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Περίληψη

Η παρούσα διπλωματική εργασία ασχολείται με θέματα που αφορούν τα κινητά (mobile) 
ρομπότ όπως ο εντοπισμός θέσης (localization) του κινούμενου ρομπότ και η πλοήγηση του 
(navigation) στο χώρο, και ειδικότερα ο σχεδιασμός τροχιάς και ο έλεγχος της κίνησης του 
ρομπότ.  Ειδικότερα  μελετώνται  τα  κινητά  ρομπότ  που  ονομάζονται  πανκατευθυντικά 
(omni-directional).  Ακόμη  παρουσιάζονται  θέματα  προγραμματισμού  μικρο-ελεγκτών, 
ασύρματης  επικοινωνίας  μεταξύ  τους,  επικοινωνίας  με  υπολογιστή  και  ανάπτυξης 
προγράμματος διεπαφής χρήστη.

Στην  αρχή  της  εργασίας  γίνεται  μια  εισαγωγή  στα  omni-directional  ρομπότ  και  μια 
αναφορά στην βιβλιογραφία και στα ήδη υπάρχοντα συστήματα. Αναλύονται οι έννοιες που 
θα μας απασχολήσουν, τα προβλήματα που προέκυψαν στην διαδικασία και η μεθοδολογία 
που  ακολουθήσαμε.   Τα  omni-directional  ρομπότ  είναι  συστήματα  που  έχουν  την 
δυνατότητα  να  κινούνται  προς  κάθε  κατεύθυνση  χωρίς  να  χρειάζεται  να  αλλάξουν  τον 
προσανατολισμό τους. Αυτή η δυνατότητα δίνεται στο σύστημα από ειδικού τύπου τροχούς, 
όπως αναλύεται  στην εργασία.  Στην παρούσα εργασία  επιλέχθηκαν  τα  omni-directional 
ρομπότ  με  caster-type  τροχούς.  Αυτού  του  είδους  οι  τροχοί  παρουσιάζουν  αρκετά 
πλεονεκτήματα σε σχέση με τους υπόλοιπους και είναι πολύ πιο εύχρηστοι.

Σκοπός της εργασίας είναι η ανάπτυξη ενός συστήματος ελέγχου omni-directional ρομπότ 
με διεπαφή χρήστη. Το σύστημα πρέπει να περιλαμβάνει αλγορίθμους εντοπισμού θέσης 
(localization) και σχεδιασμού τροχιάς (path generator), οδήγηση κινητήρων και επικοινωνία 
με  αισθητήρες.  Ακόμη,  το  σύστημα  πρέπει  να  είναι  ευέλικτο  ώστε  να  μπορεί  να 
εφαρμόζεται σε όλων των ειδών τις συνθέσεις omni-directional ρομπότ με caster τροχούς 
(δύο  τροχών,  τριών  τροχών  κτλ)  χωρίς  ιδιαίτερες  αλλαγές  στον  προγραμματισμό.  Ο 
σχεδιασμός  του  συστήματος  πρέπει  να  γίνει  σε  ανεξάρτητες  μονάδες  οι  οποίες  θα 
επικοινωνούν μεταξύ τους.  Έτσι,  θα μπορούμε να προσθέτουμε μεθόδους  localization  ή 
path generator, με συνέπεια ως προς το πρωτόκολλο επικοινωνίας με τα υπόλοιπα κομμάτια 
του συστήματος, χωρίς να χρειάζεται να αλλάξουμε κάτι άλλο στο σύστημα.

Αρχικά το σύστημα σχεδιάστηκε για ένα omni-directional ρομπότ με τρεις caster τροχούς. 
Στην εργασία αναπτύσσεται το κινηματικό μοντέλο αυτού του ρομπότ, που όμως μπορεί 
εύκολα να τροποποιηθεί ώστε να εφαρμοστεί σε άλλου είδους συνθέσεις  omni-directional 
ρομπότ  με  caster  τροχούς. Το  κινηματικό  μοντέλο  θεωρεί  ότι  κάθε  τροχός  είναι 
ανεξάρτητος από τους υπόλοιπους και εκφράζει τις εξισώσεις κίνησης ως προς το κέντρο 
του ρομπότ. Αυτό δίνει την δυνατότητα να έχουμε όσους τροχούς θέλουμε και σε όποια 
θέση.  Με βάση αυτό  το  κινηματικό  μοντέλο  αναπτύσσουμε  μεθοδολογίες  υπολογισμού 
οδομετρίας για τον εντοπισμό θέσης (localization) του ρομπότ.

Το  σύστημα  αποτελείται  από  διάφορες  συνιστώσες.  Τα  κυριότερα  από  αυτά  είναι  το 
πρόγραμμα των μικροελεγκτών  PIC  που οδηγούν τους κινητήρες  στους  τροχούς  και  το 
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πρόγραμμα διεπαφής χρήστη που εκτελείται σε υπολογιστή με περιβάλλον  Windows  που 
βρίσκεται  πάνω  στο  ρομπότ.  Ακόμα  και  τα  ίδια  τα  προγράμματα  αποτελούνται  από 
λογισμικές  μονάδες,  όπως  ασύρματη  και  ενσύρματη  επικοινωνία,  επικοινωνία  με 
αισθητήρες, υπολογισμός οδομετρίας κ.ά. Αυτός ο διαμερισμός του συστήματος το καθιστά 
περισσότερο  ευέλικτο.  Αλλάζοντας  μια  συνιστώσα και  κρατώντας  σταθερά τα  πρότυπα 
εισόδου/εξόδου, η αλλαγή είναι απόλυτα διαφανής στο ολικό σύστημα.

Παράλληλα,  αναπτύχθηκε  μια προσομοίωση του ρομπότ σε περιβάλλον  Matlab  για την 
μελέτη  διαφόρων αλγορίθμων σχεδιασμού τροχιάς (path generators).  Ζητούμενο είναι  η 
επιλογή ενός αλγόριθμου που θα χρησιμοποιηθεί στο σύστημα, ο οποίος θα υπολογίζει το 
ζητούμενο προφίλ  κίνησης (θέσης-ταχύτητας)  που θα  δίνεται  ως  είσοδος  στο  σύστημα. 
Κριτήρια για την επιλογή του αλγορίθμου είναι η δυνατότητα επιλογής μέγιστης ταχύτητας 
αλλά και  κίνηση στην μεγίστη  ταχύτητα για  το μεγαλύτερο  μέρος  της  κίνησης.  Τέλος, 
προσομοιώνουμε το ρομπότ και βλέπουμε πώς το κινηματικό μοντέλο συμπεριφέρεται σε 
κάθε αλγόριθμο.

Το σύστημα εφαρμόζεται τελικώς σε δύο ρομπότ, ένα με τρεις  τροχούς και ένα με δύο 
τροχούς (στην πραγματικότητα είναι με τέσσερις τροχούς, αλλά μόνο οι δύο είναι ενεργοί, 
οι άλλοι είναι μόνο για θέματα σταθερότητας) ώστε να ελεγχθεί η ευελιξία του. Μελλοντική 
εργασία  αφορά  στην  πραγματοποίηση  πειραμάτων  για  μέτρηση  και  επικύρωση  της 
οδομετρίας  ή  και  αναζήτηση  καλύτερων  μεθόδων  εντοπισμού  θέσης  (localization)  και 
σχεδιασμού τροχιάς (path planning) που μπορούν να εφαρμοστούν στο σύστημα.

Λέξεις Κλειδιά
Πανκατευθυντικό  ρομπότ,  έλεγχος  ρομπότ,   σχεδιασμός  τροχιάς,  εντοπισμός  θέσης, 
οδομετρία, μικροελεγκτής.
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Abstract

This diploma thesis deals with issues that concern mobile robots, such as localization of the 
mobile robot and its navigation in space, specifically motion planning and control of the 
robot's  movement.  Particularly  omni-directional  mobile  robots  with  caster  wheels  are 
studied.  Furthermore,  issues  of  micro-controller  programming,  wireless  communication, 
communication with host computer and development of user interface, are presented.

The purpose of the work is to develop a system for controlling an omni-directional robot. 
The system must include localization methods and trajectory planning, motor driving and 
communication with sensors. Furthermore,  the system must be flexible  so that it  can be 
applied to several kind of configurations of omni-directional robot with caster wheels (two 
wheels,  three  wheels,  etc.)  without  major  changes  in  programming.  The  system design 
should be modular, with individual components that will communicate internally.

Initially the system was designed for an omni-directional robot with three caster wheels. In 
this dissertation the kinematic model for this robot is developed, but may easily modified to 
apply to other configurations of omni-directional robot with caster wheels. Based on this 
kinematic model we develop methodologies for calculating the odometry for localizing the 
robot.

The most important components are the micro-controller PIC program to drive the wheel 
motors and the user interface program running on a computer with Windows environment.  
Even the programs themselves are composed of software modules, including wireless and 
wired communication, communication with sensors, odometry calculation etc.

Moreover, a simulation of the robot is developed in MatLAB environment for the study of 
various motion planning algorithms. Goal is to find the best algorithm to be used in the 
system, which calculates the desired motion profile (position-velocity) to give as input to 
the system.

Finally  the  system  is  applied  on  two  different  omni-directional  robots  (with  different 
configurations) to test its versatility.

