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Anoyopeleton 1 aviiypagr, omodfxcuon xou Olovour Tng mopoloos epyaoiag,
e& OhOXAPOU 1) TUAUATOS QUTAS, Yot EUNopoxs oxomnd. Emitpéneton 1 avotdnwon,
amorxeuan xaL Slotvour| YLol OXOTO U XEEOOOXOTOIXO, EXTOUOELTIXNAS 1| EQEUVITIXAC
puong, utd TNV meolndvect OTL avapépeTal 1 TNYY TEOEAEUoTS o dlaTneeiton To
Tapoy uhvupe. Epwtriuoata mou agopolv T yenorn e epyacsiag Yo X€p80oX0OTIXO
ox0oTo TEETEL Vo ameLYOVOVTOL TEOG TO CUYYEAUPED.

Ot amdeic xou o CUUTEPAOUATO TOU TEPLEYOVTAL OE QUTO TO EYYEAUPO EXPEALOUV
TO CUYYRAUPEN XoL OEV TEETEL VoL EpUNVELTOUY OTL AVTITPOGHTEVOLY Ti entionueg Véoelg
Tou Edvixol Metodfiou Hohuteyveiou.



Abstract

In this diploma thesis we introduce a novel framework foedéhg ridges and bi-
lateral symmetry in natural images using supervised legtriince there is no ex-
isting ground truth dataset for ridges, we begin by consitiga preliminary one
automatically, using images from the Berkeley segmentataiaset(BSDS300).
Motivated by the work of Martin et al. on boundary detectiam use different
combinations of low-level brightness, color and textures;icollected at multiple
scales and orientations, to train a ridge classifier. Thaieg algorithms we con-
sider are logistic regression and multiple instance |legnand the training data
consist of natural images taken from the Berkeley segmentdtataset.

For the evaluation of our method we use precision-recallesir Qualitative
and quantitative results for the various algorithms antLi@acombinations used
are presented. We also compare our results to those obtayntbe ridge detec-
tion with automated scale selection algorithm by Lindebargl we observe that
our approach performs better. Finally, we discuss possiigleer-level applica-
tions where our method could prove useful as a front-end step

Key words: computer vision, machine learning, classifier, ridge deiacsym-
metry, features, ground truth, evaluation, logistic regren, multiple instance
learning, precision, recall, training.



Hepiindn

Ye auth| TN OimAwuoTx pyacio e€epeuvoluE To TEOBANUA TNG aviyveuoTg
a€OVEV CUUUETELIS XAl XORUPOYpaUUwY (ridges)oe ewoveg, and pla véa oxomid,
Yenowonowwvtag emPBrenouevn udinon (supervised learning) E@ocov dev ut-
Gyl xdmoto alvolo dedouévwy enaiieuone (ground truth) yio xopugoypoy-
UES, oYX XUTAOHEVECOUPE EVOL YIol TEOXATAPXTIXY Y ehon, Pactlouevol 6To
olvoho Bedouévewy xatdtunong tou Berkeley (Berkeley segmentation dataset—
BSDS300).Axohovddvtog ta fruata v Martin et al.yio aviyveuorn ocuvépwy,
YENOUOTOLOUUE OLUPOPETIXOUE GUVOUUOUOUS YUQUXTNELO TIXMY POTEVOTNTAS,
YEOUATOS Xal UPAC, To 0molol GUAAEYOVTOL GE TOAATAES XAPOXES XL XATEL-
YOvoELe, Yoo TNV exudinoT Tou aviy veutr xopugoypauuomy. Ot adyoprduol ex-
uédinong mou yenotuonotolye elvan hoyto tixy| takvdpounaor (logistic regression)
xou exudinon and morhd otiywmotura (Multiple instance learningya to civolo
OEdOPEVLY exTaldEVOTG amoTEAELTAL amd QuoES eixdveg Tou BSDS300.

[ v a&rohdynon tne uedosou Yo, YenoULoToloVUE xauTOAES axp{Betac-
emavdxinone (precision-recall curves)Emnpocieta, mapoucidlovtor ToloTxd
X0l TOCOTIXG. AMOTEAECUATOL YIo TOUG BLapORETIX0VS ahyoplduous xal cuvVOLas-
HOUC YUEAXTNELO TIXWY TOU YPNOULOTOLOUVTOL. LUYXEIVOUUE ETOTE To AMOTEAES-
MOt oG UE AUTE TTOU BEVEL 1) EQUPUOYY| AVLYVEUGTIC XOPUQOY QUMY UE YETON
¢ ueddodou ye awtouatn emioyn xhipoxac, tou Lindeberg,xo mopatneolue
OTL 1) TPOCEY Yo Hog amodidel xoAUTtepa. Téhog, culntolue mavéc epapuoyeég
uPnioTtepou emiméEdoU, 6oL 1 uéVodC pag Va unopoloe vo amodety Vel yeroun
oS Eva apyLxo Brua Tpospyaciog.

A€Zeic xheldLd: 6puoT) UTOAOYLG TWOV, EXUCUNTT) UNY VeV, TaEIVOUNTAS, aviyveuoT
XOPLPOYPOUUGY, CUUUETE(O, YAUEUXTNELOTIXE, GUVOAD BEBOUEVWY ETUAUEUOTC,
o€ LOAOYNOT), AOYLO TIXY) TOAVOEOUNOT), EXUdUNOT amd TOAG o TLyOTUTA, axeifBeia,
EMAVAXANOT), EXTULOEVOT).
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Chapter 1

| ntroduction

1.1 Statement of the problem

Despite the role of symmetry in human perception, it stitheens a cue that is
rarely used in recognition, classification and scene utaledgng systems. The
latter, along with the fact that symmetry is considered agitentive feature that
enhances object recognitiofi, P2, 44] were our main motivations in trying to
develop a system that detects ridges and symmetry axesurahahages.

Specifically, this diploma thesis deals with the problem ofomatic ridge
and symmetry axis detection in natural images, using anoppiately trained
detector, that can decide if a pixel belongs to a symmetrg axinot by using
features extracted from the input image, which can be ettbkr or grayscale.
Given a new image, the detector extracts the same featutesadculates the
probability for a pixel to belong on a symmetry axis at sonmaesand orientation,
classifying it accordingly. The novelty in our approactslia the fact that we use
supervised learning to train our detector; although sin@lgproaches have been
adopted for boundary detectiond, 20, 29 and corner detection3[/] yielding
useful results, there seems to be no relevant work that we krfidor symmetry
and ridge detection.

This formulation differs from previous attempts to tackie problem, which
use mostly geometric methods, and are based for the largesoply on the
brightness or boundary cues. On the other hand, our metholdiesxthe ad-
ditional features of texture and color, which enable theectetr to discriminate
symmetry in image regions that share a common brightnedemioor boundary
features. Another advantage of our approach is that we caedse the number
and nature of features used to perform the training, in daenprove the results,
the only limitation being keeping the computational coattable. In this thesis,
we use a small number of features for the sake of simplicitye B#lieve that
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incorporating a statistical framework in our approach czadlIto better results,
approximating the decisions a human subject would takd, griéater success.

Due to the way we model symmetry and extract features (engdbin chap-
ter 4), our detector is mainly focused on detecting ridges of géded shapes
along one dimension, such as human or animal body partdytngles, and rivers
or roads in a topographical top view of an area. We use thestedge andsym-
metry axisinterchangeably throughout the whole document and rely gnoand
truth dataset of annotated positives to train the detettos way we maintain the
flexibility to specialize the parameters of the detectordpplications aiming at
detecting ridges of specific objects or structures.

Applications that could exploit our symmetry axis detectgystem include
pose estimation, where the classifier could be trained tecti&tuman parts ex-
hibiting symmetry (limbs, torso, head), and medical imagivhere ridge detec-
tion in MRI or PET scans can offer important knowledge conicegypathological
conditions. Moreover, our detector could be trained usigghimages, aiming
to extract ridges in landscape top views; this step can be@frutopography, e.g.
in automatic topographic map extraction.

1.2 Computer vision

This diploma thesis belongs in the research field@hputer vision Computer
vision aims at developing methods that use two-dimensionafes to extract
information concerning the part of tiiedimensional world that is depicted in
them 28]. In order to fulfill this goal, research in the field of computision
is focused mostly on the development of artificial visionhi@ques, the use of
computational models for the study of biological visionddinally, understanding
the sensory and perception processes of the brain that anected to vision.

Computer vision is an interdisciplinary field born in the déeaf 1960 mainly
by the contribution of three domains: signal processingtepa recognition and
artificial intelligence. Nowadays it has evolved into angpdndent and signifi-
cantly active scientific field that uses techniques fromowsiother domains such
as psychology, neurobiology and applied mathematics. it rapid develop-
ment of Computer vision over the last years, some of the baisldgms remain
unsolved and even the most sophisticated methods of visirstdl far from
reaching human vision levels. This indicates that therel af progress still
to be made in the years to come, even though that making nexhsee” was
originally considered to be an undergraduate student surprogct.

Finally, considering the crucial role vision has playedha evolution and de-
velopment of mankind, we can imagine that granting autodhsystems a similar
ability is justified by a plethora of possible applicatiotiee most notable of which
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include: mobile robot navigation, industrial inspectiardanilitary intelligence,
medical image analysis, object recognition, human-coemrecognition, and the
realistic rendering of synthetic scenes in computer giaphi

1.3 MachineLearning

Machine Learning is a scientific discipline that can be nyoslated to artificial
intelligence and statistics, and its main purpose is toa@eplvays and algorithms
that grant computer systems the ability to evolve behavamd make choices
based on empirical data, such as data from sensor or dasabEsie can be ac-
complished by using a set of observed examplesning datg as input to the
learning system, and a procedure callidning so that the learning system can
capture underlying statistical laws the data obey.

