated, stored or transmitted.

Figure 2.4 Basic DSP system

Figure 2.5 Digitization

A number of different DSP functions can be carried out either in the time domain,

such as filtering, or operations in the frequency domain by performing an FFT

(Rabiner and Gold 1975). The DCT forms the central mechanism for JPEG image

compression which is also the foundation for the MPEG standards. This algorithm

enables the components within the image that are invisible to the naked eye to be

identified by converting the spatial image into the frequency domain. They can then

be removed using quantization in the MPEG standard without a discernible

degradation in the overall image quality. By increasing the amount of data removed,

greater reduction in file size is achievable at a cost in image quality. Wavelet

transforms offer both time domain and frequency domain information and have

22

roles, not only in applications for image compression, but also for extraction of key

information from signals and for noise cancellation. One such example is in

extracting key features from medical signals such as the EEG.

23

Chapter 3

The Platform

Overview

In this chapter we present the platform on which the JPEG2000 compression

standard will be implemented. First, a basic outline of Xilinx FPGA technologies is

presented and then the chapter focuses on the Virtex-5 FPGA family.

3.1 Xilinx FPGA Technologies

The first FPGA was the Xilinx XC2000 family developed in 1982. The basic concept

was to have programmable cells, connected to programmable fabric which in turn

were fed by programmable I/O as illustrated by Figure 3.1. This differentiated Xilinx

FPGAs from the early Altera devices which were PLD-based; thus the Altera FPGAs

did not possess the same high levels of programmable interconnect. The architecture

comprised cells called logic cells or LCs. The interconnect was programmable and

was based on the 6-transistor SRAM cell given in Figure 3.2. By locating the cell at

interconnections, it could then provide flexible routing by allowing horizontal-to-

horizontal, vertical-to-vertical, vertical-to-horizontal and horizontal-to-vertical

routing, to be achieved. The I/O cell had a number of configurations that allowed

pins to be configured as input, output and bidirectional, with a number of interface

modes.

Figure 3.1 Early Xilinx FPGA technology

24

At this stage, FPGAs were viewed as glue logic devices with Moore’s law providing

a continual expansion in terms of logic density and speed. The device architecture

continued largely unchanged from the XC2000 right up to the XC4000; for example,

Figure 3.2 Xilinx FPGA SRAM Interconnect

the same LUT table size was used. The main evolution was the inclusion of the fast

adder where manufacturers observed that, by including an additional multiplexer in

the LE cell, a fast adder implementation could be achieved by mapping some of the

logic into the fast carry adder logic, and some into the LUT. The principle is

illustrated for the VirtexTM FPGA device in Figure 3.3. At this stage, the device was

still being considered as glue logic for larger systems, but the addition of the fast

adder logic started to open up the possibility of implementing a limited range of DSP

systems, particularly those where multiplicative properties were required, but which

did not require the full range of multiplicands. This formed the basis for a lot of early

FPGA-based DSP implementation techniques.

Figure 3.3 Adder implementation on Xilinx VirtexTM FPGA slice

25

At that time, a lot of FPGA products manufacturers faded away and there began a

period defined as accumulation where FPGAs started to accumulate more complex

components, starting with on-board dedicated multipliers, which appeared in the

first Xilinx VirtexTM FPGA family (Figure 4.4), Power-PC blocks and gigabit

transceivers with the Xilinx VirtexTM -II pro and Ethernet MAC with the VirtexTM -4.

It can be seen from Figure 3.4, that the Xilinx FPGA was now becoming increasingly

like a SoC with the main aim of the programmability to allow the connection

together of complex processing blocks with the LCs used to implement basic logic

functionality.

Figure 3.4 VirtexTM -II Pro FPGA architecture overview

26

Figure 3.5 Power PC block architecture

The fabric now comprised the standard series of LCs, allowing functions to be

connected as before, but now complex processing blocks such as 18-bit multipliers

and PowerPC processors (Figure 3.5), were becoming commonplace. The concept of

platform FPGA was now being used to describe recent FPGA devices to reflect this

trend.

3.1.1 Xilinx VirtexTM -5 FPGA Technologies

The VirtexTM -5 comes in a variety of flavours, namely the LX which has been

optimized for high-performance logic, the LXT which has been optimized for high-

performance logic with low-power serial connectivity, and the SXT which has been

optimized for DSP and memory-intensive applications with low-power serial

connectivity. The Xilinx VirtexTM -5 family has a two speed-grade performance gain

and is able to be clocked at 550MHz. It has a number of on-board IP blocks and a

number of DSP48E slices which give a maximum of 352 GMACS performance. It also

provides up to 600 pins, giving an I/O of 1.25Gbps LVDS and, if required, RocketIO

GTP transceivers which deliver between 100Mbps and 3.2Gbps of serial connectivity.

It also includes hardened PCI Express endpoint blocks and Tri-mode Ethernet

MACs.

27

3.1.1.1 VirtexTM -5 Configurable Logic Block

The logic implementation in the Xilinx device is contained within configurable logic

blocks or CLBs. Each CLB is connected to a switch matrix for access to the general

routing matrix as shown in Figure 3.6 and contains a pair of slices which are

organized into columns, each with an independent carry chain. For each CLB, slices

in the bottom of the CLB are labeled as SLICE(0), and slices in the top of the CLB, are

labelled as SLICE(1) and so on. Every slice contains four logic-function generators (or

LUTs), four storage elements, wide-function multiplexers, and carry logic and so can

be considered to contain four of the logic cell logic as given in Figure 3.7. In addition

to this, some slices, called SLICEM, support two additional functions: storing data

using distributed RAM and shifting data with 32-bit registers.

The basic logic cell configuration comprises a logic resource, a 6-input LUT

connected to a single flip-flop, via a number of multiplexers, together with a circuit

for performing fast addition. The basic logic cell has been designed to cope with the

implementation of combinational and sequential logic implementations, along with

some simple DSP circuits that use an adder.

Figure 3.6 CLB Slices

Figure 3.7 Logic cell functionality

28

The basic combination of LUT plus register has stayed with the Xilinx architecture,

and has now been extended from a 4-input LUT in the Xilinx XC4000 series and

VirtexTM-5 series FPGA family to a 6-input LUT; this is a reflection of improving

technology as governed by Moore’s law. It is now argued in Xilinx Inc. (2007a) that a

6-input rather than a 4-input LUT which went all the way back to the study by Rose

et al. (1990), now provides a better return on silicon area utilization for the critical

path needed within the design. The combination of LUTs, flip-flops (FFs), and special

functions such as carry chains and dedicated multiplexers, together with the ways by

which these elements are connected, has been termed ExpressFabric technology.

The CLB can implement the following: a pure logic function by using the 6-input

LUT logic and using the multiplexers to bypass the register; a single register using

the multiplexers to feed data directly into and out of the register; and sequential logic

circuits using the LUTs feeding into the registers. Scope is also provided to create

larger combinational and sequential circuits, using the multiplexers to create large

LUTs and registers. One special feature of the 6-input LUT is that it has two outputs.

This allow the LUT to implement two arbitrarily defined, five-input Boolean

functions, as long as these two functions share common inputs (Figure 3.8). This is an

attempt to provide better utilization of the LUT resource when the number of inputs

is smaller than six. This concept also allows the logic cell to implement a full adder,

as shown in Figure 3.3 whilst at the same time, using the additional inputs and

outputs to realize a 4-input LUT for some other function. This provides better

utilization of the hardware in many DSP applications, where otherwise LUTs would

be wasted to just provide a single gate implementation for an adder.

Figure 3.8 Arrangement of slices within the CLB

29

In this technology, the register resource is very flexible, allowing a wide range of

storage possibilities ranging from edge-triggered D-type flip-flops to level-sensitive

latches, all with a variety of synchronous and asynchronous inputs for clocks, clock

enables, set/reset. The D input can be driven directly from a number of sources,

including the LUT output, other D-type flip-flops and external inputs.

One of the advantages of the larger LUT in the Xilinx VirtexTM-5 device is that it

provides larger distributed RAM blocks and SRL chains. A sample of the various

distributed memory configurations is given in Table 3.1 which gives the number of

LUTs needed to create the various memory configurations listed. The distributed

RAM modules have synchronous write resources, and can be made to have a

synchronous read by using the flip-flop of the same slice. By decreasing the clock-to

out delay, this will improve the critical path, but adds an additional clock cycle

latency.

Table 3.1 Number of LUTs for various memory configurations

A number of memory configurations have been listed. For the single-port

configuration, a common address port is used for synchronous writes and

asynchronous reads. For the dual-port configuration, the distributed RAM has one

port for synchronous writes and asynchronous reads, which is connected to one

function generator and another port for asynchronous reads, which is connected to a

second function generator. In simple dual-port configuration, there is no read from

the write port. In the quad-port configurations, the concept is expanded by creating

three ports for asynchronous reads, and three function generators plus one port for

synchronous writes and asynchronous reads, giving a total of four functional

generators.

The consideration of larger memory blocks is considered in the next section, but the

combination of smaller distributed RAM, along with larger RAM blocks, provides

the same memory hierarchy concept that was purported by the Altera FPGA,

30

admittedly in different proportions. The LUT can also provide a ROM capability, and

as Chapter 6 will illustrate, the development of programmable shift registers. The

VirtexTM-5 function generators and associated multiplexers some of which were

highlighted in Figure 4.7, can implement one 4:1 multiplexers using one LUT, one 8:1

multiplexers using two LUTs etc.

3.1.1.2 VirtexTM -5 Memory Organization

In addition to distributed RAM, the VirtexTM-5 device has a large number of 36kB

block RAMs, each of which contain two independently controlled, 18 kB RAMs. The

total memory configuration is given in Table 3.2. The 18 kB RAMs have been

implemented in such a way, that the blocks can be configured to act as one 36 kB

block RAM without the use of programmable interconnect. Block RAMs are placed

in columns and can be cascaded to create deeper and wider RAM blocks. Each 18 kB

block RAM, dual-port memory consists of an 18 kB storage area and two completely

independent access ports along with other circuitry to allow the full expected RAM

functionality to be achieved (Figure 3.9).

Table 3.2 VirtexTM-5 memory types and usage

The full definition in terms of access pins is given below, and represents a standard

RAM configuration.

 A clock for each 18 kB block RAM which can be configured to have rising or

falling edge. All input and output ports are referenced to the clock.

 An enable signal to control the read, write, and set/reset functionality of the

port with an inactive enable pin, implying that the memory keeps the

previous state.

 An additional enable signal called the byte-wide write enable signal which

controls the writing and reading of the RAM in conjunction with the enable

signal.

31

 The register enable pin which controls the optional output register.

 The set/reset pin which forces the data output latches to contain a set value.

 The address bus which selects the memory cells for read or write; its data bit

width is decided by the size of RAM function chosen.

In latch mode, the read address is registered on the read port, and the stored data is

loaded into the output latches after the RAM access time. When using the output

register, the read operation will take one extra latency cycle. The write operation is

also a single clock-edge operation with the write address being registered on the

write port, and the data input is stored in memory. The additional circuitry

highlighted in Figure 3.9, shows how inverted clock can be supported along with a

registered output. The contents of the RAM can be initialized using the INIT

parameter and can be indicated from the HDL source code.

Figure 3.9 Block RAM logic diagram

Table 3.3 Memory sizes for Xilinx VirtexTM-5 block RAM

32

The RAM provides a number of options for RAM configuration, some of which are

listed in Table 3.3; the table shows how bit data width is traded off for memory

depth, i.e. number of memory locations.

Dedicated logic has also been included in the block RAM enables, to allow the

creation of synchronous or asynchronous FIFOs; these are important in some high-

level design approaches, as will be seen later. This dedicated logic avoids use of the

slower programmable CLB logic and routing resource, and generates the necessary

hardware for the pointer write and read generation along with the setting of the

various flags associated with FIFOs. A number of FIFO sizes can be inferred,

including 8KX4, 4KX4, 4KX9, 2KX9, 2KX18, 1KX18, 1KX36, 512X36 and 512X72.

3.1.1.3 VirtexTM-5 DSP Processing Resource

In addition to the scalable adders in the CLBs, the VirtexTM-5 also provides a

dedicated DSP processing block called DSP48E. The VirtexTM-5 can have up to 640

DSP48E slices which are located at various positions in the FPGA, and supports

many independent functions including multiply, MAC, multiply add, three-input

add, barrel shifting, wide-bus multiplexing, magnitude comparator, bit-wise logic

functions, pattern detect, and wide counter. The architecture also allows the multiple

DSP48E slices to be connected together to form a wider range of DSP functions, such

as DSP filters, correlators and frequency domain functions.

A simplified version of the DSP48E processing block is given in Figure 4.10. The

basic architecture of the DSP48E block is a multiply–accumulate core, which is a very

useful engine for many DSP computations. However, in addition to the basic MAC

function, the DSP48E block also allows a number of other modes of operation, as

summarized below:

 25-bit x 18-bit multiplication which can be pipelined

 96-bit accumulation or addition or subtracters (across two DSP48E slices)

 triple and limited quad addition/subtraction

 dedicated bitwise logic operations

 arithmetic support for overflow/underflow

33

Figure 3.10 DSP processing blocks called DSP48E

Each DSP48E slice has a 25-bit X18-bit multiplier which is fed from two multiplexers;

the multiplexers accept a 30-bit A input and a 18-bit B input either from the

switching matrix or from the DSP48E directly below. These can be stored in registers

(not shown in Figure 3.10) before being fed to the multiplier. Just before

multiplication, the A signal is split and only 25 bits of the signal are fed to the

multiplier. A fast multiplier technique is employed which produces an equivalent 43-

bit two’s complement result in the form of two partial products, which are then sign-

extended to 48 bits in the X multiplexer and Y multiplexer respectively before being

fed into three input adder/subtracter for final summation.

Many fast multipliers work on the concept of using fast carry-save adders to

eventually produce a final sum and carry signals, and then using a fast carry ripple

to perform the final addition. This final addition is costly, either in terms of speed or

if a speed-up technique is employed, then area. By postponing the addition to the

ALU stage, a two-stage addition can then be avoided for multiply–accumulation, by

performing a three-stage addition to compute the final multiplication output and an

addition for the accumulation input in one stage. Once again, for flexibility, the

adder/subtracter unit has been extended to function as a arithmetic logic unit (ALU),

thereby providing more functionality at little hardware overhead. As the final stage

of the conventional multiplication is being performed in the second-stage adder, a

three-input addition is required with the third input used to complete the MAC

operation if required.

The multiplexers allow a number of additional levels of flexibility to be added. For

example, the P input can be used to feed in an input either from another DSP48E

block from below using the PCIN in the Z multiplexer or looped back from the

34

current DSP48E block say, for example, if a recursion is being performed using the P

input to the Z multiplexer. The multiplier can be bypassed if not required, by using

the A:B input which is a concatenation of the two input signals A and B, 25-bit and

18-bit words respectively; this gives a 43-bit word size which is the same as the

multiplier output. Provision to initialize the inputs to the ALU to all 0s or all 1s, is

also provided. To increase the flexibility of the unit, the adder can also be split into

several smaller adders, allowing two 24-bit additions or four 12-bit additions to be

performed. This is known as the SIMD mode, as a single operation namely addition,

is performed on multiple data, thus giving the SIMD operation. The DSP48E slice

also provides a right-wire-shift by 17, allowing the partial product from one DSP48E

slice to be shifted to the right and added to the next partial product, computed in an

adjacent DSP48E slice. This functionality is useful, when the dedicated multipliers

are used as building blocks, in constructing larger multipliers. The diagram in Figure

4.10 is only basic, and does not indicate that other signals are also provided, in

addition to the multiply or multiply–accumulate output, P.

From a functional perspective, the synthesis tools will largely hide the detail of how

the design functionality is mapped to the FPGA hardware, but it is important to

understand that the level of functionality that is available as it determines the design

approach the user will adopt. A number of detailed examples are listed in the

relevant user guide (Xilinx Inc. 2007c), indicating how performance can be achieved.

3.1.1.4 Clock Networks and PLLs

The Xilinx VirtexTM-5 FPGA family can provide a clock frequency of 550MHz. The

clock domains in the VirtexTM-5 FPGA are organized into six clock management tiles

or CMTs, each of which contain two digital clock managers (DCMs) and one PLL. In

total, the FPGA has eighteen total clock generators.

A key feature of the Xilinx VirtexTM-5 FPGA is the DCM, which provides a wide

range of powerful clock management features including a delay-locked loop

(DLL);this acts to align the incoming clock to the produced clock as described earlier.

It also allows a range of clock frequencies to be produced, including a doubled

frequency a range of fractional clock frequencies of the input clock. Coarse (90◦, 180◦

and 270◦) fine-grained phase shifting and various types of fine-grained or fractional

phase-shifting are supported.