Key Words
Omni-directional  robot,  robot  control,  path  planning,  localization,  odometry,  micro-
controller.
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Chapter 1 

Introduction

1.1 Purpose

The purpose of this dissertation is the development of a system for odometry localization, 
trajectory planning and control of an omni-directional robot. The system is developed for 
omni-directional robots with caster wheels and it must be versatile so that it can be applied 
easily without many modifications to any configuration  (two wheel, three wheel etc.) of 
omni-directional robots.

Omni-directional robots present a very high interest. They are robots that are able to move 
in any direction without having to change their orientation. Furthermore, they can change 
their orientation independently as they move. This feature makes the robots robust and gives 
them the ability to perform complicated tasks. Also, the omni-directional robots can move in 
any circumstances that other mobile robots cannot due to their movement restrictions. The 
localization and trajectory planning of a mobile robot are the basic elements for controlling 
the robot. 

As developed later in the dissertation, the omni-directional ability can be realised by several 
types of wheels and configurations. Each wheel type and configuration has its advantages 
and disadvantages. We will deal with caster wheel omni-directional robots. For the purpose 
of testing and simulation we will develop a three wheel robot. The goal of this dissertation, 
though,  is  to  develop  a  complete  system  and  method  which  can  be  applied  to  any 
configuration of caster wheel omni-directional robot.

Furthermore,  the  system  has  to  be  designed  in  a  modular  way,  based  on  individual 
components  that  will  interact  with  each  other  thus  giving  us  the  ability  to  modify  a 
component without having to change the whole system and with only requirement to respect 
the communication protocol. Therefore, we will be able to implement different robot control 
and motion planning algorithms without having to alter the other parts of the system.

Along side with the development of the system, a three wheel robot was fabricated to help 
with the testing of the system. A kinematic model for the robot is introduced and several 
methods for computing its odometry are presented. These models and methods consider the 
robot's wheel as parallel joints and so they can be modified easily to suit any caster wheel 
omni-directional robot. Finally, the system was also applied on a four-wheel robot to test its 
versatility. 

Another part of this diploma thesis is the testing of several path generator algorithms and 
discovering  which produces  the best  desired  position-velocity  profile.  There  are  several 
factors that will be taken in consideration for selecting the best algorithm, like the ability to 
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set maximum velocities and travel most of the movement at those velocities.  Another factor 
to  select  the  best  algorithm  is  how the  kinematic  model  complies  and  reacts  with  the 
velocity profile as input.

The whole process will initiate the reader into many concepts which are relevant to mobile 
robots, and specifically omni-directional ones. Furthermore,  this dissertation will explore 
aspects  of  programming  and  control  and  it  will  address  problems  encountered  by 
mechanical or electronic requirements and restrictions.

1.2 Chapter Analysis

Chapter 2: This chapter is devoted to initiate the reader into the general concepts used in 
this work. Background and general information on robots, micro-controllers and motors is 
presented.  Extensive  descriptions  are  presented  regarding  omni-directional  robots,  their 
abilities  and  their  use.  Wheels  that  offer  omni-directional  ability  are  described  and 
compared, based on recent published reports available in the literature. 

Chapter 3: Before designing and implementing the robot we have to define and analyse its 
kinematic model. Geometrical equations are presented that describe the relations between 
the  robot's  wheels  and  its  centre.  Using  these  equations  we  derive  a  matrix  that  is 
fundamental  for  the control  of  the robot.  Furthermore,  localization  through odometry is 
suggested using two different methods. 

Chapter 4:  The second stage before the implementation  is  the simulation of the robot. 
Using the kinematic model and the odometry methods presented in the previous chapter, we 
create a simulation of the robot. The simulation is done using MatLAB environment. The 
basis and algorithm of the simulation is explained, alongside with parts of the code. Next, 
we  use  the  simulation  to  test  several  motion  planning  algorithms,  such  as  polynomial 
interpolation  functions,  potential  force  fields  and position-velocity-time.  The results  are 
presented and compared.

Chapter 5: In this chapter the basic electronic hardware, such as the micro-controllers, the 
motor drivers and the sensors, are described. Also the chapter introduces special hardware, 
such as slip rings and ZigBee, that was need to be implemented to address problems due to 
mechanical and electronic restrictions. Photographs, schematics and figures are presented to 
offer the reader a better understanding of the construction of the robot.

Chapter 6: After presenting all of the aspects of the robot we move to the biggest, and most 
important, part the implementation of the system. Each program developed for the control of 
the robot is described, given its algorithm. The possibles configurations of the robots are 
explained  with  the  corresponding  programs to  control  them.  Problems  presented  in  the 
previous chapter and also problems that occurred in this chapter are addressed and solutions 
are suggested. In the end, the User Interface program developed for the system is presented 
and its major parts are explained thoroughly.

Chapter 7: Finally, after implementing all the necessary parts for controlling the robot we 
perform  several  experiments  to  test  the  system.  The  two  main  experiments,  that  were 
conducted, tested the versatility of the system, the validity of the odometry methods and the 
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actual velocities of the robot. Two different robots were used to perform the experiments.  
Screenshots from videos are shown to offer a better view of the experiments.

Chapter 8: In the final chapter there is an overall description of the work, highlighting key 
points and citing the problems encountered. The conclusion of the dissertation is presented, 
describing the goals achieved but also the deficiencies and disadvantages of the system. 
Alongside,  there  is  a  reference  to  future work and to  what  areas  there  should be more 
research to improve.

15
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Chapter 2 

Background and General Information

2.1 Omni-directional Robots

As [Camp87] states, mobile robots are called omni-directional when they have full mobility 
in the plane,  which means that  they can effortlessly move in any direction  without any 
reorientation. This means that the omni-directional robot is able to move on a straight path 
from any given point to an other, without having to rotate first. Moreover, the translational 
movement along a desired path can be combined with a rotation, so that the robot arrives at 
its destination at the correct angle. In contrast, other robots which use differential driving or 
car-like  robots,  have  to  rotate  first  towards  the  goal  and then  move  on a  straight  line,  
nonetheless they cannot achieve a desired goal orientation. 

The typical types of wheels used in most mobile robots can be classified into the following 
different types: conventional wheel, centred orientable wheel, off-centred orientable wheel 
(caster  wheel),  spherical  orthogonal  wheel,  spherical  ball  and  Swedish  wheel.  For  the 
mobile robot to have omni-directional characteristics on the plane, only wheels with three 
degrees of freedom must be employed in mobile robots as stated in [Lee05]. From the above 
list,  the  wheels  that  can  be  modelled  with  three  degrees  of  freedom are  caster  wheel,  
spherical orthogonal wheel, spherical ball and the Swedish wheel.

The Swedish wheel is the most widely used wheel in omni-directional robots because it can 
provide omni-directional characteristics with the use of only one motor per wheel. It is a 
conventional wheel with a series of rollers attached to its circumference. These rollers have 
an axis of rotation at 45° to the plane of the wheel in a plane parallel to the axis of rotation 
of the wheel. By using left and right-handed rollers at adjacent wheels, the vehicle is stable 
and can be made to move in any direction and turn by varying the direction and speed of 
each wheel. [Muir87] developed Uranus omni-directional robot with four Swedish wheels.

Fig 2.1 URANUS robot [Muir87]
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The  spherical  orthogonal  wheel,  introduced  by  [Pin94] and  [Pois01],   is  an  idea  that 
emanates from the concept that an ideal wheel for an omni-directional robot is a sphere 
nevertheless, a sphere cannot be powered without losing one of its three degrees of mobility. 
So  the  spherical  orthogonal  wheel  is  formed  with  two  truncated  spheres  which  are 
intermechanically dependent. These wheels were used by  [Mour06] to develop an omni-
directional robot named ROMNI that uses three orthogonal wheels.

Fig 2.2 Spherical Orthogonal Wheel [Mour06]

Fig 2.3 ROMNI robot [Mour06]

Fig 2.4 Layout of the three axles (CAD design) ROMNI robot [Mour06]
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[West95] has managed to develop a spherical ball wheel that consists of a ball that supports 
a vehicle chassis upon a spherical tyre such that the chassis may roll in any direction on the 
floor. There is also form closure around the ball, provided by the ball wheel mechanism and 
contact with the floor surface. The ball wheel mechanism rotates the ball around a desired 
axis and thus moving the vehicle.

Fig 2.5 Spherical ball wheel [West95]

However,  both  the  Swedish  wheel  and  most  types  of  “omni-directional  wheels”  are 
notorious  for  their  sensitivity  to  road  conditions,  which  renders  their  operational 
performances more or less limited compared to conventional wheels. On the other hand, the 
active caster wheel is not sensitive to road conditions and is also able to overcome steps 
encountered in uneven floors by using the active driving wheel. Recent developments are 
the six-wheeled omni-directional mobile robot of [Moore00] and ODIS (Omni-Directional 
Inspection  System)  of  [Berk05] with  the  so-called  “smart  wheel”  active  caster  wheel 
module.  Also,  [Wada00] developed  the  mobile  robot  with  two  caster  wheels  and  one 
rotational  actuator and  [Ush03] developed an omni-directional vehicle  with two-wheeled 
casters.

2.2 Micro-controllers

An essential component of the robot is the micro-controllers which are used for controlling 
the servos, sending commands from the computer or communicating with sensors. A micro-
controller  is  actually  a  small  computer  on  a  single  integrated  circuit  that  includes  a 
processor, memory and input/output communication. Micro-controllers are used mainly in 
embedded systems because they combine all the components of a computer in a single chip, 
rather than micro-processors which need external memory and other peripherals. The two 
most known types of micro-controllers are the AVR and the PIC.

