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Me epifÔlaxh pantìc dikai¸matoc.

ApagoreÔetai h antigraf , apoj keush kai dianom  thc paroÔsac ergasÐac, ex olok-

l rou   tm matoc aut c, gia emporikì skopì. Epitrèpetai h anatÔpwsh, apoj keush

kai dianom  gia skopì mh kerdoskopikì, ekpaideutik c   ereunhtik c fÔshc, upì thn

proôpìjesh na anafèretai h phg  proèleushc kai na diathreÐtai to parìn m numa.

Erwt mata pou aforoÔn th qr sh thc ergasÐac gia kerdoskopikì skopì prèpei na

apeujÔnontai proc ton suggrafèa.

Oi apìyeic kai ta sumper�smata pou perièqontai se autì to èggrafo ekfr�zoun ton

suggrafèa kai den prèpei na ermhneujeÐ ìti antiproswpeÔoun tic epÐshmec jèseic tou

EjnikoÔ Metsìbiou PoluteqneÐou.





EuqaristÐec

Oloklhr¸nontac aut n thn prosp�jia ja  jela na euqarist sw thn trimel  mou

epitrop  pou apoteleÐtai apì touc k. Z�qo, kajhght  E.M.P., k. Pagourtz , epÐk-

ouro kajhght  E.M.P., kai k. Fwt�kh, lèktora E.M.P. gia thn st rixh touc tìso

se akadhmaikì ìso kai se proswpikì epÐpedo.

IdiaÐtera, ja  jela na euqarist sw ton epilèponta k. Fwt�kh, gia thn sunergasÐa

mac ìlo to di�sthma, thn empistosÔnh pou mou èdeixe, thn swst  kajod ghsh kaj¸c

kai ton trìpo pou me enj�rrune kai me energopoÐhse sthn prosp�jeia mou aut .

Jerm�, ja  jela na euqarist sw kai ìla ta mèlh tou ErgasthrÐou Logik c kai

Epist mhc Upologist¸n gia thn bo jeia pou prìjuma mou pareÐqan kai thn antallag 

apìyewn, problhmatism¸n kai empeiri¸n.

Tèloc, èna meg�lo euqarist¸ ofeÐlw sthn oikogèneia mou gia thn jerm  kai diark 

upost rix  touc.
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PerÐlhyh

Se aut n thn diplwmatik  ergasÐa, exet�zoume to prìblhma tou SqediasmoÔ Mhqanis-

m¸n sto plaÐsio thc koinwnik c epilog c. Lìgw tou basikoÔ jewr matoc twn Gibbard-

Satterthwaite, mìno tetrimmènoi mhqanismoÐ eÐnai filal jeic sto genikì montèlo, opìte

exereunoÔme pio perioriorismènouc q¸rouc ìpwc oi single-peaked kai oi metrikoÐ q¸roi.

Exet�zoume to prìblhma thc topojesÐac egkatast�sewn (facility location) ¸c paiqnÐ-

di, ìpou èna pl joc apì egkatast�seic ja topojethjoÔn se èna metrikì q¸ro me b�sh

tic topojesÐec pou anakoin¸jhkan apì strathgikoÔc paÐqtec. 'Enac mhqanismìc an-

tistoiqeÐ tic jèseic twn paiqt¸n se èna sÔnolo apì jèseic gia tic egkatast�seic.

K�je paÐqthc stoqeÔei na mei¸sei to kìstoc sÔndeshc tou, dhlad  thn apìstash tou

apì thn kontinìterh egkat�stash sthn pragmatik  tou jèsh. Endiaferìmaste gia

mhqanismoÔc pou eÐnai filal jeic dhlad  egguoÔntai ìti kanènac paÐqthc den mporeÐ

na ofelhjeÐ dhl¸nontac diaforetik  topojesÐa apì thn pragmatik  tou, den qrhsi-

mopoioÔn qr mata kai prosseggÐzoun to bèltisto koinwnikì kìstoc. Oi mhqanis-

moÐ mporoÔn na eÐnai eÐte nteterministikoÐ eÐte pijanotikoÐ. Sth diplwmatik  aut ,

parousi�zoume di�fora �nw kai k�tw ìria gia di�forec peript¸seic: mÐa egkat�s-

tash, stajerì pl joc egkatast�sewn kai metablhtì pl joc egkatast�sewn me sta-

jerì kìstoc ana egkat�stash

Lèxeic Kleidi�

Sqediasmìc Mhqanism¸n, Koinwnik  Epilog , Facility Location
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Abstract

In this thesis, we consider the problem of Mechanism Design without Money in the

Social Choice setting. Due to the Gibbard-Satterthwaite main impossibility result,

only trivial mechanisms are strategyproof for the general setting, so we explore more

restricted domains like single-peaked preferences and metric spaces. We study the

problem as a facility location game, where a number of facilities are to be placed in

a metric space based on locations reported by strategic agents. A mechanism maps

the agents’ locations to a set of facilities. Every agent seeks to minimize her connec-

tion cost, namely the distance of her true location to the nearest facility, and may

misreport her location. We are interested in mechanisms that are strategyproof, i.e.,

ensure that no agent can benefit from misreporting her location, do not resort to

monetary transfers, and approximate the optimal social cost. The mechanisms can

be either deterministic or randomized. We provide upper bounds along with corre-

sponding lower bounds for different cases: single facility, fixed number of facilities

and facilities with uniform opening cost.

Keywords

Mechanism design without money, Social choice, Facility Location
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Chapter 1

Introduction

The purpose of this chapter is to make a brief introduction in the concepts of Game

Theory and Mechanism Design. We will focus on the case of ”Mechanism Design

without money” where there are no monetary transfers and we will present several

important results and related work on the field.

1.1 Motivation

Every day, people are called to make decisions in their lives. Those decisions are

usually not personal and require two or more people to interact in order to reach

an agreement. This is trivial when their interests are similar and a unanimous

decision can be reached. But most of the time, their interests are conflicting and a

consensus may be hard or impossible to achieve. Such situations are the subject of

Game Theory, which provides the mathematical tools to predict the behavior of the

participants under the specified conditions. On the other hand, Mechanism Design

aims to create procedures through which a decision with certain desirable properties

can be achieved.

9
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1.2 Game Theory

Game theory is a branch of mathematics that studies strategic situations where

players choose different actions in an attempt to maximize their returns. Due to its

very general nature it is used in many different fields in an attempt to model the

player behavior such as social sciences (most notably in economics, management,

operations research, political science, and social psychology), biology (particularly

evolutionary biology and ecology) as well as in formal sciences (logic and computer

science).

The strategic situations to be studied are modeled as games where multiple players

interact. The games studied in game theory are well-defined mathematical objects.

A game consists of a set N of n players (agents), each of whom has a set of possible

actions (strategies) Si available to him. For every possible combination of player

strategies a certain payoff per player is specified by a function hi :
∏

i∈N Si → IR.

The games we will examine are simultaneous, in the sense that every agent chooses

a strategy at the same time and a certain outcome depending on all the chosen

strategies is achieved.

Game theory tries to predict the outcome of such a game when agents choose their

strategies rationally aiming to maximize their own payoffs. These predictions are

called ”solutions” of the game. Out of the many different solution concepts, the

most commonly used are the Nash Equilibrium and the Equilibrium in Dominant

Strategies.

1.2.1 Nash Equilibrium

Nash equilibrium is a solution concept of a game involving two or more players which

assigns a certain strategy to every player such that every player’s best choice is to

play his equilibrium strategy assuming that he knows the equilibrium strategies of

the others.

We say that a vector of strategies s∗ ∈
∏

i∈N Si is a Nash equilibrium if no agent
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can benefit unilaterally changing his or her strategy. Formally, the following must

hold:

∀i, si ∈ Si, si 6= s∗i : hi(s
∗
i , s
∗
−i) ≥ hi(si, s

∗
−i).

A game can have either a pure-strategy or a mixed Nash Equilibrium, (in the latter

case each player’s strategies are a probability distribution over his pure strategies).

Nash proved that if we allow mixed strategies, then every game with a finite number

of players in which each player can choose from finitely many pure strategies has at

least one Nash equilibrium. This is not the case, however, for pure Nash Equilibrium

where it may not exist for several games.

To better understand these concepts consider the game of chicken. The game of

chicken models two drivers, both headed for a single lane bridge from opposite

directions. The first to swerve away yields the bridge to the other. If neither player

swerves, the result is a costly deadlock in the middle of the bridge, or a potentially

fatal head-on collision. It is presumed that the best thing for each driver is to stay

straight while the other swerves (since the other is the ”chicken” while a crash is

avoided). Additionally, a crash is presumed to be the worst outcome for both players.

This yields a situation where each player, in attempting to secure his best outcome,

risks the worst. The following matrix shows the different outcomes depending on

the drivers’ actions.

Swerve Straight

Swerve (Tie,Tie) (Lose,Win)

Straight (Win,Lose) (Crash,Crash)

Assuming, that Win = 1, Lose = -1, Tie = 0, Crash = -10, we get the following

payoff matrix.

Swerve Straight

Swerve (0,0) (-1,1)

Straight (1,-1) (-10,-10)

In this example we can see that the strategy pairs (Swerve, Straight) and (Straight,
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Swerve) are Nash equilibria since no player can benefit by changing his strategy.

The strategy pairs (Swerve, Swerve) or (Straight, Straight) on the other hand are

unstable since any player would be better off by changing his strategy.

In the game of Chicken there exist two Pure Nash Equilibria. We now consider a

game where no Pure Nash Equilibria Exist. One such game is Rock Paper Scissors.

In this game, two players simultaneously choose one gesture out of either Rock,

Paper or Scissors. Then the winner is determined under the following rules:

• Rock defeats Scissors.

• Scissors defeats Paper.

• Paper defeats Rock.

If both players choose the same gesture, the game is tied and the players throw

again. The corresponding payoff matrix for the game is the following.

Rock Paper Scissors

Rock (0,0) (-1,1) (1,-1)

Paper (1,-1) (0,0) (-1,1)

Scissors (-1,1) (1,-1) (0,0)

It is obvious that this game has no Pure Nash Equilibrium because if a player knew

what the other would play he would want to alter his strategy. However, a mixed

Nash Equilibrium exists as always and that is for both players to choose a gesture

uniformly at random. Then their expected payoff would be 0 and no player can

improve by changing his strategy.

1.2.2 Dominant Strategies Equilibrium

One stronger solution concept than Nash Equilibrium is the Dominant Strategies

Equilibrium. An agent’s strategy is said to be dominant when that strategy is better

than any another strategy for that player, no matter how his opponents may play.

Formally, for any player i, a strategy si is (weakly) dominant if:
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∀s−i ∈
∏

j∈N\{i}

Sj, s
′
i ∈ Si : hi(si, s−i) ≥ hi(s

′
i, s−i)

A vector of strategies s∗ ∈
∏

i∈N Si is a Dominant Strategies Equilibrium if s∗i is a

dominant strategy for every player i.

As an example of a game where a Dominant Strategy Equilibrium exists consider

the situation where an amount of money X is to be shared among some players

and each player is asked whether he wants to participate or not. For 2 players and

X = 10 the payoff matrix becomes:

Yes No

Yes (5,5) (10,0)

No (0,10) (0,0)

In this game, it becomes clear that no matter what the other player(s) would an-

swer, one’s best strategy is to say ’Yes’. This notion captures most of the agent’s

rationality and predicts the outcome since it is clear that all rational players would

behave this way.