The PLL’s main purpose is to act as a frequency synthesizer and to remove jitter from

either external or internal clocks, in conjunction with the DCMs. With regard to clock

generation, the six PLL output counters are multiplexed into a single clock signal for

use as a reference clock to the DCMs. Two output clocks from the PLL can drive the

35

DCMs; for example, one could drive the first DCM while the other could drive the

second DCM. Flexibility is provided to allow the output of each DCM output to be

multiplexed into a single clock signal, for use as a reference clock to the PLL, but one

DCM can be used as the reference clock to the PLL at any given time.

3.1.1.5 I/O and External Memory Interfaces

VirtexTM-5 FPGA supports a number of different I/O standard interfaces termed

SelectIOTM drivers and receivers, allowing control of the output strength and slew

rate and on-chip termination. As with the Altera FPGA, the I/Os are organized into a

bank comprising 40 IOBs which covers a physical area that is 20 CLBs high, and is

controlled by a single clock. The VirtexTM-5 FPGA also includes digitally controlled

impedance (DCI) technology, allowing the output impedance or input termination to

be adjusted, and therefore, accurately match the characteristic impedance of the

transmission line. The need to effectively terminate PCB trace signals, is becoming an

increasing important issue in high-speed circuit implementation, and this approach

purports to avoid the need to add termination resistors on the board. A number of

standards are supported, including low-voltage transistor–transistor logic (LVTTL),

low-voltage complementary metal oxide semiconductor (LVCMOS), peripheral

component interface (PCI) including PCIX, PCI33, PCI66, and low-voltage

differential signalling (LVDS), to name but a few.

Input serial-to-parallel converters (ISERDES) and output parallel-to-serial converters

(OSERDES) are also supported. These allow very fast external I/O data rates such as

SDR and DDR, to be fed into the internal FPGA logic which may be running an order

of magnitude slower. This is essentially a serial-to-parallel converter with some

additional hardware modules that allow reordering of the sequence of the parallel

data stream going into the FPGA fabric, and circuitry to handle the strobe-to-FPGA

clock domain crossover.

36

Chapter 4

The Application

Overview

As seen in the second chapter, image and video compression is a major part of the

domain of DSP applications. In this chapter some of the basic principles of image

compression are introduced. Special focus is given of course in comparing two

widely used and closely related compression methods: JPEG and JPEG2000; the last

being the application that was implemented for the purposes of this thesis. The

JPEG2000 algorithm is described more analytically in order to provide a more in-

depth background around this particular standard.

4.1 Introduction

Modern computers employ graphics extensively. Window-based operating systems

display the disk’s file directory graphically. The progress of many system operations,

such as downloading a file, may also be displayed graphically. Many applications

provide a graphical user interface (GUI), which makes it easier to use the program

and to interpret displayed results. Computer graphics is used in many areas in

everyday life to convert many types of complex information to images. Thus, images

are important, but they tend to be big! Modern hardware can display many colors,

which is why it is common to have a pixel represented internally as a 24-bit number,

where the percentages of red, green, and blue occupy 8 bits each. Such a 24-bit pixel

can specify one of 224 ≈ 16.78 million colors. As a result, an image at a resolution of

512×512 that consists of such pixels occupies 786,432 bytes. At a resolution of

1024×1024 it becomes four times as big, requiring 3,145,728 bytes. Videos are also

commonly used in computers, making for even bigger images. This is why image

compression is so important. An important feature of image compression is that it

37

can be lossy. An image, after all, exists for people to look at, so, when it is

compressed, it is acceptable to lose image features to which the eye is not sensitive.

4.2 JPEG

If you have ever built a web-page, taken photos with a digital camera or generally

worked with digital images, then it’s likely you have had contact with JPEG image

compression. This compression standard was developed by the Joint Photographic

Experts Group, whose ‚JPEG‛ abbreviation has become synonymous with the

standard itself. JPEG is a sophisticated lossy/lossless compression method for color

or grayscale still images (not videos). It does not handle bi-level (black and white)

images very well. It also works best on continuous-tone images, where adjacent

pixels have similar colors. An important feature of JPEG is its use of many

parameters, allowing the user to adjust the amount of the data lost (and thus also the

compression ratio) over a very wide range. Often, the eye cannot see any image

degradation even at compression factors of 10 or 20. There are two operating modes,

lossy (also called baseline) and lossless (which typically produces compression ratios

of around 0.5). Most implementations support just the lossy mode.

4.3 Why JPEG2000?

The image compression field is very active, with new approaches, ideas, and tech-

niques being developed and implemented all the time. JPEG is widely used for

image compression but is not perfect. The use of the Discrete Cosine Transform

(DCT) on 8×8 blocks of pixels results sometimes in a reconstructed image that has a

blocky appearance (especially when the JPEG parameters are set for much loss of

information). Despite the success of JPEG in the 1990s, a growing number of new

applications such as high-resolution imagery, high-fidelity color imaging,

multimedia and Internet applications etc., require additional, enhanced

functionalities from a compression standard that JPEG cannot satisfy due to some of

its inherent shortcomings and design points that were beyond the scope of JPEG

when it was developed. This is why the JPEG committee has decided, as early as

1995, to develop a new, wavelet-based standard for the compression of still images,

to be known as JPEG 2000 (or JPEG Y2K). Perhaps the most important milestone in

the development of JPEG2000 occurred in December 1999, when the JPEG committee

met in Maui, Hawaii and approved the first committee draft of Part 1 of the JPEG

2000 standard. At its Rochester meeting in August 2000, the JPEG committee

approved the final draft of this International Standard. In December 2000 this draft

38

was finally accepted as a full International Standard by the ISO and ITU-T. This

standard specifies the creation of a new image coding system for different types of

still images (bilevel, gray level, color, multicomponent), with different characteristics

(natural images, scientific, medical, remote sensing, rendered graphics, etc.) allowing

different imaging models (client/server, real-time transmission, image library

archival, etc.) preferably within a unified system. The standard could be used on a

royalty and fee-free basis. This was important for the standard to become widely

accepted, in the same manner as the original JPEG is now.

The markets and applications better served by this standard are numerous, from

multimedia devices (e.g., digital cameras, PDAs, 3G cell phones, scanners, printers

etc.) and client/server communication (the internet), to many other specific

applications such as military/surveillance and medical imagery.

In order to have a first understanding of the most eye-catching difference between

the JPEG and JPEG2000 compression methods, one can compare the two compressed

images in Figure 4.1.

Figure 4.1 JPEG2000 vs. JPEG

Figure 4.1 shows an example of the superior performance of JPEG2000 over JPEG at

very high compression ratios. JPEG2000 (middle) shows almost no quality loss from

the original image, even at 158:1 compression ratio.

The basic idea of JPEG2000 can be clearly illustrated in Figure 4.2. The idea is to

compress an image once and decode the encoded bitstream in many different ways

to fulfill various application requirements. This is a general concept not found in

JPEG.

39

Figure 4.2 JPEG2000 features

In order to become more specific, regarding the advantages of JPEG2000 over JPEG,

we must point out some special characteristics of the JPEG2000 standard:

 Superior compression performance: At high bit rates, where artifacts become just

imperceptible, JPEG2000 has a compression advantage over JPEG by roughly

20% on average. At lower bit-rates, JPEG2000 has a much more significant

advantage over certain modes of JPEG. The compression gains over JPEG are

attributed to the use of Discrete Wavelet Transform and more sophisticated

entropy encoding scheme.

 Multiple resolution representation: JPEG2000 provides seamless compression of

image components each from 1 to 16 bits per component sample. With tiling,

it can handle large image sizes in a single codestream.

 Progressive transmission: it provides efficient codestream organizations which

are progressive by pixel accuracy or by quality (SNR) and also by resolution

and size.

 Lossless and lossy compression: JPEG2000 provides both lossless and lossy

modes form a single compression architecture with the use of an integer –and

thus reversible- wavelet transform.

 Random codestream access and processing (Region of Interest): the standard’s

codestreams offer several mechanisms to support spatial random access or

region of interest access at carrying degrees of granularity.

40

 Error resilience: JPEG2000 is robust to bit errors introduced by noisy

communication channels such as wireless. This is accomplished by the

inclusion of resynchronization markers, the coding of data in small

independent blocks, and the use of special error spotting mechanism within

each block.

 Sequential build-up capability: JPEG2000 allows for encoding of an image from

top to bottom in a sequential fashion. Thus, there is no need to buffer the

entire image.

 Flexible file format: the existing file formats (JP2 and JPX) allow for handling of

color-space information, metadata, and for interactivity in networked

applications.

4.4 The JPEG2000 Compression Engine

The JPEG2000 compression engine (encoder and decoder) is illustrated in block

diagram form in Figure 4.3.

Figure 4.3 General block diagram of the JPEG 2000 (a) encoder and (b) decoder.

At the encoder, the discrete transform is first applied on the source image data. The

transform coefficients are then quantized and entropy coded before forming the

output code stream(bit stream). The decoder is the reverse of the encoder. The code

stream is first entropy decoded, dequantized, and inverse discrete transformed, thus

resulting in the reconstructed image data. Although this general block diagram looks

like the one for the conventional JPEG, there are radical differences in all of the

41

processes of each block of the diagram. A quick overview of the whole system is as

follows:

 The source image is decomposed into components.

 The image components are (optionally) decomposed into rectangular tiles.

The tile-component is the basic unit of the original or reconstructed image.

 A wavelet transform is applied on each tile. The tile is decomposed into

different resolution levels.

 The decomposition levels are made up of subbands of coefficients that

describe the frequency characteristics of local areas of the tile components,

rather than across the entire image component.

 The bit planes of the coefficients in a code block (i.e., the bits of equal

significance across the coefficients in a code block) are entropy coded.

 The encoding can be done in such a way that certain regions of interest can be

coded at a higher quality than the background.

 Markers are added to the bit stream to allow for error resilience.

 The code stream has a main header at the beginning that describes the

original image and the various decomposition and coding styles that are used

to locate, extract, decode and reconstruct the image with the desired

resolution, fidelity, region of interest or other characteristics.

4.4.1 Encoder Functionality

Figure 4.4 shows the structure of the JPEG2000 encoder and its related coding steps

more analytically. The Forward Transform and Entropy Encoding are split into more

basic components.

42

(a) Blocks in JPEG2000 Encoder

(b) Coding Steps in JPEG2000

Figure 4.4 Structure of JPEG2000 Encoder

Considering an image with multi-component segments, the encoding blocks

performs the following functions below:

 Forward multi-component transform (Inter/Intra-component

transform): refers to the mapping of an image data from the RGB

color space to the YCrCb color space. In lossy coding the transform is

irreversible (real-to-real), whereas in lossless coding it is reversible

(integer-to-integer).

 Forward Discrete Wavelet Transform (FDWT): is a transform that

analyzes a tile (image) component to decompose it into a number of

subbands at different levels of resolution. Two-dimensional DWT (2D

DWT) is performed by applying one-dimensional DWT row-wise and

then column-wise in each component (Figure 4.4 (b)). The first level of

decomposition results to the creation of four subbands LL1, HL1, LH1,

and HH1. The low-pass subband (LH1) represents a 2:1 subsample in

both vertical and horizontal dimensions, thus a low resolution version

43

of the original component. The LL1 subband can again be analyzed to

produce four subbands LL2, HL2, LH2, and HH2. The higher level of

decomposition may continue in a similar fashion. . In lossy coding the

transform is irreversible (real-to-real), whereas in lossless coding it is

reversible (integer-to-integer). The DWT will be further analyzed later

in this thesis.

 Quantization (Uniform quantizer with Dead-zone): all the subbands

are quantized in lossy compression mode in order to reduce the

precision of the subbands to aid in the achieving of compression. The

block quantizes transform coefficients with dead-zone scalar

quantizer. Dead-zone scalar quantizer with step size b means the

width of the central quantization around the origin is 2b. In lossless

coding the quantizer steps are forced to 1, thereby no actual

quantization takes place.

 Tier-1 Encoder: this is an entropy encoding process, particularly a

combination of MQ-Coder and EBCOT. MQ-Coder is a form of

arithmetic mean coder and EBCOT is a form of bit plane coding,

abbreviated as Embedded Block Coding with Optimized Truncation.

In tier-1 coding, quantizer indices related to each subband are

partitioned into fixed-size code blocks to produce an embedded

codestream using bit-plane coding. This algorithm (EBCOT) has benn

built to exploit the symmetries and redundancies within and across

the bit-planes so as to minimize the statistics to be maintained and

minimize the coded bitstream that MQ Coder would generate.

The bit-plane coding scheme functions as follows. If the precision of

the elements in the code-block is p, then the code-block is decomposed

into p bit-planes and they are encoded from the most significant bit-

plane to the least significant bit-plane sequentially. Each bit-plane is

scanned in a particular scan pattern as shown in Figure 4.5. The scan

pattern can be divided into sections (or stripes), each with four

consecutive rows starting from the first row of a code-block. If the

total number of rows of a code-block is not a multiple of 4, all the

sections will have four consecutive rows except the very last section.

44

Figure 4.5 Scan pattern of each bit-plane in a code-block:

(a) regular mode;

(b) vertical causal mode

There are three passes per bit plane:

 significant propagation pass (SPP): During SPP, a bit is coded

if its location is not significant, but at least one of its eight-

connected neighbors is significant. By significant, we mean

that the bit is most significant bit of the corresponding sample

in the code-block.

 magnitude refinement pass (MRP): All the bits that have not

been coded in SPP and became significant in a previous bit-

plane are coded in this pass.

 cleanup pass (CUP): All the bits that have not been coded in

either SPP or MRP are coded in this pass. CUP also performs a

form of run-length coding to efficiently code a string of zeros.

The symbols produced by the bit-plane encoder are coded using an

adaptive binary arithmetic coder. Optionally, arithmetic coding can be

bypassed for some symbols produced during processing of the less

significant bit-planes.

45

 Tier-2 Encoder (Bit-stream organization): Bit plane coding passes are

included for each block and the order of appearance of these in the

final code stream are encoded along with the actual coding pass of

data. Only subsets of the coding passes are included in the bit stream.

Rate control is achieved through both the choice of quantizer step

sizes and also the selection of the subset of coding passes to include in

the final code stream.

4.4.2 Decoder Functionality

Each functional block in the decoder either exactly or approximately inverts the

effects of its corresponding block in the encoder. The decoder structure essentially

mirrors that of the encoder. Hence, with the exception of rate control, there is a one-

to-one correspondence between functional blocks in the encoder and decoder. Figure

4.6 shows the structure of the JPEG2000 decoder, while Figure 4.7 shows its

conceptual spatial and bit stream representations.

Figure 4.6 Blocks in JPEG2000 Decoder

Figure 4.7 Spatial and Bit Stream Representations form Tier-2 to Component

Transform blocks

46

 Tier-2 decoder: The bit-plane coding passes for the various code

blocks are extracted from the code stream. Except in the lossless case,

not all coding passes for all code blocks are guaranteed to be present.

 Tier-1 Decoder: The bit-plane coding passes for each of the code

blocks is decoded, yielding the reconstructed quantizer indices. In the

lossy case, not all of the bit-plane coding passes are typically present

in the code stream, in which case the reconstructed quantizer indices

are themselves only approximations to the original quantizer indices.

 Dequantizer: The quantized transform coefficient values are obtained

from the reconstructed quantizer indices. In the case of lossless

coding, the transform coefficients are the same as the quantizer

indices.

 Inverse Discrete Wavelet Transform (IDWT): The inverse transform

is applied –if need- to the data for each component.

 Inverse multicomponent transform: The inverse multicomponent

transform is applied to the image data. If the sample values for a

component are unsigned, the original dynamic range is restored by

adding bias. In the case of lossy coding, a clipping operation is

performed on the sample to ensure that they do not exceed their

allowable range.

47

Chapter 5

HW/SW Partitioning

Overview

The purpose of this chapter is to map the computational parts of the JPEG2000 codec

onto the components of the system architecture. First a software-based open-source

implementation of JPEG2000 is selected and a timing analysis is performed. The

profiling data are then analyzed in order to construct a Hardware/Software

partitioning solution for the co-processing architecture.

5.1 Software implementation selection

A number of software implementations of JPEG2000 were assessed in order to

determine which would be the most suitable basis for a co-processing system. Three

implementations with available source-code were assessed – JJ2000, Kakadu and

JasPer. Of these three, JasPer was chosen as best fitting the selection criteria imposed

by the project.

5.1.1 Selection Criteria

The selection of a software implementation was based on several selection criteria.

The most fundamental of these was availability of source code. Using the software

for a co-processing implementation of JPEG2000 requires modification of the

software codec and source code access was therefore necessary. The three

implementations considered all fulfilled this fundamental prerequisite.

48

Cost was a consideration in software selection. Preference was given to

implementations that were available at low-cost or free of charge.

The architecture of each implementation was assessed, whenever these details were

made available. Along with the architecture, consideration was given to the

programming language in which the code was written. A related criterion to the

architecture was the overall complexity of the implementation. These factors were of

importance due to the need to make modifications to allow co-processing. The more

complex the internal structure of the software, the greater the difficulty in modifying

the code and the greater the scope for potential problems during development.

