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ApagoreÔetai h antigraf , apoj keush kai dianom  thc paroÔsac ergasÐac, ex olokl rou   tm -
matoc aut c, gia emporikì skopì. Epitrèpetai h anatÔpwsh, apoj keush kai dianom  gia skopì
mh kerdoskopikì, ekpaideutik c   ereunhtik c fÔshc, upì thn proôpìjesh na anafèretai h phg 
proèleushc kai na diathreÐtai to parìn m numa. Erwt mata pou aforoÔn th qr sh thc ergasÐac
gia kerdoskopikì skopì prèpei na apeujÔnontai proc ton suggrafèa.

Oi apìyeic kai ta sumper�smata pou perièqontai se autì to èggrafo ekfr�zoun ton suggrafèa
kai den prèpei na ermhneujeÐ ìti antiproswpeÔoun tic epÐshmec jèseic tou EjnikoÔ Metsìbiou
PoluteqneÐou.





EuqaristÐec

Me to pèrac aut c thc diplwmatik c ergasÐac kleÐnei kai ènac (euq�ristoc)kÔkloc thc zw c mou.
Wstìso k�poia pr�gmata exakoloujoÔn na up�rqoun. Sugkekrimèna, ènac eurÔteroc trìpoc
skèyhc mazÐ me k�poiec teqnikèc, oi euq�ristec anamn seic, oi ousiastikèc anjr¸pinec sqèseic
all� kai h eugnwmosÔnh gia touc anjr¸pouc pou me bo jhsan kai mou st�jhkan.

Epijum¸ , loipìn, na euqarist sw pr¸ta apì ìlouc ton epiblèpwn kajhght  mou Dhm trh
Fwt�kh gia thn amèristh sumpar�stash kai kajod ghsh tou. 'Oqi mìno me mÔhse sthn nootropÐa
kai praktik  thc jewrhtik c èreunac all�  tan kai h aitÐa, mèsa apì thn enjousi¸dh didaskalÐa
kai ag�ph tou gia to antikeÐmeno tou, na anakalÔyw ton dikì mou drìmo kai ereunhtik� endi-
afèronta. Oi sumboulèc tou se krÐsima st�dia thc poreÐac mou kai h diki� mou sÔnesh na tic
akolouj sw èqoun ousiastik  sumbol  sthn akadhmaðk  mou exèlix . Ja  jela, epÐshc, na
euqarist sw ton kajhght  St�jh Z�qo, o opoÐoc apoteleÐ par�deigma anjr¸pou pou mèsa apì
dÔskolec katast�seic ekteleÐ to kaj kon tou me sunèpeia, qioÔmor kai anjrwpi�. Tic euqaristÐec
mou èqoun kai ìla ta mèlh tou ErgasthrÐou Logik c kai Epist mhc twn Upologist¸n(CoReLab),
kaj¸c o kajènac me ton dikì tou trìpo sunetèlese sthn dhmiourgÐa enìc euq�ristou kai filikoÔ
klÐmatoc sunergasÐac kai sunÔparxhc.

IdiaÐtera euqarist¸ touc stenoÔc mou fÐlouc kai sumfoithtèc T�so Oul , Stèfano Mp�ro,
Jodwr  NtoÔska, K¸sta PapaspÔrou, Murt¸ kai Nikhfìro Blaqi� pou moir�sthkan aut� ta
qrìnia tou PoluteqneÐou mazÐ mou. EÔqomai, eilikrin�, na suneqÐsoume na blepìmaste met� apì
qrìnia kai na anapoloÔme tic stigmèc autèc. EpÐshc, den xeqn�w kai touc sumfoithtèc-fÐlouc
Gi�nnh TsioÔrh, Qr sto Staurak�kh touc opoÐouc pèra apì stigmèc gèliou qrwst�w kai mÐa
ergasÐa stic b�seic ;).

Tèloc, jèlw na euqarist sw thn oikogèneia mou gia thn upost rixh, parìtrunsh kai pÐsth
touc se emèna. IdiaÐtera, jèlw na anafèrw thn giagi� mou OuranÐa HliopoÔlou, h opoÐa eÐnai
par�deigma autojusÐac kai prosfor�c kai sunèbale shmantik� sto na agap sw thn Gn¸sh.

P�rhc Suminel�khc





PerÐlhyh

H Koinwnik  DiktÔwsh mèsw Internèt èqei apokt sei kentrik  jèsh gia thn Diaf mish kai thn
Exìruxh Dedomènwn gia emporikoÔc skopoÔc. EtaireÐec Koinwnik c DiktÔwshc(p.q. Facebook,
Orkut, Google+) diathroÔn leptomer  dedomèna gia ekatommÔria qr stec, ta opoÐa ta diajètoun
se etaireÐec gia na aux soun thn dieisdutikìthta twn proðìntwn touc sthn agor�. Ta èsoda apo
diafhmÐseic twn diktÔwn aut¸n apoteloÔn thn b�sh enìc bi¸simou epiqeirhmatikoÔ montèlou kai
qrhsimopoioÔntai gia na uposthrÐxoun tic teqnikèc upodomèc kai na diasfalÐsoun thn poiìthta
twn uphresi¸n touc. Wstìso, up�rqei meg�lh diaforopoÐhsh metaxÔ twn pragmatik¸n esìdwn kai
thc ektimoÔmenhc axÐac twn etairei¸n aut¸n. EÐnai koinìc tìpoc ìti pollèc apì tic dunatìthtec
twn Etairei¸n Koinwnik¸n DiktÔwn paramènoun anaxoiopoÐhtec kai h pepoÐjhsh aut  èqei sun-
odeuteÐ apì entatikèc ereunhtikèc prosp�jeiec gia thn EmporeumatopoÐhsh twn Dedomènwn apì
Koinwnik� DÐktua.

Stìqoc thc diplwmatik c ergasÐac eÐnai h katanìhsh kai epèktash twn teqnik¸n gia thn ax-
iopoÐhsh thc gn¸shc tou istoÔ twn koinwnik¸n sqèsewn kai twn metaxÔ touc allhlepidr�sewn.
PragmatopoieÐtai anaskìphsh thc bibliografÐac kai epikentrwnìmaste se dÔo shmantik� kai
sten� sqetizìmena probl mata, sto prìblhma MegistopoÐhshc thc Epirro c[Kempe, Kleinberg,
Tardos’03] kai sto prìblhma thc MegistopoÐhshc twn Esìdwn[Hartline, Mirrokni, Sundarara-
jan, ’08]. To prìblhma MegistopoÐhshc thc Epirro c pragmateÔetai peript¸seic ìpou �njrw-
poi kaloÔntai na p�roun mia duadik  apìfash(agor�soun èna proðìn, yhfÐsoun èna upoy fio,
uiojet soun mia kainoÔrgia teqnologÐa) kai zhteitai to bèltisto arqikì sÔnolo anjr¸pwn de-
domènou megèjouc pou mèsw thc epirro c touc ja odhg soun sthn mègisth dunat  di�dosh. To
prìblhma thc MegistopoÐhshc twn Esìdwn afor� thn sqedÐash strathgik¸n p¸lhshc proðìn-
twn, twn opoÐwn h axÐa gia k�je agorast  aux�nei an�loga me to poioÐ gnwstoÐ tou  dh to
katèqoun, ekmetalleuìmenoi thn gn¸sh tou koinwnikoÔ istoÔ. Esti�zoume thn prosoq  mac se
mia kl�sh strathgik¸n �Epirro c kai Ekmet�lleushc"(EE), ìpou èna arqikì sÔnolo anjr¸pwn
èqoun eunoðk  metaqeÐrhsh(dwre�n deÐgmata, qrhmatik� antall�gmata) ¸ste na kerdÐsoume thn
epirro  touc sto dÐktuo kai oi upìloipoi antimetwpÐzontai me trìpo ¸ste na petÔqoume ton stìqo
mac(uyhlìtera èsoda, megalÔterh apodoq ).

H teqnik c suneisfor� thc diplwmatik c ergasÐac afor� to Prìblhma MegistopoÐhshc
Esìdwn upì to Omoiìmorfo Ajroistikì Montèlo[Hartline et al.’08]. Arqik� apodeiknÔoume
ìti to prìblhma eÐnai NP-DÔskolo akìmh kai ìtan to dÐktuo den eÐnai kateujunìmeno, qrhsi-
mopoi¸ntac mia anagwg  apì to prìblhma Monotone One-in-Three SAT. Sthn sunèqeia pragam-
atopoioÔme mia susthmatik  diereÔnhsh twn algorijmik¸n idiot twn twn strathgik¸n �Epirro c-
Ekmet�lleushc". ApodeiknÔoume ìti to prìblhma sqediasmoÔ thc Bèltisthc strathgik c �EE�
eÐnai NP-DÔskolo kai parèqoume èna k�tw fr�gma gia ton lìgo twn esìdwn apo mia tètoia
strathgik  kai twn mègistwn dunat¸n esìdwn. Epiprìsjeta, epekteÐnoume kai belti¸noume
thn apl  strathgik  �EE� twn Hartline et al., belti¸nontac kata lÐgo ton lìgo prosèggishc
tou probl matoc. H kÔria suneisfor� ègkeitai sthn sqedÐash strathgik¸n �EE� basizìmenoi
se Hmiorismènec Mejìdouc Qal�rwshc Akèraiwn Programm�twn kai h akìloujh shmantik 
beltÐwsh pou epitugq�netai ston lìgo prosèggishc thc bèltisthc lÔshc. Tèloc, proteÐnoume
mia oikogèneia strathgik¸n Topik c Anaz thshc gia thn beltÐwsh miac opoiad pote lÔshc ka-
j¸c kai Euristikèc Mejìdouc basizmènec se IdiodianÔsmata gia thn susqètish thc jèshc enìc
atìmou sto dÐktuo kai thn tim  pou ja tou prosfèroume.

Lèxeic Kleidi�

Strathgikèc �Epirro c-Ekmet�lleushc", MegistopoÐhsh Epirro c, MegistopoÐhsh Esìdwn, Pros-
eggistikoÐ Algìrijmoi, EmporeumatopÐhsh Koinwnik¸n DiktÔwn, Jetik�





Abstract

The importance of online social networks in advertising and market research is by now in-
dubitable. Social networks provide detailed and broad information for millions of users and
companies have been using this information to increase market penetration of their products.
Social network companies use the revenue exerted by advertisements to sustain the costs in-
volved in maintaining their servers and quality of service, as well as to provide the basis of a
sustainable business model. However, there is a large discrepancy between the perceived value
of Social Networks and the actual revenue they generate.The widespread belief is that much
of the potential of Social Networks remains unexploited. This premise has spurred a large
amount of research in the direction of mon- etizing Social Networks.

In this thesis, we are concerned with utilizing the information about the structure and
strength of social ties in order to achieve certain objectives. We review previous approaches and
focus on two important and closely related problems, that of Influence Maximization[Kempe,
Kleinberg, Tardos’03] and Revenue Maximization[Hartline, Mirrokni, Sundararajan, ’08]. The
Influence Maximization Problem considers situations where a binary decision is made about
adopting or not an innovation(product,technology,behaviour) and seeks for the best seed of
initial adopters that achieve overall maximum spread by interacting with their social contacts.
On the other hand, the Revenue Maximization Problem aims at exploiting positive network
effects between buyers about the value of a product to devise a marketing strategy that
maximizes the revenue. We focus an a class of strategies called Influence and Exploit, where
a set of individuals is treated preferentially(free product, monetary incentives) in order to
“seed” the network(Influence) and then the remaining individuals are exploited(full price, no
incentives) to achieve the objective(higher revenue, wider adoption).

The technical contribution of this thesis concerns the Revenue Maximization Problem
under the Uniform Additive Model[Hartline et al.’08]. We initially prove that the problem
remains NP-Hard even for the undirected case via a reduction from Monotone One-in-Three
SAT. Then, we embark a systematic study of the algorithmic properties of Influence and Ex-
ploit strategies. We prove that finding the Optimal Influence and Exploit strategy is NP-Hard
and provide lower bounds on the ratio between the revenue extracted from an optimal IE
strategy and the optimal revenue in general. Furthermore, we slightly extend and optimize
the simple IE strategies proposed by Hartline et. al obtaining a first improvement of the ap-
proximation ratio of the problem. Our main technical contribution lies in developing powerful
Semidefinite Programming Relaxations for designing IE strategies and the corresponding sig-
nificant improvement on the approximation ratio for the problem. Finally, we propose a class
of Local Search strategies to improve on an given solution and introduce intelligent heuristics
based on Eigenvector Centrality correlating explicitly network position and the price to be
offered to each buyer.

Keywords

Influence and Exploit, Influence Maximization, Revenue Maximization, Approximation Algo-
rithms, Social Network Monetization, Positive Network Externalities
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Chapter 1

Introduction

This thesis is part of the greater endeavour of Computer Science to understand social phe-
nomena and processes. We first present arguments on why are social phenomena important
and what are the benefits from strengthening our understanding of them. Then we describe
the unique position that Computer science finds itself today in this endeavour.

The Greek Philosopher Aristotle [7] believed that the true purpose of
man is the attainment of one’s eudaimonia. He defined eudaimonia as the
cultivation of virtue and the realization of one’s true potential. He argued
that “man is a social being” and an essential condition towards that goal
is friendship. Actually, we argue not only that man is by nature a social
being but something stronger; it is exactly the social nature of man that is
responsible, at large, for man as we perceive him today. The organization
of humans in groups and societies has facilitated, enabled and inspired
the greater achievements of our civilization: division of labour, language,
reason, science; in one word progress.

Already from the early years of human presence on earth, people have formed groups.
Initially, the basic unit would be a small “pack”, where there would be a coarse grain division of
people in working groups depending on gender and age. Gradually, starting with the invention
of agriculture[43], people formed larger communities and a form of hierarchic authority began
to emerge. Nowadays, the social and political organization has a self-similar, almost fractal,
hierarchical organization. Viewing the social structure as networks, we began with small,
almost disjoint, tightly knit networks. These networks merged under a common authority
and formed larger networks with power flowing in star network topology. This process was
repeated at many layers and has given rise to the complex socio-political structure that we
see today.

Unsurprisingly, the evolution of human civilization is closely related with the evolution of
social organization. The increasing complexity of social organization has brought three main
classes of evolutionary advantages concerning: performance, diffusion, robustness. Commu-
nities increased their survivability and standards of living by assigning roles to its members,
according to their own special characteristics and talents(strength, dexterity, intelligence, up-
bringing capabilities). This way individual members or families did not need to be autonomous
and by depending on others increased their performance at fulfilling their individual duties.
Another important factor for the survival and progress of a community is in what scale and
how fast individual knowledge about the world becomes available to other members. This
knowledge could be about potential hazards (fire, war, etc.), opportunities or even technology

1



2 CHAPTER 1. INTRODUCTION

Figure 1.1: The historical evolution of social networks.(a)Prehistoric Family(Prehistoric Man Hunting Bears,
Emmanuel Bener, Musee d’Unterlinden, Colmar, France).(b)Indian tribe council.(c)State and County organi-
zation of US.

and ideas. Naturally, communities where this diffusion is more efficient would be more fit to
respond to changes of the environment. Finally, one critical characteristic for the survival of
both a living organism and a society is the robustness under random or even targeted failures.
Imagine that for some reason(e.g. battle, illness) the top authority of a community passed
away; if there weren’t people fit to replace him or to respond appropriately until the new leader
is selected, the community would be vulnerable either to hostile communities or to internal
strife. The same reasoning applies for other key people in a community, such as a doctor,
a maid or a strong warrior. In a way natural selection has been optimizing the structure of
social organization weighing appropriately all three factors.

One great thing about the human species is that it can circumvent the slow painstaking
process of natural selection via scientific research. Traditionally, sciences such as sociology,
anthropology and management science have acknowledged the important role that social phe-
nomena play and have proceeded with comprehensive studies aiming at unravelling the impact
of social interaction in a variety of settings[101, 115, 63, 124]. Therefore, these sciences have
accelerated developments concerning social organization as their research has been taken into
account in the decision-making process of governments, organizations and companies. How-
ever recent technological advances and globalization have brought about a need for a new
approach.

Today social interactions have been revolutionized by the explosion in Transportation,
Telecommunications and Information Technology. The phone, cell phone and above all the In-
ternet have changed forever the way people interact. Social interaction has crossed the spatial
and national boundaries and nowadays people communicate with each other across countries,
continents and cultures. Therefore, old scientific methods of studying social phenomena using
questionnaires and searching public files are almost obsolete. Nevertheless, there is a new
weapon in our arsenal; the Internet.

The internet is a place where ideas, data and products are being exchanged. Besides its
profound value for the scientific community, the Internet has also great impact on the economy.
The rise of corporate giants as Google and Facebook are indicative of its potential. Moreover,
the value of e-commerce and online retailing in U.S. alone is estimated to be up to 200 billion
dollars (Forrester Research 2011). Perhaps, what is more interesting about the Internet is the
fact that we have for the first time a clear account of the transactions taking place, as most
information is recorded and theoretically could become available for study and analysis.

An important recent artifact of the Internet is the appearance of Social Networks. Social
Networks are web-sites or applications where users subscribe and interact with other users.
They can share photos, music, video, opinions, easily chat or even have multi-person conver-
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Figure 1.2: The increasing complexity of modern social networks.(a) World Map and Friendship network
of Facebook. (Visualizing Facebook Friends, Paul Butler).(b) The Political Blogosphere and the 2004 U.S.
Election, Lada Adamic, Natalie Glance

sations. Social Networks have great value for the economy and society as, primarily, they
cover the basic need for communication and sharing. They facilitate the diffusion of ideas,
news, products etc. and, crucially for science, they record the social interactions taking place
between members. For the first time we can actually peer into the actual network of friendship
simultaneously for thousands or million of people, fact that sociologists could not even dream
of. The sheer size and amount of data that have become combined with digitized informa-
tion have provided the impetus for Computer Science to get involved with the study of social
networks.

1.1 Diffusion of Innovations

A key question in Sociology and Economics is why some ideas, norms or products spread and
become widely accepted, whereas others die out. Is it only a fact of their intrinsic value and
appeal or are there other latent phenomena involved? The first systematic study towards
this direction was carried out by Everret Rogers [115] who unified previous approaches into a
concrete theory, coined with the term Diffusion of Innovations.

Diffusion of Innovations is a theory seeking to explain how, why and at which rate do
ideas, technology and products spread through societies. Rogers identifies four main elements
that influence the spread: the innovation itself, the communication channel, i.e. the medium
through which messages and information about the innovation spread, time, since the decisions
made by individuals have a strong temporal dependence, and, finally, the social system which
consists of all the interested parties(individuals) involved in the decision process.

The mechanism of diffusion is thought to occur through a five-step decision process, which
is mediated by a series of communication channels over a period of time among members of
the social system. The first stage is knowledge, where the individual is initially exposed to the
innovation but has incomplete information about it. Then follows persuasion, a stage during
which the individual is interested in the innovation and actively seeks more information. The
next stage is decision. At this stage the individual weighs the relative benefits and costs of
adopting the innovation and makes a decision. If the individual decides to adopt the innovation
he proceeds to a stage called implementation, where he employs the innovation to a varying
degree and may seek further information about it. The last stage is confirmation upon which
the adoption of innovation is finalized after the first trial period has produced positive results
and the innovation is used to its fullest potential.

Rogers continues his investigation and defines several intrinsic characteristics of innova-
tions. The relative advantage of an innovation with respect to the previous generation, the
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complexity and trialability of the innovation, that is how steep is the “learning curve” asso-
ciated with a given innovation, the level of compatibility with the individuals life, i.e. how
easy is to integrate the innovation to one’s life and the observability, which is the extent
that an innovation is visible to others and is implicitly communicated. These all are factors
that depending on the situation can have an important impact on the adoption or not of an
innovation.

It has been empirically shown that the adoption of an innovation follows an S-curve when
plotted over a length of time. In order to provide further insight into the diffusion process,
Rogers also makes a classification of individuals within a social system into categories based
on the degree of innovativeness. As an attempt to construct a “derivative” of the adoption
curve, he considers that individuals are normally distributed with respect to the time they
decide to adopt the innovation. He suggests five categories of adopters: innovators, early
adopters, early majority, late majority and laggards. Innovators are the first individuals to
adopt an innovation. They are usually young, risk-taking individuals of high social status and
strong financial grounding with closest contact to scientific resources. Early adopters are the
second fastest people to adopt an innovation. They usually have the highest degree of opinion
leadership and are of the highest social class and command more financial resources. The early
majority adopt an innovation after a varying length of time and have above average social
status and contact with early adopters, which act as opinion leaders. The late majority will
adopt the innovation after the average member of the society. They approach the innovation
with a high degree of scepticism. They usually have bellow average social status and very little
financial lucidity. The last people to adopt an innovation are the laggards. These people are
change-averse and tend to be advanced in age. They are usually focused on traditions and are
likely to have the lowest social status. So this categorization attempts to explain the logistic
growth of the adoption process as a consequence of the wide distribution of the innovativeness
characteristic within a population.

Despite the aggregate nature of the Diffusion of Innovations theory, Rogers acknowledges
the existence of highly influential individuals in a social system and the impact that they can
have on the final outcome of the adoption process. Relying on ideas of Katz and the notion
of Centrality he develops his ideas about the role of Opinion Leadership. Moreover, he also
raises the issue of the impact of the social structure in the diffusion process observing that
homophily can hinder or amplify the spread of an innovation. Homophily is the tendency of
people to socialize with other people that are similar in attributes such as age, nationality,
occupation, social status etc. Homophilous individuals communicate more effectively and
therefore their contact will lead to greater knowledge gain. However, homophily can be also
an obstacle to the communication process since homophilous individuals tend to have the
share information and new ideas are hard to be introduced. Therefore, an ideal situation
would be for two individuals to be homophilous in every way, except the knowledge about
the innovation. These early concerns already start to elucidate the importance of network
topology in the diffusion of innovations through networks.

Another attempt to mathematically model the diffusion of innovations on an aggregate level
was made by Bass[11]. He assumes that the population is entirely homogeneous, i.e. everyone is
equally likely to interact-communicate with anyone else. In making their decisions, individuals
are influenced by two sources. The first source is mass marketing such us advertising and
the second is “word or mouth” effects between individuals who have already adopted the
innovation. The Bass model traces the probability R(t) that a random individual has adopted
the innovation up to time t and because of the homogeneity of the population this corresponds
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to the ratio of the population that have adopted the innovation. Now for each t, a random
individual has probability 1 − R(t) of not having adopted the innovation. This individual
is convinced in the next time frame t + dt from mass marketing with probability p. If that
fails he has a probability (1− p)q to adopt the innovation if he meets another individual who
already adopted the innovation which happens with probability R(t). Putting all the pieces
together we get that the differential equation describing the ratio of buyers that have adopted
the product prior to time t is:

dR(t)

dt
= (1−R(t))[p+ (1− p) · q ·R(t)]

Mathematically this is a Riccati equation with constant coefficients and can be solved for
various parameters p, q. The model is widely used in product and technology forecasting and
has been generalized to include other aspects as well[127]. The main assumption this model
makes is that the probability of purchase is linearly related to the number of previous buyers,
which in turn implies exponential growth of initial purchases and then exponential decay;
behaviour which is typical of sigmoid curves.