In the previous example it seemed obvious that saying ’Yes’ was the rational thing

to do. In several cases however, this is not always so clear, with the most common

example being the prisoner’s dilemma.

In the prisoner’s dilemma, two suspects are arrested by the police. The police doesn’t

have enough evidence for their conviction, so they begin to interrogate the suspects

separately. Each of them is offered a deal. If he confesses and testifies against the

other while the other remains silent, he goes free while the other will serve 10 years

in prison. If they both confess, they will both serve 9 years while if they both remain

silent they will only serve one year in prison. It may seem like the best choice is for

them both to stay silent. But this is not what happens if the players are rational. If

we look at their payoff matrix, we see that it is a dominant strategy for every player

to confess since no matter what the other player would do it is in the player’s best

interest to confess.
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Stay Silent Confess

Stay Silent (-1,-1) (-10,0)

Confess (0,-10) (-9,-9)

From this example it is clear that even when a dominant strategy equilibrium exists

it doesn’t always guarantee the best possible outcome for everyone. The notion of

”the best outcome for everyone” is captured by the concept of Pareto-optimality,

that we will define later on.

1.3 Mechanism Design

After establishing several tools to predict the outcome of strategic situations, we

will use those to create procedures through which a decision with certain desirable

properties can be achieved. This is the area of Mechanism Design.

Mechanism design is the art of designing the rules of a game to achieve a specific

outcome. This is done by setting up a structure in which each player has an incentive

to behave as the designer intends. The game is then said to implement the desired

outcome. The strength of such a result depends on the solution concept used in the

game. Throughout this thesis, we will focus on the strongest form of equilibrium in

dominated strategies.

In the social choice setting, agents report their preferences in a mechanism and the

mechanism outputs a single joint decision. The goal of the mechanism designer

is to design a process through which a fair decision can be reached such that the

participants are satisfied.

Formally, there is a set A of different alternatives and a set of n voters (the agents)

N . Each agent i has a linear order �i over the set A which captures his preferences

called his preference profile. The notation a �i b for two alternatives a, b ∈ A means

that voter i prefers alternative a to alternative b. Let us denote by L the set of

linear orders on A. Then a function f : Ln → A that maps the agents’ preferences

to a single alternative is called social choice function. A mechanism is a social
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choice function that aggregates the agent preferences into a single joint decision to

be implemented.

1.3.1 Desirable Properties and Definitions

In order to be able to reach meaningful decisions, the social choice function must

satisfy certain desirable properties.

Definition 1.3.1. A social choice function f is onto if given the appropriate prefer-

ence profiles any decision out of the set of possible alternatives can be reached. That

is, ∀a ∈ A,∃x ∈ Ln such that f(x) = a.

Definition 1.3.2. A social choice function f is unanimous if when all player prefer

a certain outcome more than anything else, then that outcome must be the alternative

chosen by the mechanism. That is, if ∃a ∈ A such that ∀b ∈ A and i ∈ N , a �i b

then f(�1, . . . ,�n) = a.

Definition 1.3.3. A social choice function f is Pareto optimal if no other alterna-

tive is more preferred by every agent than the alternative chosen by the mechanism.

That is, if f(�1, . . . ,�n) = a, then @b ∈ A such that b �i a, ∀i ∈ N .

The onto condition is weaker than the unanimous condition which in turn is weaker

than Pareto optimality. Those properties require that the mechanism is efficient in

the sense that it computes the most desirable outcome for all the agents. These are

desirable properties since we want to ensure that agents will get the best possible

outcome and won’t have to face situations like the prisoner’s dilemma.

However another property is even more important than the properties above. It be-

comes clear that a social function should be invulnerable to strategic manipulations

if our goal is to be fair to the agents. This means that it should be a (possibly weakly)

dominant strategy for every agent to report his true preferences and he should never

benefit by misreporting them. This notion is captured by the requirement that the

mechanism (the social choice function) is incentive compatible.

Definition 1.3.4. A social choice function f can be strategically manipulated by

agent i if there exist profiles �1, . . . ,�n,�′i∈ L such that b �i a where a = f(�1



16 Chapter 1. Introduction

, . . . ,�i, . . . ,�n) and b = f(�1, . . . ,�′i, . . . ,�n). That is agent i that prefers b to a

can ensure that b gets chosen by strategically misreporting his preferences to be �′i
rather than �i. A function f that cannot be strategically manipulated by any agent

is called incentive compatible or strategy-proof.

If we don’t even allow groups of agents to misreport their preferences so that they all

achieve a better outcome, we have the stronger requirement of group strategyproof-

ness

Definition 1.3.5. A social choice function f can be strategically manipulated by

a group of agents S if there exist profiles �1, . . . ,�n∈ L and �′i∈ L for all i ∈ S

such that b �i a for all i ∈ S where a = f(�n) and b = f(�′S,�−S). That is the

group of agents S that prefers b to a can ensure that b gets chosen by strategically

misreporting their preferences to be �′S rather than �S. A function f that cannot

be strategically manipulated by any group of agents is called group strategy-proof.

We note that an onto, group strategyproof mechanism must always be Pareto opti-

mal otherwise all agents would misreport their preferences such that a more prefer-

able alternative will be chosen. This is not always true however for (not group)

strategyproof rules.

If there are only two alternatives (|A| = 2), an obvious example of an incentive

compatible social choice function is the majority vote. This however is not incentive

compatible for more than two alternatives since for example for 3 alternatives an

agent that prefers the least preferred alternative among other agents can in some

cases achieve a better result by voting for his second most preferred alternative to

ensure that his least preferred alternative won’t be selected.

Another example of an incentive compatible function is the case of a dictator-

ship.

Definition 1.3.6. An agent i is a dictator in a social choice function f if for all

�1, . . . ,�n∈ L f(�1, . . . ,�n) = a where a �i b ∀b ∈ L, b 6= a. f is called a

dictatorship if some i is a dictator in it.

Obviously this mechanism despite being incentive compatible and pareto optimal
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is not preferable since it disregards the preferences of all the agents but the dicta-

tor.

Unfortunately, there is an impossibility result that states that when the number

of alternatives is larger than 2, only trivial social choice functions are incentive

compatible.

1.3.2 Main Impossibility Result - Gibbard-Satterthwaite

We now state the main impossibility result for incentive compatible social choice

functions.

Theorem 1.3.1 (Gibbard [1]-Satterthwaite [2]). Let f be an incentive compatible

social choice function onto A, where |A| ≥ 3, then f is a dictatorship.

The theorem states that every social choice function is either manipulable or a

dictatorship. The whole field of Mechanism Design tries to propose alternative

routes to escape the negative effects of this theorem. By slightly modifying the

model many interesting results can be obtained. There are several solution directions

that make it possible to circumvent the previous result. The most typical of them

include:

The addition of payments into the model. The main idea behind this concept is

that, by including money in the mechanism, agents that are not satisfied with the

social decision get somehow compensated and thus they have a limited incentive to

lie.

The restriction of the domain of preferences. By limiting the expressiveness of the

agents forcing them to choose a preference profile from a structured subset of the

set L of linear orders on the different alternatives A, the agents lose some of their

strength for manipulating the system. The chosen subset is usually not arbitrary

but comes natural based on the limitations of certain problems that don’t require

the full expressiveness of all different permutations of A.

The addition of randomness into the model. We relax the notion of the mechanism by
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allowing the output to be a probability distribution over different alternatives rather

than a single alternative. We distinguish between randomized and deterministic

mechanisms.

In this thesis we will investigate the last two directions that don’t require use of

money. This is motivated by a number of different important domains, e.g., political

elections, organ donations, and school admissions, where monetary transfers are

either unethical, strictly prohibited or hard to implement. The mechanism design

in these settings requires no payment and therefore is more challenging. In contrast

with the mechanisms with money where a socially optimal choice can be enforced

as a dominant equilibrium, in our case this is not always possible and a sacrifice in

social welfare is a necessity to derive a truthful bidding environment.



Chapter 2

1-facility location

2.1 Single-Peaked preferences

In this section, we examine problems of a simple and restricted domain where there

is a natural one-dimensional ordering of the alternatives and the preferences of the

agents are single peaked. This domain can be used to model political policies,

economic decisions, location problems, or any allocation problem where a single

point must be chosen in an interval. The key assumption we make is that agents’

preferences are assumed to have a single most preferred point in the interval and

that preferences are as one moves away from the peak. As an example consider the

following question: ”How many assignments should a course have per term? (0-10)”.

In this setting it is clear that an agent that believes that 7 assignments are most

appropriate, he would prefer 8 rather than 10 and 4 rather than 2.

Formally the allocation space (the set of alternatives) is the unit interval A = [0, 1].

Each agent i has a preference ordering �i (weak order) of the alternatives x ∈ A.

The preference relation �i is single-peaked if there exists a single point pi (the peak)

such that for all x ∈ A− {pi} and all λ ∈ [0, 1), λx+ (1− λ)pi �i pi. Let the class

of single peaked preferences be R. We restrict the mechanism in the set R.

Like before we are interested in designing a set of rules for determining the outcome

19
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such that no agent has an incentive to lie thus making it weakly dominant strategy

to misreport his preference. This is the notion of incentive compatibility we’ve

seen before. From now on we will use the words strategyproof or truthful for the

mechanisms that satisfy this property.

One property of truthful mechanisms for single peaked preferences is that the onto

requirement is equivalent to the unanimous requirement which is equivalent to the

requirement for Pareto optimality. So we have that:

Lemma 2.1.1. Suppose f is strategyproof. Then f is onto if and only if it is

unanimous if and only if it is Pareto-optimal.

Proof. We assume that f is onto since it is the weaker condition and we will show

that is satisfies the other two requirements.

Assuming that f violates the unanimous condition, consider an unanimous profile

� such that pi = x for all the peaks such that f(�) 6= x. Since f is onto there must

be a profile �′ such that f(�′) = x. By strategyproofness f(�1,�′2, ...,�′n) = x

otherwise agent 1 could manipulate f . Repeating the argument we get that f(�1

,�2,�′3, ...,�′n) = x, ..., f(�) = x which is a contradiction.

Now assume that Pareto-optimality is violated. That means that either (i) f(�) < pi

for all i ∈ N or (ii) f(�) > pi for all i ∈ N . Without loss of generality, assume that

(i) holds and let m = argminpi. For an agent i with pi > pm consider the outcome of

the mechanism when he switches his preference from �i to �′i such that p′i = pm and

f(�) �′i pi. By strategyproofness f(�′) ∈ [�, pi] otherwise agent i with preference

�′i could manipulate the mechanism by reporting �i. Similarly, f(�′) /∈ (�, pi],

otherwise agent i with preference �i could manipulate the mechanism by reporting

�′i. Therefore, f(�′) = f(�). By repeating the argument for every agent i with

peak pi > pm, we get a profile �′ such that f(�′) = f(�) with all p′i’s equal to pm.

This is a contradiction since f is onto and unanimous as we proved before. ut

We now state the characterization of truthful mechanisms for single peaked prefer-

ences given by Moulin [3], Barberà and Jackson [4], and Sprumont [5].
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Theorem 2.1.2. A rule f is strategy-proof, onto and anonymous if and only if there

exist y1, y2, . . . , yn−1 ∈ [0, 1] such that for all �∈ Rn,

f(�) = median(p1, p2, . . . , pn, y1, y2, . . . , yn−1)

To show why these mechanisms are strategyproof, let x be the outcome of the

mechanism. Then an agent i with pi = x wouldn’t have an incentive to misreport

his preferences. For the case pi 6= x, where without loss of generality we assume

pi < x, agent i by changing his preference profile �i to a profile �′i with peak at

p′i ≤ x cannot alter the outcome of the mechanism. If on the other hand he reports

�′i with peak at p′i > x as his preference profile, the outcome of the mechanism

would be less preferable to him as f(�1, ...,�′i, ..,�n) ≥ x.

