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Amayopevetan 1 avIrypaet], amofKeLGN Kot SLOVOUT| TG TOPOVCAS EPYAGIAS, €&
OAOKAN POV 1 TUHOTOS OVTNG, Y10l EUTOPIKO okomd. Emtpémetar n avatdnwon, anobrjkevon Kot
dtovopn Yo 6KOTO UN KEPOOCKOTIKO, EKTALOEVTIKNG 1| EPEVVNTIKNG PVONG, VIO TNV TPoLTOHEoN
VoL OVOPEPETOL 1] TTNYT TTPOEAEVLOTG KOt vaL dtatnpeitat To Tapdv ppvopa. Epotipata mov
apOPOVV TN YPNOT TNS EPYACIAG Y10 KEPOOOKOMIKO GKOTO TPEMEL VO ameLOVHVOVTAL TPOG TOV
oLYYPaPEN.O1 amOYELS KoL TO GUUTEPAGLLATO TOV TEPLEXOVTAL GE AVTO TO £YYPAPO EKPPALOVY
TOV GUYYPAPEN KO OEV TPETEL VAL EPUNVELDET OTL AVTITPOCOTELOVY TIG EMioNUES BECELS TOV
EBvucov Metoofrov TToAvteyveiov.



Iepiinyn

Avtikeipevo ™G Topovoag SIMAMUOTIKAG EPYACIOG omoTeEAEl 1| HEAETN Kot 1 ovAmTLuEn
evog dwoyeplotn Topwv evog Ioiv-TTvpnvov Xvothpatoc-oe-Pneido (Multi-Processor-System-
on-Chip, MPSoC) mov ypnowomotei diktvo dtaocvvdeong (interconnection network, ICN) tomov
apyrtektovikng Awktoov-ce-Pnoeida (Network-on-Chip, NoC). H epyacia emikevipdvetor otnv
avamtoEn evog ahyopiBpov mov €xel OKOTO TOV VLTOAOYIGUO TNG KOTE TO OLVATOTEPO
amod0TIKOTEPTG XOPTOYPAPNONG 6TOV YPOVO ekTELEST|S (fUn-time mapping) twv Slepyacidv piog
EPOUPUOYNG TOV TPOKELTAL VO, EKTEAECTEL GTO €V AOY® GUGTNLLOL, TPOKEUEVOL VO EAOYLOTOTOIEITO
M KATOVAAWDGT EVEPYELNG KO VO, LEYIGTOTOLEITOL 1] 0TGO0GT TOV GLGTHOTOG,.

>10 ke@aAailo 1, mapovoidloviar ta Pacikd yopaKTNPIGTIKA Kot 0 TPOTOG Agttovpyiog
evog Awtvov-ce-Pnoeida. [Mapovoialetar 1 évvola ™G YopTOYPAENONG MO EQOPUOYNG Kot
avaAvovTol Evvoleg Tov Oa ¥pNOLUOTOI0VVTAL GTNV GULVEXELX, OTMG TO. OLOYEVY] KOl ETEPOYEVN
Aiktoa-ce-¥neida, 0 YpAeoc TV SlEpyacidv Piog EQapPROYNG KAT.

210 KePAAMO 2, TOPOoLGLALOVTAL 01 KOPLPAIEG GTOV YDPO TOVG GYETIKES EPYOCIES OV
0GYOAOVVTOL LLE TNV XAPTOYPAPNOT| GTOV XPOVO eKTEAEONG. AlveTan ELPACT GTNV KOWVOTOUO 10€0
¢ kobepiog Kot 610 TEAOC TOV KePoAaiov yiveTal pio GUVORTIKY GUYKPLon HeTadl Tovg.

Y10 kepdroo 3, meprypdpetar 0 aAYOpPIOLOG VTOAOYIGHOD NG YOPTOYPAPNONG GTOV
YPOVO EKTEAEOTG TTOL avoTTUYONKE Kol VAOTOMONKE oTOL TAAICIO TNG SUTAMUOTIKNG EPYACIOS.
AvoAddetar e 000 OKEAN, TO TPOTO OVOPEPETOL GE OUOYEV] KOl TO OEVTEPO GE ETEPOYEVN
GLGTNLOTAL.

>10 Kepdlowo 4, yivetar apyikd Topovsioot TG TAATEOPLAS TOL YPNOUOTOmONKE Y
v e€aymyn OMOTEAECUATOV KOl GTNV CLVEYEWL GLYKPIVETOL O VAOTOINUEVOS OAYOpIOUOC pe
GAiovg state-of-the-art adyopifuovg.

210 KePAAOO 5 OVOKEPOAOIOVOVIOL TO GUUTEPAGUOTO TNG OMA®UOTIKNG, KOl
napovctaloviot Kamota OEpata Kot 1OEEG Yo OlepeHVNOT KOl LEALOVTIKT] £PEVVAL.
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Abstract

The purpose of this diploma thesis is the design and implementation of a run-time
resource manager for a Multi-Processor System-on-Chip (MPSoC) that utilizes the Network-on-
Chip (NoC) architecture. The thesis focuses on the implementation of an algorithm that aims at
computing the best possible mapping on run-time, for the tasks of an application that is going to
be executed on the system, in order to minimize the energy consumption, while maximizing the
performance of the system.

In chapter 1, we make an introduction on the basic characteristics and functions of a
Network-on-Chip. We present the concept of application mapping and analyze terms that will be
needed in the following, such as homogeneous and heterogeneous Networks-on-Chips, the
Application Task Graph etc.

In chapter 2, four published works of state-of-the-art run-time mapping algorithms are
presented. Emphasis is given on the innovative contribution of each paper and a comparison
between them concludes the chapter.

In chapter 3, the run-time mapping algorithm that was developed as part of this thesis is
described. It is analyzed in two parts, each of which deals with homogeneous and heterogeneous
systems respectively.

In chapter 4, initially the platform used for the experimental results is presented and
following is the comparison of our Run-Time Mapping algorithm with other state-of-the-art
algorithms.

Finally in chapter 5, we summarize the conclusions of the diploma thesis and present
some topics and ideas for future work and research.

Keywords
System-on-Chip, Multi-Processor System-on-Chip, Network-on-Chip, run-time mapping, Energy
consumption minimization
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Chapter 1

1.1. Introduction

Recent advances in VLSI technology have made the transition from single-core
architectures to multi-core ones imperative. The level of integration allows us to have several
Processing Element (PE) units in one chip and thus manufacturers tend to integrate more
elements, in order to achieve highest performance and to satisfy the more and more demanding
applications in the market. According to Moore’s law (fig. 1.1), it is not unlikely to see
thousands of processors in a single chip in the recent future. That being said, it is evident that the
communication between these processors cannot be efficiently carried out by the traditional
communication buses without serious bottleneck issues, or point-to-point communication
without serious space and energy waste. The cost of computation, which used to be more
expensive than the cost of communication, is now in fact much cheaper and on-chip
communication is becoming a major concern on manufacturers, since it encounters fundamental
physical limitations. On-chip wires do not scale in the same manner as transistors do and the cost
gap between computation and communication is getting bigger. The solution to this problem lies
in the Network-On-Chip (NoC) architecture.
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1.2. Network-On-Chip

NoC is a new approach to the System-On-Chip (SoC) model and specifically Multi-
Processor-System-On-Chip (MPSoC), which uses elements of Computer Networks for on-chip
communication. A NoC consists of several Intellectual Property (IP) blocks, but instead of
classical bus-based or point-to-point communications, a more general scheme is adapted,
employing a grid of routing nodes spread across the chip. On every IP-block on the grid, a router
is present, much like in computer networks, in charge for every data transaction from that node,
even if it’s not destined to the adjacent tile. Pros and cons of NoC over a data bus are shown on
Table 1.1.

Bus Pros & Cons Network Pros & Cons
. . Only point-to-point one-way wires are used,
Every unit attached adds parasitic yp P . y
. . for all network sizes, thus local
capacitance, therefore electrical - |+ .
. performance is not degraded when
performance degrades with growth. i
scaling.
Bus timing is difficult in a deep . Network wires can be pipelined because
submicron process. links are point-to-point.
Bus arbitration can become a . . . )
o Routing decisions are distributed, if the
bottleneck. The arbitration delay - |+ .
i network protocol is made non-central.
grows with the number of masters.
o - The same router may be re-instantiated, for
The bus arbiter is instance-specific. - |+ y .
all network sizes.
e . Locally placed dedicated BIST is fast and
Bus testability is problematic and slow. | - | + yp
offers good test coverage.
Bandwidth is limited and shared by all N Aggregated bandwidth scales with the
units attached. network size.
Bus latency is wire-speed once arbiter L Internal network contention may cause a
has granted control. latency.
Any bus is almost directly compatible Bus-oriented IPs need smart wrappers.
with most available IPs, including + | - | Software needs clean synchronization in
software running on CPUs. multiprocessor systems.
The concepts are simple and well L System designers need reeducation for new
understood. concepts.

Table 1.1: Pros & Cons of Bus and Network for on-chip communication [1]

As shown on this table, the biggest advantage of a Network instead of a Bus is the fact
that it scales much better as more Intellectual Property blocks are included on larger systems.
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The Bus becomes a bottleneck for the system, and its arbitration and testability slows down the
whole system and the problem worsens as the number of masters increases. On the other hand,
the network offers distributed computation of the routing and pipelining on the network wires,
thus decongesting otherwise communication heavy areas. The Cons of the network lie on the fact
that the IP blocks used are designed for bus-oriented communication and thus need to be
rendered able to communicate in a network. In a similar manner, designers need to adapt to new
concepts as well, but this will only be an issue, as both new IP blocks will be oriented towards
network communication and SoC designers will respond to the new technological needs.