1.2 Threshold Phenomena

In trying to explain collective behaviour, social sciences operated on the premise that when
we observe a collective outcome we can infer that these individuals ended up sharing the
same belief about the situation, even if they did not in the beginning. Granovveter [62] based
on Schelling’s Model for residential segregation [123] proposed models of collective behaviour
that showed with the brightest colours how individual variations of norms can have an adverse
effect on the final outcome.

His model treats situations were binary decisions are made(diffusion of innovations, riots,
voting etc.) and the cost/benefit from either decision depends on how many individuals have
followed each action. Individuals are assumed to be rational and make the decision that serves
their interests best. In the simplest case of the model, each individual i chooses a threshold ti
and becomes becomes “active” only if ti more individuals have already decided to be active as
well. Consider for instance a peacefull protest that can potentially escalate into a riot. Assume
there are 100 individuals and each individual chooses to participate in the riot if a certain
number of people already participate. Assume that their thresholds are t1 = 0, . . . , t100 = 99.
In this case all individuals will eventually be engaged in the riot. Whereas a very similar
distribution of thresholds and thus beliefs where only t2 would be 2 instead of 1, would result
in only one single “demented” individual’s violent acting. This example illustrates that it is
fallacious to infer individual norms from collective behaviour and that aggregating individual
beliefs can result in varying outcomes depending both on the distribution of beliefs as well as
to the way they are communicated between individuals.

Already it is eminent that explaining and predicting collective behaviour is a complex
problem. We started from aggregate models and theories which are exemplified by the Dif-
fusion of Innovations theory of Rogers, and continued to models where individual behaviour
is taken into account through uniform interactions. However, when considering the threshold
models one can immediately sense that there is another latent factor that impacts greatly on
the final outcome; network structure or the configuration of “social visibility”. Morris[104]
studied a setting where all individuals have the same threshold but they can only perceive the
actions and beliefs of specific other individuals. He considers a local interaction game where
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Figure 1.3: T.Schelling’s model of Residential Seggregation. The residents deside to move when the number
of neighbours of the same color drops below a threshold. This model shows that residential segreggation needs
nots be a result of racism rather than a slight preference to be around with people of the same race. The three
figures are the steady state of the model for different values of the threshold(50%,60%,72%)

each individual selects to follow one of two actions and receives a pay-off that depends on the
fraction of his neighbours that follow each action. Particularly, every individual is modelled
by a node and individuals that influence each other are connected by edges, i.e. they are
“neighbours” in the social graph. The local interaction game is parametrized by a threshold
0 < q < 1, according to which an individual switches to a behaviour when at least a q-fraction
of his neighbours follow that action. Morris studied graphs with countably infinite nodes and
seeks to find the contagion threshold of the graph, that is the smallest q such that a behaviour
that is followed by some finite population can spread to the entire population. He provided
contagion thresholds for various infinite lattices and studied further properties of such local
interaction games. One important aspect that stemmed from his research is the impact of
tightly knit communities, which can impede the spreading process.

1.3 Externalities

An important area of study in Economics is the issue of externalities. Externalities capture
the idea that there are involuntary third party cost or benefits involved from a voluntary
transaction or action between two parties. Classical examples are pollution, waste management
or network externalities where the valuation of a product or technology depends on how widely
used it is[74, 75]. There are three classical solutions to the problem of externalities aiming to
improve decision making[128]:

• Coase Negotiation, where agents negotiate their way to an efficient outcome since the
exploitation oft externalities provide sufficient economic incentive.

• Setting up a competitive market for the externality, for instance the right to pollute,
where it is assumed that the market dynamics lead to an efficient outcome.

• Imposing a Pigovian Tax, where the externalities are imposed on the agents by a regu-
lator through taxations(negative externalities) or economic subsidies(positive externali-
ties).

The past years there is large amount of research in Computer Science unravelling the impact
of externalities in a variety of settings. We briefly provide some indicative examples.
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Combinatorial Auctions One of the main questions lying in the intersection of computer
science and economics, is how to allocate a set of resources in order to maximize an objec-
tive(social welfare, revenue, etc.). Selling single items(resources) is done relatively easily, but
how about selling multiple items where there substitutabilities and complementarities between
items? This issue is handled in the study of Combinatorial Auctions, where there are com-
plex(combinatorial) dependencies between items(for reviews see[37, 109]). The situation can
become even more complex if we consider that bidders not only care about which combination
of items they are allocated but also about which items other bidders get, namely the issue of
externalities. Krysta et al.[86] first considered externalities for Combinatorial Auctions. They
developed a bidding language, to succintly represent bidders valuations and study algorithmic
propoerties of the winner determination problem and the complexity of characterizing bidders
valuations. Conitzer, Sandholm[33, 34] and Lu[100] study settings with externalities, where an
agent controls one or more variables and how these variables are set affects not only the agent
herself, but also potentially the other agents. Furthermore, there are many studies considering
the impact of negative externalities[23, 15, 35, 40, ?].

Congestion Games Blumrosen and Dobzinski[18] consider Congestion games, where there
is a set of resources and players select a subset of them acting selfishly, under various models
of externalities(positive,negative), that is different cost models for sharing a resources. They
provide algorithmic relations with Combinatorial Auctions allowing to translate techniques
and intuition from that field to centralized Congestion Games. The authors design constant
approximation algorithms for Welfare Maximization and provide hardness results under both
positive and negative externalities. Furthermore, they construct an O(

√
n)-approximation

mechanism and show how to compute “Order-Preserving” equilibria in polynomial time. They
also show that for non-anonymous(player specific externalities) congestion games only trivial
approximations can be guaranteed. Fotakis et al.[47] study externalities in Congestion Games
from the perspective of incomplete information, that is individual’s valuation only depend on
the strategy of other neighbouring buyers in the social graph. They show that such games
admit a potential function and therefore have a Pure Nash Equilibrium(PNE). They provide
results that explicitly quantify the Price of Anarchy(PoA) and Price of Stability(PoS) in terms
of the independence number of the graph. Finally, they study the time needed for ε-Nash
dynamics to reach an approximate equilibrium.

Sponsored Search Auctions The main source of revenue for web services companies(search
engines, social networks) is online advertising. In the past, advertising was conducted through
static banners on websites renting their space for a limited amount of time. The last decade
a new method of advertising has prevailed, that of Sponsored Search Auctions. Web search
engines monetize their service by auctioning off advertising space next to their search results.
That is, there are a limited amount of slots available for advertisements next to each search
result and the advertisers make bids to occupy them. This subject has received extensive at-
tention in the computer science community(for reviews see [109, 133]), however the issue of ex-
ternalities has been considered only recently. Externalities were first considered by Ghosh and
Mahdian[?] after there were experimental evidence for the hypothesis that the click-through
rate of ads depend on surrounding ads by Joachims et al.[72]. Various models of externalities
and the corresponding problem of winner determination have been studied since[77, 1, 48] as
well as properties of Nash Equilibria for GSP mechanisms used in practice[53, 41, 57, 48].
Furthermore, the value of learning and price of truthfulness in such mechanisms has also been
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investigated[42, 97].

1.4 Summary and Organization

In this thesis we focus on social interaction rather than economic or market dynamics. The
central question is now that we have explicit knowledge for the social network: How can we
utilize the knowledge of the social graph?. We are interesting in either specifying the impact
of the social structure on social processes or how to devise mechanisms that facilitate desired
events and outcomes.

We review previous approaches and focus on two important and closely related prob-
lems, that of Influence Maximization[Kempe, Kleinberg, Tardos’03] and Revenue Maximiza-
tion[Hartline, Mirrokni, Sundararajan, ’08]. The Influence Maximization Problem considers
situations where a binary decision is made about adopting or not an innovation(product, tech-
nology, behaviour) and seeks for the best seed of initial adopters that achieve overall maximum
spread by interacting with their social contacts. On the other hand, the Revenue Maximiza-
tion Problem aims at exploiting positive network effects between buyers about the value of a
product to devise a marketing strategy that maximizes the revenue. We focus an a class of
strategies called Influence and Exploit, where a set of individuals is treated preferentially(free
product, monetary incentives) in order to “seed” the network(Influence) and then the remain-
ing individuals are exploited(full price, no incentives) to achieve the objective(higher revenue,
wider adoption).

In what follows we summarize previous work done in the above problems and then we
present our own original results[134]. Chapter 2 concerns the problem of Influence Maximiza-
tion, where we briefly present the key results. In chapter 3, we summarize previous approaches
to the problem of Revenue Maximization and emphasize the work of Hartline et.al[66] upon
which we have based our research. In Chapter 4, we provide insights and hardness results
about the model considered by Hartline et.al and then proceed in Chapter 5 where we de-
sign approximation strategies improving previous work. We accomplish that by using and
extending two approaches; randomly partitioning vertices into pricing classes, inspired from
Hartline et.al, and randomized rounding of a semidefinite program, as pioneered by Goemans
and Williamson. In Chapters 6 , we provide Local Search strategies, to improve a solution,
and intelligent Heuristics correlating the right price to be offered to a buyer with his network
position. Finally, in Chapter 7 we discuss the validity of the model as well as other issues.



Chapter 2

Influence Maximization

The study of social processes by which ideas and innovations diffuse through social networks
has been ongoing for half a century and as a result a fair understanding of such processes
has been achieved. Modern models about social influence have been augmented with various
features allowing for arbitrary network structure, non-uniform interactions, probabilistic events
and other aspects. Therefore, scientists have now turned to the next frontier which consists of
two complementary directions: obtaining accurate estimates of the parameters involved(graph,
weights, probabilities) and utilizing the knowledge available to guide those processes in order
to meet certain objectives(e.g. wider diffusion, greater profits). In this chapter we will focus
solely on the latter direction.

Traditionally, advertising would be conducted through a channel and individuals, with
access to that channel, would be influenced at the time frames that the message is being
transmitted . However, recent studies have shown that traditional channels are loosing their
reach[90] and that custom-tailored messages are much more effective than traditional mass
marketing. Moreover, many times personal recommendations from family, friends and co-
workers have greater impact than any third party messages. Hence, the idea is instead of
selecting or creating a channel upon which to transmit a message, to use the very social
network of personal acquaintances as the medium. This approach presents the advantage of
reduced costs, higher efficacy and almost universal reach. It is known with the popular term
of Viral Marketing, since the message spreads like a virus between individuals that come into
contact. The recent success of the Hotmail email service, which on a tiny budget of 50.000
reached 12 million users in 18 months only due to a promotional url at the end of the message,
is indicative of the potential of Viral Marketing methods. Nevertheless, many companies have
tried since to repeat the success and invest heavily on obtaining a customer basis only to see
their product never actually to start off. Why is it that?

The success of viral marketing strategies depends heavily on our ability to appropriately
“seed” the network with an initial number of followers which will convey our message. Domin-
gos and Richardson[44] modelled the underlying interactions between buyers in the stochastic
framework of Random Markov Fields and posed the fundamental algorithmic question: If we
knew the network of personal relationships how can we select an initial number of individuals
to influence so that after the cascading process terminates the number of affected individuals
is maximal? They provide heuristics that select individuals with a large effect on the network,
develop techniques to extract the necessary influence data and conduct some experiments.

Kempe, Kleinberg and Tardos in their seminal paper Maximizing the Spread of Influence
through a Social Network [76] formalized the question posed by Domingos and Richardson in

9
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Figure 2.1: Some examples of threshold phenomena, where there is a binary decision to be
made and actors influence each other.(a) Elections.(b)Rioting.

algorithmic terms as a discrete optimization problem, under the name of Infleunce Maximiza-
tion. They consider a simple context where all individuals are initially inactive(not willing to
buy our product, vote for our candidate or adopt our innovation). Then we select a limited
number k of individuals to influence(e.g. monetary incentives, individualized marketing, free
samples) so that they become active. They assume that individuals influence each other and
that active individuals may “infect” other individuals to become active as well, according to
a stochastic model of interaction.

The problem, therefore, is given a social network, i.e. a set of nodes(individuals) and the
edges(interactions) between them, to select the optimal “seed” of individuals to influence so
that after the activation process terminates the number of active nodes is maximal for a seed
of size k. KKT studied the most widely used influence models from sociology and interacting
particle systems and showed the problem to be NP-Hard even for the simplest model. They
then prove some crucial properties about these models and based on them utilize a result of
Nemhauser et.al[107] to provide a greedy 0.63 approximation algorithm for a general class of
models. They also conducted experiments showing that their algorithm outperforms heuristics
based on centrality eigenvector methods from social network analysis.

2.1 Influence Models

We first describe the two basic influence models, namely the Independent Cascade Model and
the Linear Threshold Model. We further provide some properties of these models and use
them to derive results for the problem of Influence Maximization.

2.1.1 Independent Cascade Model(IC)

The ICM was introduced by Goldenberg et.al[56] to model the dynamics of viral marketing and
is inspired from the field of interacting particle systems[99, 16]. In this model, we start with
an initial set A0 of active individuals, each active individual has a single chance to activate
each non active neighbour of his. However, the process of activation is deemed stochastic and
succeeds(fails) with constant probability q(respectively 1− q) independently for each attempt.
Therefore, from an initial population of active individuals the activation process spreads in a
cascading manner as newly activated individuals may activate new nodes that either previous
attempts failed to activate or were not before accessible.
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There is an elegant interpretation of the ICM, in terms of the
reachability of nodes via paths from the initial active set A0. We
can picture the process of a node u activating one of his neighbours
v with probability pu,v, as flipping a biased coin and if it succeeds
declare the edge live, otherwise declare it blocked. Moreover, we
can w.l.o.g. consider that all the coins are tossed before the process
begins. Therefore, from the initial graph G(V,E), we get a graph
G(V,Elive) where we keep only live edges. Now, in this setting
all nodes that are reachable via a live path from the initial set A0

would become active when the cascade process quiesced. This view is very helpful and will be
used to prove a crucial property about our model. The model is also equivalent to the bond
percolation[19] setting studied in probability and physics.

There are many generalization of the ICM. As a first step we can allow for the activation
probabilities of individuals to be different between different pairs of nodes. Specifically, each
active node u has a fixed probability pu,v to activate a non-active neighbour v. However, we still
consider that the outcomes of each attempt are independent. The most general setting would
be to allow the influence probabilities pu,v to depend on the subset S of v’s neighbours that have
already tried and failed. This fact would be encoded in a function pv(u, S) ∈ [0, 1] where {u}, S
are disjoint sets of neighbours of v. This model can result in different outcomes depending on
the order of activations, so either we must define a specific order in which neighbours try to
activate v or, even better, consider only functions pv that are order independent. The class
of functions that satisfy those constraints are those that for every set S that have tried and
failed, for every set X ⊂ S, pv(u,X) depends only on the cardinality of X, i.e. the subset of S
defines an incremental function on S. This model is called the General Cascade Model(GCM).

2.1.2 Linear Threshold Model(LTM)

The LTM stems from the early work of Schelling[123] and Granovetter[62]. It was used in a
context of explaining collective behaviour on a non-normative basis; as a dynamic process of
opinion formation. In this model, a node v is influenced by each active neighbour u according
to a weight wu,v, such that

∑
u v wu,v ≤ 1. We consider that every node is associated with

a node specific threshold, i.e. amount of “influence” that is needed for him to change his
mind. For this particular model the threshold is picked uniformly at random from the [0, 1]
interval and represents the weighted fraction of the node’s neighbours that are needed for him
to become active.

The process unfolds as follows. A set of initial nodes A0 exerts some amount of influence to
their neighbours. If the total influence that a node perceives is greater than the node specific
threshold, then that node becomes active and in turn influences other nodes. The process
continues until no other node is activated. The process proceeds in discrete steps: at each
time step t, all nodes At−1 that were active in step t−1 remain active, and all nodes in V \At−1
that the total influence they perceive exceeds their individual thresholds become active:

At = At−1 ∪ {v :
∑

u∈At−1, u∼v
wu,v ≥ θv} (2.1)

The number of steps T until the process settles is the first time that At = At−1: T = inf{t :
At = At−1}. Obviously this means that T ≤ |V | for both processes.

Again there are many ways to generalize this model to incorporate diverse effects. One
could argue that in that direction we must both allow for more general threshold functions
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fv(S), instead of simple linear functions, and more general distributions Fv according to which
the node specific thresholds are being selected, instead of the uniform distribution. It is easy
to see that only the first requirement is needed, since any extra information provided by the
threshold distribution can be incorporated in a more complex influence function f . The most
general version of the model is the General Threshold Model. In this model we associate with
each node v a monotone threshold function fv(S) that maps every subset of v’s neighbours to
a number in [0, 1] with the condition that fv(∅) = 0. The process proceeds in the same way
as the LTM with the only exception that nodes are activated when fv(S) ≥ θv. The LTM is
a special case for fv(S) =

∑
u∈S, u v wu,v, with parameters wu,v such that

∑
u v wu,v ≤ 1.

2.1.3 Model Equivalence

A natural question to ask, is how nuanced is the outcome of the process depending on which
model we choose? Is the cascade or the threshold view more pertinent? Intuitively, both
models cannot be substantially different. Take for instance the LTM, this model just asserts
that if the influence that is exerted on a certain node exceeds a certain level, the node becomes
active. On the other hand, in the ICM a single node has the chance to activate one of his
neighbours. However, this happens with a probability proportional to the influence he has
on that particular node and these influences are “added” in a probabilistic sense for different
attempts. It turns out that both the ICM and LTM produce the same distribution over
outcomes and are in that respect equivalent.

To prove the above statement we will proceed by proving equivalence under the live edge
path viewpoint. We will accomplish that by induction. Consider that at time step t the set
of active nodes is At. If a node v has not become active by the end of step t, then that
means that the total influence perceived by that node is smaller than the chosen threshold,
i.e.:

∑
u∈At wu,v ≤ θv. But since θv is distributed uniformly in [0, 1] then conditional on node

v being inactive after step t, thetav is distributed uniformly in (
∑

u∈At wu,v, 1]1. Therefore,
the probability that a node becomes active in step t+ 1 is:

P[v ∈ At+1] =

∑
u∈At+1

wu,v −
∑

u∈At wu,v

1−
∑

u∈At wu,v
=

∑
u∈At+1\At wu,v

1−
∑

u∈At wu,v
(2.2)

To provide the connection with the live edge path view, we must decide on which edges are
live and which edges are not. Actually, since the reachability relation is transitive relation it
suffices to decide on whether a node is reachable by the active set At and not on the specific
edges. Thus, at each time point t starting from t = 0 we decide for all the nodes that are
adjacent to the set At whether their live edge comes from this set or not. So, a node v becomes
reachable at time t with probability given by (2.2). By induction on the number of steps the
set of active(reachable) nodes for the two models are equivalent.

The same reasoning can be applied to prove that the equivalence hold for the GTM and
GCM as well. The only difference is in the way we convert between the probabilities pv(u, S)
and the threshold functions fv(S). To convert between from the LTM to the ICM we must
define a probability that a node u activates a neighbour v given that nodes in S have tried
and failed. Again, if nodes in S have tried and failed then that means that θv belongs in
(fv(S), 1].The probability that u activates v under these circumstances is :

pv(u, S) =
fv(S ∪ {s})− fv(S)

1− fv(S)
(2.3)

1This is due to the fact that the uniform distribution is self-similar at every (union) of sub-intervals.
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Applying the same reasoning as before, it is easy to see that the cascade process is equivalent
to the threshold process.

Towards the other direction, consider a node v and a set of active neighbours S =
{u1, . . . , uk}. The probability that a node is not activated is the joint probability that all
neighbours independently tried and failed to activate v:

∏k
i=1(1−pv(ui, S)). Because, we only

consider function pv that are order independent, we can define the corresponding threshold
function fv depending only on set S:

fv(S) = 1−
k∏
i=1

(1− pv(ui, S)) (2.4)

It is straightforward to show equivalence of the threshold process under these functionss to
the original cascade process.

2.2 Submodularity

The crucial property that all our models satisfy is that of submodularity. We will see how this
property can be translated into constant approximation algorithms for our problem of finding
the best initial set A. Formally, a set function, i.e. function that takes as input subsets S of
universal set U , is called submodular when:

f(S ∪ {v})− f(S) ≥ f(T ∪ {v})− f(T ) (2.5)

for all v ∈ U and all pairs of sets S ⊆ T . Intuitively, submodularity is the set-function analog of
concavity. Specifically, a function is called submodular if it satisfies the “diminishing returns”
property: the marginal gain by adding an element to a set S it is at least as the marginal gain
by adding an element to the superset T . In other words, the higher the ground value is, the
smaller is the marginal gain of adding one element.

The function that we are interested in is the total influence function σ(A), that is the
expected number of active nodes after the process terminates with an active initial set A. The
expectation is taken with respect to the randomness of the model. In the live edge path view,
this can be conveniently captured by specifying the set X of live edges. Therefore, the total
influence function in the case of the ICM is:

σ(A) =
∑
X

P[X] · σX(A) (2.6)

We have managed to write the total influence function as a convex sum of influence functions
where the outcome of the random coin tosses is fixed. So, if we can show submodularity of
σX for all X, then it is a straightforward exercise to show submodularity of σ. To that end,
we define R(u,X) the set of all nodes reachable from u via a live edge path and since X is
known when we are considering σX , R(u,X) is a deterministic quantity. The outcome specific
function σX(A) can now be expressed as the cardinality of the set

⋃
u∈AR(u,X). To prove

submodularity of σX consider two sets S ⊆ T and the quantity ∆(S) = σX(S ∪ {v})− σX(·),
which is the number of elements in R(v,X) that are not in the union

⋃
u∈AR(u,X). Since

R(v,X) is the same irrespectively of S or T and σX is monotone, then it follows that ∆(S) ≥
∆(T ), which is the defining inequality of submodularity. Thus, we have proven submodularity
of the total influence function for the models that are equivalent in the live edge path viewpoint,
which besides the ICM and the LTM includes some other generalizations as well, such as the
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Triggering Model and Decreasing Cascade Model introduced in [76]. However, this method
of proving submodularity breaks down when we consider the most general models GTM and
GCM.

Results towards the latter direction were obtained in 2007 by Mossel and Roch[105], who
proved the following conjecture of KKT[76].

Conjecture 1 (KKT). Consider the General Threshold Model, whenever the threshold func-
tions at every node are monotone and submodular, the resulting influence function σ(·) is
monotone and submodular as well

This result is interesting in the sense that it shows that monotonicity and submodularity
properties are closed under diffusion processes; that local monotonicity and submodularity is
sufficient to induce these properties on a global aggregate level. Their proof uses carefully
crafted coupling arguments for the stochastic process. We will only sketch the main ideas
behind the proof. Initially, we require a different, but equivalent, definition of submodularity:

Definition 1. The set-function f : 2V → R is submodular if for all S, T ⊆ V :

f(S) + f(T ) ≥ f(S ∩ T ) + f(S ∪ T ) (2.7)

In our case the total influence function σ plays the role of f and two arbitrary initially
active sets A,B play the role of S, T . Let An−1, Bn−1 denote the set of nodes that are active
after the process terminates. It is easy to see that:

σ(A) + σ(B) = |An−1|+ |Bn−1| = |An−1 ∩Bn−1|+ |An−1 ∪Bn−1| (2.8)

Note that we would be done if we could say that |An−1∩Bn−1| ≥ σ(A∩B) and |An−1∪Bn−1| ≥
σ(A ∪B). The first condition is trivially satisfied by construction, since σ(A ∩B) is a subset
of both An−1 and Bn−1. So, the real hurdle is to prove the second condition.