In the previous theorem, the points ~y act as phantom agents placed by the mecha-

nism at fixed positions. Choosing the points appropriately (placing n−k points at 0

and k− 1 points at 1) we can simulate any k-th order statistic of the agent’s peaks.

However, there are other mechanisms we can create as well such as placing all yi’s

at 1/2. Then the mechanism outputs the position of the rightmost peak when all

agents have peaks pi < 1/2, the position of the leftmost peak when all agents have

peaks pi > 1/2 and 1/2 otherwise.

If we drop the requirement that f is anonymous the complete class of strategyproof

mechanisms is called Generalized Median Voter Scheme and is given by the following

theorem.

Theorem 2.1.3. A rule f is strategy-proof and onto if and only if there exist points

aS ∈ [0, 1], ∀S ⊆ N such that:

• S ⊆ T implies aS ≤ aT

• a∅ = 0 and aN = 1

• ∀ �∈ Rn, f(�) = maxS⊆N min{aS, pi : i ∈ S}

The generalized median is a richer class of mechanisms. The value aS for a specific

set S represents the power of the specific set of agents. For a specific instance each

subset is assigned the value min{aS, pi : i ∈ S} and the subset with the highest such
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value is chosen. By letting aS = 0 if i /∈ S and aS = 1 if i ∈ S for a specific agent i

we can simulate the dictatorship. By letting aS = 0 if |S| < n− k+ 1 and aS = 1 if

|S| ≥ n− k + 1 we can simulate any k-th order statistic since we allow only subsets

of specific size to be chosen.

2.2 Facility Location on the line

We note that all strategyproof mechanisms depend only on the peaks of each agent.

This allows us to use arbitrary preference profiles. From now on, we simplify the

mechanism to depend only on the reported peaks and we assume that agents rank

the alternatives according to their distance from the peak. We will use the terms of

the facility location problem which is a well known optimization problem.

The problem of Facility Location is somehow classical and has received consider-

able attention in Operations Research (see e.g. [6]), Algorithms, mostly from the

viewpoints of approximation (see e.g. [7, 8, 9]) and online algorithms (see e.g.

[10, 11, 12]), Social Choice (see e.g. [3, 4, 5, 13, 14, 15, 16]), and recently, Algorith-

mic Mechanism Design (see e.g. [17, 18, 19, 20, 21]).

2.2.1 Model

In our basic setting n agents are located on the [0,1] interval and the mechanism

must select the location of a public facility; the cost of an agent is its distance

to the facility. Each agent i has a location xi ∈ [0, 1]. We refer to the collection

~x = 〈x1, . . . , xn〉 as the location profile.

A (deterministic) mechanism in this simple setting is a function f : [0, 1]n → [0, 1],

that is, a function that maps a given location profile to a location of a facility. If

the facility is located at y, the cost of agent i is cost(xi, y) = |y − xi|.

Throughout this thesis we will declare by lt(~x), rt(~x),med(~x) for a location profile

~x, the leftmost location, the rightmost location and the median location respec-
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tively.

Since each agent wants to minimize his facility cost, the condition for strategyproof-

ness means that for all x ∈ [0, 1]n, for each agent i, and for all x′i ∈ [0, 1], cost(xi, f(~x)) ≤

cost(xi, f(x′i, ~x−i), where ~x−i = 〈x1, . . . , xi−1, xi+1, . . . , xn〉 is the vector of the loca-

tions of all other agents.

In this setting, it becomes clear that the outcome of the mechanism must be efficient

in terms of a certain objective. The most natural and commonly used objectives are

to minimize either the sum of the distances (social cost) or the maximum cost. We

will measure the efficiency according to the optimal solution for the optimization

problem without the condition for strategyproofness. We will try to minimize the

approximation ratio to the optimal cost. This idea of approximation fits in the

framework of approximate mechanism design without money, recently initiated by

Procaccia and Tennenholtz [17].

2.2.2 Social cost

Theorem 2.2.1. The mechanism that selects the median of the reported locations

is strategyproof and achieves approximation ratio of 1 for the social cost.

Proof. From the characterization we gave before for single peaked preferences, we

saw that each k-th order statistic is strategyproof, thus the median is strategyproof.

We now show that this is also optimal.

Assume that n is odd, n = 2k + 1. Any point that is to the left of the median has

higher social cost since it is further away from at least k + 1 locations and closer to

at most k locations, and the same holds for any point to the right of the median.

If n is even, n = 2k, and without loss of generality x1 ≤ · · · ≤ xn, then any point

in the interval [xk, xk + 1] is an optimal facility location. In this case the median is

considered to be the leftmost point of the optimal interval. ut
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2.2.3 Maximum cost

When the objective we want to minimize is the maximum cost, the optimal solution

is to take the average of the leftmost and rightmost reported location. Unfortunately,

this is not strategyproof since the rightmost agent would report a location further

to the right and get the facility closer to his real location.

Theorem 2.2.2. Any k-th order statistic of the reported locations is a strategyproof

2-approximate mechanism for the maximum cost.

Proof. The strategyproofness follows from the characterization we gave in the pre-

vious section. For the approximation we have that:

Let x∗ be the optimal facility location that minimizes the maximum cost. We have

that OPT ≥ |xi − x∗|,∀i ∈ N . Also the cost of selecting the k-th order statistic is

COST = max{|xi − xk|} ≤ max{|xi − x∗|+ |x∗ − xk|} ≤ 2OPT

The approximation ratio is tight since for the instance where 1 agent is at 0 and n-1

agents are at 1 the optimal cost is 0.5 while selecting any k-th order statistic gives

a cost of 1. ut

On the other hand we have the following matching lower bound.

Theorem 2.2.3. Any deterministic strategyproof mechanism has an approximation

ratio of at least 2 for the maximum cost.

Proof. Assume for contradiction that f : Rn → R is a strategyproof mechanism

and has an approximation ratio smaller than 2 for the maximum cost. Consider the

location profile x where x1 = 0, x2 = 1 and xi = 1/2 for all i ∈ N \ {1, 2}. Since

the mechanism has an approximation ratio smaller than 2 for the maximum cost,

then it must locate a facility in (0, 1). Indeed, assume without loss of generality that

f(x) = a, a ≥ 1/2.

Now, consider the profile where x1 = 0, x2 = a and xi = 1/2 for all i ∈ N \ {1, 2}.

Again, because of approximation the facility must be located somewhere in (0, a). In
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that case, given the profile x, agent 2 can benefit by reporting x2 = 1, thus moving

the facility to a, in contradiction to strategyproofness. ut

This is the best we can do in terms of deterministic mechanisms. However if we allow

randomization, we get a richer class of strategyproof mechanisms which manages to

overcome the lower bound for deterministic mechanisms.

Theorem 2.2.4. The mechanism that selects the leftmost location lt(~x) with prob-

ability 1/4, the rightmost location with probability 1/4 rt(~x), and the average of the

leftmost and rightmost location (lt(~x)+rt(~x))/2 with probability 1/2, is strategy-proof

and 3/2-approximate for the maximum cost.

Proof. We first prove the approximation ratio. The cost of selecting any of the two

extremes and placing the facility is exactly 2OPT while the cost of selecting the

average of the leftmost and rightmost location is exactly OPT. Both cases occur

with probability 1/2, so the expected cost is (3/2)OPT.

We now prove the strategyproofness. Without loss of generality consider an agent

located at x ≤ (lt(~x) + rt(~x))/2.

• If he reports a location y that is located between lt(~x) and rt(~x) then his

expected cost doesn’t change.

• If he reports a location y with y ≥ rt(~x) his expected cost increases since both

the midpoint and the rightmost location are further away.

• If he reports a location y ≤ lt(~x) with d = lt(~x) − y his cost increases by d

when the leftmost location is selected and decreases by d/2 when the midpoint

is selected. So his expected decrease in the cost is (1/4)(−d)+(1/2)(d/2) = 0.

ut

While the theorem implies that randomization allows us to drop the feasible strat-

egyproof approximation ratio from 2 to 3/2, we can also show that this is as far as

randomization can take us.
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Theorem 2.2.5. Any randomized strategyproof mechanism has an approximation

ratio of at least 3/2 for the maximum cost.

2.3 Facility Location on general metric spaces

In this section we investigate the problem of locating a facility in more general metric

spaces other than the line/unit interval that we saw previously. The setting is the

same as before with the only difference that agents are located in a metric space

(M,d) and their cost is the distance of the shortest path to the facility cost(xi, y) =

d(xi, y). We will focus only on the case of social cost as the case of maximum cost is

trivial as picking any arbitrary agent is strategy-proof and gives an approximation

ratio of 2.

2.3.1 Tree metrics

A simple extension is the tree metrics. In this class of metric spaces, a similar result

to that of the line metric can be obtained by considering the median extended to

tree metrics.

Theorem 2.3.1. The mechanism that selects the median of the reported locations

is strategyproof and achieves approximation ratio of 1 for the social cost.

Consider the following mechanism for finding the median of a tree with respect to

the location profile ~x ∈ Mn. We first fix an arbitrary node as the root of the tree.

Then, as long as the current location has a subtree that contains more than half of

the agents, we smoothly move down this subtree. Finally, when we reach a point

where it is not possible to move closer to more than half the agents by continuing

downwards, we stop and return the current location.

The fact that the above mechanism is strategyproof is straightforward, and follows

from similar arguments as the ones given for a median on a line: an agent can only

modify the location of the mechanism’s outcome by pushing the returned facility
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location away from its true location. It can also be verified that the mechanism

returns a location that is optimal in terms of the social cost.

2.3.2 Non-tree metrics

Every other metric space other than the tree must contain at least one cycle. Schum-

mer and Vohra [14] prove that in this case any strategy proof mechanism that is

onto must is a dictatorship when all agents are located in the cycle.

This result gives us a tight lower bound of n− 1 on the approximation ratio of any

strategyproof mechanism.

Proof. Since any mechanism must have a bounded approximation ratio it must be

onto, otherwise if all agents are located in a position that is not in the image set of

the mechanism the social cost is greater than zero while the optimal is 0. Since the

mechanism is onto the previous result applies and there is a cycle dictator. Place

all the agents at a position y on the cycle and the cycle dictator at a position z

on the cycle. Then the optimal social cost is d(y, z) while the social cost of any

strategyproof mechanism is (n− 1)d(x, y). ut

The lower bound is tight since any dictatorship is a (n−1)-approximate strategyproof

mechanism.

By using randomization we manage to break the lower bound by a high margin.

In fact the following trivial mechanism allows us to get constant approximation

ratio.

Theorem 2.3.2 (Random Dictator). The mechanism that returns a facility location

according to the probability distribution that gives probability 1/n to the location xi,

for all i ∈ N is strategyproof and (2− 2/n)-approximate.