5.1.2 JJ2000 Implementation

JJ2000 has been developed in a joint effort between Canon Inc., Ecole Polytechnique

Fédérale de Lausanne and Ericsson Inc. The source code for the software is made

freely available from the project’s website. JJ2000 is written in Java. For the purposes

of hardware coprocessing, this is a severe limitation. Being Java software, the code

runs on a Java virtual machine. This introduces two key problems. Firstly, the

software is slower to execute than an implementation that is native to a PC. More

importantly, there is the issue of portability. Portability is a major strength of the Java

language. However, providing hardware coprocessing for the software by its very

nature ties the software to a specific hardware and operating system architecture.

Portability of the software between platforms is therefore a less important issue for

this thesis. For these reasons, JJ2000 is not a suitable implementation upon which to

base a co-processing JPEG2000 system.

5.1.3 Kakadu Implementation

Kakadu is a comprehensive JPEG2000 software toolkit developed by Dr. David

Taubman of the University of New South Wales, Australia. The Kakadu software

includes a Dynamic Link Libary (DLL) of core routines that provide JPEG2000

compression and decompression. A set of basic utilities that make use of the core

DLL is also provided. Kakadu is written in C++ and is presented as a well-designed

system that seeks to provide an efficient implementation of the standard. It appears

to be a complex framework, with a great deal of functionality included. An

individual non-commercial license for Kakadu costs US$100, while a multi-user non-

commercial license costs US$500. Commitment to good design and performance are

key advantages offered by Kakadu. However, it is the only implementation of the

three considered that is available in exchange for payment. Additionally, the

49

substantial array of features it offers is beyond the scope of the thesis and would

mostly remain unused.

5.2.4 JasPer Implementation

Image Power Inc. and the University of British Columbia developed the JasPer

implementation of JPEG2000. The software’s chief architect, Michael Adams, was

also involved in the JPEG2000 standardization process. The JasPer code is available

free of charge and can be downloaded from the project’s web site.

JasPer is written in C code. As a language, C is relatively low-level and is therefore

well-suited to interfacing with co-processing hardware. The software is set up as a

static library, suitable for compilation on most platforms that support the C

language. The project is especially targeted for Windows and Unix-type systems. The

JasPer library allows an input image to be compressed using JPEG2000, and for

already compressed JPEG2000 files to be decompressed back again. A number of

image formats are supported for input images files. In addition to the static library,

JasPer includes a basic command-line utility program, which provides user access to

the library functionality.

The JasPer software has been designed in a reasonably modular manner, although in

places the code is somewhat obscure and lacks commenting. It does not appear to

have been as well designed as Kakadu. However, it is more than adequate as a basic

program for compressing and decompressing images using the JPEG2000 standard.

This fact, combined with being written in C and available free of charge, led to JasPer

being selected as the software implementation of JPEG2000 that would be used for

the basis of coprocessing work.

The version of JasPer used in this thesis was JasPer 1.500.3. The JasPer manual states

that the software consists of about 40,000 lines of C code in total . Development work

was carried out on a PC running Windows Vista. The JasPer software was compiled

using the Microsoft Visual C++ version 8.0 (MSVC) compiler. The project and

workspace files necessary for compilation under MSVC were provided with the

JasPer distribution.

50

5.2 Profiling Background and Motivation

The code for nearly all non-trivial programs is split into multiple functions, often

across multiple source code files. Software ‘profiling’ is a general term for the

analysis of which ‘sections’ of a program are actually executed, the number of times

each section is executed and how long each section takes to run. This analysis is

produced using dedicated profiling tools.

Modifying JasPer to allow it to take advantage of co-processing requires replacing

some of the JasPer code with processing performed by the hardware. The overall

speed-up of the hybrid system over the software-only system is maximized when the

most computationally intensive modules in JasPer are replaced by the FPGA. Thus

the first aim of software profiling was to determine which parts of the JasPer

software take the longest time to execute.

The second aim of profiling was to use the profiling data generated in order to

decide which routines in the JasPer code were best suited to execution on the FPGA.

Three criteria were used in this decision. The first of these was obviously to select

JasPer routines with large execution times. However, not all such software routines

make sense to implement on an FPGA. Routines in this category include I/O transfers

to and from disk as well as routines that require frequent and random access to large

sections of the PC's main memory. For this reason, the second criterion was that the

routines selected could indeed benefit from FPGA processing. Thirdly, it was desired

that the routines selected were as far as possible a modular section of the overall

JasPer compression utility. The motivation for this criterion was to reduce the

frequency with which data would need to be transferred to and from the VirtexTM-5

FPGA. Less modular sections of the program would require frequent interaction

with other parts of JasPer. Consequently, more frequent bus transfers of data would

become necessary. Bus transfers should be considered as overhead in the co-

processing system, since during the transfer time the FPGA will be unlikely to be

performing any computation. This overhead can be minimized by selecting a

modular section of JasPer for hardware processing.

5.3 Profiling Strategy

As discussed above, the results of profiling JasPer were used in order to determine

which part of the algorithm the hardware processing would implement. It was

51

therefore important that the profiles generated were an accurate representation of

JasPer’s execution.

It was also important that profiling information be obtained for a broad range of

compression scenarios. In this way, it was possible to isolate the computationally

intensive parts of the software under a wide variety of input conditions.

5.3.1 Scenarios

The JPEG2000 algorithm’s flexibility provides for the user to specify a number of

compression options, thus presenting a wide range of compression scenarios. It was

desired that profiling would take the most significant of these options into account.

Furthermore, different image types, sizes and characteristics were taken into

consideration. Table 4.1 lists all the factors that were taken into account.

 Lossy vs. Lossless compression

 Image size

 Encoder vs. Decoder

 Grayscale vs. Color Images

Table 5.1 Profiling scenario factors

5.3.2 Test Images

In order to perform profiling, four different images were used as input to the

JPEG2000 compression engine. These test images were passed to JasPer in Portable

Pixel Map/Portable Gray Map (PPM/PGM) format, and are presented in Figure 5.1.

52

 ‚Lena‛ (256x256, 8-bit grayscale) ‚Airplane‛ (512x512, 8-bit grayscale)

 ‚Peppers‛ (512x512, 24-bit color) ‚Text‛ (256x256, 8-bit grayscale)

Figure 5.1 Test Images

5.3.3 Profiling Testcases

In order to estimate as adequately as possible the impact of the previously presented

performance factors, 6 different testcase scenarios have been followed. For each

testcase scenario, four profiles were generated. In each scenario certain input

variables have been held constant, while one or two other variables were modified

between individual profiles. The following table (Table 5.2) provides a detailed

description for each scenario.

53

Profile Scenario 1:

Image sizes vs. other

performance factors

Constants:

 Encoding process

 Lossy Compression

 Color Image

Variable:

 Image size

Profile Scenario 2:

Image sizes vs. other

performance factors

Constants:

 Decoding process

 Lossy Compression

 Color Image

Variable:

 Image size

Profile Scenario 3:

Image sizes vs. other

performance factors

Constants:

 Encoding process

 Lossless Compression

 Color Image

Variable:

 Image size

Profile Scenario 4:

Image sizes vs. other

performance factors

Constants:

 Decoding process

 Lossless Compression

 Grayscale

Variable:

 Image size

Profile Scenario 5:

Image Content vs.

other performance

factors

Constants:

 Encoding process

 Lossless Compression

 Grayscale(512x512x8bit)

Variable:

 Image content

type (sharp edges,

photo, synthetic,

text)

Profile Scenario 6:

Image Content vs.

other performance

factors

Constants:

 Decoding process

 Lossless Compression

 Color(512x512)

Variable:

 Image content

type (sharp edges,

photo, synthetic,

text)

Table 5.2 Profile Scenarios

54

5.3.4 Profiling Procedure

Profiling was performed using the profiler distributed with Microsoft Visual Studio

2008 version 9.0 and was carried out from within the MSVC development

environment itself. The specifications of the profiling system are shown below in

Table 5.3:

Processor Intel Core 2 Duo T9400, 2.53 GHz

System RAM 4 GB

OS Windows Vista

Profiling Tool Microsoft Visual Studio 2008 Profiler,

version 9.0

Software JasPer 1.900.1

Table 5.3 Profiling System Specifications

5.3.5 Profiling Results

The following tables present the timing profiles for the different scenarios that were

mentioned above. It must be specified that those modules and functions of the

JPEG2000 encoder/decoder that did not account for over 1% of the total execution

time in any of the testcases, are not presented seperately; instead, they are all

accumulated into a seperate class named ‚Others‛.

Before proceeding to the presentation of the time profiles we remind that Tier-1

Coder consists of 2 basic components: EBCOT (Coefficient Bit Modeling stage) and

Arithmetic Entropy Coding (MQ-Coder) as described in Chapter 4 and seen in

Figure 5.2. For the purposes of calculating execution times, those 2 components have

been evaluated seperately in order to provide more specific results. By simply

adding the execution times of these components we get the total execution time for

Tier-1 Coding.

Finally, the abbreviations used in the tables are: DWT: Discrete Wavelet Transform,

MCT: Multi-Component Transform, AEC: Arithmetic Entropy Coding (MQ-Coder).

55

Figure 5.2: Tier-1 Coder Components

Timing Profiles:

Image

Size

(pixels)

Total

execution

time (ms)

MCT

DWT

EBCOT

AEC

Others

128x128 34.41 2.8% 26.5% 49.0% 12.3% 9.4%

256x256 90.72 2.6% 25.5% 43.0% 14.9% 14.0%

512x512 292.20 3.9% 27.2% 44.1% 12.0% 12.8%
1024x1024 507.69 3.2% 30.9% 44.3% 11.5% 10.1%

Table 5.4 Time Profile 1 (Lossy 10:1, Encoder, Color)

Image

Size

(pixels)

Total

execution

time (ms)

MCT

DWT

EBCOT

AEC

Others

128x128 11.28 2.4% 22.7% 49.5% 15.6% 9.8%

256x256 49.08 2.7% 22.3% 46.5% 16.9% 11.6%

512x512 150.92 2.8% 23.8% 46.0% 15.4% 12.0%
1024x1024 247.81 2.7% 23.1% 45.9% 15.1% 13.2%

Table 5.5 Time Profile 2 (Lossy 10:1, Decoder, Color)

Image

Size

(pixels)

Total

execution

time (ms)

MCT

DWT

EBCOT

AEC

Others

128x128 30.17 4.2% 11.8% 57.5% 19.7% 6.8%

256x256 149.22 4.6% 11.9% 56.5% 20.8% 6.2%

512x512 250.71 4.6% 12.5% 56.0% 19.1% 7.8%
1024x1024 484.09 4.5% 13.4% 55.9% 19.8% 6.4%

Table 5.6 Time Profile 3 (Lossless, Encoder, Color)

Tier-1 Coder

 EBCOT

 AEC

56

Image

Size

(pixels)

Total

execution

time (ms)

MCT

DWT

EBCOT

AEC

Others

128x128 20.74 0.8% 29.8% 43.1% 15.7% 10.6%

256x256 91.70 0.7% 30.8% 43.7% 15.3% 9.5%

512x512 174.42 0.6% 29.2% 42.0% 16.0% 12.2%
1024x1024 337.12 0.6% 29.0% 41.3% 16.1% 13.0%

Table 5.6 Time Profile 4 (Lossless, Decoder, Grayscale)

Image

Size

(pixels)

Total

execution

time (ms)

MCT

DWT

EBCOT

AEC

Others

Photo 221.40 0.7% 22.1% 45.0% 15.4% 16.8%

Synthetic 199.09 0.7% 25.7% 49.1% 13.8% 10.7%

Edges 230.88 0.7% 23.5% 44.5% 15.5% 15.8%

Text 247.57 0.8% 22.8% 43.6% 16.8% 16.0%

Table 5.7 Time Profile 5 (Lossy 10:1, Encoder, Grayscale 512x512x8 bits)

Image

Size

(pixels)

Total

execution

time (ms)

MCT

DWT

EBCOT

AEC

Others

Photo 151.59 5.7% 9.9% 54.5% 21.9% 9.0%

Synthetic 144.00 5.3% 10.5% 53.5% 22.0% 8.7%

Edges 152.23 5.4% 10.7% 54.0% 20.9% 9.0%

Text 160.44 4.9% 11.2% 53.9% 21.5% 8.5%

Table 5.8 Time Profile 6 (Lossless, Decoder, Color 512x512)

The percentage of the total execution time that each of the above components

consumes, is presented in the following diagrams (Figure 5.3 and Figure 5.4). The

diagrams refer to Time Profile 1 (Table 5.4) and Time Profile 6 (Table 5.8)

respectively. It is clearly observed that DWT and Tier-1 Coding (EBCOT and AEC)

are the most time consuming components, accounting for above 80% of the total

execution time in every testcase.

57

Figure 5.3: Time Profile 1 Execution Percentage Diagram

Figure 5.4: Time Profile 4 Exeution Percentage Diagram

5.3.6 Result Analysis and Conclusions

The time profiles that were extracted in the previous step can provide us with a first

estimation of what kind of HW/SW partitioning solution would be the most wise to

apply in terms of implementing the most time consuming functions in hardware;

thus providing a speed-up factor to the whole compression engine. However,

finding the most suitable solution is not straighforward. For this reason we have to

take into cosideration the three selection criteria that were mentioned in paragraph

5.3. The conclusions one can draw by combining the profiling results and the nature

of the algorithms and functions used in the software implementation, are presented

in the following paragraphs.

58

5.3.6.1 Encoder vs. Decoder

The profile sets that were used in order to extract the required time profiles, also

provided us with a first major conclusion; it was observed that the compression

process (encoder) is more time-consuming in comparison to the decompression

process (decoder). More specifically, the time spent in decoding the image is

approximately 60% of the total time consumed in encoding the image.

5.3.6.2 Time-significant Routines

The total body of profile data generated clearly shows that there are a number of

routines in which JasPer spends most of its execution time. These functions will be

said to be ‘time-significant’. A list of time-significant routines is given in Table 5.9.

This list represents a summary of the overall results from all profile sets.

Category

Encoder

Decoder

Utilities bitstoint() inttobits()

pgxwordtoint()

jasmalloc()

bitstoint() inttobits()

pgxwordtoint()

jasmalloc()

Image Transfer jas_image_writecmpt()

jas_image_readcmpt()

jas_image_writecmpt()

jas_image_readcmpt()

EBCOT jpc_encsigpass()

jpc_encrefpass()

jpc_encclnpass()

jpc_decsigpass()

jpc_decrefpass()

jpc_decclnpass()

DWT jpc_ft_analyze() jpc_ft_synthesize()

AEC jpc_mqenc_codelps()

jpc_mqenc_codemps2()

jpc_mqdec_codelps()

jpc_mqdec_codemps2()

Table 5.9: Time-significant routines in JasPer Encoder and Decoder

59

5.3.6.3 Assessment of time-significant routines

Each category of time-significant functions was assessed for its suitability for

implementation in hardware. As discussed in Section 5.3, it was desirable that if at all

possible a modular section of JasPer be implemented on the FPGA.

 Utility Routines. The jas_malloc() utility routine performs memory allocation

of the PC’s main memory. It is not possible to implement such a routine on

the FPGA. The other time-significant utility routines in Table 5.9 are very

short – they contain very few lines of code. If these routines were

implemented on the FPGA, the bus transfer overhead would be so great as to

eliminate any potential speedup.

 Image Transfer Routines. The jas_image_writecmpt() and

jas_image_readcmpt() functions are responsible for moving image

component data between a matrix in memory and an I/O stream on disk.

They are both I/O intensive functions and consequently are not good

candidates for FPGA implementation.

 Coefficient Bit Modelling Routines (EBCOT). The three routines

jpc_encsigpass(), jpc_encrefpass() and jpc_encclnpas() perform the three

coding passes in the coefficient bit modelling stage of the JPEG2000 encoder

algorithm. The same applies in the case of decoding where the routines are

those presented in Table 5.9. This section of the algorithm is quite complex. It

also requires a degree of random access to code blocks being processed in

order to examine the neighbors of the current sample being processed. Thus,

although JasPer spends a large proportion of its time in this section,

implementing the section’s functions on the FPGA would be a considerably

complex task.

 Wavelet Transform Routines (DWT). The wavelet transform is a modular

section of the algorithm and another area where JasPer spends significant

time, though not as much time as for the coefficient bit modeling.

Implementing the wavelet transform stage on the FPGA would involve the

creation of a complex data path. The JasPer implementation involves copying

substantial blocks of data in main memory, which suggests that a hardware

implementation would also require extensive access to local memory.

 Arithmetic Entropy Coding Routines (AEC). Along with coefficient bit modeling

and wavelet transform, JasPer spends a great deal of its time in the arithmetic

entropy encoding routines. This is especially true when larger images are

being compressed. Compared to other stages of the JPEG2000 algorithm, the

arithmetic encoding stage is relatively simple. The stage is fed a stream of bits

60

as input, along with ‘context’ information to be used in the encoding of those

bits. The primary output of the stage is a stream of compressed bytes. In

addition to a manageable level of complexity, the arithmetic encoder is very

modular. It relies on almost no other part of the JPEG2000 algorithm.