Intuitively, it is not clear at all that this is the case, as growing the two processesAn−1, Bn−1
separately does not give an advantage from a deterministic set-function perspective. Never-
theless, we can foresee a certain probabilistic advantage of considering separate processes.
Imagine that some key node happens to choose a high threshold value and never quite gets to
be activated, thus impeding the diffusion process. If we had both sets initiated in the same
run, the extra potential could be wasted by random fluctuations of the threshold values. On
the other hand, if we run the processes separately then such bad events would be somewhat
ameliorated. This intuition was formalized and exploited by Mossel and Roch[105] in the
following way:

• Instead of considering the sets A,B,A ∩ B,A ∪ B as initial active sets, they choose
another equivalent collection of sets A \B,B \A,A ∩B which if combined produce the
previous sets.

• They considered a process where the initially active nodes are introduced in bundles,
where each bundle is introduced in the network after the process has coalesced for pre-
vious bundles. This was done in order to gain better control over the processes and
distinguish between the effects of introducing different bundles. Specifically, all pro-
cesses An−1,Bn−1,(A ∪B)n−1 are grown in the following manner.

1. The intersection bundle (A ∩B) is introduced.

2. The pure A bundle (A \B) is introduced(if exists).



2.3. GREEDY APPROXIMATION ALGORITHM 15

3. The pure B bundle (B \A) is introduced(if exists).

So, we have that the An−1 process is (1, 2,−), the Bn−1 process is (1,−, 3) and the
(A ∪B)n−1 process is (1, 2, 3).

• In order to exploit the fact that An−1, Bn−1 processes are grown separately we must
somehow stochastically couple the threshold values in a manner so that the union of the
two processes is maximized. This was accomplished by considering that the threshold
values θv of all vertices that were activated after the σ(A) process(bundles 1 and 2) have
the same distribution in the B process(bundles 1 and 3) and that the vertices that were
not activated after the second bundle are distributed like 1 − θv, conditional that they
were not activated by the A process(θv ∈ (fv(An−1), 1]).

By these methods the authors were able to prove the necessary subset relations and then, by
exploiting the local monotonicity and submodularity properties, inductively prove the desired
inequality that we mentioned in the beginning. Summing up, the proof considered incremental
growth of the processes, in order to use induction and exploit the local properties, and coupling
to exploit the extra freedom of running the processes separately.

2.3 Greedy Approximation Algorithm

In general submodular functions have been extensively studied in the optimization literature
[107, 49, 71, 46, 87, 54, 88, 130, 52, 10] and, thus, their properties are pretty well understood.
Specifically, there is an old result of Nemhuaser et.al[107] that shows that the following greedy
approximation algorithm approximates the optimal within a ratio of (1− 1/e) for submodular
functions that are monotone and take non-negativite values. Therefore, if we prove these
properties about our problem we would obtain a constant approximation algorithm.

Alg. 1 Greedy Approximation Algorithm

Input: G = (V,E), k
Initialize: S = ∅.
for k iterations do

1 find u ∈ V \ S that maximizes σ(S ∪ {u})− σ(S).
2 add u to S.

end
Output: Influence set A, with |A| = k

In the previous section, we showed that the influence function σ satisfies the submodularity
property. Additionally, the monotonicity and non-negativity properties are trivially satisfied.
However, since σ(A) is actually the expected (weighted)number of active nodes by using
an initial seed set A, it is not clear that step 1 can be performed in polynomial time. If
we were actually to calculate the exact expected value we would need to sum over all the
expected outcomes, which for a graph with m edges would be of the order 2m. Therefore,
exact calculation is out of the question. What about approximate calculation? Is it possible
to approximately compute the value σ(A) within an error margin? The answer is affirmative.
To see that, observe that a seed set A defines a distribution over |A|, . . . , |V | for the number of
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active nodes after the end of the process. Therefore, we might be able to estimate the expected
value σ(A), which is a deterministic function of A, by drawing independent samples from the
distribution. Each sample can be extracted in polynomial time(e.g. biased coin flipping for the
edges in case of the ICM), thus the real issue here is how many samples N are enough in order
to get the desired approximation guarantee between the empirical mean σ̂(A) =

∑N
i=1Xi and

the actual expected value σ(A). The following theorem clarifies the situation:

Theorem 1. (Chernoff-Hoeffding Bound[68]) Let X1, . . . , XN be independent, identically
distributed random variables with 0 ≤ Xi ≤ n and let X =

∑
iXi, and µ = E[X], then for all

ε > 0:

P[|X − µ| ≥ εµ] ≤ 2e−
ε2N
n2

Using, this theorem we can show that if we want to have an (1 ± ε/2) estimate with

probability at least (1− 1
n2 ), we must use N > n2

ε log n samples. This implies that the correct
value of the function σ(A∪{u}) is estimated in worst case within (1± ε) accuracy. Therefore,
we have showed that step 1 actually can be performed in polynomial time with arbitrary
accuracy. What is left to do, is to actually show how the (1 − 1/e) guarantee, results from
subomdularity, non-negativity and monotonicity. The following theorem provides the answer:

Theorem 2. (Nemhuaser, Fisher, Wolsley[107]) if f is a non-negative, monotone and
submodular function, then the greedy algorithm is a (1 − 1/e)-approximation for the problem
of maximizing f(S) subject to the constraint that |S| = k.

Proof. The proof of the theorem relies on the fact that submodularity and monotonicity guar-
antee us that when we choose a node to add to the set by maximizing the marginal gain,
all future marginal contributions of other nodes will be at most equal. Let us formalize this
statement. Assume that the greedy algorithm has selected the nodes in S = {v1, . . . , vk} and
let Si denote the nodes selected up to time i, that is Si = {v1, . . . , vi}. The marginal benefit
from the addition of node i is δi = f(Si)−f(Si−1). Now, assume that O is the optimal solution
with k elements and let Õi = O ∪ Si be the union of the two sets which has at most k + i
elements(when the two sets are disjoint). By monotonicity we trivially have that f(O) ≤ f(Õi)
for all i. Note that the algorithm at each step i chooses the nodes with maximal δi, therefore
in worst case the algorithm at step i would have selected i nodes that none of them belongs
to the optimal set O. However, the fact that none node from set O was chosen means that
all those nodes had always marginal contribution smaller from δt for t = 1, . . . , i and thus
will have contribute to f at most k × δi+1 if we add them afterwards. So, we conclude that
f(O) ≤ f(Õi) ≤ f(Si) + kδi+1. Also, note that since we construct set Si incrementally we
have that: f(Si+1) = f(Si) + δi+1. Using the last two relations we get:

f(Si+1) ≥ f(Si) +
1

k
[f(O)− f(Si)] = (1− 1

k
)f(Si) +

1

k
f(O) (2.9)

which says that our greedy solution is “diluted” with at least 1/k fraction of the optimal
solution at each step. Thus, we assume that f(Si) ≥ (1− (1− 1

k )i)f(O) and we use induction
to prove it. The case i = 0 is trivial by non-negativity. The induction step unfolds as:

f(Si+1) ≥ (1− 1

k
) · f(Si) +

1

k
· f(O)

≥ (1− 1

k
) · (1− (1− 1

k
)i) · f(O) +

1

k
· f(O)(by induction hypothesis)

= (1− (1− 1

k
)i+1) · f(O).
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which completes the induction. It is an easy exercise to see that (1 − 1
k )i ≥ 1

e for all i ≤ k.
Thus, we get that our algorithm approximates the optimal within a ratio at least (1− 1

e ).

2.4 Computational Issues and Heuristics

The Influence Maximization problem, besides its theoretical appeal, is a practical one. More-
over, modern social networks such as Facebook or Tweeter boast hundred of millions of users.
Therefore, although in theory the greedy approximation algorithm provides the best the-
oretical guarantee from a practical viewpoint it suffers because of extensive running time.
Specifically, we might need roughly O(nk) iterations of step 2 of the greedy algorithm and at

least n2

ε2
log(n) samples to estimate the influence functions(in reality each step should require

that much samples, however we can keep the outcome of a live-edge-path instance and use it
to estimate all instances of σ(S)), which become prohibitive for large networks. So, we must
work on two fronts: reducing the computational cost of estimating σ and also reducing the
number of sets upon which we estimate σ. The hope is that we could salvage enough of the
algorithm’s performance inspite relaxing the computational strain.

The major advance towards the latter goal was achieved by Leskovec et al.[94]. The
authors proposed in their paper, among other things, an algorithm called Cost Effective Lazy
Forward Selection(CELF), where they exploit the submodularity property to greatly reduced
the running time of the greedy algorithm. Specifically, when evaluating the marginal gain
σ(S ∪ {u}) − σ(S), the authors store the information in a priority queue. Their main idea
was that we don’t need to re-evaluate the marginal gains for all vertices in V \ S, but only
for those that are higher in the queue. When we find the first node that is larger than all the
nodes in the queue(updated or not) we can safely stop updating, as submodularity guarantees
us that even if we updated all the nodes their values would be at most equal but not greater.
The authors experimentally evaluated the performance of the algorithm and showed that it
drastically reduces the running time(up to 700 times).

A first improvement of the CELF algorithm[30] was to use UnionFind structures in order
to calculate the spread of influence for nodes. Specifically, we perform initially R live-edge-
path experiments and for each one via BFS process create UnionFind structures. Therefore,
when we are asked to calculate the influence of a single node is just the cardinality of the
Union(strongly connected component) it belongs to thus we can calculate the values σ({v})
while we are performing the experiments in almost linear time. There is also a recent improve-
ment of this algorithm called CELF++[61], where besides the marginal gain δu(S) the algo-
rithm uses the same Monte Carlo simulations to estimate additionally δu(S ∪ {currentbest}).
Experiments indicate that this algorithm has a almost negligible memory overhead than CELF
but improves running time by 30− 50 percent.

These algorithms don’t sacrifice the strong (1−1/e)-approximation guarantee and manage
to improve the scalability of the problem. Nevertheless, they still are unable to handle very
large networks with million of nodes as there is an inherent quadratic term in performing the
Monte Carlo estimations of the influence function σ, which cannot be dropped unless we are
ready to forfeit the theoretical approximation guarantees. In that direction, there are many
efforts to approximate the influence function.

Kimura and Saito[80] aiming to overcome the computational burden of evaluating the
influence function proposed two models SP and SP1 that “approximate” in a certain sense
the IC model. The first model considers that a node can be activated from a set A only via
shortest paths, whereas the second model allows nodes to be activated again only by shortest
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paths but additionally only at times d, d + 1 where d is the hop-distance between the node
and the seed set A. The intuition behind this proposal is that along a path between a seed
set and a node, the probability that a node is activated by the seed set is maximal along the
shortest path. Therefore, by only considering those cases we might get a good approximation.
Moreover, we expect that when as the average influence probabilities gets smaller and smaller
this approximation should get better. The authors performed computational experiments
where they also considered the ranking similarity by running the greedy algorithms on these
models and the original IC model. The results showed that indeed the ranking of nodes
provided by these models are comparable to those obtained by the IC model and better
than some heuristics based on degree or eigenvector centrality, especially when the influence
probabilities are small.

Another approach on heuristically obtaining influential nodes was proposed by Chen et
al.[30]. They introduced a heuristic called DegreeDiscount, where the main idea is to incre-
mentally construct the influence set A by adding high degree nodes but making sure to update
the degrees of the reamining nodes by removing the edges that reside in the current seed set S.
When the influence probabilities are small the authors modified this heuristic to approximate
the influence in the IC model. Additionally, they conducted computational experiments which
showed that in many cases this heuristic performs reasonably well and in time that is greatly
smaller(O(k log n+m) compared to O(knNm) of the original greedy algorithm).

Despite the advances, researchers were not satisfied neither with the running time of the
SP model nor with the performance of the DegreeDiscount heuristic and continued to search
for better methods for finding good seed sets. A major advance was made by Chen, Wang and
Wang[29] with the PMIA(Prefix Excluded Maximum Influence Arborescence) algorithm. The
authors took the SP idea of Kimura and Saito one step further. Instead of considering shortest
paths(in the hop-distance sense) they consider maximum influence paths and to reduce running
time the consider only one unique path between two nodes. Therefore, the computation of
the influence spread is reduced to finding for each node an arborescence(directed rooted tree)
which can be done efficiently by Dijkstra like algorithms. The authors manage to reduce the
calculation of global influence spread in terms of the local influence regions(arborescences) of
nodes and control the size of those regions by a parameter as a trade-off between quality and
speed. The algorithm performed on par or better than the SP1 model and with significantly
improved running time, while it outperformed previous heuristics such as DegreeDiscount and
PageRank. In a related paper[31], Chen,Yang and Zhang apply these ideas in the case of the
Linear Threshold Model as well.

One drawback of the PMIA approach is the extensive memory usage that is associated
with maintaining the local tree structures, which can reach tens of GB’s for large graphs
and slow down the overall running time. Jung,Heo,Chen[73] considered a different approach
integrating the MIA and the PageRank idea for the IC model. They first proposed a method of
estimating the individual influences σ({u}) to select the first node, by noting that in trees the
problem has a nice recursive formulation that results in a system of linear equations and then
generalizing this approach in a message passing algorithm that provides an global influence
ranking. Then the authors overcame the problem of the inherent overlap in influence of ranking
methods, by using local tree structures to approximate the marginal influence of individual
nodes given a current seed set. They called their algorithm Influence Ranking and Influence
Estimation(IRIE). Experimental results showed that IRIE performs as good as PMIA while
requiring a small fraction of the memory usage and being up to two orders of magnitude faster.
Another significant advantage is that IRIE’s simple iterative computation can be implemented
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in a parallel graph computation platform, thus promising further speed up and scalability.
Lastly, there is also a recent work of Goyal et al.[60] that considers heuristics for the

LTM model, improving on work of [31]. The author address some limitations of the LDAG
approach, namely the increased memory usage and the hardness of finding a good LDAG.
Using a decomposition of the total influence as a sum of influences of individual nodes in
the graph induced by removing all seed nodes but one, which was first shown in [129], they
reduce global influence computation to local. Particularly, they address the issue of hardness
of finding a good LDAG by considering paths only in a k-neighbourhood and thus improving
influence estimation running time. Moreover, since influence of a node can be expressed via the
influence of it’s neighbours, the authors reduce the total number of influence estimation calls
by considering only nodes in a heuristically computed Vertex Cover of the graph. Finally,
they considered a look-ahead rule in order to evaluate the marginal influences and called
their algorithm Simpath. Experiments conducted in real social network graphs showed that
Simpath significantly improves Ldag’s running time and memory usage while achieving a slight
improvement on the solution quality.

2.5 Further Reading

The Influence Maximization(IM) problem is of great importance in our contemporary world,
were social networks are ubiquitous and users spend increased amount of their time online.
Companies are, thus, motivated to actually implement and apply the ideas developed over the
years by the IM community. However, there are some caveats in doing so.

First and foremost, the IM setting assumes that we know both the social graph as well
as the influence probabilities, which in reality could not be further from truth. There is a
line of research involved with finding ways to extract graphs and infer influences from online
observations. Saito et al.[121] considered the problem of inferring the influence probabilities
from a set of activation observations D(0), D(1), . . . , D(T ), where D(t) denotes the set of nodes
that were activated at time t. They used a Maximum Likelihood criterion and solved it using an
Expectation-Maximization(EM) approach. They also extend their methods when considering
also asynchronous time delay episodes[120]. On a related work, Goyal et al.[59] considered
different ways of relating action log(events) and influence probabilities under various models
(static,continuous,discrete). They designed efficient algorithms for learning those parameters
and experimentally evaluated their performance. There is also work of Leskovec and co-
authors that deal with these issues and is similar in nature to the above approaches[106,
117, 58]. An interesting direction is also that of predicting links and probabilities from prior
heterogenous data[69, 79]. Finally, there is also an attempt to design mechanisms were the
planner can extract the influence probabilities from the buyers themselves by considering
appropriate payments of a VCG-mechanism[103] or to extract individual costs associated with
influencing particular individuals[125].

Moreover, the context of IM concerns binary non-progressive decisions. That is, a buyer
can only change his mind once. Reality is much more complex. In real life sometimes multiple
products compete to satisfy particular needs of buyers and sometimes not only positive in-
formation diffuses through a network. Hence, there are efforts to simultaneously incorporate
diverse phenomena in the diffusion process and many extensions of the basic models have been
proposed.

First, KKT[76] managed to reduce the progressive case, were buyers can change their
minds, to the non-progressive classic setting by considering layered graphs. Additionally, the
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authors in the same paper considered more general marketing strategies were there are more
than one actions available and the payoff depends continuously on the amount invested. The
issue of competition and compatibility between two products was discussed in[70, 26, 14, 4, 22]
and most results are in spirit of the original KKT paper. Also, work of Chen et al.[28] covered
the case whether both negative and positive opinions about a product can propagate through
the network. They proved that the greedy algorithm also works in this setting and showed
that the process is sensitive to the negativity bias(probability of product dissatisfaction) via
a Price of Anarachy[85] approach.

The case of multiple products was first considered in[112]. The authors introduced a model
where k products compete and the final state of the graph S is sampled from the ensemble
of possible states (k + 1)|V | by a rapidly mixing Markov Chain. The distribution defined on
those states is derived by the aggregation of a local rule were both an arbitrary switch of a
node and a biased switch based on the colors of it’s local neighbourhood is allowed. Recently,
Markakis and Apt[6] generalized the LTM for allowing multiple products and provided answers
to questions such as: when is the outcome of the process unique or when does a product
dominate the whole network. They also consider the computational hardness of some related
decision problems.

Another aspect of the problem is whether the formulation and assumptions made by the IM
community are relevant to real world situations. So, there are many empirical studies looking
into the way information and influences cascade through networks, blogs, etc. This line of
research[82, 96, 9, 90, 95, 98, 84, 38, 91, 92, 36, 116, 89, 118, 32, 126] also aims at obtaining
a more qualitative anthropomorphic understanding of the process and rough guidelines for
managers in order to be able to design effective policies.

Lastly, for more information related to information cascades and networked phenomena,
there is the excellent book of D.Easly and J.Kleinberg[39] and reviews from Kempe[135] and
Wortman[136].



Chapter 3

Revenue Maximization

The importance of social networks in advertising and market research is by now indubitable[44,
114, 131, 21]. Social networks provide us with detailed and broad information for millions of
users and companies have been using this information to increase market penetration of their
products. Social network companies use the revenue exerted by advertisements to sustain the
costs involved in maintaining their servers and quality of service, as well as to provide the basis
of a sustainable business model. However, there is a large discrepancy between the perceived
value of Social Networks and the actual revenue they generate. For instance Facebook, a
7 year old company, was valued recently by Goldman Sachs at 50 billion dollars but actual
revenues were estimated to be around 2.2 billion dollars(eMarketer). The widespread belief is
that much of the potential of Social Networks remains unexploited.

This premise has spurred a large amount of research in the direction of monetizing Social
Networks. The current business model is organized around the sponsored search paradigm
of contextual advertising, which, though successful, disregards at large the network effects
between buyers. Researchers have acknowledged the importance of network structure and
have began to study the impact of ,the so called, network externalities in a variety of settings.
We are interested in how can a seller exploit these externalities to design intelligent marketing
strategies to maximize his revenue. In our context there are two complementary ways that
externalities come into play.

Propagation. Information about products diffuses through the social network via personal
communications. Consumers share their opinions about products and often are motivated to
suggest an exciting new product or condemn a dysfunctional–disappointing purchase. Often
these recommendations are far stronger than advertising attempts and, whether they are true
or misleading, have great impact in the final adoption of the product.

Network Value. There are settings where the utility of the product depends inherently on
the scale of adoption that the product receives. The Internet, Windows OS or Facebook are
examples of “products” whose value lies in the fact that a large fraction of the population has
access and uses them on a daily basis. Moreover, for many products (e.g. cell phones, instant
messengers, online gaming) the value of the product for a buyer depends on the specific set of
his friends that have adopted it and possibly in a non-uniform way.

21
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In this and the following chapters we focus on the second kind of externalities, were
product adoption is an integral part of product value. In this setting, the seller must de-
vise a marketing strategy that guarantees both wide product adoption(increased value of the
product or service) and significant revenue. We follow up on a work by Hartline, Mirrokni,
Sundararajan(HMS)[66]. They considered the case of a single seller selling a single product
to a set of potential buyers under positive network externalities, where buyers are willing to
purchase the product in a higher price if some of their friends already bought it.

3.1 Influence Models

Following the Influence Maximization paradigm [76], HMS model
buyers and their relationships by a graph. The world consists of n
buyers that have arbitrary social relationships between them, these
relations influence buyers in their decisions. Buyers are modelled
by nodes and the influence between them by weights wij , ∀i, j ∈ V .
Specifically, every buyer has a valuation vi(S) for the product, which
depends at any time point only from the set of buyers S that already
own the product. The exact quantities vi for the good are unknown
to the seller and are treated as random variables of which only the distributions Fi,S are known
for all S ⊆ V and for all i ∈ V . The values vi(S) are assumed to be independently distributed.

The above model is quite general and encompasses the inherent uncertainty of buyers
preferences by treating the valuations as random variables. Some important instantiations of
the general model are:

Uniform Additive Model In this model there are deterministic weights wi,j for all i, j ∈ V .
Given the set of buyers S that already own the product and a asking price x, buyer i decides
to accept the offer or not by adding all the weights from his active neighbours

∑
j∈S wj,i and

then choosing a threshold in θi ∈ [0, 1]. If the asking price x is greater than θ ·
∑

j∈S wj,i
then he rejects the offer, else he accepts and pays the asking price x. This model is a direct
extension of the Linear Threshold Model studied in the context of Influence Maximization in
order to incorporate pricing dynamics. Also note that we could equivalently say that buyer
i chooses a random number in [0,

∑
j∈S wj,i], however the threshold interpretation is a more

useful viewpoint as we will see in the following chapters.

Symmetric Model This is the simplest possible model, where buyers valuations vi(S) are
identical and depend only on the number of buyers that already own the product |S| = k.
Specifically, the model is fully specified by the distribution Fk for k = 0, . . . , n− 1. Note that
this is an aggregate model of interaction where the identities of buyers play no role, i.e. there
is no underlying graph. This model is reminiscent of the Baas model and the general “mean
field” assumptions made in the Diffusion of Innovations context.

Concave Graph Model In this model, there are random weights wi,j for every buyer
i, j ∈ V each drawn independently from a distribution Fi,j . Each buyer is associated with a
non-negative, monotone and concave function fi : R+ −→ R+. The value vi(S) is equal to
fi(
∑

j∈S∪{i}wj,i). In other words, we are uncertain about how buyers influence each other but
we assume that the valuations depend only on the weighted aggregate of the influence and in
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Figure 3.1: Illustration of a run of marketing strategy. Initially all buyers are available to receive an offer.
The seller selects an ordering of buyers and makes individual offers. The buyers can either accept(green) or
reject(red) the offer. If they accept they influence(green arcs) other buyers that have not received an offer yet.

a monotone, concave way. This model is analogous to the General Threshold Model were the
threshold functions were monotone and submodular.

3.2 Optimal Marketing Strategies

In this setting Hartline et.al[66] search for strategies that maximize the revenue from a mar-
keting strategy. They assume that the seller has the freedom to make individualized offers
to buyers, that the cost of manufacturing a unit of the good is zero and that the seller has
unlimited supply(e.g. software, electronic subscriptions). A marketing strategy consists of two
elements: a sequence, according to which the seller approaches buyers, and the prices offered
to each buyer. At each time point a buyer is visited and an offered is made. The buyer on
his part can either accept the offer by paying the asking price or reject it. The revenue that
results from a strategy is the sum of the prices paid by buyers that accepted the offer. We say
that a marketing strategy is optimal when it maximizes the revenue.