A crucial trait that is sought after in a learning system isdjgeneralization.
The latter represents the ability of a learner to make ‘“ligeeht” decisions and
provide useful output in new test cases, by using just a subBet of the possible
inputs as training data, hence making training a feasilsleitaterms of time and
computational resources.

Learning problems can be divided into two main categorsegervisedand
unsupervised

Supervised learning, or “learning with a teacher”, is the task of inferring a func-
tion from supervised training data. In this case, the trejnilata consist
of a set oftraining examplesnd each example comprisepair of an in-
put object and a desired output value. The input object isliysa vector
in a d-dimensional space, while the ouputs are usually categris ei-
ther quantitativeor qualitative Qualitative outputs are also referred to as
categoricalor discretevariables, as well as factors. This distinction in the
output type has led to a naming convention for the predictasks: re-
gressionwhen we predict quantitative outputs, acldssificationwhen we
predict qualitative outputslp]. Supervised learning is the type of learning
we use in this project.

Unsupervised learning attempts to capture the hidden structure in data that have
not been labeled. The usual setting for this problem is thathas a set of
N observations of a randomvector X, having joint density PX) and the
goal is to infer the properties of this probability densitighwut the help of
a labeling providing correct answers or a measure of eradrribeds to be
minimized.
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Well-known approaches to unsupervised learning includsteting meth-
ods like k-means and dimensionality reduction techniques like graic
component analysis and independent component analysis.

1.4 Thesisoutline

Chapter 2 provides a short review on the previous work on symmetry aris
ridge detection. It also present work that is relative on almee learning
level and that motivated our approach.

Chapter 3 describes the construction of the ground truth dataset tasiedin of
the classifier. It analyzes the steps involved in its comtibn and presents
an interface that includes supervision by a human user.

Chapter 4 presents the features that were used in the training of tue rie-
tector, as well as the method we used for their collection. iMi®duce
an adaptation of the gradient-based operators that wareufated in P9,
which we use to compare the extracted features and detecistym

Chapter 5 provides the theoretical background for the tools whichumed for
the detector training, namellggistic regressiomndMultiple Instance Learn-
ing. The details of the training procedure are explained andliffierent
configurations for the problem parameters are explored.

Chapter 6 describes the testing procedure using the training metpoetented
in chapter 5. The evaluation method in theecision-recallcurves frame-
work is explained and used to compare the results quamétgtiLogistic
regression and multiple instance learning results arecswared to Lin-
deberg’s automatic scale selection technique. In thistenaye also include
indicative qualitative detection results.

Chapter 7 summarizes the thesis and presents the conclusions we deaciged.
In this last chapter we also propose possible practicali@dmns where
our work could be useful, and finally, we list improvementd afternative
approaches that we intend to explore in the future.



Chapter 2

Symmetry and previous work

This chapter is composed of two parts. In the first part we iggogome general
information on basic symmetry concepts that are useful dewstanding the prob-
lem we are trying to tackle. In the second part, we go on ma&isigort review of
the previous work on symmetry axis detection and ridge dietecSince there is
not a single accepted definition for what a ridge is, we listwhrious definitions
we encountered in the bibliography and the respective dihgos.

2.1 Symmetry

The scientific interpretation views symmetry as the rejoetiof patterns or self-
similarity. This property can be demonstrated in a varidtgasentific fields and
various forms. Below we list basic types of symmetry, whicbvisle a better
understanding of the problem we are trying to tackle.

2.1.1 Symmetry in Euclidean Space

Symmetry in the Euclidean space is formally defined in théovahg manner:
Consider a subset 8t", S. A distance preserving mapping@metry g is asym-
metryof S, if and only if g(S) = S. Additionally, a symmetry, for a setS € R",
is called gprimitive symmetryif and only if for any non-trivial decompositions of
g = 9192, Neitherg, nor g, is a symmetry of5.

For example, given a functiofi(z, y) in 2D Euclidean spac#&?, which is the
Euclidean space of interest in our work, four basic tyf@es$1, 50] of symmetries
are:

1. Reflection:If f(x,y) is a function that is symmetric along axjsthe fol-
lowing relationship holdsf(x,y) = f(—=x,y). If f is the image brightness
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function for example, the image is symmetric along a speeifis. The
reflection (symmetry) axis is the set of points remainingmant under the
reflection.

2. Rotation: Rotational symmetry is described by the relationship, y) =
f(V/x? 4+ y?cos(2m/n)), /22 + y?sin(2w/n), wheren is an integer. For
this type of symmetry, the point remaining invariant undes totation is
the rotation center.

3. Translation: In this case, iff(z,y) is a function exhibiting translational
symmetry,f(z,y) = f(z + Az, y + Ay). The quantities\z, Ay belong to
R and there are no invariant points.

4. Glide ReflectionA glide reflection can be expressedg@s t © r, a transla-
tiont followed by reflection, whose axis of reflection is along the direction
of the translation. For example, for a glide reflection, vehibre translation
and reflection are along the horizontal axi$z,y) = f(z + Az, —y), for
someAz € R.

2.1.2 Local and Global Symmetry

Symmetry in natural images can be viewed both as a global dondah phe-
nomenon, depending on the scale at which we are looking.féoitexample we
consider a simple image containing a foreground objectyaho figure2.2 For
the left object, global symmetry is highlighted; in this easl the object points
contribute to the determination of the symmetry along thetica axis. In the
right object of the image, we view symmetry as a local featmd the points
composing the illustrated symmetry axes are only suppdijed subset of the
object. This discrimination can be better clarified by takenlook at Figure.2

Global symmetry detection methods are in general much nfbcesat in run
time, usually having linear time complexit¢4]; they are, however, sensitive to
noise and occlusion. On the other hand, local symmetry tletemethods are
usually more robust to noise and occlusion, but have higke tomplexity. One
factor that somewhat balances this high time complexitiias ost of the times
they can also be easily parallelized.

2.1.3 Importance of symmetry

Symmetry is a phenomenon that presents itself in all forrdssanles in both natu-
ral and man-made environments, extending from biologirattures to galaxies,
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(a) Rotational symmetry (b) Translational symmetry

.
W

(c) Reflection symmetry (d) Glide reflection symmetry

-

Figure 2.1: Symmetry in 2D Euclidean space.

or even the arts (Figur23). Repeated patterns appear constantly in our surround-
ings and compose a fundamental element of our perceptionrastetstanding of
the world. Humans and animals are able to perceive the existaf symmetry in
their environment innately, but this is an ability that miaehintelligence has not
been able to harness yet.

Symmetry has also played a prevalent role in the basic sesetivoughout
history. Examples vary in the fields of mathematics, geoynethysics, crys-
tallography and biology (Figur2.4), with some of the most important being the
theory of relativity (the discovery of the isometries of Mawski spacetime under
the Poinca& group, the full symmetry group®{], the double helix structure of
DNA (two-fold rotational symmetry)49] and the discovery of quasi-crystaz
and their mathematical counterpart, Penrose titdk [
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Figure 2.2: Global symmetry (left) compared to local symmetry (righEjgure
taken from p4].

2.2 Ridgeand symmetry axisdetection in 2D images

2.21 Binary images

One of the primary works that made use of symmetry axes fquesbascription
was byBlumandNagelin 1973 {]. In this article, Blum used the locus of centers
of maximal inscribed circles to define tlsymmetric axis transforrof a shape
(also calledmedial axisor skeletof, previously introduced by the same author
in [5]. The function that corresponds the centers of the maxingribed circles
to their respective radii is called tmadius function R. An alternative description
of the skeletal axis employs an analogy to grassfire, staftom the boundary of
the shape and propagating at unit velocity towards theiortefrhe quench points
of the fire represent the symmetric axis.

In [6] BradyandAsadause simple geometrical tools to introduce a represen-
tation of two-dimensional shapes callgghoothed local symmetriéSLS),shown
in 2.5. The geometry of a local symmetry requires the existencepaireof points
A and B on the shape boundary, such that the following conditior$iolThe
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Figure 2.3: Symmetry in nature and in man-made constructions. In thedd{
umn from top to bottom, a snowflake, milky way, the galaxy tbamtains our
solar system, and a libelula. In the right column, from tofbtdtom, the Taj
Mahal in India, a modern painting exhibiting symmetry, amtyang.

angle formed by the outward normal vecior at A and the line AB that connects
the two points must be equal to the angle that is formed byekpeactive normal
vectorng at B and line AB. Of course, this implies that the boundary efgshape
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Salt

Figure 2.4: Symmetry in sciences.

has been already extracted and that the tangent angle camipeited sufficiently
accurately.

As shown in figure2.5, there may be several poinig forming a local sym-
metry with a given pointd. The points considered to form tlaxesor spines
of the shape are the loci of local symmetries forming a smoatkie. Each axis
constructed that way, constitutes an alternative way dafriteiag some part of the
boundary contour, along with some portion of the region esatded by the axis.
This fraction of the shape is calledcaverof the shape and an hierarchical ap-
proach that assigns less importance to axes whose covemitywlontained in
the covers of others is adopted. This also forms an hieraoigng the spines of
the shapes according to their rate of locality.

The algorithm for locating the smoothed local symmetriea binary image,
and consequently the medial axes, straightforwardly sts81 fixing a bounding
contour pointA and testing all other point8 of the contour for a local symmetry
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Figure 2.5: Geometry of Smoothed Local Symmetry (left). Paihbelongs to a
local symmetry axis, with respect to the poiatand 5. In the right figure, point
A forms local symmetries with point8; and Bs, illustrating that in general there
may be several point8; forming local symmetries with a given point (taken
from [6]).

with A. This process is repeated for every point in the boundingozonresulting
in O(n?) complexity. An obvious modification in this algorithm in @dto make
it more efficient is to test just a subset of the boundary pdmtlocal symmetries
by sampling the contour. This results in a number of discneelial points that
are an approximation of the continuous medial axis we woeldfgve used the
full contour.