Proof. This mechanism is obviously strategyproof, since by deviating an agent can

only lose if its own location is chosen, and does not affect the outcome if another’s

location is selected. As for the approximation ratio, we have the following: Given
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the location profile ~x let y be the optimal facility location. We have that the social

cost of the mechanism is:

sc(f(~x), ~x) =
∑
i∈N

1

n

∑
j∈N

d(xi, xj) =
1

n

∑
i∈N

∑
j∈N−{i}

[d(xi, y) + d(y, xj)]

=
1

n

∑
i∈N

[(n− 1)d(xi, y) +OPT − d(y, xi)] =

=
1

n

∑
i∈N

[(n− 2)d(xi, y) +OPT ]

= OPT +
n− 2

n
OPT = (2− 2

n
)OPT

ut

The following tables summarize the results for the case of one facility.

For the maximum cost we have:

Deterministic Randomized

Line 2 3/2

General 2 2

For the social cost we have:

Deterministic Randomized

Line 1 1

General n-1 2
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Locating more than one facility

3.1 Model and Properties

A natural extension to the setting presented in the previous section is to locate

more than one facilities in the metric space. A deterministic mechanism i now a

function f : Mn → Mk. Each player is only interested in minimizing the distance

to the closest facility so when the k facilities are located at ~y ∈ Mk, his cost be-

comes cost(xi, ~y) = minyj∈~y d(xi, yj). So the strategyproofness condition is properly

adjusted for the new costs.

One interesting property of the facility location games is partial-group strategyproof-

ness.

Definition 3.1.1. A mechanism is partially group strategyproof if for any group of

agents at the same location, each individual cannot benefit if they misreport simul-

taneously. Formally, given a non-empty set Sffl ⊂ N , profile ~x = (~xS, ~x−S) ∈ Mn

where xS = (x, x, .., x) for some x ∈M and the misreported locations ~x′S ∈M |S|, we

have:

cost(f(~xS, ~x−S), x) ≤ cost(f(~xS, ~x−S), x)

This means that a group of overlapping agents cannot misreport their location at the

same time and benefit. It is clear that partial-group strategyproofness is stronger

29
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than strategyproofness. However, the other direction holds as well.

Lemma 3.1.1. In a k-facility game, a strategy-proof mechanism is also partially

group strategyproof.

Proof. To prove the lemma, we iteratively change the locations of every agent in S

from x to x′i. We have that:

cost(f(x, ..., x, ~x−S), x) ≤ cost(f(x′1, x, ..., x, ~x−S), x)

by strategyproofness. Similarly we have that:

cost(f(x′1, x, ..., x, ~x−S), x) ≤ cost(f(x′1, x
′
2, x, ..., x, ~x−S), x)

iteratively for all i ∈ S. So we get that:

cost(f(~xS, ~x−S), x) ≤ cost(f(~xS, ~x−S), x)

which completes the proof. ut

The previous property will be very useful in the analysis of strategyproof mecha-

nisms.

Another very useful tool, is the image sets. We define the concept of image set.

For a given mechanism f , the image set of agent i with respect to a location profile

~x−i is the set of all possible facility locations when agent i varies her reported

location:

Ii(~x−i) = ∪xi∈Mf(xi, ~x−i)

Any strategy-proof mechanism f must always output some location in Ii(~x−i) that

is closest to agent i as shown in the following lemma. Intuitively, the image set

represents agent i’s power. If f outputs the best solution for agent i within her

power, agent i does not have the incentive to lie.

Lemma 3.1.2. Let f be a strategy-proof mechanism in a k-facility game. We have

that for every ~x ∈Mn, i ∈ N :

cost(f(~x), xi) = infy∈Ii(~x−i)d(y, xi)
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Proof. Assume for contradiction that there exists a y′ ∈ Ii(~x−i) such that d(y′, xi) <

cost(f(~x), xi). Then, by definition of the imageset there exists a x′i such that

f(x′i, ~x−i) = y′. Then, it would be beneficial for i to misreport his location to

x′i which contradicts to strategyproofness. ut

As a corollary of the previous lemma we get that the imageset is a closed set of M

under the topology induced by the metric d(.).

Due to partial group strategyproofness, we can extend the notion of the imageset

to groups of agents and get similar properties.

For a given mechanism f , the image set of agents S with respect to a location profile

~x−S is the set of all possible facility locations when agents S vary their reported

locations:

IS(~x−S) = ∪~xS∈M |S|f(~xS, ~x−i)

Using partial group strategyproofness we get the following lemma:

Lemma 3.1.3. Let f be a strategy-proof mechanism in a k-facility game. We have

that for every non empty set S ⊂ N , ~xS = (x, ..., x) and ~x−S ∈Mn−|S|:

cost(f(~xS, ~x−S), x) = infy∈IS(~x−S)d(y, x)

The proof is the same as before with the difference that now the groups of agents S

can misreport their positions and benefit.

Most of the proofs on this section rely on the use of image sets since they essentially

capture the agents’ power to manipulate the mechanism. We now move on to provide

several results for the k-facility game.

3.2 Two facilities

As before we will examine a simple setting first, locating only two facilities on the

line metric. As an objective, we will focus primarily on minimizing the social cost
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in a strategyproof way. In the optimal configuration disregarding strategyproofness,

there will be two facility locations y1, y2 with y1 ≤ y2. These location separate

the locations of the agents into two multisets L,R based on the facility each agent

prefers. L stands for the players located on the left of the line while R stands for

the players located on the right. As we’ve seen before in an optimal configuration

y1 must be the median of the points in L and y2 the median of the points in R

respectively. So in order to compute the optimal facility locations, it suffices to

optimize over the n− 1 possible choices of L and R.

This process however of computing the optimal solution is far from being strate-

gyproof since there are cases where an agent would report a different location to

alter the multiset he belongs to by including or excluding other agents in order to

benefit and thus strategically manipulate the mechanism. This can be made obvious

by the following instance: Consider n− 2 agents located at 0, one agent located at

-1 and one agent located at 1. Then the optimal solution places one facility at 0

and the other one at either -1 or 1. Since the setting is symmetric we can assume

it is placed at -1. Then the agent located at 1 would report 1 + ε (for a very small

ε > 0) as his location forcing the mechanism to place a facility at 1 + ε. This way

he manages to alter his multiset R = {0, ..., 0, 1} to R′ = {1 + ε} and benefit.

On the other hand there is a very simple mechanism that is strategyproof. Placing

the two facilities at the leftmost and rightmost locations is a strategyproof (n− 2)-

approximation mechanism since for any location profile the leftmost location always

belongs to the multiset L and the rightmost to multiset R. This mechanism may

seem very inefficient but as it turns out this is the only mechanism with bounded

approximation ratio as we can see by the following theorem.

Theorem 3.2.1. Any deterministic strategyproof mechanism for the 2-facility loca-

tion game on the line that is anonymous, irrelevant to scaling and translation and has

a bounded approximation ratio, always places the facilities at the two extremes(left

and right).

Proof. Through the proof we will use instances of the form (n1, n2, n3) where all
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agents are ni agents are located in position xi for all 1 ≤ i ≤ 3. We will heavily rely

on the use of image sets. An image-set In1,n2 is a set that specifies all the points

in the line of reals that the mechanism assigns facilities to, when n1 agents are at

position 0, n2 agents are at position 1 and n3 = n− n1 − n2 agents move along the

line in the same location.

For the first part of the proof we fix (n1, n2, n3) and only deal with the vector of

their respective positions.

Consider an instance where x1 < x2 < x3 and a facility is placed in a position

a ∈ (x1, x3) with a 6= x2 such that it is closer to x2 than the other facility. Without

loss of generality we assume that a is between x2 and x3. Then, the second facility

must be placed at a position b with b < x2, otherwise the n1 agents would move to

x2 and then the two facilities would be placed at positions (x2, x3) due to bounded

approximation ratio which would be beneficial for them.

Since b < a < x3 the closest facility to the n3 agents is at a. Assuming x1 = 0 and

x2 = 1 then a ∈ I1,2 and y /∈ In1,n2∀y ∈ [a, x3). If the n2 agents move to position

1 − ε then due to the scaling of the set In1,n2 a facility must be placed at position

a(1− ε) which is beneficial for the n2 agents, a contradiction. It follows that In1,n3

is either full or empty in (0,1).

So for any a, b ≥ 1 with a+ b < n, we have that either:

• (0, 1) ⊂ Ia,b

• (0, 1) ∩ Ia,b = ∅

Now consider the case where for some a, b we have that (0, 1) ⊂ Ia,b. Assume that

there exists some open interval (x, y) with x, y ∈ Ia,b such that (x, y) ∩ Ia,b = ∅.

Without loss of generality, 1 ≤ x < y. Then on an instance where a agents are at

0, b agents are at y and the n − a − b agents are at y − ε with 0 < ε < (y − x)/2

sufficiently small such that the two facilities are assigned one close to 0 and the

other at y − ε, the b agents would move at a position 1 and the a facility would be

assigned at position y due to the imageset Ia,b. This is a contradiction. We conclude



34 Chapter 3. Locating more than one facility

that no such interval exists so Ia,b = IR and the n− a− b agents are dictators as a

group.

Now consider an instance with three groups of agents a, b, c where none of the groups

is a dictator. Then we have that (0, 1) ∩ Ia,b = ∅, (0, 1) ∩ Ib,c = ∅, (0, 1) ∩ Ia,c = ∅.

Assume that there exists some open interval (x, y) with x, y ∈ Ia,b such that (x, y)∩

Ia,b = ∅. Without loss of generality, 1 ≤ x < y. Then on an instance where a agents

are at 0, b agents are at 1 and c agents are at x+ε one facility is located at position x

which lies inside the interval (xa, xc) which is a contradiction since (0, 1) ∩ Ia,c = ∅.

We conclude that no such interval exists so Ia,b = Ib,c = Ia,c = IR \ (0, 1). This

means that on every instance the facilities are located at the rightmost and leftmost

locations.

We conclude that on any instance where agents are located in three distinct locations

either there exists a group that is a dictator or the facilities are located at the

rightmost and leftmost locations.

Assume that for some instance with three groups of agents a, b, c, the b agents are

dictators. We will now show that this must hold for every a, c > 0. Assume that this

doesn’t hold for some a′, c′. Then in the instance with groups of agents a′, b, c′ with

xa′ < xb < xc′ the facilities are located at xa′ and xb′ . Without loss of generality we

assume that a′ < a. Then on an instance where xa = 0, xb = ε, xc = 1, for ε > 0

sufficiently small where the facilities are placed one at xb and one near xc then a−a′

agents located at 0 have an incentive to lie reporting 1 as their location so that a

facility is placed at 0. Thus we reach a contradiction.

We conclude that b agents will be dictators no matter how the others are arranged.

Obviously more than b agents must be dictators, otherwise some of them would

misreport their location so that exactly b of them are in the same place. This

indicates that there must be a threshold t such that any instance with three groups

of agents where one of them contains t or more agents must always place a facility

in their location. Obviously, we must have that t ≥ n/2 otherwise if we had two

groups of dictators and a third group very far away the approximation would be
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unbounded.

We consider an instance where a = n− t− 1, b = 2, c = t− 1 and xa < xb < xc. In

this instance, every group has less than t agents so there is no dictator. The facilities

are placed in xa and xc. So no matter how the agents in group b move no facility will

ever be place inside xa and xc. In any instance a = n− t− 1, b = 1, c = t− 1, d = 1

with xa < xb < xc < xd no facility is allocated between xa and xc. However the

agent b can force a facility to be allocated either at xa or at xc by reporting xa or

xc respectively as his location. Thus, at an instance where xa = 0, xb = 1, xc = 3

and xd sufficiently large the facilities must be allocated one at 0 and the other near

xd. However, the agents at group c have an incentive to report 1 as their location

since they would become dictators and one facility would be placed at 1. This is

a contradiction to the fact that there are some instances where a group of agents

behave as dictators.