Revenue Maximization The problem of Revenue Maximization is given a weighted graph
G(V,E,w) and an underlying influence model to find the marketing strategy(sequence of offers
and price for each offer) that maximizes the expected revenue.

Hardness Hartline et.al. showed that this problem is NP-Hard for the directed case even for
a very simple model, under complete information and linear valuation functions, utilizing a re-
duction from Maximum Acyclic Subgraph Problem[12, 67, 108]. Specifically, they considered a
special case of the concave graph model were all Fi,j are just degenerate point distributions(wi,j
are known) and the functions fi are all the identity function f(x) = x. Under, these assump-
tions the seller needs only to find the right sequence π of offers to be made so as to maximize
the revenue, which is just the sum of all the edges wi,j such that π(i) < π(j). The problem
of finding a sequence such that the number of directed edges going backwards is known as
Maximum Feedback Arc Set and is known to be NP-Hard. Therefore, if for the directed case
our problem is NP-Hard for this simple model, it is also for more general models. We must
note at this point that the NP-Hardness for the undirected case does not follow from the re-
duction. Nevertheless, it was believed that the problem must be hard even for the undirected
case, however no proof was known. We will address this issue in the following chapter.



24 CHAPTER 3. REVENUE MAXIMIZATION

Interestingly, a random permutation provides an 0.5 approximation for the Maximum
Feedback Arc set, since the event π(i) < π(j) happens exactly with probability 0.5 for all
i 6= j ∈ V . Recently, Guruswami et al.[64] showed that assuming the Unique Games Conjecture
it is NP-Hard to approximate Maximum Feedback Arc set by a factor greater than 0.5. This
result implies that the random ordering is actually the best we can do. In the next chapter
we will revisit this fact.

Dynamic Programming The previous Hardness result renders any effort of finding an
optimal marketing strategy vain, at least in the directed setting. It seems like that when
allowing buyers to have arbitrary relationships the problem becomes hard. What happens if get
rid of the combinatorial dependencies between buyers and consider only aggregate phenomena?
HMS looked into the special case of the Symmetric Model and showed that we can find an
optimal solution via Dynamic Programming.

In the Symmetric Model, the sequence of buyers play no role(all buyers are identical).
They assume that at each time step we offer our product to one of the remaining buyers at
a price p. The price p(k, t) only depends on the number of buyers k that have accepted the
offer, and the number of remaining buyers t. Let R(k, t) be the maximum revenue that can
be extracted, when k buyers have accepted the offer and there are t more buyers to consider.
Our strategy will be to construct a recurrence for the optimal revenue R(0, n) in terms of
the variables R(k, t) and p(k, t). They also assume that we know the distributions Fk and
fk = dFk

dp .
We calculate the expected revenue from an offer of value p(k, t). If the buyer accepts,

which happens with probability 1 − Fk(p), then we get p plus the future optimal revenue
R(k + 1, t − 1) from the remaining buyers. Otherwise, we get only the revenue R(k, t − 1).
The expected revenue is thus:

R(k, t) = Fk(p) ·R(k, t− 1) + (1− Fk(p)) · [R(k + 1, t− 1) + p] (3.1)

So, given that we have recursively computed R(k, t − 1) and R(k + 1, t − 1) we can find the
optimal price p(k, t) by optimizing the expected revenue:

fk(p)[R(k, t− 1)−R(k + 1, t− 1)− p] + 1− Fk(p) = 0 (3.2)

Then the value R(k, t) is easy to compute. To solve the recurrence we roughly need to fill
an n × n matrix, thus we need roughly time O(n2). Therefore, in the symmetric model the
optimal marketing strategy can be found in polynomial time.

The authors also investigated the special case were Fk is uniform in [0, k+ 1]. They solved
the recurrence and found that the optimal strategy initially offered to a significant fraction of
buyers the product for free(at zero price) and then the price offered to each successive buyer
increased linearly. It is quite interesting that the optimal strategy involves two stages one
“seeding phase”, were the network value of the product is built up, and an “reaping phase”,
were the price increases gradually with time.

3.3 Influence and Exploit

The established hardness results bring about the need for approximation algorithms. Hartline
et al., motivated by the fully symmetric setting, proposed a class of approximation strategies
called Influence and Exploit(IE). These strategies consist of two steps. They initially offer the
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product for free to a selected subset A of buyers, aiming to increase the network value of the
product(Influence Step) and then visit the remaining buyers in a random sequence extracting
the maximal myopic revenue from each one(Exploit Step). In the fifth chapter, we thoroughly
discuss the motivation for considering these kind of strategies, as well as provide our own
improvements and insights. Here, we will just outline the approach taken by HMS. In general,
IE strategies differ in how they construct the influence set A and how the revenue from this
construction relates to the optimal revenue depending on the model we are considering.

Uniform Additive Model In this important case, when a buyer accepts an offer, the
revenue we collect depends on the edges that are active at that time. Therefore, the Influence
step aims at activating vertices such that a large fraction of the edges have exactly one active
end(node). The authors proposed to construct the set A by including every vertex with
probability q. The exploit step on the other hand requires just to visit the remaining buyers
in a random order and offer the product at the myopic price.

The myopic price is the price which maximizes the expected revenue collected from the
buyer, disregarding his influence in the network, i.e. how much more would a neighbour be
willing to pay(in expectation) if the buyer we are considering accepted the offer. Let S be the
set of buyers that have accepted the offer when we are considering buyer i, then the expected
revenue from i is:

Ri(x) = (1− U(x))
∑
j∈S

wj,i = (1− x∑
j∈S wj,i

)
∑
j∈S

wj,i (3.3)

Setting Mi,S =
∑

j∈S wj,i and optimizing Ri with respect to x, we get that the optimal price
is Mi,S/2. This price corresponds to 1/2 probability that buyer i accepts. Hence, the myopic
price in the case of the UAM is simply a price x(i, S = Mi,S/2) such that buyer i accepts with
probability 1/2.

To analyze the performance of this algorithm, we need upper bounds on the optimal
revenue. An obvious choice is to consider that the optimal strategy manages to activate all
edges and extract the maximum amount(myopic) of revenue from each one. Thus, an upper
bound for the undirected case would be:

R∗un =
1

4

∑
(i,j)∈E

wi,j ==
1

4
(N +W ) (3.4)

where N =
∑

i∈V wii and W =
∑

i>j wij and 1/4 is a factor results from the myopic
revenue((1/2) · (1/2)). Respectively this bound for the directed case would be:

R∗dir =
1

4
(
∑
i∈V

wii +
∑
i>j

max{wij , wji} (3.5)

Now, every vertex i is included in the influence set A with probability P(i ∈ A) = q and in
the exploit set E with probability P(i ∈ E) = 1− q. Moreover, every buyer in the exploit set
accepts with probability 1/2 and pays Mi,S/2, where S is the set of buyers that have accepted
the offer. Recall that we are visiting buyers in the explout step in a random order, hence
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P (πj < π(i)) = 1/2. Therefore, the expected revenue is:

R(q, 1/2) =
∑
i∈V

P (i ∈ E)P (i)

∑
j 6=i

wji[P (j ∈ A) + P (j ∈ E ∧ j < i ∧ j ∈ S)] + wii


=

1− q
4

1

2

∑
i 6=j

wji(q +
1− q

4
) +

∑
i

wii

 =

=
1

4

[
(1− q)N +

1 + 2q − 3q2

8
E

]
Now, we can optimize the expected revenue with respect to the parameter q. By differentiating
and equating to zero we get that the optimal value is q∗ = W−N

3W . The approximation ratio
thus depends only on the ratio λ = N/W and the worst case is when λ = 0, in which case
q = 1/3. The approximation ratio is thus at least 2/3.

Monotone Hazard Rate The approach taken in the case of the uniform additive model,
can be generalized for the concave graph model in the case that the distributions Fij satisfy
the so-called monotone hazard rate condition.

Definition 2. The hazard rate h of a distribution with density function f , cumulative F and
support [a, b] is h(t) = f(t)

1−F (t) . This implies that the distribution function can be expressed in

term of the hazard rate F (t) = 1− exp−
∫ t
a h(x)dx.

A function f satisfies the monotone hazard rate condition if the corresponding hazard rate
function h is monotone and non-decreasing. This condition is roughly equivalent to the fact
that when considering the expected revenue from a buyer there is a unique maximizer. The
existence of a unique maximizer allows for a clearly defined price for each buyer in the exploit
step irrespectively of the outcome of previous offers and the sequence of buyers.

Before, presenting the generalized analysis of the previous IE scheme, we state some prop-
erties about distributions satisfying the monotone hazard rate condition.

Lemma 1 (HMS[66]). Let Wji be random variables with distributions Fji satisfying the mono-
tone hazard rate condition. Let Y =

∑
j∈SWji the random variable with distributionFS. Also,

let R(x) be a monotone function and Z is a random variable with distribution Fi,S derived
from Z = R(

∑
j∈S wji). Then:

1. The distribution FS of the random variable Y =
∑

j∈SWji satisfies the monotone hazard
rate condition.

2. The distribution Fi,S of Z satisfies the monotone hazard rate condition for all S ⊂ V .

3. If a random variable X satisfies the monotone hazard rate condition then 1−F (x∗) ≥ e−1,
where x∗ is the value that maximizes the function (1− F (x)) · x.

In other words, points 1 and 2 say that the monotone hazard rate property is closed
under summation and under application of a monotone function. In the concave graph model
case this implies that the distribution of buyers valuations satisfy the monotone hazard rate
condition. The third point just provides a lower bound on the probability that a buyer accepts
an offer that maximizes the expected revenue.
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To extend the simple IE strategy presented for the Uniform Additive Model for the special
case of the Concave Graph Model where the weight distributions satisfy the monotone hazard
rate condition, we need another lemma.

Lemma 2 (HMS[66]). Consider a monotone submodular function f : 2V → R and a subset
S ⊂ V . Consider a random set S

′
by choosing each element of S independently with probability

at least q. Then E[f(S
′
)] ≥ q · f(S).

Proof. We will present the proof of the lemma as it is quite elegant. The idea is to express the
revenue of the final set S

′
as incremental improvements from the empty set by telescopic sums.

Now, for the terms of the sums to cancel each other alternatingly after taking expectation over
the random choices, we need every random binary choice whether to include a vertex or not
to have the same bias q. So, fix a permutation of vertices in S and consider that Si is the
resulting set after the first i vertices in the permutation have been considered. We have that
f(S

′
) =

∑
1≤i≤|S′ | f(S

′
i)−f(S

′
i−1) and that f(S

′
0) = 0.Taking expectation, with respect to the

set S
′
, we get:

E[f(S
′
] = E[

∑
1≤i≤|S′ |

f(S
′
i)− f(S

′
i−1)]

=
∑

1≤i≤|S|

q · [f(S
′
i−1 ∪ {ui})− f(S

′
i−1)]

≥
∑

1≤i≤|S|

q · [f(Si)− f(Si−1)]

= q · f(S)

where the inequality follows from the fact that S
′
i ⊆ Si for all i and that f is a submodular

function.

Now, we are ready to state the theorem:

Theorem 3 (HMS[66]). Suppose that the revenue functions Ri(S) = fi(
∑

j∈SWji) for all
i ∈ V and S ⊆ V {i} are monotone, non-negative and submodular and the distributions Fi,S
for all i ∈ V and S ⊆ V {i} satisfy the monotone hazard rate condition. Then there exists
a set A for which the simple IE strategy is a e

4e−2 -approximation of the optimal marketing
strategy.

Again the IE strategy constructs the influence set A by including every vertex with prob-
ability q and then offers the myopic price at each vertex in V \ A in a random order. The
revenue is : R(q) = EA,Ti [

∑
i∈V \ARi(Ti)], where Ti is the set of buyers that own the product

when i is considered. The above expectation is with respect to the set A, the random sequence
and buyers decisions. Every vertex in A is surely in Ti and every vertex in V \(A∪{i}) is in Ti
with probability greater than 1

2e , since there is an 1/2 chance of being considred before i and,
if so, there is at least a 1/e probability of accepting the offer. Therefore, for buyer i ∈ V \ A
every other vertex is in Ti with probability at least (q + 1−q

2e ). Also, every buyer is in V \ A
with probability (1− p). Thus, using the previous lemma we get that:

R(q) = EA,Ti [
∑
i∈V \A

Ri(Ti)] ≥ (1− q)(q +
1− q

2e
)
∑
i∈V

Ri(V \ {i}) (3.6)

Note that in our case an upper bound on the revenue is
∑

i∈V Ri(V \ {i}), hence the approx-

imation ratio is (1− q)(q + 1−q
2e ) which by choosing q appropriately is at least e

4e−2 .
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Submodular Valuations Hartline et al. aiming to extend their IE approach for more
general valuation functions went to greater lengths. They considered the case where the
only constraint on buyers valuations Ri(A) is that they are non-negative and submodular,
which are the weakest possible assumptions usually made in such context. Maximizing a non-
monotone submodular functions is known to be NP-Hard[46] and therefore the authors turn
to approximation strategies.

Observe that in this setting we do not hope to approximate the optimal strategy but
instead we are aiming to approximate the optimal IE strategy. Let g(A) be the expected
revenue, with respect to buyers decisions and the random ordering, of an IE strategy with
influence set A. Let O denote the optimal set, that is g(O) ≥ g(S) for all S ⊂ V . We are
looking for a set A such that resulting IE revenue g(A) is close to the optimal one.

The way HMS went about it was to exploit the local optimality conditions of submodular
functions to iteratively construct a “good” set A. We first state some facts about non-negative
submodular functions.

Definition 3. Given f : X → R, a set S is called a (1 + α)-approximate local optimum, if
(1 + α)f(S) ≥ f(S \ {u}) for any u ∈ S and (1 + α)f(S) ≥ f(S ∪ {u}) for any u ∈ X \ S.

This is a relaxation of the local optimality condition satisfied by submodular functions
which says that if S is a local optimum then f(I) ≤ f(S) for every I ⊆ S and for every I ⊇ S.
However, this relaxation is necessary because finding an exact optimum of Max-Cut, special
case of submodular function, is PLS-Complete[111]. We now present a Local Search algorithm
to incrementally construct the influence set A.

Local Search

Input: The set V and a value oracle for g(S) on support 2V

Initialization:
1. Set S := {v} for the singleton set {v} with the maximum value g({v})
among singletons.
2. If there exists an element v ∈ V \ S such that f(S ∪ {v}) > (1 +
ε
n2 )f(S), then let S := S ∪ {v}, and go back to Step 2.
3. If there exists an element v ∈ S such that f(S \{v}) > (1+ ε

n2 )f(S),
then let S := S \ {v}, and go back to Step 2.
Output: the maximum of f(S) and f(V \ S).

The algorithm is constructed in a way that, when it terminates, produces an approximate
local optimum. To analyze the performance of the algorithm we need also the following lemma.

Lemma 3 (FMV[46]). If S is an (1+α) approximate local optimum for a submodular function
f then for any set T such that T ⊆ S or T ⊇ S, we have that f(T ) ≤ (1 + n · α)f(S), where
n = |V |.

Proof. We will prove the lemma for the case T ⊆ S and the other case is similar. Since T ⊆ S,
we start from T and add vertices in S \ T one by one T1 = T ⊆ T2 ⊆ . . . ⊆ Tk = S such that
Ti \ Ti−1 = {vi}. By submodularity we know that f(Ti) − f(Ti−1) ≥ f(S) − f(S \ {vi}) and
since S in approximate local optimum we get that: f(Ti)− f(Ti−1) ≥ −αf(S). The difference
form a telescopic sum and if we sum all inequalities we get that: f(S)− f(T ) ≥ −kαf(S) and
thus f(T ) ≤ (1 + kα)f(S) ≤ (1 + nα)f(S).
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We are now ready to state the theorem:

Theorem 4 (FMV[46]). The Local Search is a (13−
ε
n)-approximation algorithm for maximizing

nonnegative submodular functions. The algorithm uses at most O(1εn
3 log n) oracle calls.

Proof. Consider an optimal solution O and fix α = ε
n2 for some ε > 0. If the algorithm

terminates S is a local optimum an therefore (1 + nα)f(S) ≥ f(S ∩ O) and (1 + nα)f(S) ≥
f(S∪O). Using submodularity we get that f(S∪O)+f(V \S) ≥ f(O \S)+f(V )geqf(O \S)
and f(S ∩O) + f(C \ S) ≥ f(C) + f(∅)geqf(O \ S). If we combine the above inequalities we
get:

2(1 + nα)f(S) + f(V \ S) ≥ f(S ∩O) + f(S ∪O) + f(V \ S)

≥ f(S ∩O) + f(O \ S) ≥ f(O)

So, if f(S) < (13 −
ε
n)f(O) then f(V §) ≥ (13 −

ε
n)f(O) and the algorithm outputs f(V \ S),

otherwise it outputs f(S).
Our algorithm after each iteration improves the objective value by at least (1 + ε/n2).

Moreover, since f is submodular(diminishing returns property) it is easy to see that f(S) ≤
f(O) ≤ nf({v}), where {v} is the set returned after the first iteration. Therefore after k
iteration we have that f(S) ≥ (1 + ε

n2
kf({v}). Hence, k = O(1εn

2 log n and the total number
of queries is O(1εn

2 log n), which concludes the proof.

Finally, there is another more involved randomized Local Search algorithm that produces a
0.4 approximation[46]. The main idea is to construct randomly the influence set A. However,
the best we can do with a constant bias is to include with probability 1/2 each element of
V and results in a 1/4 approximation. The reason behind this fact is that the geometry
of the probability space we construct is too uniform and not nigh too a target underline
geometry where the measure is spread with preference over subsets of V where f(S) ≥ r ·
OPT . Therefore, the way to go around this fact is to find a more appropriate probability
space. Now, to that end we are confined to consider product spaces(decision about elements
are independent) because we do not now all the dependencies between variables(exponential
number of queries).

To succesfully construct such a probability space we must exploit the submodularity prop-
erty of our function, which is more of a “local set” property. Hence, our goal will be to
construct a set A according to which we will select all the elements in A with probability
q and all elements in V \ A with another probability p < q. This is called the multinlinear
extension of a function f(A)[130]. So, the algorithm incrementally constructs a “good” set A
by estimating the marginal contribution of each node of being included or exluded from A in
a manner similar to the Local Search algorithm we presented above. We state here only the
theorem without proof.

Theorem 5 (FMV[46]). There is a Stochastic Local Search Algorithm that is a (25 − O(1))-
approximation algorithm for maximizing nonnegative submodular functions.

3.4 Other Related Work

All studies in the Influence Maximization context treated influence as an indirect measure of
the revenue extracted from the adoption of a product and the influence models studied did not
incorporate pricing dynamics. Social Influence in the context of Revenue Maximization was



30 CHAPTER 3. REVENUE MAXIMIZATION

first studied by Hartline et.al. [66]. Since then much work has been done mainly towards two
directions; the study of posted price mechanisms, where price discrimination is not allowed,
and game theoretic settings, where buyers act strategically according to their perceived utility
for the product, which depends on other buyers’s decisions.

Arthur et.al [8] considered a model where the seller does not have the freedom to approach
potential buyers and only recommendations about products cascade through the network from
an initial seed of early adopters. They showed that a very simple strategy achieves a constant
approximation ratio.

Akghalpour et.al. [2] studied iterative posted price strategies where all interested buyers can
by the product at the same price at a given time. They considered two different models allowing
different re–pricing rates. They showed that when we are allowed to reprice very frequently the
problem is inapproximable and provided approximation algorithms for a symmetric setting.
On the other hand when re–pricing is allowed only at a limited rate they provided a FPTAS.

On a related work, Anari et.al. [5] considered a posted price setting where the product
exhibits a special kind of externality, the so called historical externality. In their model buyers
face the dilemma whether to buy a sub-par early version of the product or wait for a fully
functional one. They assume that the seller commits a-priori to a pricing trajectory and
then buyers decide when to buy the product. They considered that there are types buyers
exhibiting different behaviour. In this setting they study existence and uniqueness of equilibria
and provide an FPTAS to compute an approximate revenue maximizing pricing trajectory for
two special cases.

Chen, Lu et.al [31] consider a case where each buyer’s utility for the product depends on
the set of buyers that own the product. They provide a game theoretic solution concept and
consider Nash as well as Bayesian-Nash equilibria. In their setting where multiple equilibria
might exist, they study two special cases, pessimistic and optimistic equilibria. They provide
an algorithm to compute these equilibria and along the way find the price that maximized the
sellers revenue.

Candogan, Bimpikis, Ozdaglar [25] considered a setting where a monopolist sells a divisible
good to consumers that experience a positive network effect. They provide a game theoretic
solution concept. They considered a two stage game where initially the seller sets an individual
price for each consumer and then the buyers decide on the consumption, according to a
quadratic utility function that depends on the consumption levels of their neighbours. They
showed that when perfect price discrimination is allowed the optimal price depends linearly
with the Bonanich Centrality of a buyer, whereas when only two prices are allowed the problem
is reduced to Max-Cut.

Haghpanah et al.[65] study positive externalities in the context of designing Optimal Auc-
tions. The consider single-parameter submodular network externalities in which a bidder’s
value for an outcome is a fixed private type times a known submodular function of the alloca-
tion of his friends. They prove that the optimal auction is APX-Hard, even on average. For
a special kind of step-function externalities, they provide constant approximation algorithms.
Moreover, using the influence and exploit idea, they use the algorithms developed by [46] to
design constant approximation auction mechanisms.



Chapter 4

Preliminaries

Hartline et al.[66] considered a very general model on how externalities influence buyers’
valuations of some product. However, studying the model in the most general(submodular)
setting yields little insight in the combinatorial structure of the problem and the particularities
of Revenue Maximization as opposed to other instances of submodular maximization. In this
thesis, we focus on the Uniform Additive Model which provides the optimal trade-off between
model complexity and analytical tractability. In this and the following chapters, we discuss
the Revenue Maximization Problem under the Uniform Additive Model.

4.1 Uniform Additive Model

In our setting we are considering only positive externalities, that is the valuation of a buyers
for the product can only increase if one of his social contacts already owns the product. The
Uniform Additive Model is a way to model the extent that buyers influence each other in that
respect. The model aims in capturing two aspects of the influence between buyers, dependence
and uncertainty.

Towards that direction, in order to model each aspect certain assumptions are made.
Buyers are influenced by each other pairwise. That is, the influence that a certain person
exerts on someone is independent of the influence from another person. This assumption
implies linearity of influence. Furthermore, since in reality buyers’ valuations are private
information and only rough estimations can be made about their true value, the model makes
the simplistic assumption that valuations are uniformly distributed in an interval of possible
values.

The Model We, thus, considered that we are given a (possibly directed) weighted social
network G(V,E,w) on the set V of potential buyers. For each edge (i, j) ∈ E, there is an
associated positive weight wij and if (i, j) /∈ E we assume that wij = 0. A social network is
undirected(or symmetric) if wij = wji for all i, j ∈ V , and directed otherwise. Additionally,
there may exist a non-negative weight wii associated with each buyer i1. These weights capture
the pairwise influence between buyers.

1For directed networks we can safely ignore such weights, since we can consider an extra node i
′

for each
such node with a single directed edge with weight wi′ i = wii.