Recent work 45] views the skeleton construction as an optimization prob-
lem, trying to prune undesired branches caused by minordaryrdeformations,
while maintaining a low reconstruction error. This appioeesults intacanonical
skeletonghat are used for shape matching

2.2.2 Grayscaleimages

Haralick in [17], gives a joint definition for ridges and valleys in grayscah-
ages, using vector analysis concepts. To achieve detddtimalick first translates
the notion of ridge and valley to a continuous surface petsge The concepts
that are used for the detection are directional derivativd®re specifically, a
two-variable cubic polynomial is first fit to a neighborhoofdeopixel, using a
coordinate frame whose center runs through the center gfiked Ridges and
valleys are then found by looking for zero crossings in thst fiirectional deriva-
tive, taken in a direction that minimizes (valley) or maxues (ridge) the second
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directional derivative Saddle pointare also defined as the points where the con-
ditions for both a ridgendvalley are satisfied.

Haralick’s idea is extended wdimensional images biberly et al.in [13],
under the termheight condition Consider al-dimensional functionl. (i.e. for
d = 2 the intensity function of an image) and a set of indices froto & — d,
denotedly .. If [\;] > ... > |)\4] are the eigenvalues &f2L andvy, ..., V4
their corresponding eigenvectors, then-dimensional crease is characterized by
the equation

Viel,,: VL-vi=0 (2.1)

Creaseis a term used by the authors to collectively refer to botlgegland
valleys. Whether the:-dimensional crease is a ridge or valley, depends on the
sign of the respective eigenvalue \if < 0, then we have a ridge, while if; > 0,
we have a valley. In the same article additional definitiarscfeases are given,
like the principal directiondefinition, which views creases as loci of extrema of
principal curvatures along associated lines of curvatugemanner similar to the
work of Haralick.

In [25], LOpez et atlassify the different ridge/valley characterizations@d-
ing to the area that must be examined for the classificaticsgé®i/'valleys can be
characterized dscal when the classification ox a poixtas ridge/valley depends
on a local test, oglobal when the classification of the point depends on image
features arbitrarily far away fromm. Ridges/valleys that are defined by a local
test are callectreases There is also thenultilocal characterization, when the
classification of a poink depends whether on features of points in a predefined
neighborhood or on the particular geometry of the image.

In [35], Pizer et al.introduce a new type of medial loci that are caltades
Cores are defined as generalized maxima in scale space andntiricharac-
teristic is that they convey medial information that is ingat to translation, ro-
tation, and resolution. Given the space of all positions scalesi” x Rt —

R, the authors associate a measure of medial behavior to eact gdenoted
M(x,0) : R* x R" — R. The medial loci are then extracted by finding the
generalized maxima of these measurements.

The functionsM satisfying the invariance conditions stated before, ace pr
duced by convolving the image with appropriate kernelsetiasn measures of
boundarinessit each positiow, scales, and orientatiom, denoted a3 (x, o, u).

A simple choice forB can be a measure of luminance change e, o,u) =
u-oVL(X,0).

FunctionsM are classified as eitheentralor offset Central medialness func-
tions attempt to localize object boundaries by averagimagigjanformation about
a pointx over some region whose average radius is proportional t®n the
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other hand, offset functions attempt to localize objectrutanies by accumulat-
ing information of a relatively small scalgat neighbors which are at a distance
proportional tar from the test poink.

Similar work byLindebergcan be found inZ3], where he jointly addresses the
problems of edge and ridge detection with automatic scééeten. At each im-
age point(xg, yo), a local coordinate systefp, ¢) is introduced, which is aligned
to the eigendirections of the Hessian matrix of the brigksrfeinction. The way
he formulates a ridge(valley) is in terms of local diffeiahgeometric proper-
ties of image brightness a connected set of points for witiehrttensity assumes
a local maximum (minimum) in the main eigendirection of theskian matrix.
In order to formulate a scale selection method for ridgea&te, Lindeberg de-
fines the notion of thecale-space ridgeas well as a normalized measure of ridge
strengthR,,,.., L, in analogy to other measures of creaseness that have psgvio
been defined for the-dimensional plane. A scale-space ridge is considered to
be the intersection of the ridge surface with the surfacenddfbyR,,.,.,, L. being
locally maximal over scales.

Stegerin [41] proposes an algorithm that uses an explicit model for |ees
their surroundings in the image. Additionally, the alganit does not aim to sim-
ply extract the location of a ridge on the 2D image, but toasttthe line position
along with the line width, with sub-pixel accuracy. Ridges lcated using Gaus-
sian convolution masks and a scale-space analysis. In g@opo other similar
approaches though, the existence of an explicit model tolitles and their width
extraction, the bias in the extracted line can be predictediyéically and thus be
removed. This way, the ridges that are extracted are in sirady meaningful
locations in the image. This algorithm is gives as a resel{absitions of individ-
ual ridge pixels in the image. For that reason, after theviddal pixels have been
extracted, a linking algorithm is used to connect the pixels lines.

A common framework for edge and line extraction is also aetivn the work
of Buschin [7]. The line model that is used there is a second order polyalomi
function of the row and column coordinates that is fitted & gey levels in an
image window. Line (ridge) pixels are recognized using ttiersecting parabolic
function which falls in the direction of the maximal curvegu A pixel is classi-
fied as a ridge pixel if the extremum of the parabola fallsdaghe pixel and the
parabola’s curvature is sufficiently large. Artifacts amadiisous details are sep-
arated from salient ridges using hypothesis testing tonesé robust thresholds
and additional processing steps like skeletonization hedletection of node and
end pixels follow, to improve the results.

Bilateral symmetry and approximate bilateral symmetry ianeixed in B2].

A measure of symmetry that can be used for grayscale imageepssed. This
degree of symmetry is calculated with respect to a certgpeiptane of symmetry
and ranges from 0 to 1. Perfect symmetry is achieved whery ¢a@nt on the
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one side of the hyperplane has the same intensity value agrimetric. On
the other hand, perfect asymmetry is achieved when everyt poione side of
the hyperplane has maximum intensity and its symmetric @setlre minimum
possible intensity value. This algorithm has computatieoanplexity O(n) and
is used to measure symmetry only in respect to the princie af the object, as
notall possible planes of a bilateral symmetry are found. Tiecpal axes of the
object are extracted automatically too, based on the adrdaral the eigenvectors
of the covariance matrix of the object.



Chapter 3

Groundtruth construction

In all supervised learning problems, the first step towahnésiference of a sat-
isfactory classification function is using a well-constaccground truth dataset.
This dataset consists of a set of inputs and their respdatdets, which associate
to each input point the appropriate class of the output space

In the field of Computer Vision, where the ultimate goal is ustending the
information that is carried through the optical path, we aiseotations by human
subjects as ground truth. For example, in the case of thedawyletection learn-
ing problem addressed i29], 300 images with human-marked boundaries from
the Berkeley Segmentation Datagste B0]) were used as ground truth. From
the 300 images, 200 and the associated segmentations (-d&ch image) were
used as the training data, and the rest 100 and associateds&gions were used
as the test data (we will refer to this specific dataset aB®BS30Grom now
on).

Our goal is to train a binary classifier for ridge detection.e Would ide-
ally want a ground truth dataset similar to the BSDS300, casimy images with
human-marked ridges. Such a dataset does not exist to owldaige and its
construction would be outside the scope of this thesis.eatstwe combine the
information by BSDS300 with a modern skeletonization aldpon based on the
work of Telea et al[42,43,45] in order to construct fast and automatically a sat-
isfactory ground truth dataset of binary images for tragnin

We divide the procedure we just described into three majsste
e Segmentation of input image.
e Skeletonization of every segment separately.
e Union of skeletons for all segments.

Below we describe in more detail each one of these steps.
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3.1 Using image segmentationsto construct ground
truth ridge maps

Image segmentation aims at partitioning an image into a mumisegments (sets
of pixels) which share some common visual characteristizdor, intensity and
texture are used to quantify the similarity between pixeld altimately lead to
a realistic segmentation which is a simplification of therespntation of the ini-
tial image. Pixels belonging to the same region have a higjnedeof similarity
between the values of these features, while pixels belgngiradjacent regions
have a low degree of similarity.

The problem of image segmentation is closely related to tblelpm of object
recognition, as objects themselves are sets of pixels thally share common
visual characteristics and together form a semanticaligrgaand independent
part of the image for the human observer. Natural images ademp of seg-
ments such as object parts, animal or human limbs, and otivaish are less
important, for example large, uniform segments, which liggampose the back-
ground (grass, sky or sea). Speaking from a perception stamgAdelsonhas
referred to this as the distinction betwabmgsandstuff [2].

In order to construct the ground truth for ridges, we use husggmentations
taken from BSDS300 such as the one shown in figuteFor each segmentation,
we sequentially examine its composing segments and foringkeletons, which
will later be used in for the detector training. Segmentsniog the background
do not convey information that can be used in a higher lew#llike object recog-
nition, so we would like to be able to exclude them from the lelmocess. To
do that automatically we use thiggure-ground labeling datahown in fig3.2,
which are provided online together with the Berkeley Seguai#or Dataset and
Benchmark (see alsd }]). To decide if a particular segment belongs to the fore-
ground or the background, we take its intersection with Wigglwre contour (.)
and background contoub ). Since the contours encoding this information are
adjacent to each other, if the segment has more mutual puxglshe background
contour than with the figure contour, then that segment lgslom the background
and must be excluded from the skeletonization process.r@ite it belongs to
a figure and we must take it into account when we create thengrtvuth.