Micro-controllers usually contain several general purpose input/output pins (GPIO). GPIO 
pins are software configurable to either an input or an output state. When GPIO pins are 
configured  to  an  input  state,  they  are  often  used  to  read  sensors  or  external  signals. 
Configured to  the output  state,  GPIO pins  can  drive  external  devices  such as  LEDs or 
motors. Many embedded systems need to read sensors that produce analog signals. This is 
the purpose of the analog-to-digital converter (ADC). Since processors are built to interpret 
and process digital data they are not able to do anything with the analog signals that may be 
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sent by a sensor. So the analog-to-digital converter is used to convert the incoming data into 
a form that the processor can recognise.  Furthermore,  micro-controllers have serial/USB 
communication interface that allows them to communicate with a computer or other device.

Fig 2.6 16F87X PIC Architecture [Pekm09]

2.3 Stepper Motor

Stepper  motors  have  multiple  "toothed"  electromagnets  arranged  around a  central  gear-
shaped piece of iron. The electromagnets are energised by an external control circuit, such 
as a microcontroller or stepper driver. To make the motor shaft turn, first one electromagnet 
is given power, which makes the gear's teeth magnetically attracted to the electromagnet's 
teeth. When the gear's teeth are thus aligned to the first electromagnet,  they are slightly 
offset from the next electromagnet. Therefore, when the next electromagnet is turned on and 
the first is turned off, the gear rotates slightly to align with the next one, and from there the 
process is repeated. Each of those slight rotations is called a "step", with an integer number 
of steps making a full rotation. In that way, the motor can be turned by a precise angle. As 
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motor speed increases, torque decreases, but the torque curve may be extended by using 
current limiting drivers and increasing the driving voltage. This dissertation will introduce 
and examine two-phase stepper motors.

2.3.1 Two-Phase Unipolar motors

A unipolar stepper motor has two windings per phase, one for each direction of magnetic 
field. Typically,  given a phase, one end of each winding is made common: giving three 
leads per phase and six leads for a typical two-phase motor. Since in this arrangement a 
magnetic pole can be reversed without switching the direction of current, the commutation 
circuit  can  be  made very  simple  for  each winding.  A microcontroller  or  stepper  motor 
controller can be used to activate the drive transistors in the right order.

Fig 2.7 Two-Phase Unipolar stepper motor [Sopr57] [Tech23]

2.3.2 Two-Phase Bipolar motor

Bipolar motors have a single winding per phase. There are two leads per phase, neither of 
which is  common.  The current in  a winding needs to  be reversed in  order to reverse a 
magnetic pole, so the driving circuit must be more complicated. Because windings are better 
utilised, they are more powerful than a unipolar motor of the same weight. This is due to the 
physical space occupied by the windings. A unipolar motor has twice the amount of wire in 
the same space, but only half used at any point in time. Though a bipolar motor is more 
complicated to drive, the abundance of driver chips indicates that it is much less difficult to 
achieve.

Fig 2.8 Two-Phase Bipolar motor [Sopr57] [Tech23]
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Chapter 3 

Kinematic Modeling and Odometry Localization

3.1 Kinematic Model

The kinematic model explained here is for a robot which bears three caster wheels, but can 
also be modified easily to any robot using the same methods. The robot has a circular shape 
and  the  wheels  are  placed  in  a  triangle.  In  this  way  we  can  use  the  kinematic  model 
described in  [Lee05]. The robot can be visualised as a triangle robot with the three caster 
wheels and a circular plate on top.

To define the kinematic model of the robot, we assume that the motion of the mobile robot 
is constrained to the plane and there is no sliding and skidding friction, but the rotation of 
wheel about the axis vertical to the ground is allowed. The robot is able to move only in a 
two axis coordinate system (XG,YG) and so we have only three variables (xc,yc,ϕc) which 
represent the unit vectors of the body frame fixed to the body of the mobile robot's centre,  
respectively, and ϕc is the orientation of the robot (angle between the local and the global X 
axis). The wheels are also described by three variables (θi,ϕi,ηi) where i denotes the number 
of the wheel (1,2,3). θi denotes the rotating angle of the wheel and ϕi denotes the steering 
angle between steering link and the local Χ axis. ηi denotes the angular displacement of the 
wheel  relative to the global X axis of the reference frame. It  can be derived that  η i  is 
depended on ϕi and ϕc, as could be expected since, at each wheel, the motors control only 
the θi, ϕi joints. A joint is actuated (active) only when it is controlled by a motor, so that we 
can define its value. A passive joint is a joint that moves freely without being controlled, but 
sometimes can depend on other variables that are controllable.

Fig 3.1 Geometrical representation of the robot [Lee05]
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We define  the  output  velocity  of  the  robot's  centre  as uc=[
vcx

vcy

ω ] where  vcx,  vcy is  the 

translational velocity and ω the angular velocity about the vertical axis. The velocities vcx, 
vcy  are  expressed  in  the  local  coordinate  system,  but  the  trajectory  planning  algorithms 
calculate the desired velocities in global coordinate system. So the desired velocity vector 
must be transformed using the rotation matrix G→C:

[
v cx

v cy

ω ]=RG
C [

ẋcd

ẏcd

ϕ̇cd
] , where RG

C
=( RC

G
)
−1

=( RC
G
)

T
=[

cosϕc sinϕc 0
−sinϕc cos ϕc 0

0 0 1]  

The mobile robot can be considered as a parallel  mechanism, so each wheel contributes 
parallel to the velocity of the robot's centre. Using the procedure described in  [Lee05] we 
derived the following equations:

[
v cx

v cy

ω ]=[
−d sinϕ1−a r cos ϕ1 −a

−d cosϕ1+
l
2

−r sinϕ1
l
2

1 0 1
] [ η̇1

θ̇1

ϕ̇1
]

[
v cx

v cy

ω ]=[
−d sinϕ2−a r cosϕ2 −a

−d cosϕ2−
l
2

−r sin ϕ2 −
l
2

1 0 1
] [ η̇2

θ̇2

ϕ̇2
]

[
v cx

v cy

ω ]=[
−d sin ϕ3+b r cosϕ3 b
−d cos ϕ3 −rsin ϕ3 0

1 0 1] [
η̇3

θ̇3

ϕ̇3
]

where α, b, d, l, r are the robot's characteristics and are shown on the figure above.

Taking the inverse of the above equations we have:

[
η̇1

θ̇1

ϕ̇1
]= 1

dr [
−rsin ϕ1 −r cos ϕ1

l
2

r cos ϕ1−ar sinϕ1

d cos ϕ1 −d sin ϕ1
l
2

d sin ϕ1+ad cosϕ1

r sinϕ1 r cos ϕ1 dr+ar sin ϕ1−
l
2

r cos ϕ1
] [ vcx

vcy

ω ]
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[
η̇2

θ̇2

ϕ̇2
]= 1

dr [
−r sinϕ2 −r cosϕ2

l
2

r cos ϕ2−ar sin ϕ2

d cos ϕ2 −d sinϕ2 −
l
2

d sinϕ2+ad cosϕ2

r sinϕ2 r cosϕ2 dr+ar sin ϕ2+
l
2

r cosϕ2
] [ vcx

vcy

ω ]

[
η̇3

θ̇3

ϕ̇3
]= 1

dr [
−r sinϕ3 −r cos ϕ3 −br cos ϕ3−ar sinϕ3

d cos ϕ3 −d sinϕ3 bd cos ϕ3

r sinϕ3 r cosϕ3 dr−br sinϕ3
] [ v cx

v cy

ω ]
η̇1 , η̇2 , η̇3 are passive joints, they are used only to complete the kinematic model and they 

can be eliminated with  ηi=φi−φc (derived by Fig 3.1). Using the inverse equations for 
the active  joints θ̇1 , ϕ̇1 , θ̇2 ,ϕ̇2 , θ̇3 , ϕ̇3 we form the K matrix,  which acts  like an inverse 
Jacobian matrix:

[
θ̇1

ϕ̇1

θ̇2

ϕ̇2

θ̇3

ϕ̇3

]=K (ϕi)[
vcx

vcy

ω ]

Κ (ϕi)=
1
dr [

d cos ϕ1 −d sin ϕ1
l
2

d sinϕ1+ad cos ϕ1

r sinϕ1 r cos ϕ1 dr+ar sinϕ1−
l
2

r cosϕ1

d cosϕ2 −d sin ϕ2 −
l
2

d sinϕ2+ad cosϕ2

rsin ϕ2 r cos ϕ2 dr+ar sin ϕ2+
l
2

r cosϕ2

d cos ϕ3 −d sin ϕ3 bd cos ϕ3

r sinϕ3 r cos ϕ3 dr−br sin ϕ3

]
3.2 Odometry

To be able to control the motion of the robot we have to know its posture (position and 
orientation with respect to the global reference frame) at each time step. One basic method 
to perform this robot localization task is calculating its odometry. Odometry is the use of 
data from sensors and kinematic model to estimate change in position over time. Odometry 
is  used by some robots,  to  estimate  (not  determine)  their  position  relative  to  a  starting 
location. This method is sensitive to errors due to the integration of velocity measurements 
over time to give position estimates.
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The posture of the mobile robot can be described in terms of the two coordinates x and y of 
the origin C of the moving frame and the orientation angle  of the moving frame, both withϕ  
respect to the global frame with origin at G.