So even in an instance where a = 1, b = n−2, c = 1 where xa = 0 < xb < xc = 1 the

facilities would be placed at xa and xc. This means that no matter what locations

the group of n − 2 agents report no facility would be placed inside the interval

(xa, xc). Since the n − 2 be misreporting their locations in the interval [xa, xc] can

generate any possible location profile ~x, we conclude that for any possible location

profile ~x no facilities are located in the interval (lt(~x), rt(~x)).

To conclude the proof, we show that for any location profile the facilities are placed

in the locations lt(~x), rt(~x). We show this by induction on the number of distinct

locations on the location profile. For the induction basis we have that for three dis-

tinct locations all mechanisms place a facility in the leftmost and rightmost location.

Assuming it holds for k distinct locations we show that it holds for k + 1 distinct

locations. Consider an instance where a facility is located at a position greater than

rt(~x). Consider the set of agents S located at rt(~x) and the imageset I of ~x−S. The

image set must contain the location rt(~x)−S by the induction step (Otherwise the

agents in set S would report rt(~x)−S as their location). Assume that there is an

interval (a, b) with a, b ∈ I such that (a, b)∩ I = ∅. Then if the S agents are located

at a+ ε for sufficiently small ε > 0 then a facility would be placed at a which would
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be inside the interval (lt(~x), rt(~x)), a contradiction. ut

The conditions for scaling and translation can be removed. A more technical analysis

can be found in [22]. The previous theorem indicates that the simple inefficient

solution is the best we can achieve in deterministic mechanisms. Fortunately in

randomized mechanisms, we can obtain much better results as we will see in the

next section.

3.3 Randomized Mechanisms for Two Facilities

In the previous section we saw that the best approximation ratio for the the two

facility location game is linear in terms of the number of players. In this section, we

deal with randomized mechanisms in order to get better results. Fortunately there

exists a mechanism with constant approximation ratio that works for general metric

spaces [20].

3.3.1 Proportional Mechanism

Given a location profile x = (x1, x2, ..., xn), the locations of the two facilities are

decided by the following random process:

• Round 1: Choose agent i uniformly at random from N. The first facility l1 is

placed at xi.

• Round 2: Let dj = d(l1, xj) be the distance from agent j to the first facility l1.

Choose agent j with probability
dj∑

k∈N dk

Theorem 3.3.1. The Proportional Mechanism for the two-facility game is strate-

gyproof.

Theorem 3.3.2. The approximation ratio of the Proportional Mechanism for the

two-facility game is at most 4 for any metric space.

We leave the proofs of the previous two theorems for the next section, where we will

revisit the Proportional Mechanism under a slightly modified setting.
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We note that the approximation ratio of 4 for the proportional mechanism is tight

even on the line. This can be seen if we consider the location profile ~x = (0, ..., 0, ε, 1)

for sufficiently large n and ε → 0. The optimal solution has social cost equal to ε

while the proportional mechanism has social cost equal to:

n− 2

n

(
2− ε
1 + ε

+
2(1− ε)

(n− 2)ε+ 1− ε
+

1 + ε

n− 2 + ε

)
ε

which is equal to 4− 7/n as ε→ 0.

The proportional mechanism is the best known randomized mechanism for the two-

facility game. It remains an open question whether there exist strategyproof mecha-

nisms with lower approximation ratio. For randomized mechanisms the only known

lower bound is the following.

Theorem 3.3.3. In a two facility game, any randomized strategy-proof mechanism

has an approximation ratio of at least 1 +
√
2−1

12−2
√
2
− 1

n−2 ≥ 1.045− 1
n−2 social cost for

any n ≥ 5.

The following table summarizes the results for the 2-facility location game in terms

of social cost.

Deterministic Randomized

Line n-2 4

General - 4

3.4 More than two facilities

Since the best strategyproof mechanism possible for the 2-facility game is linear one

would not expect to get any better results for more facilities. In fact, the following

theorem gives a linear lower bound for the k-facility location game.

Theorem 3.4.1. Any deterministic strategy-proof mechanism for the k-facility game

in the line metric space has an approximation ratio of at least n−1
2

for k ≥ 2.

What’s even more interesting however is that no strategyproof mechanism with

bounded approximation ratio is known even for the line metric. The following
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theorem proves that this is not possible for a very large class of almost all natural

mechanisms.

Theorem 3.4.2. Any deterministic anonymous strategy-proof mechanism for the

k-facility game on the line that places facilities in the range [lt(~x), rt(~x)] for every

location profile ~x has unbounded approximation ratio.

Proof. Fix n−1 agents at positions ~x and consider the imageset I as an extra agent

moves along the line. Since the mechanism must have a bounded approximation

ratio the image set is not bounded. Therefore, either (i) (− inf, lt(~x)] ⊂ I or (ii)

there exists an interval (a, b) such that a < lt(~x) with (a, b) ∩ I = ∅ and a, b ∈ I.

Assume case (ii) holds, then on an instance where the agent is located at a + ε for

small ε > 0 a facility must be placed at a which would be outside of the range of

the agents’ positions, a contradiction. Thus, for all ~x we have that (− inf, lt(~x)] ⊂ I

which means that a facility must always be assigned at the leftmost agent.

Now consider an instance where the location profile of the agents is as follows ~x =

(0, 1, 2, 2 + ε). Then one facility must be placed at 0 one close to 1 and one close

to the last two agents. Consider the imageset I(0,2,2+ε) as agent 2 moves along the

line. Let a = min{x|x ∈ I(0,2,2+ε), x > 0}. This is well defined since at any instance

(0, ε′, 2, 2 + ε) for small ε′ > 0 the facilities must be placed one at 0, one near 2

and one near 2 + ε in order to have bounded approximation ratio. Now consider an

instance (a−ε′, a, 2, 2+ε) for small ε′ > 0. Here the facilities are placed at a−ε′, one

near 2 and one near 2+ ε. In this instance however, the agent 2 at a can manipulate

the mechanism by moving to 0 and guarantee that a facility is placed at a. ut

The previous theorem leaves almost no space for deterministic strategyproof mecha-

nisms with bounded approximation ratio to exist. So we turn to randomized mech-

anisms hoping to achieve some positive results. Unfortunately the following natural

extension of the proportional mechanism even for 3 facilities is not strategyproof.

Allocate the first two facilities the same as in the two facility case, and the third

one in some agent with probability proportional to his minimal distance to the first

two facilities.
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The counter-example to this is as follows: there exist n0 agents at location 0, n1

agents at location 1, n2 agents at location 1 + x and 1 agent at location 1 + x + y.

Here n0 is sufficiently large such that we can assume the first facility l1 to be always

located at 0. In this configuration, let y = 100, x = 105, n1 = 50 and n2 = 4. After

a careful calculation one may find out that the agent at location 1 may have the

incentive to misreport to location 1 + x.

However for 3 facilities, there exists a strategyproof mechanism with linear approxi-

mation ratio that works as follows: The first two facilities are located at the leftmost

and the rightmost reported locations. For the third facility, it is randomly chosen

among the rest of the agents with probability proportional to their minimal distances

to the first two facilities.

With the slight exception of the previous mechanism, no other strategyproof mech-

anism is known with bounded approximation ratio for the k-facility problem when

k ≥ 3. It still remains an open question to find such mechanisms or to prove that

they don’t exist.
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Imposing Mechanisms

In the previous section, we saw that finding efficient strategyproof mechanisms when

we need to place more than one facility is either impossible or very hard. Due to

the lack of positive results, other directions must be followed that allow a more rich

set of mechanisms. Such a direction was proposed by Nissim, Smorodinsky, and

Tennenholtz [21], who introduced imposing mechanisms.

Imposing mechanisms are a general class of mechanisms that compute a socially

efficient outcome but in addition they have the ability restrict how agents exploit this

outcome. Restricting the set of allowable post-actions for the agents, the mechanism

can penalize liars. For Facility Location games in particular, an imposing mechanism

requires that an agent should connect to the facility nearest to her reported location,

thus increasing her connection cost if she lies.

Nissim et al. using the notion of imposing mechanisms obtained a randomized

imposing mechanism for k-Facility Location with a running time exponential in

k. The mechanism approximates the optimal average connection cost, namely the

optimal connection cost divided n, with an additive term of roughly n2/3. However

for a large class of instances, the additive approximation guarantee of does not imply

any constant approximation ratio for k-Facility Location.

In this section, we will focus on imposing mechanisms and provide several efficient

41
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strategyproof mechanisms.

4.1 Model and Definitions

An imposing mechanism f maps a location profile ~x to a tuple of non-empty sets

(C,C1, . . . Cn), where C ⊆ M is the facility set of f and each Ci ⊆ C contains

the facilities where agent i should connect. We write f(~x) to denote the facility

set of f and f i(~x) to denote the facility subset of each agent i. For the k-Facility

Location game, |f(~x)| = k. A randomized mechanism is a probability distribution

over deterministic mechanisms.

We only consider imposing mechanisms where each agent i should connect to the

facility in f(~x) closest to her reported location, namely where f i(~x) = {z ∈ f(~x) :

d(z, xi) = d(xi, f(~x))} for each i.

We note that non-imposing mechanisms is a special case where for all location

profiles ~x and all agents i, f i(~x) = f(~x).

Another, special case of imposing mechanisms is winner imposing mechanisms. A

mechanism f is winner-imposing if for each agent i, f i(~x) = {xi} if xi ∈ f(~x), and

f i(~x) = f(~x) otherwise. For a winner-imposing mechanism f and some location

profile ~x, we write either that f allocates a facility to agent i or that f places a

facility at xi to denote that f adds xi in its facility set f(~x). Moreover, we write

that f connects agent i to the facility at xi to denote that f i(~x) = {xi}, as a result

of xi ∈ f(~x).

4.2 Deterministic Mechanisms

Imposing mechanisms allow us to design a richer class of strategyproof mechanisms.

As we’ve seen before the only non-imposing anonymous mechanism for the 2-facility

location game on the line was to assign facilities at the agents at the two extremes.

In the case of imposing mechanisms we are also allowed to do the following:
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1st Round: Assign a facility to the agent at the median[med(~x)].

2nd Round: If |lt(~x) − med(~x)| > |rt(~x) − med(~x)| place a facility at med(~x) −

max(|lt(~x)−med(~x)|, 2|rt(~x)−med(~x)|). Otherwise, place a facility atmed(~x)+

max(2|lt(~x)−med(~x)|, |rt(~x)−med(~x)|).

Theorem 4.2.1. The above mechanism is strategyproof and (n− 1)-approximate.

We omit the proof since it is similar to the proof for the mechanism of the 3-facility

location, we will see next.

The above mechanism fails to make any improvement to the problem but shows

instead that a richer class of mechanisms is possible under the imposing setting.

Now, we move on to the 3-facility location game where it was impossible to find

any mechanism with bounded approximation before. This is not true however in

the case of imposing mechanisms, where we are allowed to do the following:

First place two facilities at the agents at the extremes[lt(~x), rt(~x)]. We denote by

xm the average of the two points (xm = (lt(~x) + rt(~x))/2). Let A and B be the set

of agents on [lt(~x), xm] and (xm, rt(~x)] respectively. Define dA = maxi∈A|lt(~x)− xi|

and dB = maxi∈B|xi − rt(~x)|. We allocate the second facility as follows:

If dA ≥ dB, the third facility is placed at min{xm, lt(~x) +max{dA, 2dB}}.