Applying the skeletonization algorithm sequentially taleane of the seg-
ments that compose a specific segmentation, we get seveaay inages of seg-
ment skeletons. In order to form the final skeleton corredpanto the input
picture, we have to take the union of all these binary imagesexample of the
partial skeletons as well as the total skeleton we get fomsage segmentation
are shown in figur&.3.

Of course, the above procedure is based on the segmentbéi@mgle human
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Figure 3.1: Segmentations made by different human subjects for the Baage.
The varying coloring across the image plane is used to sepaegments from
one another (a uniformly colored area implies an indepenskgment).

subject. If we want to take into account different segméonatfrom other human
subjects, we have to repeat the three steps for all the segtioss available for
the image and “average” the result in some way. Indeed, whdtave done is to
repeat the three steps previously described for the segtrard of each image in
our training set. This way we get an equal number of diffesikeietons, whose
union we show in figur&.4.

3.2 Manual screening

In figure 3.5 we see that the resulting skeletons are not always apptegoa
training, usually in the case of a segment that is not el@tyatlong some direc-
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(©) (d)

Figure 3.2: Figure-ground labeling encoded as two adjacent contoaysQ(igi-
nal image. (b): Figure-ground contours, labeled by difiefeiman subjects than
those who made the segmentations. (c): Figure-ground emtBigure contours
are denoted in red, while their adjacent ground contourdemeted in blue color.
(d): Zoomed portion of picture (c).

tion. To deal with this problem, we have created an intertaaéallows a human
user to supervise the creation of the ground truth, by céimgowhich of the seg-
ments will contribute to the creation of the final skeletorived a segmentation
for the input image, each of the segments is examined sepaeaid shown to
the human user, who decides if it should be included in th&etke or not. This
way, we offer the possibility to create a ground truth thagragimates the quality
of a human-made labeling. In figuB6 we show the improvement that can be
achieved through human supervision.

3.3 Summary

In this chapter we presented an automated procedure thet susegmentation
problem by a human into a skeleton extraction problem fovargimage. This
skeleton is used to create the necessary ground truth tdédatiee training of the
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Figure 3.3: Image skeleton composed of the partial skeletons for ssegenents.
This skeleton corresponds to one of the available semgemsefor that image.

detector. We went on to analyze the three steps of this puveeds well as its
inherent drawbacks, due to the skeletonization step. liyjiwed proposed an alter-
native approach to the construction of the ground truth, ithelves supervision
by a human user and can lead to more useful and realistidsesul
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Figure 3.4: Ridge maps derived by using the skeletonization algorithrdiffer-
ent segmentations of the same image. The initial imageustithted in the top
left figure. The large, bottom figure shows the result of themiof the five ridge
maps obtained.
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(b)

(d)

Figure 3.5: Example of the unrealistic result we can sometimes get ukm@u-
tomated skeleton extraction. (a) Original image. (b) Segaten that contributes
negatively to the average skeleton. (c) Ridge map of the lz@g&ral segment. (d)
Union of all ridge maps for the initial image.

Figure 3.6: Improved union as a result of human user supervision dufieg t
selection of the segments contributing to the ridge map.



Chapter 4

Feature extraction

In this chapter we describe the features used to train tlge rikbtector and the
method used to collect them. Our work is inspired mainly B§},[where the au-
thors use features extracted locally from image patchesterhine the existence
of a boundary in some orientation. Based on the success obtredary model
presented in that paper, we examine if similar local featane exploitable for
ridge detection. One significant difference is that in thetyem we are address-
ing we cannot confine our search in a small neighborhood dreanh point; in
figure4.1we can see that it is necessary to examine features in neustialles for
each pixel.

4.1 Histogram-based operatorsand features

We consider a circle of radius centered at locatiofiz, y) on the image plane.
Drawing two chords along orientatighand at distance = 3 from the center
divides the circle into three parts as shown in figdir2

Given two of these three parts of the circle, we define theobrsim func-
tion Hp, p,(z,y,0,s) that reflects the dissimilarity of the contents of the two
parts. Indices, j are used to denote which two areas of the disk are compared,
according to the labeling used in figude2, while quantitiesd and s represent
the orientation and scale respectively at which we are exagpithe existence
of symmetry. Function is symmetric with respect to the disk parts, hence
Hp,p,(v,y,0,s) = Hp, p,(z,y,0,s). Note that the scale at which we search
for symmetryis notequal to the radius of the circle shown in fig4r&; the two
quantities are connected through the relationships.

In order to compare the two parts, we make use of color andrexeatures
based on the empirical distribution of pixel values avedageer some neighbor-
hood. There are several approaches which can be used teietaathe differ-
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Figure4.1: Symmetry depends on the bilateral distance of the pixeladtund-
ary. The same pixel can belong to a symmetry axis with redppesbme scale
s1 (red vectors), but not with respect to another scalé¢yellow vectors). The
vertical symmetry axis is illustrated as a white dashed line

ence between color distributions of two sets of pixels. Miadiows distancg27]

and theEarth Mover’s distancdEMD) [21] are common tools for comparing
color distributions. Although the latter takes into accotine “ground distance”
between the points, which can be a desirable property if @@andling data from

a color space where nearby points appear perceptuallyasjmitemains compu-
tationally expensive, thus discouraging us from usingitolir attempt to retain a
low computational cost, we decided to use tftedifference B8] to compare the
histograms. The? difference measure is described by the following equation,
whereg andh denote the histograms that are compared/aistthe bin index.

20 1y = Ly (k) = h(k))?
x(g,m—ikj o0 () (4.1)

Using the notation we introduced for the similarity functibetween features of
different disk parts (fig4.2), we have:

L~ (D) = Dy(K)Y “2)

Hp. p. 0,r)= -
DzyD](‘/L‘7y’ ,7") 9 - Dz(k‘)-FD](kJ)

The computation of the histograms and their comparisondaswed for eight ori-
entations in the interval, ) and ten circle radii. These are set from 0.02t0 0.2 as
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(@) (b)

Figure 4.2: (a) Disk used to collect the features. The disk is divided thiree
parts, whose brightness, color and texture contents ar@a@d. The radius of
the disk is denoted as while the scale at which the symmetry is detected, is
denoted as. The center of the disk is the point associated with the ctakd
features. (b) Example of symmetry detection using the dis&ature contents
of the middle part(1) show high dissimilarity to the contenf the “left”(2) and
“right”(3) parts. Thus, the symmetry response in the vattiiameter, illustrated

in yellow, is high.

a percentage of the image diagonal for all three pairs ofecragions; that means
we calculate quantitiel p, p,(z,y,0,7), Hp, p,(x,y,0,r)andHp, p,(z,y,0, 7).
The color space we use is the CIELAB color space. CIELAB cossisthree
channels, thé* channel for brightness, and channatsandb* for color. For
the brightness gradient we compute histograms of the bibhedlues. The total
color gradient is formed by channed$ andb*, so the color value for each pixel
lies in a 2D space. According t&8J], the a* andb* channels correspond to the
perceptually orthogonal red-green and yellow-blue colgganents found in the
human visual system. This fact motivates the calculatiah #se of thea* and
b* gradients as separate features for training. Another wpsiaeplacing the
joint color gradientCG* with the sum of the partial color gradientSG+* =
CG*+CG®, whose calculation is much easier; this is again based csatie fact.
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In the end of the chapter we include images showing the vaitittee histogram
differences between pairs of circle regions for the brigethand color channels.

In the same spirit as for the brightness and color operatersi@scribed in
the previous section, we formulate an operator that meashestexture dissim-
ilarity between two areas of the circle disk, at scalend orientatiort. For the
texture feature, we first convolve the image with a bank a#sitof various orien-
tations and spatial frequences, as there are several psawiarks [L4, 36], which
indicate that the use of such a preprocessing step exhimid discrimination re-
sults. Figure4.3 shows the filterbank that is used for the texture procesding.
contains six even/odd quadrature pairs of elongated, tedefiiters, as well as a
center-surround filter, the even symmetric filters being $3&n second deriva-
tives, and the odd-symmetric filters, their correspondinidpeit transform. Fi-
nally, the center-surround filter is a difference of Gaussia

The 13 filter responses define a-dimensional feature space, and each pixel
in the two disk regions associated with this vector of respsn represents a
point in this space. Following theextonapproach, as in29], we cluster the
13-dimensional response vectors usiygneans (we usell = 64 for our exper-
iments). The cluster centers are tlegtons and we can see examples of what
they look like (fork = 64) in figure 4.3. After the textons have been identified,
each pixel is assigned to nearest texton, according to i&s fiésponse vector.
Now texture dissimilarities can be computed by comparimghistograms of tex-
ton labels in the two regions of the disk, with thé difference operator. Figures
4.154.17show some examples of texture gradient features in varicales and
orientations.

4.1.1 Boundary Validation Feature

So far we have discussed features which are extracted framage and used to
detect symmetry. Local symmetry in the form of a ridge is @lesely related to
the existence of boundaries at equal (or approximatelyledistances, on both
sides of the symmetry axis. For that reason we associatepgaatio a boundary
map response at scateand orientatiort, and create this way a new symmetry
feature.

Specifically, we first extract the boundary map out of thdahitmage, using
the boundary detector formulated i8].[ After that, we filter the boundary image
with the masks shown in Figt.4. Each one of these masks is nonzero only in two
bilateral areas, centered at distance- § (wherer is the radius of the circular
disk), and along angleé. We denote these two nonzero areaﬁ\@se ande_-f,
where L, R stand forLeft and Right and s, # imply the scale and orientation
respectively.
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Figure 4.3: The filterbank used to compute textons, composed of 13 {ilkft)s
and an example of computed textons (right). The images kea taom 9.