On comparison to Computer Networks, the NoC consists of the following components:

e Cores are Intellectual Property (IP) blocks, usually processors of any kind, containing
some local memory. Can also be referred as tiles of the NoC.

e Network Adapters implement the interface by which the cores connect to the NoC.

e Routing Nodes are components similar to the routers in Computer Networks. They are in
charge of applying the chosen routing protocols.

e Links connect the routing nodes, thus providing communication between them, via one or
more physical or logical channels.

The Routing Nodes and the Links of the NoC consist the network in which the cores are
connected. An example of a 4x4 mesh topology NoC is shown in fig. 1.2.

[—— Core

Ve / % Cg{)‘—_ Network Adapter
V& V&« Routing Node

[— Link

Figure 1.2: Example of a 4x4 NoC in mesh topology [1]
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The cores communicate with each other as depicted in figure 1.3. The source core creates
a message that needs to be delivered to the destination core. This message goes through the
network adapter of the source core, which decides the destination, as the core itself isn’t aware of
the network, as will be made clear later on. Then the communicated data is forwarded to the
core’s routing node which, according to the destination, routes it towards any intermediate
routing node, which does the same thing. Once the destination node is reached, the data goes in
the opposite direction, from the router to the network interface and finally to the destination core.

Research area OSl layer

Source Destination Application/

System messages/ Presentation

e We———___lransactions ——————" .

Network r:\lgtwork Session/

Adapter Ada ff_r_______. packets / streams ﬁ_._____,a prer Transport

Network Network

Link Link Link Link/Data

flits/phits
Figure 1.3: Communication between two cores.

1.2.1. Homogeneity and Granularity

As long as the type of cores on the NoC is concerned, the NoC can be characterized by its
homogeneity and granularity. Thus, it can be homogeneous if all the cores belong on the same
PE type and heterogeneous if more than one types exist on the same chip, just like the names
suggest. For example, a homogeneous NoC can consist of processor tiles with local memory, and
a heterogeneous one can include any of the following: processor-memory tiles, pure processor
tiles, digital signal processors (DSP), memory tiles or even reconfigurable tiles like FPGAs.
Furthermore, it can be coarse or fine grained, depending on the number of cores per surface.
These options give NoCs increased flexibility and higher degree of variety over Computer
Networks, which are mostly homogeneous and coarse grained. Examples of such NoCs are
presented in fig. 1.4.
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fine grained

r 3

v

coarse grained

DI:IDDI:ID I I
[ ] DEDDH I
O—-J=—0] 0000000
HD]D — 0000000
FoHlTE |HeHEEee
mimi= Dﬁgﬂ 0000000
[]

hetero?;eneous homoge.—;'\eous

Figure 1.4: Effects of different degrees of homogeneity and
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1.3. Network layers

A great advantage of NoCs lies in the readily accessible ideas of macro-networks, and the
usage of nearly 50 years of research and work in the field of computer networking. That being
said, based on ISO’s Open System Interconnection (OSI) model, NoC’s protocol stack comprises
of the following 4 layers [1, 3]:

e The System layer involves solely the communication between the cores (conducted in
messages or transactions), as well as their synchronization.

e The Network Interface Layer decouples the cores from the network and handles the end-
to-end flow control, encapsulating the messages of the cores into packets or streams, to
be sent via the network. This is the first level that is network-aware.

e The Network Layer consists of the routing nodes, links etc. defining the topology and
implementing the protocol and the node-to-node control.

e The lowest level in the model is the Link Layer that involves the physical connection
between the routing nodes, and the synchronization needed.

The NoC protocol stack can be seen in fig. 1.5. Shown in this figure is also the correlation with
the Application Programming Interface (API).

Block-Transfer,
Object FIFO put/get,
Load/Store,

Layer

Link Layer

— A . _—

= =

Layer Level APl Type
Figure 1.5: NoC layers and connection with the API [3]
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 Message  Network Interface

Hello Wolrld! Layer View
Packet

i UL Pavload Network La_yer

Header ID _Wo| gt View

i
In-band ‘Llr ld|! Link Layer
Out-of-band {|H|B|B|B[T View

Figure 1.6: Decomposition of messages into packets and flits [3]

As depicted in figure 1.6, the data transactions on each layer take place with different
data structures. The cores communicate with messages, which get decomposed into packets on
the Network Interface Layer. The packets have a fixed size, and consist of a header containing
routing information and the payload, which is the piece of the message they carry. When packets
are ready to be transmitted in the link layer, they are further decomposed into pieces called flits
or phits, which are physically transmitted through the wires. Flits are of different types, such as
header (H), body (B), tail (T) and are transmitted out-of-band.

Following, each layer is further explained:

1.3.1. System Layer

The System Layer is the Application Programming Interface (API) that allows every node
to communicate through the NoC. It encompasses applications (tasks or processes) and
architecture (cores and network), and involves the data transactions and the synchronization
between the cores, via messages or transactions. It also constitutes an interconnection between
the IP-block and NoC'’s local protocol. This way, most of the network implementation details are
hidden at this layer, introducing a level of abstraction, effectively hiding the hardware.
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1.3.2. Network Interface Layer

The Network Interface Layer involves the NoC’s Network Adapters (NA). Their purpose
is to interconnect the adjacent core to the network, while decoupling them and ensuring the
network remains hidden from the system level. Thus, they are responsible for
encapsulation/decapsulation, QoS management and NoC control services. The messages or
transactions of the cores are broken into packets that contain routing information, or streams
which do not, but have a path setup before transmission.

ATTACHED
CORE

- :
SWITCH

FRONT END
BACK END

Figure 1.7: General network adapter [10]

As shown in figure 1.7, the Network Adapter implements two interfaces, the core
interface, attached to the adjacent core and the network interface attached to the network switch
or the routing node. The level of decoupling of the core from the routing node may vary. A high
level of decoupling allows for easy reuse of cores, giving the designers great flexibility. On the
other hand, a lower level of decoupling, that is a more network aware core, has the potential to
make more optimal use of the network resources.

1.3.3. Network Layer

The purpose of the Network Layer is to pass portions of the cores’ messages (called flits
or phits) from a source core to a destination core. Ideally, the network should appear to its clients
as simple point-to-point wires transporting data. In reality, routers (fig. 1.8) are used to forward
data from one core to another.
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Injection Ejection
Channel Channel
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Figure 1.8: Typical structure of a NoC router [3]
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The network layer is defined mainly by its topology and routing protocol used. The
topology determines the layout of the connections between the nodes and the links. Topologies
are characterized as regular and irregular ones. Some regular topologies are presented in fig.
1.9. The most used one is the mesh topology.

R——O—®
O—F—R®—D 40
®— 00— —0 o0
——Q— é@\g@

(@) Mesh (b) Torus (c) Binary Tree
Figure 1.9: Regular forms of topologies [1]

The term irregular topologies is used to describe a free topology in which each node, including a
router and one or more IP blocks, is possible to have a link with as many other nodes as desired
by the designer. They can be created by either combining regular ones (figl.10b), or using
arbitrary connections between the nodes (figl.10a), usually in order to take advantage of the
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concept of clustering. They are intended for use in application specific purposes, contrary to
regular topologies, that are intended mainly for general-purpose use.

¥ & X
X———
&X—&

%Y

(a) Irregular Connectivity (b) Mixed Topology
Figure 1.10: Irregular topologies

The routing protocol is the rule that determines the path the data will follow in the
network from a source node to a destination node. The protocol can be classified as following:

e Circuit switching which involves the setup of a circuit from the source node to the
destination node, that is reserved until the data transfer is over, or packet switching which
involves the forwarding of packets (that contain data plus routing information) on a per-
hop basis.

e Connection oriented where there are dedicated paths for each data stream, or
connectionless where the path is determined dynamically for each data packet.

e Deterministic routing in which the path depends only on the source and destination tiles’
coordinates, or adaptive routing where the routing path is determined on a per-hop basis
according to the links’ availability.

e Minimal or non-minimal whether or not the shortest path is always chosen.

e Delay or loss models. In the delay model, packets are never dropped, even if they are
overdue, while in the loss model the packets can be dropped and be requested to be
resent.

e Central or distributed control of the routing decisions.

The most common routing protocol that is used on NoC platforms is the XY-routing
protocol. XY-routing is a dimension order routing protocol that suits well on networks using
mesh or torus topologies, where the addresses of the routers are their Cartesian coordinates [4].
The protocol routes packets first in the x-axis (or horizontal direction) to the correct column and
then in the y-axis (or vertical direction) to the receiver. An example on a 4x4 mesh-topology
NoC can be seen in fig. 1.11.
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Figure 1.11: XY routing from router A to router B. [4]

1.3.4. Link Layer

The link layer deals with the point-to-point links between two neighboring routing nodes. These
links consist of one or more physical or virtual channels. This layer abstracts many circuit-level
and physical implementation details from the higher layers of the NoC to which it only exposes
its atomic transaction the flit or phit. It deals with the following issues [3]:

e Globally Asynchronous Locally Synchronous (GALS) paradigm: With high clock
frequency, the clock wavelength needs several cycles to traverse a whole chip. Therefore,
synchronization throughout the entire chip is not possible. In order to cope with this
problem, it is envisioned that there will be synchronous islands on a chip, connected via
an asynchronous communication backbone.

e Wire driving: since the capacitive load is low, circuit techniques such as low-swing can
be used to reduce the energy consumption on the wires.

e Serialization: Bit serialization of packets allows lowering the voltage of the link, hence
lowering the energy consumption.
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e Bus encoding: It has been proposed for on-chip communication in order to lower the
power consumption per communicated bit, while simultaneously maintaining high speed
and acceptable noise margin.

e Wire pipelining: Pipelining in the point-to-point wires between the routing nodes may be
needed on high clock frequencies.

e Flow control: It is performed at the link layer, for instance in case the flow of data
towards a saturated router needs to be suspended due to a full buffer. Moreover, flow
control at the link layer involves the concept of virtual channels.
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1.4. Run-Time Mapping

The concept of NoC MPSoC poses a new problem for the designer: Calculating a cost
efficient mapping for a given application in a short amount of time. The application comprises of
tasks being executed in parallel, on different cores of the NoC. The term mapping refers to the
correspondence of each task on a different tile of the NoC to be executed, so that a cost function
is minimized. An example of a mapping can be seen in fig. 1.12. It is of the outmost importance
that the mapping happens in a short amount of time, so that the tasks can begin being executed,
as soon as possible since a request has been made from the Operating System.