5.3.7 Partitioning Solution

In order to decide which components will be ported to HW, three criteria were used,

as stated before in this chapter:

Every single one of these criteria can be assumed as a ‚filter‛ that promotes or rejects

components of the compression engine as candidates for porting to HW. The

following table (Table 5.10) demonstrates this methodology according to the

previously presented profiling results and the assessment of time significant routines

in the previous paragraph.

It has to be underlined that, although the table presents a sequential assessment of

the different components according to the above criteria, the modularity and

complexity/potential speed-up of every component have been separately assessed.

However time significance is the most important factor that overshadows the impact

of the other two criteria, therefore it is presented at the top of this hierarchy.

 Time significance

 Modularity

 Complexity/Potential

speed-up

61

Criteria MCT DWT EBCOT AEC

Time significance

LOSER

WINNER

WINNER

LOSER

Modularity - WINNER WINNER -

Complexity/Potential

speed-up

-

WINNER

LOSER

-

 HARDWARE

Table 5.10

Summarizing, it is clearly seen that the EBCOT and DWT stages are the most time

consuming ones in the JPEG2000 compression engine, with AEC following. After

assessing each category of time-significant functions, it was decided to port the

Discrete Wavelet Transform stage of JPEG2000 in HW. A large amount of JasPer’s

execution time was spent in the routines of this stage. Furthermore, the DWT’s

complexity, although being considered high, is not an overhead when taking into

account the potential speed up in execution time. Whereas, a solution that would

suggest porting the even more complex EBCOT algorithm in HW could not be

justified for the purposes of this thesis when taking into account possible execution

time speed-ups. The modularity of the wavelet transform was an additional

advantage over the other stages considered. Finally, for complexity reasons the

Inverse DWT for lossless compression was decided to be implemented in HW rather

than the Forward DWT, therefore HW/SW partitioning solution refers to the

JPEG2000 Decoder in lossless mode. Figure 5.5 illustrates the partitioning solution

for this co-design project.

5.3.8 Scheduling

The next step in the architecture exploration process involves scheduling, which

determines the orders of executing the behaviors on SW (Microblaze soft processor)

and HW (FPGA fabric core). The scheduler ensures that the line-up of tasks does not

breach any dependencies imposed by the specification. The highest level of the codec

specification model requires serialization of concurrent behavior tasks. Figure 5.6

62

illustrates the scheduling of the JPEG2000 Decoder. The decoder blocks represent the

main program that runs in synchronization with an external compressed image

stream.

Figure 5.5: HW/SW Partitioning Solution

63

Figure 5.6: JPEG2000 Decoder Scheduling

64

Chapter 6

Implementation of the Inverse Discrete

Wavelet Transform

Overview

This chapter discusses the development of a VHDL design that implements an

Inverse Discrete Wavelet Transform core, which will then be attached to a larger

Microblaze based system that implements the JPEG2000 codec on the Xilinx Virtex-5

board. Prior to presenting the design methodology that was followed and the

respective simulation results, a description of the Discrete Wavelet Transform

algorithm is given.

6.1 Introduction to Discrete Wavelet Transform

The term wavelet was originally used in the field of seismology to describe

disturbances that emanate and proceed out of sharp seismic impulse. Properties of

Fourier representation of signals is known to be effective in analysis of time-invariant

(stationary) periodic signals. In contrast to sinusoidal function, properties of wavelet

allow for both time and frequency analysis of signals simultaneously due to the fact

that energy in wavelet is concentrated both in time and still possesses the wave-like

(periodic) features. As a result, wavelet representation gives a versatile mathematical

tool to analyze transient, time-variant (non-stationary) signals that may be

statistically predictable especially at the regions of discontinuities – a special feature

for that is typical of images having discontinuities at the edges.

Wavelets are functions generated from one single function (basis function) called the

prototype or mother wavelet by the dilations (scaling) and translations (shifts) in time

(frequency) domain. If the mother wavelet is denoted by ψ(t) the other wavelet ψa,b

can be expressed as:

 (6.1)

65

Where a and b are real numbers. The variables a and b represent the parameters for

the dilations and translations respectively in the time axis. From Eq. 6.1 we can

derive that:

 (6.2)

As shown in the Eq. 6.2 ψa,0 (t) is time-scaled and amplitude-scaled. The parameter a

causes contraction of ψ(t) in the time axis when a<1 and expansion or stretching

when a>1 . For a<0, the function ψa,b (t) leads time reversal with dilation. The function

ψa,b (t) is ashift in the left along the time axis by an amount b when b>0, whereas it is

a shift in right along the time axis by the amount b when b<0. Therefore variable b

represents the translation in time (shift in frequency) domain.

Figure 6.1: Illustration of mother wavelet and its dilations in time domain. (a) mother

wavelet ψ(t), (b) ψ(t/a): 0<a<1, (c) ψ(t/a): a>1

Figure 6.1 is an illustration of a mother wavelet and its dilations in time domain.

Signal contraction and expansion in time axis is shown in figure 6.1(b) and 6.1(c)

respectively. Based on this definition, wavelets transform (WT) of the function (signal)

f(t) is represented by:

 (6.3)

The inverse transform to reconstruct f(t) from W(a,b) is mathematically represented

by:

 (6.4)

Where

66

And Ψ(w) is the Fourier transform of the mother wavelet ψ(t).

If a and b are two continuous variables and f(t) is also a continuous function W(a,b) is

called continuous wavelet transform.

6.2 Discrete Wavelet Transform

The discrete wavelet transform (DWT) refers to wavelet transforms for which the

wavelets are discretely sampled. The discrete wavelets can be represented in Eq. 6.5

 (6.5)

After substituting a = a0m and b = nb0a0m into Eq. 6.1. We choose a0 = 2 and b0 = 1, then

we can represent the discrete wavelet in Eq. 6.6.

 (6.6)

And hence for dyadic decomposition, the wavelet coefficients can be given as:

(6.7)

This permits us to reconstruct the signal f(t) from Eq. 6.7 as:

(6.8)

When the input function and its wavelet parameters are represented in discrete form,

the such transformation is called DWT of signal f(t). The introduction of multi-

resolution representation of signals based on wavelet decomposition gave DWT the

recognition as a very versatile signal processing tool. The method of multi-resolution

represents a function as a group of coefficients, each of which gives information

about the position and frequency of signal (function). The usefulness of DWT over

Fourier transform is its performance of multi-resolution analysis of signals. Therefore

DWT decomposes a digital signal into different subbands so that the lower frequency

subbands have finer frequency resolution and rough time resolution in contrast to

higher frequency subbands. The DWT is used in image compression because DWT

can be applied to features like progressive image transmission (by quality and

resolution), flexibility of compressed image manipulation, region of interest coding

etc.

67

6.3 The Concept of Multi-resolution Analysis

The theory of multi-resolution analysis introduces a systematic approach to generate

the wavelets. The design of multi-resolution analysis is to approximate a function f(t)

at different levels of resolution. In this analysis, we consider the mother wavelet ψ(t)

and the scaling factor φ(t). The dilated (scaled) and translated (shifted)

variant/version of the scaling function is given by

The set of scaling functions φm,n (t) are orthonormal when m is fixed. We generate a

set of functions in Eq. 6.9 by the linear combination of the scaling functions and its

translations.

(6.9)

Let’s consider the representation of an image with few pixels at consecutive levels of

approximation. The wavelet coefficients is assumed as an extended information

required to move from coarse to finer approximation. Therefore in each level of

decomposition the signal can be decomposed into two parts, one is coarse of the

signal in the lower resolution and the other is the detail information that was lost due

to approximation. This can be represented in Eq. 6.10, where fm denotes the value of

input function at resolution 2m , cm+1,n is the detail information and am+1,n is the coarser

approximation of the signal at resolution 2m+1. The functions φm+1,n and ψm+1,n are the

dilation and wavelet basis functions (orthonormal).

(6.10)

6.3.1 Two-Dimensional Signals in DWT

A two-dimensional signal can be represented by two-dimensional array X[M,N] with

M rows and N columns. Where M and N are non-negative integers. The

implementation of two-dimensional DWT is to perform one-dimensional DWT row-

wise to produce an intermediate result and then perform the same one-dimensional

DWT column-wise on this same intermediate result to generate a final result. This

approach is shown in figure 6.2(a). This is possible because the two-dimensional

scaling functions can be expressed as separable functions that are product of two-

dimensional scaling functions such as φ2(x,y) = φ1(x)φ1(y). The same applies for

wavelet function ψ(x,y).

68

Figure 6.2: Row-Column Computation of 2D DWT

Two subbands in each row are produced after applying one-dimensional

transformation in each row. When the low frequency of all rows (L) are put together

this results into a zone of MxN/2 the size of the input signal as we can see in Figure

6.2(a). Similarly, putting together the higher frequency subbands of all rows

produces the H subband (again of size MxN/2) which predominantly contains the

high-frequency information around discontinuities (edges in an image) of the input

signal. Applying a one-dimensional (1D) DWT column-wise on these L and H

subbands produces LL, LH, HL, and HH subbands of size MxN/4 each. LL is the

coarser version of the original input signal (image) whilst LH, HL, HH form the high

frequency subband that contains the detail information. The same result is obtained

when applying 1D DWT column-wise and then row-wise.

Multi-resolution decomposition is illustrated in Figure 6.2(b). The first level of

decomposition generates four subbands LL1, HL1, LH1, and HH1. For an image, the

LL1 subband can be considered as a 2:1 subsampled (both horizontally and

vertically) version of the original image. The other three subbands HL1, LH1, HH1

contain much higher frequency detail information. These spatially oriented subbands

mostly contain detail information of discontinuities in the image and a bulk of the

energy in each of these three subbands is concentrated in the neighborhood of areas

realting to edge activities in the original image. LL1 has similar spatial and statistical

characteristics to the original image because it is a coarser approximation of the

imput. Therefore it can further be decomposed into four subbands LL2, HL2, LH2,

and HH2 as shown in Figure 6.2(b). Accordingly the image can be decomposed into

ten subbands LL3, HL3, LH3, HH3, LL2, HL2, LH2, HH2, HL1, LH1, and HH1 as

shown in figure 6.2(c). Even more levels of decomposition can be applied.

69

The application of DWT with 3 levels of decomposition in a real image (‚Lena‛) is

shown in Figure 6.3.

Figure 6.3: DWT with 3 decomposition levels applied on ‚Lena‛ image.

6.4 Lifting Implementation of DWT

DWT has traditionally been implemented by convolution or FIR filter bank

structures. In contrast to block based implementation in discrete cosine transform

(DCT), DWT is frame-based. Such an implementation requires both large number of

arithmetic computations and a large memory for storage – a feature that is

undesirable for high speed or low-power video processing applications. The

introduction of the lifting-based wavelet transform requires fewer computations

compared to the convolution based one. It promises reduction of computational

complexity up to 50%, ‘in-place’ computation of DWT, integer-to-integer wavelet

transform (IWT), symmetric forward and inverse transform requiring no extension,

etc. The main feature of this scheme is to break up the high-pass and low-pass

wavelet filters into a sequence of small filters that in turn can be converted to a

sequence of upper and lower triangular matrices. In traditional forward DWT using

filter banks, the input signal (x) is filtered separately by a low-pass filter (ĥ) and a

high-pass filter (ĝ) at each transform level. The two output streams are then

subsampled by dropping alternate output samples in each stream to produce a low-

pass (yL) and a high-pass (yH) subband. These two filters form the analysis filter bank.

The original signal can be reconstructed by the synthesis filter bank (h,g) starting

from yL and yH. The procedure is shown in Figure 6.4 and Figure 6.5.

Figure 6.4: Row-Column computation of 2D DWT

70

Figure 6.5: 3–level lifting schema

6.4.1 Lifting Scheme

There are two kinds of lifting and they are:

Primal Lifting: is defined as the computation of the upper triangular matrix of a

resulting DWT polyphase matrix, hence lifting the low-pass subband with the help of

the high-pass subband.

Dual Lifting: is defined as the computation of the lower-triangular matrix of a

resulting DWT polyphase matrix so that the high-pass subband is lifted with the help

of the low-pass subband.

These lifting steps are often called Update and Predict. In Figure 6.6 a lifting based

forward DWT schema is presented where steps P and U refer to Predict and Update

stages respectively.

Figure 6.6: Lifting based FDWT

71

6.4.2 Data Dependency Diagram for Lifting Computation

Computation of lifting-based DWT can be described using the diagram in Figure 6.7.

The lifting requiring four ‘lifting’ factors, such as (9,7) filter, are done in four stages.

For the DWT filters that require only two lifting factors, such as (5,3) filter, the

intermediate two stages are bypassed. The outcome produced in the first stage of the

data dependency diagram is stored in the registers containing odd samples of the

input data because these samples may not be used in later stages of the computation.

In the same way, results produced in the second stage can be stored back to the

registers assigned to the even samples of the input data. Following the same pattern,

the high-pass (low-pass) output samples are stored into the registers where the odd

(even) samples of the input data are originally stored at the beginning of the

computation. Therefore no extra memory is required at any stage. This property of

the lifting-based computation is called ‚in-place computation’.

Figure 6.7: Data dependency with four lifting factors

6.5 Lifting-based DWT in JPEG2000

In JPEG2000, the DWT is implemented using a lifting-based scheme, as described

before. The transform that is applied both in lossy and lossless compression uses the

(5,3) filter (Le Gall). In fact (5,3)-DWT is the only one that allows for lossless

compression as it is an integer-to-integer transform, and thus can be inverted. The

(9,7) (Daubechies) filter is used mainly in lossy compression, leads to a real-to-real

transform, and is of higher complexity as it uses all 4 lifting stages. As it was

described previously, 2D DWT is achieved by sequentially applying 1D DWT row-

wise and then column-wise. In (5,3) filter only one Predict and one Update stage are

needed for each application of 1D DWT. If x(n) is the sequence of spatial coefficients

of the input signal, then the Forward DWT coefficients y(n) are given by the

following equations:

72

Whereas the Inverse DWT is computed using the inverse system:

6.6 Motivation for applying lifting-based DWT in JPEG2000

The advantages of lifting-based DWT over convolution ones are outlined below:

 Computational efficiency: Lifting-based DWT requires less computation (up to

55%) compared to convolution based one.

 Memory savings: In lifting implementation, no additional memory buffer is

needed due to in-place computation feature of lifting.

 Integer-to-integer transform: This offers integer-to-integer transformation which

is suitable for lossless image compression.

 No boundary extension: Is avoided due to the fact that the original data can be

reconstructed using the integer-to-integer transform.

Analysis of the JasPer source code and its specifications showed that the DWT stage

is implemented using the lifting scheme described above using both (9,7) and (5,4)

filters. Therefore our VHDL implementation should be based on the same lifting-

based architecture after analyzing and thoroughly examining the JPEG2000

specification model.

73

6.7 Implementation Requirements

The primary requirement of the VHDL implementation was one of compliance. The

code written was required to conform to the JPEG2000 standard for the IDWT stage.

Additionally, it was required that the VHDL design be written in synthesizable code.

If the code failed to conform to the JPEG2000 standard or failed to be synthesizable,

the co-processing system could not function correctly.

6.7.1 JPEG2000 Specifications regarding Inverse DWT

The first step in the development process was to analyze thoroughly the JPEG2000

specification for the Inverse Discrete Wavelet Transform. By its very nature, the

standard is unambiguous in regard to the algorithm the transform must carry out.

Analyzing the standard led to a good knowledge of the internal workings of the

DWT stage as well as to initial ideas about how a hardware implementation could be

designed.

The JPEG2000 standard explains basic data inputs and outputs of the IDWT as

shown in Figure 6.8. In Table 6.1 gives a short description of the information passed

to and from the IDWT stage. As expected, the JPEG2000 specification model follows

the lifting-based DWT architecture that was previously described in this section.

Figure 6.8: Inputs and outputs of the IDWT procedure

ab(ub,vb) Coefficients of sub-bands (compressed

image pixels)

NL Levels of decomposition

I(x,y) Shifted tile component samples

(reconstructed image pixels)

Table 6.1 Basic inputs and outputs of IDWT

74

6.7.2 JasPer’s Implementation of the IDWT

Following an examination of the JPEG2000 specification itself, the JasPer software

implementation of the IDWT was assessed. Most of the code for this stage of the

algorithm is contained in the file ‘jpc_qmfb.c’, though several other source code files

were referred to as well. Each function in the JasPer implementation was compared

to the JPEG2000 standard. This step was carried out for a number of reasons. Firstly,

to ensure that JasPer followed the standard accurately. This was indeed found to be

the case. Secondly, examining a working implementation of the IDWT was a

valuable way to reinforce an understanding of its internal operation. Thirdly,

examining the JasPer code was necessary to determine the nature of the interface

JasPer expects the IDWT stage to service. Table 6.2 summarizes the functional role of

specific functions used in the software implementation of IDWT and more

specifically of the (5,3) filter that was implemented for the purposes of this thesis.