31
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We consider that each buyer i has a valuation of the product
vi(S) that depends only on the set S of buyers that already own the
product. Particularly, we assume that vi(S) is a random variable dis-
tributed uniformly in the interval [0,Mi,S ], where Mi,S =

∑
j∈S wji

is the the total influence perceived by i from his neighbours that
own the product.

Connection with LTM Alternatively, we can interpret the above
process as each buyer picking a threshold θi uniformly at random
from [0, 1]. Then if the offer xi is smaller than θiMi,S , the buyer accepts, otherwise rejects
the offer. The similarity with the Linear Threshold Model[76] now becomes evident. The
only difference is that each buyer is considered only once at a chosen time, whilst in the LTM
whenever the threshold is exceeded the node is activated. It would be interesting to generalize
the LTM for a Posted Price Setting.

Myopic Pricing If we disregard the influence of a buyer i on future buyers, we can select
a price x such that the expected revenue from buyer i is maximized. In the case of the UAM,
this price is Mi,S/2 and buyer i has 1/2 probability of accepting it. This pricing is not optimal
because it disregards the effect that the buyer’s decision may have on future buyers. Thus we
call such a pricing strategy myopic.

4.2 Marketing Strategies and Revenue Maximization

In the setting we describe above, there is a seller wishing to exploit these externalities in order
to devise a marketing strategy that will maximize his revenue. We consider that the seller has
the freedom to approach each buyer individually and offer him a price. Therefore, a marketing
strategy (π,x) consists of a permutation of buyers V and a pricing vector x = (x1, . . . , xn),
where π determines the order by which buyers are visited and x the prices offered to them.

Note that the price that is offered to each buyer i depends on the set of buyers S that
already own the product, which itself is a random variable. Consequently, we cannot calculate
a priori the exact price xi because it must depend on the S. We get around this fact by
making the following observation. We observe that for any buyer i and any probability p
that i accepts an offer, there is an (essentially unique) price xp such that i accepts an offer of
xp with probability p. For the Uniform Additive Model, xp = (1 − p)Mi,S and the expected
revenue extracted from buyer i with such an offer is p · (1− p)Mi,S .

Pricing with Probabilities Throughout this paper, we equivalently regard marketing
strategies as consisting of a permutation π of the buyers and a vector p = (p1, . . . , pn) of
pricing probabilities. We note that if pi = 1, i gets the product for free, while if pi = 1/2,
the price offered to i is (the myopic price of) Mi,S/2. We assume that pi ∈ [1/2, 1], since any
expected revenue in [0,Mi,S/4] can be achieved with such pricing probabilities. The expected
revenue of a marketing strategy (π,p) is:

R(π,p) =
∑
i∈V

pi(1− pi)

 ∑
π(j)<π(i)

wj,ipj + wii

 (4.1)
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The problem of Revenue Maximization under the Uniform Additive Model is to find a market-
ing strategy (π,p) that extracts a maximum revenue of R(π∗,p∗) from a given social network
G(V,E,w).

Bounds on the Maximum Revenue Let N =
∑

i∈V wii and W =
∑

i<j wij , if the social
network G is undirected, and W =

∑
(i,j)∈E wij , if G is directed. Then an upper bound on the

maximum revenue of G is R∗ = (W +N)/4, and follows by summing up the myopic revenue
over all edges of G [66, Fact 1]. For a lower bound on the maximum revenue, if G is undirected
(resp. directed), approaching the buyers in any order (resp. in a random order) and offering
them the myopic price yields a revenue of (W + 2N)/8 (resp. (W + 4N)/16). Thus, myopic
pricing achieves an approximation ratio of 0.5 for undirected networks and of 0.25 for directed
networks. nd of 0.25 for directed networks.

4.3 Ordering and NP-Hardness

Revenue maximization exhibits a dual nature involving optimizing both the pricing probabili-
ties and the sequence of offers. For directed networks, finding a good ordering ~π of the buyers
bears a resemblance to the Maximum Acyclic Subgraph problem, where given a directed net-
work G(V,E,w), we seek for an acyclic subgraph of maximum total edge weight. In fact, any
permutation ~π of V corresponds to an acyclic subgraph of G that includes all edges going
forward in ~π, i.e, all edges (i, j) with πi < πj . [66, Lemma 3.2] shows that given a directed
network G and a pricing probability vector ~p, computing an optimal ordering of the buyers
(for the particular ~p) is equivalent to computing a Maximum Acyclic Subgraph of G, with
each edge (i, j) having a weight of pipj(1 − pj)wij . Consequently, computing an ordering ~π
that maximizes R(~π, ~p) is NP-hard and Unique-Games-hard to approximate within a factor
greater than 0.5 [64].

On the other hand, we show that in the undirected case, if the pricing probabilities are
given, we can easily compute the best ordering of the buyers.

Lemma 4. Let G(V,E,w) be an undirected social network, and let ~p be any pricing probability
vector. Then, approaching the buyers in non-increasing order of their pricing probabilities
maximizes the revenue extracted from G under ~p.

Proof. We consider an optimal ordering ~π (wrt. ~p) that minimizes the number of buyers’ pairs
appearing in increasing order of their pricing probabilities, namely, the number of pairs i1, i2
with pi1 < pi2 and πi1 < πi2 . If there is such a pair in ~π, we can find a pair of buyers i and
j with pi < pj such that i appears just before j in ~π. Then, switching the positions of i and
j in ~π changes the expected revenue extracted from G under ~p by pipjwij(pj − pi) ≥ 0, a
contradiction.

A consequence of Lemma 4 is that [66, Lemma 3.2] does not imply the NP-hardness of
revenue maximization for undirected social networks. Hence, there are two natural questions
that we may ask. Does the ordering play any role in extracting revenue from the network or
given an ordering we can always find a pricing vector p that manages to extract the maximal
amount of revenue?

To answer this question, we provide an example where fixing the ordering dwindles our
ability to extract the optimal revenue. e consider an (undirected) simple cycle with 4 nodes,
numbered as they appear on the cycle, and unit weights on its edges. Proposition 5 shows
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bj

cj

Selection Nodes

Set Nodes (b)

a b

aj bj

Selection Nodes

Set Nodes

Figure 4.1: Examples of (a) an extended triangle and (b) a 3-path, used in the proof of
Lemma 5. We create an extended triangle for each 3-item set Tj and a 3-path for each 2-item
set Tj . The set nodes are different for each set Tj , while the selection nodes are common for
all sets.

that the optimal ordering is (1, 3, 2, 4), the optimal pricing vector is (1, 0.5, 1, 0.5), and the
maximum revenue is 1. On the other hand, if the nodes are ordered as they appear in the
cycle, i.e., as in (1, 2, 3, 4), the optimal pricing vector is (1,

√
2/2, (1 +

√
2)/2, 0.5), and the

resulting revenue is 0.7772.
So, given that the ordering does have an impact after all, what can we say about the

hardness of the problem in the undirected setting. The following lemma employs a reduction
from monotone One-in-Three 3-SAT, and shows that revenue maximization is NP-hard for
undirected networks.

Lemma 5. The problem of computing a marketing strategy that extracts the maximum revenue
from an undirected social network is NP-hard.

Proof. In monotone One-in-Three 3-SAT, we are given a set V of n items and m subsets
T1, . . . , Tm of V , with 2 ≤ |Tj | ≤ 3 for each j ∈ {1, . . . ,m}. We ask for a subset S ⊂ V such
that |S∩Tj | = 1 for all j ∈ {1, . . . ,m}. Monotone One-in-Three 3-SAT is shown NP-complete
in [?]. In the following, we let m2 (resp. m3) denote the number of 2-item (resp. 3-item) sets
Tj in an instance (V, T1, . . . , Tm) of monotone One-in-Three 3-SAT.

Given (V, T1, . . . , Tm), we construct an undirected social network G. The network G con-
tains a selection-node corresponding to each item in V . There are no edges between the
selection nodes of G. For each 3-item set Tj = {a, b, c}, we create an extended triangle con-
sisting of a triangle on three set nodes aj , bj , and cj , and three additional edges that connect
aj , bj , cj to the corresponding selection nodes a, b, and c (see also Fig. 4.1.a). For each 2-item
set Tj = {a, b}, we create a 3-path consisting of an edge connecting two set nodes aj and bj ,
and two additional edges connecting aj and bj to the corresponding selection nodes a and b
(see also Fig. 4.1.b). Therefore, G contains n+ 2m2 + 3m3 nodes and 3m2 + 6m3 edges. The
weight of all edges of G is 1. We next show that (V, T1, . . . , Tm) is a YES-instance of monotone
One-in-Three 3-SAT iff the maximum revenue of G is at least 177

128 m3 + 3
4 m2.

By Lemma 4, the revenue extracted from G is maximized if the nodes are approached in
non-increasing order of their pricing probabilities. Therefore, we can ignore the ordering of
the nodes, and focus on their pricing probabilities. The important property is that if each
extended triangle (Fig. 4.1.a) is considered alone, its maximum revenue is 177/128, and is
obtained when exactly one of the selection nodes a, b, c has a pricing probability of 1/2 and
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the other two have a pricing probability of 1. More specifically, since the selection nodes a, b, c
have degree 1, the revenue of the extended triangle is maximized when they have a pricing
probability of either 1 or 1/2. If all a, b, c have a pricing probability of 1, the best revenue of
the extended triangle is ≈ 1.196435, and is obtained when one of aj , bj , and cj has a pricing
probability of ≈ 0.7474, the other has a pricing probability of ≈ 0.5715, and the third has a
pricing probability of 1/2. If all a, b, c have a pricing probability of 1/2, the best revenue of the
extended triangle is again ≈ 1.196435, and is obtained with the same pricing probabilities of
aj , bj , and cj . If two of a, b, c (say a and b) have a pricing probability of 1/2 and c has a pricing
probability of 1, the best revenue of the extended triangle is 21

16 = 1.3125, and is obtained when
one of aj and bj has a pricing probability of 1, the other has a pricing probability of 3/4, and cj
has a pricing probability of 1/2. Finally, if two of a, b, c (say b and c) have a pricing probability
of 1 and a has a pricing probability of 1/2, we extract a maximum revenue from the extended
triangle, which is 177

128 = 1.3828125 and is obtained when aj has a pricing probability of 1, one
of bj and cj has a pricing probability of 9/16, and the other has a pricing probability of 1/2.

Similarly, if each 3-path (Fig. 4.1.b) is considered alone, its maximum revenue is 3/4, and
is obtained when exactly one of the selection nodes a, b has a pricing probability of 1/2 and the
other has a pricing probability of 1. In fact, since the 3-path is a bipartite graph, Proposition 5
implies that the maximum revenue, which is 3/4, is extracted when aj and b have a pricing
probability of 1 and bj and a have a pricing probability of 1/2 (or the other way around). If
both a and b have a pricing probability of 1, the best revenue of the 3-path is 41/64 and is
obtained when one of aj and bj has a pricing probability of 5/8, and the other has a pricing
probability of 1/2. If both a and b have a pricing probability of 1/2, the best revenue of 3-path
is again 41/64 and is obtained when one of aj and bj has a pricing probability of 1, and the
other has a pricing probability of 5/8.

If (V, T1, . . . , Tm) is a YES-instance of monotone One-in-Three 3-SAT, we assign a pricing
probability of 1/2 to the selection nodes in S and a pricing probability of 1 to the selection
nodes in V \ S, where S is a set with exactly one element of each Tj . Thus, we have exactly
one selection node with pricing probability 1/2 in each extended triangle and in each 3-path.
Then, we can set the pricing probabilities of the set nodes as above, so that the revenue of
each extended triangle is 177/128 and the revenue of each 3-path is 3/4. Thus, the maximum
revenue of G is at least 177

128 m3 + 3
4 m2.

For the converse, we recall that the edges of G can be partitioned into m3 extended triangles
and m2 3-paths. Consequently, if the maximum revenue of G is at least 177

128 m3 + 3
4 m2, each

extended triangle contributes exactly 177/128 and each 3-path contributes exactly 3/4 to the
revenue of G. Thus, by the analysis on their revenue above, each extended triangle and each
3-path includes exactly one selection node with a pricing probability of 1/2. Therefore, if we
let S consist of the selection nodes with pricing probability 1/2, we have that |S ∩ Tj | = 1 for
all j ∈ {1, . . . ,m}.

The fact that the problem remains NP-hard in the undirected setting suggests that the
pricing aspect lies at the heart of the problem. The very proof of NP-hardness illustrates that
selecting prices for vertices among the continuous space [1/2, 1]n in an optimal way encodes
complex information. In the sense that assigning prices to vertices essentially corresponds
to finding an optimal weighted multi-cut(in our proof the resemblance with Max-cut is more
apparent). That is, we could consider a discretization of the pricing range [1/2, 1] in sufficiently
many k prices and ask the question, how we should distribute vertices in these pricing classes
such that corresponding weighted multi-cut is maximized? In the next chapter we will exploit
this idea to provide an improved approximation algorithm for the problem.
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Figure 4.2: Illustration of the argument used in the proof of Lemma 1.

4.4 Determining the Sequence

In this section we aim to provide further connections between revenue maximization and the
notion of multi-cuts in the network. Particularly, we will show how multi-cuts are related with
the Maximum Feedback Arc set problem.

Definition 4. The problem of Maximum Feedback Arc set is given a directed graph G(V,E)
find an ordering(permutation) of vertices such that the total weight of edges that are going
from indices higher in the permutation to lower ones is maximal.

This problem is equivalent to the maximum acyclic sub-graph problem and it is NP-Hard.
However, as discussed before there exists a simple randomized 1/2-approximate algorithm,
which just takes a random ordering. In 2008 Guruswami et.al [64] showed that the problem
cannot be approximated better than 1/2 unless the Unique Games Conjecture [78, ?] is false.
These two facts imply that not only a random ordering is good but it is probably the best we
can do up to o(1) factors [27].

We proceed now with observations that will motivate later developments. Notice that the
structure of Max-FAS has the feature that an optimal solution is optimal for the same problem
when constrained to any subset of vertices that are consecutive in the optimal permutation.
This means that if we knew that the only candidates for positions xk, . . . , xk+m are those in
a set |X| = m, then we would solve this problem optimally without worrying for external
interference. At this point we state the following structural lemma:

Lemma 6. An optimal ordering of vertices for the MAX-FAS, “contains” the MAX-CUT
solution. Meaning that if the optimal ordering is π∗ = (i1, . . . , in), then there is k ≤ n such
that S = {ik, . . . , in} and T = V \S = {i1, . . . , ik−1} is an optimal solution for the MAX-CUT
problem with vertices in V .

Proof. We will prove it by contradiction. Assume we have an optimal solution and suppose
that there isn’t such k, then that would mean that there is a set S

′
with elements that are not

all consecutive such that the directed cut between S
′

and V \ S′ = T
′

is an optimal solution
for the MAX-CUT problem. If that is the case then we could keep the ordering inside the two
sets S

′
, T

′
and relocate S

′
in the end of the sequence. Now in terms of the weight of the FAS

we created, we would miss the edges going from T
′

to S
′
, but we would gain the edges from

S
′

to T
′
. However, because S

′
andT

′
is an optimal solution for the MAX-CUT problem we are

guaranteed to gain feedback arcs. But we assumed that the initial ordering was optimal.
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The algorithmic interpretation of the previous lemma is that if there is a unique maximum
cut we can extract a partial ordering of vertices. Then due to the optimality of sub-solutions
we could proceed and derive the total ordering in a divide and conquer manner.

Corollary 1. Assume that there is a unique MAX-CUT solution for every subset of vertices
in V , then an algorithm that solved optimally the directed MAX-CUT problem would also solve
optimally the MAX-FAS problem.

Let us look again closer to the 1/2 approximation algorithm for MAX-FAS. This algorithm
just outputs a random permutation, however we can view this process of obtaining a random
permutation as a synthesis of processes where the core process is the 1/2 approximate algorithm
for the max-cut problem. Specifically, we can think the final permutation as a result of more
refined partial orderings of vertices. Particularly, at each time point we would have disjoint
sets of vertices S1, S2, . . . , Sk and a total ordering on these sets S1 � S2 � . . . � Sk. So
until we had only singleton sets we would further refine our ordering, by applying the simple
algorithm for max-cut.

The random permutation algorithm can be seen as naively trying to approximate the prob-
lem by substituting an algorithm that solves optimally MAX-CUT, without even caring about
the possible existence of many possible cuts and how to choose between them. Surprisingly
enough, this algorithm is currently the state of the art. The question that arises is: “Instead
of considering as the core process the simple approximation algorithm, wouldn’t we get much
better results if we applied the much more sophisticated approximation algorithm of Feige and
Goemanns [45] for the directed MAX-CUT?”. Obtaining a better algorithm for the MAX-
FAS, though very unlikely, would have great implications as it would disprove the Unique
Games Conjecture.
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Chapter 5

Influence and Exploit

Influence and Exploit strategies are simple, elegant and manage to extract a significant frac-
tion of the optimal revenue. However, their algorithmic properties are hardly well understood,
namely their limits in approximating the optimal revenue and the computational hardness of
finding the optimal revenue. In this chapter we manage to significantly extend the under-
standing of IE strategies.

Before, proceeding with the technical part, we briefly discuss the motivation behind con-
sidering such strategies. In the previous chapter, we saw that the uncertainty in the model
resulted in a continuous search space were marketing strategies lie and the in tandem hard-
ness. The Influence and Exploit idea just select two extreme points in the range and assigns
vertices in pricing classes. The motivation behind this approach partly stems from the fact
that the combinatorial properties of partitioning vertices into two sets have been extensively
studied and partly to translate results from the theory of maximizing submodular set func-
tions inspired from the Influence Maximization paradigm. Lastly, IE strategies are better
suited for practical real world implementations, since many marketing efforts are usually of
the discount/full price form and buyers are accustomed to it.

An Influence-and-Exploit (IE) strategy IE(A, p) consists of a set of buyers A receiving the
product for free and a pricing probability p offered to the remaining buyers in V \A, who are
approached in a random order. We slightly abuse the notation and let IE(q, p) denote an IE
strategy where each buyer is selected in A independently with probability q. IE(A, p) extracts
an expected (wrt the random ordering of the exploit set) revenue of:

RIE(A, p) = p(1− p)
∑
i∈V \A

wii +
∑
j∈A

wji +
∑

j∈V \A, j 6=i

pwji
2

 (5.1)

Specifically, IE(A, p) extracts a revenue of p(1−p)wji from each edge (j, i) with buyer j in the
influence set A and buyer i in the exploit set V \A. Moreover, IE(A, p) extracts a revenue of
p2(1− p)wji from each edge (j, i) with both j, i in the exploit set, if j appears before i in the
random order of V \A, which happens with probability 1/2.

The problem of finding the best IE strategy is to compute a subset of buyers A∗ and
a pricing probability p∗ that extract a maximum revenue of RIE(A∗, p∗) from a given social
network G(V,E,w).

Interestingly, even very simple IE strategies extract a significant fraction of the maximum
revenue. For example, for undirected social networks, RIE(∅, 2/3) = (4W + 6N)/27, and thus
IE(∅, 2/3) achieves an approximation ratio of 16

27 ≈ 0.592. For directed networks, RIE(∅, 2/3) =

39
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(2W + 6N)/27, and thus IE(∅, 2/3) achieves an approximation ratio of 8
27 ≈ 0.296.

5.1 Optimal Influence and Exploit Strategies

Influence and Exploit is a powerful idea and yields good algorithms approximating the optimal
revenue. Does the restriction of vertices only in two pricing classes makes the problem easier
from a computational complexity perspective? Intuitively, this should not be true as we saw
that hardness in the undirected setting was established by using a generalized notion of max-
cut, which is very close to the Influence and Exploit idea. Then, if the restricted problem is as
hard as the original, what can be said about the potential of IE strategies in approximating the
optimal revenue? Meaning, can the optimal revenue be achieved for the general case by using
only two prices? Such, a result would be surprising as it would imply a surprising degeneracy
in the model.

In this section we provide results about the computational hardness of finding the optimal
IE strategy. Furthermore, we provide lower bounds on the performance of the Optimal IE
strategy in terms of approximating the optimal revenue as well as corresponding upper bounds
for the directed case.

Hardness The following lemma employs a reduction from monotone One-in-Three 3-SAT[122],
and shows that computing the best IE strategy is NP-hard.

Lemma 7. Let p ∈ [1/2, 1) be any fixed pricing probability. The problem of finding the best
IE strategy with pricing probability p is NP-hard, even for undirected social networks.

Proof. We recall that in monotone One-in-Three 3-SAT, we are given a set V of n items and
m subsets T1, . . . , Tm of V , with 2 ≤ |Tj | ≤ 3 for each j ∈ {1, . . . ,m}. We ask for a subset
S ⊂ V such that |S ∩ Tj | = 1 for all j ∈ {1, . . . ,m}. Given (V, T1, . . . , Tm), we construct an
undirected social network G on V .

For each 3-item set Tj = {a, b, c}, we create a set-triangle on
nodes a, b, and c with 3 edges of weight 1. For each 2-item set
Tj = {a, b}, we add a set-edge {a, b} of weight 2 + p, where p is the
pricing probability. To avoid multiple appearances of the same edge,
we let the weight of each edge be the total weight of its appearances.
Namely, if an edge e appears in k3 set-triangles and in k2 set-edges,
e’s weight is k3 + (2 + p)k2. We observe that for any p ∈ [1/2, 1), the maximum revenue
extracted from any set-triangle and any set-edge is p(1− p)(2 + p), by giving the product for
free to exactly one of the nodes of the set-triangle (resp. the set-edge).

We next show that (V, T1, . . . , Tm) is a YES-instance of monotone One-in-Three 3-SAT iff
there is an influence set A in G such that RIE(A, p) ≥ mp(1 − p)(2 + p). If (V, T1, . . . , Tm)
is a YES-instance of monotone One-in-Three 3-SAT, we let the influence set A = S, where
S is a set with exactly one element of each Tj . Then, we extract an expected revenue of
p(1−p)(2+p) from each set-triangle and each set-edge in G, which yields an expected revenue
of mp(1 − p)(2 + p) in total. For the converse, if there is an influence set A in G such that
RIE(A, p) ≥ mp(1 − p)(2 + p), we let S = A. Since RIE(A, p) ≥ mp(1 − p)(2 + p), and since
the edges of G can be partitioned into m set-triangles and set-edges, each with a maximum
revenue of at most p(1 − p)(2 + p), each set-triangle and each set-edge contributes exactly
p(1− p)(2 + p) to RIE(A, p). Therefore, for all set-triangles and all set-edges, there is exactly
one node in A. Thus, we have that |S ∩ Tj | = 1 for all j ∈ {1, . . . ,m}.
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Efficiency of Influence and Exploit Strategies Given the hardness of computing both
the optimal marketing strategy and the optimal IE strategy, how can we compare the two
revenues? The usual direction would be to indirectly compare them by obtaining an upper
bound for the optimal strategy and a lower bound for the performance of the optimal IE
strategy. However, we only have the naive upper bounds discussed earlier which can be
arbitrarily away from the optimal revenue.

To come around this obstacle we exploit the fact that the revenue of any strategy in the
Uniform Additive Model can be written as a linear function of the edge weights, where each
weight is multiplied by a factor depending on the probability that the two respective vertices
accept the offer, thus utilizing Local Analysis. A lower bound on the approximation ratio
can be derived by comparing termwise the two revenues and keeping the worst ratio accross
different terms(w.r.t the edges). Hence, we show that the best IE strategy manages to extract
a significant fraction of the maximum revenue.

