
Γεκήηξηνο Α. Ρνδόπνπινο 

Software Simulation of Temperature Distribution & Device Degradation 

of Integrated Circuits 

 

ΔΘΝΙΚΟ ΜΔΣ΢ΟΒΙΟ ΠΟΛΤΣΔΥΝΔΙΟ 

΢ΥΟΛΗ ΗΛΔΚΣΡΟΛΟΓΩΝ ΜΗΥΑΝΙΚΩΝ 

ΚΑΙ ΜΗΥΑΝΙΚΩΝ ΤΠΟΛΟΓΙ΢ΣΩΝ 

ΣΟΜΔΑ΢ ΣΔΥΝΟΛΟΓΙΑ΢ ΠΛΗΡΟΦΟΡΙΚΗ΢ ΚΑΙ ΤΠΟΛΟΓΙ΢ΣΩΝ 

 ΓΙΠΛΩΜΑΣΙΚΗ ΔΡΓΑ΢ΙΑ  

 

 

 

 

 

 

  

Επιβλέπων : Γεκήηξηνο ΢νύληξεο 

Δπίθνπξνο Καζεγεηήο Δ.Μ.Π. 

Αζήλα, Μάηνο 2011



ii 

 



iii 

 

Γεκήηξηνο Α. Ρνδόπνπινο 

 

Software Simulation of Temperature Distribution & Device Degradation 

of Integrated Circuits 

 

 

ΔΘΝΙΚΟ ΜΔΣ΢ΟΒΙΟ ΠΟΛΤΣΔΥΝΔΙΟ 

΢ΥΟΛΗ ΗΛΔΚΣΡΟΛΟΓΩΝ ΜΗΥΑΝΙΚΩΝ 

ΚΑΙ ΜΗΥΑΝΙΚΩΝ ΤΠΟΛΟΓΙ΢ΣΩΝ 

ΣΟΜΔΑ΢ ΣΔΥΝΟΛΟΓΙΑ΢ ΠΛΗΡΟΦΟΡΙΚΗ΢ ΚΑΙ ΤΠΟΛΟΓΙ΢ΣΩΝ 

ΓΙΠΛΩΜΑΣΙΚΗ ΔΡΓΑ΢ΙΑ 

 

Επιβλέπων : Γεκήηξηνο ΢νύληξεο 

Δπίθνπξνο Καζεγεηήο Δ.Μ.Π. 

 

Δγθξίζεθε από ηελ ηξηκειή εμεηαζηηθή επηηξνπή ηελ 16/06/2011. 

Αζήλα, Μάηνο 2011

............................ 

Κηακάι Πεθκεζηδή  

Καζεγεηήο Δ.Μ.Π. 

............................ 

Γεκήηξηνο ΢νύληξεο 

Δπίθνπξνο Καζεγεηήο Δ.Μ.Π. 

 

............................ 

Ισάλλεο Ξαλζάθεο 

Καζεγεηήο Δ.Μ.Π. 

 



 

iv 

 

................................... 

Γεκήηξηνο Α. Ρνδόπνπινο  

Γηπισκαηνύρνο Ηιεθηξνιόγνο Μεραληθόο θαη Μεραληθόο Τπνινγηζηώλ Δ.Μ.Π. 

 

Copyright © Γεκήηξηνο Α. Ρνδόπνπινο 

Με επηθύιαμε παληόο δηθαηώκαηνο. All rights reserved. 

 

Απαγνξεύεηαη ε αληηγξαθή, απνζήθεπζε θαη δηαλνκή ηεο παξνύζαο εξγαζίαο, εμ νινθιήξνπ ή 

ηκήκαηνο απηήο, γηα εκπνξηθό ζθνπό.  Δπηηξέπεηαη ε αλαηύπσζε, απνζήθεπζε θαη δηαλνκή γηα 

ζθνπό κε θεξδνζθνπηθό, εθπαηδεπηηθήο ή εξεπλεηηθήο θύζεο, ππό ηελ πξνϋπόζεζε λα αλαθέξεηαη 

ε πεγή πξνέιεπζεο θαη λα δηαηεξείηαη ην παξόλ κήλπκα.  Δξσηήκαηα πνπ αθνξνύλ ηε ρξήζε ηεο 

εξγαζίαο γηα θεξδνζθνπηθό ζθνπό πξέπεη λα απεπζύλνληαη πξνο ηνλ ζπγγξαθέα. 

Οη απόςεηο θαη ηα ζπκπεξάζκαηα πνπ πεξηέρνληαη ζε απηό ην έγγξαθν εθθξάδνπλ ηνλ ζπγγξαθέα 

θαη δελ πξέπεη λα εξκελεπζεί όηη αληηπξνζσπεύνπλ ηηο επίζεκεο ζέζεηο ηνπ Δζληθνύ Μεηζόβηνπ 

Πνιπηερλείνπ. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

v 

 

 

 

 

To my grandparents,  

 

Lt Gen Dimitrios Kapelaris and  

Mrs Anastasia Kapelari  



 

vi 

 

Table of Contents 

Abstract viii 

  

Acknowledgements  ix 

  

List of Figures x 

  

List of Tables xii 

  

List of Algorithms xiii 

  

Chapter 1: Introduction 1 

  

1.1 Overview 1 

1.2 Effects of BTI & RTN on the Performance of an SRAM Partition 1 

1.3 Acceleration of the Transient Solution on HotSpot-5.0 4 

1.4 Placement within the EDA Context 5 

  

Chapter 2: Device Level Fundamentals 6 

  

2.1 Introduction 6 

2.2 Qualitative Description 6 

2.3 Insulator Defects 7 

2.4 The Reaction Diffusion Model 8 

2.5 Other Causes of Transient     Variations 10 

2.6 Atomistic BTI Model 12 

2.7 Conclusions 13 

  

Chapter 3: Circuit Modelling 14 

  

3.1 Introduction 14 

3.2 RelXpert 14 

3.3 Other Simulation Approaches 15 

3.4 What is missing in the State of the Art 18 

3.5 Inverter Simulations 18 

3.6 Conclusions 20 

  

Chapter 4: Test Case 21 

  

4.1 Introduction 21 

4.2 Detailed Circuit Description 21 

4.3 Target Architecture & Target Application 23 

4.4 Stimuli & Input Setup  24 

4.5 Simulation & Metric Extraction 25 

4.6 Parametric Fluctuations 28 

4.7 Conclusions 29 

  

Chapter 5: Accelerating HotSpot-5.0 30 



 

vii 

 

  

5.1 Introduction 30 

5.2 Thermal Simulation Principles 30 

5.3 Execution Profiling 32 

5.4 Numerical Approach 34 

5.5 Complexity Analysis & Source Code Alterations 35 

5.6 Optimization Results 39 

5.7 Applications of the Accelerated Version 39 

5.8 Conclusions 40 

  

Chapter 6: Conclusion 41 

  

6.1 Overview 41 

6.2 Effects of BTI & RTN on the Performance of an SRAM Partition 41 

6.3 Acceleration of the Transient Solution on HotSpot-5.0 43 

  

References 44 
  

Publications 47 
  

Appendix A: Time and Workload Dependent Device Variability in Circuit Simulations 48 

  

Appendix B: Quick_Hotspot: A Software Supported Methodology for Supporting Run-

Time Thermal Analysis at MPSoC Designs 

54 

  

  



 

viii 

 

Abstract 

Advances in the modern semiconductor industry give rise to various reliability aspects of 

electronic design. On the one hand, device behaviour is dominated by stochastic phenomena 

that may vary even between the devices of the same technology. A timely example of such 

mechanisms is Bias Temperature Instability (BTI) and Random Telegraph Noise (RTN). On 

the other hand, the inevitable increase of functional block density in modern integrated 

circuits makes the temperature distribution a serious design constraint. As a result, fast, yet 

accurate thermal profiling is of vital importance both at design time and at runtime.  

The first part of the current work deals with the time and workload dependent device 

variability of modern downscaled technologies. BTI and RTN are incorporated in circuit 

simulations of larger circuits, the parametric reliability of which is of major importance. 

There is a fundamental differentiation from the state of the art, since the atomistic approach 

towards BTI and RTN allows the observation of detailed workload dependency in the 

simulation results. This concept is materialized in a fully functional simulation framework 

of a 32 bit SRAM partition. Based on a real memory architecture, the workload of such a 

structure was extracted by realistic a realistic application and simulated on the circuit under 

test. Performance metrics of the circuit, where monitored during the simulation of different 

workloads. Each different workload, or RunTime Situation (RTS), is instantiated by a 

cumulative delay metric and a leakage energy value. This concept enables the clustering of 

RTSs into workload scenarios. 

The second part of the current work deals with the numerical acceleration of the publicly 

available thermal simulator HotSpot-5.0. An extensive profiling of its source code, revealed 

a CPU intensive iterative method for the extraction of the transient solution. This method 

was replaced with a simplified equivalent that achieved the intended acceleration, without 

imposing any accuracy degradation. The accelerated version of the tool was successfully 

incorporated to a broader tool that performs hierarchical thermal profiling of Muli-Processor 

System-on-Chip (MPSoC) floorplans. That way, the application spectrum of such thermal 

analysis tools is significantly broadened. 

 

 

Keywords: Atomistic Approach, Bias Temperature Instability, Circuit Simulations, 

Device-level modelling, Euler Method, Floorplan, Multi-Processor System-on-Chip, 

Ordinary Differential Equation, Power Traces, Random Telegraph Noise, RC Network, 

Runge-Kutta Method, Runtime Situations, Static Random Access Memory, Thermal 

Profiling, Workload Dependency 

  



 

ix 

 

Acknowledgements 

From NTUA, I have to thank Prof. Dimitrios Soudris for this inspiring collaboration. His 

executive and scientific insight has created a valuable academic experience. Dr. Antonis 

Papanikolaou has been a valuable co-supervisor. I thank him for his timely pieces of advice. 

I would also like to thank Dr. Kostas Siozios, being the first researcher I closely 

collaborated with for published material. This introductory work definitely encouraged me 

to pursue the current thesis. Finally, I am very grateful to Microlab, NTUA which allowed 

my participation in the 2011 IEEE ICICDT in Kaohsiung, Taiwan where I had the chance to 

present part of this thesis. 

From IMEC vzw, I would like to thank Prof. Francky Catthoor for his restless guidance. His 

holistic perception introduced me to a powerful intellectual tool. I am looking forward to 

realizing its full capacity. Also, I would like to thank my co-supervisor Dr. Ben Kaczer. His 

continuous feedback was very helpful for my understanding of device-level concepts. I 

would like to express my appreciation to Dr. Stefan Cosemans for answering all my 

questions regarding circuit modelling and SRAM internal structure. Also, I would like to 

thank Dr. Maria Toledano-Luque for providing and explaining real device measurements for 

the calibration of our framework.  

To my IMEC colleagues Swaraj Bandhu Mahato and Vinicius Valduga de Almeida 

Camargo, I would like to express my sincere gratitude for the fruitful cooperation. I would 

like to thank them for continuously stimulating this collaboration with their intellect and 

motivation. Working with them was an experience I will never forget. 

Finally, I would like to express my endless love to my father Anastassios Rodopoulos, my 

mother Aikaterini Kapelari and my brother Aristeidis Rodopoulos. Without their support 

and encouragement, the current endeavour would be impossible. 

 

  



 

x 

 

List of Figures 

Figure 1.2.1 Expected threshold voltage degradation in devices of older technologies 

(a), in comparison to modern downscaled devices (b); the latter graph 

demonstrates the increased device variability of modern technologies 

[10] 

2 

Figure 1.2.2 A guidance framework describing the landscape of reliability concerns; 

the focus of the current text is highlighted with red colour [3] 

2 

Figure 1.2.3 A guidance framework describing the landscape of possible approach 

towards reliability; the focus of the current text is highlighted with red 

colour [3] 

3 

Figure 1.2.4 Runtime changes in the workload of an inverter, propagate to changes 

in the delay under the influence of BTI and RTN; increased delay 

variability was observed in SRAM partition simulations following the 

same principle [24] 

4 

Figure 1.3.1 Placement of the work presented in current text, within the design 

abstraction levels described by the Gajski-Kuhn chart (based on figure 

found in [33]) 

5 

   

Figure 2.2.1 Example of the alteration between stress and relaxation phases, because 

of NBTI on a pMOSFET 

6 

Figure 2.2.2 BTI stress phases in a simple inverter circuit; the affected branch is 

highlighted accordingly 

6 

Figure 2.3.1 Interface traps for different wafer orientations [7] 7 

Figure 2.3.2 Connection between RTN (a) and NBTI(b) with oxide interface activity, 

as demonstrated in [12] 

8 

Figure 2.4.1 Artist’s impression of the Si-H bond breaking and the diffusion of H 

towards the bulk of the gate stack [1] 

8 

Figure 2.4.2 Possible particles diffused in the gate bulk [1] 9 

Figure 2.4.3 Evident   ⁄  exponent dependence in threshold voltage shifts throughout 

the device lifetime; temperature dependence is also visible [37] 

10 

Figure 2.4.4 Expected threshold voltage degradation in devices of older technologies 

(a), in comparison to modern downscaled devices (b); an approach 

based on reaction and diffusion mechanisms is deemed unrealistic for 

the second case [10] 

10 

Figure 2.5.1 Circuit of the SRAM cell in question 11 

Figure 2.5.2 Simulation output that demonstrates     modulation due to DIBL 11 

Figure 2.6.1 Experimental setup for NBTI relaxation curve extraction based on [28] 12 

Figure 2.6.2 After measurements on the same device, carrier emission steps reoccur 

at roughly the same time instance [28]   

13 

   

Figure 3.2.1 Conceptual flowchart of the RelXpert simulation methodology [31]  14 

Figure 3.2.2 Flowchart of gradual NBTI simulation using the RelXpert framework 

[31]  

15 

Figure 3.3.1 Flowchart of NBTI and HCI simulation framework presented in [19] 15 

Figure 3.3.2 Simulation framework of the approach presented in [15] 16 

Figure 3.3.3 Illustration of the signal probability, as presented in [17] 17 

Figure 3.5.1 The circuit of a simple inverter 18 



 

xi 

 

Figure 3.5.2 Instances of delay measurements on the inverter under test 19 

Figure 3.5.3 Runtime changes on the inverter’s workload [24] 19 

Figure 3.5.4 Delay measurements on the inverter [24] 19 

   

Figure 4.2.1 Circuit of the SRAM cell 21 

Figure 4.2.2 Equivalent of the RLBL 21 

Figure 4.2.3 Circuit of the Read Buffer 22 

Figure 4.2.4 Circuit of the sense amplifier 22 

Figure 4.2.5 Equivalent of the RGBL 22 

Figure 4.2.6 Organization of the SRAM partition 23 

Figure 4.2.7 The ecosystem of the SRAM partition 23 

Figure 4.4.1 Complete framework state for test case simulations 25 

Figure 4.5.1 Instances of the reading operation [24] 26 

Figure 4.5.2 Read delay measurement across the read critical path 26 

Figure 4.5.3 Power measurements leading to leakage energy estimation from the 

simulation output 

27 

Figure 4.6.1 Runtime delay fluctuations of an SRAM partition for two different 

RTSs. No initial stressing is assumed (time zero simulation). The delay 

measurements are almost identical in the Reference netlist (a). For a 

netlist enhanced with defect activity (b), the fluctuations exhibit greater 

runtime variability and also differ between the two workloads [24]. 

28 

Figure 4.6.2 Runtime delay fluctuations of an SRAM partition for two different 

RTSs. Initial AC stressing is assumed. When NBTI is not considered 

(a), the fluctuations are concentrated in a very small interval. In a netlist 

enhanced with defect activity (b), the delay fluctuations cover a much 

wider interval [24]. 

28 

   

Figure 5.2.1 Thermal simulation principles: Each block of an IC is connected to 

others through thermal resistances and capacitances [26] 

31 

Figure 5.5.1 Execution time for a series of benchmarks comparing the default and 

the numerically optimized HotSpot-5.0 

37 

Figure 5.7.1 Incorporation of the accelerated thermal simulator (Quick_Hotspot) into 

a hierarchical thermal analysis tool 

39 

   

Figure 6.2.1 The analytical model can speed through the partition’s lifetime, while 

the simulator can stop per decade and inspect transient delay 

fluctuations for different RTSs (e.g. 50 RTSs per momentary simulation 

should suffice). 

42 

 

 

  



 

xii 

 

List of Tables 

Table 4.4.1 The three commands that are used for the control of the entire SRAM 

partition 

25 

   

Table 5.2.1 Duality between electrical and thermal quantities 30 

Table 5.3.1 Profiling results for nine benchmarks on the default HotSpot-5.0 

implementation 

33 

Table 5.5.1 Profiling results for nine benchmarks of the accelerated version (Euler 

method) 

38 

  



 

xiii 

 

List of Algorithms 

Algorithm 4.3.1 Pseudo-code description of the target application 24 

   

Algorithm 5.4.1 Default and proposed numerical approach expressed in pseudo code 35 

Algorithm 5.5.1 The function matvectmult found in HotSpot-5.0 36 

Algorithm 5.5.2 The function slope_fn_block found in HotSpot-5.0 36 

Algorithm 5.5.3 The function rk4_core found in HotSpot-5.0 36 

Algorithm 5.5.4 The function euler_core, which is proposed to replace rk4_core 37 

 

 



1 

 

Chapter 1: Introduction 

1.1 Overview 
The work presented in this text is partial fulfilment of the requirements for a Diploma by the 

School of Electrical and Computer Engineering of the National Technical University of Athens. 

This work can be divided in two separate parts, representing the involvement of the author in two 

different areas respectively. 

The next three chapters of the text represent the work that was completed during a six month 

internship (October 2010 – April 2011) of the author in IMEC vzw, Belgium as a Master Thesis 

student. The author was involved in the creation of a fully functional simulation framework for a 

32-bit SRAM partition. The simulations were focused on the parametric reliability of the circuit 

under test, under the influence of two major degradation mechanisms, namely Bias Temperature 

Instability (BTI) and Random Telegraph Noise (RTN). The circuit was implemented in a 32nm 

technology, which successfully places it within the current downscaling trends. 

The final chapter deals with the acceleration of the HotSpot-5.0 software. This thermal simulator 

is used for describing the temperature distribution given the power traces, the thermal and 

geometric characteristics of an integrated circuit. It is of vital importance to keep the execution 

time as low as possible, without sacrificing any accuracy in the derived transient solution. After a 

series of profiling stages, we replaced a time consuming numerical method with a more optimal 

equivalent. The execution time of the software was greatly reduced with negligible accuracy 

degradation. This accelerated version has been used with the name Quick_Hotspot, to create a 

hierarchical thermal analysis tool. That way, the possible applications of thermal analysis, either 

at design time or at runtime have been further broadened. 

1.2 Effects of BTI & RTN on the Performance of an SRAM Partition 
Devices of older technologies exhibit a uniform degradation throughout their lifetime. In other 

words, one device is representative of the way all devices of the same technology behave under 

operating and/or stress conditions. However, while device dimensions reach nm lengths, the 

situation is completely different. We observe an extensive variability within the devices of the 

same technology. If we draw our attention to BTI and RTN, we observe that the threshold 

voltage evolves quite differently during the lifetime of deca-nanometre devices of the same 

technology. 



2 

 

As a result of time and workload dependent device variability, the reliability of embedded 

systems is greatly at stake. At this point it is usefully to define the two basic types of failures that 

can impede the reliability of embedded systems. A functional failure refers to an erroneous 

condition that causes the corruption of data that are transmitted or stored in an embedded system. 

On the contrary, parametric failures correspond to extreme fluctuations of the system’s 

performance metrics, like its delay or its leakage energy. Degradation of a devices’ threshold 

voltage may lead to either of these failures. However, the purpose of the text is to group circuit 

workloads based on the effect that they have on the performance metrics of a small digital 

system. Hence, the presented work is more focused on parametric reliability, rather than 

functional reliability. 

 
 

Figure 1.2.1: Expected threshold voltage degradation in devices of older technologies (a), in comparison to modern 

downscaled devices (b); the latter graph demonstrates the increased device variability of modern technologies [10] 

 
 

Figure 1.2.2: A guidance framework describing the landscape of reliability concerns; the focus of the current text is 

highlighted with red colour [3] 

 

Process Variation Time Dependent Reliability 

Reliability 

Systematic Random 

Functional 

Failures 

Parametric 

Failures 

Devices Interconnect Intermittent Accumulated 



3 

 

It goes without saying that parametric failures might cause functional hazards. For example, 

deadlines during embedded system activity may not be met because of parametric failures, thus 

causing crucial functional errors. It is important that we remove such tricky strides from our 

attention, since they increase the complexity of the reliability problem even further. It is also 

important that we remove from our scope any technology related variations, like the ones 

occurring because of random dopant fluctuations. 