If there is a high boundary response in both nonzero aredseahtsk, then
this pixel is likely to belong to a symmetry axis. On the othand, if the re-
sponse is low in any of the areas, then the probability of sgtmyron the pixel
is weakened. The value assigned to each pixel due to theeegesiof bilateral
boundary at scale and orientatior? is the product of the maximum boundary
values found in the nonzero areas. B¥'(z,y, 0, s) is the boundary feature at
scales and orientatiord for pixel (z,y), and BR is the output of the boundary
detector, we have:

BF(z,y,0,s) = max (BR)- max (BR) (4.3)
BRCM}"? BRCM}°
This process is repeated for all scales and orientationmeSy the results are
shown in figuregtl.184.20

4.2 Featurevector combinations

The process described in the previous section resultsl Bxdimensional vector
of features for each pixel at a specific scale and orientatibimat is, threeL*
channel histogram-difference features, one for everyqialisk areas fj), nine

morea*, b* and texture gradient featureH;(j,Hl?”j,Hf,j respectively), plus the
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A Y
4
4
4
Figure 4.4: Masks used to detect boundary response at distafroen the pixel
for all eight orientations. Note that in order to validate #xistence of symmetry

along angled, we examine the existence of boundary at arfigle 5 (angles are
counted clockwise).

boundary validation feature. Thig-dimensional vector of features is extracted at
8 orientations and 10 scales. In the case of grayscale imageanit the features
corresponding to tha* andb* color channels, which results infadimensional
feature vector. Also, if we use the sum of the color chanrsblgram differences
H*? as a single feature we getl@-dimensional feature vector. To sum up, we
consider the following three feature configurations fomiray:

e Brightness, color, texture and boundary features. Colormélamstogram
differences are treated as separate features (we willteethais as theolor
configuration).

e Brightness, color, texture and boundary features. The suheafolor chan-
nel histogram differences is treated as a single featurenjeefer to this
as thefullcolor configuration).

e Brightness, texture and boundary features (we will refehi® &s thegray
configuration).

The optimal way to combine these features in order to deigges in new inputs
is learned via the learning methods discussed in ch&ptatuitively, we believe
that points lying on a symmetry axis at orientatiérand scales exhibit high
dissimilarity in the collected features in comparison teitisurroundings. That
means that for a pixel at positian, y), Hp, p,(z,y,0,7) andHp, p,(x,y,6,7)
have high values. If the bilateral regions of the pixel (argand 2 of the disk in
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fig. 4.2) have similar feature content, we expect that classifiodiEcomes easier.
This is not always the case though as we can see in fi@gdrevhere these two
cases are illustrated.

(b)

Figure 4.5: Color and texture features in the two lateral sides of the (héke
color parts of the disk) can be similar (a) or very differen. (Detection of the
symmetry axis is easier in the first case.

43 Summary

In this chapter we discussed the features we use for thetdetezining and the

way we extract them. We also introduced a histogram-basecatyp that uses
the y? difference to measure dissimilarity between brightneseture and color

content of two image areas, and added an extra trainingreebfised on the image
boundary. Finally, we listed three different feature conalbions that will be used
for the training of the detector in chapter
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Figure 4.6: Brightness features, collected at the smallest scale fofirtefive
orientations. (a): Histogram differences between thgIef) and the centrallp;)
part of the disk. (b): Histogram differences between thet(ig;) and central D)
disk parts. (c): Histogram differences between the I8ft)(and right (D3) disk
parts. Orientation starts at zero degrees (top) and inesedsckwise by, as we
move downwards, unti§ (bottom row).
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Figure4.7: Brightness features, collected at a middle scale for thefifnesbrien-
tations. (a): Histogram differences between the 1Bff)(and the centrallp,) part
of the disk. (b): Histogram differences between the righ)(and central D,)
disk parts. (c): Histogram differences between the I8f)(and right (D3) disk
parts. Orientation starts at zero degrees (top) and inesedsckwise by; as we
move downwards, unti (bottom row).
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Figure 4.8: Brightness features, collected at a large scale for the fiesbfiienta-
tions. (a): Histogram differences between the |&ft) and the centrallp,) part
of the disk. (b): Histogram differences between the righ)(and central D;)

disk parts. (c): Histogram differences between the I8f)(and right (O3) disk
parts. Orientation starts at zero degrees (top) and inesedsckwise by as we
move downwards, unti§ (bottom row).
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(a) H%th (b) H%l,Ds (C) HJ%Q,DS.

Figure 4.9: Color channe&* gradient features, collected at the smallest scale for
the first five orientations. (a): Histogram differences leswthe left D,) and the
central (O,) part of the disk. (b): Histogram differences between thet{iD;) and
central (0;) disk parts. (c): Histogram differences between the [Bff)(and right
(D3) disk parts. Orientation starts at zero degrees (top) acreéases clockwise
by £ as we move downwards, ungjl (bottom row).
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Figure 4.10: Color channebh* gradient features, collected at a middle scale for
the first five orientations. (a): Histogram differences kedwthe left 0,) and the
central (O,) part of the disk. (b): Histogram differences between tgbt{iD;) and
central (D) disk parts. (c): Histogram differences between the [Bff)(and right
(D3) disk parts. Orientation starts at zero degrees (top) acr@ases clockwise
by £ as we move downwards, ungjl (bottom row).
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Figure4.11: Color channeb* gradient features, collected at a large scale for the
first five orientations. (a): Histogram differences betwéan left (D;) and the
central (D,) part of the disk. (b): Histogram differences between tight{D5)

and central D,) disk parts. (c): Histogram differences between the 1&ff)(
and right (D3) disk parts. Orientation starts at zero degrees (top) acikases
clockwise byt as we move downwards, unjl(bottom row).
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Figure4.12: Color channeb* gradient features, collected at the smallest scale for
the first five orientations. (a): Histogram differences lewthe left D,) and the
central (D,) part of the disk. (b): Histogram differences between thet{iD3) and
central (D) disk parts. (c): Histogram differences between the 1Bff)(@and right
(Ds) disk parts. Orientation starts at zero degrees (top) ar@ases clockwise
by & as we move downwards, ungjl (bottom row).
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Figure 4.13: Color channeb* gradient features, collected at a middle scale for
the first five orientations. (a): Histogram differences edwthe left D;) and the
central (D) part of the disk. (b): Histogram differences between tgbtiD;) and
central (D) disk parts. (c): Histogram differences between the 1Bff)(and right
(Ds) disk parts. Orientation starts at zero degrees (top) atr@ases clockwise
by & as we move downwards, ungl(bottom row).
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Figure 4.14: Color channeb* gradient features, collected at a large scale for the
first five orientations. (a): Histogram differences betwéen left (D;) and the
central (D) part of the disk. (b): Histogram differences between tight(iD;)

and central D;) disk parts. (c): Histogram differences between the I&ff)(
and right (D;) disk parts. Orientation starts at zero degrees (top) aoases
clockwise byg as we move downwards, ungjl(bottom row).
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Figure 4.15: Texture channel gradient features, collected at the setatale for
the first five orientations. (a): Histogram differences ewthe left D,) and the
central (D) part of the disk. (b): Histogram differences between tgbtiD;) and
central (D) disk parts. (c): Histogram differences between the [Bff)(@nd right
(Ds) disk parts. Orientation starts at zero degrees (top) atr@ases clockwise
by § as we move downwards, ungjl (bottom row).
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Figure 4.16: Texture channel gradient features, collected at a middiéedor
the first five orientations. (a): Histogram differences leswthe left D,) and the
central (D,) part of the disk. (b): Histogram differences between thbt{iD3) and
central (D) disk parts. (c): Histogram differences between the [Bff)(@nd right
(Ds) disk parts. Orientation starts at zero degrees (top) ar@ases clockwise
by & as we move downwards, ungl (bottom row).
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Figure 4.17: Texture channel gradient features, collected at a large $oathe
first five orientations. (a): Histogram differences betwéan left (D;) and the
central (D,) part of the disk. (b): Histogram differences between tight{D5)

and central D,) disk parts. (c): Histogram differences between the |&ft)(
and right (D3) disk parts. Orientation starts at zero degrees (top) acikases
clockwise byg as we move downwards, unjl (bottom row).
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@6 =0 (©) 0 = /8

()0 =mn/4 (d) 6 = 37/8

(e)0=m/2 (f) 6 =57/8

(9) 0 = 37/4 (h) 6 = 77/8

Figure4.18: Boundary validation feature at the smallest scale for afirdations.
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€) 0 =1/2 (f) 0 = 571/8

(@) 6 =3m/4 (h) 6 = 77/8

Figure 4.19: Boundary validation feature at a middle scale for all origatss.
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(e)0=m/2 (f) 6 =57/8

(9) 0 = 37/4 (h) 6 = 77/8

Figure 4.20: Boundary validation feature at a large scale for all orieotest



Chapter 5

L earning

In this chapter we provide the theoretical backgrounddgistic regressiorand
multiple instance learningwhich are the classification methods we are going to
use in order to train the ridge detector. We also describ&dimang procedure for
both methods.