— Mapping?.
t12 1134";,14...;15

Tile _ . —Routing?.. __ DSP}™7=
s t 0 4 -1?1’ ? ~
Network ATl |
Logic || w4 || 15 || et apping+Routin
ogie | ¥ ||__Mapping g .

—
Mapping?
t0 t1 t2 t3 PPING? e

Tile-based Architecture Communication Task Graph
Figure 1.12: lllustration of the mapping/routing problem [11]

1.4.1. The Cost Function

The Cost Function may involve any performance metric needed to be minimized or
maximized in order to achieve a good utilization of the platform’s resources. That means that it
can either be oriented towards minimizing energy consumption, or maximizing performance.

The first is wanted in embedded systems, where the power source and energy
consumption of the system are a major concern for the designer. This is achieved in various
ways, such as mapping tasks with heavy communication between them close to one another or,
in case of heterogeneous platforms, mapping a task to a tile of the most energy efficient type.

On the other hand, a performance-oriented mapping tries to map every application on a
tile of a type that it will be executed faster. Depending on the system’s utility, having a balance
between minimizing the energy consumption and maximizing the performance is often the
problem in question.
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1.4.2. Application Task Graph

In order to fully exploit the NoC’s capabilities, the applications that run on it are divided
in tasks that are executed in parallel. Tasks are portions of the application’s code, usually with
different resource requirements from each other. Each task is mapped on a different tile of the
NoC, and inter-task communication takes place as part of the NoC’s system layer. Due to this
communication between the tasks, data dependencies occur, when one task utilizes data created
in another task. Communication between tasks that are being executed in different rate can’t be
represented by data dependencies, since there isn’t a one-to-one correlation between data derived
from the source task and data needed in the destination task. A set of tasks with data
dependencies is known as a task graph [5].

The Application Task Graph (ATG) is a directed graph G = (T, F), where T is the set of
all tasks t; of an application, and F is the set of data flows fi; from task t; to task t;. An example is
shown in fig. 1.13.

Figure 1.13: A simple ATG

The nodes of the task graph represent the tasks, while the flows represent some form of
communication and data exchange between them. The weight of the flows can be any defining
metric of the communication, for instance bandwidth required, latency, or cycles.

The ATG is the result of the application’s profiling, and presents the information needed
to describe the communication between the tasks. Thus, along with information about the tasks
resource requirements and information about the NoC, the ATG is used as an input to the
mapping algorithm.
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1.4.3. Run-Time and Design-Time Mapping

Design-time decisions can often only cover certain scenarios and fail in efficiency when
hard-to-predict system scenarios occur. This drives the development of run-time adaptive
systems. Real-time applications are raising the challenge of unpredictability. This is an extremely
difficult problem in the context of modern, dynamic, multiprocessor platforms which, while
providing potentially high performance, make the task of timing prediction extremely difficult.
The more complex a system grows the more it must be able to handle those situations efficiently.

Same principles apply for the decisions made in mapping. A run-time mapping is needed
in order to move resource allocation out of design-time and its constraints. This way, a higher
degree of flexibility is introduced on the platform. A design-time mapping just can’t have the
same amount of information and thus can’t produce the best result. In fact, run-time mapping
offers a number of advantages over design-time mapping. It offers the possibility:

e To adapt to the available resources. Those vary over time, due to applications running
simultaneously. Run-time information can be incorporated to further reduce the cost of
running an application.

e To enable unforeseeable upgrades after first product release time, e.g. new application
and new or changing standards.

e To avoid defective parts of a SoC. Larger chips mean lower yield. The yield can be
improved when the mapping algorithm is able to avoid faulty parts of the chip. Also
aging can lead to faulty parts that are unforeseeable at design-time.

The only downside of a Run-Time mapping is the extra time it adds to the execution of an
application, since it is executed between the request from the OS and the actual execution of the
tasks. Hence, it is crucial that the mapping is calculated fast, so that it is transparent and doesn’t
burden the system.

1.4.4. Distributed and Centralized Mapping

Apart from defining the moment (run-time or design-time) the mapping occurs one must
also define on which tiles the mapping algorithm will be executed. Therefore, mapping can be
either Centralized or Distributed according to the strategy that selects cores to perform the
mapping algorithm.

Centralized mapping utilizes one or a small set of cores, Centralized Managers (CM), to
perform the mapping for every application that arrives. These cores then decide the mapping for
the whole system. This mapping scheme may cause the following problems [6]:
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e Larger volume of monitoring traffic. During the mapping, since it is performed on run-
time, the Centralized Manager needs to collect data from the whole chip, which causes
traffic on the wires, possibly stalling the execution of already running tasks.

e High computational cost to calculate the mapping for the whole chip at once.

e Single point of failure. If the Centralized Manager fails for some reason, the mapping
can’t be performed at all.

e The Centralized Manager becomes a point of hot-spot as every tile sends the status of the
PE to it. This increases the chance of bottleneck issues around the manager.

e Scalability issues. As NoCs will grow in size, and more Processing Elements will be
added, the computational effort of mapping and the traffic it will create will increase
exponentially, thus rendering the computation very expensive and the scheme ineffective.

Distributed mapping on the other hand is designed to tackle these challenges. On this
mapping scheme, the effort of the computation is distributed, as the name suggests, on several
tiles across the chip, Local Managers (LM), and they may even change from one mapping to the
next. This way, the problems of the problems of the Centralized mapping are solved as
following:

e Less monitoring traffic. The Processing Elements only need to send the data to their
closest Local Manager, and this way they travel less on the chip.

e The Local Managers only need to perform the mapping computation for the area of the
chip they are responsible for, or for some designated tiles. This way the computation
demanding problem is divided in less demanding ones.

e There are no issues of single point of failure or hot-spots, since the smaller portions of the
computation can be performed on any tile.

e |t scales very well with larger NoCs, since all that is needed is some more light-weight
Local Managers, whose individual computation effort isn’t increased.

Examples of centralized and distributed mapping are depicted in figure 1.14. In each of
the two NoCs the manager or managers have been marked in the region they are responsible for.
In figure 1.14a, the manager is responsible for mapping on the whole NoC. That means, that the
manager has to communicate with all 15 tiles every time a new mapping is needed and
consequently compute the best mapping taking into consideration the whole platform.

On the other hand, on the NoC depicted in figure 1.14b, the managers are responsible for
3 tiles each, and compute the mapping for 4 tiles at a time. This way both the data
communication and the computational effort are reduced. In addition, more than one mappings
could be computed simultaneously. The only downside is the synchronization needed between
the managers, but it is trivial compared to the advantages.

28



Chapter 1

1 1

manager

| |
(a)

manager
| 1

manager
| |
1 1
manager
| |
| |
manager
L I
(b)

Figure 1.14:Examples of centralized and distributed mapping.
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2. State-of-the-art Run-time mapping algorithms

Research on run-time mapping for NoCs has been extensive and several algorithms have
been published. In this chapter we briefly introduce four representative state-of-the-art works.

2.1. ADAM: Run-time Agent-based Distributed Application Mapping for on-chip
Communication [6]

The authors of [6] propose a run-time distributed mapping scheme oriented to reducing
the energy consumption and minimizing communication traffic in heterogeneous MPSoCs with
NoC. The main idea is that in order to achieve the distributed computation of the mapping, the
platform is partitioned in virtual clusters and computation of the mapping on each cluster is
performed individually.
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Fig. 2.1: Flow of the ADAM algorithm.

More specifically, a cluster is a subset of the set of tiles of the NoC. Its boundaries are not
set and may change at any time, including more tiles, or excluding previously owned tiles. One
of the cluster’s tiles is selected to act as the cluster agent. An agent is a computational entity
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which acts on behalf of others. The cluster agent specifically, is an agent that is responsible for
mapping operations within its cluster.

Along with the cluster agents, there is another agent, the Global Agent. This particular
agent stores the information for performing the mapping on any cluster. It is designed to be
lightweight and easily movable, so that it can be hosted on any PE of the platform.

The flow of the ADAM algorithm is shown on fig. 2.1. When a new mapping request is
received from any tile, the Cluster Agent of the tile’s cluster communicates with the Global
Agent, indicating the request. At this point, the Global Agent performs the Suitable Cluster
Negotiation Algorithm, which finds a cluster capable to fit the whole application. The Suitable
Cluster Negotiation Algorithm checks if there are enough free tiles in every PE type and resource
requirement class for all the tasks in the application. In case no cluster is able, task migration
occurs (taken from [7]), moving already running tasks to different tiles. If still no cluster is
capable of hosting the application, the last resort is the re-clustering (fig 2.2), a process in which
the clusters change in shape and possibly in number to better accommodate both the already
running and the new applications.

After a cluster that can host the application has been found, that cluster’s agent is
responsible to perform the Run-time Mapping algorithm in which every task is appointed to a tile
to be executed. This algorithm calculates the best tile for each task using a heuristics, checking
the tile’s position in the cluster (tiles near the center are preferred), the volume of communication
on the tile before and after the mapping and the resource requirements for the task to run on any
tile.