Two basic approaches have to be maintained towards 

parametric reliability. On the one hand, there needs to 

be sufficient knowledge of the underlying 

mechanisms, as well as an understanding of their 

effects to circuit performance. The most elegant and 

reusable technique to achieve the above is circuit 

simulations. On the other, having created the required 

knowledge background, one needs to start reflecting 

on mitigation technique, which brings us to the 

mitigation approach. The current work is solely 

conentrated on simulations. However, the post processing of the simulation output, is perfrormed 

with mitigation techniques in mind. More analytically, the grouping of circuit workloads, based 

on the effect that they have on BTI and RTN behaviour is a key aspect that may enabled 

mitigation techniques based on workload tuning. 

If we look into state of the art approaches towards modelling or mitigation of BTI or RTN, we 

see fairly crude approaches. Many attempts average out the device stress, using the concept of 

signal probability. Such simplifications are made at device level; hence no real workload 

dependency exists in these models. In other cases, there is poor incorporation of the BTI 

relaxation phase (when stress is removed from the device). As a result, the BTI estimation is 

overly pessimistic, thus leading to over-constrained designs. Finally, to our knowledge, there 

exists no unified approach towards BTI and RTN simultaneously. 

Our proposed approach accounts for the workload that is applied to each device and monitors the 

occupancy of each oxide defect separately. The defect time scale interval is wide enough to 

incorporate both BTI and RTN behaviours. Finally, it is possible to decouple the stochastic 

component of the defect capture and emission from the model’s workload dependency. Hence, 

our approach appears to be a suitable tool with which to explore parametric reliability in a 

realistic and detailed workload dependent way. What we essentially demonstrate is that our 

model contains a workload memory. In other words, workload that is applied to a circuit in the 

past will dictate the effect of BTI and RTN on the circuit performance at present and in the 

future. This quality of our approach enables BTI and RTN mitigation techniques workload 

tuning. 

 
 

Figure 1.2.3: A guidance framework describing 

the landscape of possible approach towards 

reliability; the focus of the current text is 

highlighted with red colour [3] 

 

Modelling Mitigation 

Reliability 



4 

 

In view of the increased variability of nm devices, an atomistic approach was developed to 

describe the activity of the oxide interface defects that is responsible for the two above 

mechanisms. That way, BTI and RTN can be explored in a time and workload dependent way. 

The principles of this atomistic model are described in Chapter 2. This atomistic approach has 

been software supported at device level, thus enabling the simulation of much larger circuits. 

These software support foundations are discussed in Chapter 3, as do the state of the art 

approaches for evaluation purposes. The complete framework for the simulations of the SRAM 

partition is presented in Chapter 4. Realistic workloads were used, in order to explore the impact 

that workload has on the BTI and RTN effect on the circuit’s performance. As a result, realistic 

data streams have been extracted from a real application involving an FIR filter. These data have 

been parsed and applied to the SRAM partition. The monitoring of key performance metrics, like 

the read delay of the memory or its leakage energy, made it possible to observe performance 

fluctuations at runtime. Finally, an attempt was made to cluster different workloads, depending 

on the impact that the formers have on the memory’s performance. 

1.3 Acceleration of the Transient Solution on HotSpot-5.0 
The advances in the semiconductor industry have lead to the incorporation of many functional 

blocks into single integrated circuits. A major issue that ensures the projected lifetime of these 

devices is the smooth distribution of temperature across the integrated circuit. The creation of hot 

spots on its surface is a major hazard that puts the chip’s functional and parametric reliability at 

great stake. Furthermore, good knowledge of the chips thermal profile will impose realistic 

constraints for the design of the chip’s packaging. Apart from thermal simulations at design time, 

a runtime extraction of the temperature distribution can enable workload tuning in order to 

alleviate hot spot creation across the chip’s surface. In any case, a fast and yet accurate thermal 

simulator can be a useful tool to facilitate either post- or pre-silicon thermal analysis. 

 
 

Figure 1.2.4: Runtime changes in the workload of an inverter, propagate to changes in the delay under the influence 

of BTI and RTN; increased delay variability was observed in SRAM partition simulations following the same 

principle [24] 



5 

 

The academic society is quite familiar with the thermal simulator called HotSpot. We will focus 

on the fifth version of this software and will try to explore any further room for trade off between 

execution time and accuracy. The first stage of this exploration is the profiling of the code, using 

timing functions of reduced overhead. The profiling results will reveal the parts of the code 

where we need to concentrate our optimization efforts. A search through available numerical 

methods allows us to replace CPU intensive functions with optimized equivalents, thus leading 

to an overall acceleration of the thermal simulator. Finally, a realistic application of the 

accelerated tool presents hierarchical thermal profiling that can be equally used at design time or 

at runtime. This work is discussed in Chapter 5. 

1.4 Placement within the EDA Context 
It is obvious that the contributions of the current text are closely related to the area of Electronic 

Design Automation (EDA). Be that design time or runtime simulators, we aim at the realistic 

representation of operation parameters for integrated circuit subsystems. Hence, it would be 

interesting to reflect upon the design domains where the contribution of this text resides. The 

first part of the text is connected on both the device and architecture level. The BTI and RTN 

atomistic model belong explicitly to the transistor level of the electronic design landscape. The 

software support of this model involves an enhanced transistor model that is able to monitor the 

defect activity of each simulated device. On the other hand, the test circuit we are using 

corresponds to a target architecture and target application. The former refers to the partition’s 

ecosystem, within the system where the memory is implemented. The latter refers to the realistic 

activity of its memory cells. 

 
 

Figure 1.3.1: Placement of the work presented in current text, within the design abstraction levels described by the 

Gajski-Kuhn chart (based on figure found in [33]) 



6 

 

Chapter 2: Device Level Fundamentals 

2.1 Introduction 
In this chapter, we will create the device level foundations required for any further discussion 

about simulations of much larger circuits. Since the focus of the current text is Bias Temperature 

Instability (BTI) and Random Telegraph Noise (RTN), a brief presentation of these mechanisms 

is required. It is also interesting to inspect the state of the art approach towards these 

mechanisms. In view of the assumptions made in these models, it will become evident that a 

need is present for an approach that follows the workload dependent reality more closely. The 

atomistic approach that is used in the current text really does fill the gap that exists in the current 

BTI and RTN modelling landscape. However, 

before delving into the atomistic model, we 

need to briefly present the experimental work 

upon which the former is founded. 

2.2 Qualitative Description 
Among other effects, BTI manifests itself as an 

increase of the absolute value of a device’s 

threshold voltage under specific stress 

conditions. In case of a pMOSFET, the stress 

phase is defined as a negative gate voltage, with 

respect to the drain and source voltages (NBTI). 

A complementary definition exists for 

nMOSFETs, where the stress is defined 

as a positive gate voltage with respect 

to the drain and source voltages 

(PBTI). When the stress is removed 

(i.e. the voltage polarity is reversed), a 

partial recovery of the threshold 

voltage is observed. This mechanism is 

intensified at increased operating 

temperatures. 

Even if various models exist for BTI 

[19], no universally accepted approach 

exists towards its physical background. 

However, it appears that the 

phenomenon is related to the creation and activity of carrier traps. 

Input Output Input Output

 
 

Figure 2.2.2: BTI stress phases in a simple inverter circuit; the 

affected branch is highlighted accordingly 

 
 

Figure 2.2.1: Example of the alteration between stress 

and relaxation phases, because of NBTI on a pMOSFET 



7 

 

As for RTN, it is manifested as a two state noise in the drain current of a device [14], which 

obviously propagates to the threshold voltage. The two state nature of this phenomenon also 

points towards the activity of carrier traps. 

2.3 Insulator 
As illustrated in [29], the term threshold voltage may have various meanings in the related 

literature. This thesis is not focused on the physical background of the MOSFET operation 

modes. Hence, we will restrict only to a high-level qualitative definition. We will define the 

threshold voltage as the     that is required for strong inversion to commence. A quantitative 

equivalent can be found in [7] or [29] and is given by the following formula. 

            
|  |

   
 

In the above expressions,     is the flatband voltage,    is the Fermi potential,    is the 

depletion region charge and     is the oxide capacitance. Threshold voltage is a parameter that 

may undergo fluctuations during the device operation. Some of the fluctuations remain unnoticed 

in a circuit’s performance, whereas others lead to serious performance degradation. The main 

focus of the current text is the performance impact of     fluctuations caused by BTI and RTN. 

According to [7] the flatband voltage is a key 

quantity to threshold voltage variations. 

        
  

   
 
   (  )

   
 

In the above equation,    is the fixed trap density 

and     is the trap density, which appears to be 

dependent on the surface potential   .     is the 

difference between the bulk potential and the 

potential of the gate material, as described in [29]. 

Based on [7], threshold voltage variations may be 

caused by changes in either of the    or     

charges. If we focus on the SiO2/Si interface, we 

can identify bonds between silicon and various 

other atoms that exist in that area (oxide, silicon or 

hydrogen). The default crystal organization refers 

to bonds between Si and SiO2. However crystal 

mismatches may occur. 
 

 

Figure 2.3.1: Interface traps for different wafer 

orientations [7] 



8 

 

Interface traps correspond to unpaired electrons of Si atoms [7]. Depending on the orientation of 

the wafer, we may distinguish different kinds of interface traps, namely    centers for (111) 

orientation and     and     centres for (100) orientation. These interface traps are carrier 

recombination/generation centres. Hence, the minority carriers of the channel are recombined in 

these centres, thus reducing the     current during the device operation. A reduction of     is 

translated to an increase of the absolute value of the threshold voltage. Depending on the position 

of the interface trap in the band gap, its behaviour may resemble either an acceptor or a donor; 

hence the different effect on either p- or n- enhanced channels. Larger numbers of interface traps 

may occur from the destruction of bonds between silicon and other atoms, like hydrogen. 

If we move towards the bulk of the insulator, we come across what is referred to as border traps. 

The principle describing their behaviour is similar to that of interface traps, namely they also 

exchange carriers with the substrate of the device [38]. The nature of border traps is reported to 

be bonds that are vacant from 

oxygen atoms [39].  

In the creation and recombination 

activity of such traps, originate the 

mechanisms of RTN and BTI. In 

the first case, the carrier exchange 

is brought to some sort of 

equilibrium, whereas in the second 

case, carrier emission is suppressed 

in favour of carrier capture. 

Depending on the frequency     of 

the recombination/generation in the 

border traps, we can distinguish 

either fast or near permanent 

effects on    .  

However, state of the art models on BTI, tend to focus 

more on the interface bond breaking, rather than the 

effect of trap activity.  

2.4 The Reaction Diffusion Model 
One of the predominant approaches towards BTI is the 

Reaction Diffusion (RD) model, which is mainly 

utilized for the explanation of NBTI. This phenomenon 

has been considered as a major reliability issue from a 

lot of researchers [18]. The basic principle of the model 

is that during the device operation, Si-H bonds 

 
 

Figure 2.4.1: Artist’s impression of the Si-H 

bond breaking and the diffusion of H towards 

the bulk of the gate stack [1] 

 
 

Figure 2.3.2: Connection between RTN (a) and NBTI(b) with oxide 

interface activity, as demonstrated in [12] 



9 

 

gradually break, since they are weaker that the SiO2-Si counterparts. Carriers are trapped in the 

dangling bonds, thus reducing the    , hence the    . The interface trap creation is presented to 

be proportional to the lifetime of the device in the time scale, as demonstrated in [1]. According 

to the RD model, the number of interface traps     at any given time is given a combination of a 

diffusion component and a reaction component. 

    
  

   (      )⏟        
         

     ( )   ⏟        
        

 

Assuming {
    

  
             }, the above equation can be written as 

    

  
   ( )   . 

The diffusion part of the above 

equation contains the Si-H bond 

dissociation constant    and the 

total number of Si-H bonds   . The 

inverse part of the phenomenon, i.e. 

reaction, contains the reverse Si-H 

annealing constant    and the 

diffused H that is still close enough 

to the SiO2/Si interface   ( ). The 

rest of the hydrogen is considered 

to diffuse away from the interface.  

Depending on the form of the 

detached hydrogen (atoms, 

molecules, ions), we can use either 

diffusion (Fick’s Law) or drift 

equations (dependent on the field 

   ) [1]. Based on these equations 

we can distinguish the diffusion of 

two types of particles. 

{
  
 

  
 
                  (           )  

    
  

   
    
   

     ∫   (   )  

√   

 

                  (      )  
    
  

             ∫   (   )  

      

 

 

 

 

Uncharged Particles 

  

    √
    

   
(   )

 
 ⁄  [35]     √

    

   
(    )

 
 ⁄  [37] 

Charged Particles 

  

    √
          

   
 [36]     √

    

   
(      )

 
 ⁄  [1] 

 

Figure 2.4.2: Possible particles diffused in the gate bulk [1] 



10 

 

 

Having established the change in the number of interface traps    , we can determine the impact 

on     based on the following equation [21], which can be corrected for mobility degradation 

with the parameter  . 

    (     )  (   )
    (     )

   
 

     or      curves across the device lifetime, point towards hydrogen atoms as the core reason 

for threshold voltage degradation. The main reason is the   ⁄  exponent that dominates these 

results. A cross examination with the activation energy which is required for this process to take 

place, further supports the H atom diffusion claim. The amorphous nature of the SiO2, may cause 

deviations from the initially expected exponent value [1]. 

We need to put the above perception of BTI to a technology context. Devices of older 

technologies have sufficient size and a large number of defects, thus exhibiting uniform 

reliability behaviour [12]. As the device dimensions decrease, the stochastic defect behaviour 

becomes gradually more evident. As a result, an approach like the one presented above appears 

to fit less the downscaling trend of recent technologies. Finally, a closer look at the activity of 

border traps will reveal that the mechanism of BTI resembles greatly that of RTN and 1/f noise 

in a way that the RD model is unable to interpret [40]. From the above realizations, it appears 

imperative to move towards a more atomistic modelling of BTI. 

2.5 Other Causes of Transient     Variations 

Since the focus of the current text is parametric reliability under transient     variations, it is of 

vital importance to include in our analysis any mechanisms that cause     variations. Once 

identified, we want to remove them from our final degradation model. Indeed, if they do not 

 
 

Figure 2.4.3: Evident   ⁄  exponent 

dependence in threshold voltage shifts 

throughout the device lifetime; temperature 

dependence is also visible [37] 

 
 

Figure 2.4.4: Expected threshold voltage degradation in devices of 

older technologies (a), in comparison to modern downscaled devices 

(b); an approach based on reaction and diffusion mechanisms is 

deemed unrealistic for the second case [10] 



11 

 

cause any performance degradation, we should not 

incorporate them. Such a mechanism is Drain Induced 

Barrier Lowering (DIBL). During various simulations 

that have been performed, we have come across the 

modulation of the threshold voltage of a device by the 

   . Such a modulation can be noticed in the simulation 

of a simple SRAM cell. We focus on the upper left 

pMOSFET. Its gate voltage is obviously  ̅, whereas the 

drain voltage is  . A swing following the voltage at   is 

visible in the simulation results. The various spikes of the 

voltage at  ̅ are as a result of the cell’s switching (since 

the read and write activity of the cells is simulated). It is 

interesting that such dynamic alterations are propagated to the threshold voltage as well. 

The reason for the above modulation appears to be DIBL. As explained in [29], the drain voltage 

causes variation in the threshold voltage of a device. As observed in the simulation results, upon 

removal of the increased drain voltage, the threshold voltage recovers completely. As a result, 

DIBL does no accumulate any degradation in the transient response of the device. Given that the 

drain and gate voltages are complementary for the cross coupled inverters of a traditional cell, it 

is important to be able to distinguish     variations that are caused by drain voltages and that 

have no effect on the performance of the device. Similar effects of DIBL can be identified in the 

results presented in [10]. 

 
Figure 2.5.1: Circuit of the SRAM cell in 

question 

 
 

Figure 2.5.2: Simulation output that demonstrates     modulation due to DIBL 



12 

 

2.6 Atomistic BTI Model 
A suitable two state model for defects found in the oxide interface has been presented in [10]. An 

oxide defect can be either occupied or not. It also has a pre defined impact on the device’s 

threshold voltage,     .  

The rate at which this defect captures and emits minority carries is determined by time constants. 

Since we are handling digital systems, it is plausible to assume a pair of time constants (for a 

capture or an emission event) for different logic level (high or low), hence *               +. 

Time constants with small values correspond to frequent capture and emission of minority 

carriers, hence RTN. Larger time constants correspond to quasi permanent capture, hence BTI. A 

single device can be assumed containing an arbitrary number of defects, each one having a 

different set of the four aforementioned constants. 

Based on the experimental results of [27], we possess the distributions that describe the values 

*                    + as well as the average number of defects for a given devices. The time 

constants have been shown to distribute uniformly across the logarithmic scale [11]. As a result, 

an interval between     s up to    s would be wide enough to incorporate both RTN and BTI 

behaviours. The trap density can be either extracted from the data presented in [27], or can be 

adjusted by the user so that the above time constant interval is properly accounted for (traps with 

all kinds of time constants within the interval). Furthermore, we can assume scaling rules, to 

apply the same distributions to devices of different dimensions than the ones of the measured 

MOSFETs. Finally, the distribution of average      can be extracted directly from [27], both for 

pMOSFETs or nMOSFETs. 

Given a set of defect parameters and a time step equal to   , we can define the probability of it 

capturing or emitting a minority carrier based on the following equation [10]. 

     
  ̅  

         
{     [ 

 

    
 
 

    
]   } 

 
 

Figure 2.6.1: Conceptual schematic of the two state atomistic defect model, based on [10] 



13 

 

Based on this assumption it becomes possible to incorporate the defect activity in an in situ 

process that monitors the occupancy of a device’s defects (i.e. their state and the probability of 

their switching to another state). Further information regarding the software support of this idea 

can be found in Chapter 3. 

2.7 Conclusions 
In this chapter, we have presented the device level fundamentals that are necessary for a detailed 

BTI and RTN simulation. We have looked into the most popular approach towards BTI and 

identified its weaker point, namely its inability to account for devices with few defects and for 

workload dependence, because of its purely statistical averaging nature. In view of this 

insufficiency, we presented the novel atomistic approach towards BTI and RTN. Being 

supported by experimental data, the latter allows a partly stochastic - partly deterministic 

monitoring of the oxide defect occupancy. By assigning a set of defect parameters 

*                    + to an arbitrary number of traps of a single device, we can simulate BTI 

and RTN throughout the device lifetime. This simplified two state model can effectively be 

software supported, as discussed in the next chapter. 

  

 
 

Figure 2.6.2: Simplified diagram illustrating the two state defect model; different devices are populated with defects 

of sets of *                    + (a); this variability propagates to the     degradation during the device lifetime 

[12] 



14 

 

Chapter 3: Circuit Modelling 

3.1 Introduction 

The purpose of this chapter is to present the work that has enabled the creation of a complete 

parametric reliability simulation framework. The simulations of an SRAM partition are enabled 

by the software supported BTI and RTN model that is presented in the previous chapter. This 

chapter will present the components of this software support. It is also useful to reflect briefly on 

the state of the art simulation approaches. That way, it will become obvious that the proposed 

approach is both novel and meaningful for modern downscaled technologies. 

3.2 RelXpert 
During the readings for state of the art 

reliability simulation approaches, one is bound 

to come across the industry standard tool called 

RelXpert. This tool focuses on the simulation of 

NBTI and Hot Carrier Injection (HCI). 

From the available documentation, it is clear 

that this tool shares a similar goal to the scope 

of the current work. The actual intension of the 

RelXpert-related researchers is quite self-

explanatory: “The key is to find an NBTI age 

formula such that the device degradation due to 

the NBTI effect and the NBTI age can be 

physically established and modeled” [34]. 

As for the algorithm itself, RelXpert performs two iterations of the same simulation, one for a 

fresh netlist (called Stress Simulation) and one for the netlist including the degraded components 

(called Age Simulation) [34]. The first round will determine the stress of the circuit’s 

components. Based on that stress, some key parameters of typical MOS models (like BSIM) are 

changed, thus mirroring degradation. As a result the circuit devices become “aged”. The second 

simulation will yield the behavior of the “aged” circuit. It appears that this tool averages out the 

degradation of sensitive parameters. The theoretical foundation of RelXpert is clearly the RD 

model. RelXpert uses averaging of statistically sampled data to degrade some parameters of 

typical MOS models (like BSIM) [13]. It is noteworthy that the parameter shift performed for 

“aging” purposes is fixed in the time scale after the first simulation and does not change during 

the second one. 

 
 

Figure 3.2.1: Conceptual flowchart of the RelXpert 

simulation methodology [31]  



15 

 

An attempt to gradually simulate 

the device degradation is also 

reported [31]. The idea is to split 

the stress duration into intervals 

and perform a pair of simulations 

(Stress and Age Simulation) at the 

end of each interval. 

3.3 Other Simulation 

Approaches  
Both in terms of modeling and 

mitigation, we observe a tendency 

to average out either the stress of 

the devices or their degradation. 