5.1 Logisticregression

Logistic regression uses a linear model to predict the postprobability of the
occurrence of an event. Despite the simplicity of this mpbiajistic regression
has shown to perform similarly to other, more complex tragnmethods in anal-
ogous problemsZ9]. In the general case of a classification task wittpossible
classes, the event whose probability we want to measutee mdcurrence of each
of the K classes, given the-vector of independent input variables associated with
the output. Since we want to model probabilities, the magl&imulated in such

a way that the linear functions used, sum to one and remaid, 1. [In the case

of a binary classification problem, i.e. whéh = 2, there is only a single linear
function and the model has the following form:

PG = 1|X = z)

1 - r 5.1
PG =X =) 0T 1)

In the above equatiody = i denotes the occurrence of clasandz is the vector
of input variables. It follows that{ is also a vector and, is the intercept,
which is often included in the parameter vector= w,, wy, by including the
constant term 1 in the input vector. A simple calculationvehthat

exp(wig + w{x)

PriGd =1|X =2) =
( | ) 1+ exp(wyg + wix)

(5.2)
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and of course

PG =0X=1)=1—-PriG=1|X =) (5.3)

1
= 5.4
1+ exp(wip + wi ) &4

Finally, if we consider thay; is the 0/1 response to theth observation, where
y; = 1 wheng; = 1, andy; = 0 wheng; = 2, the log-likelihood forN observa-
tions can be written:

{yilog p(zi;w) + (1 — ;) log(1 — p(as;w)) } (5.5)

N
=1
N

Z yiw’ z; —log(1 + e ’3)} (5.6)

In this equation, we assume the simplification mentioneliseawith the intercept
included in the parameter vector and the constant term iided in the input
vector. The logistic regression model is fit to the data by imamn likelihood. To
maximize the log-likelihood, we set its derivatives to zegettingp + 1 equations
nonlinearin w, which are called thecoreequations:

le yi — plzi;w)) =0 (5.7)

To solve the score equations, we use the Newton-Raphsorithigpwhich, given
a starting valuev°'?, produces the update™*”, using the Hessian matrix @f(w):

new o 2 -1 9L(w)
W' = w' — (V2L(w)) Et (5.8)
where the Hessian matrix is
N
- Z ziwl p(zi;w) (1 — p(a; w)) (5.9)
=1

Following [29], for our experiments we set the initial valuewfatw = 0.

5.2 Multipleinstancelearning

Multiple instance learning (MIL) is a variation of supermlearning that is very
useful in applications in a number of domains, such as coemnpusion, bioin-
formatics and text processing. In comparison to logistgression, MIL offers
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the advantage of treating both scale and orientation astlaesgiables. This way
we do not have to search for the feature vectors correspgndithe actual scale
and orientation of each training sample; all the featuréoredhat are associated
to it are used and the actual scale and orientation quanttie inferred by the
algorithm. Below we list the basic ideas of MIL, establish tisgation that will
be used, and compare it to standard supervised learning.

In traditional supervised learning we have a training dstaensisting of
input-output pairs. In a classification problem the inputs #he instance ex-
amples denoted{z,, 2, . .., z, }, and the outputs are labels that denote the class
among a set oK possible classes; for these labels we use the noté#ions . . ., v, }-
Instance examples typically lie i®t¢, y; in {0,1}, and the goal is to construct
a classifier functiom(X) : ®¢ — {0,1} that can predict outputs/labels, for
novel inputs. In the MIL paradigm, instead of using singlputilabel pairs, la-
bels are assigned tetsof inputs, calledbags The training set consists of the
set of bags{ X, X»..., X, } and the bag label$§Y;,Y,... Y, }, whereX,; =
{Ta, 2. .., zim},zy; € R andY; € {0, 1} for a binary classification problem.
A bag is consideregositiveif it contains at least one positive single input; con-
sequently, a bag is considered negative if it does not co@ay positive single
inputs.

This rule concerning the bag positiveness, can be expresstedows:

(5.10)

%

0 otherwise

and the goal of MIL is to ether train an instance classifier) : R — 0,1, or a
bag classifiefd (X) : (R%)™ — 0, 1. We note thay; can also be written this way:

Y = maxy,;, (5.11)
J

S0 a bag classifier can be easily constructed once the istéassifier is given.

As in the case of logistic regression, the classifier is g@dinia maximization
of the log likelihood function. However, the instance labate not known during
training, so we need to take them into account when we cdéctiia cost function.
The likelihood assigned to a training bag under the multipigance learning
model is:

L=][R"(1-p)™ (5.12)

whereY; € 0, 1 is the label of bagd, from a set of» bags and®; the probability of
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a bag being positive. Is it then straightforward to derivet the log-likelihood is

N
log L =) log(P)*) +log((1 — P,)' ™) (5.13)

N
=) Yilog(R) + (1 - Yi)log(l - F) (5.14)

This equation is similar t6.6 with the difference that the instance posterior prob-
abilities have been replaced with the posterior probadsliof the bags, whose
labels are known during training. The relationship betwinenbag probabilities
and the probabilities of their instances can be naturalfindd by the following
formula

H = max piy, (515)

wherep;; is the probability of thg-th instance of theé-th bag. Notice that the max
operator is not differentiable. To overcome this obstaelke use a differentiable
approximation to thenax the Noisy-OR(NOR) [48]. The bag probability under
the NOR approximation is given by the relationship:

P=1-]]0-py), (5.16)

jei

where the probability of an instance being positive is givgithe standard logistic

function
1

= 1 + e—(wiotwla)

Using the former differentiable definition 6f16for the bag probabilities, we can
now calculate analytically the log-likelihood gradienttivrespect to the weight
vectorw. To begin with, we use the chain law which gives:

N

dlog L(w) <~ O0log L(w) Op;
ow B Z Opi ow 5-19)

=1

We now are going to calculate each term separately for soitypli

dlog L(w 1 1 yi(l —pi) + (v — Dpi
OlogLiw) _ 1, (yi — 1) _wllopt 1) (5.19)
pi i I—pi pi(1 — pi)
_ YT Yipi Y Yipi P Yi T Di (5.20)

pi(1 — pi) B pi(1 —pi)
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opi  O[1—ILe(1—py)]  9[Ilje (1= pyy)]

= = 5.21

dw ow ow 5-21)
) ewT(Iz‘1+$i2+m+wim) 5 29

T Hw (1_|_6me2-1)(1_|_@wa¢2)...(1_|_ewam) (5.22)

= o an) - o ) - e )] (5.23)

In 5.23 z;; is the feature vector corresponding to fhth instance of the-th bag,
ando(z) = (1+e*)~t = e*(1 4+ €*)! is the sigmoid function. We also use
to denote the fixed number of instances per bag. Taking aagamf the property
of the sigmoid function, according to whiet(z) = ¢'(z)(1 — o(z)), equation
5.23becomes (we have omitted some intermediate calculatips:ste

Op; , ‘
(9p = @ @t zim) g (T Y o (wT m,) (5.24)
w

Z T + i {o(wz;) — 1)z} (5.25)

m

(1—p; ZO‘ w” Tij)Tij (5.26)
7=1
Finally, substitutings.26and5.20in 5.18 we get:

Olog L(w) i — pi = T

j=1

This expression is used to minimize the likelihood functmal give us the optimal
weightsw.

5.3 Training

For the training of the classifier via logistic regressioe, wge a subset of 37 nat-
ural images from the BSDS300 dataset for which we have cartstitthe sym-
metry axis ground truth data, as described in chapter

Having in mind that the vast majority of the pixels in eachrirgg image are
labeled as negatives, and that using all the available/fkel pairs as training
data would increase the computational cost, we pick a sulbse¢ available pix-
els using a sampling function. The sampling scheme is tHewolg: The total
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number of pixels, along with their labelings to be used asitig data, is speci-
fied as an input parameter for the training function. Thialtotimber of samples
is divided by the number of the training images to give the benof sampled
pixels per image. In our tests, the total number of trainguggles used (denoted
N) was approximately - 10”. Training the detector using fewer training sam-
ples, in the range of - 10° — 5 - 10°, and there were not significant variations
in the results, neither qualitatively nor in the maximum éasure attained (see
chapter6). Although the samples are randomly chosen, some conistraia ap-
plied. During our first tests, we noticed that boundary @»ek prone to giving a
high symmetry response at the smallest scale. This is annted/@ehavior, since
boundary pixels cannot by any chance belong to a symmetsy Bar that reason,
we emphasize the training against detecting boundary $bnthoosing half of
the boundary points in an image as training samples (latzdauegatives). The
labels of the total number of gathered samples that are ngbeé itraining do not
carry any information as to the orientation or the scale efsymmetry. We there-
fore have to find a way to select the correct features frompgketsum of collected
features at all scales and orientations, correspondingdio ®ample pixel. For the
selection of scale we use a simple approach, using the destaansform on the
thresholded boundary map of the image, which is computedhéyBerkeleyPb
detector Since the features have been collected in discrete saadkesa over a
continuum, we pick features computed at the scale closdbketdistance trans-
form value. For the orientation we use an orientation egtondunction using
the Hessian of the ground truth image, which gives us thetai®n correspond-
ing to the all the positive samples. The default orientatialue we use for the
pixels that are labeled negative is zero degrees. This wagre/@ble to select
appropriate features for training, both in terms of scald @mentation.

All the features are stacked inf& x K, whereK is the length of the feature
vector taking into account the constant term. Their labedsadso stacked in a
single column vector. The training is done using the NewRaphson iterative
algorithm described in the previous paragrap#][ giving us upon convergence
the vector ofw; coefficients.

Training with MIL is done in a similar way to the case of loggstegression,
with one basic difference. Recall that in the case of logisgression, we used
estimations for both the scale and the orientation of eastpkd pixel, in order
to use the correct features for training. In multiple ins&@afearning scale and
orientation are treated as hidden variables, so theseagiims are not necessary.