The great advantage of this mapping scheme lies on the concept of clustering and the low
monitoring traffic, making it efficiently scalable on bigger NoCs.
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Figure 2.2: The re-clustering process of the ADAM algorithm

2.2. Centralized Run-Time Resource Management in a Network-on-Chip Containing
Reconfigurable Hardware Tiles [7]

In this paper, the authors develop a Run-Time manager for heterogeneous NoCs
containing fine grained Reconfigurable Hardware Tiles. Reconfigurable hardware is a type of
Processing Elements, exhibiting its own distinct set of properties compared to traditional PEs (an
example of Reconfigurable Hardware are FPGASs). It can be re-configured on run-time,
according to the needs of the application, adding more flexibility to the NoC. These tiles are
suited for computational intensive tasks, but can only accommodate a single task.

The proposed mapping algorithm, called Resource Management Heuristic, along with
some add-ons for the reconfigurable hardware, is contained on the central Operating System,
running on a designated tile, called the Master PE. The Master PE tile is responsible for
assigning resources for both computation and communication to the different tasks (given as
input in the form of an Application Task Graph that holds information about for both the
properties of the tasks and the inter-task communication). The Operating System maintains a list
of PE descriptors, keeping track of the computation resources of each tile, while the
communication resources are maintained by means of an injection slot table that indicates when
a task is allowed to inject messages onto a link of the NoC. In addition, every tile contains a
Destination Lookup Table (DLT), used to resolve the location of its communication destinations.
The Resource Management Heuristic follows the steps given below:
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1. Calculate requested resource load.
2. Calculate task execution variance. In this step the sensitivity of every task to be mapped
on any PE type is evaluated.
3. Calculate task communication weight.
4. Sort tasks according to mapping importance.
5. Sort PEs for most important task
o Determine low communication — high performance tasks and their counterparts
o Place together high communication tasks
6. Consider internal fragmentation of reconfigurable area. That means that sometimes the
second best option is selected on step 7 if internal fragmentation of the reconfigurable
tiles is too high.
7. Mapping the task to the best computing resource.

In case the mapping reaches a dead end, backtracking is used and if still no mapping is found
run-time migration, hierarchical configuration or reduction of the QoS is used.

Hierarchical configuration of the tiles involves the use of softcore PEs instantiated on
Reconfigurable Hardware tiles. This technique can improve the mapping performance when a
task’s binary isn’t supported for execution on any of the NoC’s other PE types or when it is more
efficient communication-wise to map a task on a nearby Reconfigurable Hardware tile, rather
than a further away PE tile.

In addition to the mapping algorithm, two run-time task migration schemes are proposed
in this paper. It is defined as the relocation of an executing task from one tile to another. Task
migration is used in case of a mapping failure, or whenever the user requirements change. It is
considered that a migration can only occur in pre-defined points in a task’s code, called
migration points, in order to overcome architectural differences between different PE types in
heterogeneous platforms. In order to maintain communication consistency two mechanisms are
introduced:

e The General Task Migration mechanism.
e The pipeline mechanism.

The General Task Migration mechanism is described in figure 2.3. It is more efficient
when moving a single task in order to e.g. resolve a mapping issue.
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Figure 2.3: General Task Migration mechanism

The pipeline mechanism is based on the assumption that many algorithms are pipelined
and contain stateless points. Stateless points are moments where new and independent data is put
into the pipeline. This assumption allows a migration mechanism to move multiple pipelined
tasks at once without being concerned about transferring task state. This mechanism is useful
when new QoS requirements affect an application and tasks must be reallocated.

The mapping algorithm proposed in this paper, isn’t the most effective possible, since it
encounters the constraints of being centralized. Nevertheless, the migration mechanisms
proposed can be very useful as parts of any run-time manager that uses the migration technique
(like in [6]).

2.3. Incremental Run-time Application Mapping for Homogeneous NoCs with Multiple
Voltage Levels [8]

This paper deals with the Run-time Mapping of Applications on Homogeneous NoCs.
What makes this mapping scheme stand out is the prediction that the Processing Elements can
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operate on multiple Voltage Levels (therefore multiple frequency levels), under different energy-
performance trade-offs. The focus of this paper is not on determining the voltage island
partitioning, and it is assumed that this is already determined on the platform. The mapping is
also characterized incremental, meaning that not always the best solution is selected, in respect
to better accommodating future applications that may occur, as opposed to a greedy algorithm
that always chooses the best available solution.

The NoC platform is considered to consist of two separate networks, the data network
where all data communication is carried out, and the control network where all the control
signals pass through. There are separate networks for control and data, in order to make sure that
data transmission does not interfere with the control messages of the Operating System.

The proposed mapping algorithm runs on a designated tile, called the Global Manager.
This tile is responsible for making all the decisions for the mapping, thus making the mapping
centralized, with all the subsequent disadvantages.

The input of the mapping algorithm is an Application Task Graph. It contains the set of
tasks and some of their properties such as the worst-case scenario execution time and the
minimum voltage that a tile can have in order to be able to execute them effectively. These
properties have been obtained by means of off-line partitioning, in which some tasks may be
profiled as critical, needing to be mapped in higher voltage tiles to be executed faster. The Task
Graph also contains 2 weights for each edge, representing the communication volume (in bits)
and the bandwidth (bits per sec) needed for the data flow. The mapping algorithm consists of two
steps:

e Near convex region selection
e Node Allocation within the selected region
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Figure 2.4: Incremental run-time mapping process
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In the first step, a near convex (and contiguous if possible) region of the NoC is found,
containing exactly as many tiles as needed by the application, with the appropriate voltage levels.
Tiles are selected to be added to a region under two criteria concerning their position: their
dispersion factor and their centrifugal factor, and of course the criterion of their voltage level.
The dispersion factor is defined as the number of idling neighbors of the tile, with higher values
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meaning that the tile is more prone to be selected, since it is likely to be later isolated. The
centrifugal factor is defined as the Manhattan distance between a tile and a region’s border.
Hence, the lower the value of the centrifugal factor, the higher the probability that the tile will be
added to the region, in order to preserve its contiguity.

Once a region that can host the application has been found, the algorithm moves to the
next step of Node Allocation. The purpose of this step is to calculate the best tile from the
selected region for every task to be executed on. For this, the tasks are sorted by their
communication volume, and starting from the most communication-heavy one, the tiles that can
host it are marked. When possible tiles have been determined for all tasks, starting from the head
of the sorted set again, every task is assigned to the tile from the set of possible ones that
minimizes the distance from the communicating tasks.

This mapping algorithm is executed in the Global Manager tile. That may cause serious
scaling problems on larger NoCs, since it’s a centralized mapping scheme. It is mentioned that
on larger NoCs a hierarchical control mechanism should be applied. A variation of the algorithm
for decongestion of the Global Manager would have a tile from each region calculating the Node
Allocation step assigning tasks for all the tiles in the region, including itself, like a one-time
Cluster Agent from [6]. This way, the algorithm would be more distributed and would scale
much better. Lastly, an advantage of this algorithm is the fact that it is not limited to mesh
topologies, but can easily be modified for many other topologies.

2.4 Run-time Spatial Mapping of Streaming Applications to a Heterogeneous Multi-
Processor System-on-Chip [9]

A/D ARM>
R R R
Sink MONTIUM;4
R R R

ARM; [MONTIUM,
R R R

Figure 2.5: The Platform used in [9].
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The authors of [9] propose a Spatial Application Mapping scheme for heterogeneous
MPSoCs interconnected by means of a NoC, performed in run-time. It is intended to mapping
streaming DSP applications, since, as noted, the concept of run-time mapping fits mainly to long
running applications. The objective of the algorithm is to minimize the energy consumption for
the execution of the streaming application, while meeting its QoS constraints.

The applications are considered to be described by Cyclo-Static Data Flow graphs,
containing the Worst-Case Execution Time and token production and consumption rates for all
different phases of execution of a task. In addition, it is considered that in order to be able to
utilize heterogeneous MPSoCs efficiently, tasks can be implemented for any tile type. The
example of the Fast-Fourier-Transformation algorithm is given, that can be executed on a DSP
kernel, on an embedded ARM tile or a reconfigurable core.

The algorithm is described as a hierarchical search with iterative refinement. A mapping
result can be characterized as adequate if all tasks can be executed on one of the platform’s tile
types, adherent when it is adequate and no has been assigned with more tasks that it can handle
and feasible if it is adherent and the application’s constraints are met. In order to reach a
mapping the algorithm goes through these steps:

1. Assign implementations to tasks: Tasks are sorted by desirability, where desirability is
defines as the difference between the cheapest assignment of a task to a tile type and the
second cheapest. Starting with the most desired one, every task is assigned to the
cheapest tile type that keeps the mapping adherent. After that, it is arbitrarily mapped to
the first available tile of that type, so that a first concrete (greedy) mapping is reached.

2. Assign processes to tiles: On this step, iteratively, starting again from the most desired
one, every task is removed from the tile it was assigned and it is attempted to be assigned
on the best available tile of its tile type. Alternatively, in a local search type fashion, the
task is swapped with another task and the best reassignment is performed on every
iteration.

3. Assign channels to paths: The channels are sorted by decreasing throughput and for every
channel a corresponding path is determined.

4. Check application constraints: The last step checks the QoS constraints. If any such
constraint is violated, the mapping is infeasible, feedback is given to the earlier steps, and
the mapping is performed again with the new data. If no QoS constraint is violated, the
mapping is feasible and the algorithm ends.

A distinct characteristic of this mapping algorithm is the fact that it can be implemented
either in a centralized manner, running on one core of the NoC, or in a distributed manner, with
parts of it being executed on different tiles of the NoC. The difference in this algorithm from the
previous ones is the concept of feedback. When a solution can’t be found in anyone of the steps,
the exact same algorithm is performed again iteratively, thus it has a low level of implementation
difficulty on any Processing Element type.
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2.5. Comparison Table

Following is table 2.1, summarizing the main characteristics of the presented algorithms.
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3.1 Main Idea behind the Run-Time Mapping (RTM) Algorithms

In this chapter the proposed Run-Time Mapping (RTM) algorithms of this work are
presented. Two algorithms that share the main idea are proposed. They both are Distributed Run-
Time Spatial Mapping Algorithms, the first one developed for homogeneous MP-SoCs and the
second one developed for heterogeneous MP-SoCs. From now on, with the term RTM algorithm
we refer to the main idea behind both algorithms, and the terms homogeneous or heterogeneous

are used to distinguish between the two of them.
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Figure 3.1: Main Idea of the RTM algorithm
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The goal of the RTM algorithm, is the computation of an efficient mapping that
minimizes the energy consumption from the execution of any application. We want this
computation to be as fast as possible and transparent to the system, in order not to interfere with
the execution of the algorithm.