This means that any consequent 

simulation approach will be unable to follow the degradation mechanisms in a transient way. In 

the current section we will present some noteworthy approaches towards reliability simulation 

that create the landscape of modeling (and mitigation) of mechanisms like BTI or RTN. Since 

the current text emphasizes on the reliability of 

memory structures, our focus will be maintained 

accordingly. 

We observe that the gradual NBTI simulation 

framework based on RelXpert strides over very 

vast intervals of circuit lifetime, proportional to 

a year [31]. An approach that employs gradual 

modeling of increased granularity is that of [19].  

This approach provides insight to the spatial and 

temporal reliability variations of a circuit under 

test. The degradation mechanisms that are 

studied are NBTI and HCI. 

The behaviour of the circuit under test is coded 

into a vector of performance parameters (e.g. 

gain, bandwidth, etc.),   . The degradation of 

each device is calculated based on the 

degradation under hypothetical DC stress. This 

degradation is extrapolated over stress duration 

     and included in “aged” device models. The 

behavior of the degraded circuit will now be 

 
 

Figure 3.2.2: Flowchart of gradual NBTI simulation using the RelXpert 

framework [31]  

 
 

Figure 3.3.1: Flowchart of NBTI and HCI simulation 

framework presented in [19] 



16 

 

    . In order to enable the simulation of analog or mixed signal systems, the framework splits 

the      interval in steps with duration equal to   . For each step, the above set of computations is 

performed and the respective “aged” circuit is fed as input to the next iteration for     . Output of 

this iteration is a matrix      ,     - of the performance parameters for the circuit 

under test, over      lifetime. In this approach, NBTI degradation under time varying stress is 

calculated based on integrated equations derived for DC stress voltages.  

Up to this point we have seen that no approach accounts for the past stress of a device. However, 

based on the stress and relaxation alterations, it appears vital to incorporate the past stress of a 

device when considering the evolution of BTI degradation. An approach that sufficiently 

addresses this point can be found in [15] and mainly addresses NBTI. Aiming at a reduced 

computational overhead, this work differentiates from the usually employed RD model. It also 

avoids numerical simplifications, since it does not focus on the microscopic mechanisms of 

NBTI. On the contrary, it treats the degradation  ( ) of a device as a convolution of a stress 

function  ( ) (incorporating node voltages, temperature and other NBTI parameters) with the 

response function of this degradation mechanism  ( ) as follows. 

 ( )   ( )  ( )  ∫  ( )  (   )⏟    
                

  
 

 

 

Assuming a unit step  ( ), one can easily obtain the system response  ( ), solely due to NBTI 

degradation. Sadly, no further information is given regarding the way that the contributors 

perceive the  ( ) degradation response. The latter is simply left as a user defined parameter. 

The convolution concept is the one that represents some sort of stress and degradation memory. 

It is added in parallel to the existing RelXpert 

framework (cyan blocks of Figure 3.3.2). This 

work is compared to industry standard reliability 

tools (RelXpert) and achieves a more realistic 

simulation, especially for the relaxation part of 

NBTI. After a simulation of a netlist under test, 

the voltage waveforms are extracted and the rate 

of aging is estimated at each simulation step. It is 

important to note that there is no in situ 

simulation of NBTI. In contrast, a feedback loop 

is required, in order to correct the simulation 

output according to the convolution based 

model. 

Another approach that is more focused on the target structures of the current text (i.e. memories) 

is a mitigation method of NBTI induced SNM degradation, as presented in [2]. This work 

emphasizes on the functional reliability of SRAM cells, namely the ability of the cell to keep its 

 
 

Figure 3.3.2: Simulation framework of the approach 

presented in [15] 



17 

 

value. Fluctuations of the cell’s delay because of NBTI activity are referred to as insignificant. 

The device stress is perceived through the concept of signal probabilities, i.e. the ratio of zeros 

and ones that are found in the simulated digital system. 

This work employs the metric of SNM (static noise margin), which is the minimum DC voltage 

that can cause the cell’s stored value to flip. Variations of the threshold voltage are implemented 

as current sources in industry standard circuit simulators. Based on the operating conditions, the 

signal probability and the idle time of a cell, the respective SNM is calculated. 

The concept of signal probability is very well illustrated in [17]. In this work, we can identify the 

exact concept of the device stress being averaged out. For a digital circuit, an arbitrary bit stream 

is turned into an equivalent AC digital signal with the same ratio of high and low voltage 

duration. For a time step equal to   , the signal 

probability is defined as a simple ratio. 

   
 

 
 

The impact of NBTI on the threshold voltages 

comes from the solution of the reaction diffusion 

model, as presented in [16]. That way, it is 

possible to find the relationship between the 

signal probability and the threshold voltage 

impact after a specific duration of pre-defined 

stress and relaxation alterations. 

A work that focuses on parametric reliability, namely the degradation of the performance metrics 

of a circuit instead of functional failures is [21]. This work concentrates on combinatorial circuits 

and studies the performance degradation in comparison to the threshold voltage degradation 

because of NBTI. Threshold voltage degradation is estimated based on signal probability and 

projections are made to describe the consequent degradation of the circuit’s delay. This work 

also presents an algorithm that aims at reducing performance degradation, by altering the size of 

the employed devices. Surprisingly, the performance degradation is reported to have a weak 

correlation to the signal probability of the circuit’s main inputs. The interpretation of this result is 

that the series connection of gates in combinatorial circuits tends to average out the impact of 

NBTI since, for a device which is under stress, there are other devices that follow and may be in 

the relaxation phase. 

Another NBTI oriented approach that utilizes signal probability is [32]. This work aims at 

identifying critical gates in the presence of NBTI degradation. The effect of NBTI is assumed as 

a shift of the threshold voltage. The latter is calculated with an analytical formula. 

 
 

Figure 3.3.3: Illustration of the signal probability, as 

presented in [17]  



18 

 

3.4 What is missing in the State of the Art 
Based on the above analysis, we can summarize the insufficiencies of the presented reliability 

simulation approaches, in the following points. 

1. In many approaches, the stress of the simulated devices is averaged out using signal 

probability. The irregularity of the signals that are typically applied to devices of digital 

systems is not properly accounted for. 

2. Statistical averaging occurs in early stages of the utilized models (for example at the device 

input level, as noted in the previous point). This course of action may reduce the credibility 

of the final method, since possible errors at core parts of the methodology tend to be 

accumulated in the final results. 

3. The majority of the state of the art focuses on NBTI. There exists reduced work on PBTI.  

4. In some cases, there is poor incorporation of the recovering part of BTI. This may lead to 

overly pessimistic NBTI estimation. From a designer’s point of view, this may lead to over 

constrained and suboptimal designs. 

5. The majority of the state of the art work tends to focus on functional reliability, rather than 

parametric reliability. 

6. Some of the inspected approaches tend to be suitable only for specific types of systems (e.g. 

performance analysis on combinatorial circuits). Hence, the claims made about NBTI 

degradation and the effects of the latter cannot be generalized in other types of systems (e.g. 

memories). 

The proposed framework emerges quite timely in the above landscape because it succeeds in 

accounting for detailed workload dependency. A detailed structure of the framework can be 

found in [24] and [41]. Neither the device degradation, nor their stress is averaged out at any of 

the proposed framework’s steps. Furthermore, the framework incorporates both NBTI and PBTI. 

With the wide variety of time scale defect behaviour, RTN is also included. The two state defect 

kinetics that are employed account realistically for both stress and relaxation of the devices. The 

framework is compatible with any standard industry simulator and can be considered as an 

enhancement of typical device models (e.g. BSIM4). 

3.5 Inverter Simulations 
This section will present some brief simulation results using the 

aforementioned framework. We only consider NBTI, for 

simplification purposes. PBTI could also be easily included. The 

purpose of this section is to provide conclusive proof of the 

atomistic model’s workload dependency. A more detailed test case 

with a wide variety of results and claims will be presented in the 

next chapter.    
 

Figure 3.5.1: The circuit of a 

simple inverter 



19 

 

We simulate a simple inverter and 

measure its delay. Since the pull-up 

branch is affected by NBTI, we expect 

larger delays for measurements during a 

1-0 transition of the input. On the 

contrary, 0-1 transitions of the input are 

expected to lead to roughly steady and 

smaller delay measurements. 

Based on a bit sequence of 200ns 

(Reference Workload), we change either 

the first (“Past”) or the last (“Future”) 

100ns of the sequence. The results 

demonstrate a distinct proof of the 

model’s detailed workload dependency, 

which is not averaged out by a pure 

stochastically based device model. The 

simulation output of the Changed 

“Future” is identical to the “Reference” 

output up to the point that the bit 

sequence is changed. In contrast, if we 

only change the “Past”, the simulation 

output is entirely different.What we 

demonstrate here is that the atomistic BTI 

model has a deterministic workload 

memory. The observed NBTI effect at 

any time strongly depends on the specific 

workload that has preceded the current 

operation state.  
 

Figure 3.5.4: Delay measurements on the inverter [24] 
 

 
  

Figure 3.5.3: Runtime changes on the inverter’s workload [24] 

  
 

Figure 3.5.2: Instances of delay measurements on the inverter under test 



20 

 

3.6 Conclusions 
This chapter presented the work that enables any further attempt of parametric reliability 

analysis. The created framework allows a software support of the atomistic defect model that 

includes both BTI and RTN in circuit simulations. This support is achieved through netlist 

annotation with oxide defect parameters, based on two-state kinetics. At runtime, the simulation 

is accompanied by a transient monitoring of the defects’ occupancy. This allows a dynamic 

update of the devices’ threshold voltage. It has been conclusively proved that if we suppress the 

stochastic component of the model, we can observe detailed workload dependency in the 

simulation results. Finally, comparison with other simulation approaches places the proposed 

framework in a much needed place of the state of the art landscape. 

 

  



21 

 

Chapter 4: Test Case 

4.1 Introduction 

The current chapter aims to present an operational example of a parametric reliability simulation 

framework. The circuit under test is a 32 bit SRAM partition. We need to inspect the circuit 

under test, the target architecture and the target application where the partition is supposed to be 

used. A specific part of the framework is dedicated to the creation of all the input and control 

signals. The input that is applied to the circuit under test was extracted by a realistic application. 

The simulation of the SRAM partition under the above input is accompanied by measurement of 

key performance metrics. That way, the analysis of the circuit’s parametric reliability is 

achieved. Having addressed the above subjects, the current chapter will be completed with an 

extensive presentation of the simulation results. 

4.2 Detailed Circuit Description 

The organization of the circuit is based on already 

taped out circuits presented in [5] and [6]. We need to 

stress that the writing functionality is beyond the scope 

of the current text. Even though our test case supports 

the writing operation, the netlists are implemented in 

an “artifact” way. In contrast, the main focus of the 

test case is the reading performance of the memory. As 

a result, the respective circuitry is implemented as realistically as 

possible. 

The SRAM partition is composed of two identical groups of 16 bits. 

Naturally, each cell corresponds to a single bit. For the cell itself, a 

variation of the traditional 6 transistor organization is implemented. 

The SRAM cell requires two cross coupled inverters that hold the 

stored value at any given time. For the implementation of the 

reading functionality, we require a single reading local bit line 

(RLBL). The cell communicates with the RLBL through a pass 

transistor connected to its   node. For the implementation of the 

writing functionality, we require two voltage sources that will 

impose the value to be written, as well as its complement. The 

voltage sources correspond to the nodes WLBL and WLBL̅̅ ̅̅ ̅̅ ̅̅ ̅. Two 

pass transistors connect these nodes with   and  ̅. As a result, we 

require separate read and write word pulses, for the respective 

WLBLBar

WWL

WLBL

WWL

RLBL

RWL

QQBar

 

Figure 4.2.1: Circuit of the SRAM cell 

Rq

Rq/2

SRAM Cell

CqRq/2

Rq

SRAM Cell

...

…

 
Figure 4.2.2: Equivalent of the 

RLBL 



22 

 

operations. 

The RLBL is a large transmission line on which all 16 

cells of a group are connected. In order to keep the 

circuit as realistic as possible, we need to populate it with 

parasitic resistances and capacitances. Hence, we will 

assume a parasitic resistance quantum between the nodes 

of two consecutive cells and a parasitic capacitance for 

the entire line. Obviously, only one cell from the group 

can be read at any given time. During the reading of a 

cell, the RLBL voltage swings down to     if logic 0 is 

read. In other words, the RLBL is discharged through the 

pass transistor of the read cell. In the opposite case, the 

RLBL is kept to its pre-charge voltage.  

As stated earlier the writing functionality is 

much simpler. Hence, the WLBL and WLBL̅̅ ̅̅ ̅̅ ̅̅ ̅ 

nodes are common for the entire group. Since 

only one cell of the group can be written at 

any given time, the value to be written is 

imposed on the WLBL and WLBL̅̅ ̅̅ ̅̅ ̅̅ ̅ and a pulse 

is applied to the gates of the respective pass 

transistors.  

The partition is composed of two identical 

groups of the above organization. As far as the 

writing functionality is concerned, we 

distinguish two different sets of writing sources, i.e. 

*WLBL ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ , WLBL + and *WLBL ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ , WLBL +. As for the reading 

functionality, we need to connect the reading local bit lines to 

some sort of common node. Hence, the end of each of the RLBL  

and RLBL  is connected to a reading global bit line RGBL 

through group-specific read buffers. 

The RGBL is a large transmission line which is pre-charged to a 

specific voltage. It is hence populated with parasitic resistances 

and capacitances in the same way that the RLBLs are (obviously 

the values of the parasitic resistance quantum and of the parasitic 

capacitance are bound to be different). 

The read buffer is a sub-circuit that is able to drive the higher load that is posed by the RGBL. 

The buffer is capable of sensing the downward swing of the respective RLBL, thus triggering a 

RLBL

RGBL

enableBar

Figure 4.2.3: Circuit of the Read Buffer 

SAactBar
SAactBar

SAact

SAactBarCS

RGBL
Reference

 

Figure 4.2.4: Circuit of the sense amplifier 

Rq/2

SRAM Group

CqRq/2

SRAM Group

 
Figure 4.2.5: Equivalent of the 

RGBL 



23 

 

transistor with increased dimensions that will 

drive the RGBL. In case no downward swing 

occurs, the read buffer does not operate and the 

RGBL is left to its pre-charged state. The 

operation of each read buffer is controlled by 

an activation signal.  

As is the case for almost every memory circuit, 

once a value is read, we need to ensure that the 

output of the memory is kept steady for a 

significant duration. This is achieved through 

the use of a sense amplifier. Given the single 

bit line structure of our memory circuit, the end 

of the RGBL will be connected to the input of a 

sense amplifier. The other input is connected to 

a reference voltage. That way, if the voltage at 

the end of the RGBL is found less than the 

reference, the sense amplifier latches to logic 0. 

In the opposite case, the sense amplifier latches 

to logic 1. The operation of the sense amplifier 

is controlled by two control signals. 

The above circuits are used to create the entire 

SRAM partition (Figure 4.2.6; red colour 

indicates reading path and blue colour indicates 

writing path). It is noteworthy that the control 

signals of the cells (e.g. pulses for the read or 

write word lines), the enable signals for the buffers and the sense amplifier have to be externally 

defined. The usual decoder that controls the memory addressing is not implemented. That would 

seriously increase the device inventory, thus the computational complexity of any further 

simulation. 

4.3 Target Architecture & Target Application 
The current section will put the circuit presented above in the context of the target architecture 

and the target application. The target architecture will dictate the circuitry that is supposed to 

surround the circuit under test. It will also indicate the way that the input of the partition will be 

organized. The target application will indicate the control signals that should be applied to the 

partition. That way, the application will be realistically modeled for the circuit under test. 

The architecture in question is a Very Wide Register (VWR), with a word length of 480 bits. The 

VWR is organized in two groups, of        bits. Since the simulations that were performed 

V
W

R

FIR

SRAM Partition
 

Figure 4.2.7: The ecosystem of the SRAM partition 

SRAM Cell

x16

...
Read 

Buffer

SRAM Cell

x16

...
Read 

Buffer

S
A

Reference

 

Figure 4.2.6: Organization of the SRAM partition 



24 

 

are on the device level, it is plausible to select only one partition of the VWR as a representative 

unit of the entire architecture. This partition is the circuit under test. 

The way that we utilize the aforementioned VWR, will dictate the exact activity that should be 

simulated on the SRAM partition. In the context of this test case, we assume that the above 

VWR is connected to the input of a digital FIR filter. The transmitted data are raw video (non-

encoded). A realistic assumption of the SRAM activity is that the VWR is read wide-word-by-

wide-word and rewritten with new values after all wide-words have been read. This high level 

description will be of vital importance for the creation of the partition’s control signals. Given 

the organization of our partition (which is a column of the VWR), we can assume that after all 

cells have been written with data, we read the cells one by one. It would be realistic to leave a 

global retention interval between the consecutive read operations which may correspond to 

peripheral activity (e.g. decoding of VWR address etc.). Given this high level description, we 

can summarize the read/write activity of the SRAM partition in a few lines of pseudo code. 

4.4 Stimuli & Input Setup 
First, we need to account for realistic SRAM activity. Based on the target application as 

described in the previous section, we need to access the wide-word stream that is fed to the input 

of the FIR filter. These wide words have to be pre-stored in the VWR, then read and later 

transmitted to the input of the filter. Since we only simulate a single column of the VWR, we 

need to parse the filter input, and keep the bits that are stored (and later read) only in one 

column. 

It is important that the addressing scheme is kept the same during the hypothetical operation of 

our digital system. The only thing that may change is the information that is stored and later read 

from the SRAM cells. A single stream of input for a given VWR column will be referred to as a 

RunTime Situation (RTS). The FIR filter input can thus provide us with 480 different RTSs. A 

  

<Loop 1> { /* <Loop 1> iterations are  */ 

 /* user defined             */ 

  for (i=0; i<=31; i++) { /* Write all cells first    */ 

    write(cell[i]);  
    i++;  
  }  
  for  (i=0; i<=31; i++) {   /* Read cell-by-cell        */ 

    read(cell[i]);  
    for (j=1; j<=10; j++) {   /* Global Retaining         */ 

      nop /* between reads            */ 

    }  

    i++;  

  }  

}  

  

 

Algorithm 4.3.1: Pseudo-code description of the target application 



25 

 

simple script in Perl is implemented to complete this parsing. Based on the available input, the 

duration of each RTS is roughly 12μs. Before defining exactly the control and input signals, we 

have to be reminded of the possible operation modes of an SRAM cell, i.e. Read, Write and 

Retain. The first two are quite self explanatory, whereas the third corresponds to complete cell 

inactivity, when a cell retains its value. We can safely assume that when a cell of the partition is 

written or read, all the others are in Retain operation mode. That way, we can break the SRAM 

activity into segments, each one corresponding to one of the above operation modes. Based on 

the above architecture and application target, we need to devise a way to setup both the control 

signals and the input that is to be written in the partition cells. The three different operation 

modes can be translated to three key commands to the memory.  

Possible values of the X parameter can be from 0 to 31 (32 cells are included in the partition), 

whereas the Y parameter can be either 0 or 1 (cells are organized in two groups). Obviously the 

parameter W can be either 0 or 1, since it corresponds to a single bit. In view of the above 

assumption, we can describe the activity of the entire SRAM partition based on these three 

commands. A script has been developed in Perl, for the parsing of an input file of SRAM 

activity. Certainly, the input file must not violate the internal consistency of the memory. For 

example, a cell cannot be read without previously being written. Based on the above processes, a 

total of 79 piece-wise linear voltage source files are created per RTS. This input is enough to 

simulate the activity of the entire SRAM partition for a user-defined duration. 

4.5 Simulation & Metric Extraction 
Having covered the netlist annotation in Chapter 3, as well as the stimuli and input setup 

methodology in the previous section, we now have a complete view of the simulation framework 

Read X Y Read the value stored in cell X found in group Y 
WriteW X Y Write value W in cell X found in group Y 
Retain Keep all cells at retention mode 

 

Table 4.4.1: The three commands that are used for the control of the entire SRAM partition 

 
 

Figure 4.4.1: Complete framework state for test case simulations [24] 



26 

 

for our test case. The objective of this section will be 

to present the logic behind the extraction of 

performance metrics, which enables parametric 

reliability analysis of the test case circuit. In this text, 

we will focus on read delay and leakage energy. 

As far as delay is concerned, we measure the time 

from the activation of a read word line up to the point 

where the voltage difference at the inputs of the SA, is 

enough for the latter to sense. Based on [4], such a 

sufficient voltage difference can be assumed as 50mV. 

It is important that we do not incorporate the sense 

amplifier in the delay measurement, since it may be a 

tunable component. It also exhibits no impact to the 

preceding circuit. As a result the read delay 

measurement we are implementing mirrors the BTI 

effect on the cells and read buffers. 

In the current SRAM organization, 

this metric can be applied only to 

cases when the read value is logic 0. 

That is because in case of reading 

logic 1, there is no voltage swing in 

the end of the global bit line.  