3.2.1 1st Method

The 1st method is based on the algorithm described in [Jung08], according to which we have 
the following steps to compute the posture of the robot:

Step 1: Setting the initial positions

xc [0]=xc0 , yc[0]= yc0 , ϕc[0]=ϕc0

θ i=0(stop) , ϕi[0]=sensor reading i

η i [0]=ϕi [0 ]−ϕc [0]

{xO1[0]= xc [0 ]−bcos (
π
6
+ϕc [0 ])+d cos(η1[0])

yO1[0]= yc [0]−bsin(
π
6
+ϕc [0 ])−d sin(η1[0]) } position of caster wheel 1(O1)

Step 2: Get sensor readings for (real) orientation angles of each wheel and compute pseudo-
inverse K+

ϕi[n]=sensor reading i

K +
(ϕi[n])=[ KT

(ϕi[n ])K (ϕi[n])]
−1 KT

(ϕi[n])

Step 3: Calculate (real) angular velocity and orientation angle of C

[
−
−
ω ]=K +

(ϕi [n ])⋅[
θ̇1

ϕ̇1

θ̇2

ϕ̇2

θ̇3

ϕ̇3

]
ϕc [n]=ϕc[n−1]+ωΔt

Step 4: Update position of caster wheel 1 

η1[n ]=ϕ1[n]−ϕc [n]

xO1[n+1]= xO1[n ]+r θ̇1[ n] Δt cos (η1[n])

yO1[n+1]= yO1[n]−r θ̇1[n] Δt sin (η1[n])

Step 5: Calculate the position of steering point A1
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x1 [n]=xO1 [n]−d cos(η1)

y1[n]= yO1[n]+d sin (η1)

Step 6: Obtain the posture of the mobile robot C

xc [n]=x1[n]+bcos (
π
6
+ϕc [n])

yc [n]= y1[n ]+b sin (
π
6
+ϕc [n])

The odometry information of the omni-directional mobile robot with active caster wheels 
can be obtained by using this procedure at every encoder sampling time iteratively. Our 
method is slightly different from the method described in [Jung08] because we compute ϕc 

with the angular velocity each time step rather than the atan2 function. The atan2 function 
has the disadvantage of being limited inside [-π, π] thus not providing the ability to define 
goals with ϕc outside of those borders.

Furthermore, it is notable that the position of the robot's centre is calculated by the use of 
only one wheel. Any sliding of the wheel will affect the calculation of the robot's centre and 
lead to errors. Therefore, it was considered preferable to calculate the position of the robot's 
centre with the use of the other wheels, using the same method and yielding three different 
calculations  of  the  same  point.  By  taking  the  mean  value,  the  possibility  of  errors  is 
minimised.

3.2.2 2nd Method

A  2nd method  emerged  when  studying  and  analysing  the  1st method.  Since  we  were 
calculating  the  K+ for  computing  the  angular  velocity,  another  approach  could  be  to 
compute also the linear velocities and integrate them to find the position of the robot. Thus 
we have:

Step 1: Setting the initial positions

xc [0]= xc0 , yc [0]= yc0 , ϕc[0]=ϕc0

ϕi [0]=sensor readingi

Step 2: Get sensor readings for  (real) orientation angles of each wheel and compute pseudo-
inverse K+

ϕi[n]=sensor reading i

K +
(ϕi[n])=[ KT

(ϕi[n ])K (ϕi[n])]
−1 KT

(ϕi[n])

Step 3: Calculate (real) angular and linear velocity of C (local frame) and convert them to 
Global frame coordinates
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[
vcx

vcy

ω ]=K +
(ϕi [n])⋅[

θ̇1

ϕ̇1

θ̇2

ϕ̇2

θ̇3

ϕ̇3

]
[
v x

v y

ω ]=RC
G [

vcx

vcy

ω ]=[
cos(ϕc[ n]) −sin(ϕc [n]) 0
sin(ϕc [n ]) cos(ϕc [n]) 0

0 0 1] [
vcx

vcy

ω ]
Step 4: Obtain the posture of the mobile robot C

xc [n+1]=xc [n]+v x Δt
yc [n+1]= yc [n]+v y Δt
ϕc [n+1]=ϕc [n]+ω Δt

This method does not involve the computation of intermediate points, like the positions of 
the wheels or the joints, but only their orientation and velocities for the specific time step.  
This can give a better estimation of the robot's position as it calculates a global velocity for 
the  robot's  center,  thus  taking  the  robot  as  a  whole  and  calculating  how  each  wheel 
contributes to its movement.  In contrast,  the 1st method calculates 3 individual positions 
based on each wheel differently, meaning how the robot would move if only the specific 
wheel  existed.  However,  both  methods  rely  on  θ̇ i ,  as  kinematic  constraints  to  be 
respected which is a disadvantage.
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Chapter 4 

Simulation

Before developing the robot and implementing  all  these equations to a program, it  was 
decided to make a simulation of the robot, so as to test the reliability of the chosen analysis.  
Also, the simulation would provide the opportunity to try out several trajectory planning 
algorithms and to determine which reacts better with the kinematic model. There wasn't any 
need  to  try  different  methods  of  calculating  odometry  because  the  representation  and 
animation  of  the  robot  is  constructed  only  by  odometry  data,  so  it  wouldn't  make  any 
difference.  Our goal was to find out which trajectory planning algorithm suited best on 
following a given path and minimizing errors between the odometry data and the path.  The 
simulation was made with the use of MatLAB.

4.1 The basis of the simulation

First,  our  goal  was  to  create  a  basis  for  the  simulation  that  would  consist  of  initial  
conditions,  calculation  of  the  joint's  vector  and  the  robot's  posture  with  numerical 
integration and animation of the robot's path. The initial conditions were the dimensions of 
the robot, the initial and  the final position of the robot and initial joint positions. Between 
the  initial  conditions  and  the  numerical  integration  we  could  add  the  desired  motion 
planning algorithm so we could see how the robot would comply with the desired path.

Fig 4.1 MatLAB simulation algorithm

The numerical integration computes the joint velocities and the posture of the robot for the 
entire time frame. It is done with the use of the function ode45:

[T,Q] = ode45('omni_inv',t,init);

where T (t )=t , Q(t)=[θ1(t ) ϕ1( t) θ 2( t) ϕ2(t) θ3( t ) ϕ3(t ) xc (t ) yc(t) ϕc( t )]T , t is 
time frame and init are the initial positions of the joints.
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omni_inv is the function whereby the trajectory planning algorithms (if necessary), the 
odometry data and the joint and task velocities are calculated :

%% ***** Calculate Odometry data *****

…

%% Calculation of O1,O2,O3

od_x(1) = od_x0(1)-d*cos(od_h(1)); 
od_y(1) = od_y0(1)+d*sin(od_h(1)); 
od_x(2) = od_x0(2)-d*cos(od_h(2)); 
od_y(2) = od_y0(2)+d*sin(od_h(2));
od_x(3) = od_x0(3)-d*cos(od_h(3)); 
od_y(3) = od_y0(3)+d*sin(od_h(3));

%% Calculation of robot's center
xc = (od_x(1)+od_x(2)+od_x(3)) / 3;
yc = (od_y(1)+od_y(2)+od_y(3)) / 3;
fc = fc+dp(3)*dt;

%% ***** Calculate  Control Signal (motion planning
%% Algorithm) *****
%% i.e. Polynomial interpolation functions
u(1,1)=5*ax(1)*t^4+4*ax(2)*t^3+3*ax(3)*t^2; 
u(2,1)=5*ay(1)*t^4+4*ay(2)*t^3+3*ay(3)*t^2; 
u(3,1)=5*af(1)*t^4+4*af(2)*t^3+3*af(3)*t^2;

%% The u (control) vector which is the desired task
%% velocities

%% ***** Inverse Kinematics *****

c1 = cos(f(1)); s1 = sin(f(1)); 
c2 = cos(f(2)); s2 = sin(f(2)); 
c3 = cos(f(3)); s3 = sin(f(3));

K(1,1) = d*c1; 
K(1,2) = -d*s1; 
K(1,3) = l/2*d*s1+a*d*c1;
…

dq=K*R'*u; % joint velocities

%% ***** Forward Kinematics *****

K_psinv = (K'*K)^-1*K';

dp = R*K_psinv*dq; % task velocities
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R is the rotation matrix between the global frame and the local frame of the robot and u is 
the control signal (desired velocities). In most cases, the trajectory planning algorithm must 
be  calculated  inside  the  numerical  integration  for  each  time  step  because  it  needs  the 
localisation data and it also needs to produce the desired velocities for the specific time step.

As derived from above, the simulation of the robot is the numerical integration of the robot's 
velocities calculated based on the inverse K matrix and the joint velocities. Of course this is 
not accurate as we do not take into consideration any slip of the wheels, friction and other 
distortions that will exist in the real robot.

The representation of the robot is shown in the figure below:

Fig 4.2 Representation of robot in simulation

The yellow circle represents the robot's surface. The green rectangles are the wheel's, the red 
lines and the small circles are the joints of the wheels with the robot's chassis. The triangle 
represents the triangle of the kinematic model. The cross is the global point (0,0). The black 
line on top of the robot exists only to denote the orientation of the robot.