If dA < dB, the third facility is placed at max{xm, rt(~x)−min{2dA, dB}}.

We shall prove that the above mechanism is strategyproof and has a linear approx-

imation ratio.

Theorem 4.2.2. The imposing mechanism for 3-facility on the line is strategyproof.

Proof. Assume for contrary that the mechanism is not strategy-proof. Then there

must be an agent who benefits by misreporting his location. Since the cost of the

agents located at lt(~x), rt(~x) is 0, they have no incentive to misreport. So we only

consider agents located in (lt(~x), rt(~x)).

If an agent reports a location outside the interval (lt(~x), rt(~x)) then a facility will

be assigned to him and due to the fact that the mechanism is imposing he must
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connect to that facility. In that case, the cost is higher than the cost of truthfully

reporting his location.

Now consider an agent i and assume without loss of generality that he is located at

xi ∈ (lt(~x), xm]. We distinguish different cases regarding where the third facility l3

is placed.

If l3 > xm then dA < dB and dA < (lt(~x) + xm)/2 since otherwise l3 would be equal

to xm. The closest that xi can force the facility to approach is min(2dB, xm) which

is greater than 2dA. Since we have that xi ≤ dA, agent i cannot benefit by the third

facility since the facility placed at lt(~x) will always be closer.

If l3 = xm then dA, dB ≥ (lt(~x) + xm)/2 and there is no location that agent i can

misreport to so that l3 < xm.

If xi = l3 < xm then agent i has cost 0 and thus no incentive to misreport.

If xi < l3 < xm, then no matter where agent i misreports to, he can only increase

the term min{xm, lt(~x) +max{dA, 2dB}}. ut

Theorem 4.2.3. The imposing mechanism for 3-facility on the line is (n − 2)-

approximate.

Proof. Assume without loss of generality that xA ≥ xB. Let S1 be the set of agents

covered by the leftmost facility in the optimal solution, S2 be the set of agents

covered by the rightmost facility in the optimal solution and S3 the set of agents

covered by the third facility. Define by Ik the minimum line segment that agents in

Sk belong to. We have that |I1|+ |I2|+ |I3| ≤ OPT . Also let l1, l2, l3 be the facilities

as placed by our mechanism. We define costk =
∑

i∈Sk
d(f(~x), xi).

Since l1 = lt(~x) ∈ I1, we have that cost1 =
∑

i∈S1
d(f(~x), xi) ≤

∑
i∈I1 d(l1, xi) ≤

(|S1| − 1)OPT . Similarly, cost2 ≤ (|S2| − 1)OPT since l2 = rt(~x) ∈ I2.

We now prove that cost3 ≤ |S3|OPT .

If l3 ∈ I3 then the distance from each agent to his closest facility is at most |I3|, so

cost3 ≤ |S3|OPT .
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If l3 /∈ I3, let xl = lt(~x) + dA and xr = rt(~x) − dB the locations of the rightmost

agent on A and the leftmost agent on B respectively.

If xl ∈ I1 or x1 ∈ I2 we have that either |I1| ≥ dA or |I2| ≥ dA but each agent in S3

has cost at most dA. This implies cost3 ≤ |S3|dA ≤ |S3|(|I1|+ |I2|) ≤ |S3|OPT .

If xl ∈ I3 then xr ∈ I2 otherwise if xr ∈ I3 then since l3 ∈ [xl, xr] we get that l3 ∈ I3
a contradiction. We deduce that l3 > xl so dA ≤ 2dB. For every agent, we have that

his distance to the closest facility is less than dB. So cost3 ≤ |S3|dB ≤ |S3||I2| ≤

|S3|OPT .

Summing the costs cost1 + cost2 + cost3 together we have, (|S1| − 1)OPT + (|S2| −

1)OPT + |S3|OPT ≤ (n− 2)OPT . ut

We see how imposing mechanisms build on and improve the non-imposing ones.

Even in this case however no deterministic strategyproof mechanism is known for

more than 3-facilities. This is not true for the case of randomized mechanisms where

we can obtain very efficient mechanisms for any number of facilities and any metric

space.

4.3 Randomized mechanisms

We consider the winner-imposing version of the Proportional Mechanism for the k-

Facility Location game. Given a location profile ~x = (xi)i∈N , the Winner-Imposing

Proportional Mechanism, or WIProp in short, works in k rounds, fixing the location

of one facility in each round. For each ` = 1, . . . , k, let C` be the set of the first `

facilities of WIProp. Initially, C0 = ∅. WIProp proceeds as follows:

1st Round: WIProp selects i1 uniformly at random from N , places the first facility

at xi1 , connects agent i1 to it, and lets C1 = {xi1}.

`-th Round, ` = 2, . . . , k : WIProp selects i` ∈ N with probability
d(xi` ,C`−1)∑
i∈N d(xi,C`−1)

,

places the `-th facility at xi` , connects agent i` to it, and lets C` = C`−1∪{xi`}.
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The output of the mechanism is Ck, and every agent not allocated a facility is

connected to the facility in Ck closest to her true location.

Theorem 4.3.1. WIProp is a strategyproof 4k-approximation mechanism for the

k-Facility Location game on any metric space.

Strategyproofness. Even though the non-imposing version of the Proportional

Mechanism is not strategyproof for k ≥ 3 as we’ve seen before, WIProp is strate-

gyproof for any k.

Lemma 4.3.2. For any k ≥ 1, WIProp is a strategyproof mechanism for the k-

Facility Location game.

Proof. For each ` = 0, 1, . . . , k, we let cost[xi, f(y, ~x−i)|C`] be the expected con-

nection cost of an agent i at the end of WIProp, given that i reports location

y and that the facility set of WIProp at the end of round ` is C`. For ` = k,

cost[xi, f(y, ~x−i)|Ck] = d(xi, Ck). For each ` = 1, . . . , k − 1, with probability pro-

portional to d(y, C`) the next facility of WIProp is placed at i’s reported location,

in which case i is connected to y and incurs a connection cost of d(xi, y), while

for each agent j 6= i, with probability proportional to d(xj, C`) the next facil-

ity of WIProp is placed at xj, in which case the expected connection cost of i is

cost[xi, f(y, ~x−i)|C` ∪ {xj}]. Therefore:

cost[ xi, f(y, ~x−i)|C`] =

=
d(xi, y) d(y, C`) +

∑
j 6=i d(xj, C`) cost[xi, f(y, ~x−i)|C` ∪ {xj}]

d(y, C`) +
∑

j 6=i d(xj, C`)
(4.1)

Similarly, for ` = 0, the expected connection cost of agent i is:

cost[xi, f(y, ~x−i)] =
d(xi, y) +

∑
j 6=i cost[xi, f(y, ~x−i)|{xj}]

n
(4.2)

By induction on `, we show that for any y, any ` = 0, 1, . . . , k, and any C`,

cost[xi, f(y, ~x−i)|C`] ≥ cost[xi, f(~x)|C`] (4.3)

Thus agent i has no incentive to misreport her location, which implies the lemma.

For the basis, we observe that (4.3) holds for ` = k. Indeed, if i’s location is not in

Ck, her connection cost is d(xi, Ck) and does not depend on her reported location y,
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while if i’s location is in Ck her connection cost is d(xi, y) ≥ d(xi, xi). We inductively

assume that (4.3) holds for `+1 and any facility set C`+1, and show that (4.3) holds

for ` and any facility set C`. If ` ≥ 1, we use (4.1) and obtain that:

cost[ xi, f(y, ~x−i)|C`] ≥

≥
d(xi, y) d(y, C`) +

∑
j 6=i d(xj, C`) cost[xi, f(~x)|C` ∪ {xj}]

d(y, C`) +
∑

j 6=i d(xj, C`)

=
d(xi, y) d(y, C`) +

(
d(xi, C`) +

∑
j 6=i d(xj, C`)

)
cost[xi, f(~x)|C`]

d(y, C`) +
∑

j 6=i d(xj, C`)
(4.4)

The inequality follows from (4.1) and the induction hypothesis. For the equality, we

apply (4.1) with y = xi. If d(xi, C`) ≥ d(y, C`), (4.4) implies that cost[xi, f(y, ~x−i)|C`] ≥

cost[xi, f(~x)|C`]. Otherwise, we continue from (4.4) and obtain that:

cost[xi, f(y, ~x−i)|C`] >
d(xi, y) + d(xi, C`) +

∑
j 6=i d(xj, C`)

d(y, C`) +
∑

j 6=i d(xj, C`)
cost[xi, f(~x)|C`]

cost[xi, f(~x)|C`] ≥ cost[xi, f(~x)|C`]

The first inequality follows from (4.4) using that d(y, C`) > cost[xi, f(~x)|C`]. For

the second inequality, we use that d(xi, y) + d(xi, C`) ≥ d(y, C`).

If ` = 0, using (4.2) and the induction hypothesis, we obtain that:

cost[xi, f(y, ~x−i)] ≥
1

n

∑
j 6=i

cost[xi, f(~x)|{xj}] = cost[xi, f(~x)] (4.5)

Thus we have established (4.3) for any location y, any ` = 0, 1, . . . , k, and any C`.

ut

We note that for k = 2, the requirement that the mechanism is winner-imposing is

not needed. That is why the non-imposing proportional mechanism works for the

case of two facilities.

Lemma 4.3.3. For any k ≥ 1, WIProp achieves an approximation ratio of at most

4k for the k-Facility Location game.

We start by introducing the notation used throughout the proof. We fix a location

profile ~x = (xi)i∈N , and compare the cost of WIProp(~x) against the cost of a set

C∗ = {c∗1, . . . , c∗k} of optimal facility locations for ~x. C∗ partitions N into k clusters,
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where the p-th optimal cluster, denoted Np, consists of the agents whose nearest

facility in C∗ is c∗p. For each agent i, we let d∗i = d(xi, C
∗) be i’s distance to the

nearest facility in C∗. We let OPTp =
∑

i∈Np
d∗i denote the optimal cost for agents in

Np, and let OPT =
∑

p∈[k] OPTp denote the total cost of the optimal solution.

For a set of agents N ′ ⊆ N and a non-empty facility set C, we let D(N ′, C) =∑
i∈N ′ d(xi, C) denote the total cost of connecting each agent in N ′ to the nearest

facility in C. For a set of facilities C placed (by WIProp) at the locations of some

agents, we let H(C) = {p ∈ [k] : C ∩ Np 6= ∅} be the set of indices of the optimal

clusters covered by C, and let U(C) = [k]\H(C) be the set of indices of the optimal

clusters not covered by C. For a set of indices I ⊆ [k], we let N(I) = ∪p∈INp be

the set of agents in the optimal clusters indexed by I. For each round `, 1 ≤ ` ≤ k,

we let c` be the facility placed by WIProp at round `, let C` be the facility set of

WIProp at the end of round `, and Ck be the final facility set of WIProp, and let

H` = H(C`) and U` = U(C`) be the sets of indices of the optimal clusters covered

and not covered, respectively, by WIProp at the end of round `.

To establish the approximation ratio of of WIProp, we observe that

IE[D(N,Ck)] = IE[D(N(Uk), Ck)] +
∑
p∈Hk

IE[D(Np, Ck)|p ∈ Hk] (4.6)

and analyze the expected cost of covered and uncovered optimal clusters separately.