For the delay measurements, we use 

the built in capabilities of an industry 

standard simulator, which measures 

the duration from a trigger event up 

to a target event. This capability of 

the simulator cannot credibly detect a voltage difference between the inputs of the sense 

amplifier, when no swing occurs at the end of the global bit line. As a result, the delay 

measurements are restricted only to cases when logic 0 is read. This restriction does not affect 

the validity of any claim made in the current text but simply mirrors the particularity of the test 

case circuit. 

 

 
 

Figure 4.5.1: Instances of the reading operation 

[24] 

 
 

Figure 4.5.2: Read delay measurement across the read critical path 



27 

 

Based on the target application, 

there exist some global retention 

periods during the activity of the 

SRAM partition. This is a very 

good chance during which to 

measure leakage energy. During 

global retention instances, we give 

the circuit’s currents a chance to 

settle. As a result, any dynamic 

effect is decaying, so leakage 

dominates the transient power 

measurement. Leakage energy is 

extracted using transient power 

measurements. We parse the power 

measurements during global 

retention instances and we 

numerically integrate them to get 

the leakage energy. 

Another interesting transient metric is the BTI impact on a specific device. For the definition of 

the BTI impact on the critical MOS, we need the     , - values, for all the device’s defects. We 

define as  , the set of defects that are occupied during a specific time instance. We also define as 

 , the set of all defects belonging to this device. Hence, a valid definition of BTI impact is now 

obvious. It is equally obvious that this metric can take only discrete values, depending on the 

BTI parameters that have been assigned to that device during pre-processing. 

           
∑     , -   

∑     , -   
      

  

 
 

Figure 4.5.3: Power measurements leading to leakage energy 

estimation from the simulation output 



28 

 

4.6 Parametric Fluctuations 
For the purposes of this analysis, we test the SRAM partition netlist under 2 different RTSs of 

12μs duration. In the first case, we test the circuit assuming no initial conditions for the devices’ 

defects, i.e. all defects are non-occupied at the beginning of the simulation. In the second case, 

we initialize the occupancy of the traps using an AC BTI model [10]. Only NBTI is included in 

this case, but PBTI can easily be included as well. For the time being, we will ignored the 

leakage energy and focus only on the read delay of the partition. 

The time zero simulation accounts exclusively for RTN, since the slower traps have no time to 

become occupied. However, the netlist that assumes initial conditions for the defects (even 

through the simplification of AC stressing) incorporates both RTN and NBTI. The initial AC 

stressing is assumed to have lasted    s and the respective duty cycle (for the     ) be 80%. 

Such an initial stressing is enough for some of the slow defects to become occupied. We also 

stress a reference netlist with the same pair of RTSs, thus having a control of our simulation 

experiment. The NBTI parameters are the same as the experimental values that calibrate the 

atomistic model. 

 

 
Figure 4.6.1: Runtime delay fluctuations of an SRAM 

partition for two different RTSs. No initial stressing is 

assumed (time zero simulation). The delay measurements 

are almost identical in the Reference netlist (a). For a 

netlist enhanced with defect activity (b), the fluctuations 

exhibit greater runtime variability and also differ between 

the two workloads [24]. 

 

 
Figure 4.6.2: Runtime delay fluctuations of an SRAM 

partition for two different RTSs. Initial AC stressing is 

assumed. When NBTI is not considered (a), the 

fluctuations are concentrated in a very small interval. In a 

netlist enhanced with defect activity (b), the delay 

fluctuations cover a much wider interval [24]. 



29 

 

What we observe in this case, is that the presence of NBTI widens, in any case, the interval of 

measured delay. When assuming only RTN, the fluctuations are concentrated in a wider interval 

than the reference case. With the incorporation of NBTI (initialized netlist), the interval widens 

even further and surpasses the usually accepted 10% margin. The transient evolution of the delay 

measurements is different for each RTS in the latter case. This morphological difference 

indicates that an attempt of clustering various RTSs is vital, if we are to study the impact that 

BTI has on the circuit’s performance. 

4.7 Conclusions 
This chapter presented the simulation results on a test case circuit of a 32 bit SRAM partition. 

We have successfully accounted for realistic workloads, after considering the target application 

and the target architecture of the SRAM partition. We have customized the BTI and RTN 

simulation framework, in order to extract performance metrics of the circuit under test. 

Measurements of the circuit’s read delay and leakage energy have been implemented. The 

customized framework encourages the extraction of distance metrics with respect to the delay 

behaviour. Such capabilities will likely enable the clustering of various RTSs, based on the delay 

impact because of BTI and RTN degradation. In view of the current framework’s status, the 

clustering of RTSs to workload scenarios appears to be quite feasible. 

 

 

  



30 

 

Chapter 5: Accelerating HotSpot-5.0 

5.1 Introduction 

This chapter is based on the fifth version of the architecture-based compact thermal modelling 

tool called HotSpot, which is publicly available through [9]. An accurate, yet fast, thermal 

modelling tool is of vital importance on both design and research applications. With that in mind, 

we aim at the acceleration of the existing implementation. By maintaining the same level of 

accuracy, while the execution time is much less, HotSpot is tuned into a very powerful tool with 

a wider variety of applications. For instance, it can be utilized in ad hoc thermal modelling and 

thermal management applications.  

We will attempt to distinguish, whether there is any further room for compromise between the 

current model's accuracy and its execution time. It is important for the optimization to take place 

in such a level that any processor-specific changes (use of acceleration engines etc.) do not affect 

the validity of our claims. Before exploring the employed acceleration techniques, we will 

present the principles of thermal simulation. Next, the profiling methodology will be analyzed, 

which will lead us to the most CPU intensive parts of this software. A brief analysis of the 

available numerical methods, will point towards the optimal acceleration technique. Finally, we 

will observe the accelerated version both through proof-of-concept simulations as well as in a 

realistic application. 

5.2 Thermal Simulation Principles 

HotSpot uses an RC model with which it represents the transient and steady state thermal 

behaviour of the various blocks found on any IC [8]. The creation of this model is based on the 

duality between electrical and thermal quantities [8], [20]. Given the thermal characteristics of an 

IC, this software is capable of creating a thermal equivalent, which can be solved for a user 

defined power consumption profile. 

Thermal Network Electrical Network 

Heat Flow-Power   (W) Current Flow   (A) 

Temperature Difference   (K) Voltage   (V) 

Resistance     (K/W) Resistance   (Ω) 

Rate of Inertia-Capacitance     (J/K) Capacitance   (F) 

Time Constant            (s) Time Constant      (s) 
 

Table 5.2.1: Duality between electrical and thermal quantities 



31 

 

Taking into consideration the physical dimensions and thermal constants of the chip's functional 

blocks, the above duality yields an ordinary differential equation which describes the way in 

which thermal energy is spread throughout the chip. 

  ̅

  
   ̅      ̅ 

where   and   represent the chip's thermal characteristics [9]. It is important that the current 

chapter deals exclusively with the transient solution of the above problem. HotSpot offers a 

steady state solution option, which reduces the ordinary differential equation to a simple 

algebraic relation, since it is obvious that 
  ̅

  
   at steady state. 

In order to find the transient solution, HotSpot-5.0 employs a numerical iterative method, with 

adaptive step sizing. Being this an iterative process, the program needs to read a power 

consumption vector every      and given the previous temperature vector it seeks to calculate the 

new one. Given a time step   , HotSpot performs a set of calculations until a time interval equal 

to      is covered. The step    is susceptible to change, hence the adaptive step sizing. That way, 

HotSpot can inspect in greater detail parts of the solution that change rapidly, while taking vast 

strides in smoother parts of the solution. For each iteration (with internal step     ) the 

previous temperature and power vectors ( ̅  and  ̅  respectively) are needed. That way, the 

necessary parameters of the numerical method can be calculated. 

 
 

Figure 5.2.1: Thermal simulation principles: Each block of an IC is connected to others through thermal resistances 

and capacitances [26] 



32 

 

5.3 Execution Profiling 
In this section we will present the methodology followed in order to identify CPU intensive 

instances during the program’s execution. After a series of trial and error iterations, we placed 

timing functions in key parts of the source code. That way the duration of critical execution parts 

could be measured. The code was split into the following parts. 

 Parsing and Initial Configuration: During this part we have the processing of the commands 

entered by the user. This information is combined with the specifications found in the 

configuration file. 

 

 R Model Population: An array with the vertical and lateral thermal resistances between the 

functional blocks is created during this part. The population of the R model is sub-

categorized as follows. 

 Model Sanity Check 

 Gx's and Gy's Calculation 

 Shared Lengths Calculation 

 Packaging Incorporation 

 Chip Edges 

 G Initialization 

 Overall Rs Calculation 

 Peripheral Nodes Incorporation 

 B Array Incorporation 

 Array Copying 

 Array LUP Decomposition 

 

 C Model, Names, Temperature and Power Arrays Initialization: During this part, we have 

extensive memory allocation and preparation of power and temperature arrays. The 

functional blocks' names are also printed during this stage. Finally, the network of thermal 

capacitors is created. 

 

 Numerical Part: The iterative numerical process for the solution of the ordinary differential 

equation is carried out during this stage. 

For the profiling procedure, nine different floor-plans with their respective power traces were 

used. The total execution time for each benchmark is the sum of the execution times of each one 

of the above steps (plus any overhead of trifling procedures, like freeing any memory blocks 

etc). For the total execution time, we used built-in timing commands of the terminal. Finally, we 

can safely assume that the overhead introduced by the timing functions inside the source code is 

very small to be taken into consideration.  

It is important to note that no accelerating engine is utilized during the profiling procedure. That 

is because our intention is to make the algorithm faster, while maintaining the same level of 

accuracy and not make processor-specific optimizations. We identify the LUP decomposition as 

well as the numerical part as the two dominant tasks of the transient solution. The focus of the 

current text is to optimize the second of the two stages, since it is the most CPU intensive. 

Optimization of the LUP decomposition is beyond the scope of this thesis. 



33 

 

  

Benchmark Name tseng apex2 alu4 apex4 ex5p 

Number of Blocks 1217 1901 1530 1281 1108 

      

Profiling Stages      

      

Parsing & Initial Configuration 0.03507 0.09076 0.06411 0.04437 0.04162 

R Model Population 207.90791 1225.88951 510.54963 339.47135 212.61873 

 Sanity Check 0.00007 0.00017 0.00023 0.00010 0.00011 

 Gx's and Gy's Calculation 0.00043 0.00079 0.00103 0.00050 0.00043 

 Shared Lengths Calculation 0.13489 0.41395 0.27474 0.19144 0.13599 

 Packaging Incorporation 0.00001 0.00001 0.00001 0.00001 0.00001 

 Chip Edges Incorporation 0.00025 0.00047 0.00036 0.00032 0.00025 

 G Initialization 0.18894 0.61105 0.38454 0.28838 0.20784 

 Overall Rs Calculation 0.22253 0.67702 0.43228 0.30996 0.22390 

 Peripheral Nodes Incorporation 0.00000 0.00000 0.00000 0.00000 0.00000 

 B Array Incorporation 0.44147 1.68490 0.90139 0.69288 0.47198 

 Array Copying 0.44251 19.71515 0.41254 0.32405 0.27276 

 Array LUP Decomposition 206.47619 1202.56026 508.12696 337.66305 211.30481 

C Model, Names, Temperature and Power 

Arrays Initialization 
0.48230 29.16401 4.34094 0.50904 0.38705 

Numerical Part 297.40017 906.18673 580.50909 400.49556 310.50477 

      

Total 506.26747 2220.04100 1096.27189 741.07585 524.02856 

 

Benchmark Name diffeq misex3 seq s298 

Number of Blocks 1577 1403 1808 1940 

     

Profiling Stages     

     

Parsing & Initial Configuration 0.06734 0.06241 0.07850 0.11604 

R Model Population 534.58509 454.24514 832.53052 1247.79978 

 Sanity Check 0.00012 0.00010 0.00015 0.00019 

 Gx's and Gy's Calculation 0.00059 0.00056 0.00068 0.00079 

 Shared Lengths Calculation 0.26161 0.23596 0.34541 0.42027 

 Packaging Incorporation 0.00001 0.00001 0.00001 0.00001 

 Chip Edges Incorporation 0.00039 0.00034 0.00046 0.00047 

 G Initialization 0.39490 0.36115 0.52949 0.60874 

 Overall Rs Calculation 0.43352 0.38285 0.56745 0.69750 

 Peripheral Nodes Incorporation 0.00000 0.00000 0.00000 0.00000 

 B Array Incorporation 0.91402 0.85107 1.35366 2.61172 

 Array Copying 0.42286 0.38312 0.55911 19.79258 

 Array LUP Decomposition 532.15639 452.02943 829.16008 1223.60415 

C Model, Names, Temperature and Power Arrays 

Initialization 
2.87897 0.66723 42.80352 29.74521 

Numerical Part 561.74322 525.10873 731.00479 944.14868 

     

Total 1100.10970 980.78258 1611.73478 2270.33875 
 

Table 5.3.1: Profiling results for nine benchmarks on the default HotSpot-5.0 implementation; the most CPU 

intensive execution stages have been confirmed and highlighted; stage durations are presented in seconds 



34 

 

5.4 Numerical Approach 
In order to solve the transient problem described by the aforementioned ordinary differential 

equation, HotSpot employs the 4
th

 order Runge-Kutta method. Given the vectors  ̅  and  ̅ , we 

seek to calculate  ̅   , where  ̅  are the slopes of the temperature graphs for each node. 

{
  
 

  
  ̅   ( ̅   ̅ )   

    ̅     ̅̅ ̅     ̅   ̅  
 

 
  ̅ 

 ̅   ( ̅    ̅)   
    ̅     ̅     ̅   ̅  

 

 
  ̅ 

 ̅   ( ̅    ̅)   
    ̅     ̅      ̅   ̅     ̅ 

 ̅   ( ̅    ̅)   
    ̅     ̅ }

  
 

  
 

  

 ̅     ̅  
 

 
 ( ̅     ̅     ̅   ̅ ) 

The above set of calculations is performed three times for the sake of adaptive step sizing every 

new     . Thus, it appears to be the core of the numerical solution performed by HotSpot. If 

we combine this observation with the results from the profiling phase, this set of equations is 

rightly considered one of the first areas to be examined for any execution time vs. accuracy 

trade-offs. We find that the error of the method employed by the original HotSpot 

implementation is  (  ) [22]. Given the very small value of the step, even though it is 

dynamically changing (adaptive step sizing), it appears logical to increase this error in favour of 

a faster execution. Thus, we conclude to the following simpler set of equations for a single 

iteration. 

 ̅   ( ̅   ̅ )   ̅     ̅    ̅  

The error of the above implementation (namely the Euler method, instead of the fourth order 

Runge-Kutta) is  (  ) [22]. Given the small values of the time step, we can safely assume that 

the accuracy of the method remains at a similar level in comparison to the original 

implementation. Before attempting a complexity analysis using segments from the source code, 

we will attempt a presentation of the proposed numerical approach idea in a more simplistic way. 

As we know from the mathematical background the vectors  ̅ , represent the slopes of the 

temperature graphs for each node. As a result, we can easily calculate them having formed the 

problem's differential equation.  

  ̅

  
  ̅   

    ̅     ̅̅ ̅ 

Let us assume that the slope calculation is performed by a function which receives the power and 

temperature vectors as input, thus we define evaluate_slope(Pn,Tn). We also assume that the 

vector  ̅  is available at the beginning as is the time step for each iteration (namely,     ). We 

define rk4(Pn,Tn,k1,h), as the function that will return the vector   ̅   . From the above 

analysis, the pseudo code for the default rk4_default(Pn,Tn,k1,h)can be easily extracted. The 



35 

 

proposed approach is equally easy to express in the form of pseudo code. Given that each  ̅    

has to be calculated several times and for several cases in order to achieve adaptive step sizing, it 

is important that this critical code of the iterative calculations be fast and yet accurate. We must 

note that all the above variables represent vectors apart from     , which is the current 

iteration step, thus being a single positive number. The computational effort required in the 

proposed approach is seriously decreased since the iteration requires four times less the original 

number of operations. Given the level at which the alterations are performed, we can safely 

assume that any additional acceleration methods (e.g. processor-specific acceleration engines) 

will only further improve the execution performance. 

5.5 Complexity Analysis & Source Code Alterations 
In this section, we will look closer to the actual source code of HotSpot. We will identify the key 

function that has to be altered and will introduce the proposed alteration. Finally, a simple 

complexity analysis was deemed necessary to further support our acceleration claims. Since the 

source code of HotSpot-5.0 is rather lengthy, we will concentrate on the function rk4_core 

which was identified as the specific function implementing the 4
th

 order Runge-Kutta method. 

This being a purely algorithmic complexity analysis, we will deprive any presented function 

from processor-specific acceleration methods. Furthermore, we will not look into memory access 

and memory allocation times but only into purely mathematical operations. A basic function we 

must consider is the matvectmult, which multiplies a square matrix with a column vector. We 

add simple comments to show the complexity of any noticeable steps. Evidently, we must look 

for the dominating complexity throughout these steps. The complexity of function commands, 

will be presented in comments syntax. 

  

rk4_default(Pn,Tn,k1,h) { 

 

  t1 = Tn + h/2.0 * k1; 

 

  k2 = evaluate_slope(Pn,t1); 

  t2 = Tn + h/2.0 * k2; 

 

  k3 = evaluate_slope(Pn,t2); 

  t3 = Tn + h * k3; 

 

  k4 = evaluate_slope(Pn,t3); 

 

  Tnew = Tn + h * (k1 + 2*k2 + 2*k3 + k4)/6.0; 

  return Tnew; 

} 

proposed_approach(Pn,Tn,k1,h) { 

   

  Tnew = Tn + (h * k1); 

   

  return Tnew; 

} 

 

Algorithm 5.4.1: Default and proposed numerical approach expressed in pseudo code 



36 

 

  

void matvectmult(double *vout, double **m, double *vin, int n) {  

  int i, j; 

  for (i = 0; i < n; i++) {           /* O(n) */ 

    vout[i] = 0;                      /* O(n) */ 

    for (j = 0; j < n; j++)           /* O(n
2
) */   

      vout[i] += m[i][j] * vin[j];    /* O(n
2
) */  

    } 

  } 

} 

 

Algorithm 5.5.1: The function matvectmult found in HotSpot-5.0 

void slope_fn_block(block_model_t *model, double *y, double *p, double *dy) { 

   int n = model->n_nodes; 

  double **c = model->c; 

  int i; 

  double *t = dvector(n); 

 

  matvectmult(t, c, y, n);                  /* O(n
2
) */  

  

  for (i = 0; i < n; i++)                   /* O(n) */  

    dy[i] = p[i]-t[i];                      /* O(n) */  

   

  free_dvector(t); 

} 

 

Algorithm 5.5.2: The function slope_fn_block found in HotSpot-5.0 

void rk4_core(void *model, double *y, double *k1, void *p, int n, double h, double 

*yout, slope_fn_ptr f) { 

  int i; 

  double *t, *k2, *k3, *k4; 

  k2 = dvector(n); 

  k3 = dvector(n); 

  k4 = dvector(n); 

  t = dvector(n); 

 

  for(i=0; i < n; i++) 

    t[i] = y[i] + h/2.0 * k1[i]; /* O(n) */   

  (*f)(model, t, p, k2);         /* O(n
2
) * 

  for(i=0; i < n; i++) 

    t[i] = y[i] + h/2.0 * k2[i]; /* O(n) */ 

  (*f)(model, t, p, k3);         /* O(n
2
) */ 

  for(i=0; i < n; i++) 

    t[i] = y[i] + h * k3[i];     /* O(n) */ 

  (*f)(model, t, p, k4);         /* O(n
2
) */ 

 

  for (i =0; i < n; i++)  

    yout[i] = y[i] + h * (k1[i] + 2*k2[i] + 2*k3[i] + k4[i])/6.0; /* O(n) */ 

 

  free_dvector(k2); 

  free_dvector(k3); 

  free_dvector(k4); 

  free_dvector(t); 

 

} 

 

Algorithm 5.5.3: The function rk4_core found in HotSpot-5.0 



37 

 

 

It is evident that the function matvectmul follows an  (  ) complexity, where   is the common 

dimension between the multiplied matrix and vector. In this case, the   parameter is the number 

of nodes found in the thermal network. The function matvectmul is essential for the calculation 

of the slopes of the temperature function for each thermal node. The latter task is performed by 

the function slope_fn_block [9]. The function slope_fn_block (which is called by reference 

in rk4_core as f) has the same complexity, namely  (  ), where   has the same meaning as 

above. Finally, we calculate the complexity of the rk4_core function in a similar way. As a 

result, the complexity of the function rk4_core in the original implementation is also  (  ), 

where   the number of nodes in the thermal equivalent circuit. Our approach reduces drastically 

the required computational effort, by simplifying the function rk4_core. The complexity of the 

replacement function euler_core was reduced to  ( ), where   the number of nodes in the 

thermal equivalent circuit. Obviously, our intended approach is the implementation of Euler's 

numerical method rather than the fourth order Runge-Kutta method which was originally 

utilized. A reduced complexity does not qualify as an acceptable solution to our acceleration 

problem. It is vital to consider the underlying numerical error as well as the overall performance 

of the altered source code, in a series of benchmarks. 