Functions Role

jpc_ft_synthesize() Basic function that implements IDWT on

a MxN image matrix by calling functions

that manage 1D IDWT column-wise and

row-wise

jpc_ft_invlift_row()

jpc_qmfb_join_row()

Functions that implement 1D IDWT row-

wise. As required by the (5,3) filter, only

the Predict and Update lifting steps are

implemented.

jpc_ft_invlift_colgrp()

jpc_qmfb_join_colgrp()

Functions that implement 1D IDWT

column-wise on 16xN tiles. Column

group of 16 is an implementation specific

strategy for the JasPer codec. Again, only

the Predict and Update lifting steps are

implemented.

jpc_ft_invlift_colres()

jpc_qmfb_join_colres()

Functions that implement 1D IDWT

column-wise on the remaining columns

(as M in not always a multiple of 16).

Table 6.2: Basic software functions that implement IDWT

75

Finally, the JasPer code was examined to determine where the IDWT was accessed in

the overall decoding process. This was performed with a view to determining where

data buffering between JasPer and the Virtex-5 board could occur.

6.8 Proposed IDWT architecture

In this section we discuss the architecture proposed and used in this project. The

architecture is a modified version of the one hinted in [11]. The global architecture is

shown in Figure 6.9.

Figure 6.9: Proposed IDWT architecture

As shown in Figure 6.9 the IDWT unit consists of two control units implemented as

FSM: 1-D Controller unit for horizontal (row-wise) and another 2-D Controller for

vertical (column-wise) transforms. The IDWT Core (Predict and Update) is designed

to accomplish the arithmetic operations of Predict and Update steps. To process an

image, all rows are transferred to the IDWT Core from the internal memory and

transformed on the fly by the horizontal 1-D Controller unit. Then the vertical

76

transform takes place by the 2-D Controller unit. This allows a pipelined approach

because the intermediate results do not have to be transposed. The control units

coordinate steps in order to process the whole image and are responsible for

generating enable signals, address lines, etc. At the end, the inverse transformed

image coefficients are available in the internal memory. All necessary boundary

information is included in the computation. Level of decomposition is controlled by

a 3-bit ‚level‛ signal (the architecture supports up to 7 levels of decomposition).

IDWT implementation requires 2 data inputs at a time in order to calculate an output

coefficient. The architecture proposed accommodates this by introducing appropriate

pipeline/delay stages for the data inputs within the IDWT core.

The 1-D Controller module is performing data multiplexing that also generate the

address for memory reads and writes. The image height and width are passed as

parameters to the 2-D Controller module. The IDWT Core module computes the

transform coefficients of the input image pixels obtained by the memory read

operation. After the computation, the high-pass and low-pass coefficients are passed

to the right memory location. After each level of decomposition, the roles of memory

banks are swapped. The input and output address are generated through the 2-D

Controller module during vertical operation. These generated addresses are supplied

to necessary memory address input and output buses to the internal memory. The

internal ram accepts the write addresses generated by the 1-D Controller module and

the coefficients produced by the IDWT Core. A single execution of this module

writes the two coefficients to the right memory bank.

The aforementioned architecture was implemented in VHDL, and in a top-down

hierarchical and behavioral fashion.

6.9 Simulation Results

For verification purposes the design was simulated using Modelsim SE 6.3f. It is

known that this particular tool only offers functional (logical) simulation of a specific

VHDL design, thus not providing a ‚realistic‛ simulation of the system that depends

on timing constraints associated to the target implementation platform (FPGA).

However, it is the first stage to verify that our systems presents an accepted behavior

and that will eventually work after synthesis, probably with some alterations

regarding timing constraints.

The task of creating a test bench for this simulation needed a careful approach. A

trivial test bench would initialize the system’s memory with image data that have

been transformed by FDWT (implemented in Matlab or C), wait for the IDWT

system to finish the computations, then read back the reconstructed image data and

compare them to the expected output, which again could probably be produced by a

77

C or Matlab program that applies DWT on an image. However, the fact that our

VHDL design is part of a HW/SW Co-design system implies that the system should

be tested with actual data generated from the JasPer software. Therefore, the JasPer

software was modified to allow it to produce a log file of its activity and any data

transfers during the IDWT stage, and specifically the input matrices and the output

matrices of the IDWT stage, along with any information regarding the current level

of decomposition. In this way, several text files were produced containing pixel

values of a different set of images. These text files were used to initialize the system’s

memory or be compared to the output that the system generated during simulation.

The VHDL implementation of the IDWT successfully passed all of these tests on real

image data (4 different images x 3 different sizes each) with 100% accuracy on

generated pixel values.

The following figure (Figure 6.10) shows a snapshot of the simulation in Modelsim,

at the time frame when signal ‚ready‛ becomes high, marking the end of the IDWT

process. In the waveform view one can see the addresses generated, the registers that

contain the samples that undergo computation by the IDWT core, the output

coefficients that are written to memory and the current level of decomposition. This

simulation was performed on a 256x256 grayscale image with 5 levels of

decomposition (JasPer also uses 5 levels by default).

Figure 6.10: Simulation of IDWT core

Part of the memory contents after the end of all computations and data transfers are

presented in Figure 6.11.

78

Figure 6.11: Memory contents

6.10 Synthesis Results

The second and most important stage of the implementation procedure was to

synthesize our system on the Virtex-5 ML506 FPGA (XC5VSX50T). This was

accomplished using Xilinx ISE 12.1. Passing successfully the synthesis stage means

that our design can be downloaded on the FPGA fabric. Furthermore the ISE tool

provides us with useful reports containing information regarding maximum allowed

frequency, resource utilization, area cost, etc.

Figure 6.12 presents the device utilization summary that was generated by Xilinx

ISE. Figure 6.13 shows the timing summary generated, including maximum allowed

frequency. Figure 6.14 presents the schematic of the IDWT core as it was generated

again by Xilinx ISE.

79

Figure 6.12: Device utilization summary

Figure 6.13: Timing Summary

These results are presented here only as a sample. They are produced by an

instantiation of the core that uses a 256x25x8 bit Block Ram to store image pixels,

therefore being able to apply the inverse wavelet transform in a 256x256 grayscale

image. Detailed results are presented in Chapter 9 ‚Results and conclusions‛.

80

Figure 6.14: IDWT core schematic

81

Chapter 7

The Xilinx Embedded Development

Kit (EDK)

Overview

Now that we have completed and tested the VHDL design, we need a set of tools

that will bring HW and SW together, and that will help us manage the co-design

flow in order to implement the JPEG2000 decoder on the Xilinx Virtex-5 ML506

board. The task of making the HW part communicate with the SW part and vice

versa, and simultaneously meeting the requirements and constraints that are set at

the early stages of the design, seems to be an extremely complex and time-

consuming task. However, the Xilinx Embedded Development Kit (EDK) is a set of

tools that provides the designer with the power to control the whole co-design flow,

by automating tasks that would otherwise be almost impossible for the designer to

accomplish within possible deadlines. Furthermore combining all the needed tools in

one suite, and having them co-operate, significantly decreases the complexity of the

HW/SW co-design. In this Chapter, a short description of the aims and capabilities of

the EDK tool set is presented, and then a step-by-step guide is included that

describes the whole procedure of implementing the JPEG2000 decoder on the board

using the EDK tool set.

7.1 Introduction to EDK

The Xilinx Embedded Development Kit (EDK) is a suite of tools and Intellectual

Property (IP) that enables you to design a complete embedded processor system for

implementation in a Xilinx Field Programmable Gate Array (FPGA) device.

Embedded systems are somewhat complex. Getting the hardware and software

portions of an embedded design to work are projects in themselves. Merging the two

design components so they function as one system brings additional challenges. Add

an FPGA design project to the mix, and the situation has the potential to become

very confusing indeed. For example, a typical Microblaze-based system (Figure 7.1)

consists of a Microblaze soft-logic processor, an FPGA fabric, various IPs (RS232,

Ethernet, LCD controllers, custom IPs), external memories (SRAM), a software that

runs on Microblaze, C drivers for the hardware, etc. Similarly complex is a PowerPC

82

based system (Figure 7.2). The description of all these components and their correct

integration in a final working embedded system is a complex task indeed.

Figure 7.1: A typical Microblaze-based embedded system

Figure 7.2: A typical PowerPC-based embedded system

To simplify the design process, Xilinx offers several sets of tools, mainly ISE (which

was used previously to synthesize our VHDL design) and EDK. The development

83

tools included in the EDK tool set can be classified into two major categories: those

that manage HW design and those that are used for the development of SW. Xilinx

Platform Studio (XPS) and Software Development Kit (SDK) are the basic

development environments for each category. The tools provided with EDK are

designed to assist in all phases of the embedded design process, as illustrated in

Figure 7.3.

Figure 7.3: Basic Embedded Design Process Flow

The terms ‚Software Development‛ and ‚Hardware Development‛ that are present

in Figure 7.3 are explained below.

Hardware Development

Xilinx FPGA technology allows the user to customize the hardware logic in the

processor subsystem. Such customization is not possible using standard off-the-shelf

microprocessor or controller chips. The term, ‚Hardware platform‛, describes the

flexible, embedded processing subsystem the user is creating with Xilinx technology

for her/his application needs. The hardware platform consists of one or more

processors and peripherals connected to the processor buses. EDK captures the

hardware platform in the Microprocessor Hardware Specification (MHS) file.

Software Development

A software platform is a collection of software drivers and, optionally, the operating

system on which to build an application. The software image created consists only of

the portions of the Xilinx library that the user uses in her/his embedded design. EDK

captures the software platform in the Microprocessor Software Specification (MSS)

file. The user can create multiple applications to run on the software platform.

84

7.1.1 Xilinx Platform Studio (XPS)

XPS provides an integrated environment for creating software and hardware

specification flows for embedded processor systems based on MicroBlaze and

PowerPC processors. XPS also provides an editor and a project management

interface to create and edit source code. It offers customization of tool flow

configuration options and provides a graphical system editor for connection of

processors, peripherals, and buses. It is available on Windows®, Solaris®, and Linux

platforms. There is also a batch mode invocation of XPS available. From XPS, the

user can run all embedded system tools needed to process hardware and software

system components. The designer can also perform system verification within the

same environment. Figure 7.4 is a simple illustration of the managing role that XPS

plays in HW/SW co-design and co-verification.

Figure 7.4: Xilinx Platform Studio (XPS)

XPS offers the following features:

• Ability to add cores, edit core parameters, and make bus and signal connections to

generate an MHS file

• Ability to generate and modify the MSS file

• Ability to generate and view a system block diagram and/or design report

• Multiple-user software applications support

• Project management

• Process and tool flow dependency management

85

7.1.2 Software Development Kit (SDK)

The Xilinx Platform Studio SDK is a complementary GUI to XPS (Xilinx Platform

Studio) and provides a development environment for software application projects.

SDK is based on the Eclipse open-source standard. Platform Studio SDK features

include:

• Feature-rich C/C++ code editor and compilation environment

• Project management

• Application build configuration and automatic makefile generation

• Error navigation

• Well integrated environment for seamless debugging and profiling of embedded

targets

• Source code version control

7.1.3 Other EDK Components

Following is a list of some of the other EDK elements.

• Hardware IP for the Xilinx embedded processors

• Drivers and libraries for embedded software development

• GNU Compiler and debugger for C/C++ software development targeting the

MicroBlaze™ and PowerPC™ processors

• Sample projects

7.2 The MHS and MSS Description Files

7.2.1 The MHS file and PlatGen

As stated before, the hardware platform is fully described by the Microprocessor

Hardware Specification (MHS) file (ASCII text). The MHS file is integral to the

design process. It contains all peripheral instantiations along with their parameters.

The MHS file defines the configuration of the embedded processor system and

includes information on the bus architecture, peripherals, processor, connectivity,

and address space (see Figure 7.5). Peripherals are either provided from EDK as

86

Intellectual Property (IPs) or are developed and described by the user following

specific instructions. The Hardware platform development is illustrated in Figure 7.6.

Figure 7.5: Microprocessor Hardware Specification (MHS)

Figure 7.6: Hardware Platform Development

The Platform Generator (PlatGen) tool creates the hardware platform using MHS as

its input. Platgen also reads various processor core (IP core) hardware description

files (MPD, PAO) from the EDK library and any user IP repository. Platgen produces

the top-level HDL design file for the embedded system that stitches together all the

instances of parameterized IP cores contained in the system. In the process, it

87

resolves all the high-level bus connections in the MHS into the actual signals

required to interconnect the processors, peripherals and on-chip memories. It also

invokes the XST (Xilinx Synthesis Technology) compiler to synthesize each of the

instantiated IP cores. PlatGen generates all the netlist files (NGC, EDIF) plus VHDL

files that allow the user to add custom logic to the system. These files along with

other tools (like XST,) that can be seen in Figure 7.7 (end of chapter) generate the

bitstream that will eventually configure the device.

7.2.2 The MSS file and LibGen

Like MHS, XPS creates an analogous software system description in the

Microprocessor Software Specification (MSS) file. The MSS file, together with the

user’s software applications, are the principal source files (written in C/C++ or

assembly) representing the software elements of the embedded system (Figure 7.7).

Figure 7.7: Microprocessor Software Specification (MSS)

This collection of files, used in conjunction with EDK installed libraries and drivers,

and any custom libraries and drivers for custom peripherals the user provides allows

SDK to compile the applications. The compiled software routines are available as an

Executable and Linkable Format (ELF) file. The ELF file is the binary ones and zeros

88

that are run on the processor hardware. Figures 7.5 and 7.6 illustrate the software

platform development and the files and flow stages that generate the ELF file.

Figure 7.8: Software platform development

Figure 7.9: ELF file generation

89

Figure 7.10: Embedded Development Kit Tools (EDK) Architecture

90

Chapter 8

JPEG2000 Co-design using EDK

Overview

In this chapter we present the basic components of the co-design architecture and

introduce some basic structures that are essential to the whole system. This chapter

also aims to provide a first understanding of the steps that are going to be presented

in the step-by-step guide that follows.

8.1 Introduction

Before proceeding to the co-design architecture and the step-by-step guide that will

follow in the next chapter, it would be wise to provide some information regarding

some basic system components such as the Microblaze soft-logic processor, the

Processor Local Bus (PLB), the Xilinx Kernel Operating System, etc.

8.1.1 The Microblaze Processor

The MicroBlaze™ embedded processor soft core is a reduced instruction set

computer (RISC) optimized for implementation in Xilinx® Field Programmable Gate

Arrays (FPGAs). Figure 8.1 shows a functional block diagram of the MicroBlaze core.

91

Figure 8.1: MicroBlaze Core Block Diagram

Features

The MicroBlaze soft core processor is highly configurable, allowing the user to select

a specific set of features required by her/his design.

The fixed feature set of the processor includes:

 Thirty-two 32-bit general purpose registers

 32-bit instruction word with three operands and two addressing modes

 32-bit address bus

 Single issue pipeline

Memory Architecture

MicroBlaze is implemented with a Harvard memory architecture; instruction and

data accesses are done in separate address spaces. Each address space has a 32-bit

range (that is, handles up to 4-GB of instructions and data memory respectively). The

instruction and data memory ranges can be made to overlap by mapping them both

to the same physical memory. The latter is useful for software debugging. Both

instruction and data interfaces of MicroBlaze are 32 bits wide and use big endian, bit-

reversed format. MicroBlaze supports word, half-word, and byte accesses to data

memory.

92

Data accesses must be aligned (word accesses must be on word boundaries, halfword

on half-word boundaries), unless the processor is configured to support unaligned

exceptions. All instruction accesses must be word aligned. MicroBlaze does not

separate data accesses to I/O and memory (it uses memory mapped I/O). The

processor has up to three interfaces for memory accesses:

 Local Memory Bus (LMB)

 Processor Local Bus (PLB) or On-Chip Peripheral Bus (OPB)

 Xilinx CacheLink (XCL)

The LMB memory address range must not overlap with PLB, OPB or XCL ranges.

MicroBlaze has single cycle latency for accesses to local memory (LMB) and for cache

read hits, except with area optimization enabled when data side accesses and data

cache read hits require two clock cycles. A data cache write normally has two cycles

of latency (more if the posted-write buffer in the memory controller is full).

The MicroBlaze instruction and data caches can be configured to use 4 or 8 word

cache lines. When using a longer cache line, more bytes are prefetched, which

generally improves performance for software with sequential access patterns.

However, for software with a more random access pattern the performance can

instead decrease for a given cache size. This is caused by a reduced cache hit rate due

to fewer available cache lines.

8.1.2 Bus Interfaces

The MicroBlaze core is organized as a Harvard architecture with separate bus

interface units for data and instruction accesses. The following three memory

interfaces are supported: Local Memory Bus (LMB), the IBM Processor Local Bus

(PLB) or the IBM On-chip Peripheral Bus (OPB), and Xilinx® CacheLink (XCL). The

LMB provides single-cycle access to on-chip dual-port block RAM. The PLB and OPB

interfaces provide a connection to both on-chip and off-chip peripherals and

memory. The CacheLink interface is intended for use with specialized external

memory controllers. MicroBlaze also supports up to 16 Fast Simplex Link (FSL)

ports, each with one master and one slave FSL interface.