An example of the implemented RTM algorithm is presented in fig. 3.1. The mapping is
carried out in a distributed manner. In order to achieve that, the platform is partitioned in
regions, i.e. subsets of the set of all the tiles on the NoC. These regions have no fixed
boundaries, and can be reshaped, created or abolished when necessary. The manner in which the
partitioning is performed is different in homogeneous and heterogeneous platforms, as will be
shown later on.

Every new application mapping request is processed firstly by a designated tile, where
the System-Wide Controller (SWD) task is being executed. This task is a lightweight piece of
code, implemented for every type of Processing Element on the NoC in case of a heterogeneous
platform, so that any core can assume the role of the controller, in order to keep the system
protected from any single point of failure problems. This task’s purpose is to find a region
suitable to execute the new application, or take actions if the application can’t be mapped for any
reason. It holds easily transferable data for the whole NoC, based on which the resulting region is
found. The collection of that data doesn’t burden the whole platform, but only specific tiles as
shown later.

In addition to the System-Wide Controller, there are some more designated tiles, one for
each region, called Regional Controllers (RC). As the name suggests, these tiles are responsible
for any action involving the mapping in their respective region. More specifically they are
responsible for:

e Computing the mapping for the region for which the controller is responsible for.
e Collecting data for the region.
e Communicating and exchanging data with the System-Wide Controller.

In the same manner as the System-Wide Controller, the Regional Controllers are meant to be
executable on any tile of the region, so that the platform’s functionality doesn’t depend on any
single tile.

Once a region has been selected by the System-Wide Controller for the mapping of a new
application, its Regional Controller is triggered and data describing the application is sent to it.
Then the mapping is performed and its results are reported back to the System-Wide Controller
(fig. 3.1).

The flow of the RTM algorithm for both homogeneous and heterogeneous platforms is shown on
figure 3.2.
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3.2. Run-Time Mapping (RTM) on a homogeneous platform

The first of the proposed algorithms is intended to be used in homogeneous platforms, i.e.
platforms with only one type of Processing Element tiles. That attribute makes the computation
of the mapping easier, since there is no need to determine the most energy-efficient Processing
Element type for each task. Thus, the most efficient mapping is derived mainly from minimizing
the energy consumed by the inter-task communication.

3.2.1. Definitions

Definitions necessary to explain the RTM algorithm for homogeneous platforms are
described in the following:

e The Application Task Graph (ATG) is used to capture the traffic flow characteristics. The
ATG G(T,D) is a directed acyclic graph, where each vertex t; € T represents a
computational module in the application. Each directed arc d;; € D between tasks t;
and t; characterizes data and communication dependencies. Each d; ; has an associated
value b(d;;), which stands for the communication volume exchanged between tasks t;
and t;.

e A many-core platform’s topology and communication infrastructure can be uniquely
described by a strongly connected directed graph A(I,N). The set of vertices N is
composed of two mutually exclusive subsets Npp and N containing the platform’s
Processing Elements and the platform’s on chip interconnection elements (such as routers
in Network-on-Chip technology) respectively. The set of edges [ contains the
interconnection information (both physical and virtual) for the N set.

e My is the set of the mapped (occupied) cores. We also define a mapping function map:
T — Npjy that maps the application’s tasks (T set) to the available PEs (Npg set). Let the
set of unmapped nodes Mpg such as pe € Mpg if pe € Mpr. From our definition it
follows that: Mpz U Mpg = 0.

e R is the set that defines the logical regions on the platform. It is composed of k (k = 1)
subsets Ry, R,, .., R;, .., Ry called the regions of the NoC.

e Mp;[] is a list that defines the one to one result of the map mapping function in the R;
region.

e A region R; is considered occupied if Ape; € R; : pe; € Mpg, that is, at least one of the
tiles it contains is occupied.
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3.2.2. The Run-time mapping algorithm for homogeneous NoCs
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Algorithm 1: Run-time mapping for Homogeneous Platforms

//Step 1: Check availability
If|IT| < Mpg
define new R; € R| Vpe; € R;,pe; € Mpg
signal(R;)
jump(Step 2)
Else
wait() //for a task to release its PE
jump(Step 1)
//Step 2: Run time mapping procedure
sortd; ; by b(di,j) descending
vd;; €D
Vpe; € R;
src = min{Fyon(d;, pe;)} //equation 1
dst = min{Fyopm(d;, pe;)}
Mpg, Mp;[] < src
Mpg, Mg;[] < dst
//Step 3: Swapping procedure
bestCost = Fy,qp{Mg;[]}  //equation 2
Vt; €T
Vi, €T, t; #t;
If (MD(t;,t;) < MAX_MANH_DIST)
swap(t;, t;)
tmpCost = Fzswap{MRi[]}
If tmpCost < bestCost
bestCost = tempCost
Mg;[] = new Mg;[]
Else
swap(t;, t;)

When a new application mapping request is issued, the System-Wide Controller
processes it firstly, and performs the Step 1. Since this is a homogeneous platform, the Controller
only needs to make sure that there is at least one tile for each task of the application (line 1). If
there aren’t enough unoccupied tiles the application can’t be mapped at that time, so the System-
Wide Controller has to wait until it is signaled by a Regional Controller that a tile has finished

executing its task (line 6).
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If the new application fits in the platform, i.e. there are enough unoccupied tiles to
execute all the tasks, the System-Wide Controller appoints a tile on the NoC to be a Regional
Controller, and sends the request to it. This Regional Controller is responsible for the region
consisting of the unoccupied tiles around it, whose Manhattan distance from the controller is less
or equal to the search_distance value, which is defined as:

JITLITI <9
JITI=1,IT] =9

The search_distance is not a fixed value and may be increased to include more unoccupied
tiles, as will be shown later.

The Regional Controller runs Step 2 of the algorithm. First the arcs d; ; of the ATG are
sorted by their b(d; ;) value (line 8). Then starting from the one with the hlghest b, tiles from
inside the respective region are found to execute the tasks involved in that particular arc, that is
the source (¢;) and destination (t;) tasks, if they are not mapped yet (lines 9-14). If no more
unoccupied tiles are left in the region, the search_distance is increased by 1, and the search for
tiles is done in the newly added tiles.

The tile n that is selected to execute a task is the one that minimizes the cost function:

search_distance = {

z MD(L,n) +bw(n) | +b Z (b(dy)*MD@K)) | (1)

region k € (regionNMpg)

F —a| ——
Hom (1) #tllesreg,on

where: #tiles,,gi0n 1S the number of tiles in the region,
MD(i,j) is the manhattan distance between tiles i and j,
bw(n) is the bandwidth used on tile n towards all directions,
a, b are weights.

The term —Zleregm MD(1,n) in the function is used because tiles closer to the center of

llesreglon

the region should be preferred over others near the border. The term bw(n) is used, since we
prefer tiles with low bandwidth usage, rather than overburdening tiles with already high

bandwidth. The term Yy ¢ (regionnMypp) (b(dn,k)*MD(n,k)) is the sum of products of the bandwidth

and the manhattan distance of the task in question mapped in the tile n and the rest of the already
mapped tasks on the same application.
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After the initial mapping has been performed an iterative application node swapping
process is employed in order to further reduce the total communication cost (Step 3, lines 15-25).
During this process every mapped task swaps tiles with any other task of the same application
that is within a radius predefined by the value MAX_MANH_DIST. If the mapping after the
swap is less costly (equation 2) than the previous one, the swapping is kept, else it is reverted.
The cost used for the swapping is:

Favap = ) b(di) *MD(L,)) ()

ijET

3.2.3. Example of the execution of the RTM algorithm on a homogeneous platform

RC RC
1 5 1 3 2 1 3
swel [ < swel | X<
2
X X
() (b) (c)

Figure 3.3: Example of the homogeneous RTM algorithm.
(@): ATG, (b): mapping of the first arc, (c): mapping of the other 2 arcs.

An example of the execution of the RTM algorithm on a 3x3 homogeneous NoC is
shown on figure 3.3. The ATG consists of 3 tasks (3.3a), the System-Wide Controller is running
on tile 1,1 and some tiles that are still running tasks from previous applications are marked with
an x. On figure 3.3b the selected Regional Controller is shown and its initial region. There are 3
arcs on the ATG, with the costlier being the one from task 1 to task 3. Thus, task 3 is mapped
first, followed by task 1 as shown on 3.3b. Next arc to be considered is the one from task 2 to
task 1. Since, task 1 is already mapped, only task 2 needs to be mapped now. The region doesn’t
fit another task though, so the search_distance value is increased, resulting in a wider region,
and the final mapping is shown on 3.3c.
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3.3. Run-Time Mapping (RTM) on a heterogeneous platform

Computing a mapping for a heterogeneous platform is more complex than the one for
homogeneous platforms. This is due to the fact that the calculation of the most efficient
Processing Element type for each task is needed, followed by the computation of a mapping that
respects these preferences to types and in the same time minimizes the communication energy of
any application’s execution.