4.2 Motion Planning Algorithms

4.2.1 Polynomial interpolation functions

The first idea was to use a polynomial function for trajectory planning and to calculate the 
desired velocities.  We chose a 5th degree polynomial so that we could meet all of the initial 
conditions, and obtain continuous velocity and acceleration profiles.
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x (t )=a5t 5
+a4 t 4

+a3 t 3
+a2 t 2

+a1t+a0 0≤ t≤T

⇒ ẋ (t )=5a5t 4
+4a4 t3

+3a3t 2
+2a2 t+a1

ẍ (t)=20a5t 3
+12a4 t 2

+6a3 t+2a2

x(0)=x0 , x(T )=xd , ẋ (0)=0 , ẋ (T )=0 , ẍ (0)=0 , ẍ (T )=0

⇒a0= x0 , a1=0 , a2=0 , a3=
10 (xd− x0)

T 3 , a4=
15(x0− xd)

T 4 , a5=
6 (xd− x0)

T 5

This was calculated for y(t) and (t)  with yϕ 0,  yd and ϕ0,  ϕd respectively.  So having the 
ẋ (t ) , ẏ (t) , ϕ̇(t ) ,  we  insert  them  in  the  numeric  integration  that  produces  the  joint 

velocities. Using the joint velocities we calculate the robot posture at each time step.

Example with x0=20, y0=−40,ϕ0=−
π
2

, xd=−30, yd=20,ϕd=π , T =30 s :

Fig 4.3 Robot's snapshot at t=0s
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Fig 4.4 Robot's snapshot at t=10s

Fig 4.5 Robot's snapshot at t=20s
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Fig 4.6 Robot's snapshot at t=30s

The above figures are snapshots of the robot's movement each ten seconds. The red dotted 
line denotes the desire path, the black crosses are the start and goal point and the blue cross 
is the point (0,0). For more detail we represent the robot's position in respect to time to the 
figures below. There is also a red line, which denotes the desired position as calculated by 
the motion planning algorithm.
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Fig 4.7 Robot's position

The Joint Velocities produced by the Kinematic model are shown below.

Fig 4.8 Joint Velocities
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The robot's velocities calculated by the inverse K matrix and the joint velocities are shown 
below. Also there is a red line which denotes the desired velocities calculated by the motion 
planning algorithm.

Fig 4.9 Robot's velocities

We notice that the robot followed the desired path without any significant errors. The task 
velocities (blue) were identical with the desired task velocities (red). But the control applied 
here is an open-loop system without the consideration of odometry or any other localisation 
technique. This is an offline trajectory generation algorithm which in most cases of mobile 
robots, is not applicable.  In this case we suppose that the wheels were moving with the 
speed applied to them without any slipping and also the angular velocity of each wheel is 
respected without any errors. Of course we cannot suppose that this will also be the case in 
the real robot. The rotations of the wheels related to the robots frame are not guaranteed and 
that is why we will measure it with an absolute sensor, as the only thing we suppose is true  
is the linear velocity of each wheel. 

We can alter the above algorithm to compute odometry data at each time step, compare 
them with the desired path and velocities and add corrections to the control signal. Another 
thing we have to take into account is the maximum task velocity of the robot, so when 
translated  to  joint  velocity,  it  does  not  pass  a  certain  limit.  With  the  polynomial  path 
planning the only way to reduce the maximum task velocity is to expand the time period of 
the path. But even so, the maximum velocity can be reached only once as depicted on the 
figures above. This is not efficient because most of the time, the robot does not move with 
maximum  velocity.  Owing  to  this  an  algorithm  that  will  allow  the  robot  to  travel  at 
maximum velocity most of the time is sought.
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4.2.2 Potential Force Field

Another approach is to treat the robot's configuration as a point in a potential  field that 
combines attraction to the goal. The resulting trajectory is output as the path. This potential 
field can also include repulsion from obstacles to achieve obstacle collision avoidance, but 
this feature is not in the context of this paper as it requires either the knowledge of the 
obstacle positions prior to the computation of the path or the use of a sensor that has a 360o 

window of observation for obstacle detection. 

To use potential  force fields, it  is essential  to have a method for localisation in order to 
calculate  the  force  applied  to  the  robot  at  the  specific  position  each  time  step.  So  the 
algorithm  is  calculated  inside  the  numerical  integration  function  alongside  with  the 
calculation of odometry. The odometry is calculated based on the method described in 3.2.1.

At each time step:

Rgoal=√ ((xc−x goal)
2
+( yc− y goal)

2
) , F att=K att⋅Rgoal

if (F att>coef⋅V max)then F att=coef⋅V max

θ goal=atan2( y goal− yd , x goal−x d)

⇒F x=F att cos (θ goal) , F y=F att sin (θ goal)

F ϕ=Katt (ϕc−ϕgoal)⇒ if (F ϕ>coef⋅ωmax)then Fϕ=coef⋅ωmax

and the calculation of the desired velocities is:

v x [n+1]=v x [n]+b(F x−coef⋅v x [n])

v y [n+1]=v y [n]+b(F y−coef⋅v y [n])

ω [n+1]=ω [n]+I (F ϕ−coef⋅ω [n])

where Katt, b, I and coef are constants defined to control the starting and stopping of the 
robot. We also notice that we can define the maximum linear and angular velocities.

Example with x0=20, y0=−40,ϕ0=−
π
2

, xgoal=−30, y goal=20,ϕgoal=π , Katt=1500,

coef =100,b=1, I=1 , V max=3 ,ωmax=0.2 :
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Fig 4.10 Robot's snapshot at t=0s

Fig 4.11 Robot's snapshot at t=10s
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Fig 4.12 Robot's snapshot at t=20s

Fig 4.13 Robot's snapshot at t=30s

Like in the previous case we have the robot's snapshot each 10 seconds using the same 
symbols. The main difference here is that we do not have a path generation rather than just a 
goal position. The algorithm, though, forces the robot to move at the near-optimal path, 
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which is the steepest-descent path in the artificial potential field and it is denoted by the red 
line. With other robots, like differential driving robots, the algorithm would force them to 
move in a circular path to turn the robot towards the goal and then move forward. Because 
of the omni-directional ability this is not necessary and the robot moves directly following 
the red line. Below is the robot's position in respect to time. The red line denotes the goal 
position.

Fig 4.14 Robot's position

The robot follows the path with very few errors,  due basically  to odometry calculation. 
Another  important  observation  is  that  the  orientation  of  the  robot  reaches  the  desired 
orientation before the robot reaches the goal position. This might be not desired in specific 
movements.

The Joint Velocities produced by the Kinematic model are shown below.
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Fig 4.15 Joint Velocities 

The robot's velocities calculated by the inverse K matrix and the joint velocities are shown 
below. Also there is a red line which denotes the desired maximum velocities which we set.

Fig 4.16 Robot's Velocities
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The  task  velocities  respect  the  maximum linear  and  angular  velocities  for  most  of  the 
movement with a couple of spikes close to the goal. Specifically, the linear velocity of the 
robot, which is the vector sum of vx and vy, is equal to the maximum linear velocity. The 
problem that arise here is the very sharp acceleration in the start of the robot's movement 
and close to the goal position. The problem can be solved it by changing the K att, b and I 
constants  to  achieve  a  smoother  acceleration  at  the  start  and  at  the  end  of  the  robot's 
movement.

The Potential Force Field algorithm is an efficient algorithm for on-line path generation that 
produces  an  optimal  path  for  the robot.  But  it  lacks  the ability  to  define  multiple  goal 
positions or to follow a defined path. Also, in the case of obstacle avoidance, the robot is 
very easy to get trapped in a local minimum.

4.2.3 Position-Velocity-Time (PVT)

The PVT algorithm converts a series of position-velocity-time pairs into motion frames that 
create the real-time command positions at each sample during the time intervals between the 
positions-velocity-time pairs. Actually, the algorithm fits a Jerk (non-constant acceleration) 
profile  between  user  specified  position-velocity-time  points.  For  each  point,  the  PVT 
algorithm  calculates  the  Acceleration  values  to  exactly  hit  the  specified  position  and 
velocity at the next point. We divide time into events, and in each event we have a goal  
position-velocity-time that produces the desired acceleration:

A[n ]=
V (n+1)−V (n)

T [n]

This acceleration is accumulated in the control signal each time step. After the event has 
passed (goal reached) we move on to the next goal. But the algorithm on its own is not able  
to achieve a trapezoidal velocity profile if the list of position-velocity-time is not properly 
computed to produce such a profile. This is done by interpolating several pseudo-positions 
between the initial  position and the goal position and by calculating the time needed to 
travel between these positions related to the maximum velocity. So, we come up with a list  
of position-velocity-time pairs which, when used to compute the acceleration,  produce a 
trapezoidal velocity profile with maximum velocity, the velocity we set.

{
x path=[ linspace( x0, xd ,intervals) , xd ]

y path=[ linspace ( y0, yd ,intervals) , yd ]

ϕ path=[linspace (ϕ0,ϕd , intervals) ,ϕd ]
} p [n]=[

x path [n]

y path [n]

ϕpath [n] ]
θ goal=atan2( yd − y0, xd , x0)⇒

V x=V max⋅cos (θ goal)

V y=V max⋅sin (θ goal)

T [n ]=max {
x path[n+1]−x path[n]

V x

,
y path [n+1]− y path [n]

V y

,
ϕpath[n+1]−ϕpath[n ]

ωmax

}

V [n+1]=
p [n+1]−p [n]

T [n]

We add an extra xd, yd, ϕd point in the end to set the final velocity to 0. The above algorithm 
has  also  the  advantage  that  by  increasing  or  decreasing  the  number  of  intervals  the 
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trapezoidal profile becomes sharper or smoother respectively, which affects the total time of 
the movement. Also, another advantage is that by adding points of a path into the xpath, ypath, 
ϕpath, instead of linear spaced points, we generate a path following algorithm, not just point 
to point path. But, the main disadvantage is that the algorithm is an off-line path generator 
and it does not take into account the localisation data of the robot.