void euler_core(void *model, double *y, double *k1, void *p, int n, 

double h, double *yout, slope_fn_ptr f) { 

 

  int i; 

   

  for (i =0; i < n; i++) yout[i] = y[i] + (h * k1[i]); /* O(n) */ 

 

} 

 

Algorithm 5.5.4: The function euler_core, which is proposed to replace rk4_core  

 
 

Figure 5.5.1: Execution time for nine benchmarks comparing the default and the numerically optimized versions 



38 

 

  

Benchmark Name tseng apex2 alu4 apex4 ex5p 

Number of Blocks 1217 1901 1530 1281 1108 

      

Profiling Stages      

      

Parsing & Initial Configuration 0.05237 0.09115 0.06365 0.07130 0.03663 

R Model Population 227.06458 1206.25284 566.81006 334.95655 196.46724 

 Sanity Check 0.00008 0.00017 0.00010 0.00009 0.00009 

 Gx's and Gy's Calculation 0.00050 0.00075 0.00059 0.00050 0.00046 

 Shared Lengths Calculation 0.13417 0.41335 0.27008 0.18832 0.14047 

 Packaging Incorporation 0.00001 0.00001 0.00001 0.00001 0.00001 

 Chip Edges Incorporation 0.00026 0.00049 0.00035 0.00030 0.00024 

 G Initialization 0.24589 0.61557 0.37207 0.29092 0.19995 

 Overall Rs Calculation 0.22455 0.67741 0.43227 0.30835 0.22629 

 Peripheral Nodes Incorporation 0.00000 0.00000 0.00000 0.00000 0.00000 

 B Array Incorporation 0.47995 3.33825 0.90672 0.65763 0.44595 

 Array Copying 0.25400 19.55677 0.51642 0.32518 0.21384 

 Array LUP Decomposition 225.72439 1181.36879 564.31078 333.18463 195.23936 

C Model, Names, Temperature and Power 

Arrays Initialization 
0.54130 32.78961 5.48549 0.71735 0.34254 

Numerical Part 60.11105 193.25667 124.40264 85.47268 61.28075 

      

Total 288.38408 1491.72987 697.70546 422.07990 258.52480 

 

Benchmark Name diffeq misex3 seq s298 

Number of Blocks 1577 1403 1808 1940 

     

Profiling Stages     

     

Parsing & Initial Configuration 0.07901 0.06344 0.09690 0.08448 

R Model Population 604.16245 505.41729 901.19450 1226.08093 

 Sanity Check 0.00017 0.00018 0.00014 0.00029 

 Gx's and Gy's Calculation 0.00059 0.00056 0.00070 0.00132 

 Shared Lengths Calculation 0.30961 0.23621 0.34606 0.42022 

 Packaging Incorporation 0.00001 0.00001 0.00001 0.00001 

 Chip Edges Incorporation 0.00033 0.00033 0.00045 0.00049 

 G Initialization 0.39131 0.33162 0.52028 0.61335 

 Overall Rs Calculation 0.44129 0.38460 0.57457 0.67863 

 Peripheral Nodes Incorporation 0.00000 0.00000 0.00000 0.00000 

 B Array Incorporation 0.96120 0.82940 1.35027 1.65129 

 Array Copying 1.84087 0.93420 2.06790 18.52872 

 Array LUP Decomposition 600.21634 502.66573 896.32433 1203.53025 

C Model, Names, Temperature and Power Arrays 

Initialization 
4.43278 1.74777 21.19745 68.39291 

Numerical Part 120.70472 113.25028 166.68681 192.04378 

     

Total 731.38462 621.20606 1094.42386 1577.51120 
 

Table 5.5.1: Profiling results for nine benchmarks of the accelerated version (Euler method); stage durations are 

presented in seconds 
 



39 

 

5.6 Optimization Results 
In this section, we will present the execution time for nine different benchmarks (Table 5.5.1). A 

comparison between the default HotSpot-5.0 and our intended approach will be performed. It is 

noteworthy that the complexity of the benchmarks is quite high (large number of thermal 

blocks). However, this was intentionally chosen, in order to stress the proposed numerical 

method in extreme cases. 

At the same time, we compared the temperature output between the default and numerically 

accelerated version. The result was a maximum difference equal to       [25]. It is important 

that we have managed to reduce the CPU intensity of this software, by keeping the trade-off with 

accuracy in acceptable margins. 

The next step is to verify the stage of the source code that would require further optimization, 

apart from the use of the Euler method. Again, we place timing functions of reduced overhead in 

key parts of the numerically optimized source code and monitor the duration of various segments 

of the code. What we identify is that the role of the numerical part (i.e. the one that deals with the 

solution of the ordinary differential equation) has been greatly reduced. The profiling indicates 

that the LUP decomposition is a candidate for future acceleration attempts.  

5.7 Applications of the Accelerated Version 
In [25], we can see an application of the above software, incorporating the optimized numerical 

(Euler) method. The enhanced thermal simulator, which is named  Quick_Hotspot, has been 

included in a hierarchical thermal analysis tool (Figure 5.7.1). The purpose of this tool is to 

analyze the temperature distribution across a user defined IC in different levels of granularity. 

 

 
 

Figure 5.7.1: Incorporation of the accelerated thermal simulator (Quick_Hotspot) into a hierarchical thermal 

analysis tool 



40 

 

During an initial coarse-grain phase, we obtain a crude view of the thermal distribution across 

the chip. This phase is executed only once and it requires the power sources found in the 

integrated circuit. Such values are naturally dependent on the mapped application. Also, a 

template of the RC thermal equivalent network is created, upon which any further thermal 

analysis will be based. For the latter, we require the thermal and geometric constants of the 

chip’s functional blocks. Finally, regions of importance can be created during this early step, by 

grouping hardware resources that operate over a certain temperature threshold. 

On the granularity of the above network lies the tuneable accuracy of the proposed framework. 

Depending on whether the level of accuracy is acceptable, it is possible to annotate the 

aforementioned template, so that a fine-grain thermal analysis can be achieved. This task is 

performed during the second, iterative, phase of the tool. 

In case the achieved detail is not satisfactory, we can by modify the number of critical regions, or 

modify the area of critical regions. Also a combination of these two techniques is possible. A 

feedback loop enables this sort of granularity calibration. 

Having settled to a sufficiently detailed thermal profile, we find the transient solution to the 

temperature distribution problem and we present the thermal map at a given point of the chip’s 

operation. 

5.8 Conclusions 
In this chapter, we have presented the optimization approach of a popular thermal simulator 

called HotSpot-5.0. Initially, a simple profiling of the software allowed us to concentrate on the 

most CPU intensive tasks. Having distinguished the solution of the ordinary differential equation 

as such a part, we explored various numerical techniques that could achieve a faster yet accurate 

solution. The Euler method was picked as a suitable replacement of the 4
th

 order Runge-Kutta, 

the latter being the default implementation. The execution of the altered source code revealed a 

significant acceleration, whereas the deviation from the original tool is negligible. Hence, it is 

obvious that we achieved a significant acceleration of the thermal simulator. That way, we have 

broadened the simulator’s application spectrum. 

An example of a hierarchical thermal analysis tool that uses our accelerated version demonstrates 

that the field of application may vary from runtime thermal managers to design time detailed 

thermal analysis tools. Certainly, further improvements of the source code, for instance 

optimization of the LUP decomposition part, may yield much more optimistic versions. 

  



41 

 

Chapter 6: Conclusion 

6.1 Overview 
In the previous chapters, we have presented the involvment of the author in two major areas. On 

the one hand, a fully functional framework has been created to simulate the activity of an SRAM 

partition under the effect of BTI and RTN. These two phenomena have been accounted for based 

on a novel atomistic approach that describes the occupancy of defects in a deterministic way. 

Performnace metrics of the SRAM partition have been monitored at runtime and memory 

workloads can be grouped together, based on the impact of BTI and RTN on the delay and 

leakage energy [41]. 

On the other hand, a thermal analysis tool (HotSpot-5.0) has been studied extensively for the 

purporse of reducing its execution time. Profilling functions have been used to identify the most 

CPU intensive code segments. Finally, a numerical method was replaced by an optimized 

equivalent, thus leading to reduced execution time with no noticeable accuracy degradation. 

Finally, it has been demonstrated in practice that the accelerated version of the above tool 

(referred to as Quick_Hotspot) can be used in frameworks that support hierarchical thermal 

analysis. 

Having completed the two above tasks, it is possible to identify the potential for future work in 

both areas. This reflection will be the main task of the current chapter, alongside a brief 

evaluation of the achieved results. For the sake of consistency, we will split the following 

chapter according to the two main axes of this text. 

6.2 Effects of BTI & RTN on the Performance of an SRAM Partition 
In this area of focus, we have successfully proved that the atomistic quality of the BTI and RTN 

device level model can propagate to the circuit level as detailed workload dependency. 

Simulations of the SRAM partition have proved that under the effects of BTI and RTN, the read 

delay of the memory spreads in an alarmingly wide interval. There lies clear motivation for the 

development of mitigation techniques for BTI and RTN. 

Steps towards enhanced parametric reliability, especially for embedded systems, can be 

supported by the workload dependency of the simulation framework. Workload dependency can 

be emphasized by suppressing the completely stochastic component of the model (via random 

number generation manipulation). It has been demonstrated that the workloads applied to the 

SRAM partition, can be grouped based on their impact on delay and/or leakage energy. Such 

groups of RTSs can be considered as workload scenarios that constitute different operation 

modes for a digital system (e.g. an embedded system). As a result, the creation of 

microcontrollers that can switch between such operation modes appears to be an appealing 



42 

 

concept. Certainly, the calibration of an underlying model is required. For this purpose, extensive 

simulations are required, in order to test many different functional blocks (i.e. memories, 

combinatorial circuits etc.), for many different BTI and RTN instantiations, under a wide variety 

of workloads. In order to enable such a workload scenario characterization, it is imperative to 

enhance the current framework with some new key qualities. 

 Regarding the device level model, it is very important to calibrate it further we new 

measurements on real devices. It is important to clarify the way that various defect 

parameters of the device are scaled with the device dimensions (e.g. trap density). 

 

 The in-situ defect monitoring script is implemented in quite a high level language (Verilog-

A). This requires compilation for every different defect instantiation and is generally 

evaluated as highly suboptimal solution. A use of a lower level language (e.g. C) would 

allow platform specific optimizations and easier profiling. Hence, execution time obstacles 

could be easier alleviated. 

 

 The annotation framework could be enhanced in the following way: We need to try different 

initial stressing for the same defect instantiation.  

 

 Since we are unable to simulate more than 

~10
-5

 seconds, we need a technique to 

inspect small parts of the partition’s lifetime, 

while we can speed through the latter using 

the analytical model. Certainly, the use of 

the AC analytical model [10] does not fit the 

workload dependent qualities that 

differentiate the atomistic approach from the 

state of the art. For example, any attempt to 

fit the AC stress to the percentage of stored 

ones or zeros is very crude and certainly out 

of the question. Still, based on the current 

framework, the aforementioned way appears 

as the only computationally feasible idea. 

 

 On parallel, methods to accelerate the simulation (which is the most CPU intensive task) 

would be hugely helpful. We need to maintain the differentiation from the averaging out state 

of the art, hence the AC model mentioned above should only be a short term solution. 

 

 Fortunately, the netlist annotation framework is generic enough to be applied to any netlist. 

However, the tools that create various RTSs and inspect performance metrics are highly 

netlist specific. It would be interesting to increase the scope of this part of the framework. 

 

Figure 6.2.1: The analytical model can speed through 

the partition’s lifetime, while the simulator can stop 

per decade and inspect transient delay fluctuations for 

different RTSs (e.g. 50 RTSs per momentary 

simulation should suffice). 

 

log{Simulated Lifetime} 

-4 -3 -2 -1 1 2 3 4 0 

AC Analytical Model 

“Momentary” 10
-5

s Simulation 

... ... 



43 

 

That way, various types of circuits and workload can be easily studied without the need for a 

time consuming “context switch”. 

6.3 Acceleration of the Transient Solution on HotSpot-5.0 
In the results presented in the respective chapter, we have demonstrated a satisfactory 

acceleration of HotSpot-5.0, with negligible accuracy degradation. However, the profiling of the 

accelerated version showed that the LUP decomposition part of the software remains as the most 

CPU intensive segment. Hence, it is imperative to explore the numerical optimization of the 

respective code. 

It is vital to remain in the same course of action and not attempt any processor-specific 

optimizations. Our goal is to make the algorithm faster, so any localized acceleration will only 

add up to the already achieved reduction of CPU time. 

Finally, having increased the potential applications of this thermal analysis tool, the most 

appealing potential is to use it for runtime thermal management purposes. 

  



44 

 

References 

[1] Alam M. A., “On the Reliability of Micro-electronic Devices: An Introductory Lecture on 

Negative Bias Temperature Instability,” in Nanotechnology 501 Lecture Series, September 

2005. Available at http://www.nanohub.org/resources/?id=193. 

[2] Calimera, A.; Macii, E.; Poncino, M.; , "Analysis of NBTI-induced SNM degradation in 

power-gated SRAM cells," Circuits and Systems (ISCAS), Proceedings of 2010 IEEE 

International Symposium on , vol., no., pp.785-788, May 30 2010-June 2 2010 
[3] Catthoor F., “Introduction to overall reliability research topics and cooperation network”, 

Reliability Mini-Workshop, 2011 IMEC, Belgium 

[4] Cosemans S., “Variability-aware design of low power SRAM memories”, PhD thesis 2  9, 

KULeuven 
[5] Cosemans Stefan; Wim Dehaene; Francky Catthoor; , "A Low Power Embedded SRAM for 

Wireless Applications," Solid-State Circuits Conference, 2006. ESSCIRC 2006. Proceedings of 

the 32nd European , vol., no., pp.291-294, Sept. 2006 

[6] Cosemans, S.; Dehaene, W.; Catthoor, F.; , "A 3.6 pJ/Access 480 MHz, 128 kb On-Chip 

SRAM With 850 MHz Boost Mode in 90 nm CMOS With Tunable Sense Amplifiers," Solid-

State Circuits, IEEE Journal of , vol.44, no.7, pp.2065-2077, July 2009 

[7] D. K. Schroder et al., "Negative bias temperature instability: Road to cross in deep submicron 

silicon semiconductor manufacturing", Journal of Applied Physics, vol.94, no.1, p.1 (2003).  
[8] K. Skadron, et. al., “Temperature-aware microarchitecture: Extended discussion and results”, 

Technical Report CS-2003-08, University of Virginia, Computer Science Department, 2003. 

[9] K. Skardon et al., HotSpot-5.0. [Online]. LAVA Lab: University of Virginia, 2010. 

[10] Kaczer B. et al., “Atomistic approach to variability of bias-temperature instability in circuit 

simulations”, Reliability Physics Symposium (IRPS), 2011 IEEE International (accepted) 

[11] Kaczer, B.; Grasser, T.; Martin-Martinez, J.; Simoen, E.; Aoulaiche, M.; Roussel, P.J.; 

Groeseneken, G.; , "NBTI from the perspective of defect states with widely distributed time 

scales," Reliability Physics Symposium, 2009 IEEE International , vol., no., pp.55-60, 26-30 

April 2009 
[12] Kaczer, B.; Grasser, T.; Roussel, P.J.; Franco, J.; Degraeve, R.; Ragnarsson, L.; Simoen, E.; 

Groeseneken, G.; Reisinger, H.; , "Origin of NBTI variability in deeply scaled pFETs," 

Reliability Physics Symposium (IRPS), 2010 IEEE International , vol., no., pp.26-32, 2-6 May 

2010 

[13] Green Keith; Mu F.; Kapila G.; Reddy V.  (2010, November 24). Simulation of Circuit 

Reliability with RelXpert [Online]. Available: 

http://www.cdnusers.org/Portals/0/cdnlive/na_download/Tuesday/Track3/1230/1230_Green.pdf 
[14] Kolhatkar, J.S.; Vandamme, L.K.J.; Salm, C.; Wallinga, H.; , "Separation of random telegraph 

signals from 1/f noise in MOSFETs under constant and switched bias conditions," European 

Solid-State Device Research, 2003. ESSDERC '03. 33rd Conference on , vol., no., pp. 549- 

552, 16-18 Sept. 2003 

[15] Kufluoglu, H.; Reddy, V.; Marshall, A.; Krick, J.; Ragheb, T.; Cirba, C.; Krishnan, A.; 

Chancellor, C.; , "An extensive and improved circuit simulation methodology for NBTI 

recovery," Reliability Physics Symposium (IRPS), 2010 IEEE International , vol., no., pp.670-

675, 2-6 May 2010 



45 

 

[16] Kumar, S.V.; Kim, C.H.; Sapatnekar, S.S.; , "An Analytical Model for Negative Bias 

Temperature Instability," Computer-Aided Design, 2006. ICCAD '06. IEEE/ACM International 

Conference on , vol., no., pp.493-496, 5-9 Nov. 2006 
[17] Kumar, S.V.; Kim, C.H.; Sapatnekar, S.S.; , "NBTI-Aware Synthesis of Digital Circuits," 

Design Automation Conference, 2007. DAC '07. 44th ACM/IEEE , vol., no., pp.370-375, 4-8 

June 2007 
[18] Kumar, S.V.; Kim, K.H.; Sapatnekar, S.S.; , "Impact of NBTI on SRAM read stability and 

design for reliability," Quality Electronic Design, 2006. ISQED '06. 7th International 

Symposium on , vol., no., pp.6 pp.-218, 27-29 March 2006 

[19] Maricau, E.; Gielen, G.; , "Efficient Variability-Aware NBTI and Hot Carrier Circuit 

Reliability Analysis," Computer-Aided Design of Integrated Circuits and Systems, IEEE 

Transactions on , vol.29, no.12, pp.1884-1893, Dec. 2010 
[20] Mircea S., “Advanced Digital Integrated Circuits ; Lecture 2 : Thermal Design,” EECS 

Instructional and Electronics Support, May 04, 2005. [Online]. Available: 

http://bwrc.eecs.berkeley.edu/classes/icdesign/ee241_s05/Lectures/Lecture20_Thermal.pdf. 

[Accessed: July 24, 2010]. 
[21] Paul, B.C.; Kunhyuk Kang; Kufluoglu, H.; Alam, M.A.; Roy, K.; , "Negative Bias Temperature 

Instability: Estimation and Design for Improved Reliability of Nanoscale Circuits," Computer-

Aided Design of Integrated Circuits and Systems, IEEE Transactions on , vol.26, no.4, pp.743-

751, April 2007 

[22] Press W., et.al., Numerical Recipes in C; The Art of Scientific Computing, 2nd ed. Cambridge: 

Cambridge Univ. Press, 1997. 
[23] Quick Hotspot tool, available at http://proteas.microlab.ntua.gr/ksiop/software.html 
[24] Rodopoulos D. et al., “Time and Workload Dependent Device Variability in Circuit 

Simulations”, International Conference on Integrated Circuit Design and Technology, 2    

IEEE International (accepted) 

[25] Siozios Kostas, Rodopoulos Dimitris and Soudris Dimitrios, «Quick_Hotspot: A Software 

Supported Methodology for Supporting Run-Time Thermal Analysis at MPSoC Designs,» 

accepted presentation in 2nd PARMA Workshop on Parallel Programming and Run-Time 

Management Techniques for Many-core Architectures, co-located with ARCS 2011 - 

Architecture of Computing Systems, 23 February 2011, Lake Como, Italy. 
[26] Skadron, K.; Stan, M.R.; Huang, W.; Sivakumar Velusamy; Karthik Sankaranarayanan; Tarjan, 

D.; , "Temperature-aware microarchitecture," Computer Architecture, 2003. Proceedings. 30th 

Annual International Symposium on , vol., no., pp. 2- 13, 9-11 June 2003 
[27] Toledano-Luque, M. et al., “From mean values to distributions of BTI lifetime of deeply scaled 

FETs through atomistic understanding of the degradation”, VLSI Technology Symposium, 2011 

(accepted) 
[28] Toledano-Luque, M. et al., “Response of a Single Trap to AC Negative Bias Temperature 

Stress”, Reliability Physics Symposium (IRPS), 2011 IEEE International (accepted) 
[29] Tsividis Y., "Operation and Modeling of the MOS Transistor", 2nd Edition, McGraw-Hill, 

New York, 1999. 
[30] Valduga de Almeida Camargo Vinicius, “NBTI Simulator User Guide”. 
[31] Wang X. et al., “Reliability Simulation on the Virtuoso Analog Design Environment”, Cadence 

Design Systems, available online  at http://www.cadence.com/cdnlive/library/Documents/2009/ 

NA/100509%20-%20Track1-3%20-%20Xiao%20Wang%20-%20Cadence_Final.pdf 
  



46 

 

[32] Wenping Wang; Zile Wei; Shengqi Yang; Yu Cao; , "An efficient method to identify critical 

gates under circuit aging," Computer-Aided Design, 2007. ICCAD 2007. IEEE/ACM 

International Conference on , vol., no., pp.735-740, 4-8 Nov. 2007 
[33] Weste, Neil and Harris, David, Principles of CMOS VLSI Design - A Circuits and Systems 

Perspective, 3rd Edition Addison-Wesley, MA, May 2004 

[34] Zhihong Liu; McGaughy, B.W.; Ma, J.Z.; , "Design tools for reliability analysis," Design 

Automation Conference, 2006 43rd ACM/IEEE , vol., no., pp.182-187, 0-0 0 

[35] K. O. Jeppson and C. M. Svensson, “Negative bias stress of MOS devices at high electric fields 

and degradation of MNOS devices,” J. Appl. Phys., vol. 48, no. 5, pp. 2004–2014, May 1977. 