Linking the terms used in the previous paragraph to the comps of our
problem, each pixel represents a bag of features. The retatontained in such
a bag are the feature vectors at all orientations and scdlegive a concrete
example, in our experiments we used features in eight difteorientations and
ten different scales for each pixel, which makes for a tofadighty instances
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(c) Orientation estimation (d) Orientation estimation detail

Figure 5.1: Orientation estimation of the ground truth ridge map unidrhe
orientation in each pixel is visualized by a vector pointaigng the respective

angle. In this figure, the angles visualized are in the irtigrv 7, 7.

contained in each bag. Since all these features are used tattulation of the
instance and bag probabilities, we are presented with thibecige of efficiently
manipulating a significant amount of data, both in terms efcgpand computa-
tional cost. In our logistic regression experiments, wedugaious numbers of
training samples, ranging frotn 10° to 2 - 107. As explained in sectioB.3, there
was not substantial change of the testing results when we fieseer samples,
hence we settle fol = 5 - 10°, which keeps the training procedure tractable.
The goal is once again the maximization of the log likelihdod equivalently
the minimization of the minus log likelihood) of the set oéttraining bags. For
the multiple instance learning paradigm, we choose to parfbe log likelihood
optimization step using conjugate gradients to computeckedirections and on
qguadratic and cubic polynomial approximations to perfama kearch.
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5.4 Summary

In this chapter we focused on the methods used to train the ddtector: logistic
regression and multiple instance learning. We made a shwdduction to the
theory lying behind each one of these methods and estatilisieenotation for
the most important quantities involved. We concluded thepbdr describing the
training procedure for both cases.



Chapter 6

Testing and evaluation

In this chapter we present the testing results and the melbgy used to eval-
uate the performance of our detector. We begin by briefly rildag the testing
setup and the post processing performed in the output imafier that we re-
view theprecision-recallandF-measurdramework which we use to evaluate the
performance of our detector. We present figures with the tifative results for
logistic regression and multiple instance learning, codiclg the chapter with a
comparison between the two methods and the ridge detecsiog automated
scale selection, presented &4]. In the end of the chapter we also include some
indicative qualitative results obtained from both methods

6.1 Testing

Testing the detector is performed on a test set of eight isaigd&en from the
BSDS300 test images. Once the detector coefficients havechéritated, testing

is applied densely on a test image. Features at all scalewrgmtations are
collected, forming at-dimensional space of symmetry response maps. Taking
the pixel-wise maximum on this space over all scales andt@&iiens, gives a
portrait of the image ridges, like the one in fig@d. This can be seen as arough
gualitative depiction of the ridge locations but it has fgponses.

For that reason, we perform non-maximum suppression irr éod&in blurry
responses and get a connected line marking the symmetry ldris-maximum
suppression is performed on a 2D input image orthogonalgntangled. Since
we want to suppress the false responses while keeping tlemtsetiges con-
nected, it is necessary to perform non-maximum suppressithe correct orien-
tation, which varies from pixel to pixel. To create an oramn map that depicts
this change ofl as we move on the image plane, we first compute the maximum
of the response probability maps over all scales. That grgea3-dimensional
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array of maxima-over-scales for each pixel for all orieiotag. In this array, we
search for the orientation that gives the maximum proligididir each pixel; this
is the orientation which is used to perform non-maximum seggion. Moreover,
we zero the weakest responses and keep only the ones ththostaafter the non-
maximum suppression. This is done by thresholding the sgspd image, at a
threshold that is determined through the maximization eRfmeasure

6.2 Precision-recall curves

A high quality detector must meet two fundamental criteRast of all we want

the detector to be reliable. That means that if the systenksraapixel as posi-
tive, i.e. belonging to a symmetry axis at some scad@d orientatiort, we want

this to be true with high probability. Another important pesty of the detector
is completeness, in the sense that if there are points sgosyimmetry at some
scale and orientation, we want our system to be able to ditent and classify
them appropriately. These two concepts just describedieamneed as precision
and recall in the information retrieval community. Forngafirecisionis the frac-

tion of the detections that are true positives, whéeall is the fraction of true
positives that are detected. In probabilistic terms, gieniis the probability that
the detector’s output is valid, and recall is the probapifitat the ground truth
data has been detected. Expressed in mathematical noth@bins:

Precision— TruePositives 6.1)
TruePositives+ FalsePositives )

TruePositives
Recall= — . 6.2
TruePositives+ FalseNegatives (6.2)

These two measures are competitive, meaning that if we waighgorecision
value, we compromise the recall rate of the detector, whileewing high recall
rate means the detector will be less precise. To explaininkustively, a high
recall rate means that the detector hasn’'t missed any ypeEsitbut it may have
also classified as positives a lot of other pixels, resulimipw precision. High
precision on the other hand, means that we are being vergtiselén our choice
of positives; hence most of the positives returned by thealet are indeed true,
but a lot of other positives may have not been detected,tneguh low recall.

Precision-recall curves are a common evaluation technigugormation re-
trieval and classification problems and they were first useelvaluate edge de-
tectors by Abdou and Prati]. A similar evaluation technique is theeceiver
Operating Characteristic (ROC3urves, where the two axes aadlout andre-
call. Recall is defined in the same way as above and fallout is thieapility
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(a) Original image (b) Posterior probability ridge map.

(c) Non-maximum suppression. (d) Filtering and thresholding.

(e) Detected ridges.

Figure 6.1: Processing steps from the initial image to the final ridge . map

that a true negative was falsely labeled as positive. Algfhdaoth types of curves
qualitatively show the same trade-off between misses alsd faositives, ROC
curves are not appropriate for judging the quality of ridgéedtion. If the image
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resolution is increased by a resolution of factothe number of pixels grows as
n?. Applying the reasoning found ir2f] for ridges this time, lines it have a
fractal dimension less than 2, so the number of true positivi grow as slow
asn, while the number of true negatives will grow as fast:ds As a result, the
fallout will decline by as much ak/n. We do not face the same problem with pre-
cision, because it is normalized by the number of positiaésar than the number
of true negatives.

This trade-off between precision and recall can be captoyeke use of an ap-
propriate measure, called tRemeasureintroduced in 6], which is the weighted
harmonic mean of these two measures. Denoting precisiéghawd recall as?
the F-measure is defined as:

P-R
~aR+(1—a)P
whereaq lies in [0,1]. In our experiments we use= 0.5, which gives the
evenly weighted F-measure.

A precision-recall curve is formed by points representimg F-measure val-
ues, each one computed by theand R values corresponding to the detector’s
output at a particular threshold. To computeand R though, we need to be able
to determine how many of the pixels detected are true pesitignd how many
are false positives. Adding to that, the constructed graumith data consist of
5-10 different symmetry axis maps per image, resulting ftbeavailable seg-
mentations for each image in the BSDS300, so we are first goiegamine the
simpler case of pixel correspondence between a singleybgraund truth ridge
map and a thresholded detector output. The obvious choioemsider detected
positives as true if they can be corresponded to a pixel igtbend truth image,
and declare all unmatched pixels either false positivesiss@s. This way, how-
ever, we don't take into account the localization errorschtexist in the ground
truth data. Showing intolerance towards these localinadiwors is bad practice,
because qualitatively useful detector results can be rageldw quality and be
rejected. To avoid that, we allow correspondence betwetsttbel positives and
pixels neighboring to the ground truth positives. Detailstloe correspondence
computation can be found i2].

As multiple humans annotate a single image, the precisoatrcurves should
be based on all ground truth binary maps available for eaelggmThe approach
we follow is to first match the detector result with each grbiruth map sepa-
rately. If a detected positive is matched with at least witk of the binary maps,
it is classified as true positive. On the other hand, pixed$ tdorrespond to no
ground truth ridge map, are declared false positives. Theate is averaged over
the number of different ridge maps so, in order to achievéeperecall, all the
ground truth data have to correspond to a positive detegtéladosystem.

(6.3)
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Finally, since we do not possess a ground truth dataset matarban sub-
jects, we have to find an alternative way of comparing theltesfi our detector
to a “gold standard” F-measure, associated with the areobtat. Recall that for
every image of the training dataset, we have a number of seguiens by differ-
ent human subjects and an equal number of ground truth ridges ntalculated
in the manner described in chaptrWe evaluate a ground truth F-measure by
sequentially treating each one of these ground truth ridgpshas a thresholded
detector output and comparing it to the rest. In the end weageethe results
over the total number of ridge maps. The value that was cledlfollowing this
methodology for our ground truth dataset was- 0.67.

6.3 Comparison

6.3.1 Quantitativeresults

In the figures that follow we compare the F-measure resultthinthree feature
configurations examined in chap#rwith color channel features used as a single
feature or separately, and for the case of gray featureghfipess and texture
gradients only). Results for logistic regression, multipistance learning, and
ridge detection with automated scale selection are idsth in the same figure
for easier comparison. The number of training samples usetdth training
methods was - 10° samples.

As we can see in figuré.2, using multiple instance learning to train the detec-
tor, gives the better results compared to logistic regoesand the automated scale
selection algorithm by Lindeberg (we are going to use theragn LASSAO re-
fer to this algorithm from now on). In terms of the maximum [Eamsure attained,
our MIL detector performs better than LASSA, but standslyezbse to logistic
regression, which also outeperforms LASSA. This resulixjgeeted, since the
LASSA algorithm is applied on gray scale images, and doedaket advantage
of the color and texture cues, which play a important roleuinapproach.

Combining the two color channels into a single feature desa®performance,
as we can see in figu&3. Both logistic regression and MIL still perform better
than ASS, but the difference in the maximum f-measure is moaller. Moreover,
the difference in the maximum f-measure between logistgassion and MIL
training has reduced to negligible levels, so practicallyhis case both methods
perform equally well.