The following lemma, proven in [20, Lemma 4.4], establishes an upper bound on

the expected connection cost for the optimal clusters covered by the facilities of

WIProp. We include the proof for completeness.

Lemma 4.3.4. For any optimal cluster Np, IE[D(Np, Ck)|p ∈ Hk] ≤ 4 OPTp.

Proof. Let `, 1 ≤ ` ≤ k, be the first round such that p ∈ H`, namely, the round

at which the optimal cluster Np is covered by WIProp for the first time, and let

c` ∈ Np be the corresponding facility of WIProp. To simplify the notation, for each

agent i ∈ Np, we let di = d(xi, C`−1) denote the distance of agent i to the nearest

facility just before c` opens. Next, we ignore any subsequent facilities, and upper
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bound IE[D(Np, C`)|c` ∈ Np]. If ` = 1, i.e. Np is covered at the first round, then:

IE[D(Np, C1)|c1 ∈ Np] =
1

|Np|
∑
i∈Np

∑
j∈Np

d(xi, xj)

≤ 1

|Np|
∑
i∈Np

∑
j∈Np

(d∗i + d∗j)

≤ 2 OPTp

If ` > 1, a more careful analysis is required:

IE[D(Np, C`)|c` ∈ Np] =
∑
i∈Np

di
D(Np, C`−1)

∑
j∈Np

min{dj, d(xi, xj)}

≤
∑
i∈Np

di
D(Np, C`−1)

∑
j∈Np

min{dj, d∗i + d∗j} (4.7)

If D(Np, C`−1) =
∑

j∈Np
dj ≤ OPTp, we use that min{dj, d∗i + d∗j} ≤ dj, and obtain

that:

IE[D(Np, C`)|c` ∈ Np] ≤
∑
i∈Np

di
D(Np, C`−1)

∑
j∈Np

dj = D(Np, C`−1) ≤ OPTp

Otherwise, for each agent j ∈ Np, we let sj = dj − d∗j . Since D(Np, C`−1) > OPTp,

we have that
∑

j∈Np
sj > 0. Substituting in (4.7), we obtain that:

IE[D(Np, C`)|c` ∈ Np] ≤
∑
i∈Np

di
D(Np, C`−1)

∑
j∈Np

min{d∗j + sj, d
∗
i + d∗j}

≤
∑
i∈Np

di
D(Np, C`−1)

∑
j∈Np

d∗j

+
∑
i∈Np

d∗i
D(Np, C`−1)

∑
j∈Np

min{sj, d∗i }

+
∑
i∈Np

si
D(Np, C`−1)

∑
j∈Np

min{sj, d∗i }

We note that the first sum on the rhs of the inequality above is OPTp. Using that

min{sj, d∗i } ≤ sj and that 0 <
∑

j∈Np
sj ≤ D(Np, C`−1), we obtain that the second

sum is at most OPTp. For the third sum, we use min{sj, d∗i } ≤ d∗i , and obtain that:∑
i∈Np

si
D(Np, C`−1)

∑
j∈Np

d∗i =
∑
i∈Np

si d
∗
i |Np|

D(Np, C`−1)
≤
∑
i∈Np

d∗i
d(c∗p, C`−1) |Np|
D(Np, C`−1)

≤ 2 OPTp ,
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where the penultimate inequality follows from si = d(xi, C`−1)−d(xi, c
∗
p) ≤ d(c∗p, C`−1),

and the ultimate inequality from:

d(c∗p, C`−1) |Np| ≤
∑
j∈Np

(d∗j + dj) = OPTp +D(Np, C`−1) ≤ 2D(Np, C`−1)

Thus, in all cases, IE[D(Np, C`)|c` ∈ Np] ≤ 4 OPTp. ut

We proceed to bound the connection cost for the optimal clusters not covered by

the facilities of WIProp. Given C`, ` ≥ 1, the expected connection cost (at the end

of WIProp) for the agents in the optimal clusters not covered by C` is:

IE[D(N(U`), Ck)|C`] ≤
∑
p∈H`

D(Np, C`)

D(N,C`)
D(N(U`), C`)

+
∑
p∈U`

∑
i∈Np

d(xi, C`)

D(N,C`)

∑
j∈Np

min{d(xi, xj), d(xj, C`)}

+
∑
p∈U`

∑
i∈Np

d(xi, C`)

D(N,C`)
IE[D(N(U` \ {p}), Ck)|C` ∪ {xi}]

For the first sum, we use that the connection cost of the agents in N(U`) can only

decrease as new facilities open. For each p ∈ H`, the corresponding term in the

first sum is at most D(Np, C`), because D(N,C`) ≥ D(N(U`), C`). In the proof of

Lemma 4.3.4, we show that for each p ∈ U`, the corresponding sum in the second

summation is at most 4 OPTp. As for the sum in the third summation, we observe

that for each p ∈ U`,

∑
i∈Np

d(xi, C`)

D(Np, C`)
IE[D(N(U`\{p}), Ck)|C`∪{xi}] = IE[D(N(U`\{p}), Ck)|C`∧c`+1 ∈ Np]

Therefore,

∑
p∈U`

∑
i∈Np

d(xi, C`)

D(N,C`)
IE[D(N(U` \ {p}), Ck)|C` ∪ {xi}]

=
∑
p∈U`

D(Np, C`)

D(N,C`)

IE[D(N(U` \ {p}), Ck)|C` ∧ c`+1 ∈ Np]

≤ max
p∈U`

{IE[D(N(U` \ {p}), Ck)|C` ∧ c`+1 ∈ Np]}
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Putting everything together, we have that:

IE[D(N(U`), Ck)|C`] ≤
∑
p∈H`

D(Np, C`) +
∑
p∈U`

4 OPTp

+ max
p∈U`

{IE[D(N(U` \ {p}), Ck)|C` ∧ c`+1 ∈ Np]}

We now fix an arbitrary set U ⊆ [k], |U | ≤ k − 1, of the (indices of the) optimal

clusters not covered by WIProp, and some round `, k − |U | ≤ ` ≤ k − 1, and

condition on all possible facility sets C` (namely, all possible outcomes of WIProp

by round `) with U` = U . Applying the inequality above, we get that:

IE[D(N(U), Ck)|U` = U ] ≤
∑
p 6∈U

IE[D(Np, C`)|p ∈ H`] +
∑
p∈U

4 OPTp

+ max
p∈U
{IE[D(N(U \ {p}), Ck)|U`+1 = U \ {p}]}

By Lemma 4.3.4, for each p 6∈ U , IE[D(Np, C`)|p ∈ H`] ≤ 4 OPTp. Therefore, for

every set U ⊆ [k], |U | ≤ k − 1, of optimal clusters not covered by WIProp, and

every round `, k − |U | ≤ ` ≤ k − 1,

IE[D(N(U), Ck)|U` = U ] ≤ 4 OPT + max
p∈U
{IE[D(N(U \ {p}), Ck)|U`+1 = U \ {p}]}

(4.8)

To conclude the proof of Lemma 4.3.3, we show that

IE[D(N(Uk), Ck)] ≤ 4(k − 1)OPT (4.9)

Clearly, combining (4.6) with Lemma 4.3.4 and (4.9) implies an approximation ratio

of at most 4k.

To prove (4.9), we show that for every set U ⊆ [k], |U | ≤ k − 1, of optimal clusters

not covered by WIProp,

IE[D(N(U), Ck)|Uk−|U | = U ] ≤ 4 |U |OPT (4.10)

This implies (4.9), since WIProp covers at least one optimal cluster, and |Uk| ≤ k−1

for all possible outcomes Ck of WIProp.

The proof of (4.10) is by induction on the cardinality of U . (4.10) holds trivially if

U = ∅. We inductively assume that (4.10) holds for all sets U ′ ⊆ [k], |U ′| < k−1, of
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optimal clusters not covered by WIProp, and show that (4.10) holds for an arbitrary

set U ⊆ [k], |U | = |U ′| + 1, of optimal clusters not covered by WIProp. Indeed,

using (4.8) and induction hypothesis, we obtain that:

IE[D(N(U), Ck)|Uk−|U | = U ] ≤ 4 OPT + max
p∈U
{IE[D(N(U \ {p}), Ck)|

|Uk−(|U |−1) = U \ {p}]}

≤ 4 OPT + max
p∈U
{4(|U | − 1)OPT}

= 4|U |OPT

With a more careful analysis for the case k = 2 we can obtain approximation ratio

of 4 instead of 4k = 8.



Chapter 5

Facility Location with Uniform

Cost

5.1 Setting

Until now we consider the problem of k-facility location where the number of facilities

was fixed. In this section, we consider the case where a variable number of facilities

will be placed that depends on the specific instance. We assume that there is a

uniform cost for opening a facility. As before, an agent’s cost depends only on his

distance to the nearest facility.

However, the cost that we need to minimize is the social cost plus the cost to build

the facilities which is a constant price multiplied by the number of facilities opened.

By appropriately scaling the distances we can assume that the cost of opening a

facility is always one. So our objective function becomes:

sc(~x) =
∑
i∈N

cost(xi, f
i(~x)) + |f(~x)|

As before, a mechanism can be either imposing or non-imposing and we compute

the approximation ratio in comparison to the allocation that minimizes the social

cost and disregards strategyproofness.

53
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5.2 Deterministic Mechanism for Facility Loca-

tion on the Line

We begin by presenting a deterministic non-imposing group strategyproof O(log n)-

approximate mechanism for the Facility Location game on the real line. As stated

earlier, we assume that the cost of opening a new facility is 1. To simplify the

presentation, we assume that the agent locations are located in IR+ = [0,∞). Our

analysis can be easily generalized to the case where the agents are located in IR.

The Line Partitioning mechanism, or LPart in short, is motivated by the online

algorithm for Facility Location on the plane by Anagnostopoulos et al. [12]. LPart

assumes a hierarchical partitioning of [0,∞) into intervals with at most 1 + log2 n

levels. The partitioning at level 0 consists of intervals of length 1. Namely, for p =

0, 1, . . ., the p-th level-0 interval is [p, p+ 1). Each level-` interval [p 2−`, (p+ 1)2−`),

` = 0, 1, . . . , blog2 nc−1, is partitioned into two disjoint level-(` + 1) intervals of

length 2−(`+1), namely [p 2−`, p 2−` + 2−(`+1)) and [p 2−` + 2−(`+1), (p + 1) 2−`). A

level-0 interval is active if it includes the (reported) location of at least one agent,

and a level-` interval, ` ≥ 1, is active if it includes the (reported) locations of at least

2`+1 agents, and inactive otherwise. Intuitively, an interval is active if it includes so

many agents that the optimal solution must open a facility nearby.

LPart opens three facilities, two at the endpoints and one at the midpoint, of each

level-0 active interval, and one facility at the midpoint of each level-` active interval,

for each ` ≥ 1. In particular, for each level-0 active interval [p, p + 1), LPart opens

three facilities at p, at p + 1
2
, and at p + 1. For each ` ≥ 1 and each level-`

active interval [p 2−`, (p + 1)2−`), LPart opens a facility at p 2−` + 2−(`+1). LPart

is non-imposing, so each agent is connected to the open facility closest to her true

location.