Nonetheless, we manage to find a way to integrate the localisation data into the algorithm to 
calculate  corrections.  First,  we  calculate  the  accelerations  off-line,  as  described  above. 
Then, at the end of each T[n], we compare the desired position of the current T[n] calculated 
by  the  algorithm  with  the  current  position  calculated  by  odometry.  If  we  find  any 
discrepancies,  we  generate  acceleration  to  minimise  these  errors,  thus  the  algorithm 
becomes an online path generator with feedback from odometry.

At the end of T[n-1] and before the start of T[n] we calculate:

V [n+1]=
p[n ]− pcurrent

T [n]
⇒ A[n ]=

V [n+1]−V current

T [n]

Example  with  x0=20, y0=−40,ϕ0=−
π
2

, x goal=−30, y goal=20,ϕgoal=π , V max=3,

ωmax=0.2 , intervals=10 :

Fig 4.17 Robot's snapshot at t=0s
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Fig 4.18 Robot's snapshot at t=10s

Fig 4.19 Robot's snapshot at t=20s
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Fig 4.20 Robot's snapshot at t=30s

Following the same pattern as above we show the robot's snapshot each 10 seconds using 
the same symbols. Below are the figures of the robot's position in respect with time. The red 
line denotes the desired path calculated by the algorithm.

Fig 4.21 Robot's position
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The Joint Velocities produced by the Kinematic model are shown below.

Fig 4.22 Joint Velocities

The robot's velocities calculated by the inverse K matrix and the joint velocities are shown 
below.  Also  there  is  a  red  line  which  denotes  the  desired  velocities  calculated  by  the 
algorithm.
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Fig 4.23 Robot's Velocities

The figures above illustrate  that the robot complies  better  with this  algorithm. The task 
velocities are smooth with a trapezoidal profile and the robot travels at maximum constant 
velocity for the largest part of the movement following the profile with a few errors. The 
angular velocity is not maximum in respect to the value we set because the time frame is  
bigger than the one needed for the maximum velocity travelling. This is due to the fact that 
we choose the maximum time frame per event of all points (x,y, ). It is also noteworthy thatϕ  
the robot reaches the desired position at the same time it reaches the desired orientation.

Based on the above results and with the integration of the odometry data we have chosen to 
implement PVT algorithm on the robot. The lack of the need for obstacle avoidance has 
given us the opportunity to reject the Potential Force Field algorithm, while the Polynomial 
equation algorithm has been rejected for being an open-loop control algorithm.
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Chapter 5 

Hardware of the Robot

Each wheel of the robot consists of two stepper motors, two stepper drivers, an angle sensor, 
a micro-controller PIC and last but not least, the rubber wheel.

The θi variable, as described above, is actuated by the SOPROLEC 57HS09 stepper motor. 
The motor  is  wired in  a bipolar  parallel  connection to the TECHLF SMD8A microstep 
driver. The ϕi  variable  is actuated by the TECHLF 23H056-8 stepper motor. Again,  the 
motor is wired in a bipolar parallel connection to another microstep driver. Both drivers are 
then connected onto a micro-controller PIC that controls the speed and direction of each 
motor.

The cables which connect the devices are all mounted on the caster wheel, but the power 
cables have to come from the base of the robot. To ensure the full rotational ability of the 
wheel a slip ring is used.

5.1 Slip Ring

A slip ring is a method of making an electrical connection through a rotating assembly. It is  
a rotary coupling used to transfer electric current from a stationary unit to a rotating unit.  
This is  accomplished by either holding the centre  core stationary while the brushes and 
housing rotate around it, or holding the brushes and housing stationary while the centre core 
is allowed to rotate.  Slip rings can be used where electrical power or signals need to be 
transferred to a rotating device, like in our case.
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Fig 5.1 Slip Ring example

In this work two different slip rings were developed. The first was a simple slip ring only to 
transfer  the  power  to  the  wheels  and  powers  the  motors,  the  drivers  and  the  micro-
controller. Any other connectivity with the micro-controller has to be wirelless. It has only 
one cable, the VCC, passing through the slip ring. The GND is connected on the chassis of  
the  robot.  The second slip  ring,  with  5  cables  passing,  is  capable  of  establishing  USB 
connectivity with the micro-controller in addition to passing power. 

5.2 Microstep driver

The Microstep driver TECHLF SMD8A is a driver capable of controlling a stepper motor 
and therefore it is the connection between the micro-controller and the motor. The driver is 
connected as shown in the figure below. The phases of the motor are connected directly to 
the driver. The micro-controller has 4 connections:

COM: The ground of the micro-controller
CLOCK: The control signal generated by the micro-controller
DIR: Direction signal
ENABLE: Enable signal
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Fig 5.2 Microstep motor SMD8A pin diagram [Tech8A]

The driver sets the velocity of the motor according to the frequency of the CLOCK signal.  
The DIR signal sets the direction of the motor (1 one way, 0 the other way). The ENABLE 
signal is the on/off switch of the motor (0 on, 1 off).

5.3 Angle sensor

On the robot there are three angle sensors, one for each wheel. They are placed on top of the 
rotation axis of the wheel. The sensor consists of two parts. The first part is a small magnet 
that is placed directly on the rotation axis and it rotates with the axis. The second part is the 
austrianmicrosystems AS5045 chip. This is the actual sensor and is placed above the magnet 
mounted on the robot chassis. In this way the chip's rotation does not correspond to that of 
the robot.

Fig 5.3  AS5045 Angle sensor [Aust45]

The sensor is a contactless magnetic rotary encoder for accurate angular measurement over 
a full turn of 360°. It is a system-on-chip, combining integrated Hall elements, analog front 
end and digital signal processing in a single device. The sensor measures the rotation of the 
magnet which is relative to the chip's centre as shown on the figure above. The absolute 
angle  measurement  provides  instant  indication  of  the  magnet’s  angular  position  with  a 
resolution of 0.0879° = 4096 positions per revolution.
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5.4 Micro-controller PIC

The micro-controller PIC that is mounted on each wheel is responsible for controlling the 
two motors. It is connected to both drivers and it outputs different control, direction and 
enable signals for each driver. The control signal (CLOCK) is a generated square wave 
signal with specific frequency related to the desired velocity.

 Fig 5.4 Mirco-controller PIC pin diagram [PIC18]

Owing to the use of a slip ring, the communication between the computer and the micro-
controllers is either wireless or by USB depending on the slip ring we use. To add wireless  
communication ability to the micro-controllers we have used the ZigBee technology, which 
will be explained in a following paragraph.

5.5 ZigBee

To be able to have full rotary ability on the wheels using the simple slip ring but also have 
communication between the computer and the micro-controller, the communication must be 
wireless. So we have utilised the ZigBee technology. ZigBee is a specification for a suite of 
high level  communication  protocols using small,  low-power digital  radios for Low-Rate 
Wireless  Personal  Area Networks,  such as wireless  light  switches  with lamps,  electrical 
meters with in-home-displays, and consumer electronics equipment via short-range radio 
needing low rates of data transfer. The technology defined by the ZigBee specification is 
intended to be simpler and less expensive than other WPANs, such as Bluetooth. ZigBee is 
targeted at radio-frequency (RF) applications that require a low data rate, long battery life, 
and secure networking. In our application we have used the Digi XBee chip shown in the 
figure below.
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Fig 5.5  Digi XBee [XBee00]

The XBee chip connects to the serial interface of the micro-controller PIC. So the micro-
controller “sees” only a serial communication with a device, so it does not need any special 
programming, other than the typical programming with serial communication. The micro-
controller does not take part in the conversion of the wireless transmission to serial data. 
The  XBee  chip  does  not  need  any  programming;  in  fact,  it  makes  the  conversion 
automatically. So the micro-controller receives the data and commands like serial in data. 
There is an XBee chip at each micro-controller. Also there is a pair of micro-controller and 
XBee chip that connects to the computer by USB. This micro-controller receives the data 
and commands from the PC through USB communication and sends them as serial out data 
to XBee which then transmits them to the other micro-controllers.

A  problem  that  arises  with  XBee  communication  is  that  when  the  computer  sends  a 
command, every XBee receives it, so we cannot send commands or data to a specific micro-
controller.  A  solution  for  this  problem is  described  in  paragraph  6.1.1.  Also,  an  other 
limitation of XBee is that we can use it only to transmit or to receive data. We cannot use to 
for both. So we set the XBees of the wheels only to receive and the XBee of the computer 
only to transmit.
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5.6 Caster Wheel Assembly

Fig 5.6 Caster Wheel Module

Fig 5.7 Electronics on the wheel
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Fig 5.8 Other Caster Wheel Assembly

Fig 5.9 Top of caster wheel
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Fig 5.10 Slip Ring on robot
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Chapter 6 

Micro-controller Programming and User Interface

Based on the hardware described above, there are only two unique configurations. The first 
is with the use of the simple slip ring and the wireless communication between the computer 
and the micro-controllers. Due of the limitation of XBee only to transmit or receive data we 
have to use an other micro-controller to send the sensors readings to the computer by USB. 
This configuration is shown on the figure below and it is applied on the robot with the three 
wheels.