Finally, in figure6.4 we present the results concerning the use of only gray
scale features; that is brightness, texture and the boyndédation feature. This
is the only case that our detector trained via logistic regjon falls behind in
comparison to LASSA; the MIL-trained detector still staysead however, even
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Feature configuration 1 (color)

—6— LR (F=0.458 at (R,P)=(0.517,0.454) t=0.354)
—o&— MIL (F=0.466 at (R,P)=(0.546,0.456) t=0.29)
—— Lindeberg(F=0.42 at (R,P)=(0.453,0.426) t=0.115) |1
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Recall
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Figure 6.2: Results of evaluation for a detector trained using color nkénas
separate features. In the legend we note the maximum f-meashieved, the
respective precision and recall values, and the threshaoithigh it was achieved
for each method. Multiple instance learning outperfornghal other methods.

by a small margin. This verifies the importance of the colar far determining
symmetry in the framework we are proposing, and we see thétiogit can lead
to great deterioration of the effectiveness of the classifie

6.3.2 Qualitativeresults

We observe that there are not significant differences in #teatied ridges be-
tween the two configurations that use color features. Usiagwo color channels
a* andb* as separate features, seems to yield slightly better resppdetecting
some parts of the ridges which are not detected when the tauones are used as
a single feature (e.g. hand of the person in@ig). Moreover, both color config-
urations outperform the case where we use only brightnessexiture features.
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Feature configuration 2 (fullcolor)

1 T T T T T T T
—o— LR (F=0.44 at (R,P)=(0.459,0.473) t=0.37)

—6&— MIL (F=0.441 at (R,P)=(0.506,0.446) t=0.274)
—— Lindeberg(F=0.42 at (R,P)=(0.453,0.426) t=0.115)
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Recall
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Figure 6.3: Results of evaluation for a detector trained using the surhefwo
color channels as single feature. In the legend we note thxéman f-measure
achieved, the respective precision and recall values, laadhteshold at which
it was achieved. Multiple instance learning still perforbetter than the other
methods but at practically the same level as logistic regpas

We can see that the gray scale detector gives a lot of spurgsp®nses; at the
same time, it faces difficulty detecting symmetry at largsale, for example in
figure6.7. In this figure, we see that for color features, the symmetiy af the
person’s yellow skirt is successfully located, while thaygscale detector fails to
recognize it. The same applies to the torso of the zebra inefig)8.

Comparing the results taken from the two training methodsatvantage of
using MIL is shown in figuré.5where the ridge corresponding to the tail of the
plane is more accurately localized for the color featurdiganations, whereas in
the gray feature case MIL gives fewer background responsesther example
is in figure 6.8 where the ridge corresponding to the torso of the zebra i;iaga
detected more accurately. Overall, though, the resultshbytwo methods are
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Feature configuration 3 (gray)

—6— LR (F=0.4 at (R,P)=(0.515,0.361) t=0.306)
—6— MIL (F=0.427 at (R,P)=(0.501,0.411) t=0.274)
0.9F —s— Lindeberg(F=0.42 at (R,P)=(0.453,0.426) t=0.115) [

Precision

Or | | | | |
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Recall

Figure 6.4: Results of evaluation for a detector trained using the surhefwo
color channels as single feature. In the legend we note thxman f-measure
achieved, the respective precision and recall values, leadhtreshold at which
it was achieved. Multiple instance learning remains thenermbut this time au-
tomated scale detection algorithm performs better thardetector trained with
logistic regression.

similar.

6.4 Summary

In this chapter we presented the precision-recall framkwod we used it to eval-
uate quantitatively our ridge detector. We presented theltein terms of maxi-
mum F-measure for the three different feature configuratissed in the training
(color, fullcolor and gray scale), and we compared thosh thié automated scale
selection (LASSA) algorithm43]. Our algorithm manages to outperform ASS,
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in most cases, with MIL training providing the best F-measiar all configura-
tions, and an overall maximum &t = 0.466 when we treat color channeds:
and b+ as separate features. An important conclusion we reachédtsolor
is a discriminative cue for symmetry detection, which ha®asaerable effect
on the performance of the detector. Furthermore, we ndiiaethe performance
gap between logistic regression and multiple instancaiegtraining methods is
not so large, making the former a rather attractive choieesiclering its reduced
computational cost and complexity. We concluded the chgptesenting some
examples of detection results.

(a) Color (b) Fulicolor (c) Gray

Figure 6.5: Detected ridges for all three feature configurations showthe ini-
tial image (id = 3096 from the BSDS300). Top row shows results for logistic
regression and bottom row for MIL.
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(a) Color (b) Fullcolor (c) Gray

Figure 6.6: Detected ridges for all three feature configurations showthe ini-
tial image (id = 42049 from the BSDS300). Top row shows results for logistic
regression and bottom row for MIL.
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(a) Color (b) Fulicolor

Figure 6.7: Detected ridges for all three feature configurations showthe ini-
tial image ¢id = 101087 from the BSDS300). Top row shows results for logistic
regression and bottom row for MIL.
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(a) Color (b) Fullcolor (c) Gray

Figure 6.8: Detected ridges for all three feature configurations showthe ini-
tial image ¢id = 253027 from the BSDS300). Top row shows results for logistic
regression and bottom row for MIL.



Chapter 7

Conclusions and future work

7.1 Contribution of thethesis

In this thesis we introduced a novel approach to ridge anavsgtny axis detection
for elongated image structures, motivated by the incrggsopularity of learning
methods. More specifically, we developed a ridge detectirstbeks symmetry at
various scales and orientations, and classifies pixelgitge/non-ridge classes.
The main contribution of our work is the introduction of a rhae learning
framework, that uses low-level features to train the detetie detector then uses
the respective feature vectors extracted from a new inpagjento decide if a pixel
belongs in a ridge. We have used two methods for learningstiogegression
and multiple instance learning, and their results were @megbboth qualitatively
and quantitatively in chapter 6. We saw that multiple ins&alearning generally
performs better by a small margin for the maximum F-measonegpared to sim-
ple logistic regression. Apart from that, both training huets give better results
when compared to Lindeberg’s automated scale detectiomauet
Although our approach seems to perform reasonably well turalamages,

using a relatively small training dataset, we believe tkaipbtential would be
properly revealed in more targeted applications. Usingufes tailored to the
task and training the detector on a specific subset of objebtse ridges we
would like to detect, could significantly improve its effin®y, as the variance in
the color and texture cues of the training examples wouldeedAn interesting
application that could benefit by the use of a ridge detecaimed in this fashion
is pose estimation, where for example the classifier couldrdiaed to detect
the symmetry axes of a person’s limbs in an image (hands, tegso, head).
Our detector could also be trained on aerial images for thraebon of ridges in
landscape top views, which is a useful step in a higher legi such as automatic
topographic map extraction. Finally, medical imaging isther area where our
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method could prove fruitful, e.g. in the detection of ridge$RI or PET scans,
which can sometimes be related to pathological conditions.

7.2 Futurework

The results of the method presented in this thesis are eagimgy but there are
still many future paths that can be explored, and improvestrat can be the
focus of future research on this work. We list some of the rmopbrtant below.

First of all, the construction of a human subject annotatiataset for ridges
is crucial for the robustness of our system. The ground satlused in this thesis
serves only as a simple starting point in order to test therdi@l of our method.
Thus, building an annotation dataset constructed by regllpaes one of our first
priorities as far as future work is considered.

Secondly, an obvious way to enhance the performance of tteetde is to
increase the number of features used in training. The maoshipent areSIFT
features €], which have already been used in learning approaches tordsry
detection [Lg].

Another future direction is using a more sophisticatedieey approach, sim-
ilar to the one employed inlP], where a differentiable approximation of the F-
measure serves as the cost to be optimized. More ideas tedseithe aforemen-
tioned paper could be considered, such as the use a@inyt@oostramework for
the classifier training, in conjunction with filtering of thraining set via stochastic
gradient descent. This is especially useful in the case diipteiinstance learn-
ing, when the training set is great in volume and selecting@propriate subset
of training instances, without compromising the perforoceaof the classifier.

Inspired by the success of normalized cuts application agesegmentation,
demonstrated in the influential paper by Shi and Mali§ [ we believe that spec-
tral analysis can also provide us with useful cues for ridgection. According
to the physical interpretation of the generalized eigaregroblem, given in the
former paper, the graph nodes (image pixels) can be comesidesrphysical nodes,
and the graph edges as springs connecting each pair of nbueaffinity matrix,
which contains the information of similarity between imagedes, can be ad-
justed and used as an extra feature in the training step. dinedary information
can also be taken into account when we calculate the affirdgtlyix) in the form
of Intervening Contoursas explained inJ0]. This can be particularly valuable
in ridge detection for two reasons: first of all, because thendary existence at
a certain distance and orientation is directly related twgerline or a symme-
try axis, and second, because sometimes background diaesimilar intensity
values to a foreground object, making detection harder.

Finally, we can benefit in terms of time efficiency by porting code onto the
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GPU. Let aside training, which is only performed once in otdedetermine the
beta coefficients of the classifier, the most time-consurpeng of the ridge ex-
traction is the collection of the features, which can takess hours in MATLAB

if we use a large training set. For example, extracting theufes at 10 scales and
8 orientations from 37 images 8?1 x 481 or 481 x 321 pixels, takes about 5 hours
on an Intel i7 processor. We can significantly reduce the tiseded, drawing on
the fact that feature collection at some scale and oriemtas a fully indepen-
dent process, hence our code can be parallelized. Sinceasigtime-demanding
operation in the feature collection algorithm is the contioin of the image with
the disk masks, we can also reduce the time needed, apphgnmigtégral image
representatiord/].
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