93

Features

 A 64-bit version of the PLB V4.6 interface (see IBM’s 128-Bit Processor Local

Bus Architectural Specifications, Version 4.6).

 A 64-bit version of the OPB V2.0 bus interface (see IBM’s 64-Bit On-Chip

Peripheral Bus,

 Architectural Specifications, Version 2.0)

 LMB provides simple synchronous protocol for efficient block RAM transfers

 FSL provides a fast non-arbitrated streaming communication mechanism

 XCL provides a fast slave-side arbitrated streaming interface between caches

and external memory controllers

 Debug interface for use with the Microprocessor Debug Module (MDM) core

 Trace interface for performance analysis

8.1.2.1 Processor Local Bus (PLB)

The Xilinx 128-bit Processor Local Bus (PLB) v4.6 provides bus infrastructure for

connecting an optional number of PLB masters and slaves into an overall PLB

system. It consists of a bus control unit, a watchdog timer, and separate address,

write, and read data path units, as well as an optional DCR (Device Control Register)

slave interface to provide access to its bus error status registers.

8.1.2.2 Local Memory Bus (LMB)

The LMB is a synchronous bus used primarily to access on-chip block RAM. It uses a

minimum number of control signals and a simple protocol to ensure that local block

RAM are accessed in a single clock cycle. LMB signals and definitions are shown in

the following table. All LMB signals are active high.

8.1.3 Xilkernel Operating System

Xilkernel is a small, robust, and modular kernel. It is highly integrated with the

Platform Studio framework and is a free software library that you get with the Xilinx

EDK. It allows a very high degree of customization, letting users tailor the kernel to

94

an optimal level both in terms of size and functionality. It supports the core features

required in a lightweight embedded kernel, with a POSIX API. Xilkernel works on

both the MicroBlaze™ and PowerPC™ 405 processors. Xilkernel IPC services can be

used to implement higher level services (such as networking, video, and audio) and

subsequently run applications using these services.

Key Features

 A POSIX API targeting embedded kernels.

 Core kernel features such as:

 POSIX threads with round-robin or strict priority scheduling

 POSIX synchronization services - semaphores and mutex locks

 POSIX IPC services - message queues and shared memory

 Dynamic buffer pool memory allocation

 Software timers

 User level interrupt handling API

 Highly robust kernel, with all system calls protected by parameter validity

checks and proper return of POSIX error codes.

 Highly scalable kernel that can be accommodated into a given system

through the inclusion or exclusion of functionality as required.

 Complete kernel configuration, deployment within minutes from inside of

Platform Studio

 Statically creating threads that startup with the kernel.

 System call interface to the kernel.

 Support for creating processes out of separate executable Executable Link

Files (ELF)

95

Figure 8.2 shows the various modules of Xilkernel

Figure 8.2: Xilkernel Modules

8.2 Co-design Architecture

The system architecture is decided after HW/SW partitioning. As stated before,

Microblaze was selected as the target processor to run the software (JasPer) and an

FPGA fabric core called IDWT, was synthesized to implement the Inverse Discrete

Wavelet Transform functions that were ported to HW. Figure 8.3 illustrates an

abstract architectural model of the system. Bus interfaces are not introduced yet.

96

Figure 8.3: Architectural Model

The final System on Chip (SoC) included an SRAM in order to store the input and

output images, a DDR2 SDRAM in order to store the executable ELF file (1,3MB),

and a RS232 UART serial port for sending the output image to the host PC. The final

block diagram is presented at the end of this chapter.

8.2.1 Communication Protocol

In Figure 8.3 an abstract architectural model of the system was presented. Figure 8.4

shows the communication model after insertion of communication protocols. The

Local Memory Bus (LMB) and Processor Local Bus (PLB) protocols that were

presented previously are used in this project. The Microblaze soft processor, IDWT,

and BRAM are interconnected via the system bus. All components connected to the

same bus are clocked at the same speed. Interfaces are inserted between bus and

components. PLB is the interface between Microblaze and the system bus, whilst the

one between the BRAM and Microblaze is LMB. The interface negotiates between

components to ensure a successful completion of data transfers.

97

Figure 8.4: Communication Model

8.2.2 Microblaze/IDWT Interface

The communication between the Microblaze soft processor and IDWT (which is an

external device) is based on the Processor Local Bus protocol of the Xilinx Virtex-5

platform. The protocol has 2 representations: Master and Slave bus protocols. PLB

peripherals are created to work either as slaves or masters for the PLB. A peripheral

connected to the master ports of the PLB pushes data and control signals onto the

bus, whereas a peripheral that is connected to the slave ports reads and pops data

and control signals from the PLB. The working idea behind the PLB bus system is

shown in Figure 8.5 with an example of PLB connections in a system with three

masters and three slaves.

98

Figure 8.5: PLB interface

8.2.2.1 Master Bus Protocol

The Processor Local Bus protocol that was used for this project is too complex to

present a detailed list of the essential master bus signals that hook up the Microblaze

soft processor on the system bus. It would be also futile to present just a subset of the

master bus signals as this wouldn’t provide a realistic understanding of the working

idea behind PLB.

8.2.2.2 Slave Bus Protocol

In contrast to the master bus signals for Microblaze, a subset of the slave bus signals

can be presented and still provide a clear and simple view of how the external device

(IDWT) communicates via the PLB with Microblaze. This is mostly due to the fact

that EDK uses what is called PLB slave and burst peripherals to implement common

functionality among various processor peripherals. These PLB slave and burst

peripherals can act as bus masters or bus slaves. The PLB slave and burst peripherals

are verified, optimized, and highly parameterizable interfaces. They also provide a

99

set of simplified bus protocols. This is all IP Interconnect (IPIC), which is much easier

to work with when compared to operating on the PLB or FSL bus protocols directly.

Figure 8.6 illustrates the relationship between the bus, a simple PLB slave peripheral,

IPIC and the user IP design.

Figure 8.6: PLB Slave Module

A subset of the slave bus signals is presented below:

Bus2IP_Clk: slave device clock

Bus2IP_Reset: slave device reset

Bus2IP_Addr: bus to IP address for writing to and reading from user IP memory

Bus2IP_Data: bus to IP data bus, which pushes data into the user design

Bus2IP_RNW: bus to IP read/not write

Bus2IP_BE: bus to IP byte enables

Bus2IP_CS: bus to IP chip select for user IP memory selection

100

Bus2IP_RdCE: bus to IP read chip enable

Bus2IP_WrCE: bus to IP write chip enable

IP2Bus_Data: IP to Bus data bus, which pops data back to the main bus

IP2Bus_RdAck: IP to Bus read transfer acknowledgement

IP2Bus_WrAck: IP to Bus write transfer acknowledgement

IP2Bus_Error: IP to Bus error response

Using the above protocol the IDWT IP core is able to exchange data with Microblaze

and connect to appropriate control signals that trigger the beginning of processing or

mark the end of processing by the core.

The following figure (Figure 8.7) illustrates the final System on Chip (SoC), including

basic components, memories and bus communication protocols.

Figure 8.7: Final System on Chip

101

Chapter 9

Implementation Results

Overview

In this chapter we present a set of detailed results for the IDWT core that has been

designed and the final SoC that has been developed for the JPEG2000 compression

standard. The results refer to power consumption, slice utilization and performance

in terms of maximum frequency achieved. For the purposes of this thesis, the final

SoC was implemented and tested on a Virtex-5 XC5VSX50T board (Virtex-5 SX sub-

family). However, results have been acquired and analyzed for other platforms as

well. These include: Virtex-5 XC5VLX110T (Virtex-5 LX sub-family), Virtex-6

XC6VLX75T (Virtex-6 LX sub-family), Virtex-6 XC6VSX315T (Virtex-6 SX sub-family)

and Spartan 6 XC6SLX100. Finally, the speed-up of the JPEG2000 decoder is

calculated, after we implement the application on the Virtex-5 SX development

platform.

9.1 Synthesis Design Goals and Strategies

In order to evaluate the impact of different implementation strategies on area, speed

and power estimations we used three different and predefined by XST

implementation strategies:

Area Reduction: this strategy sets an area-oriented goal for the synthesizer. The area

reduction strategy will try to minimize area while enabling the physical synthesis

options available in map. The tools perform logical optimizations on the design in

order to achieve area requirements.

Timing Performance: this strategy sets a speed-oriented goal for the synthesizer.

The timing performance strategy will try to achieve timing closure while enabling

102

the physical synthesis options available in map. It can also try to achieve timing

closure while packing registers into the IOBs if possible.

Power Optimization: this strategy sets a power-oriented goal for the synthesizer.

The power optimization strategy will try to minimize power while enabling the

physical synthesis options available in map. The tools perform logical optimizations

on the design in order to achieve power reduction.

9.2 IDWT Core Results

The application specific nature of the JPEG2000 implementation requires the

embedding of the IDWT core to the final SoC as an instantiation that can manage

64x64 image tiles. However, the core can be altered in order to be able to manipulate

other image sizes, and more specifically 128x128, 256x256 and 512x512 grayscale

images. The following results refer to 4 different instantiations of the core being

implemented on the platforms mentioned above. For the extraction of these results,

ISE 12.1 design suite was used. All results are extracted after Place And Route (PAR)

has taken place.

9.2.1 Slice Utilization Results

The following diagram (Figure 9.1) depicts the slice utilization on different platforms

and different instantiations of the IDWT core that can manage different image sizes.

For this set of results, the synthesizer’s goal was set to be speed-oriented and the

optimization effort was set to ‚High‛.

103

Figure 9.1: Slice utilization (speed-oriented optimization)

A first conclusion is that the IDWT core utilizes only 0.5% - 1.5% of the total slices

available in every case. This is not the case with BRAM resources that are used, as the

instantiation that manages 512x512 image sizes requires more than 80% of the total

BRAMs available in every device, apart from the Virtex-6 SX FPGA. This means that

the core cannot be set to work on 1024x1024 images in the rest devices.

Second, it is clearly seen that the implementation on Virtex-6 and Spartan-6 devices

requires less slices in comparison to implementing the design on Virtex-5 devices.

This difference is attributed to the fact that Virtex-5 slices contain 4 6-input LUTs and

4 Flip Flops each, whereas Virtex-6 and Spartan-6 technologies utilize slices that

contain 4 6-input LUTS and 8 Flip Flops each. The increase in the number of Flip

Flops leads to fewer slices being utilized in these devices.

The following diagrams (Figure 9.2, Figure 9.3 and Figure 9.4) illustrate the slice

utilization results for each of the above FPGA families separately. However, in these

diagrams the impact of the synthesizer’s goal can be observed, as it switches between

area-oriented and speed-oriented settings. The optimization effort is kept to ‚High‛.

104

Figure 9.2: Slice utilization – Virtex-5

Figure 9.3: Slice utilization – Virtex-6

105

Figure 9.4: Slice utilization – Spartan 6

The above diagrams show that there is a decrease factor in slice number when the

algorithm switches from speed to area oriented, especially in Virtex-5 and Spartan 6

devices. More precisely:

Virtex-5: 10% slice number reduction

Virtex-6: 2% slice number reduction

Spartan 6: 9% slice number reduction

106

9.2.2 Performance Results

In order to evaluate the performance on each device the maximum frequency

(minimum clock period) was estimated in each case. The following diagram (Figure

9.5) illustrates the maximum frequency achieved when the IDWT core is

implemented on Virtex-5, Virtex-6 and Spartan 6 devices. For this set of results, the

synthesizer’s goal was set to be speed-oriented and the optimization effort was set to

‚High‛.

Figure 9.5: Maximum frequency (speed-oriented optimization)

From the above diagram it is clearly observed that Virtex-5 and Virtex-6 technologies

achieve much higher clock frequencies in comparison to Spartan 6 technology. From

Spartan 6 to Virtex-5 there is a speed improvement of 85% and from Virtex-5 to

Virtex-6 a further 20% speed improvement. However, this comes with a cost to

power consumption, as it will be presented later in this chapter. Furthermore, it is

worth noticing that no significant differences between LX/SX FPGA sub-families

were found to be, as far as speed is concerned.

The diagrams that follow (Figure 9.6, Figure 9.7 and Figure 9.8) illustrate the slice

utilization results for each of the above FPGA families separately. In these diagrams

the impact in maximum frequency is estimated by setting different goals to the

synthesizer.

107

Figure 9.6: Maximum frequency – Virtex-5

Figure 9.7: Maximum frequency – Virtex-6

108

Figure 9.8: Maximum frequency – Spartan 6

The above diagrams show that there is an increase factor in maximum frequency

when the algorithm switches from speed to area oriented, especially in Virtex-5 and

Spartan 6 devices. More precisely:

Virtex-5: 15% speed increase

Virtex-6: 12% speed increase

Spartan 6: 13% speed increase

109

9.2.3 Power Consumption Results

The power consumption of the design was evaluated on the same boards by using

the Xpower tool. As it was shown in the slice utilization diagrams only a small fractal

of the total number of slices available in each device was utilized (around 1%). This

means that FPGA leakage (static power) is going to overshadow the design’s power

consumption. Consequently, no noticeable changes in total power consumption were

found to be as image size increases, and therefore total power consumption remains

almost the same in every case. The following diagram (Figure 9.8) presents the

power consumption estimates that were extracted using Xpower. The IDWT core is

set to work on 256x256 size images and the clock frequency in every device is

constrained to 180MHz. For the synthesizer’s goals, optimization is set to be area-

oriented, power reduction option is selected, and optimization effort is set to ‚High‛.

Figure 9.9: Power consumption

After evaluating the results and observing the above diagram, some clear

conclusions come out.

First, Spartan 6 is obviously the low-power, low-cost solution for implementing the

design, presenting a power consumption that is almost 10% of the one presented by

110

Virtex-5 SX (the board that was used for implementation). The differences in 45nm

logic process (Spartan 6) and 65nm process (Virtex-5), being the reason for this

significant decrease in power consumption.

Second, Virtex-5 SX consumes less power than Virtex-5 LX. This is important,

because the Virtex-5 LX device that was selected (XC5VLX110T) is the ‚smallest‛

device from the LX sub-family, on which the design can fit when instantiated for

512x512 image sizes. Furthermore, in the previous speed diagrams it was shown that

maximum frequencies achieved are the same for these devices. Therefore, Virtex-5

SX sub-family proves to be a better solution in comparison to Virtex-5 LX sub-family,

especially when we wish to exploit large image sizes.

On the other hand, between Virtex-6 LX and Virtex-6 SX, the LX device proves to be

a better solution as it combines lower power consumption (75% power reduction) in

comparison to SX, while the maximum frequencies achieved are approximately the

same in both devices.

Lastly, the benefits of the novel 40nm copper process technology on which Virtex-6 is

built, are depicted in the diagram by the difference in power consumption between

Virtex-5 and Virtex-6 families. Virtex-6 LX has 120% the capacity of Virtex-5 SX in

slice number, but consumes 15% less power. Even the power-hungry Virtex-6 SX

FPGA presents a 200% increase in power consumption compared to Virtex-5 SX,

while though providing 6 times the area capacity of the Virtex-5 SX FPGA.

For the purposes of estimating power consumption, changing the synthesizer’s goals

as far as area, speed and power is concerned, did not have any impact on the final

estimation. This is because, as stated before, the IDWT core utilizes only 1% of the

total available slices in each device; therefore FPGA leakage is literally the only factor

affecting the total power consumption estimation.

9.3 System on Chip Results

In this section, the final results regarding SoC slice utilization, performance and

power consumption are presented. Apart from the Virtex-5 SX on which the

JPEG2000 codec was implemented and tested, two more devices (Spartan 6

XC6SLX100 and Virtex-5 XC5VLX110T) were evaluated.

111

9.3.1 Slice utilization results

The following diagram (Figure 9.10) shows the number of slices used to implement

the SoC on Virtex-5 SX, Virtex-5 LX and Spartan 6 devices. For this set the

synthesizer’s goal is set to be speed-oriented and optimization effort is set to ‚High‛.

Figure 9.10: Slice utilization (speed-oriented optimization)

The same conclusions are reached here as in the previous section that was referring

to the IDWT core. Spartan 6 technology requires fewer slices to implement the SoC,

due to the fact that slices in Spartan 6 and Virtex-6 contain double the number of Flip

Flops in comparison to Virtex-5 technology.

The diagrams that follow (Figure 9.11, Figure 9.12 Figure 9.13) illustrate the slice

utilization results for each of the above FPGA families separately. In these diagrams

the impact in maximum frequency is estimated by setting different goals to the

synthesizer. The decrease in number of slices is noticeable. More precisely:

Virtex-5 SX: 7% slice utilization decrease

Virtex-5 LX: 3% slice utilization decrease

Spartan 6: 9% slice utilization decrease

Virtex-6: 8% slice utilization decrease

112

Figure 9.11: Slice utilization – Virtex-5

Figure 9.12: Slice utilization – Spartan 6

113

Figure 9.13: Slice utilization – Virtex-6

9.3.2 Performance results

The speed diagram in Figure 9.14 shows the maximum frequency achieved by

Virtex-5 SX/LX, Virtex-6 LX/SX and Spartan 6 boards. The synthesizer’s goal switches

between speed-oriented and area-oriented and the optimization effort is set to

‚High‛.