3.3.1. Additional definitions

In order to demonstrate the RTM algorithm for heterogeneous platforms the same
definitions of terms as the homogeneous version are assumed, with the addition of new ones and
enrichment of others as following:

e TP is the set of Processing Element types of the platform.

e The Application Task Graph (ATG) is the same with the one used for homogeneous
platforms, with the only addition being |TP| in number weights W;[t],t €T, j € TP on
each vertex t € T, one for each Processing Element type on the NoC. These weights
represent the resources required for the execution of that particular task on every
Processing Element type and are used to determine the preferred tile.

e The preferred Processing Element type for each task is denoted as K[t],t € T. That is
derived from the weights W;[t] of each task.

e Cl[pe;],V pe; € Npg, C € TP is the type of the type of the Processing Element pe;.

e The Matching Factor (MF) is a designer specified percentage value that defines on
which types a task t; can be mapped. For MF = 100% a task t; can only be mapped to a
tile of the K|[t;] type, while for MF = 0% the task can be mapped on any type of
Processing Element with respect to the preferences given by the W;[t;] values. Different
decisions for the MF value for the mapping results in different Mg;[] lists.

e R is again the set of regions on the platform, but in this case the following properties
apply for the regions Ry,R,..,R;,..,Rx: Ny R; = ® and U¥_, R; = R, which means
that all Processing Elements of the NoC are part of a region, and that the regions are
mutually exclusive.

3.3.2. The Algorithm for heterogeneous NoCs

A major difference between the RTM algorithm for heterogeneous and homogeneous
NoCs is the way the regions are initialized. On homogeneous platforms during the initialization
no regions existed, but were created for each new application, and abolished when the execution
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finishes its execution. On heterogeneous platforms on the other hand, the NoC is partitioned in
regions from the very beginning, with the selection of number and size of the regions left on the
designer’s judgment and Regional Controllers are appointed on these regions right away.
Regions can be reshaped or created to better accommodate new applications, but they can only

be abolished if they are an empty set, with respect to the properties:

k k
ﬂ Ri = @ and U Ri =R
i=1 i=1

(oo

SN U1 bW

12:
13:
14:
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Algorithm 2: Run-time mapping for Heterogeneous platform

//Initialization: best type calculation

VtLET

calculate K[t;] : min(WK[ti] [t:])
//Step 1: Region selection step

. VRL ER
If (IT| < IMpp|)&&(Vt; € T,3pe; € R; : pe; € Mg, && C[pe;] = K[t;])

select(R;)
jump(Step 5)
//Step 2: if the first matching doesn’t yield a result

: store Tiss C T:Vt; € Ty * Ape; € R; : pe; € Mg, && C[pe;] = K[t;]
1Vt € Thiss
9:
10:
11:

If (#iteration < MF * |TP| — 1)

calculate new K|[t;] : min(WK[ti] [ti]),K[ti] # old K[t;]

repeat Step 1
//Step 3: if still no region is found, use Region Reshaping
Yunoccupied R; € R
Vpe; € Mpg, pe; & R,
{Ri} ={Ri} + pe;
repeat Steps 1,2
If R; not selected
{Ri} = {R;} — pe; , restore(R;)
//Step 4: no region was found, or all regions are occupied
createnew R; = @ €R
Vpe; € Mpg
{Ri} ={Ri} + pe;
repeat Steps 1,2
If R; not selected
restore previous R
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24: wait() //for a task to release its PE
25: jump(Step 1)
//Step 5: Run time mapping procedure
26:VK[t,] €G
27: {8}« diif (Klte] = K[tDII(K[ti] = K[t;])

28:  sort(S) by b(di,j) descending

29: Vvd;; €S

30: Vpe; € R;

31: src = min{Fypr(d;,pe;)} //equation 4
32: dst = min{Fypr(d;, pe;)}

33: Mpg, Mg,[] < src

34: Mpg, Mg [] < dst

//Step 6: Swapping procedure
35: bestCost = Fgqp{Mg;[]} //equation 2

36:Vt; €T

37: Vt] € T, t] * ti

38: If (MD(t;,t;) < MAX_MANH_DIST) && (K(ti) == K(tj))
39: swap(t;, t;)

40: tmpCost = stap{MRi[]}

41: If tmpCost < bestCost

42: bestCost = tempCost

43: MRi[] = new MRi[]

44 Else

45: swap(t;, t;)

When a new application mapping request is issued, in the same way as in homogeneous
systems, the System-Wide Controller processes it firstly. Its purpose is to find a region capable
of executing all the tasks of the new application. Prior to that, the controller calculates the
preferences on the tasks on Processing Element types and assigns to every task the type with the
minimum weight W; (lines 1-2).

Next, the System-Wide Controller checks for every region R; if the following equation
applies (line 4):

Tl < |Npgg,k|, Yk € TP (3)

where: Ty ¢ T:t; € Ty if K[t;] =k, Npgpr,x © Npg:pe; € Npgr, i if pe; € R; and Clpe;] = k
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That means that a region is able to execute the application if it has enough tiles of every type to
accommodate every task in the new application’s graph that requires that particular type. For
every region that the equation doesn’t apply the set of tasks that can’t be mapped is stored (line
7), since it is needed if no region is found. When the first region for which the equation 4 applies
is found, its Regional Controller is signaled to perform the actual one-to-one mapping, as will be
shown later.

In case no region is found on Step 1, before resorting to the communication heavy region
reshaping, we try changing the tasks’ most preferred type (Step 2) using backtracking. The tasks
that couldn’t be mapped previously get assigned to the next best Processing Element type (line
10), if the chosen Matching Factor allows it and the Step 1 is performed again to check if a
region is found with the new data. Step 2 can be executed more than once, if no region is found
in the previous iterations. The maximum number of iterations that can be achieved is determined
by the value of the Matching Factor and equals: MF = |TP| — 1. For example on a NoC with 4
different Processing Element types, 100% MF means that the Step 2 will never be executed,
while 50% MF means that the step can be executed once, so tasks can possibly be mapped to any
of the two most efficient types.

Step 2 will probably not result to the most energy-efficient mapping, but at least the
application will be mapped, and will not have to wait for another to end. This is where the
concept of the Matching Factor is crucial. In case an application wants to wait for the most
energy efficient mapping, the MF is chosen to have a value of 100% or generally high values. If
on the other hand, energy isn’t that important, but the application needs to be mapped fast, then
the MF can be selected to have lower values.

However, there is still chance that none of the current regions can execute the new
application, either because they are not large enough, or because many of their tiles are occupied,
even due to the fact that the types don’t match and the Matching Factor doesn’t allow more type
re-assignments to tasks. If this happens the region reshaping procedure is employed. As the
name suggests, this procedure changes the regions in order to find a way to map the new
application.

Initially, one after another every unoccupied region R; ‘borrows’ all unoccupied tiles of
the other NoCs temporarily (lines 13-14). Then Step 1 is performed again followed by Step 2 if
needed. If a region R; is selected at this point the run time mapping procedure that will be
explained further on is performed, and all newly occupied borrowed tiles are permanently
transferred to the region R; while all still unoccupied borrowed tiles are returned to their
previous regions.

Lastly, if all regions were occupied at the beginning of the region reshaping, then the
System-Wide Controller creates a new region R; that consists of all unoccupied tiles of the
platform (lines 18-20). Once again, Step 1 is performed, followed by Step 2 if needed. If the new
region is selected, its Regional Controller is signaled to perform the mapping procedure. If the
new region still isn’t capable of executing the new application, then the System-Wide Controller
has to wait for tiles to finish the execution of earlier applications and free them.
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After a region is found that can execute the new application, its Regional Controller is
signaled and sent information about the application. At this point the System-Wide Controller’s
work is done and the Regional takes over and performs the run-time mapping procedure (Steps 5
and 6).

In the beginning for each Processing Element type K the flows d; ; that involve a task

preferring this type, that is K[t;] = K or K[tj] = K, are sorted by the respective values b(d,; ;).
Then starting from the one with the highest b, tiles from inside the respective region are found to
execute the tasks involved in that particular arc, that is the source (t;) and destination (t;) tasks,

if they are not mapped yet (lines 31-32).
The tile n that is selected to execute a task t; is the one that minimizes the cost function:

Fygr = Fyom +ax Wy [t (4)

where Fy0, IS the cost of the homogeneous run-time mapping (equation 1) and a is the weight
from the same equation.

After the initial mapping has been performed an iterative application node swapping
process is employed in the same way as the homogeneous platform (Step 6). During this process
every mapped task swaps tiles with any other task of the same application that is within a radius
predefined by the value MAX_MANH_DIST, and is mapped on a tile of the same Processing
Element type. If the mapping after the swap is less costly than the previous one, the swapping is
kept, else it is reverted. The cost used for the swapping is the same as the homogeneous case
(equation 2).

3.3.3. Example of the execution of the RTM algorithm on a heterogeneous platform
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Figure 3.4: Example of the heterogeneous RTM algorithm.

tegion 3

(@): ATG, (b): The platform, (c): mapping with MF 50%, (d): mapping with MF 100%
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An example of the execution of the Run-Time mapping algorithm on a 4x4
heterogeneous NoC is shown in figure 3.4. The ATG is shown in 3.4a, where the tasks, the
communication between them and the weights W;[t] are noted. We assume a NoC with 3
different Processing Element types, as shown on 3.4b. Since |TP| = 3, there are 3 weights for
each task.

From these weights the preferred types are derived, and thus this application would prefer
a region with 2 type 1 tiles, 1 type 2 tile and 1 type 3 tile. The only region that has these tiles is
region 4, but not all of them are free, since earlier tasks are still being executed. This is where the
MF shows its significance. With an MF value of 50%, task 1 is allowed to be mapped on a tile of
the second most preferred type, namely type 2. Thus, the mapping shown in 3.4c occurs. If the
MF had a value of 100% on the other hand, the application wouldn’t be able to get mapped on
these regions, hence, the region reshaping procedure would be needed and the mapping in 3.4d
would occur.