In the following, we prove that:

Theorem 5.2.1. LPart is a group strategyproof O(log n)-approximate mechanism

for the Facility Location game on the real line.
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Main Properties. We start the proof of Theorem 5.2.1 with some simple observa-

tions regarding the structure of the solution produced by LPart. We observe that

if an interval q is active, all the intervals in which q is included are active, and

that if an interval q is inactive, all the intervals included in q are inactive. In ad-

dition, all level-blog2 nc intervals are inactive, since each of them contains at most

n < 2blog2 nc+1 agents. So each agent is included in at least one active and at least

one inactive interval. In the following, each agent i is associated with the maximal

(i.e., that of the smallest level) inactive interval, denoted qi, that includes her true

location. The maximal inactive intervals qi, qj of two agents i, j either coincide with

each other or are disjoint.

A simple induction shows that each active interval q has three open facilities, two at

its endpoints and one at its midpoint. Moreover, if an active level-` interval contains

an inactive level-(` + 1) subinterval q′, q′ has two open facilities at its endpoints.

Therefore, the connection cost of each agent i is equal to the distance of her true

location to the nearest endpoint of her maximal inactive interval qi. Furthermore,

i’s connection cost is at least as large as the distance of her true location to the

nearest endpoint of any inactive interval including her true location.

Group Strategyproofness. The above properties of LPart immediately imply the

following:

Lemma 5.2.2. LPart is group strategyproof.

Proof. Let S ⊆ N , S 6= ∅, be any coalition of agents who misreport their locations

so as to improve their connection cost, and let ~xS = (xi)i∈S and ~yS = (yi)i∈S

be the profiles with their true and their misreported locations respectively. If for

some agent i, i’s maximal inactive interval qi contains the same number of agents

in LPart(~xS, ~x−S) and in LPart(~yS, ~x−S), qi is inactive in LPart(~yS, ~x−S) as well,

and i’s connection cost does not improve. On the other hand, if qi contains more

agents in LPart(~yS, ~x−S) than in LPart(~xS, ~x−S), there are some agents in S whose

maximal inactive interval is disjoint to qi in LPart(~xS, ~x−S), and is included in qi

in LPart(~yS, ~x−S). Therefore, there is some agent j ∈ S whose maximal inactive
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interval qj contains less agents in LPart(~yS, ~x−S) than in LPart(~xS, ~x−S). Thus qj is

inactive in LPart(~yS, ~x−S) as well, and j’s connection cost does not improve due to

the agents in S deviating from ~xS to ~yS. ut

Approximation Ratio. The analysis of the approximation ratio proceeds along

the lines of [12, Theorem 1]. We first prove that the optimal solution must have a

facility close to each active interval.

Proposition 5.2.3. Let q = [p 2−`, (p+1)2−`) be an active level-` interval, for some

` ≥ 0. Then, the optimal solution has a facility in [(p−1)2−`, (p+2)2−`). i.e. either

in q, or in the next level-` interval on the left, or in the next level-` interval on the

right.

Proof. Let ql = [(p − 1)2−`, p 2−`) be the interval next to q on the left, let qr =

[(p+1)2−`, (p+2)2−`) be the interval next to q on the right, and let nq be the number

of agents in q. For sake of contradiction, we assume that the optimal solution does

not have a facility in ql∪q∪qr. Then the connection cost of the agents in q is greater

than nq2
−`. If ` = 0, placing an optimal facility at the location of some agent in q

costs 1 and decreases the connection cost of the agents in q to at most nq − 1. If

` ≥ 1, placing an optimal facility at the midpoint of q decreases the connection cost

of the agents in q to at most nq2
−(`+1). Since q is active and nq ≥ 2`+1 (nq ≥ 1 for

` = 0), the total cost in the later case is less than the connection cost of the agents

in q to a facility outside ql∪q∪qr, which contradicts the hypothesis that the optimal

solution does not have a facility in ql ∪ q ∪ qr. ut

Lemma 5.2.4. LPart has an approximation ratio of O(log n).

Proof. Let k be the number of facilities in the optimal solution. By Proposi-

tion 5.2.3, there are at most 3 active intervals per optimal facility at each level

` = 0, 1, . . . , blog nc−1. The total facility cost for the three (neighboring) active

level-0 intervals is 7, and the facility cost for each active level-` interval, ` ≥ 1, is 1.

Therefore, the number of active intervals is at most 3k log2 n, and the total facility

cost of LPart is at most 4k + 3k log2 n.
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To bound the connection cost of LPart, we consider the set of maximal inactive

intervals that include the location at least one agent (i.e., they are non-empty).

This accounts for the connection cost of all agents, since each agent i is associated

with her maximal inactive interval qi. Each maximal inactive interval q at level `,

` ≥ 1, contains less than 2`+1 agents and has two facilities at its endpoints. Thus the

total connection cost for the agents in q is at most 2`+12−`/2 = 1. Furthermore, q is

included in some active level-(`− 1) interval. Thus, the total number of non-empty

maximal inactive intervals, and thus the total connection cost of LPart, is at most

6k log2 n. Overall, the total cost of LPart is at most 4k + 9k log2 n, i.e. O(log2 n)

times the optimal cost. ut

Theorem 5.2.1 follows immediately from Lemma 5.2.2 and Lemma 5.2.4.

5.3 Randomized Winner-Imposing Mechanism for

Facility Location

Next we consider the winner-imposing version of Meyerson’s randomized online al-

gorithm for Facility Location [10], and show that it is strategyproof. Combining

this with [10, Theorem 2.1], we obtain a randomized winner-imposing strategyproof

8-approximate mechanism for the Facility Location game.

Meyerson’s algorithm, or OFL in short, process the agents one-by-one in a random

order, and places a facility at the location of the each agent with probability equal

to her distance to the nearest facility available divided by the facility opening cost

(which we assume to be 1). In the following, we assume for simplicity that the

agents are indexed according to the random permutation chosen by OFL. Also we

let Ci denote the facility set of OFL just after agent i is processed.

Formally, given the locations ~x = (xi)i∈N of a randomly permuted set of agents, the

(winner-imposing) OFL mechanism first places a facility at x1, connects agent 1 to

it, and lets C1 = {x1}. Then, for each i = 2, . . . , n, with probability d(xi, Ci−1),



58 Chapter 5. Facility Location with Uniform Cost

OFL opens a facility at xi, connects agent i to it, and lets Ci = Ci−1 ∪ {xi}.

Otherwise, OFL lets Ci = Ci−1. The output of the mechanism is Cn, and every

agent not allocated a facility is connected to the facility in Cn closest to her true

location.

Lemma 5.3.1. The winner-imposing version of OFL is strategyproof for the Facility

Location game.

Proof. We fix an arbitrary permutation ofN , and assume that the agents are indexed

according to it. Let i be any agent, let xi be i’s true location, and let Ci−1 be the set

of facilities just before agent i is processed by OFL. If i = 1 or d(xi, Ci−1) ≥ 1, OFL

places a facility at xi with certainty, so i has no incentive to lie about her location.

So we can restrict our attention to the case where d(xi, Ci−1) < 1.

Let cost[xi, f(y, xi+1, . . . , xn)|C] be the expected connection cost of agent i at the

end of OFL, given that i reports location y, and that just before i’s location is

processed, the set of facilities is C. Similarly, let cost[xi, f(xi+1, . . . , xn)|C] be the

expected connection cost of agent i at the end of OFL, given that just after i’s

location is processed, the set of facilities is C. Next we show that for any agent i

located at xi, for any location y, and for any Ci−1,

cost[xi, f(xi, xi+1, . . . , xn)|Ci−1] ≤ cost[xi, f(y, xi+1, . . . , xn)|Ci−1] , (5.1)

which implies the lemma. For the lhs and the rhs of (5.1), we observe that:

cost[xi, f(xi, xi+1, . . . , xn)|Ci−1] = (1− d(xi, Ci−1)) cost[xi, f(xi+1, . . . , xn)|Ci−1]

cost[xi, f(y, xi+1, . . . , xn)|Ci−1] = (1− d(y, Ci−1)) cost[xi, f(xi+1, . . . , xn)|Ci−1]

+ d(y, Ci−1) d(xi, y)

Therefore, (5.1) holds iff

(d(y, Ci−1)− d(xi, Ci−1)) cost[xi, f(xi+1, . . . , xn)|Ci−1] ≤ d(xi, y) d(y, Ci−1) (5.2)

Clearly (5.1) holds if d(y, Ci−1) ≤ d(xi, Ci−1), since then the lhs of (5.2) becomes

non-positive. On the other hand, if d(y, Ci−1) > d(xi, Ci−1), (5.1) holds because

d(y, Ci−1) − d(xi, Ci−1) ≤ d(xi, y) and cost[xi, f(xi+1, . . . , xn)|Ci−1] ≤ d(xi, Ci−1) <

d(y, Ci−1). ut
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Combining Lemma 5.3.1 with [10, Theorem 2.1], we obtain that:

Theorem 5.3.2. OFL is a strategyproof 8-approximation mechanism for the Facility

Location game on any metric space.

Remark. We should highlight that the proof of Lemma 5.3.1 does not apply to

the non-imposing version of OFL. In particular, if when OFL opens a facility at

the location of an agent i, i is not forced to be connected to it, but can connect

to the facility in Cn closest to her true location, there are instances where for a

particular order of agents, some of them can improve her expected connection cost

by lying about her location. For example, consider a simple instance with n agents

on the real line. The first agent is located at −1/2, the second agent is located at

0, the third agent is located at 1/2 − ε, for some small ε > 0, and the remaining

n − 3 agents are located at 0. For appropriately chosen n and ε, the third agent

can improve her expected connection cost in the non-imposing version of OFL by

reporting 1/2 instead of 0. However, this can only happen for that particular order.

Hence our example demonstrates that the argument in the proof of Lemma 5.3.1

fails to establish that the non-imposing version of OFL is strategyproof. On the

other hand, no agent has an incentive to lie if the expectation of her connection cost

is also taken over all random permutations of agents. Thus, our example does not

exclude the possibility that the non-imposing version of OFL is strategyproof for

the Facility Location game. ut





Chapter 6

Conclusion

6.1 Remarks

Most of the results on Imposing Mechanisms and Facility Location with Uniform

facility opening cost that are found in chapters 5 and 6 were published in the Pro-

ceedings of the 6th Workshop on Internet and Network Economics [23].

For the non-imposing case our results on the characterization of strategyproof effi-

cient mechanisms for the case where 2 facilities are placed on the line along with

the result on the unbounded approximation ratio for 3 or more facilities even on the

line can be found at [22].

6.2 Future Directions

The results for deterministic mechanisms in the case where multiple facilities must

be located are very restrictive and show that no efficient mechanisms are strate-

gyproof even on simple cases. We expect that similar results hold for the case of

deterministic imposing mechanisms, although no results available yet quantifying

their inefficiency.

One possible direction is to investigate randomized mechanisms. The winner-imposing

61
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proportional mechanism that works for any value of k shows that there is some space

for improvement in that direction. Also, it would be interesting to have several re-

sults on the non-imposing case where no mechanism with bounded approximation

ratio is known yet for more than three facilities.

Another direction to consider is to alter the requirement of the mechanisms to be

efficient in the sense of multiplicative approximation and investigate efficient mech-

anisms with additive approximation ratio. This essentially removes the requirement

that the mechanism is unanimous and allows some space for improvement since the

negative results found in chapter 3 don’t apply. The imposing mechanisms in [21]

use this notion of approximation to obtain several positive results.

Finally, this thesis only covers a certain part of mechanism design without money,

the case of facility location games. Since the field of mechanism design without

money is becoming larger and more problems are explored, it would be interesting

to apply several of the results and ideas presented here to those problems.
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