Theorem 6. For any undirected social network, there is an IE strategy with pricing probability
0.586 whose revenue is at least 0.9111 times the maximum revenue.

Proof. We consider an arbitrary undirected social network G(V,E,w). We assume that the
optimal IE strategy has at its disposal the optimal probability vector p∗(corresponding to the
optimal marketing strategy) and assigns vertices in to one of the two classes accordingly. A
lower bound on the optimal IE IE(A, p̂) strategy can be given by any specific decision rule.
We consider that this decision is madeby applying randomized rounding to p∗. We show that
for p̂ = 0.586, the expected (wrt the randomized rounding choices) revenue of IE(A, p̂) is at
least 0.9111 times the revenue extracted from G by the best ordering for p (recall that by
Lemma 4, the best ordering is to approach the buyers in non-increasing order of their pricing
probabilities).

Without loss of generality, we assume that p1 ≥ p2 ≥ · · · ≥ pn, and let π be the identity
permutation. Then, R(π,p) =

∑
i∈V pi(1− pi)wii +

∑
i<j pipj(1− pj)wij .

For the IE strategy, we assign each buyer i to the influence set A independently with
probability I(pi) = α(pi − 0.5), for some appropriate α ∈ [0, 2], and to the exploit set with
probability E(pi) = 1− I(pi). By linearity of expectation, the expected revenue of IE(A, p̂) is:

RIE(A, p̂) =
∑
i<j

p̂(1− p̂)(I(pi)E(pj) + E(pi)I(pj) + p̂ E(pi)E(pj))wij

+
∑
i∈V

p̂(1− p̂)E(pi)wii

Specifically, IE(A, p̂) extracts a revenue of p̂(1 − p̂)wii from edge loop {i, i}, if i is included
in the exploit set. Moreover, IE(A, p̂) extracts a revenue of p̂(1− p̂)wij from each edge {i, j},
i < j, if one of i, j is included in the influence set A and the other is not, and a revenue of
p̂2(1− p̂)wij if both i and j are included in the exploit set V \A (note that the order in which
i and j are considered is insignificant).

The approximation ratio is derived as the minimum ratio between any pair of terms in
R(π,p) and RIE(A, p̂) corresponding to the same loop {i, i} or to the same edge {i, j}. For a
weaker bound, we observe that for α = 1.43 and p̂ = 0.586, both

min0.5≤x≤1
p̂ (1− p̂)E(x)

x (1− x)
and

min0.5≤y≤x≤1
p̂ (1− p̂)(I(x)E(y) + E(x) I(y) + p̂ E(x)E(y))

x y (1− y)
(5.2)
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are at least 0.8024. More precisely, the former quantity is minimized for x ≈ 0.7104, for which
it becomes ≈ 0.8244. For any fixed value of y ∈ [0.5, 1.0], the latter quantity is minimized for
x = 1.0. The minimum value is 0.8024 for x = 1.0 and y ≈ 0.629.

For the stronger bound of 0.9111, we let p̂ = 0.586, and for each buyer i, let the rounding
parameter α(pi) be chosen according to the following piecewise linear function of pi :

α(pi) =


5.0 (pi − 0.5) if 0.5 ≤ pi ≤ 0.7
1.0 + 3.3 (pi − 0.7) if 0.7 < pi ≤ 0.8
1.33 + 3.0 (pi − 0.8) if 0.8 < pi ≤ 0.9
1.63 + 3.7 (pi − 0.9) if 0.9 < pi ≤ 1.0

The quantity on the left of (5.2) is minimized for x = 0.8, for which it becomes ≈ 0.9112.
For any fixed x ∈ [0.5, 0.949], the quantity on the right of (5.2) is minimized for y = 0.5. The
minimum value is 0.9111 for x ≈ 0.7924 and y = 0.5. For any x ∈ (0.949, 0.983], the latter
quantity is minimized for y = 0.7. The minimum value, over all x ∈ (0.949, 0.983], is ≈ 0.93
at x = 0.983 and y = 0.7. For any fixed x ∈ (0.983, 1.0], the quantity on the right of (5.2) is
minimized for some y ∈ [0.7, 0.8]. Moreover, for all y ∈ [0.7, 0.8], this quantity is minimized
for x = 1.0. The minimum value is ≈ 0.9112 at x = 1.0 and y ≈ 0.8.

Theorem 7. For any directed social network, there is an IE strategy with pricing probability
2/3 whose expected revenue is at least 0.55289 times the maximum revenue.

Proof. As before, we consider an arbitrary directed social network G(V,E,w), start from
an arbitrary pricing probability vector p, and obtain an IE strategy IE(A, p̂) by applying
randomized rounding to p. We show that for p̂ = 2/3, the expected (wrt the randomized
rounding choices) revenue of IE(A, p̂) is at least 0.55289 times the revenue extracted from G
under the best ordering for p (which ordering is Unique-Games-hard to approximate within a
factor less than 0.5!).

We recall that in the directed case, we can, without loss of generality, ignore loops (i, i).
Let π be the best ordering π for p. Then, the maximum revenue extracted from G with pricing
probabilities p is R(π,p) ≤

∑
(i,j)∈E pipj(1− pj)wij .

As in the proof of Theorem 6, we assign each buyer i to the influence set A independently
with probability I(pi) = α(pi−0.5), for some α ∈ [0, 2], and to the exploit set with probability
E(pi) = 1 − I(pi). By linearity of expectation, the expected (wrt the randomized rounding
choices) revenue extracted by IE(A, p̂) is:

RIE(A, p̂) =
∑

(i,j)∈E

p̂(1− p̂)(I(pi)E(pj) + 0.5 p̂ E(pi)E(pj))wij

Specifically, IE(A, p̂) extracts a revenue of p̂(1 − p̂)wij from each edge (i, j), if i is included
in the influence set and j is included in the exploit set, and a revenue of p̂2(1− p̂)wij if both
i and j are included in the exploit set V \ A and i appears before j in the random order of
V \A.

The approximation ratio is derived as the minimum ratio between any pair of terms in
R(π,p) and RIE(A, p̂) corresponding to the same edge (i, j). Thus, we select p̂ and α so that
the following quantity is maximized:

min
0.5≤x,y≤1

p̂ (1− p̂)(I(x)E(y) + 0.5 p̂ E(x)E(y))

x y (1− y)
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We observe that for p̂ = 2/3 and α = 1.0, this quantity is simplified to miny∈[0.5,1]
2(3−2y)
27y(1−y) .

The minimum value is ≈ 0.55289 at y = 3−
√
3

2 .

Similarly, we can show that there is an IE strategy with pricing probability 1/2 whose
revenue is at least 0.8857 (resp. 0.4594) times the maximum revenue for undirected (resp.
directed) networks.

Approximability of the Maximum Revenue for Directed Networks The results of
[66, Lemma 3.2] and [64] suggest that given a pricing probability vector p, it is Unique-
Games-hard to compute a vertex ordering π of a directed network G for which the revenue of
(π,p) is at least 0.5 times the maximum revenue of G under p. An interesting consequence of
Theorem 7 is that this inapproximability bound of 0.5 does not apply to revenue maximization
in the Uniform Additive Model. In particular, given a pricing probability vector p, Theorem 7
constructs, in linear time, an IE strategy with an expected revenue of at least 0.55289 times
the maximum revenue of G under p. This does not contradict the results of [?, 64], because
the pricing probabilities of the IE strategy are different from p. Moreover, in the Uniform
Additive Model, different acyclic (sub)graphs (equivalently, different vertex orderings) allow
for a different fraction of their edge weight to be translated into revenue (for an example, see
Section ??, in the Appendix), while in the reduction of [66, Lemma 3.2], the weight of each
edge in an acyclic subgraph is equal to its revenue.

We show a simple example where different acyclic subgraphs (equivalently, different ver-
tex orderings) of the social network allow for a different fraction of their edge weight to
be translated into revenue. To this end, we consider a simple directed network G on V =
{u1, u2, u3, u4}. G contains an edge from each vertex ui to each vertex uj with j > i, that is
6 edges in total. Formally, E = {(ui, uj) : 1 ≤ i < j ≤ 4}. The weight of each edge is 1.

In ordering π1 = (u1, u2, u3, u4), all edges go forward. So, π1 corresponds to an acyclic sub-
graph with edge weight 6. The optimal pricing probabilities for π1 are p1 = (1, 0.7474, 0.5715, 0.5)
and extract a revenue of R(π1,p1) = 1.1964 from G. Thus, π1 allows for a revenue equal to
19.943% of its edge weight.

Similarly, ordering π2 = (u1, u3, u2, u4) corresponds to an acyclic subgraph with edge
weight 5. The optimal pricing probabilities for π2 are p2 = (1, 0.625, 0.625, 0.5) and extract
a revenue of R(π2,p2) = 1.03125. So, π2 allows for a revenue equal to 20.625% of its edge
weight.

Ordering π3 = (u2, u1, u3, u4) also corresponds to an acyclic subgraph with edge weight 5.
The optimal pricing probabilities for π3 are p3 = (1, 1, 0.5625, 0.5) and extract a revenue of
R(π3,p3) = 1.1328. Thus, π3 allows for revenue equal to 22.656% of its edge weight. Also,
the revenue extracted by IE({u1, u2}, 0.5147) is 1.0634. Thus, π3 allows for an IE strategy
extracting a revenue equal to 21.268% of its edge weight.

IE({u1, u2}, 0.5147), for example, approximates the maximum revenue of G within a factor
of 1.0634

1.1964 ≈ 0.8888. On the other hand, if we consider a random ordering of u1 and u2 and of u3
and u4, we obtain a vertex ordering π′, which combined with p1, gives an expected revenue of
≈ 1.0306. Hence, (π′,p) approximates the maximum revenue of G under p1 within a factor of
1.0306
1.1964 ≈ 0.8614. On the other hand, π′ defines an acyclic subgraph of G which has an expected
edge weight of 5 and approximates the edge weight of the maximum acyclic subgraph of G
within a factor of 5

6 ≈ 0.8333.
Thus, although the IE strategy of Theorem 7 is 0.55289-approximate with respect to the

maximum revenue of G under p, its vertex ordering combined with p may generate a revenue
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of less than 0.5 times the maximum revenue of G under p. In fact, based on Theorem 7, we
obtain, in Section ??, a polynomial-time algorithm that approximates the maximum revenue
of a directed network G within a factor of 0.5011.

The following propositions establish a pair of inapproximabity results for revenue maxi-
mization in the Uniform Additive Model.

Proposition 1. Assuming the Unique Games conjecture, it is NP-hard to compute an IE
strategy with pricing probability 2/3 that approximates within a factor greater than 3/4 the
maximum revenue of a directed social network in the Uniform Additive Model.

Proof. Let G(V,E,w) be a directed social network, and let π∗ be a vertex ordering correspond-
ing to an acyclic subgraph of G with a maximum edge weight of W ∗. Then, approaching the
buyers according to π∗ and offering a pricing probability of 2/3 to each of them, we extract a
revenue of 4W ∗/27. Therefore, the maximum revenue of G is at least 4W ∗/27.

Now, we assume an influence set A so that IE(A, 2/3) approximates the maximum revenue
of G within a factor of r. Thus, RIE(A, 2/3) ≥ 4rW ∗/27. Let π be the order in which
IE(A, 2/3) approaches the buyers, and let (i, j) be any edge with πi < πj , namely, any edge
from which IE(A, 2/3) extracts some revenue. Since the revenue extracted from each such
edge (i, j) is at most 2wij/9, the edge weight of the acyclic subgraph defined by π is at least
9
2RIE(A, 2/3) ≥ 2r

3 W
∗.

Hence, given an r-approximate IE(A, 2/3), we can approximate W ∗ within a ratio of 2r/3.
The proposition follows from [64, Theorem 1.1], which assumes the Unique Games conjecture
and shows that it is NP-hard to approximate W ∗ within a ratio greater than 1/2.

Proposition 2. Assuming the Unique Games conjecture, it is NP-hard to approximate within
a factor greater than 27/32 the maximum revenue of a directed social network in the Uniform
Additive Model.

Proof. The proof is similar to the proof of Proposition 1. Let G(V,E,w) be a directed social
network, and let π∗ be a vertex ordering corresponding to an acyclic subgraph of G with a
maximum edge weight of W ∗. Using π∗ and a pricing probability of 2/3 for all buyers, we
obtain that the maximum revenue of G is at least 4W ∗/27.

We assume a marketing strategy (π,p) that approximates the maximum revenue of G
within a factor of r. Thus, R(π,p) ≥ 4rW ∗/27. Let (i, j) be any edge with πi < πj , namely,
any edge from which (π,p) extracts some revenue. Since the revenue extracted from each such
edge (i, j) is at most wij/4, the edge weight of the acyclic subgraph defined by π is at least
4R(π,p) ≥ 16r

27 W
∗

Thus, given an r-approximate marketing strategy (π,p), we can approximate W ∗ within
a ratio of 16r/27. Now, the proposition follows from [64, Theorem 1.1].

5.2 Optimizing simple Influence and Exploit

A natural idea is to exploit the apparent connection between a large cut in the social network
and a good IE strategy. For example, in the undirected case, an IE strategy IE(q, p) is
conceptually similar to the randomized 0.5-approximation algorithm for MAX-CUT, which
puts each node in set A with probability 1/2. However, in addition to a revenue of p(1−p)wij
from each edge {i, j} in the cut (A, V \ A), IE(q, p) extracts a revenue of p2(1 − p)wij from
each edge {i, j} between nodes in the exploit set V \ A. Thus, to optimize the performance
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Figure 5.1: (a)Illustration of the simple IE strategy and (b) the approximation ratio as a function of the
ration N/W

of IE(q, p), we carefully adjust the probabilities q and p so that IE(q, p) balances between the
two sources of revenue. Hence, we obtain the following:

Proposition 3. Let G(V,E,w) be an undirected social network, and let q = max{1−
√
2(2+λ)
4 , 0},

where λ = N/W . Then, IE(q, 2 −
√

2) approximates the maximum revenue extracted from G
within a factor of at least 2

√
2(2−

√
2)(
√

2− 1) ≈ 0.686.

Proof. The proof extends the proof of [66, Theorem 3.1]. We start with calculating the ex-
pected (wrt to the random choice of the influence set) revenue of IE(q, p). The expected
revenue of IE(q, p) from each loop {i, i} is (1 − q)p(1 − p)wii. In particular, a revenue of
p(1 − p)wii is extracted from {i, i} if buyer i is included in the exploit set, which happens
with probability 1 − q. The expected revenue of IE(q, p) from each edge {i, j}, i < j, is
(2q(1 − q)p(1 − p) + (1 − q)2p2(1 − p))wij . More specifically, if one of i, j is included in
the influence set and the other is included in the exploit set, which happens with probability
2q(1− q), a revenue of p(1− p)wij is extracted from edge {i, j}. Otherwise, if both i and j are
included in the exploit set, which happens with probability (1− q)2, a revenue of p2(1− p)wij
is extracted from edge {i, j} (note that since {i, j} is an undirected edge, the order in which
i and j are considered in the exploit set is insignificant). By linearity of expectation, the
expected revenue of IE(q, p) is:

RIE(q, p) = (1− q)p(1− p)
∑
i∈V

wii + (1− q)p(1− p)
∑
i<j

(2q + p(1− q))wij

Using that N =
∑

i∈V wii and W =
∑

i<j wij , and setting N = λW , we obtain that:

RIE(q, p) = (1− q)p(1− p)(λ+ 2q + p(1− q))W

Differentiating with respect to q, we obtain that the optimal value of q is

q∗ = max

{
1− p− λ/2

2− p
, 0

}
We recall that R∗ = (1 +λ)W/4 is an upper bound on the maximum revenue of G. Therefore,
the approximation ratio of IE(q, p) is:

4(1− q)p(1− p)(λ+ 2q + p(1− q))
1 + λ

(5.3)



46 CHAPTER 5. INFLUENCE AND EXPLOIT

Using p = 1/2 and q = max
{
1−λ
3 , 0

}
in (5.3), we obtain the IE strategy of [66, Theorem 3.1],

whose approximation ratio is at least 2/3, attained at λ = 0. Assuming small values of λ,
so that q∗ > 0, and differentiating with respect to p, we obtain that the best value of p for

IE(q∗, p) is p∗ = 2 −
√

2. Using p = 2 −
√

2 and q = max
{

1−
√
2(2+λ)
4 , 0

}
, we obtain an IE

strategy with an approximation ratio of at least 2
√

2(2 −
√

2)(
√

2 − 1) ≈ 0.686, attained at
λ = 0.

Proposition 4. Let G(V,E,w) be a directed social network. Then,

IE
(

1−
√
2
2 , 2−

√
2
)

approximates the maximum revenue of G within a factor of
√

2(2 −
√

2)(
√

2− 1) ≈ 0.343.

Proof. The proof is similar to the proof of Proposition 3. We recall that for the directed case,
we can ignore loops (i, i). Since the social network G is directed, the expected (wrt to the
random choice of the influence set and the random order of the exploit set) revenue of IE(q, p)
is:

RIE(q, p) = (1− q)p(1− p)
∑

(i,j)∈E

(q + p(1− q)/2)wij

= (1− q)p(1− p)(q + p(1− q)/2)W

More specifically, if i is included in the influence set and j is included in the exploit set, which
happens with probability q(1− q), a revenue of p(1− p)wij is extracted from each edge (i, j).
Furthermore, if both i and j are included in the exploit set V \A and i appears before j in the
random order of V \A, which happens with probability (1− q)2/2, a revenue of p2(1− p)wij
is extracted from edge (i, j).

Using the upper bound of W/4 on the maximum revenue of G, we have that the approx-
imation ratio of IE(q, p) is at least 4(1 − q)p(1 − p)(q + p(1 − q)/2). Setting q = 1/3 and
p = 1/2, we obtain the IE strategy of [66, Theorem 3.1], whose approximation ratio for di-

rected networks is 1/3. Using q = 1−
√
2
2 and p = 2−

√
2, we obtain an IE strategy with an

approximation ratio of
√

2(2−
√

2)(
√

2− 1) ≈ 0.343.

Proposition 5 (Optimality of IE for Bipartite Networks). Let
G(V,E,w) be an undirected bipartite social network with wii = 0 for all buyers i, and let
(A, V \A) be any partition of V into independent sets. Then, IE(A, 1/2) extracts the maximum
revenue of G.

Proof. Since all edges of G are between buyers in the influence set A and buyers in the exploit
set V \A, IE(A, 1/2) extracts the myopic revenue of wij/4 from any edge {i, j} ∈ E. Therefore,
IE(A, 1/2) is an optimal strategy.

5.3 Generalized Influence and Exploit

Building on the idea of generating revenue from large cuts between different pricing classes,
we obtain a class of generalized IE strategies, which employ a refined partition of buyers in
more than two pricing classes. We first analyze the efficiency of generalized IE strategies
for undirected networks, and then translate our results to the directed case. The analysis
generalizes the proof of Proposition 3.
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A generalized IE strategy consists of K pricing classes, for some appropriately large integer
K ≥ 2. Each class k, k = 1, . . . ,K, is associated with a pricing probability of pk = 1 −
k−1

2(K−1) . Each buyer is assigned to the pricing class k independently with probability qk, where∑K
k=1 qk = 1, and is offered a pricing probability of pk. The buyers are considered in non-

increasing order of their pricing probabilities, i.e., the buyers in class k are considered before
the buyers in class k + 1, k = 1, . . . ,K − 1. The buyers in the same class are considered in
random order. In the following, we let IE(q,p) denote such a generalized IE strategy, where
q = (q1, . . . , qK) is the assignment probability vector and p = (p1, . . . , pK) is the pricing
probability vector.

We proceed to calculate the expected revenue extracted by the generalized IE strategy
IE(q,p) from an undirected social network G(V,E,w). The expected revenue of IE(q,p)
from each loop {i, i} is wii

∑K
k=1 qkpk(1 − pk). Specifically, for each k, buyer i is included

in the pricing class k with probability qk, in which case, the revenue extracted from {i, i} is
pk(1− pk)wii. The expected revenue of IE(p,q) from each edge {i, j}, i < j, is:

wij

K∑
k=1

qkpk(1− pk)

(
qkpk + 2

k−1∑
`=1

q`p`

)

More specifically, for each class k, if both i, j are included in the pricing class k, which happens
with probability q2k, the revenue extracted from {i, j} is p2k(1− pk)wij . Furthermore, for each
pair `, k of pricing classes, 1 ≤ ` < k ≤ K, if either i is included in ` and j is included
in k or the other way around, which happens with probability 2q`qk, the revenue extracted
from {i, j} is p`pk(1 − pk)wij . Using linearity of expectation and setting N =

∑
i∈V wii and

W =
∑

i<j wij , we obtain that the expected revenue of IE(q,p) is:

RIE(q,p) = N

K∑
k=1

qkpk(1− pk) +W

K∑
k=1

qkpk(1− pk)

(
qkpk + 2

k−1∑
`=1

q`p`

)

Since R∗ = (N +W )/4 is an upper bound on the maximum revenue of G, the approximation
ratio of IE(q,p) is at least:

min

{
4

K∑
k=1

qkpk(1− pk), 4
K∑
k=1

qkpk(1− pk)

(
qkpk + 2

k−1∑
`=1

q`p`

)}
(5.4)

We can now select the assignment probability vector q so that (5.4) is maximized. We note
that with the pricing probability vector p fixed, this involves maximizing a quadratic function
of q over linear constraints. Thus, we obtain the following:

Theorem 8. For any undirected social network G, the generalized IE strategy with K = 6
pricing classes and assignment probabilities q = (0.183, 0.075, 0.075, 0.175, 0.261, 0.231) ap-
proximates the maximum revenue of G within a factor of 0.7032.

We note that the approximation ratio can be improved to 0.706 by considering more pricing
classes. By the same approach, we show that for directed social networks, the approximation
ratio of IE(q,p) is at least half the quantity in (5.4). Therefore:

Corollary 2. For any directed social network G, the generalized IE strategy with K = 6 pricing
classes and assignment probabilities q = (0.183, 0.075, 0.075, 0.175, 0.261, 0.231) approximates
the maximum revenue of G within a factor of 0.3516.
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Figure 5.2: (a)Illustration of the generalized IE strategy and (b)the distribution over pricing classes returned
by the quadratic program.

Proof. Similarly to the proof of Theorem 8, we calculate the expected (wrt the random parti-
tion of buyers into pricing classes and the random order of buyers in the pricing classes) revenue
extracted by the generalized IE strategy IE(p,q) from a directed social network G(V,E,w).
We recall that for directed social networks, we can ignore loops (i, i). The expected revenue
of IE(p,q) from each edge (i, j) is:

wij

K∑
k=1

qkpk(1− pk)

(
qkpk

2
+
k−1∑
`=1

q`p`

)

More specifically, for each class k, if both i, j are included in the pricing class k and i appears
before j in the random order of the buyers in k, which happens with probability q2k/2, the
revenue extracted from each edge (i, j) is p2k(1 − pk)wij . Furthermore, for each pair `, k of
pricing classes, 1 ≤ ` < k ≤ K, if i is included in ` and j is included in k, which happens with
probability q`qk, the revenue extracted from (i, j) is p`pk(1− pk)wij .