[36] Ogawa, S. and Shiono, N., Generalized diffusion-reaction model for the low-field charge-

buildup instability at the Si-SiO2 interface. Physical review B. v51. 4218-4230. 

[37] Chakravarthi, S.; Krishnan, A.; Reddy, V.; Machala, C.F.; Krishnan, S.; , "A comprehensive 

framework for predictive modeling of negative bias temperature instability," Reliability Physics 

Symposium Proceedings, 2004. 42nd Annual. 2004 IEEE International , vol., no., pp. 273- 282, 

25-29 April 2004 

[38] T. Grasser, H. Reisinger, P-J. Wagner and B. Kaczer, “ Time-dependent defect spectroscopy 

for characterization of border traps in metal-oxide-semiconductor transistors”, Phys. Rev. B, 

Vol. 82, No. 24, pp. 5318-5327 (2010) 

[39] Lenahan P and Conley J 1998 What can electron paramagnetic resonance tell us about the 

Si/SiO2 system J. Vac. Sci. Technol. B 16 2134-53 

[40] T. Grasser , B. Kaczer , W. Goes , T. Aichinger , P. Hehenberger and M. Nelhiebel   "A two-

stage model for negative bias temperature instability",  Proc. Int. Rel. Phys. Symp.,  , 2009.  

[41] Dimitrios Rodopoulos, “Time and Workload Dependent Device Reliabilityin Circuit 

Simulations”, Master Thesis Internship-Thesis Report, October 2010-April 2011, IMEC vzw, 

Belgium  

 

 

 

 

 

  



47 

 

Publications 

Conference Papers 
 

[CP-1] D. Rodopoulos, S. B. Mahato, V. Valduga de Almeida Camargo, B. Kaczer, F. 

Catthoor, S. Cosemans, G. Groeseneken, A. Papanikolaou, D. Soudris, “Time and 

Workload Dependent Device Variability in Circuit Simulations”, International 

Conference on Integrated Circuit Design and Technology, April 2011 IEEE 

International 
  

[CP-2] Siozios Kostas, Rodopoulos Dimitrios and Soudris Dimitrios, «Quick_Hotspot: A 

Software Supported Methodology for Supporting Run-Time Thermal Analysis at 

MPSoC Designs,» accepted presentation in 2nd PARMA Workshop on Parallel 

Programming and Run-Time Management Techniques for Many-core 

Architectures, co-located with ARCS 2011 - Architecture of Computing Systems, 

23 February 2011, Lake Como, Italy. 

Journals 
 

[JP-1] Siozios Kostas, Rodopoulos Dimitrios and Soudris Dimitrios, «Quick_Hotspot: A 

Software Supported Methodology for Supporting Run-Time Thermal Analysis at 

MPSoCs», Microprocessors and Microsystems, Elsevier (invited paper)  
  

[JP-2] Siozios Kostas, Rodopoulos Dimitrios and Soudris Dimitrios, «On Supporting 

Rapid Thermal Analysis», IEEE Computer Architecture Letters (accepted) 

 

  



48 

 

Appendix A 

 

 

“Time and Workload Dependent Device Variability in Circuit Simulations ” 

 

 

Presented in the 

 

 

IEEE International Conference on IC Design and Technology 

3 May 2011 

Kaohsiung, Taiwan 

 

 



 

49 

 

 

Abstract—Simulations of an inverter and a 32-bit SRAM bit 

slice are performed based on an atomistic approach. The circuits’ 

devices are populated with individual defects, which have realistic 

carrier-capture and emission behaviour. The wide distribution of 

defect time scales, accounts for both fast (Random Telegraph 

Noise – RTN) and near-permanent (Bias Temperature Instability 

– BTI) defects. The atomistic property of the model allows the 

detection of workload dependency in the delay of both circuits.  

 
Index Terms—Bias-temperature instability (BTI), circuit 

simulations, parametric reliability, random telegraph noise 

(RTN), static random access memory (SRAM), workload 

dependency 

 

I. INTRODUCTION AND RELATED WORK 

ost of the existing BTI simulation approaches, either in 

terms of modeling or mitigation, employ only the 

averages of BTI-related parameters. Versions of the reaction-

diffusion model appear to be quite popular [5]-[9]. BTI is 

translated into degradation parameters, which are added to 

each transistor, thus altering its transient response. The 

parameters are constant and do not change throughout the 

simulation of the “aged” circuits [5]. 

In some cases, averaging of the stress applied on each 

device is employed [8]. In other approaches, there is poor 

incorporation of the recoverable part of BTI [9]. This 

suppression can result in over-estimation of the impact of the 

BTI mechanism [5]. In a reliability aware design context, this 

can lead to over-constrained designs. 

Devices of older technologies have sufficient size and a 

large number of defects, thus exhibiting uniform reliability 

behaviour. As the device dimensions decrease, the stochastic 

defect behaviour becomes gradually more evident [1], [2]. 

 As previously demonstrated, it is possible to monitor the 

occupancy of individual oxide defects [1], [2]. If this atomistic 

model is applied to any circuit, it is possible to identify the 

effect of the defect activity on the operation parameters of the 

circuit, like the circuit’s delay or leakage energy. That way, the 

circuit’s parametric reliability can be studied. 

In view of the above, it is increasingly important to shift to a 

combined deterministic-stochastic view of reliability related 

phenomena, such as Bias Temperature Instability (BTI) or 

Random Telegraph Noise (RTN). The deterministic quality 

refers to the model’s workload dependency, which is based on 

 
 

the gate voltage dependent trap behaviour (not just on the 

average duty cycle of the ones or zeros). The stochastic 

component mirrors the probabilistic nature of oxide defect 

activity. Only that will allow observing and analyzing true 

workload dependent behaviour. Moreover, that analysis can be 

the basis of mitigation approaches based on workload tuning. 

Enabling these important objectives by providing the basic 

modeling framework is the main differentiator of this paper. 

 The next section covers the atomistic defect model. The 

third section contains information on the modules used to 

illustrate the novel model. Finally, the simulation results are 

presented along with some brief conclusions. 

II. THE ATOMISTIC BTI MODEL 

A. Theoretical Model 

The atomistic model that is used in the simulations is 

consistent with the device downscaling trend toward nm 

dimensions, since it treats each defect of each device 

separately. Each device is enhanced with a random number of 

traps, extracted from a Poisson distribution (an average of 1210  

traps per cm
2
 is used). Each trap is characterized by a different 

threshold voltage impact ( 0 thV ) and a different set of time 

constants  eLeHcLcH  ,,,  resembling the capture or 

emission times for high (H) or low (L) voltages at the device’s 

gate ( gsV ). Our setup determines each defect’s occupancy 

transitions during the circuit simulation using 
























 tP

vcvevcve

vp

vp

,,,,

,

,

11
exp1




, (1) 

where the process p  ( p  being the complement) can be either 

a capture ( c ) or an emission ( e ) event. t  is the simulation 

step and v  can be either of the  LH ,  voltage levels.  

For every simulation step, a random number is compared to 

the process probability (1). If the random number is found 

smaller than the probability, the respective process occurs. 

When a defect becomes occupied (i.e. a carrier is captured in 

the trap), the respective thV  value is added to the runtime 

thV  value of the device. Further details on the model and its 

assumptions can be found in [2]. 

 

 

Time and Workload Dependent Device 

Variability in Circuit Simulations 
D. Rodopoulos

1,2
, S. B. Mahato

1,4
, V. Valduga de Almeida Camargo

1,5
, B. Kaczer

1
, F. Catthoor

1,3
,   

S. Cosemans
1,3

, G. Groeseneken
1,3

, A. Papanikolaou
2
, D. Soudris

2
 

 

1IMEC, Leuven, Belgium  2NTUA, Greece 3KU Leuven, Belgium  4TU Munich, Germany & NTU, Singapore 5UFRGS, Brazil 
 

email: drodo@microlab.ntua.gr 

M 



 

50 

 

The distributions of the defect time scales are taken from 

experiments. The interval of time constants is sufficient to 

account for a wide variety of defect behaviours. Hence, it is 

possible to observe fast trapping and detrapping events for a 

single defect (corresponding to RTN). It is also possible to 

observe near-permanent behaviours with larger time constants 

(corresponding to BTI). 

B. Netlist Annotation Framework 

The simulations presented in the current paper account only 

for NBTI, but PBTI can also be easily included. For the 

purpose of the simulations, a framework is required with which 

to populate the netlist under test with the defects, their time 

constants and their thV  impact. This annotation is performed 

during pre-processing (Fig. 1). Any sub-circuit is expanded 

down to device level. Each device is annotated with NBTI 

parameters alongside the parameters provided by the PTM 

model [3]. The transient part of the atomistic model is added 

on top of a Verilog-A implementation of the BSIM4 model.  

C. Workload Dependency 

In commercial reliability tools like RelXpert [5], each 

device is replaced by an aged equivalent, based on the input 

stress provided to the simulator. Then, a simulation of the 

“aged” circuit is performed, thus indicating circuit 

degradation. There is no information provided about the 

runtime defect activity. Such approaches are unable to present 

a transient view of reliability phenomena. The purpose of this 

paper is to differentiate the atomistic BTI model from the 

state-of-the-art BTI approaches. The main differentiator is the 

time-dependent workload dependency. Hence, all simulations 

need to assume time and workload as the only independent 

variables. 

The NBTI model requires a random number per iteration, 

which is compared to the gsV  dependent probability for a 

capture or emission event. The workload for each device 

corresponds to the imposed gsV  at any given time.  

In the default implementation, no correlation is present 

between the generated random numbers and the imposed gsV . 

If we bind the random number generation to the imposed gsV  

(Fig. 2), we decouple the workload dependency from the 

model’s stochastic component. 

The initial seed values for the random number generation 

should remain the same, irrespective of the imposed workload. 

The annotation of the netlist with NBTI parameters has to be 

performed just once. 

In order to clarify the need for the above configurations, we 

simulate the same SRAM partition workload two consecutive 

times (Fig. 3). As output of the simulations, we consider the 

 
 

Fig. 3. Two simulations of the same workload: (a) Default implementation with 

an evident stochastic component and (b) If workload dependency is emphasized, 

the simulation outputs coincide. 

 
 

Fig. 1. Generic flowchart of the netlist annotation framework.  

 
 

Fig. 2.  Customized flowchart of random number generation. 



 

51 

 

observed delay for the SRAM read operation. If we use the 

above configurations, we inspect the same output in both runs, 

since the workload is the same for both (Fig. 3b). In the 

opposite case, the stochastic component is deeply routed in the 

simulations, so the output is different (Fig. 3a). 

III. CASE STUDIES 

A. Inverter 

In this case, we use a simple inverter (Fig. 4a) and measure 

its delay. Since the pull-up branch is affected by NBTI, we 

expect larger delays for measurements during a 1-0 transition 

at the input.  

B. SRAM Bit Slice 

This circuit is an SRAM bit slice of 32 bits, divided in two 

groups of SRAM cells, based on [4].  

The two complementary nodes of each SRAM cell (Fig. 4b) 

are connected to voltage sources through access transistors. 

Writing is implemented by applying a word pulse to the 

respective transistors while maintaining the necessary voltage 

values at WLBL and WLBLBar. For the reading operation, the 

two groups of cells have single local read bit lines (RLBL0 

and RLBL1) which are connected to a global bit line (GBL) 

through read buffers (Fig. 5). The GBL is then connected to a 

sense amplifier (SA). The RLBLs and the GBL are always pre-

charged to a specific voltage and will be discharged to ssV , 

when a stored 0 is read. 

The performance metric is the delay of the read operation. 

We measure the time from the activation of a word line up to 

the point where the voltage difference at the inputs of the SA, 

is enough for the latter to sense (Fig. 5). In the current SRAM 

organization, this metric can be applied only to cases when the 

read value is logic 0 (Fig. 6). 

C. Stimuli Setup 

In the inverter case, we define a specific sequence of bits 

applied at the input of the inverter as a runtime situation 

(RTS). The frequency of this sequence is 1GHz. 

In case of the SRAM partition, each of the cells can be in 

one of the Read, Write or Retain operation modes. If a cell is 

 

 
Fig. 6.  Instances of the reading operation, either for logic 0 (a) or logic 1 (b). 

Evidently, only the second case allows a delay measurement. 

 
Fig. 5.  Schematic of the SRAM Partition (reading path is dashed). 

   
(a) (b) 

Fig. 4.  Schematic of the inverter (a) and of an SRAM cell (b). 

while(user_defined) { 

 

/* Write cells  consecutively */ 

for (i=0; i<=31; i++) { 

  write(cell[i]); 

 }       

  

 /* Read cells consecutively */ 

  for (i=0; i<=31; i++) { 

  read(cell[i]); 

 

  /* Global Retention in-between */ 

  for (j=1; j<=10; j++) { 

   nop    

  } 

 }  

} 

Fig. 7.  Algorithmic description of the simulated SRAM activity. 



 

52 

 

not being read or written, it retains its value. All operation 

modes are assumed to have the same duration. As long as the 

consistency of the cells’ internal state is maintained (e.g. one 

cannot read from a cell that has not been previously written), 

an arbitrary sequence of operation modes can exist, with a user 

defined frequency of 1GHz. The SRAM activity can be 

described by a handful of pseudo-code lines (Fig. 7). In the 

SRAM partition case, a different sequence of values written in 

the cells indicates a different runtime situation (RTS). 

Each control signal or stimulus is defined as a piece-wise 

linear source, which is set according to the inspected RTS. 

This setup is performed during pre-processing and is 

incorporated into the annotation framework presented in 

section II (Fig. 8). 

IV. SIMULATIONS 

A. Inverter 

Based on a bit sequence of 200ns (Reference Workload), we 

change either the first (“Past”) or the last (“Future”) 100ns of 

the sequence (Fig. 9). The results demonstrate a distinct proof 

of the model’s detailed workload dependency, which is not 

averaged out by a pure stochastically based device model. The 

simulation output of the Changed “Future” is identical to the 

Reference Workload output up to the point that the bit 

sequence is changed. In contrast, if we only change the “Past”, 

the simulation output is entirely different (Fig 10).  

What we demonstrate here is that the atomistic BTI model 

has a deterministic workload memory. The observed NBTI 

effect at any time strongly depends on the specific workload 

that has preceded the current operation state. We can also 

analyze this on a cycle-by-cycle deterministic basis, which is 

unique compared to existing circuit-level models. 

B. SRAM Bit Slice 

Two entirely different runtime situations are simulated (Fig. 

11). Each workload is applied to the NBTI enhanced netlist 

and to a reference netlist without any oxide defects. No initial 

stressing of the devices is assumed; all defects are not 

occupied at the beginning of the simulation. The delay 

fluctuations differ between the two workloads, in the NBTI 

Enhanced case. On the contrary, the delay fluctuations are 

almost identical between the two RTSs, for the Reference 

netlists. 

In another round of simulations, we use the analytical model 

presented in [2] to stress all the devices of the netlist with an 

AC signal (80% duty cycle for gsV ) for 10
7 

seconds. That 

way, we initialize the trap occupancy in the NBTI Enhanced 

netlist. A Reference netlist, without defect activity, is also 

used. Two different RTSs are simulated in both netlists (Fig. 

12). We observe that the delay fluctuations in the NBTI 

Enhanced netlist occupy a much wider interval, than the 

Reference counterpart. The increased variability of the NBTI 

Enhanced netlist surpasses the usually accepted 10% criterion. 

V. CONCLUSIONS 

By monitoring separately every defect of every simulated 

device, we can see the workload dependent nature of the 

atomistic BTI model, propagating to the delay of the aged 

circuit. Even if we change the workload at runtime, we 

immediately see a difference in the evolution of the circuit’s 

delay. When NBTI is accounted for, the delay measurements 

 
Fig. 10.  Delay measurements on the inverter.  

 

  
Fig. 9.  Runtime changes on the inverter’s workload. 

 
 

Fig. 8.  Customized flowchart of the simulation framework (including 

automated stimuli setup). 



 

53 

 

of the SRAM partition are distributed in a much broader 

interval.  

As a result, the two test cases of this paper illustrate and 

substantiate the deterministic component of our model. This 

approach allows the modelling of individual trap behaviour 

based on the actual input stimuli sequence (and not just on the 

duty cycle of the ones or zeros as seen in other approaches). 

The challenge that lies in view of these conclusions is to 

start searching for correlations between the imposed workload 

and its observed impact on performance metrics. That way, a 

more realistic view of the parametric reliability of larger 

circuits can be obtained. The current defect model 

incorporates both the stochastic and the workload dependent 

nature of oxide traps. Hence, it is a suitable tool with which to 

explore parametric reliability in a realistic and detailed 

workload dependent way. 

ACKNOWLEDGMENTS 

Part of this work was carried out in IMEC's Industrial 

Affiliation Program funded by IMEC's core partners.  

V.V.A.C. thanks CNPQ Brazil for financial support.  

Discussions with Prof. T. Grasser about the physical aspects 

of gate oxide charge trapping are gratefully acknowledged. 

REFERENCES 

[1] Kaczer, B.; Grasser, T.; Roussel, P.J.; Franco, J.; Degraeve, R.; 

Ragnarsson, L.; Simoen, E.; Groeseneken, G.; Reisinger, H.; , "Origin of 

NBTI variability in deeply scaled pFETs," Reliability Physics 

Symposium (IRPS), 2010 IEEE International , vol., no., pp.26-32, 2-6 

May 2010 

[2] Kaczer B. et al., “Atomistic approach to variability of bias-temperature 

instability in circuit simulations”, Reliability Physics Symposium 

(IRPS), 2011 IEEE International (accepted) 

[3] http://ptm.asu.edu/ . 

[4] Cosemans, S.; Dehaene, W.; Catthoor, F.; , "A 3.6 pJ/Access 480 MHz, 

128 kb On-Chip SRAM With 850 MHz Boost Mode in 90 nm CMOS 

With Tunable Sense Amplifiers," Solid-State Circuits, IEEE Journal of 

, vol.44, no.7, pp.2065-2077, July 2009 

[5] Zhihong Liu; McGaughy, B.W.; Ma, J.Z.; , "Design tools for reliability 

analysis," Design Automation Conference, 2006 43rd ACM/IEEE , vol., 

no., pp.182-187, 0-0 0 

[6] Calimera, A.; Macii, E.; Poncino, M.; , "Analysis of NBTI-induced 

SNM degradation in power-gated SRAM cells," Circuits and Systems 

(ISCAS), Proceedings of 2010 IEEE International Symposium on , vol., 

no., pp.785-788, May 30 2010-June 2 2010 

[7] S. Khan, S. Hamdioui, Temperature Impact on NBTI Modeling in the 

Framework of Technology Scaling, Digest of the 2nd Design For 

Reliability (DFR 10), PISA, Italy, Jan 2010. 

[8] Kumar, S.V.; Kim, C.H.; Sapatnekar, S.S.; , "NBTI-Aware Synthesis of 

Digital Circuits," Design Automation Conference, 2007. DAC '07. 44th 

ACM/IEEE , vol., no., pp.370-375, 4-8 June 2007 

[9] Paul, B.C.; Kunhyuk Kang; Kufluoglu, H.; Alam, M.A.; Roy, K.; , 

"Negative Bias Temperature Instability: Estimation and Design for 

Improved Reliability of Nanoscale Circuits," Computer-Aided Design of 

Integrated Circuits and Systems, IEEE Transactions on , vol.26, no.4, 

pp.743-751, April 2007 

 

 
Fig. 11.  Runtime delay fluctuations of an SRAM partition for two different 

RTSs. No initial stressing is assumed (time zero simulation). The delay 

measurements are almost identical in the Reference netlist (a). For a netlist 

enhanced with defect activity (b), the fluctuations exhibit greater runtime 

variability and also differ between the two workloads. 

 

 
Fig. 12. Runtime delay fluctuations of an SRAM partition for two different 

RTSs. Initial AC stressing is assumed. When NBTI is not considered (a), the 

fluctuations are concentrated in a very small interval. In a netlist enhanced with 

defect activity (b), the delay fluctuations cover a much wider interval. 