It is obvious that the mapping with MF 100% is more energy efficient since all tasks run
on their most preferred Processing Element type, but the mapping needs more time to be
executed, and in case more tiles were occupied, the new application would have to wait even
more for region 4 to become unoccupied. Thus, the decision of the MF value is a tradeoff
between the time needed for the mapping algorithm and the level the energy consumption is
optimized.
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4.1. Introduction

The Run-Time Mapping algorithms described in Chapter 3 have been implemented in C
code using the MinGW port for the GCC compiler. We have performed extensive simulations of
the behavior of several application benchmarks and random applications generated from TGFF
[12] to validate our approach. The algorithm has been tested in the fields of execution speed and
quality of the resulting mappings, as well as its behavior on scenarios of multiple application
mapping requests over time.

4.2. The Application Platform

The Application Platform is a complex and full Multi-core NoC experimental platform
presented in [2] (fig.4.1). It uses the LEONS3 as the processor in each Processor-Memory node
and uses the Nostrum NoC as the onchip network. Each PM node has a LEON3 processor
(complete with I-Cache and D-Cache), a Data Management Engine (DME) [2] (fig. 4.2) as the
network interface, plus a local memory. The LEON3 processor core is a synthesizable VHDL
model of a 32-bit processor compliant with the SPARC V8 architecture. The Nostrum NoC is a
2D mesh packet-switched network with configurable size, that uses the XY-routing protocol. It
serves as a customizable platform.

PM PM PM PM | Cs
LEON3 | I-Cache .
core | p.Cache
I
PM PM PM PM ' AHB Bus
) 1)
A A
llidi Data Management
PM PM PM PM vt Engine - ! Router
NOCUIES || (v2P, access, Sync.)
> .
'
PM PM PM PM Local Private | Shared

Memory

Figure 4.1: The application platform
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Figure 4.2: Architecture of the Data Management Engine
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0x40220000 ~ 0x4023FFFF < shared memory #1
0x40240000 ~ 0x4025FFFF < shared memory #2

Shared

Figure 4.3: The global memory address space of each core.
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Memories are distributed in each node and tightly integrated with processors. All local
memories can logically form a single global memory address space (fig. 4.3).The local memory
IS partitioned into two parts: private and shared and two addressing schemes are introduced:
physical addressing and logic (virtual) addressing. These two parts are separated by the boundary
address, i.e. the first address of the shared memory (for example 0x40200000 in figure 4.3). The
private memory is physical and can only be accessed by the local processor. All of shared
memories are virtual, visible to all nodes and organized as a Distributed Shared Memory (DSM).
The system uses a virtual-to-physical translation via virtual-to-physical (V2P) tables (fig. 4.4) to
determine the addresses.

Shared memory No. Node number

#0 Node(0,0)
41 Node(0.1)
#2 Node(1.0)
#3 Node(1.1)
#4 Node(2,0)
#5 Node(2.1)

Figure 4.4: V2P translation table.

The V2P table is used as depicted in fig. 4.5. When a logic address needs to be resolved,
if it is equal or higher than the boundary address of the core, the V2P table is accessed to
determine on which core’s shared memory the address belongs to, and then it is translated to that
core’s physical address.
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Figure 4.5: Usage of the V2P table.

The communication of cores inside the platform is done using message-passing
instructions and by using the shared memory interface. Whenever there is a need for the System-
Wide Controller to trigger another core, the hardware’s synchronization safe-lock memory
mechanism is used (fig4.6). Shared memory environment allows the easy use of such
mechanisms. The lock is acquired by the system-wide controller and it propagates information to
the shared memory. Then the lock is freed and the region controller loads the data from the
memory and performs the required mapping operations. The execution of code on a Regional

Controller is also possible with the usage of message passing instructions.
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Figure 4.6: Representation of the spin-lock used
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4.3. Experimental Results of the RTM algorithm for homogeneous platforms

Here we present the experimental results for the RTM algorithm on homogeneous
platforms. The algorithm is compared to a state-of-the-art distributed run-time mapping
algorithm and an exhaustive design-time algorithm, in terms of on-chip communication cost of
the resulting mapping and computational effort of the algorithm itself.

4.3.1. TGFF generated applications

Tgff [12] is a user-controllable, general-purpose, pseudorandom task graph generator. It
was used to create Application Task Graphs of various sizes, in order to experiment on the
efficiency of the RTM algorithm. In order to test the effectiveness of our algorithm, it is tested
against the ADAM distributed run-time mapping algorithm (presented in [6] and Chapter 2) and
the exhaustive design-time mapping algorithm from [13].

In the following charts, where we compare the results of the algorithms, on the x-axis are
the various NoC sizes the algorithms were tested, while on the y-axis are the computational cost
of the resulting mapping or the cycles needed for the computation, both in logarithmic scale.
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EE RTM algorithm
[ ADAM [6]
[ Design-time mapping [13] - _
i — . —_
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& 100000 -
= _ _
2
i —
= _
=
= —
=1 _
E _
. 10000
o —
1000 I | I I I I I I

6x6 8x8 10x10 12x12 14x14 16x16 18x18 20x20

NoC size

Figure 4.4: Communication Cost comparison in homogeneous platforms of various sizes.
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Figure 4.5: Mapping computational effort in homogeneous platforms of various sizes.

In figure 4.4, the algorithms are compared on terms of communication cost of the
resulting mapping. The input is a single application, and the communication cost of the mapping
is the one resulting from equation (2), that is, the one used for the swapping procedure. The
algorithm is performed on various NoC sizes and proportional input task graphs. On figure 4.5,
the computational effort for the three algorithms is shown, for the same applications in the same
NoCs.

As expected, the best result is taken from the design-time mapping algorithm for every
NoC size, due to its exhaustive search on the NoC. However, its execution time is huge
compared to the other two algorithms and in addition it suffers from the constraints of design-
time mapping. The RTM algorithm on the other hand results on average 22% more
communication cost than the design-time algorithm, with as much as 6 orders of magnitude less
computational effort, plus it is executed in run-time. As opposed to the ADAM algorithm, the
RTM algorithm achieves up to 23% less cost with average 10% more computational effort. The
extra computational effort on the RTM algorithm is due to the swapping procedure, but on most
long-running applications, it is preferred to waste a few more cycles on mapping, rather than
having more communication cost for the whole execution time of the application.
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4.3.2. Application Benchmarks

In addition with the random application from tgff, the algorithm has also been tested on
real application task graphs. These are:

e MPEG-4 (12 nodes)

e Multi-Window Display (MWD) (12 nodes)
e Picture-In-Picture (PIP) (8 nodes)

e MultiMedia System (MMS) (25 nodes)

e Digitale Radio Mondiale (DRM) (10 nodes)

The RTM algorithm is again compared with the ADAM and the exhaustive design-time
algorithm in terms of communication cost. The computation effort isn’t worth mentioning on
these applications because of the low number of nodes results in menial differences between the
3 algorithms. The y-axis on the communication cost chart is again on logarithmic scale and the
NoC size used on every application is noted on the chart.
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MMS MPEG4 MWD PIP DRM
Applications
Figure 4.6: Mapping computational effort in homogeneous platforms for application
benchmarks.
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In figure 4.6, we can see that the results for the benchmarks agree with those of the tgff
applications. The RTM algorithm has less communication cost than the ADAM algorithm and is
close to the optimal solution produced by the exhaustive design-time algorithm. The difference
of the RTM algorithm and the other two is presented in the following table :

B Improvement over the ADAM Extra cost to the design-time
enchmark . ;
algorithm mapping
MMS 25% 11%
MPEG4 7.5% 7.9%
MWD 17% 35%
PIP 0% 40%
DRM 0% 25.6%
Table 4.1: Comparison of the RTM algorithm with the ADAM and design-time mapping
algorithms

68




Chapter 4

4.4. Experimental Results of the RTM algorithm for heterogeneous platforms

Here we present the experimental results of the algorithm on heterogeneous platforms.
The input task graphs are once again generated with the tgff tool. In addition, the behavior of the
algorithm is examined for scenarios of multiple applications whose requests arrive over time, in
order to determine the differences of the mapping for different values of the Matching Factor.

4.4.1. TGFF generated applications
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B 100000
o
o
c
O 10000 -
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S
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S 1000 -
o
5
1 _
S 00
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Region Size

Figure 4.7: Communication Cost comparison in heterogeneous platforms of various sizes.
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Figure 4.8: Mapping computational effort in heterogeneous platforms of various sizes.

The RTM algorithm is now compared to the ADAM algorithm. Since the platform in
question is a heterogeneous NoC, there is a great diversity in the forms it can take, and it would
be hard to try and examine all cases. Thus, we prefer to examine a common case and for that the
regions used for the mapping have 3 different types of Processing Elements, in equal numbers. In
figure 4.7 the communication cost is shown for the mapping of a single application on a region
of various sizes, and also in figure 4.8 the computational effort needed for that mapping is
depicted (including the region selection step that is performed on the System-Wide Controller).
The size of the application is proportionate to the size of the region.

The RTM algorithm achieves up to 10% less communication cost than the ADAM
algorithm, but needs on average 45% more time. This may be a big difference, but the mapping
is computed in milliseconds, and thus the difference in the communication cost will probably be
much more important and rewarding.
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4.4.2. Utilization Scenarios

The results presented until now were about the mapping of a single application. These
results may be representative for the mapping itself, but do not show the whole platform’s
behavior. That is best shown via the simulation of scenarios of multiple applications that arrive
over time on a real platform. The scenarios have random applications arriving in random time
intervals between them, considering that each task of each application is run for a certain amount
of time and then frees its tile. These scenarios are mapped on a 6x6 heterogeneous NoC using the
RTM algorithm for different MF values and the ADAM algorithm [6]. The goal of the utilization
scenarios is to test which algorithm best utilizes the available resources of the system. The
communication cost of each application after the mapping procedure has been presented in
section 4.3.2. The platform used for the experiments is the one presented in section 4.1
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Figure 4.9: Run-time mapping scenarios on a heterogeneous NoC

Figure 4.9 depicts all the implemented scenarios. The green diamond represents the
arrival time of an application while the red one represents the time that the mapping result was
decided. The picture shows that both the RTM algorithm (with MF = 0 and MF = 0.5) has the
same run-time behavior with the ADAM approach, and map most application at the moment they
arrive, or close to that moment. The RTM algorithm with MF = 1 however, has a different
behavior because under the MF = 1 restriction a task can be mapped only on a core that has the
same Processing Element type with the task. In this case, the algorithm has to wait for the
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desired cores to be freed from their previous applications, contrary to the other MF values or the
ADAM algorithm that can change the types every task prefers, which results in mapping on other
free tiles.