Using linearity of expectation and setting W =
∑

(i,j)∈E wij , we obtain that the expected
revenue of IE(q,p) is:

RIE(q,p) = W

K∑
k=1

qkpk(1− pk)

(
qkpk

2
+

k−1∑
`=1

q`p`

)

Since W/4 is an upper bound on the maximum revenue of G, the approximation ratio of
IE(q,p) is at least:

4
K∑
k=1

qkpk(1− pk)

(
qkpk

2
+
k−1∑
`=1

q`p`

)
, (5.5)

namely at least half of the approximation ratio in the undirected case.
Using q = (0.183, 0.075, 0.075, 0.175, 0.261, 0.231) in (5.5), we obtain an approximation

ratio of at least 0.3516.

5.4 Influence and Exploit via Semidefinite Programming

The main hurdle in obtaining better approximation guarantees for the maximum revenue
problem is the loose upper bound of (N + W )/4 on the optimal revenue. We do not know
how to obtain a stronger upper bound on the maximum revenue. However, in this section,
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we obtain a strong Semidefinite Programming (SDP) relaxation for the problem of computing
the best IE strategy with any given pricing probability p ∈ [1/2, 1). Our approach exploits
the resemblance between computing the best IE strategy and the problems of MAX-CUT (for
undirected networks) and MAX-DICUT (for directed networks), and builds on the elegant
approach of Goemans and Williamson [55] and Feige and Goemans [45]. Solving the SDP
relaxation and using randomized rounding, we obtain, in polynomial time, a good approxima-
tion to the best influence set for the given pricing probability p. Then, employing the bounds
of Theorem 6 and Theorem 7, we obtain strong approximation guarantees for the maximum
revenue problem for both directed and undirected networks. The high level description of our
algorithm SDP-IE is:

SDP-IE

Input: A weighted directed graph G(V,E)and a number ε
SDP-relaxation:
1. Solve the Semi-Definite relaxation (??) with accuracy (1−ε) to obtain
vectors vi, i = 0, 1, . . . , n.
Rotation:
2. Obtain the rotated vectors ri, i = 1, . . . , n, where the rotation is made
by a function fλ(θ):

fλ(θ) = (1− λ)θ + λ
π

2
(1− cos θ) (5.6)

Randomized Rounding:
3. Select a random vector r ∈ Sn.
4. if sign(ri · r) = sign(v0 · r) put vertex i in the Influence set
else put it in the Exploit set.
Output: the Influence and Exploit sets.

Since Influence and Exploit requires a binary decision to be made for each vertex, the
general idea behind this approach is to use randomization. That is, to construct an appropriate
probability space(assigning probabilities to each possible Influence and Exploit set pair) in
which the expectation of the revenue is high. Thus, by solving the semidefinite relaxation we
obtain a favorable underlying geometry through which the randomized decision rule defines the
required probability space. The rotation of the vectors is an intermediate step which increases
the probability that heavy edges are cut. We proceed with the analysis of the algorithm.

Directed Social Networks. We start with the case of a directed social network G(V,E,w),
which is a bit simpler, because we can ignore loops (i, i) without loss of generality. We observe
that for any given pricing probability p ∈ [1/2, 1), the problem of computing the best IE
strategy IE(A, p) is equivalent to solving the following Quadratic Integer Program:

max p(1−p)
4

∑
(i,j)∈E

wij
(
1 + p

2 + (1− p
2)y0yi − (1 + p

2)y0yj − (1− p
2)yiyj

)
(Q1)

s.t. yi ∈ {−1, 1} ∀i ∈ V ∪ {0}

In (Q1), there is a variable yi for each buyer i and an additional variable y0 denoting the
influence set. A buyer i is assigned to the influence set A, if yi = y0, and to the exploit



50 CHAPTER 5. INFLUENCE AND EXPLOIT

(a) Relaxation (b) Rotation (c) Hyperplane Rounding

Figure 5.3: Graphical depiction of the main steps of the SDP-IEalgorithm.

set, otherwise. For each edge (i, j), 1 + y0yi − y0yj − yiyj is 4, if yi = y0 = −yj (i.e., if i is
assigned to the influence set and j is assigned to the exploit set), and 0, otherwise. Moreover,
p
2(1− y0yi− y0yj + yiyj) is 2p, if yi = yj = −y0 (i.e., if both i and j are assigned to the exploit
set), and 0, otherwise. Therefore, the contribution of each edge (i, j) to the objective function
of (Q1) is equal to the revenue extracted from (i, j) by IE(A, p).

Following the approach of [55, 45], we relax (Q1) to the following Semidefinite Program,
where vi · vj denotes the inner product of vectors vi and vj :

max p(1−p)
4

∑
(i,j)∈E

wij
(
1 + p

2 + (1− p
2) v0 · vi − (1 + p

2) v0 · vj − (1− p
2) vi · vj

)
(S1)

s.t. vi · vj + v0 · vi + v0 · vj ≥ −1

vi · vj − v0 · vi − v0 · vj ≥ −1

−vi · vj − v0 · vi + v0 · vj ≥ −1

−vi · vj + v0 · vi − v0 · vj ≥ −1

vi · vi = 1, vi ∈ Rn+1 ∀i ∈ V ∪ {0}

We observe that any feasible solution to (Q1) can be translated into a feasible solution to (S1)
by setting vi = v0, if yi = y0, and vi = −v0, otherwise. An optimal solution to (S1) can be
computed within any precision ε in time polynomial in n and in ln 1

ε (see e.g. [3]).
Given a directed social network G(V,E,w), a pricing probability p, and a parameter γ ∈

[0, 1], the algorithm SDP-IE(p, γ) first computes an optimal solution v0, v1, . . . , vn to (S1).
Then, following [45], the algorithm maps each vector vi to a rotated vector v′i which is coplanar
with v0 and vi, lies on the same side of v0 as vi, and forms an angle with v0 equal to

fγ(θi) = (1− γ)θi + γπ(1− cos θi)/2 ,

where π = 3.14 . . . and θi = arccos(v0 · vi) is the angle of v0 and vi. Finally, the algorithm
computes a random vector r uniformly distributed on the unit (n + 1)-sphere, and assigns
each buyer i to the influence set A, if sgn(v′i · r) = sgn(v0 · r), and to the exploit set V \ A,
otherwise1, where sgn(x) = 1, if x ≥ 0, and −1, otherwise. We next show that:

1Let θ′i = arccos(v0 · v′i) be the angle of v0 and a rotated vector v′i. To provide some intuition behind the
rotation step, we note that θ′i < θi, if θi ∈ (0, π/2), and θ′i > θi, if θi ∈ (π/2, π). Therefore, applying rotation to
vi, the algorithm increases the probability of assigning i to the influence set, if θi ∈ (0, π/2), and the probability
of assigning i to the exploit set, if θi ∈ (π/2, π). The strength of the rotation’s effect depends on the value of
γ and on the value of θi.
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Theorem 9. For any directed social network G, SDP-IE(2/3, 0.722) approximates the max-
imum revenue extracted from G by the best IE strategy with pricing probability 2/3 within a
factor of 0.9064.

Proof. In the following, we let v0, v1, . . . , vn be an optimal solution to (S1), let θij = arccos(vi ·
vj) be the angle of any two vectors vi and vj , and let θi = arccos(v0 · vi) be the angle of
v0 and any vector vi. Similarly, we let θ′ij = arccos(v′i · v′j) be the angle of any two rotated
vectors v′i and v′j , and let θ′i = arccos(v0 · v′i) be the angle of v0 and any rotated vector v′i. We
first calculate the expected revenue extracted from each edge (i, j) ∈ E by the IE strategy of
SDP-IE(p, γ).

Lemma 8. The IE strategy of SDP-IE(p, γ) extracts from each edge (i, j) an expected revenue
of:

wij p(1− p)
(1− p

2) θ′ij − (1− p
2) θ′i + (1 + p

2) θ′j
2π

(5.7)

Proof. We first define the following mutually disjoint events:

Bij : sgn(v′i · r) = sgn(v′j · r) = sgn(v0 · r)
Bi
j : sgn(v′i · r) = sgn(v0 · r) 6= sgn(v′j · r)

Bj
i : sgn(v′j · r) = sgn(v0 · r) 6= sgn(v′i · r)

Bij : sgn(v′i · r) = sgn(v′j · r) 6= sgn(v0 · r)

Namely, Bij (resp. Bij) is the event that both i and j are assigned to the influence set A

(resp. to the exploit set V \ A), and Bi
j (resp. Bj

i ) is the event that i (resp. j) is assigned
to the influence set A and j (resp. i) is assigned to the exploit set V \ A. Also, we let IPr[B]
denote the probability of any event B. Then, the expected revenue extracted from each edge
(i, j) is:

wij p(1− p)
(
IPr[Bi

j ] + p
2 IPr[Bij ]

)
(5.8)

To calculate IPr[Bi
j ] and IPr[Bij ], we use that if r is a vector uniformly distributed on the

unit sphere, for any vectors vi, vj on the unit sphere, IPr[sgn(vi · r) 6= sgn(vj · r)] = θij/π [55,

Lemma 3.2]. For IPr[Bi
j ], we calculate the probability of the event Bi

j ∪ B
j
i that i and j are

in different sets, of the event Bi
j ∪Bij that i is in the influence set, and of the event Bj

i ∪Bij

that j is in the influence set.

IPr[Bi
j ] + IPr[Bj

i ] = IPr[Bi
j ∪B

j
i ] = IPr[sgn(v′i · r) 6= sgn(v′j · r)] = θ′ij/π (5.9)

IPr[Bi
j ] + IPr[Bij ] = IPr[Bi

j ∪Bij ] = IPr[sgn(v′i · r) = sgn(v0 · r)] = 1− θ′i/π (5.10)

IPr[Bj
i ] + IPr[Bij ] = IPr[Bj

i ∪B
ij ]= IPr[sgn(v′j · r) = sgn(v0 · r)] = 1− θ′j/π (5.11)

Subtracting (5.11) from (5.9) plus (5.10), we obtain that:

IPr[Bi
j ] = 1

2π (θ′ij − θ′i + θ′j) (5.12)

For IPr[Bij ], we also need the probability of the event Bj
i ∪Bij that i is in the exploit set,

and of the event Bi
j ∪Bij that j is in the exploit set.

IPr[Bj
i ] + IPr[Bij ] = IPr[Bj

i ∪Bij ]= IPr[sgn(v′i · r) 6= sgn(v0 · r)] = θ′i/π (5.13)

IPr[Bi
j ] + IPr[Bij ] = IPr[Bi

j ∪Bij ]= IPr[sgn(v′j · r) 6= sgn(v0 · r)] = θ′j/π (5.14)
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Subtracting (5.9) from (5.13) plus (5.14), we obtain that:

IPr[Bij ] = 1
2π (−θ′ij + θ′i + θ′j) (5.15)

Substituting (5.12) and (5.15) in (5.8), we obtain (5.7), and conclude the proof of the
lemma.

Since (S1) is a relaxation of the problem of computing the best IE strategy with pricing
probability p, the revenue of an optimal IE(A, p) strategy is at most:

p(1−p)
4

∑
(i,j)∈E

wij
(
1 + p

2 + (1− p
2) cos θi − (1 + p

2) cos θj − (1− p
2) cos θij

)
(5.16)

On the other hand, by Lemma 8 and linearity of expectation, the IE strategy of SDP-IE(p, γ)
generates an expected revenue of:

p(1−p)
2π

∑
(i,j)∈E

wij
(
(1− p

2) θ′ij − (1− p
2) θ′i + (1 + p

2) θ′j
)

(5.17)

We recall that for each i, θ′i = fγ(θi). Moreover, in [45, Section 4], it is shown that for each i,
j,

θ′ij = gγ(θij , θi, θj) = arccos

(
cos fγ(θi) cos fγ(θj) +

cos θij − cos θi cos θj
sin θi sin θj

sin fγ(θi) sin fγ(θj)

)
The approximation ratio of SDP-IE(p, γ) is derived as the minimum ratio of any pair of terms
in (5.17) and (5.16) corresponding to the same edge (i, j). Thus, the approximation ratio of
SDP-IE(p, γ) is:

ρ(p, γ) =
2

π
min

0≤x,y,z≤π

(1− p
2) gγ(x, y, z)− (1− p

2)fγ(y) + (1 + p
2)fγ(z)

1 + p
2 + (1− p

2) cos y − (1 + p
2) cos z − (1− p

2) cosx

s.t. cosx+ cos y + cos z ≥ −1

cosx− cos y − cos z ≥ −1

− cosx− cos y + cos z ≥ −1

− cosx+ cos y − cos z ≥ −1

It can be shown numerically, that ρ(2/3, 0.722) ≥ 0.9064.

Combining Theorem 9 and Theorem 7, we conclude that:

Theorem 10. For any directed social network G, the IE strategy computed by SDP-IE(2/3, 0.722)
approximates the maximum revenue of G within a factor of 0.5011.

Undirected Social Networks. We apply the same approach to an undirected network
G(V,E,w). For any given pricing probability p ∈ [1/2, 1), the problem of computing the best
IE strategy IE(A, p) for G is equivalent to solving the following Quadratic Integer Program:

max p(1−p)
2

∑
i∈V

wii (1− y0yi)+

+ p(1−p)
4

∑
i<j

wij (2 + p− py0yi − py0yj − (2− p)yiyj) (Q2)
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s.t. yi ∈ {−1, 1} ∀i ∈ V ∪ {0}

In (Q2), there is a variable yi for each buyer i and an additional variable y0 denoting the
influence set. A buyer i is assigned to the influence set A, if yi = y0, and to the exploit set,
otherwise. For each loop {i, i}, 1−y0yi is 2, if i is assigned to the exploit set, and 0, otherwise.
For each edge {i, j}, i < j, 2 − 2yiyj is 4, if i and j are assigned to different sets, and 0,
otherwise. Also, p(1− y0yi − y0yj + yiyj) is 4p, if both i and j are assigned to the exploit set,
and 0, otherwise. Therefore, the contribution of each loop {i, i} and each edge {i, j}, i < j, to
the objective function of (Q2) is equal to the revenue extracted from them by IE(A, p). The
next step is to relax (Q1) to the following Semidefinite Program:

max p(1−p)
2

∑
i∈V wii (1− v0 · vi)+

+ p(1−p)
4

∑
i<j wij (2 + p− p v0 · vi −p v0 · vj − (2− p) vi · vj)

s.t. vi · vj + v0 · vi + v0 · vj ≥ −1 (S2)

vi · vj − v0 · vi − v0 · vj ≥ −1

−vi · vj − v0 · vi + v0 · vj ≥ −1

−vi · vj + v0 · vi − v0 · vj ≥ −1

vi · vi = 1, vi ∈ Rn+1 ∀i ∈ V ∪ {0}

The algorithm is the same as the algorithm for directed networks. Specifically, given an
undirected social network G(V,E,w), a pricing probability p, and a parameter γ ∈ [0, 1], the
algorithm SDP-IE(p, γ) first computes an optimal solution v0, v1, . . . , vn to (S2). Then, it
maps each vector vi to a rotated vector v′i which is coplanar with v0 and vi, lies on the same
side of v0 as vi, and forms an angle fγ(θi) with v0, where θi = arccos(v0 · vi). Finally, the
algorithm computes a random vector r uniformly distributed on the unit (n+ 1)-sphere, and
assigns each buyer i to the influence set A, if sgn(v′i · r) = sgn(v0 · r), and to the exploit set
V \A, otherwise. We prove that:

Theorem 11. For any undirected network G, SDP-IE(0.586, 0.209) approximates the maxi-
mum revenue extracted from G by the best IE strategy with pricing probability 0.586 within a
factor of 0.9032.

Proof. We employ the same approach, techniques, and notation as in the proof of Theorem 9.
The expected revenue extracted from each loop {i, i} is wii p(1− p) times the probability that
i is in the exploit set, which is equal to IPr[sgn(v′i · r) 6= sgn(v0 · r)] = θ′i/π. Therefore, the
algorithm extracts an expected revenue of wii p(1 − p) θ′i/π from each loop {i, i}. Next, we
calculate the expected revenue extracted from each (undirected) edge {i, j}, i < j, by the IE
strategy of SDP-IE(p, γ).

Lemma 9. SDP-IE(p, γ) extracts from each edge {i, j}, i < j, an expected revenue of:

wij p(1− p)
(2− p) θ′ij + p θ′i + p θ′j

2π
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Proof. Let the events Bi
j , B

j
i , and Bij be defined as in the proof of Lemma 8. In particular,

Bi
j ∪ B

j
i is the event that i and j are in different sets, and Bij is the event that both i and j

are in the exploit set. Thus, the expected revenue extracted from edge {i, j} is:

wij p(1− p)
(

IPr[Bi
j ∪B

j
i ] + p IPr[Bij ]

)
(5.18)

In the proof of Lemma 8, in (5.9) and (5.15) respectively, we show that IPr[Bi
j ∪B

j
i ] = θ′ij/π,

and that IPr[Bij ] = (−θ′ij+θ′i+θ′j)/(2π). Substituting these in (5.18), we obtain the lemma.

Therefore, by linearity of expectation, the expected revenue of SDP-IE(p, γ) is:

p(1−p)
π

∑
i∈V

wii θ
′
i + p(1−p)

2π

∑
i<j

wij
(
(2− p) θ′ij + p θ′i + p θ′j

)
, (5.19)

where θ′i = fγ(θi), for each i ∈ V , and θ′ij = gγ(θij , θi, θj), for each i, j ∈ V .
On the other hand, since (S2) relaxes the problem of computing the best IE strategy with

pricing probability p, the revenue of the best IE(A, p) strategy is at most:

p(1−p)
2

∑
i∈V

wii(1− cos θi) + p(1−p)
4

∑
i<j

wij (2 + p− p cos θi − p cos θj − (2− p) cos θij) (5.20)

The approximation ratio of SDP-IE(p, γ) is derived as the minimum ratio of any pair of
terms in (5.19) and (5.20) corresponding either to the same loop {i, i} or to the same edge
{i, j}, i < j. Therefore, the approximation ratio of SDP-IE(p, γ) for undirected social networks
is the minimum of ρ1(γ) and ρ2(p, γ), where:

ρ1(γ) =
2

π
min

0≤x≤π

fγ(x)

1− cosx
and

ρ2(p, γ) =
2

π
min

0≤x,y,z≤π

(2− p) gγ(x, y, z) + pfγ(y) + pfγ(z)

2 + p− p cos y − p cos z − (2− p) cosx
s.t. cosx+ cos y + cos z ≥ −1

cosx− cos y − cos z ≥ −1

− cosx− cos y + cos z ≥ −1

− cosx+ cos y − cos z ≥ −1

It can be shown numerically, that ρ1(0.209) ≥ 0.9035 and that ρ2(0.586, 0.209) ≥ 0.9032.

Combining Theorem 11 and Theorem 6, we conclude that:

Theorem 12. For any undirected social network G, the IE strategy computed by SDP-IE(0.586, 0.209)
approximates the maximum revenue of G within a factor of 0.8229.

Remark. We can use ρ(p, γ) and min{ρ1(γ), ρ2(p, γ)}, and compute the approximation ratio
of SDP-IE(p, γ) for the best IE strategy with any given pricing probability p ∈ [1/2, 1). We
note that ρ1(γ) is ≈ 0.87856, for γ = 0 (see e.g. [55, Lemma 3.5]), and increases slowly
with γ. Viewed as a function of p, the value of γ maximizing ρ(p, γ) and ρ2(p, γ) and the
corresponding approximation ratio for the revenue of the best IE strategy increase slowly with
p (see also Fig 5.4 about the dependence of γ and the approximation ratio as a function of
p). For example, for directed social networks, the approximation ratio of SDP-IE(0.5, 0.653)
(resp. SDP-IE(0.52, 0.685) and SDP-IE(0.52, 0.704)) is 0.8942 (resp. 0.8955 and 0.9005).
For undirected networks, the ratio of SDP-IE(0.5, 0.176) (resp. SDP-IE(0.52, 0.183) and
SDP-IE(2/3, 0.425)) is 0.899 (resp. 0.9005 and 0.907).
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Figure 5.4: The approximation ratio of SDP-IE(p, γ) for the revenue of the best IE strategy
and for the maximum revenue, as a function of the pricing probability p. The upper left plot
shows the best choice of the rotation parameter γ, as a function of p. The blue curve (with
circles) shows the best choice of γ for directed social networks and the red curve (with squares)
for undirected networks. In both cases, the best choice of γ increases with p. The upper right
plot shows the approximation ratio of SDP-IE(p, γ) for the maximum revenue for directed (blue
curve, with circles) and undirected (red curve, with squares) networks. The lower plots show
the approximation ratio of SDP-IE(p, γ) for directed (left plot) and undirected (right plot)
networks, as a function of p. In each plot, the upper curve (in black) shows the approximation
ratio of SDP-IE(p, γ) for the revenue of the best IE strategy, which increases slowly with p.
The blue curve (that with circles) shows the guarantee of Theorem 7 and Theorem 6 on the
fraction of the maximum revenue extracted by the best IE strategy. The red curve (that with
squares) shows the approximation ratio of SDP-IE(p, γ) for the maximum revenue.



Chapter 6

Local Search and Heuristics

The Revenue Maximization problem is not only interesting from a theoretical point of view
but from a practical as well. Specifically, a seller would want to improve a given marketing
strategy if possible without needing any guarantee of how good the improvement would be.
Motivated by this fact, in this section we introduce a class of Local Search strategies designed
to improve a given marketing strategy (π, ~p). We propose two special instantiations and
discuss convergence issues. Furthermore, since the powerful SDP algorithms developed have
large running time, their applications on massive graphs though interesting from a theoretical
perspective becomes impractical. We address this issue by proposing intelligent heuristic based
on eigenvector centrality[20, 83] correlating network position with price to be offered. Lastly,
we discuss another approach on designing pricing strategies that generalize the Influence and
Exploit idea to the furthest extent utilizing Calculus of Variations[24, 51].

We first provide some preliminary facts that will motivate later developments. A quantity
that provides intuition is the Forward Looking Revenue (FLR). Hartline et.al [66] considered
the case of the optimal myopic revenue. The FLR is an insightful generalization. Consider that
we are about to offer a price to buyer i, let Ai and Bi be the set of vertices that are considered
after and before i respectively. The FLR consists of two parts; the expected revenue that we
extract from buyer i and the extra revenue that becomes available if i accepts our offer, due
to i’s influence in the network:

FLRi = pi(1− pi)

∑
j∈Bi

pjwji + wii


︸ ︷︷ ︸

Revenue from i

+ pi
∑
j∈Ai

pj(1− pj)wij︸ ︷︷ ︸
Extra Revenue if i accepts

(6.1)

Viewed alternatively FLRi is the part of the total revenue that depends on pi.

Impact of Social Position. Assume for a moment that we are given both the sequence
π and all the probabilities ~p−i except for pi. It turns out that in that case we can make an
optimal choice (best response strategy) for pi by maximizing FLRi, while requiring that pi is
a valid probability between 0 and 1. Fortunately, when FLRi is restricted only as a function
of pi it is a concave function and thus has a unique maximum for:

p∗i =

[
1

2
+

1

2

∑
j∈Ai pj(1− pj)wij∑
j∈Bi pjwji + wii

]
≤1

=
1

2
+

1

2

[
Ni

Ii

]
≤1

(6.2)

57
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Figure 6.1: (a)Optimal myopic revenue(purple) as a function of the pricing probability x.(b)Forward looking
revenue as a function of the pricing probability for different ratios r = Ni/Ii.