54 

 

Appendix B 

 

 

“Quick_Hotspot: A Software Supported Methodology for Supporting Run -Time 

Thermal Analysis at MPSoC Designs” 

 

2nd PARMA Workshop on Parallel Programming and Run-Time Management 

Techniques for Many-core Architectures 

co-located with ARCS 2011 - Architecture of Computing Systems 

23 February 2011 

Lake Como, Italy 

 



This work was supported by the HiPEAC Grand entitled “On Providing Dynamic Reliability Improvement in FPGA 
 

Quick_Hotspot: A Software Supported Methodology for Supporting 

Run-Time Thermal Analysis at MPSoC Designs 

 
Kostas Siozios, Dimitris Rodopoulos and Dimitrios Soudris 

School of Electrical and Computer Engineering, National Technical University of Athens, Greece 

 

 

Abstract 
 

Detailed thermal analysis and exploration has recently received significant attention since it is straightforward-

related to numerous reliability issues. Furthermore, thermal profiling is a critical challenge for supporting efficient 

power management, especially to multi-processor system-on-chips (MPSoCs). This problem becomes even more 

important if we take into account the computational complexity of existing thermal profiling and analysis 

approaches. Among others this limitation imposes that thermal analysis is performed solely at design time. 

However, such a static exploration does not take into account constraints posed during application execution that 

lead to temperature variations. Hence, new algorithms and software tools able to provide accurate yet fast thermal 

analysis are upmost required. In this paper, we introduce a new software supported methodology for performing 

thermal analysis at run-time with different levels of granularity. Additional performance improvement is feasible 

by applying thermal analysis only to device regions with blocks that operate under high power densities. For 

demonstration purposes we show how this methodology is applied to an Altera Stratix-based FPGA device. 

Experimental results prove the efficiency of the proposed methodology, since the average execution time ranges 

between 41% and 78%, as compared to state of the art relevant solution, without any accuracy degradation at the 

derived thermal profile. 

 

1 Introduction 

Shrinking silicon technologies, increasing logic 

densities and clock frequencies leads to a rapid 

elevation in power density, while according to “A-

power” law [1] the temperature stress is going to 

become more severe for technology nodes at 65nm and 

below.  

Accurate and detailed thermal profiling for 

integrated circuits (ICs) is an important design 

challenge, mainly for three reasons: (i) temperature is 

closely related to reliability degradation, hence, there 

is an urgent need for solutions able to estimate such 

degradation, (ii) the information regarding spatial 

locations of power sources is not enough for applying 

efficiently cooling techniques (due to the complexity 

of existing devices), whereas the increased packaging 

cost prevents consumer products from being designed 

for the worst case scenario, and (iii) leakage current 

increases exponentially with temperature, causing a 

positive feedback loop between leakage power and 

temperature. 

Recently, the accurate thermal analysis has been 

recognized as an important design problem that has to 

be tackled as soon as possible [4]. To make matters 

worse, new design technologies (e.g., three-

dimensional integration) will depreciate thermal 

issues. 

Thermal monitoring and profiling in integrated 

circuits is treated with two alternative ways: either by 

inserting thermal sensors in selective spatial locations 

of the chip’s surface and read their output, or by 

inserting power sensors and compute thermal profiling 

through algorithmic approaches. Both of these 

solutions have advantages and disadvantages that 

should be carefully taken into consideration during the 

design of a new architecture. More specifically, the 

insertion of thermal sensors alleviates the requirement 

for performance overhead at run-time in order to 

compute temperature values but it allows monitoring 

only a limited area of the device. On the other hand, 

the power sensors impose that an algorithmic approach 

will be used at run-time to compute thermal profiling, 

but the retrieved solution can describe accurately the 

temperature variations across the entire architecture. 

Up to now, in order to support thermal analysis at 

run-time, numerous techniques that try to alleviate the 

consequences posed by increased temperature values 

have been proposed. These solutions span from 

hardware level (e.g., thermal-aware floor-planning 

[5]), to low-power design methodologies at circuit 

level (e.g. [6]), as well as strategies for dynamic 

power/thermal management (e.g. [7], [8]).  

The previously mentioned techniques can prevent 

target architecture from failure due to thermal stress. 

However, the majority of them is applied statically 

only at design time. In addition to that, even though 

some of these solutions can be extended to support 

thermal management techniques at run-time, usually 

the employed strategies are based on pre-defined 

scenarios.  



56 

 

Hence, almost the majority of existing techniques 

exhibit serious limitations regarding their efficiency, as 

they do not take into consideration constraints posed at 

run-time that alter on-chip temperature values. For 

instance, the operating conditions for many devices 

(e.g. portable, multimedia, wireless, etc.) depend 

mainly on the usage. Regarding these devices, scenario 

based thermal management cannot be though as an 

acceptable solution. 

As we will depict later, this static temperature 

exploration mainly occurs due to increased 

computational complexity for performing detailed 

thermal analysis during application’s execution. 

Consequently, run-time thermal analysis and 

exploration, which is performed in conjunction to 

application’s execution, is upmost required. 

In this paper, we introduce a novel software 

supported methodology for performing fast and 

accurate thermal analysis, exploration and 

management of MPSoCs. The main differentiation of 

this solution, as compared to existing approaches is the 

significantly reduced computational complexity. This 

comment in conjunction to the continue increasing 

number of processing cores in existing MPSoCs, 

enables the opportunity to perform run-time thermal 

analysis even in such architectures.  

Since the complexity of the proposed solution is 

significantly lower as compared to state of the art 

approaches found in relevant references (e.g. Hotspot 
[8]), it can efficiently support techniques for run-time 

thermal analysis and/or management due to: 

 existing MPSoCs include a number of 

processing cores which can support the thermal 

analysis task. 

 there is no need for performing thermal 

analysis very often since temperature 

variations is not a temporally rapid procedure. 

 the computational complexity, and hence the 

execution time, of proposed solution is 

significant lower as compared to existing 

approaches. 

 it is possible to perform focused (or localized) 

thermal analysis only at regions with increased 

power densities rather than computing 

temperature values for the whole chip, in order 

to further speedup the execution time.  

 

Note that even though the last bullet leads to 

mentionable performance improvement, however it 

should be applied very carefully since it might result to 

loss of accuracy. We have to mention that, this 

performance improvement does not affect the detail of 

derived thermal profiles. More specifically, based on 

experimental results we achieve thermal analysis of 

complex MPSoCs about 31% faster than Hotspot 

version 5.0 (latest available version) [8], while the 
maximum temperature error is only 0.03º C.  

The contributions of this work are summarized, as 

follows: 

 Introduction of a novel methodology for detailed 

thermal profiling and exploration of MPSoCs 

under run-time constraints. 

 Introduction of a new algorithm, as well as the 

open-source tool that software supports the 

proposed methodology. This algorithm is based on 

the Hotspot engine. 

 The introduced tool, named Quick_Hotspot, 

achieves faster thermal analysis and exploration 

without any loss of accuracy, as compared to state-

of-the-art solutions 

 

The rest of the paper is organized as follows: 

Section 2 describes the proposed methodology for run-

time thermal analysis, whereas the software tool that 

supports this task is discussed in section 3. In section 4 

we give a number of qualitative and quantitative 

comparison results that prove the efficiency of our 

proposed methodology. Finally, conclusions are 

summarized in section 5. 

2 Proposed Thermal Analysis and 

Exploration Methodology 

The proposed thermal analysis and exploration 

methodology seeks to accurately compute on-chip 

temperature values during the continuous execution of 

an MPSoC. This methodology, shown in Figure 1, 

consists of two steps, namely (i) the coarse-grain, and 

(ii) the fine-grain thermal analysis, while it is 

applicable either as a monitoring agent at an embedded 

operating system (OS), or as a stand-alone tool for 

thermal analysis. 

2.1 Coarse-grain thermal analysis 

During the first step of the proposed methodology 

(coarse-grain thermal analysis), we are primarily 

interested in retrieving a rough and fast estimation of 

the temperature variation across the chip’s area. In 

other words, the task we try to accomplish during 

coarse-grain thermal analysis deals with the 

identification of regions of importance, where detail 

thermal analysis should be applied (during the second 

step of proposed methodology). 

More specifically, having as input the application’s 

placement and routing (P&R), as well as the total 

power consumption (static and dynamic) for all the 

hardware resources of target architecture (both logic 

and interconnection infrastructure), it is possible to 

compute how these power sources are distributed over 

the target architecture. This task does not introduce 

mentionable computational complexity, since it only 

parses and manipulates placement, routing and power 
data. 



57 

 

Guidelines to 
power/thermal 

manager

Guidelines to 
power/thermal 

manager

Coarse-grain thermal analysis
(Executed once)

Fine-grain thermal analysis
(Executed repeatedly)

Input Output

Acceptable 
solution?

Quick_HotSpot
Calculate 

computational 
overhead

Current
overhead

Analysis and 
Strategy selection

Modify number of 
regions

Modify area of 
regions

Modify both number of 
regions and their area

Yes

No

Annotate 
thermal RC network

Application

Platform

Control singal

Compute 
thermal RC network

Locate 
regions of 

importance
Quick_HotSpot

Profiling

 

Thermal 
analysis

Figure 1  Proposed methodology for thermal analysis 

  

Also, during the coarse grain step, we compute a 

template of the thermal RC network, which describes 

the way that thermal diffusion is distributed over the 

chip. The granularity of this network corresponds to 

the desired detail of the derived thermal analysis. Even 

though highest detail gives more info about the chip’s 

thermal stress, it also imposes the maximum 

computational effort, which is not affordable for some 

application domains. 

Existing tools (e.g. [8]) compute the thermal RC 

network by assuming that each distinct core represents 

a power source. Such an approach leads to a coarse 

grain thermal analysis, which usually differs a lot, as 

compared to the actual chip’s thermal stress. This 

problem becomes even more important when critical 

cores for thermal analysis have increased area and 

power density values. This occurs mainly due to the 

fact that existing tools assume that power source is 

assigned in the middle of the core’s area, ignoring 

about its actual distribution inside core (which might 

alter considerable the final thermal map). 

Moreover, as we will prove later, the calculation of 

the thermal RC network is a computationally intensive 

task, which needs to be performed only once (in 

contrast to existing approaches where its calculation is 

performed any time a thermal analysis is required).  

In order to alleviate these consequences, our 

approach relies on a scalable template of an RC 

network that is easily modifiable and/or expandable. 

This new network is calculated once at macro-block 

level, and whenever different accuracy (or detail) of 

the derived thermal profile is required, it is just 

annotated. We will prove later that such an approach is 

much faster than computing the thermal RC network 

from scratch. 

Furthermore, this speedup is even more important 

when the proposed thermal analysis tool is executed at 

run-time, since it alleviates the requirement for 

processing cores that perform computations with 

increased complexity.  

Having the spatial distribution of power sources 

over the target platform, in conjunction to the template 

of RC model, it is possible to estimate the 

computational overhead (in term of execution time) for 

performing thermal analysis under the selected 

granularity level. 

Next, we perform a coarse-grain thermal analysis in 

order to retrieve a rough and global estimation of 

temperature variation over the chip’s area. This task is 

software supported by a new tool, named 

Quick_Hotspot [2]. Upcoming sections will prove that 

for the majority of applications, such a coarse grain 

thermal analysis is enough to determine regions of 

importance. Furthermore, in case of detail thermal 

analysis (which is applied uniformly over the entire 

MPSoC platform) does not provide any further 

accuracy improvement apart from the mentionable 

computational overhead. 

2.2 Fine-grain thermal analysis 

The output of this rough thermal analysis is fed as 

input to the second step of the proposed methodology 

that deals with fine-grain thermal analysis. More 

specifically, based on the already derived rough 

temperature estimation, our methodology locates 

regions of importance. These regions cluster hardware 

resources that operate under temperature values higher 

than           . Note that the absolute value of 

threshold is defined by designer and depends on: (i) 

the maximum operating temperature, (ii) the desired 

level of temperature for applying thermal management, 

and (iii) the affordable number of hardware resources 

where we apply thermal analysis (based on the 

available computation resources). 

As we have already mentioned, such a thermal 
stress is closely related to numerous aging phenomena, 

while in order to prevent the device from failures, 



58 

 

these resources require better temperature monitoring. 

We have to mention than it is not possible to employ a 

unique threshold value for all the target architectures 

(or for all the operation conditions), since applications 

usually need to incorporate multiple thermal 

management policies. 

Having as input the number, the area of regions of 

importance, as well as their spatial distribution over 

the target platform, the second step of the proposed 

methodology estimates the new (updated) 

computational complexity regarding the thermal 

profiling problem. In case this complexity is affordable 

for the underline MPSoC platform, thermal analysis is 

performed periodically (e.g. whenever the power 

manager of the embedded OS triggers a control 

signal). 

Otherwise, if the MPSoC platform does not have 

enough free computational resources to support the 

desired granularity level of thermal analysis, our 

methodology provides a feedback mechanism that 

retrieves (at run-time) the level of granularity that 

better meets available computational resources. In 

order to accomplish this task, three candidate strategies 

can be applied: (i) modify the number of regions that 

are monitored by appropriately increasing           , 

(ii) modify the area that occupy regions of importance, 

and (iii) apply a combined version of the two 

previously mentioned strategies.  

In case the embedded OS does not support dynamic 

strategy selection, the order of applied strategies has to 

be predefined at design time by taking into 

consideration the computational overhead posed 

during thermal analysis (assuming average traffic at 

primary inputs). 

Based on the selected strategy, the template of the 

thermal RC network (as it was already computed 

during coarse-grain thermal analysis), is appropriately 

annotated. Even though it is possible to compute the 

RC network from scratch for the selected detail of 

thermal analysis, we prefer to annotate it, since the 

former task is a computationally intensive process (and 

probably it is not affordable for re-computing it under 

run-time constraints).  

In addition to that, even though it is not possible to 

evaluate the on-chip temperature values for different 

resources of target architecture (due to thermal 

diffusion effect), it is still possible to locate regions of 

the device with increased probability of incurring high 

temperatures (based on the distribution of power 

sources). Hence, the annotation of RC network needs 

to be applied only into a quite small part of the entire 

architecture, which leads among others to smaller 

execution times. 

The output of our methodology is a thermal 

analysis map that plots how temperature values are 

actually distributed across the target platform. Since 

we allow dynamically updated full-customized RC 

networks, the derived thermal analysis combines 

regions with different detail (or granularity). 

This analysis gives guidelines to the power/thermal 

manager about when and where to apply cooling 

techniques, while the combination of regions with 

different detail reduces significantly the computational 

overhead, as compared to similar solutions. 

Moreover, the proposed methodology can be 

integrated as part of a more complex embedded OS for 

monitoring techniques about controlling (or reducing) 

heat dissipation when the package’s capacity is 

exceeded. Among others, these techniques can 

alleviate the requirement for costly thermal packaging. 

3 Thermal Modelling and Tool 

Implementation 

In order to compute the heat flow we rely on an 

equivalent thermal RC network, which represents the 

transient and steady state thermal behavior of hardware 

blocks [10]. Note that the employed approach is 

similar to those found in almost the majority of 

existing algorithms and tools aiming to thermal 

analysis (e.g. [7], [8], etc). 

By taking into consideration the physical 

dimensions and thermal constants of MPSoC hardware 

resources, the above duality yields an ordinary 

differential equation (Equation 1), which describes the 

way that thermal energy is spread throughout the chip. 
 

   

  
           (1) 

 

where   and   summarize the chip’s thermal 

characteristics [11]. 
In order to software support the proposed 

methodology we have released a new tool which is 

available for download and further improvement 

through [2]. Rather than proposing a new thermal 

modeling approach, we extent a well established one 

(found in Hotspot-5.0 tool [8]), which is also 

acceptable for commercial designs. The derived tool, 

named Quick_Hotspot, supports accurate, yet fast, 

thermal analysis of complex MPSoCs.  

As we discuss in upcoming sections, the new tool 

outperforms similar solutions found in literature since 

it can support custom thermal analysis. The term 

custom refers to thermal profiles that combine regions 

with different detail of accuracy, based on the trade-off 

between actual demand of hardware resources for 

temperature monitoring and the associated increment 

in computational complexity. This feature is especially 

crucial as it results to significantly lower 

computational complexity, while it takes into account 

the limited available computational resources of 

MPSoCs to perform run-time thermal analysis. 



59 

 

In order to meet these requirements, initially we 

distinguished whether there exists any further room for 

compromise between the current model’s accuracy 

(found in Hotspot-5.0) and its computational 

complexity. Note that during this study, any processor-

specific optimizations (e.g. use of acceleration 

engines) do not affect the validity of our claims. For 

this purpose, no accelerating engine is utilized during 

the profiling procedure. That is because our intention 

is to make the algorithm faster, while maintaining the 

same level of accuracy, and not make any processor-

specific optimizations. 

3.1 Existing solution (Hotspot) 

Based on our study we found that we need to focus 

on the transient solver and more specifically in the 

rk4_core function, since it is the computationally 

dominant function at the Hotspot tool. This function 

performs an iteration of the fourth order Runge-Kutta 

method with adaptive step sizing, which is employed 

for solving the thermal diffusion problem, as it was 

described in Equation (1). This approach is applied to 

steady state solver both for block-based model, as well 

as the grid model. For a given time step,        , 

HotSpot performs a set of calculations until a time 

interval equals to           is covered. This time period 

(     ) is defined by adaptive step sizing. That way, 

HotSpot can inspect in greater detail parts of the 

solution that change rapidly, while taking vast strides 

in smoother parts of the solution. 

Being this an iterative process, the thermal analysis 

algorithm needs to read a power consumption vector 

every           and given the previous temperature and 

power vectors (mentioned as     and    , respectively), 

it seeks to calculate the new temperature vector (     ). 

Equations (2) and (3) formulate the way that gradients 

and intermediate components of the Runge-Kutta 

method are calculated. 
 

 
  
 

  
                         

 

 
    

                        
 

 
    

                              

               
  
 

  
 

 (2) 

  

          
 

 
                       (3) 

 

where the vectors    ,    ,    and     represent the 

gradients of the temperature graph for each node. 
Let’s assume that the gradients’ calculation is 

performed by the function evaluate_slope(Pn,Tn), 
which receives the power and temperature vectors as 

inputs. We also suppose that the vector     is available 

at the beginning of the thermal analysis. Based on the 

above assumptions, Algorithm 1 shows the pseudo-

code for the function rk4_core(Pn,Tn,k1,h) which 

performs an iteration of the fourth order Runge-Kutta 

method, as implemented in HotSpot-5.0. 

3.2 Intended Approach 

The above set of calculations are repeated three 

times every new        , thus being the core of the 

numerical solution performed by HotSpot-5.0 [8]. 

Furthermore, having profiled HotSpot for various 

benchmarks, it appears that the above numerical 

methodology occupies a significant part of the total 

execution time. Hence, this set of equations is a 

candidate for balancing the trade-off between 

computational effort (or execution time) versus 

accuracy of the thermal profile. 
 
rk4_core(Pn,Tn,k1,h)   { 

  t1 = Tn + h/2.0 * k1; 

  k2 = evaluate_slope(Pn,t1); 

  t2 = Tn + h/2.0 * k2; 

  k3 = evaluate_slope(Pn,t2); 

  t3 = Tn + h * k3; 

  k4 = evaluate_slope(Pn,t3); 

  Tnew = Tn + h*(k1 + 2*k2 + 2*k3 + k4)/6.0; 

  return Tnew; 

  } 

Algorithm 1  Pseudo-code for computing thermal profile 

with existing algorithm (based on Hotspot tool) 

 

We find that the error of the method employed by 

the original Hotspot implementation is       [12]. 

Given the very small value of the step        , even 

though it is dynamically changing, it is obvious to 

increase the error in favour of a faster execution. Thus, 

we conclude to employ the following simpler set of 

equations for each iteration. 
 

         ,     (4) 

  
                (5) 

 

The error of the proposed implementation (namely 

the Euler method) is only       [12]. Given the small 

values of the time step, we can safely assume that the 

accuracy of the employed method remains at a similar 

level in comparison to the original Hotspot 
implementation. Note that this claim will be proven 

later in the experimental results. 

Furthermore, given that each iteration has to be 

computed several times and for several cases in order 

to achieve adaptive step sizing, it is crucial that the 

corresponding part of the source code remains fast and 

yet accurate. Algorithm 2 gives the corresponding 

pseudo-code regarding our adopted thermal analysis 

algorithm, which replaces the rk4_core function found 

in the original Hotspot. 
The computational complexity of the proposed 

solution is seriously decreased since each iteration 

requires 4× less the original number of operations. 