Figure 9.14: Maximum frequency (speed–oriented optimization)

114

As it was expected Virtex-6 SX achieves the highest speed, while Spartan 6 achieves

the lowest one. What is more interesting though is that the SoC speed is almost half

the speed achieved when we only implement the IDWT core on the same boards. The

existence of a DDR2 SDRAM memory, which is essential in order to download the

software application, is the defining factor. The speed bottleneck is the DDR2

SDRAM Multi-Port Multi-Channel Controller (MPMC) as it can be easily seen in the

slack histogram below (Figure 9.15), which was generated using the PlanAhead 12.1

tool. The endpoint setup slack for the IDWT core is around 5 ns in every case.

Therefore, the IDWT core is not contributing to the decrease in speed when it is

embedded into the SoC.

Figure 9.15: Slack histogram

For the same reason that was explained above, no significant speed up could be

achieved when changing the synthesizer’s goal to be speed oriented.

115

9.3.3 Power consumption results

The power consumption of the final SoC was again estimated by using the Xpower

tool. The following diagram (Figure 9.16) shows the differences is power

consumption among Spartan 6, Virtex-5 and Virtex-6 development boards. As

previously discussed, the existence of the IDWT core does not affect the final

estimation.

Figure 9.16: SoC power consumption

Again Spartan 6 device proves to be, as expected due to 45nm process technology,

the low power, low cost solution for the implementation of the SoC. The power

consumption estimate in the Spartan 6 device is 22% of the power consumption

estimate for the Virtex-5 SX device and 20% of the power consumption estimate for

Virtex-5 LX device. The same conclusions that applied to the IDWT core apply here

as well. Virtex-5 SX series proves to be a better solution to Virtex-5 LX series, as far as

performance and power trade-offs are concerned. This is again, because larger

devices of the LX series need to be used in order to fit the design when it is set to

work on larger images. Last, Virtex-6 LX FPGA consumes 63% less power compared

to Virtex-5 LX and 58% less power compared to Virtex-5 SX. The Virtex-6 SX device

has approximately the same power consumption estimate compared to Virtex-5

families, while being capable to fit a much larger design. Apart from the 45nm and

40nm copper process technologies that have great impact on power in Spartan 6 and

Virtex-6 FPGAs, the SoC that is implemented on these devices consumes less energy

116

as it also incorporates a DDR3_SDRAM instead of the DDR2_SDRAM that was used

in Virtex-5 SX, which consumes 30% more power.

9.5 JPEG2000 Speed-up

In order to estimate the potential speed-up of the JPEG2000 Decoder after porting the

Inverse Discrete Wavelet Transform to hardware, we performed several executions

of the application, for different image sizes, with and without the partitioning that

was implemented.

First, the JasPer software was downloaded on the development board and run on

Microblaze at 100MHz. Using Xilinx Microprocessor Debugger we managed to

acquire cycle results both for the whole execution of the application as well as the

execution of the Inverse Discrete Wavelet functions alone. After mapping these

functions on the FPGA fabric, we performed respective executions for the partitioned

application and acquired relevant cycle results. The diagram below (Figure 9.17)

shows the cycle results that were acquired, for different image sizes (8-bit grayscale)

and Microblaze running at 100MHz (same frequency means that execution time

results are straightly analogous to cycle results).

Figure 9.17: Cycle results for IDWT

117

The above diagram shows an increasing gain in speed as the image size increases.

For 64x64 image sizes the hardware implementation of the IDWT performs its

computation in 48% of the processing time taken by the JasPer IDWT stage. In other

words, we gain a 52% speed-up in execution time. This gain increases up to 63% for

512x512 image sizes.

The impact of this improvement in execution time was also calculated for the whole

decoding stage. The following diagram (Figure 9.18) shows the cycle results for the

execution of the JPEG2000 decoding stage, as a software-only and as a

software/hardware implementation.

Figure 9.17: Cycle results for JPEG2000 Decoder

It is clear by this diagram that the JPEG2000 Decoder stage benefited from the

decision to port the IDWT stage to hardware. We calculated a decrease in cycles, and

thus a decrease in execution time, that ranges between 16% and 20%, slightly

increasing as the image size increases. As the image size increases, the software

implemented IDWT stage performs even more memory accesses, thus becoming

even more computationally intensive. Therefore, the implementation of the IDWT on

FPGA fabric has even greater impact when we decompress large images.

118

Chapter 10

Conclusions & Future Work

10.1 Conclusions

In this thesis we presented the co-design and implementation of the JPEG2000 still

image compression standard on a Xilinx Virtex-5 development platform. The whole

procedure, from the early stages of specification analysis and hardware/software

partitioning to the latest stages of implementation and verification, provided a first

understanding of the capabilities that are given to the designer by modern CAD

design tools, but also the many challenges that are yet to be taken.

Modern CAD design tools, like the Xilinx ISE design suite and the Xilinx EDK tool

set that were used for the implementation stage in this thesis, offer great flexibility

and automation in hardware/software co-design and co-verification. This brings

rapid prototyping to the next level and allows for short time-to-market deadlines to

be achieved with greater efficiency. However, big challenges for the designer still

exist. Decisions that have to be taken early in the design stage, such as

hardware/software partitioning, have eventually great impact on the final result.

Therefore, design strategies that are espoused before implementation will almost

surely require for the implementation stage to be more flexible. This issue is

something that is covered by modern tools generally. However, the stages of co-

debug and co-verification of HW/SW systems, as it was also the case in this project,

prove to be the most time consuming ones. This especially affects Embedded

Systems as the integration of dedicated software running on dedicated hardware

bridges these two domains, presenting new challenges not traditionally found on

hardware-only systems. Thus, the design tasks of verification and debug of h/w and

s/w systems that are written from two different sets of designs -with possibly

incomplete specifications-, become even more challenging.
The co-design and implementation of the JPEG2000 compression standard also

showed the benefits of implementing a DSP application on FPGA fabric in terms of

speed-up gains. An Inverse Discrete Wavelet Transform core was designed in order

to map a time consuming and computationally intensive function of the JPEG2000

compression engine on FPGA fabric. The result was an improvement in speed, up to

119

a factor of 20%. Such gains in speed are often critical for DSP applications, where

throughput is essential.

For the purposes of this thesis, both the IDWT core and the final System-on-Chip

were evaluated as far as area utilization, power consumption and speed is

concerned. It was found that when the IP core is integrated in the larger SoC then its

maximum speed potential is almost halved down, due to the stricter implementation

constraints of a system incorporating a ‚soft‛ processor, other IPs, memories, IOs,

etc.

Performance, power consumption and area utilization results were also estimated for

other modern platforms provided by Xilinx, apart from the Virtex-5 SX (65nm logic

process) subfamily that was the development platform for implementing the

JPEG2000 standard. More specifically, estimates were extracted for the Spartan 6

(45nm logic process) and Virtex-6 (40nm logic process) FPGA families. This provided

us with some conclusions. First, the Spartan 6 FPGA family offers a low-cost, low-

power solution for the System-on-Chip that was developed. The differences between

45nm process and 65nm process, as expected, had a great impact on power

consumption, reducing power up to 500%. Second, the Virtex-6 FPGA families with

40nm process seem to be a better solution regarding speed and power trade-offs, in

comparison to the Virtex-5 FPGA families, as a 30% improvement in speed and a

60% reduction in power consumption were estimated.

Last but not least, in the second part of the present thesis, a step-by-step guide has

been presented that allows one to follow or get familiar with some basic steps and

procedures regarding the Xilinx Embedded Development Kit. This guide is a good

example of the way this tool-set can aid the designer by greatly automating critical

parts of the implementation phase.

10.2 Future Work

Obviously there are more ideas to be improved or investigated in this project. The

following have been considered for investigation in future work:

 FPGAs are a powerful and compelling option for high-performance,

demanding digital signal processing (DSP) applications, whether as part of a

co-processing acceleration system or a dedicated hardware implementation.

In the future, other modern DSP applications (such as H.264 for broadcast)

could be investigated for co-design and implementation on DSP-oriented

FPGA platforms.

120

 In this thesis, as far as the HW/SW partitioning solution is concerned, it was

decided to port the Inverse Discrete Wavelet Transform to hardware.

However, this is not the optimal partitioning solution. Design Space

Exploration methodologies can be used in order to broaden the search for

possible potential design solutions, including the Encoder stage. This means

porting Tier-1 Coder, FDWT, ROI and MCT sub-functions to hardware.

 For the implementation of the JPEG2000 standard, we created an IP core that

was integrated into a larger SoC. The PLB bus communication protocol was

used to establish communication between the Microblaze processor and the

IDWT core. In the future, the potential gains of using the FSL bus protocol

could be investigated.

 Implementation of the JPEG2000 compression standard on Virtex-7 FPGA

families could give interesting results regarding the novel 28nm logic process.

 Investigating the implementation of the Discrete Wavelet Transform in ASIC.

121

Part 2

Chapter 11

Step-by-step Guide

Overview

In this chapter a step-by-step guide is presented that describes the whole procedure

of implementing and testing our JPEG2000 co-design on the Xilinx Virtex-5 ML506

FPGA (XC5VSX50T). It is assumed that Xilinx EDK 12.1 and Xilinx ISE 12.1 are

properly installed and all the standard libraries are generated as described in

Embedded System Tools Reference Manual by Xilinx [15].

HARDWARE DEVELOPMENT

11.1 Creating a new project

In order to create a new project, we will use the Base System Builder (BSB) wizard

that quickly and efficiently establishes a working design that can then be further

customized. Xilinx recommends using the BSB Wizard to create the foundation for

any new embedded design project, as it saves a lot of time by automating basic

hardware and software platform configuration tasks common to most processor

designs.

Steps

1.1 Open XPS. From the dialog box, select "Base System Builder wizard" and OK.

1.2 Click "Browse" and create a new folder for the project. Click "OK".

122

1.3 We are given the choice to create a new project or to create one using the

template of another project. Tick "I would like to create a new design" and click

"Next".

1.4 On the "Board" page, select "Xilinx" as the board vendor. Then select the board

"Virtex 5 ML506 Evaluation Platform" board. Select "1" as the board revision.

Click "Next".

1.5 On the ‚System‛ page, select ‚Single-Processor System‛

1.6 On the "Processor" page, we normally have a choice between using the PowerPC

"hard" processor, or the Microblaze "soft" processor. Since the Virtex-5 does not

contain any PowerPCs, we can only select Microblaze. Leave ‚System Clock

123

Frequency‛ and ‚Local Memory‛ in their default values (125.00 MHz and 8KB

respectively). Click "Next".

1.7 On the ‚Peripheral‛ page, use ‚Add‛ and ‚Remove‛ buttons to add or remove

peripherals. Leave RS232_Uart_1, SRAM, DDR2_SDRAM, dlmb_cntlr and

ilmb_cntlr in the ‚Peripherals‛ list. Click "Next".

1.8 On ‚Cache‛ and ‚Application‛ pages, click ‚Next‛.

1.9 On ‚Summary‛ page, click ‚Finish‛ and the basic working design is established.

124

11.2 The XPS GUI

Now that the basic configuration has been completed and the basis for our design

has been established using BSB, it is time to explain some of the most essential tasks

that can be accomplished through the XPS GUI and take a closer look on what

information can be straightly provided to the designer by using this GUI.

The XPS main window is divided into three different areas (Figure 11.1):

 Project Information Area

 System Assembly View

 Console Window

125

Figure 11.1: XPS GUI

Project Information Area

The Project Information Area offers control over and information about the project. It

is divided into three tabs:

 Project Tab: lists all project related files such as the MHS, MSS, User

Constraints File (UCF), iMPACT command files, Device, HDL and Netlist

options, log files, etc.

 Applications Tab: lists all software application option settings, header files,

and source files that are associated with each application project.

 IP Catalog Tab: lists all the EDK IP cores and any custom IP cores.

System Assembly View

The System Assembly View allows the user to view and configure system block

elements. XPS provides Bus Interface, Ports, and Addresses tabs in the System

Assembly View (Figure 11.2), to organize information about the design and allow the

designer to more easily edit the hardware platform. The Connectivity Panel that

accompanies the Bus Interface tab is a graphical representation of the hardware

platform interconnects.

126

Figure 11.2: System Assembly View – Bus Interface tab and Connectivity Panel

 A vertical line represents a bus, and a horizontal line represents a bus

interface to an IP core.

 If a compatible connection can be made, a connector is displayed at the

intersection between the bus and IP core bus interface.

 The lines and connectors are color-coded to show bus compatibility.

 Differently shaped connection symbols indicate whether IP blocks are bus

masters or bus slaves.

 A hollow connector represents a connection that you can make, and a filled

connector represents a connection made. To create or disable a connection,

the user can simply click the connector symbol.

127

11.3 Creating and Importing the Peripheral

The next step after having established a basic working design is to import the IDWT

VHDL design in order to create a new Intellectual Property (IP) core and import it as

a slave peripheral in the embedded system. EDK offers the Create and Import

Peripheral (CIP) Wizard, which simplifies the procedure by automating many critical

steps, like the creation of a slave interface for the IP, proper updating of the MHS and

MPD file, etc.

In order to follow the steps bellow it is assumed that the .vhd source files for the

IDWT core are available to the user.

Create the IDWT Peripheral-Steps

3.1 Select from the menu "Hardware->Create or Import Peripheral". Click "Next".

3.2 Select "Create templates for a new peripheral" and click "Next".

128

3.3 We must now decide where to place the files for the peripheral. They can be

placed within this project, or they can be made accessible to other projects. Select "To

an XPS project". Click "Next".

3.4 On the "Name and Version" page, type "idwt" for the peripheral name. Click

"Next". Notice the logic logical library that is created: idwt_v1_00_a. All HDL files,

both user created and tool generated, must be compiled into this logical library name

above.

3.5 On the "Bus Interface" page, select "Processor Local Bus" (PLB) and click "Next".

129

130

3.6 On the "IPIF Services" page, we can make the Peripheral Wizard generate our

VHDL template to include different features. We need a software reset to give us the

ability to reset the IDWT peripheral in the software application, software accessible

registers for debugging and user memory space to store the data that our peripheral

needs. Select ‚Software Reset‛, ‚User logic software register‛, and ‚User logic

memory space‛, un-tick everything else and click "Next".

3.7 On the "Slave Interface" page, click "Next".

3.8 On the ‚User S/W Register‛ page, select 2 software accessible registers to be

instantiated with our design.

131

3.9 On the ‚User Memory Space‛ select 1 ‚User address range‛. Click ‚Next‛.

3.10 On the "IP Interconnect" page we can customize our connection to the PLB but

we will leave everything as is for simplicity. Click "Next".

3.11 On the "Peripheral Simulation Support" page, we can specify if we want the

wizard to create a simulation platform for our peripheral. Click "Next" without

ticking the option to generate.

3.12 After the "Peripheral Implementation Support" page, the wizard will generate all

the template files for us. Tick "Generate ISE and XST project files" and "Generate

template driver files". Click "Next".

3.13 Click "Finish". Now our templates are created.

132

Create the IDWT core in VHDL - Steps

3.14 In this step we have to import our VHDL design in XPS. The source code files

are assumed to be available already to the user. The files are: ‚IDWT_pkg.vhd‛,

‚IDWT_top.vhd‛, ‚Controller1D.vhd‛, ‚Controller2D.vhd‛, ‚PU.vhd‛ and

‚Clock_buf.vhd‛.

3.15 The files should then be placed in "pcores\idwt_v1_00_a\hdl\vhdl" folder,

which has been already created by XPS into our project directory.

Modifying the .PAO file – Steps

The .pao file contains a list of all the source files that compose our peripheral. We use

this list when we run the Peripheral Wizard in Import mode. Now that we have

added source files to the project, we must include it in the .pao file.

3.16 In XPS select "File->Open" and browse to the "pcores\idwt_v1_00_a\data"

folder. Select the file "idwt_v2_1_0.pao" and click "Open".

3.17 At the bottom of this file you will see these two lines:

lib idwt_v1_00_a user_logic vhdl

lib idwt_v1_00_a idwt vhdl

3.18 Now, in a similar format, we have to import the files that we created before. We

have to insert the lines that ‚point‛ to our files just above these two lines. After that,

the .pao file should look like the picture in the following page. Notice that the .pao

file lists the source files in hierarchical order. Thus if we have a VHDL design

consisting of multiple files (like the IDWT core), it is important to know the

hierarchical order of the components. The components at the top of the chain are

listed at the bottom of the file.

3.19 Save the .pao file.

133

Modifying the Peripheral – Steps

Now we will add code in our peripheral template to instantiate an IDWT core and

we will connect it to the system bus (PLB).

3.20 Select from the menu "File->Open" and look in the project folder.

3.21 Open the folders: "pcores\idwt_v1_00_a\hdl\vhdl". This folder contains two

source files that describe our peripheral "my_multiplier.vhd" and "user_logic.vhd".