Even though it maps the applications later compared to the other algorithms, the RTM
algorithm with MF = 1 has the best task to core mapping decision, resulting to best utilization of
the platform’s resources as depicted in Table 4.2. As utilization we consider the percentage of
tasks that get mapped on a tile of their most preferred Processing Element type. Table 4.1 shows
that with MF = 1, we can have 100% utilization of platform resources at run-time with a penalty
cost at performance (which could not even be correct since we have made the assumption that
execution times are the same on every PE type), but gaining greatly in energy consumption from
the execution of the tasks. If the application needs are not so strict we can chose different values
for the matching factor, thus relaxing the strictness of the matching.

ADAM | RTMMF=0 | RTMMF=0.5 | RTMMF=1
Scenariol | 91% 92% 92% 100%
Scenario2 | 87% 88% 88% 100%
Scenario3 | 88% 87% 87% 100%
Scenariod4 | 84% 86% 86% 100%
Scenario5 | 79% 78% 78% 100%
Scenario6 | 88% 87% 87% 100%

Table 4.2: Utilization percentages for the scenarios

4.5. Experimental results’ conclusions

The results show that the RTM algorithm provides lower communication cost on the
resulting mapping on almost all cases with some extra computational effort. This extra
computational effort though is trivial in compared to the benefits of the lower cost, which, in the
long run, reduces the total energy consumption of the chip. Furthermore, the novel idea of the
Matching Factor can help in further increasing the energy efficiency of the platform. Following
is the Table 2.1 filled with the RTM algorithm:
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i Flexibility
Homogeneous Implements: with various QoS taken
Centralized/ or RT mapping Implementation Testing Experimentation size NoCs into Application Minimization
Distributed Heterogeneous and/or Task difficulty Platform on: . . profiling of :
system migration ar}d/o_r consideration
applications
[6]:ADAM Run- .
- Mainly
time Agent-based L .
Distributed dlsm.b uted Undefined .A f°b°t . H'gh. Yes, tasks
I with . s application, multi- flexibility, e Energy
Application lized Heterogeneous Both High NoC’s of . L Yes are classified -
Mapping for on- centralize various sizes media applications thanks_ to by type consumption
chip elements and task graphs clustering '
Communication (global agent)
U%?ﬁﬂf{ﬁ::;ed psrgé)er;gﬁrRo'}Aa Bottleneck Yes, task load Yes,
Management in a . . connected to | random application - o . fragmentation on
Network-on-Chip Centralized Heterogeneous Both Medium an FPGA load and random I;Iex;ilaclaet;/(\)/:]t: con:i?jg?z:tion and \Q’ri'ghts reconfigurable
Containing containing a platform load. Pp tiles
Reconfigurable 3x3 NoC of thanks to RH th_e user calculated for
Hardware Tiles the PE’s add-ons requirements each task
[8]:Incremental
run-time GX?A’\,\‘;S of B;g;ﬂ::gcnk Yes, some
application ElanSC520 large NoC’s. tasks are Communication
mapping for Centralized Homogeneous RT mapping Low AMD K6-2E Synthetic gogd scaliné considered Yes, critical energy
homogeneous Benchmarks - critical and tasks exist .
ith and one with h iah consumption
N(.)CS wit MicroBlaze Application ave tighter
multiple voltage core size deadlines
levels
[9]:Run-time Scales well
Spatial Mapping Hypothetical with NoC
of Streaming NoC size. but not
Applications to a . . . consisting of HIPERLAN/2 L Yes, on Energy
Heterogeneous Not specified Heterogeneous RT mapping Medium ARM and receiver A Vlvilctgtion Yes design time consumption
Multi-Processor Montium sigz (man
System-on-Chip tiles. iterationsgl
(MPSOC)
Energy
Nostrum NoC Tgff applications High Yes, tasks consumption and
RTM Algorithm Distributed Both RT mapping Medium of Leon3 an_d re_al erX|_b|I|ty Yes have communication
applications being preferences cost or
processor o Rt
benchmarks distributed to PE types maximization of
utilization

Table 4.3: Comparison between state-of-the-art algorithms
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5.1. Summary

In the current thesis, we studied the problem of run-time mapping of applications on a
Network-on-Chip Multi-Processor System-on-Chip. After reviewing the principles of NoC
architecture and related work, we address the problems of mapping on homogeneous and
heterogeneous NoCs separately. For each of these problems a distributed run-time mapping
algorithm has been developed, aiming to reduce the energy consumption and the communication
costs from the execution of any application. Especially for heterogeneous systems, the concept of
the Matching Factor is introduced, aiming in adding more flexibility and customization on the
mapping procedure.

The developed RTM algorithm is compared with a state-of-the-art distributed run-time
algorithm, both in homogeneous and heterogeneous platforms, showing 23% and 10%
respectively lower communication cost in the resulting mapping, while having a small increase
in the computational effort required. Also, for the heterogeneous platforms, the use of the correct
MF value achieved on average 14% best utilization of the system’s resources.

5.2. Future Work

The developed RTM algorithm could be improved and enriched with additional
functionalities.

5.2.1 Task Migration

A very helpful addition would be the implementation of a task migration mechanism like
the one presented in [7]. Task migration is the ability to re-allocate a task to a different tile after
its initial mapping and during its execution (fig.5.1).

With this ability in hand, the system could potentially alter the mapping even while the
application is being executed, in order to achieve either less energy consumption, or to better
accommodate new applications that otherwise would not get mapped.

Furthermore, the task migration mechanism is needed in case the user requirements for an
application change while it is executed, for example when switching to a different resolution in a
video application.

Especially in the RTM algorithm on heterogeneous platforms task migration will prove
very useful with MF = 100%. An example of its use is depicted in figure 5.2. This is the same
example used in section 3.3.3. This time however, no region reshaping is needed, as the 3 tasks
that are executed in region 4, are migrated in region 3, and the application can be mapped at
once.
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Figure 5.1: Task migration from [6]
348 region 1 region 2 region 4 region 1 region 2 region 4
X 3
tp 1 tp 1 tp 1 tp 1 tp 1 tp 1 tp 1 tp 1
1
tp 2 tp 2 tp3 tp 1 tp 2 tp 2 tp 3 tpl
X X 2
tp 1 tp 2 ip3 tp 2 tp 1 tpl tp 3 tp2
X Xl |X 4
tp 2 tp 2 tp 3 tp 3 tp2 tp 2 tp 3 tp 3
region 3 region 3
(a) () ]

Figure 5.2: Example of the use of task migration
(a) Application task graph, (b) State of the NoC before the mapping, (c) The NoC after the

mapping

5.2.2. Multitasking on the cores, Spatial and Temporal mapping

Another idea for future implementation would be the ability of scheduling on each tile,
similar to the multitasking capability in modern single-core operational systems. This way, more
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than one tasks could be mapped to every core and be executed in parallel, ending the problem of
waiting for any other application to finish.

In order to achieve that, a dynamic two-level scheduling is needed, like the one presented
in [14] (fig 5.3). Assuming a mechanism like that, the System-Wide Controller and the Regional
Controller would continue mapping the tasks as it is, with the only difference being that more
than one tasks would be able to get mapped on any core, even if they belong to different
applications.

Then, a piece of code on each core, called the local scheduler would be in charge of
deciding which task executes on the core, much like a multitasking scheduler of a common
Operational System.

O54RS task

descriptor ‘\ ...... o

S
(‘ 4 spatial
OS4RS // f | >< \ scheduling

task pool \
7 \
/ \
4 \
Computing Un lt /;';' TOp-LWd SChedulﬁ \\\ v
local task pool | / N ioseduaissasavasssossmniise
: / /{f, | N\ \ Py
4
(_/ "
xS temporal
scheduling
* : local task Clggtt%ged%ngj
Computing Unit, descriptor
local scheduler | ——— Yoo

Figure 5.3: Two-level scheduling mechanism from [14]

5.2.3. High-level NoC control mechanisms for run time mapping

Last but not least, another addition would be the use of more hierarchy levels between the
controllers on very large NoCs, i.e. the use of regions within regions, for better distribution of the
algorithms computational effort. That would help on large NoCs, where possibly a region’s
Regional Controller would encounter the same problems as a centralized controller in a smaller
platform.
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System-Wide System-Wide
Controller Controller
Regional Regional Regional First_Leve\ I;irst_Lev?I o I;wrst_Lev?I
Controller Controller | Controller Regional egiona egiona
Controller Controller Controller
Second Level Second Level | |Second Level Second Level Second Level Second Level
Regional |- Regional Regional ~| Regional Regional = | Regional
Contraller Controller Controller Controller Controller Controller

Figure 5.4: One-level and two-level hierarchical controllers

The RTM algorithm as it is, uses one-level of hierarchy on the controllers, utilizing the
System-Wide Controller that is responsible for the Regional Controllers. Adding on more level
of hierarchy would result in a hierarchy pyramid as the one depicted on figure 5.4. In this control
scheme, the System-Wide Controller is responsible for the first level of Regional Controllers
only, and these controllers are in turn responsible for the second level of Regional Controllers. In
the same manner, as many levels as necessary can be added, in order to achieve the desired level
of distribution on the NoC.
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