More specifically, in the original version, the 
complexity of the rk4_core function is dominated by 

repeated (3×) computations of gradients regarding 



60 

 

arrays with dimension n. The complexity of this task is 

     . On the other hand, by replacing these 

computations with an addition, the new complexity is 

reduced to     . 

 
intended_approach(Pn,Tn,k1,h)   { 

  Tnew = Tn + (h * k1); 

  return Tnew; 

  } 

Algorithm 2  Pseudo-code for the proposed thermal 

profiling and analysis algorithm 

 

Apart from this significant improvement in 

execution time, as we will depict in the next section, 

this performance speedup does not impose any 

accuracy degradation on the results about thermal 

analysis. Moreover, given that the proposed code 

alterations are purely algorithmic, we can safely claim 

that any additional acceleration methods (e.g. 

processor-specific acceleration engines) will only 

further improve the execution performance. 

4 Experimental Results 

This section provides numerous experimental results 

that evaluate the efficiency of the proposed thermal 

analysis methodology. Unfortunately, there is only one 

public available tool for thermal analysis, and hence 

we make comparisons solely against Hotspot [8].  

Since it is more complex to perform physical 

synthesis for a representative number of IC designs (in 

order to extract the appropriate input files for thermal 

analysis), in this section we provide results about 

applications mapped onto FPGA platforms. More 

specifically, the target applications belong to 

benchmark suite [3], whereas the target device is an 

Altera Stratix-based FPGA. For each of these 

benchmarks we extract the corresponding floor-plan of 

the underline architecture based on datasheets 

provided from [9]. More info regarding the complexity 

of employed benchmarks, as well as the target 

platform can be found in Table 1.  

 

Table 1  Complexity of benchmarks and specifications 

about the target FPGA 

Benchmark Slices 
Power 

sources 

Array of 

slices in 

target 

FPGA 

alu4 1,600 1,600 40×40 

apex2 2,025 2,025 45×45 

apex4 1,369 1,369 37×37 

diffeq 1,600 1,600 40×40 

ex5p 3,025 3,025 55×55 

misex3 3,721 3,721 61×61 

s298 2,025 2,025 45×45 

seq 1,849 1,849 43×43 

tseng 1,156 1,156 34×34 

Average: 2,041 2,041 44×44 

For the scopes of this paper, we assume that each 

of the fabricated slices corresponds to a power source, 

while in order to compute the power consumption at a 

given slice, we summarize all the partial power sources 

inside it (e.g. LUTs, F/Fs, wires, etc) with models 

provided by [13]. 

4.1 Evaluation of Computational 

Complexity 

Since the primary goal of our methodology is to 

support run-time thermal analysis, first of all, we 

evaluate the proposed solution, as compared to 

Hotspot [8], in terms of computational complexity. For 

this purpose, Table 2 summarizes the number of 

execution cycles required to perform thermal analysis 

with the two alternative approaches.  

 

Table 2  Performance improvement for our proposed 

thermal analysis approach. 

Benchmark 

Number of cycles for performing  

thermal analysis (×10
9
) 

Hotspot 
Quick_ 

Hotspot 

Gain  

(%) 

alu4 24,466 7,759 68.29% 

apex2 23,215 15,876 31.62% 

apex4 8,121 4,934 39.25% 

diffeq 12,028 7,688 36.08% 

ex5p 5,331 3,059 42.61% 

misex3 10,644 6,655 37.47% 

s298 22,660 15,701 30.71% 

seq 17,541 11,726 33.15% 

tseng 5,328 3,060 42.56% 

Average: 14,371 8,495 40.88% 

 

Based on these results we can conclude that, up to 

now, the detailed thermal analysis task is an extremely 

computation intensive procedure, since Hotspot 
requires about 14,371×10

9
 execution cycles. On the 

other hand, Quick_Hotspot achieves an average 

reduction on the number of execution cycles about 

41%. Such a significant reduction in computational 

complexity is especially crucial for supporting run-

time thermal management, as embedded devices 

usually are limited in term of available computational 

resources. 

In order to compute these numbers, for each 

benchmark we summarize the execution time plus any 

potential overhead of trifling procedures (like freeing 

memory blocks etc). Regarding our monitoring tool for 

extracting number of cycles, we can safely assume that 

the additional overhead is very small to be taken into 

consideration. 

Note that both of these tools are fed with identical 

input files (placements and power traces), while, as we 

will depict later, our proposed solution leads to 

negligible error as compared to Hotspot. Moreover, the 
excessive high numbers of execution cycles are based 

on the requirement for computing detail thermal 



61 

 

analysis in slice level. This can also be shown by the 

average number of power sources (about 2,041) used 

as input for thermal analysis.  

Even though such a detail analysis usually is 

beyond the requirements of embedded systems, there 

are many problems during platform design (e.g. 

reliability analysis, packaging selection, etc.) where 

such information is crucial. Furthermore, it is possible 

to reduce considerable the computational complexity, 

and hence the number of execution cycles, if we 

choose to apply a coarser thermal analysis (consisted 

of fewer power sources). Later, we will show how our 

methodology further reduces this number of execution 

cycles by applying selectively detail thermal analysis 

only at hardware resources belonging to regions of 

importance (with increased temperature values). 

Next, by using some simple timing functions, we 

evaluate the time spent for the execution of various 

parts of the thermal profiling algorithm. For this 

purpose, we cluster the tool’s functionalities into four 

parts: 

 Parsing and Initial Configuration: Processing of the 

input commands and combination of the latter with 

the configuration file. 

 R Model Population: Construction of an array with 

the vertical and lateral thermal resistances between 

the functional blocks. As we will depict, this step is 

very important and time-consuming.  

 Names, Temperature and Power Arrays 

Initialization: Memory allocation and preparation 

of power and temperature arrays.  

 Numerical Part: Numerical iterations. 

 

The results of this analysis are summarized in 

Tables 3, 4, 5 and 6, respectively. The total number of 

cycles for each benchmark (as it was already shown in 

Table 2) is the summary of the partial number of 

execution cycles regarding each of the above steps. 

 

Table 3  Number of execution cycles (×10
9
) for parsing 

and initial configuration 

Benchmark Hotspot 
Quick_ 

Hotspot 
Gain (%) 

alu4 1.02 0.54 47.2% 

apex2 1.43 1.09 23.6% 

apex4 0.44 0.41 7.3% 

diffeq 0.51 0.52 -3.4% 

ex5p 0.33 0.348 4.8% 

misex3 0.48 0.46 3.9% 

s298 1.24 1.56 25.5% 

seq 1.12 1.04 6.8% 

tseng 0.26 0.34 29.9% 

Average: 0.76 0.70 7.6% 

 

Based on the values provided in Tables 3-6, R 

model population and the numerical part are the steps 
with increased number of execution cycles. Since R 

model population is closely related to RC thermal 

modeling, this explains our choice to selectively 

annotate the RC model rather than computing it from 

scratch.  

Our proposed Quick_Hotspot tools leads to 

reduction in term of complexity of the numerical part 

(as it is shown in Table 6) about 82%, as compared to 

conventional Hotspot tool. This occurs due to a 

different numerical approach used for solving the 

thermal diffusion problem. 

Note that no accelerating engine is utilized 

throughout this paper. That is because our intention is 

to make the algorithm faster, while maintaining the 

same level of accuracy and not make processor-

specific optimizations. 

 

Table 4  Number of execution cycles (×10
9
) for R model 

population. 

Benchmark Hotspot 
Quick_ 

Hotspot 

Gain  

(%) 

alu4 6,751.3 6,704.7 0.69% 

apex2 13,471.2 13,472.8 -0.01% 

apex4 4,180.9 4,166.2 0.35% 

diffeq 6,651.1 6,643.8 0.11% 

ex5p 2,510.7 2,511.7 -0.04% 

misex3 5,771.3 5,711.2 1.04% 

s298 13,493.8 13,462.6 0.23% 

seq 10,257.8 10,256.4 0.01% 

tseng 2,508.9 2,512.2 -0.13% 

Average: 7,288.6 7,271.3 0.24% 

 

Table 5  Number of execution cycles (×10
9
) for names, 

temperature and power arrays initialization. 

Benchmark Hotspot 
Quick_ 

Hotspot 

Gain 

(%) 

alu4 5,471.4 6.2 99% 

apex2 1,061.6 672.0 37% 

apex4 4.21 4.2 0.11% 

diffeq 5.7 5.7 0.0% 

ex5p 3.06 3.1 -0.1% 

misex3 5.2 5.2 0.0% 

s298 509.1 388.4 23.7% 

seq 57.2 53.8 5.88% 

tseng 3.0 3.0 0.0 % 

Average: 791.2 126.8 84% 

4.2 Locate Regions of Importance 

Up to now we have explored the complexity of the 

proposed methodology, as compared to a state of the 

art solution. Next, we evaluate the efficiency of our 

approach to locate regions of importance over the 

target platform. Figure 2 plots the thermal profile 

regarding des benchmark, as it is retrieved with 

Quick_Hotspot. The underline Altera Stratix-based 

FPGA platform consists of 65×65 slices, while thermal 

analysis was performed by computing power sources 

at slice level. 



62 

 

Different colors in this figure denote regions of the 

device that operate under different values of 

temperature. As closer to red color a region is, the 

corresponding hardware resources (slices) operate 

under higher temperatures. Regarding the des 
benchmark, thermal analysis reports that on-chip 

temperatures range from 75ºC up to 104ºC. For 

demonstration purposes, these temperatures are plotted 

in a normalized manner over the maximum 

temperature.  
 

Table 6  Number of execution cycles (×10
9
) for 

numerical part. 

Benchmark Hotspot 
Quick_ 

Hotspot 

Gain  

(%) 

alu4 12,242.9 1,047.5 91% 

apex2 8,681.5 1,730.1 80% 

apex4 3,935.9 763.3 80% 

diffeq 5,371.1 1,038.2 80% 

ex5p 2,817.3 544.3 80% 

misex3 4,867.9 938.8 80% 

s298 8,656.8 1,849.0 78% 

seq 7,225.3 1,415.6 80% 

tseng 2,816.3 544.9 80% 

Average: 6,290.6 1,096.8 82% 

 

A number of conclusions might be derived based 

on this thermal map. Among others, temperature 

values are not constant over the target platform since 

they vary considerably between any two arbitrary 

points         and         of the device. Apart from 

this non-uniformity, it is still possible to determine 

regions with similar (high or low) temperatures, and 

hence increased (or not) probabilities of failure. Note 

that different applications exhibit different regions of 

importance, while even the same application might 

result to different thermal distributions (e.g. under 

power-aware, timing-driven, area-optimized P&R). 
 

Maximum
Value

Minimum
Value

100%80%60%40%20%0%

10

20

30

40

50

60

10 20 30 40 50 60

Regions of importance

 
Figure 2  Hardware clustering based on temperature 

values 

 

In this figure we have also highlighted (with a 

circle) regions of the device with increased 

temperatures values (greater than 
    

 
). We have to 

mention that the three strategies discussed in Figure 1, 

which alleviate the computational complexity of 

thermal analysis (namely, modify number of regions, 

modify area of regions, and modify both number of 

regions and their area), are applicable to such a design 

by performing thermal analysis: in fewer circles, in 

circles that cluster fewer resources, and a combination 

of them, respectively.  

Based on such a classification of hardware 

resources, another conclusion is drawn from Figure 2: 

although the majority of existing thermal management 

techniques is applied uniformly over the device, the 

actually critical for failure resources provide a non-

homogeneous and irregular picture. Consequently, 

careful analysis of the points of failure must be 

performed, while target architecture needs to combine 

regions with different thermal/power management 

strategies. 

Hence, the challenge with which a designer is faced 

up is to apply thermal analysis at run-time only to the 

actually needed parts of architecture, considering the 

associated spatial information from the distribution 

graph shown in Figure 2, as well as the consequence 

overhead due to additional computational complexity. 

Figure 3 evaluates the improvement in 

computational complexity offered by the three 

alternative scenarios discussed in our methodology 

(reduction in number of monitored regions, reduction 

of area coverage for these regions and a combination 

among them) regarding the des benchmark. As we 

have already mentioned, this task is employed (usually 

at run-time) in order to decrease the computational 

complexity for detail thermal analysis, with a penalty 

in accuracy. The horizontal axis in Figure 3 plots the 

desired reduction in number of execution cycles for 

thermal analysis, whereas the vertical one gives the 

maximum temperature error, as compared to a detailed 

thermal analysis with Quick_Hotspot. 
 

0%

2%

4%

6%

8%

10%

12%

14%

10% 20% 30% 40% 50%

Modify number of regions

Modify area of regions

Modify both of them

Figure 3  Maximum temperature error for different 

optimizations 

 



63 

 

Based on Figure 3, all the three scenarios result to 

similar error, while the optimal among them is the 

modification of area coverage (scenario 2). Note that, 

even for the case where error in temperature values is 

about 8%, this leads to a significant speedup execution 

since it results to reduction execution cycles about 

50%. 

4.3 Accuracy of Thermal Profile 

The accuracy of the derived thermal analysis is 

another crucial issue in order to confirm the 

mathematical validity of the proposed methodology. 

For this purpose, we compute average and maximum 

temperature errors between the two software 

approaches.  

More specifically, during our exploration we found 

that the maximum error regarding the temperature of a 

single block is up to 0.055 ºC, whereas the average 

error over the entire platform is about 3×10
-5

 ºC. 

Consequently, we can safely claim that the 

acceleration of the thermal analysis tool has been 

successfully accomplished with almost no effect on the 

tool’s accuracy. 

By maintaining the same level of accuracy with 

Hotspot, while the execution time is much less, our 

solution becomes a very powerful tool with a wider 

variety of applications. Typical examples, among 

others, are MPSoCs that utilize ad hoc power/thermal 

modeling and management tools. 
Apart from this, we also study the efficiency of 

applying localized thermal analysis. This task involves 

finding out and clustering slices that operate under 

temperatures higher than a threshold value, similar to 

Figure 2. Since these slices exhibit higher probability 

of failure (due to increased temperature values), it is 

safe to claim that exclusive analysis of these slices will 

improve execution time without error in thermal stress. 

The results of this study are summarized in Table 7, 

where threshold value was set equals to            
    

 
. More specifically, the second column gives the 

total number of fabricated slices (hence the candidate 

number of power sources), whereas the values at third 

and fourth columns denote the number of slices that 

belong to critical for failure regions (without operating 

temperature higher than threshold value), as they 

derived with Hotspot and the proposed tool 

(Quick_Hotspot), respectively. Finally, the last column 

gives the error between these two values. Based on 

these results, we can claim that our methodology does 

not impose any accuracy degradation, apart from the 

significant elimination of computation complexity, 

since the average error in number of slices that 

clustered as critical with only one of the two 

algorithmic approaches is about 10
-5

. 

Even though the results provided in Table 7 gives 

estimation about the accuracy of proposed solution, we 

also evaluate how the temperature values varies among 

slices. More specifically, up to now we compare the 

number of slices where temperature exceeds a certain 

threshold between the two alternative ways 

(conventional and quick hotspot). However, there is a 

decent chance that two slices both have higher 

temperature than threshold but still differs to each 

other by a non-trivial percentage.  
 

Table 7  Slices with temperatures higher than       . 

Bench- 

mark 

Number of critical 

for failure slices 

Error 

(%) 
Total Hotspot 

Quick_ 

Hotspot 

alu4 1,600 510 512 -0.06% 

apex2 2,025 1,276 1,275 0.05% 

apex4 1,369 684 684 0.00% 

diffeq 1,600 831 832 -0.06% 

ex5p 3,025 1,241 1,240 0.00% 

misex3 3,721 1,340 1,339 0.03% 

s298 2,025 1,177 1,175 0.05% 

seq 1,849 1,035 1,035 0.00% 

tseng 1,156 437 427 0.00% 

Average: 2,041 948 948 0.00% 

 

Figure 4 gives the total number of slices that 

exhibit different temperature values between the two 

alternative thermal analysis approaches. Based on this 

analysis, the average error in terms of slices that 

operated under high temperature values with only one 

of the two algorithmic approaches is only 7. Note that 

this number corresponds to an average error (as 

compared to the total number of slices) about 0.004%. 

Furthermore, if we take into account the considerable 

reduction in computational complexity provided by 

our proposed solution, we can almost safely claim that 

this error is negligible. 
 

0

2

4

6

8

10

12

alu4 apex2 apex4 diffeq ex5p misex3 s298 seq tseng
 

Figure 4   Error in number of slices classified as critical 

with only one of the two alternative algorithms. 

 

In addition to that, we also evaluate the maximum 

temperature variation for the same slice between the 

two alternative thermal analysis tools. The results of 

this study are summarized in Figure 5. Based on this 

analysis we can conclude that the accuracy derived by 

our proposed solution is almost identical to the one 



64 

 

achieved by HotSpot 5.0, since the average maximum 

error in slices among the benchmarks is only 0.003ºC. 
 

0

0.01

0.02

0.03

0.04

0.05

0.06

alu4 apex2 apex4 diffeq ex5p misex3 s298 seq tseng
 

Figure 5  Maximum temperature difference for the same 

slices with the two alternative thermal analysis tools. 

 

Finally, in order to show the additional 

improvement in execution time achieved by using a 

localized Quick_Hotspot execution, rather than 

conventional Hotspot (which performs thermal 

analysis in the whole chip), Figure 6 evaluates this 

gain in number of execution cycles. Note that this 

feature is especially crucial for thermal analysis at run-

time, where computational resources are limited.  

More specifically, this graph plots the improvement 

in number of execution cycles achieved by the 

localized thermal analysis. The values at this figure are 

normalized over the corresponding number of cycles 

required from original Hotspot [8].  

Based on this analysis, we can conclude that if 

selective thermal analysis is applied both on Hotspot 

and Quick_Hotspot tools, it achieves an additional 

improvement in the number of cycles at our proposed 

solution about 43%, on average. Note that, this 

additional reduction is translated as 75% reduction in 

comparison to the original Hotspot tool (that models 

the entire architecture). 
 

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

alu4 apex2 apex4 diffeq ex5p misex3 s298 seq tseng

Original Hotspot [8] Localized Hotspot Localized Quick_Hotspot
 

Figure 6  Speedup in execution time for the localized 

thermal analysis as compared to Hotspot 5.0. 

5 Conclusions 

A systematic methodology for performing run-time 

thermal analysis for MPSoC designs was presented. 

The methodology is supported by a new software tool, 

named Quick_Hotspot. The proposed methodology 

was applied to evaluate thermal analysis of alternative 

floor-plans. Experimental results show that our 

solution achieves significant improvement in 

computational complexity ranging from 41% (when 

applied as a stand-alone tool), up to 75% (when 

applied only to critical for failure resources), as 

compared to an existing state-of-the-art solution, 

without any accuracy degradation (average error about 

3×10
-5 

ºC). 

6 Literature 

[1] T. Sakurai and A. Newton, “Alpha-power law mosfet 

model and its applications to cmos inverter delay and 

other formulas”, IEEE JSSC, April 1990 

[2] Quick_Hotspot tool, available at 

http://proteas.microlab.ntua.gr/ksiop/software.html 

[3] S. Yang, “Logic Synthesis and Optimization 

Benchmarks, Version 3.0”, Technical Report, 

Microelectronics Centre of North Carolina, 1991. 

[4] International Technology Roadmap for 

Semiconductors, Assembly and Packaging, 2007 

Edition 

[5] K. Sankaranarayanan, et.al., “A Case for Thermal-

Aware Floorplanning at the Microarchitectural 

Level”, The Journal of Instruction-Level Parallelism, 

Sept. 2005 

[6] A. Chandrakasan , R. Brodersen, “Low Power 

Digital CMOS Design”, Kluwer Academic 

Publishers, Norwell, MA, 1995 

[7] David Atienza, et.al., “HW-SW Emulation 

Framework for Temperature-Aware Design in 

MPSoCs”, ACM Transactions on Design 

Automation for Embedded Systems, Vol.12, N.3, pp. 

1 – 26, August 2007. 

[8] K. Skadron, et.al., “Temperature-Aware 

Microarchitecture: Modeling and Implementation”, 

ACM Trans. on Architecture and Code Optimization, 

1(1):94-125, Mar. 2004 

[9] Altera Stratix FPGA devices (available at 

http://www.altera.com) 

[10] K. Skadron, et. al., “Temperature-aware 

microarchitecture: Extended discussion and results”, 

Technical Report CS-2003-08, University of 

Virginia, Computer Science Department, 2003.  

[11] Standard Cell Benchmark Circuits from the 

Microelectronics Center of North Calorina, 

http://vlsicad.cs.binghamton.edu/gz/PDWorkshop91.

tgz 

[12] W. Press, et.al., Numerical Recipes in C; The Art of 

Scientific Computing, 2
nd

 ed. Cambridge: Cambridge 

University Press, 1997. 

[13] K. Poon, S. Wilton, A. Yan, “A Detailed Power 

Model for Field-Programmable Gate Arrays”, in 

ACM Transactions on Design Automation of 

Electronic Systems (TODAES), Vol. 10, Issue 2, 

April 2005, pp. 279-302.  


	Prereq
	mainText
	paper
	AppendixB
	Siozios__2PARMA_2011__Quick_Hotspot