Fig 6.1 Connectivity configuration 1
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The second configuration uses the second ring slip and all communication is done by USB. 
This provides us with the capability to send and receive data to the micro-controllers and so 
to connect the sensors at each micro-controller and eliminating the use of an extra micro-
controller only for the sensors. This configuration is shown below and it is applied on the 
robot with the two wheels.

Fig 6.2 Connectivity configuration 2

The system is programmed to be able to function with both configurations, without the need 
for any modification.

6.1 Programming of PIC Micro-controllers

To create a program for a micro-controller PIC we use the framework called MPLAB of the 
Microchip Technology Inc. The program is written either in C or Assembly. In our case, the 
programs were written in C. Next, we have used the CCS C compiler to compile the C 
programs to hex files, usable for the micro-controllers PIC. Finally, to program the micro-
controller we have used the programmer PICkit3.

6.1.1 Control of Wheels

The basic functions that are necessary to be implemented are the serial/USB communication 
and the generation of two square waves of different frequencies. The data received by serial 

58



communication are 8-bit data and the data received by USB are 16-bit data. The generation 
of the waves is  done with the CCP1/CCP2 pins of the micro-controller.  The CCPx pin 
compares a set value with a micro-controller's  timer and when equal, it  toggles its state 
(0,1). This generates a square wave signal and the frequency can change by changing the 
value  that  is  compared  with  the  timer.  To  generate  two  square  waves  of  different 
frequencies we just have to compare the CCP1 and CCP2 to different timers.

Besides the functions we wanted to achieve, the main goal was to have a single program for 
all micro-controllers of the wheels without having to change the code. But we also had to 
deal with the problem described above, that the ZigBee data is received by everyone. The 
solution which was proposed, and in the end implemented, was that each PIC has a unique 
ID number define as a constant in the program. In this way, the computer transmits, with the 
rest  of  data,  the  PIC ID of  the  micro-controller  desired  and the  micro-controllers  upon 
reception checks if the ID corresponds with their own and only the micro-controller that has 
the same ID continues to process the rest of the data.

Fig 6.3 Wheel's Micro-controller PIC program algorithm using XBee

For the USB communication the use of PIC_ID is not necessary since each USB device has 
its unique Product ID. So each PIC only receives its own control data. Furthermore, when 
we use USB connectivity we have also the sensor attached to the micro-controller and its 
reading are send to the computer. The algorithm for USB connectivity is shown below.

Fig 6.4 Wheel's Micro-controller PIC's program algorithm using USB

The two programs can be fused, as the processing of data is independent on how the data is 
received and the methods for receiving the data do not affect each other. The program is 
able to detect which method of communication is used. Several functions were developed, 
others  for  testing  and  others  for  proper  functionality  of  the  robot.  The  functions  are 
characterised by a unique number which enables the computer program to choose which 
function  to  be  executed  by  sending  this  number.  The  list  of  functions  are  SetMotor, 
SetMotorX and SetMotion. SetMotor is used to turn on/off both motors controlled by the 
micro-controller, SetMotorX sets on/off only a specific motor chosen by the computer and 
finally SetMotion sets the velocity and direction of a specific motor chosen by the computer.
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The function SetMotion was designed to be used when the robot is in online mode (real 
movement),  but  a  problem with  the  computer's  program arose  when  we  used  wireless 
communication. The program could not send the commands for each micro-controller at the 
same timed event. The sending of the commands had to address all micro-controllers with 
the same transmission. So a new function was developed for this purpose. The function is 
global and has as a unique number a PIC_ID, and not a function number, to be able to be 
processed by all PICs with the same transmission. Specifically, a packet of 13 data (8bit) is 
transmitted as shown below:

data[0] = OnlineState //PIC_ID = 4
/* PIC_ID = 0 MOTOR = 0 */
data[1] = Direction 1bit & Velocity 7bit (MSB) 
data[2] = Velocity 8bit (LSB)
/* PIC_ID = 0 MOTOR = 1 */
data[3] = Direction 1bit & Velocity 7bit (MSB) 
data[4] = Velocity 8bit (LSB)
/* PIC_ID = 1 MOTOR = 0 */
data[5] = Direction 1bit & Velocity 7bit (MSB) 
data[6] = Velocity 8bit (LSB)
/* PIC_ID = 1 MOTOR = 1 */
data[7] = Direction 1bit & Velocity 7bit (MSB) 
data[8] = Velocity 8bit (LSB)
/* PIC_ID = 2 MOTOR = 0 */
data[9] = Direction 1bit & Velocity 7bit (MSB)
data[10] = Velocity 8bit (LSB)
/* PIC_ID = 2 MOTOR = 1 */
data[11] = Direction 1bit & Velocity 7bit (MSB)
data[12] = Velocity 8bit (LSB)

Each PIC, after checking data[0] for OnlineState, reads the specific set of data based on its 
own PIC_ID and sets the control of each motor. As shown above,the possible velocities of 
each motor are 32767 = 15 bit number. In the case of USB communication, OnlineState 
function received the data and assign them accordingly without the use of PIC_ID.

6.1.2 Communication with a Host Computer

The programming  of  the  micro-controllers  that  are  connected  to  the  computer  is  much 
simpler  than  the  programming  for  the  micro-controllers  of  the  wheels.  These  micro-
controllers are used only in the configuration with the wireless connectivity. It consists only 
of receiving or sending data from or to the computer respectively. A major deference is the 
USB connectivity which is realisable through specific libraries.

6.1.2.1 Sensors

The program for the micro-controller that reads all the readings of the sensors and sends 
them to the computer is very straightforward as seen in the figure below.

60



Fig 6.5 Computer's Micro-controller PIC program algorithm for sensor reading

6.1.2.2 Transmitter

The same applies to this micro-controller. At each time step the micro-controller receives 
data from the computer from the USB port and sends them to the serial port. Then the data 
are received by the XBee and automatically transmitted to all other micro-controllers.

Fig 6.6 Computer's Micro-controller PIC program algorithm for XBee transmission

6.2 User Interface

The biggest  part  of  the  programming  section  was  the  development  of  a  User  Interface 
program  that  would  give  the  user  the  ability  to  define  goals,  send  commands  to  the 
controllers and observe the movement of the robot. In addition, the program had to compute 
all  the  equations,  like  in  the simulation,  which include  the  calculation  of  the trajectory 
planning  algorithm  and  the  extraction  of  the  desired  velocities,  the  calculation  of  the 
odometry  data,  the  calculation  of  the  inverse  Jacobian  matrix  and the  extraction  of  the 
control signal to be send to the micro-controllers. Finally, the program had to communicate 
with the two micro-controllers attached to it, the transmitter and the sensor reader.

The programming language that was chosen to develop the User Interface is C# because it 
includes a ready USB library, which enables the program to communicate with the USB 
devices. Furthermore, C# is an object-oriented language that makes it very easy to create 
windowed programs with graphical interface. A sample of the program is shown below:
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Fig 6.7 User Interface  program

6.2.1 Initial & Current Position – Odometry

In these sections, the user can define the initial position of the robot and then, when the 
robot is moving, observe its current position, which is calculated by odometry. At each time 
step, odometry is calculated as described in paragraph 3.2. We calculate the robot's centre 
position relatively to each wheel and then take the mean value. The orientation of the wheel 
is calculated by adding the angular velocity each time step, which is calculated based on the 
joint velocities and the sensor readings.

6.2.2 Goal Position – Max Velocities

Here, the user can add or delete sets of goal positions (x,y, ) in a list. Also, he/she sets theϕ  
maximum  linear  and  angular  velocities.  When  the  Set  button  is  clicked,  the  program 
automatically computes the PVT algorithm, explained in paragraph 4.2.3, based on the first 
goal position in the list and the maximum velocities set by the user. After the robot starts the 
movement and when it reaches the goal position, the program checks the list for a next goal  
position so as to either compute the PVT again or stop the movement. When the program 
computes the PVT algorithm, it actually builds a path with a specific number of intervals  
between the current  position and goal position,  calculating the T, the velocities  and the 
acceleration for each time event (see 4.2.3).

6.2.3 USB Devices – Send Command – Motors

The USB Devices sections contains all the information required about the connectivity with 
the USB devices. It indicates the existence of a device along side with the PIC's online time 
and the sensors readings. The Send Command and Motors sections are activated only when 
the xBee PIC micro-controller is present and they are used to send individual commands or 
to turn on/off all of the motors. The Vendor and Product ID are numbers defined in the USB 
libraries used for the connectivity.
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6.2.4 Buttons

The buttons,  which  exist  in  the  program,  are  Connect,  Set,  Start,  Stop  and  Reset.  The 
Connect button calls the function to connect the program with the USB devices. The Set 
button sets the initial positions, initialises the odometry data, checks if there is at least one 
goal  position  and call  the  function  to  compute  the  PVT algorithm.  The Start  and Stop 
buttons starts or stops the movement of the robot respectively and they are enabled only 
when connection to the USB devices is successful and the Set button is clicked. Finally, the 
Reset button resets all configurations and clears the goal list. Therefore, after clicking the 
Reset button the user must re-enter the initial positions, add goals and click the Set button 
before restarting the movement of the robot.