The first file is the main part of the peripheral and it implements the interface to the

PLB. The second file is where we place our custom logic to make the peripheral do

what we need it to do. This part is instantiated by the first file.

3.22 Open the file "user_logic.vhd". We will need to modify this source code to

instantiate the IDWT and connect it to the user address memory and PLB slave bus

protocol signals. It is supposed that the ‚user_logic.vhd‛ is already available to the

user. Paste the contents over the original code in the file we opened. Then save the

file.

134

Importing the Peripheral – Steps

Now we will use the Peripheral Wizard in Import mode.

3.23 Select from the menu "Hardware->Create or Import Peripheral" and click "Next".

3.24 Select "Import existing peripheral" and click "Next".

3.25 Select "To an XPS project", ensure that the folder chosen is the project folder, and

click "Next".

3.26 For the name of the peripheral, type "idwt". Tick "Use version" and select the

same version number that we originally created. Click "Next". It will ask if we are

willing to overwrite the existing peripheral and we should answer "Yes".

3.27 Now we are asked about the files that make up our peripheral. Tick "HDL

source files" and click "Next".

3.28 Select "Use existing Peripheral Analysis Order file (*.pao)" and click "Browse".

From the project folder, go to "pcores\idwt_v1_00_a\data" and select the

"idwt_v2_1_0.pao" file. Click "Next".

135

3.29 On the HDL analysis information page, if you scroll down, you will see the .vhd

source files we added along with the 2 generated files (‚idwt.vhd‛ and

‚user_logic.vhd‛) listed in the bottom. Click "Next". The wizard will mention if any

errors are found in the design.

3.30 On the Bus Interfaces page, tick "PLB Slave" and click "Next".

3.31 On the SPLB: Port page, click "Next".

3.32 On the "Parameter Attributes" page, in the register space field, select

‚C_HIGHADDR‛ for ‚Parameter determine high address‛ and click "Next".

3.32 On the "Port Attributes" page, click "Next".

3.33 Click "Finish".

The multiplier peripheral should now be accessible through the "IP Catalog->Project

Local pcores" in the XPS interface.

136

137

Create an Instance of the Peripheral – Steps

Follow these steps to create an instance of the peripheral in the project.

3.35 From the "IP Catalog" find the "idwt" IP core in the "Project Repository" group.

Right click on the core and select "Add IP".

3.36 From the "System Assembly View" using the "Bus Interface" filter, connect the

"idwt_0" to the PLB bus.

138

3.37 Click on the "Addresses" filter. Change the "Size" for "idwt_0" to 64K for

BASEADDR and to 512K for C_MEM0_BASEADDR. These sizes refer to register and

memory space respectively. Also change DDR2_SDRAM size to 32M. Then click

"Generate Addresses".

Now we have an instance of the IDWT peripheral in our project, so our hardware

design is complete for now. In Figure 11.3 the block diagram of the hardware design

is illustrated. It can be observed by clicking on the ‚Block Diagram‛ tab of the XPS

GUI and it shows all the bus connections, bus types, peripherals and their instance

names, memories, clock generators and the processor of our design. Notice that the

IDWT peripheral is hooked up to the PLB along with the UART, the SRAM, etc.

Finally, notice the LMB that connects the on-chip Block Ram to the Microblaze soft

processor and the distinction between instruction and data ports (Harvard

architecture).

In the next section we will proceed with the software development part of the co-

design process. During the procedure we might need to apply changes to the

hardware design. Therefore the above hardware design is not final. However, any

changes that will apply would be better presented in the next steps to demonstrate

the close relation and the constraints between SW and HW and how software

development decisions affect hardware design and vice versa.

139

Figure 11.3: Block Diagram

140

SOFTWARE DEVELOPMENT

For the software development stage of the design process we can follow two ways:

continue using XPS or use SDK instead. SDK is suggested for building big software

projects from scratch. However, we will proceed by using XPS, as it is assumed that

the software design, which is a modification of the JasPer software, is already

available to the user. This will also provide a wider understanding of the XPS and

XPS GUI functionalities and capabilities.

11.4 Creating a new software project

In this section we will create a new software project and import it as a new

application using XPS.

Steps

4.1 In the ‚Applications‛ tab double click on ‚Add Software Application Project‛.

4.2 In the ‚Project name‛ field type ‚jpeg2000_sw‛ and click ‚OK‛. A project named

‚jpeg2000_sw‛ is immediately added in the ‚Applications‛ list.

4.3 Browse into the project’s directory (for this case ‚C:\ML506\JPEG2000‛) and

create a file named ‚jpeg2000_sw‛. In this file, XPS will store the linker script file and

the ELF file. Open the new file and copy the ‚src‛ file that is included in the modified

software directory.

141

4.4 From the "Applications" tab, right-click on "Sources" within the "Project:

jpeg2000_sw" tree. Click ‚Add Existing Files...‛ and add all the .c source files that are

included in the modified JasPer software directory.

4.5 Again, from the "Applications" tab, right-click on "Headers" within the "Project:

jpeg2000_sw" tree. Click ‚Add Existing Files...‛ and add all the .h header files that

are included in the modified JasPer software directory.

Setting the library path - Steps

4.6 Right-click on "Project: jpeg2000_sw" and click ‚Set Compiler Options‛.

4.7 In the ‚Paths and Options‛ tab, click ‚Browse‛ for Library search paths and open

the folder named ‚jasper‛ (C:/ML506/JPEG2000/jpeg2000_sw/src/jasper, for this

project). This way we set the search path for our library.

142

143

Setting and configuring the Xilkernel OS – Steps

Xilkernel, as explained in the previous chapter, is a highly customizable and

lightweight kernel that also allows for (). Follow these steps to set and configure the

kernel.

4.8 From the XPS software, select ‚Software->Software Platform Settings‛.

4.9 From the ‚Software Platform Settings‛ window, select ‚Software Platform‛.

Under ‚OS & Library Settings‛, change ‚standalone‛ to ‚xilkernel‛.

4.10 Again from the ‚Software Platform Settings‛ window, select ‚OS and Lib

Configuration‛. Under ‚Configuration for OS‛, expand ‚xilkernel‛, expand

‚sys_tmr_spec‛ and for ‚sys_tmr_dev‛ select ‚xps_timer_0‛.

144

4.11 At the bottom of the same sub-window, spot ‚stdin‛ and ‚stdout‛ selections.

Select ‚mdm_0‛ for both of them. This will redirect the standard input and output to

the Xilinx Microprocessor Debugger, which we will use to test our design.

4.12 Click ‚OK‛. Notice that the MSS file has changed and has been saved by XPS.

Generating the linker script – Steps

The next steps will help us create a custom linker script that will map different

sections of the ELF executable file (.text, .heap, .stack, etc.) to memory. Our software

project is generally big (the ELF file has a size of 1.2 MB), so it will be downloaded in

the DDR2_SDRAM and be executed from there. The on-chip BRAM is initialized

with a boot-loader application (along with boot and vector sections), that branches to

the starting address of the DDR2_SDRAM where our main application will be

downloaded. It is worth noticing that we will use large sized heap and stack sections,

because the software uses memory allocation functions extensively, and manipulates

large data arrays.

4.8 Right-click on "Project: jpeg2000_sw" and click ‚Generate Linker Script‛.

145

4.9 In ‚Sections View‛, for each section double click on the ‚Memory‛ fields and

select ‚DDR2_SDRAM_C_MPMC_BASEADDR‛. This will load the sections to the

SDRAM when we download the ELF file on the board.

4.10 In the ‚Heap and Stack View‛, both for heap and stack, double click on the

‚Size‛ field and change it to 0x40000. Double-click on the ‚Memory‛ fields and select

‚DDR2_SDRAM_C_MPMC_BASEADDR‛.

146

Initialize BRAMs and download bitstream – Steps

4.11 From the ‚Applications‛ tab, right click on ‚Default: microblaze_0_bootloop‛

and select ‚Mark to Initialize BRAMs‛.

4.12 Turn on the ML506 board.

4.13 From the XPS software, select "Device Configuration->Download Bitstream".

11.5 Testing the design

Testing the application by using XMD – Steps

Follow these steps to test the application using Xilinx Microprocessor Debugger. The

system decompresses an input image that is in JPEG2000 format (‚lena256.jp2‛) and

produces an output log file via the serial port that can then be opened with an image

viewer. The image viewer (for example Irfanview) will automatically convert the file

to PNM format (‚lena256.pnm‛). It is assumed that the input image (and any other

images that we may want to use as a test-case) are located into the

C:/ML506/JPEG2000/jpeg2000_sw folder.

147

5.1 From the XPS software, select ‚Debug->Launch XMD‛.

5.2 The XMD console opens and the connection is set, and the user can view the

configuration of the Microblaze soft processor. In the console type the directory of

the software project. For this project: ‚cd C:/ML506/JPEG2000/jpeg2000_sw‛.

5.3 Now use the ‚dow‛ command to download the software program on the

DDR2_SDRAM. Type ‚dow executable.elf‛. If you have created the ELF file with a

different name then use the correct ELF name for this command. After the program

is downloaded you can view the way that the different sections of the program have

been mapped on the memory.

148

5.4 Open a hyperterminal (i.e TeraTerm or Hyperterminal) in order to establish a

connection from the host PC to the FPGA device via the serial port. For this project

the hyperterminal settings are:

5.5 Now use the ‚xdownload‛ command in order to download the input image in

SRAM. Type ‚xdownload 0 -data lena256.jp2 0x8A300000‛. ‚0x8A300000‛ is the base

address of the SRAM for this project (it can be viewed in the System Assembly

window and in the xparameters.h header file).

149

5.6 Prepare the hyperterminal to receive a file or create a log file.

5.7 Now the program is ready to run and send the output file via the RS232 to the

host PC. In the XMD console type ‚run‛. The time needed to complete the transfer

depends on the baud rate that has been set for the RS232 UART.

5.8 After the output file is received, open it with an image viewer software, such as

Irfanview. De-compression is complete!

150

APPENDIX

In this section we present some of the issues and bugs that had to be dealt with

during the implementation of JPEG2000. Some hints and tips are also given,

regarding decisions that had to be taken during the design of the project.

Issue #1 - XPS vs. SDK for software development

Prior to version 11.x, SDK had always been dependent on XPS. In 12.x XPS continues

to offer a basic software development IDE. However, Xilinx has focused on SDK for

s/w development and XPS for h/w development, therefore s/w development on XPS

is deprecated in latest versions. The flow should be: do h/w development in XPS,

export the hardware specification, and move on to SDK for software development.

Unfortunately this is not made ‚clear‛ by the tools. One example is that SDK doesn’t

make clear that it has a separate copy of the MSS file. Therefore, building some basic

software in XPS and exporting the design to SDK does not mean that changes in XPS

reflect changes in SDK. For the purposes of this thesis, using XPS to build an already

developed software application was enough. However, when it comes to building

big software projects from scratch SDK should be the only tool used, as it offers more

software-oriented capabilities (for example, GNU debugger is no longer supported in

XPS, but only in SDK).

Issue #2 – Memory allocation issues in Microblaze

MicroBlaze currently does not have a memory-management unit (MMU) in

hardware or any memory management support in the basic libraries, as a hardware

MMU would utilize a great deal more hardware resources. Malloc already works

properly in that it allocates memory while memory is available and returns NULL if

all memory is used. Free is very system-specific and is only an indication to the

memory management subsystems that a given set of memory is no longer needed in

the given program. It is up to the system to implement the actual functionality of

free. Often, a memory management subsystem does not free memory right away,

but rather only performs a freed memory sweep when malloc indicates that the

available memory has fallen below a predetermined lower boundary. Only then will

the memory manager actually de-allocate all memory that was pre-marked for

freeing by calls to free. For code size reasons, free simply does nothing for now. The

151

only safe way to write code that works on any system is to make sure that what

malloc returns is greater than NULL. For the purposes of this thesis these memory

allocation issues, taking into account the extensive use of malloc() functions in the

JasPer software implementation, were simply solved by greatly increasing program

heap size. However, when building a small project from scratch, it is wise to allocate

memory only once and reuse this allocated memory as often as possible.

Issue #3 – The “xil_io_out32” and ”xil_io_in32” bugs

If a peripheral is created by using the CIP Wizard in XPS and ‚user logic software

registers‛ are enabled, then the ‚undefined reference to xil_io_out32” and

‚undefined reference to xil_io_in32” errors occur when the automatically created

drivers compile.

This is a bug that can be solved by manually changing the function call from

xil_io_out32 to XIo_Out32 and from xil_io_in32 to XIo_In32. These changes have to

be done in the ‚</microblaze_0/include/your_peripheral_name.h‛ header file. This

problem has already been fixed in ISE 12.4 software.

Issue #4 – Xilkernel OS and sleep() functions

For the purposes of this thesis, the Xilkernel OS was used, as it provided

functionalities that were critical in order to estimate the speed-up of the JPEG2000

decoder after the co-design and implementation on Virtex-5 SX. More specifically,

Xilkernel provides functions that can count the number of clock cycles needed in

order for a function or number of functions to finish their execution. However,

during the software development phase it was also decided to implement the

XMODEM file transfer protocol that would secure an error resilient transmission of

the test images via the UART RS232 serial port. This could not be accomplished for

this software design, because the sleep functions that are essential for the XMODEM

protocol could not function properly, unless they were called within threads. The

JasPer software could not allow such changes. The commenting on this issue is that if

the software application or project needs sleep functions in order to work properly,

then Xilkernel could be avoided by running uLinux on Microblaze instead.

152

Bibliography

[1] JPEG200 Final Committee Draft Version 1.0, ISO/IEC JTC 1/SC 29 WG 1 (ITU-T

SG8).

*2+ Athanassios Skodras, Charilaos Christopoulos, and Touradj Ebrahimi, ‚The

JPEG2000 Still Image Coding System: An overview‛, IEEE Transactions on

Consumer Electronics, Vol. 46, No. 4, pp. 1103-1127, November 2000

*3+ M.D. Adams and F. Kossentini, ‚JasPer: A software-based JPEG-2000 Codec

implementation‛, in Proc. IEEE Int. Conf. Image Processing, Vancouver, Canada, Sept.

2000, vol. II, pp. 53-56.

[4] M.D. Adams and F. Kossentini, ‚Reversible integer-to-integer wavelet transforms

for image compression: Performance evaluation and analysis‛, IEEE Trans. Image

Processing, vol. 9, pp. 1010-1024, June 2000.

[5] M.D. Adams, ‚Reversible wavelet transforms and their application to embedded

image compression,‛ M.S. thesis, Univ. Victoria, Canada, 1998. Available

http://www.ece.ubc.ca/mdadams/.

*6+ Michael Yaw Appiah, ‚An Efficient FPGA Implementation of High-Speed JPEG-

2000 Encoder and Decoder‛, M.Sc.Eng thesis, Aalborg University, Aalborg, 2006.

*7+ Roger Woods, John McAllister, Gaye Lightboy, and Ying Yi, ‚FPGA-based

Implementation of Signal Processing Systems‛, ISBN: 978-0-470-03009-7.

[8] T. Acharya and P. S. Tsai. JPEG2000 Standard for Image Compression: Concepts,

Algorithms and VLSI Architectures. John Wiley & Sons, Hoboken, New Jersey, 2004.

*9+ S. Mallat, ‚A theory for multiresolution signal decomposition: The Wavelet

representation," IEEE Trans. Pattern Analysis And Machine Intelligence, Vol. 11, no.

7, pp.674-693, July 1989.

[10] W. Sweldens, \The lifting scheme: A custom-design construction of

biorthogonal wavelets," Applied and Computational Harmonic Analysis, Vol. 3, no.

15, pp.186-200, 1996.

[11] M.S. Bhuyan, Md. Azrul Hasni Madesa, Masuri Othman, and Shabiul Islam,

‚FPGA realization of Inverse Discrete Wavelet Transform‛, IEICE Electronics

Express, Vol.6, No.6, 277-282.

[12] V. Bhaskaran and K. Konstantinides, Image and Video Compression Standards:

Algorithms and Applications, 2nd ed. Norwell, MA: Kluwer, 1997.

http://www.ece.ubc.ca/mdadams/

153

[13] M. Boliek, J. Scott Houchin, and G. Wu, ‚JPEG 2000 next generation image

compression system features and syntax,‛ in Proc. IEEE Int. Conf. Image Processing,

Vancouver, Canada, Sept. 2000, vol. II, pp. 45-48.

[14] Xilinx, EDK Concepts, Tools, and Techniques: A Hands-On Guide to Effective

Embedded System Design.

[15] Xilinx, Embedded Systems Tool Reference Manual, EDK 12.1.

[16] Xilinx, Microblaze Processor Reference Guide.

[17] http://www.xilinx.com/

[18] http://www.ece.uvic.ca/~mdadams/jasper/

[19] http://www.kakadusoftware.com/

[20] http://www.fpgadeveloper.com/

http://www.xilinx.com/
http://www.ece.uvic.ca/~mdadams/jasper/