6.2.5 OnTimedEvent

This is the main function of the program which is called on every time step. In the function,  
the  program  updates  the  odometry  data,  reads  the  sensors,  checks  the  PVT  data  and 
calculates the control signal. Then it sends it to the xBee transmitter. In addition, it updates 
several output texts to notify the user of the movement of the robot.
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Chapter 7 

Experiments

7.1 Versatility

The first cycle of experiments was to test the versatility of the system and the ability to 
control different robot configurations. At first we applied the system on a robot with three 
caster wheels. The configuration of the robot was as shown in Figure 6.1. So in total we had 
to  control  six  motors,  three  translational  and  three  angular  motors.  At  the  time  of  the 
experiment, the robot did not had sensors to measure the angles of each wheel. To overcome 
this, we set the initial angle of each wheel and then we integrated the angular velocity of 
each wheel to compute and estimate the angle of each wheel at each time step. The result 
was to have many errors in the direction the robot was moving relatively to the desired 
direction.

Fig 7.1 1st Robot's Chassis
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Despite the errors, the system was found sufficient to control the robot, to start/stop the 
motors, turn the wheels in the correct direction and to communicate  through Xbee. The 
trajectory planning algorithm and the odometry functioned properly, however, their results 
had errors that was produced by the lack of angular sensors.

Fig 7.2 1st Robot's Movement

The second robot that was used to test the system, was a robot with two caster wheels. The 
configuration of the robot was as shown in Figure 6.2. The robot was equipped with angle 
sensors for both wheels and slip ring that permitted USB communication.  So the use of 
Xbee was unnecessary. The system did not need to be modified extensively. The only two 
things  that  had  to  be  altered  were  the  kinematic  model  used  for  odometry  and  the 
computation of the joint velocities.  We had to subtract the lines  of the third wheel and 
change the dimensions of the robot. Finally, we chose the function to send the commands by 
USB. The system controlled the robot the same as before,  by starting and stopping the 
motors and turning the wheels in the correct direction. The communication by USB and the 
reading of the sensors were successful. The movement of the robot was more accurate than 
before, but errors were again obvious.
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Fig 7.3 2nd Robot

This set of experiments gave us the opportunity to study the versatility of the system to 
control robots with different configurations. This proves that the block programming of the 
system works and it gives us the ability to use it on different robots. But also it revealed to 
us difficulties we could come across and limitations we have to take into account. The most 
important limitation was the time interval between the calculation of odometry and new 
control signal to be send to the motors. The connectivity, USB or Xbee, introduced a delay 
of 30-40 milliseconds between calculations. If we set a smaller interval the communication 
blocked and the system would stop to function. The interval plays a big part also in the 
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calculation of odometry and it produces errors in the movement of the robot. These errors 
will be explained in the following paragraph.

Fig 7.4 2nd Robot's Movement

7.2 Velocity – Odometry

A second cycle of experiments is needed to determine the accuracy of odometry and also the 
proper translation of the velocity calculated by the computer's program to frequency of the 
input signal of the motor's drivers. The experiments for measuring the accuracy of odometry 
was not completed by the end of this dissertation. Due to problems at the fabrication of the 
robot,  the availability  of absolute  measuring system and the lack of time, we could not 
perform experiments  to evaluate  the methods used for odometry and the validity  of the 
kinematic model.

However, during the first cycle of experiments we had the opportunity to view how the 
odometry functioned and what factors affected it. The methods of odometry we used, as 
explained in previous paragraphs, are actually numerical integration of either the velocities 
of each wheel separately or the velocities of the robot's centre. The numerical integration 
has as fundamental element the time interval Δt between each calculation. We measure this 
interval and we use it to complete the calculations. But, this implies that during this interval 
the robot or the motors moves at constant velocity. This is not true, due to hardware and 
mechanical reasons, and it is one of the most important factors that introduce errors in the 
calculation of odometry. A second factor is the assumption that the velocities of the wheels 
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( θ̇ ) are respected. In reality, there is friction and slipping between the wheel and the floor 
or the expected acceleration is not met. This assumption is crucial for the localization of the 
robot using our methods of odometry and it makes them vulnerable to exterior interference 
and mechanical flaws.

The second part of this experiment was to calibrate the robots velocity, i.e.  translation of 
the velocity calculated by the computer's program to frequency of the input signal of the 
motor's drivers. For example, the computer's program calculates a needed velocity of a joint 
at 1 rad/s.  The micro-controller  PIC who controls the specific  motor of the joint has to 
produce a square wave to make the motor to rotate at 1 rad/s. So we have to find the relation  
between the rad/s calculated and the frequency of the square wave. The simplest way to 
achieve  this  was  to  perform  a  specific  movement  that  was  measured  in  advance.  The 
movement was a forward movement of 1 metre. We marked 1 metre on the floor and we 
made the robot to move on the line. Each time, we multiplied the computed velocities with a 
coefficient  and  we  noticed  where  the  robot  would  stop.  We  corrected  the  coefficient 
accordingly and we repeated the movement,  keeping every other  factor  constant  (ie the 
angle of the wheels, initial point). After finding the coefficient that made the robot to move 
exactly 1 metre, we tried other maximum velocities to see if the coefficient would worked at 
all range of the computed velocities.
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Chapter 8 

Conclusion – Future Work

8.1 Conclusion

In this work, we researched the domain of mobile robotics and we dealt with various aspects 
of a robotic system, the theoretical  formulation of kinematics models and path planning 
algorithms, the electronics and the hardware for motion control, the robot programming, 
communication  and  user  interface.  Each  aspect  plays  its  role  for  the  control  a  robot. 
Particularly,  we  dealt  with  omni-directional  robots.  We  found  out  what  is  an  omni-
directional robot and what wheels can give to robots omni-directional ability. We chose to 
deal  with  omni-directional  robots  with  caster  wheels  for  reasons  explained  above.  We 
analysed the hardware design of the wheels and the means we used to be able to control  
them.  This  gave  us  the  opportunity  to  get  in  touch with micro-controllers,  sensors  and 
electronics  and  ways  to  communicate  among  them.  Lastly,  we  dealt  with  issues  of 
programming  computer  and  micro-controllers  and  developing  a  general  system  for 
controlling this kind of robots.

While researching the bibliography on omni-directional robots, we discovered that caster 
wheels provide us  advantages such as   immunity to road conditions and uneven floors. 
Enhancing our research on omni-directional robots with caster wheels we found kinematics 
models and localizing methods based on odometry. Watching the similarities between the 
kinematics model and also their versatility to adapt to several configurations we came up 
with the idea to developed a system that could adapt and control these robots. A system that 
would be independent of the configuration of the robot and implement  these kinematics 
models and localizing methods. The system would consist not only of a computer program, 
but also of electronics, sensors, micro-controllers and motors. So, we were led to develop a 
protocol for the design of the wheels and for the communication of the micro-controllers 
with the computer.  By respecting this  protocol,  we can develop many configurations  of 
robots and be able to control them with the same system.

The system we developed is able to control many configurations of omni-directional robot 
with caster wheels with just a few modifications of the kinematic model. Having a system to 
control  this  kind  of  robots,  we  can  develop  robots  with  different  objectives  without 
worrying about their control. Like our case, the robot with the three wheels, which is used 
for conducting the experiments, is developed for transporting a human while the robot with 
the two wheels is used for collecting small items. Both robots can use our system for motion 
control (in the second case an other program is needed for controlling the collection of the 
items).

Certainly,  further  work  is  needed  to  improve  the  accuracy  of  the  movement.  The  few 
experiments that were performed, validate the versatility of the system to control different 
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configurations of robots but reveal also errors in the localization when performing a more 
advanced movement. While the system computes that the robot has reached the desired goal 
position, that is not true. The errors are noticeable even with a naked eye and without the 
need of a sophisticated measuring system. But the advantage of this system is that this is just 
a small component of the whole system and it is the only item that has to be modified and 
improved. The rest of the system will be left intact. Furthermore, this gives the opportunity 
for further research on specific  components of the system, such as the motion planning 
algorithm, thus improving the system but without the need for developing a new one.

8.2 Future Work

Now that we have a complete system for controlling omni-directional robots with caster 
wheels we need to focus on finding better localization and trajectory planning algorithms. 
Even from the little experiments done to test the odometry methods that were developed in 
this work, it is clear that we have to search either to improve the accuracy of these methods 
or to find better, more independent ways for localization. For improving the accuracy of our 
methods,  encoders  will  have  to  be  installed  on  the  wheels  so  we  would  have  the  real  
velocity  of  the  wheels  and  not  to  assume  it  is  same  as  the  velocity  computed  by  the 
program.  Furthermore,  the  computer's  program  has  many  possibilities  for  improving. 
Different configurations of robots can be saved as files and the user can select which to load 
at the start of the program.

An other aspect that is worth researching is the enhancement of the kinematic model and the 
development of the dynamic model of the robot. The dynamic model will give us the ability 
to better control the robot, overtaking errors due to the slipping of the wheels.

The motion planning algorithm is a crucial part that has to be improved. Even thought the 
PVT algorithm is a good path generator, it consists of a list of points that it connects them 
with straight lines. To create a more complex movement, we would have to create a large 
list of points, close to each other. A path planning/following algorithm is more suitable for 
this purpose.

Currently, a visual localization system is developed, for localizing the robot using a camera 
and known visual landmarks. This method is entirely independent from the robot and its 
characteristics. It will provide to the robot coordinates that will be used to determine its 
movement,  like  odometry.  But,  this  system  has  also  limitations,  as  it  needs  a  specific 
bounded workspace to function.
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