The above equation reveals a number of interesting facts. First, it states that all probabilities
must lie in [0.5, 1]. Furthermore, observe that the “optimal” probability pi consists of two
terms:

1. The first term 1/2 corresponds to the myopic price, i.e. the probability with which we
would have i accept our offer disregarding network effects.

2. The second term is proportional to the ratio ri = Ni/Ii of the “network value” to the
“intrinsic value” of node i. This term is essentially a discount offered to i in order to
strike balance between the revenue we exert from him and the influence he has on the
network.

6.1 Local Search

Our general approach in designing these strategies is to utilize the optimality condition (6.2)
along with Lemma 4(Chapter 4) for the ordering of buyers. These conditions show that there
is a recursive dependence between ordering and probabilities that prevents us from computing
optimally either one. In order to break this cycle of dependence we propose iterative schemes
that after each step guarantee an increase in revenue. These strategies consist of two different
functions that correspond to the dual nature (sequence - probabilities) of our problem and
are reminiscent of a class of algorithms called Expectation-Maximization, which are extensively
used in Machine Learning[17]. Particularly, these algorithms are compositions of two functions:

1. Sequence Function(Expectation Step): where we apply the sequence lemma in order
to find a better ordering given the probability vector ~p.

2. Probability Function(Maximization Step): where we iteratively maximize the Forward
Looking Revenue for one variable at a time using some (cyclic) rule.

The increase in revenue for the first function is guaranteed by Lemma 4, whereas the concavity
of FLRi, when viewed only as a function of pi, guarantees the increase for the second function.
We proceed with some comments describing the nature of these algorithms.
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Imagine that we enumerated all possible sequences
X and all possible discretized probability vectors Y . If
we take the cartesian product of these two sets, we would
get a two dimensional grid X×Y with arbitrary connec-
tions between nodes. Particularly, all nodes with same x
coordinate correspond to the different probability vec-
tor configurations given the sequence, whereas in the
other case they correspond to the different sequences
for a given probability vector. In this setting, our algorithms start from a node and walk on
the grid making vertical and horizontal moves only, improving each time the revenue. We
can think of the probability function as a convergence mechanism that guides us to a local
optimum and the sequence function as an escape mechanism that makes large jumps and
transports us to a different landscape.

6.1.1 Algorithms

All algorithms of the class we are discussing differ only in how often they switch form one
function to the other and according to which rule they select nodes to maximize the FLR. We
propose two algorithms that lie in opposite extremes on how often they apply the sequence
lemma.

The first algorithm is a greedy version, where we apply continuously the probability func-
tion until we converge to a local maximum for the given sequence. Then based on that
probability vector we obtain a new ordering. The algorithm terminates when no improvement
is made. The precise description is:

Greedy Local Search

Input: A graph G(V,E), a probability vector p and a number ε
Expectation:
1. Apply the sequence Lemma and obtain a new ordering.
Maximization:
Repeat
2. Using a cyclic rule select one variable at a time and update by
maximizing the FLR revenue:

pi =
1

2
+

1

2

∑
j>π(i) pj(1− pj)wij∑
j<π(i) pjwji + wii

until convergence of ~p.
3. Repeat Step 1 and 2 until no improvement in Revenue is made:
∆R < ε.
Output: the probability vector p and the sequence π.

The previous algorithm is severely biased towards the probability updating rule, i.e. gives
more value in obtaining first a better probability vector. On the other extreme we propose an
algorithm that alternates between the two functions at each step. The reasoning behind the
algorithm is that we are trying to obtain a better sequence simultaneously with updates for
the probability vector. In other words we are performing a cautious search making alternating
moves in both directions (horizontally and vertically) of the gird.
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This algorithm at each step decides which node is to be positioned next in the permuta-
tion as well as the probability he should be priced. To accomplish this feature we need two
estimates for the probability vector. The probability from the previous iteration(epoch) and
a “current” estimate. At each time point we have a closed set, vertices for which we have
decided about both their position in the permutation as well as their probability, and an open
set which consists of vertices that are candidates for the next position in the permutation. The
algorithm proceeds by updating for all candidate nodes their “current” probability estimate
by using old values for candidate nodes and the updated values for nodes in the closed set.
Our reasoning is that all candidates nodes could be the next node in the permutation and as
such we must base our decision calculating the probability that would be assigned to them
if they really were considered next. The decision is made on the basis of the conditions that
the sequence lemmata provide, i.e. which node has the largest probability from the candi-
date ones(symmetric case) and which node maximizes the gain between influence lost and
gained(asymmetric case). A high level description of this algorithm is:

Cautious Local Search

Input: A graph G(V,E), a probability vector p and a number ε
Initialization:
1. Insert every vertex in a priority queue according to the criterion of
the sequence lemma.
2. Initialize the Closed Set as ∅.
Repeat
3. u=ExtractMax(Queue).
4. Update the probability for u by maximizing the FLR.
5. Update the new probability estimates for neighbours of u by maximiz-
ing the FLR for each node using the updated probabilities for nodes in
the closed set and the initial values for nodes in the queue.
6. Based on the new estimates update the values that the sequence lemma
requires(keys of nodes).
until Queue is Empty.
If ∆R > ε go to Step 1.
Output: the probability vector p and the sequence π.

6.1.2 Convergence

Having thoroughly presented our local search strategies, we discuss the issue of convergence.
Observe that both these algorithms are guaranteed to converge to a local optimum since the
revenue is bounded from above and our strategies guarantee an increase in revenue at each
step. However, reasoning of this kind does not really say anything about how fast we will
reach that local optimum. To study convergence rates we must study the update rule:

p
(k+1)
i =

1

2
+

1

2

∑j>π(i) p
(k)
j (1− p(k)j )wij∑

j<π(i) p
(k)
j wji + wii


≤1

(6.3)
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Figure 6.2: (a)Initially, we only know that our variable pi is in [0, 1] and as the algorithm proceeds we get
more and more information.(b)Local Search applied to the symmetric model, where the volume of the box
indicate the distance to convergence.

It is more convenient to consider the update rule in terms of the discount ratios ri given by
pi = 0.5 + 0.5ri. The update rule can now be rewritten:

r
(k+1)
i = fi(~r

(k)) =
1

4

 ∑
j>π(i)wij(1− (r

(k)
j )2)∑

j<π(i)(0.5 + 0.5r
(k)
j )wji + wii


≤1

(6.4)

The operator fi has the nice property of isotonicity ∀i ∈ V . That is if ~x ≥ ~y then fi(~x) ≤
fi(~y). Futhermore, this kind of update rule is well known in the optimization literature as
Cyclic Coordinate Minimization(CCM)[13]. Recently, Saha and Tewari[119] showed that CCM
has linear convergence rates when the isotonicity assumption holds[119, Section 4.3, 4.4, 5].
Nevertheless, we provide our own analysis which gives further intuition on why CCM must
converge pretty fast.

The idea is that we initiate the discount vector ~r(0) at an unknown location in [0, 1]n(full
uncertainty) and we virtually iteratively apply the update rule to the unknown vector. Because
the vector ~r(0) belongs in [0, 1]n and due to the isotonicity of the update rule fi, we can obtain
more and more refined upper and lower bounds. Specifically, let ~r(k) be the sequence of
discount ratios that results after k updates. Our approach is to bound this sequence from

above and below respectively by two sequences ~u(k), ~̀(k) such that `
(k)
i ≤ r

(k)
i ≤ u

(k)
i , ∀ i ∈

V and for all k, or in matrix notation:

~̀(k) ≤ ~r(k) ≤ ~u(k) (6.5)

The method can be visualized as applying a clamp for every coordinate(probability) and
gradually narrowing the grip until the two ends meet. We initialize our bounds with the
obvious choice ~u(0) = ~1 and ~̀(0) = ~0. Then we obtain the new bounds by the rules:

u
(k+1)
i = fi(~̀

(k)) (6.6)

`
(k+1)
i = fi(~u

(k)) (6.7)

We will show by induction that the sequences ~u(k), ~̀(k) converge to the same limit. Observe
that if any of the two sequences reach the limit, then the other automatically will reach it
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as well(~̀ = f(~̀) ⇒ u = f(~̀) = ~̀ = f(~u)). We initially assume that ~u(k+1) ≤ ~u(k) and
~̀(k+1) ≥ ~̀(k). If that is the case then we show using the isotonicity property of the update
rule that the two sequences are monotone:

u
(k+2)
i = fi(~̀

(k+1)) ≤ fi(~̀(k)) = u
(k+1)
i (6.8)

`
(k+2)
i = fi(~u

(k+1)) ≥ fi(~u(k)) = `
(k+1)
i (6.9)

Now, there are two properties that we must show to complete the proof. Firstly, we must show
that the base case holds,i.e. ~u(1) ≤ ~u(0) and ~̀(1) ≥ ~̀(0), and secondly that these inequalities
are in fact strict for at least one of the two sequences ~u, ~̀ at each step k.

Our approach in remedying the above situation is to consider the process of cyclic co-
ordinate maximization as a message-passing algorithm. Specifically, each time a node’s ra-
tio(probability) is updated it passes “messages” to its neighbours. The concept of a message
is that the update of one node will have a contribution on how much the the ratio of an adja-
cent node will change after we apply the update rule to it. Hence, we can think that a node
“accumulates” messages from his neighbours, which are being updated, until it is updated
itself. What remains is to quantify the contribution of individual messages.

There are two kinds of messages: future messages and past messages. Future messages
are passed from nodes later in the permutation to adjacent nodes that appear earlier in the
permutation. The inverse applies for past messages.

We analyse first future messages. Assume that node i has been
just updated and there is a change in value δri. However, we have
only information for the upper and lower bounds. This means that
we should have δui < 0 or δ`i > 0, because if neither holds then
that would mean that the truncation option applies for both the
lower and upper bound but then that would mean that ri would
have converged. Therefore, if there is a coordinate that hasn’t al-
ready converged we are guaranteed to have a “message”. The change
resulting from the message from i to an adjacent node j that is updated is:

`
(k+1)
j − `(k)j = fj(~u

(k))− fj(~u(k−1)) ≥
1

4

wji∑
t<π(j)wtj + wjj

[
(u

(k−1)
i )2 − (u

(k)
i )2

]
Therefore, for future messages we can say that:

δ`
(k+1)
j ≥ Fijδ|u(k)i | (6.10)

δu
(k+1)
j ≥ Fijδ`

(k)
i (6.11)

Respectively, for “past” messages we have:

δ`
(k+1)
j = 1

4

∑
t>π(j) wjt(1−(u

(k)
t )2)∑

t<π(j)(0.5+0.5u
(k)
t )wtj+wjj

− 1
4

∑
t>π(j) wjt(1−(u

(k−1)
t )2)∑

t<π(j)(0.5+0.5u
(k−1)
t )wtj+wjj

≥ 1
8

( ∑
t>π(j) wjt(1−(u

(k−1)
t )2)

(
∑
t<π(j)(0.5+0.5u

(k−1)
t )wtj+wjj)2

)[
u
(k−1)
i − u(k)i

]
(6.12)

This time however we cant obtain a lower bound for the change that is independent of the
sequence of updates. Fortunately, we only need future messages for our purpose and we will
ignore past messages as making no difference. Every node receives a number of future messages
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unless he appears last among his neighbours in the permutation in which case automatically
ri = ui = `i = 0 and thus converges. Hence, what really happens for nodes that have not yet
converged is that at each update they sum the messages from “future” neighbours:

δ`
(k+1)
j ≥

∑
i>π(j)

Fij |δu(k)i | (6.13)

δu
(k+1)
j ≥

∑
i>π(j)

Fijδ`
(k)
i (6.14)

These relation along with the condition that if we have not full convergence there is i such
that δ`i > 0 or |δui| > 0, guarantee that at least one of the inequalities (27,28) are in fact
strict. This concludes our proof.

6.2 Eigenvector-based Heuristics

In the previous sections we provided approximation algorithm for the problem of Revenue
Maximization. We also introduced natural local search strategies to improve upon a given
solution. Nevertheless, we were not able to correlate the network position of a buyer with the
right price to be offered, as our techniques, except from the personalized version of Influence
and Exploit, disregard at large the network structure and are based on random sampling. We
propose intelligent heuristics in order to fill that gap.

We have seen that if we have the vector of probabilities then we can find the right sequence
and then initiate a local search algorithm to improve our solution. Hence our heuristics are
aiming to obtain a “good” estimate of the probability vector. But what is a “good” estimate?
We argue that any good estimate should incorporate two characteristics:

• Closure under Structure: meaning that it should take into account the complete structure
of the graph and the complex recursive dependencies therein.

• Closure under Optimality: meaning that in an approximate sense every individual prob-
ability estimation of a node should consist a “best response strategy” given the other
estimations.

The first condition refers to the combinatorial nature of our problem, i.e. the Max-FAS
problem, whereas the second condition corresponds to the pricing aspect. Any reasonable
heuristic should take into account this dual nature of our problem.

6.2.1 “Stingy” PageRank

We initially examine the symmetric case and the results obtained here will motivate the
techniques introduced for the asymmetric setting. In the beginning of this chapter, we provided
conditions that an optimal strategy must meet. Particularly, we required that the probabilities
should “satisfy”, while remaining in [0.5, 1], the stationary point equations for the expected
Revenue:

∂R

∂pi
= 0⇔ (1− 2pi)

∑
j∈Bi

wji + wii

+

∑
j∈Ai

wijpj(1− pj)

 = 0, ∀ i ∈ V (6.15)

These equations will form the basis of our heuristic. At this point we make some comments
that will provide intuition into our approach:
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Figure 6.3: (a)Interacting particles conceptualization of Stingy PageRank, where the particles
dynamics are advancing the system to equilibrium(closure).(b)We can view the PageRank
approach as producing a coarse picture of the role of each node in the Reveneue Maximization
setting. The size of the nodes indicates the potential of a node as an influencer.

• Comment 1: Given the success of uniform sampling strategies, where the ordering of
buyers is random, and the fact that for the Max-FAS problem the best known algorithm
is to consider a random permutation, we conclude that a random ordering of vertices is
not that bad.

• Comment 2: The ratio ri has the interpretation of a discount offered to node i in order
to increase the probability that he accepts and utilize his social position.

• Comment 3: Even a fully myopic strategy, where we extract the maximum amount of
revenue from each buyer disregarding the network effects, has a constant 1/4 approxi-
mation ratio.

In order to achieve the “Closure” feature under both structure and optimality we use the sta-
tionary point equations (6.15) and our estimation for the probability vector will be the output
of the following process. Imagine that we have a system of n particles that are affected by
a “field” ~f = (f1, . . . , fn), which only depends for each particle from certain adjacent parti-
cles(neighbours) and guides our system to equilibrium(closure). In this setting we additionally
require that:

1. The ordering of particles(buyers) is random(Comment 1).

2. The seller is stingy, that is, he prefers not to give big discounts either because he does
not trust the estimations of wij or in order to discourage foul play. Therefore, he prefers
that ri are kept small(Comment 2).

3. The system is initialized from a fully myopic pricing point: ri ' 0,∀ i ∈ V (Comment
3).

Having provided the motivation to our approach we proceed with the derivation of the
heuristic. We note that we consider wii = 0 for simplicity and because this is the most
interesting case. However, the techniques used here can be easily extended for the case were
wii 6= 0. Because the ordering is random, every vertex has equal probability of being considered
before or after any other vertex. Therefore, we consider the mean field approximation(in terms
of the sequence) of the stationary point equations (6.15):

(1− 2pi)

1

2

∑
j 6=i

wjipj

+
1

2

∑
j 6=i

wijpj(1− pj) = 0 ∀i ∈ V (6.16)



6.2. EIGENVECTOR-BASED HEURISTICS 65

If we rewrite (6.16) in terms of the discount ratios and solve for ri, we get:

ri = fi(~r−i) =
1

4

∑
j 6=iwij −

∑
j 6=iwijr

2
j∑

j 6=iwji(0.5 + 0.5rj)
(6.17)

Finally, we consider “stingy” pricing where the field (6.17) is approximated by a modified field
~f
′

such that ~f ≥ ~f
′
:

ri = fi(~r−i) =
1

4

∑
j 6=iwij −

∑
j 6=iwijrj∑

j 6=iwji
(6.18)

where we have used that rj ≤ 1 and (1 − r2j ) ≥ (1 − rj). Before, proceeding with the final
result we note that if a vertex has no neighbours we can safely price him with the fully myopic
price 1/2 and thus would not be considered in this process, hence we know that

∑
j 6=iwji 6= 0

for vertices considered in this process. What we have achieved with (6.18) is essentially a
linearisation of the field. This allows us to have a closed self-consistent expression for the
“equilibrium point” we are searching for. Finally, we state that “Stingy” PageRank is the
solution of the system:

~r = −α ~W ~D−1 · ~r + ~β (6.19)

where α = 1/4, ~W = wij , ~D =
∑

j 6=iwji and ~β = 1/4 ·~1. The name comes from that fact that
this is the same formulation that PageRank [?] is computed. We can rewrite (6.19) as linear
system: (

~I + α ~W ~D−1
)
~r = ~β (6.20)

Theorem 13. “Stingy” PageRank always has a unique solution.

Proof. Note that the matrix ~W is symmetric with non-negative elements, from SVD theorem
we deduce that it has non-negative eigenvalues. Additionally, ~D−1 is a diagonal matrix with
all elements positive. Therefore, the matrix (~I + α ~W ~D−1) has only positive eigenvalues and
the linear system has a unique solution.

In practice we would apply Stingy PageRank separately for each connected component
and normalize the vector ~rso that the lower value is 0 and the maximum value is 1. The
probability estimation would then be given by ~̂p = 0.5 + 0.5~r. Based on this estimation we
could derive the sequence and if needed improve the solution by using one of the local search
strategies we proposed.

6.2.2 Hubs and Authorities

The developments for the symmetric setting give us a strong motivation to consider a similar
approach for the asymmetric case. In this setting, naturally, we are aiming to utilize the
HITS procedure introduced by Kleinberg [81]. Our reasoning is that every node has a dual
role, influencing other nodes and being exploited to extract revenue. This duality is in direct
correspondence with Kleinberg’s authorities and hubs concept.

In this setting however we can not hope for achieving complete closure, both structure and
optimality, and we will aim only for structural closure. Specifically, we consider for each node
two numbers:

1. Hubness ratio hi that expresses how well a node executes his role as a revenue provider.

2. Authoritativeness ratio ai that express how appropriate is a node as an influence.
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Figure 6.4: (a)Dual value of a node: intrinsic value(blue) and network value(red).(b)Jon
Kleinberg’s Hubs and Authorities idea.

Based on this concept, we slightly modify the HITS procedure to establish the closure property.
Specifically, we consider that we have a random ordering and the ratios must satisfy:

ai =
1∑

j 6=iwij

∑
j 6=i

wijhj , ∀i ∈ V (6.21)

hi =
1∑

j 6=iwji

∑
j 6=i

wjiaj , ∀i ∈ V (6.22)

This conditions roughly say that the higher the ratio of a node’s influence upon neighbours
towards the cumulative influence, the higher is the authoritativeness of the node. Similarly,
the higher the authoritativeness of a nodes in-neighbours is, the higher the quality of a node
as a revenue provider. These equations can be written in matrix notation as:

~a = D−1out
~W · ~h (6.23)

~h = D−1in
~W T · ~a (6.24)

These equations actually consist a single eigenvalue problem:

~a = D−1out
~WD−1in

~W T · ~a (6.25)

~h = D−1in
~W TD−1out

~W · ~h (6.26)

Hence, we could solve either of the two problems and then obtain the other vector using
equations (6.23,6.24). Kleinberg showed that the solution to this problem always exisst and
consists of the principle eigenvector of the matrix, where all coordinates of the eigenvector are
positive due to the Perron-Frobenius Theorem[102].

What remains is to combine the vectors ~a,~h to a single estimation for the probability
vector ~p. In the calculation of the authority and hub vectors of Kleinberg there was inherent a
normalization procedure. In our case that won’t be necessary as we initiate our iterations from
a point were ~a = ~h = ~1 and in the update rule we have divided with the sum of in-weights and
out-weights respectively. Bearing in mind that a vertex with high authority rating should get
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Figure 6.5: Experimental evaluation of eigenvector heuristics. (a)HepPh Collaboration
Graph(undirected).(b)Epinions Social Network(directed).

a big discount and a vertex with high hub rating should get a small discount and the fact that
these two roles are complementary(ai + hi should be 1), we consider the following estimation
for the probability vector:

p̂i =
1

2
+

1

2

ai
ai + hi

(6.27)

We therefore have provided scalable methods in obtaining an educated guess for the probability
vector. This estimation could be used as well in augmenting Influence and Exploit Strategies,
that is we could synthesize the two approaches by considering the pricing scheme that the
generalized Influence and Exploit strategy requires but instead of a random sequence we could
use the sequence obtained by applying the sequence lemmata for the estimation that our
heuristics produce.

6.3 Experimental Results

We evaluated our heuristics experimentally. We considered two specific graphs with unity
weights: the ArXiV HepPh physics collaboration network(n = 12008, m = 237000)[93] for
the undirected case and the Epinions network(n = 75879, m = 508837)[113] for the directed
case. We implemented four strategies. The fully myopic one, the IE strategy of Hartline et.al,
the Generalized IE and the HITS heuristic. Particularly, in order to avoid tedious sampling
issues, we implemented a variation of these IE strategies where the ordering of vertices is
according to the HITS heuristic and the pricing follows the distribution that IE strategies
require. For instance in the 0.5−−1 strategy, d0.333ne first vertices where given the product
for free and b0.667nc where offered the fully myopic price. We calculated the initial revenue
of these strategies and then applied a local search algorithm to improve it. We observe that
in both cases our heuristics initially outperform the other strategies, while the local search
algorithms significantly improve all initial solutions with a small number of iterations. It is
interesting that the local search strategies show little sensitivity with respect to the initial
solution, as they achieve roughly the same performance for all strategies. We also include
with vertical lines the theoretical performance of IE strategies in order to have a benchmark.
In all cases local search strategies outperform the theoretical bounds and especially in the
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directed setting. These results constitute evidence for the efficacy of both our local search
strategies and heuristics.

6.4 Pricing via Calculus of Variations

We close this chapter by treating the problem of Revenue Maximization under the framework
of Calculus of Variations. Recall the Generalized Influence and Exploit strategies from the
previous chapter, where we assign each vertex to a one of the k pricing classes with some
probability uniformly for all vertices. If we allow the pricing classes to be defined over the
whole interval [0.5, 1] then, instead of looking for appropriate probabilities, we are searching
for probability density functions with support [0.5, 1]. The optimization problems where the
decision variables are functions are the object of Calculus of Variations[51].

6.4.1 Uniform Sampling

We want to find a probability distribution P : [0.5, 1] → [0, 1], describing the probability
P(pi) that any node is assigned the probability of acceptance pi, that maximizes the expected
Revenue:

maxR(P) =

∫ 1

1/2
x(1− x)P(x)

[
1

2
xP(x) +

∫ 1

x
zP(t)dt

]
dx

s.t

∫ 1

1/2
P(x)dx = 1

P(x) ≥ 0

Thus we want to optimize a function on a infinite-dimensional space(functions) under convex
constraints. This family of problems are handled in the Calculus of Variations framework.
Specifically, we will transform our problem into a problem of Optimal Control. Let u(x) =
P(x) be the control variable and y(x) =

∫ 1
x tP(t)dt, z(x) =

∫ x
1/2 P(t)dt be the state variables

then we get:

max R(u) =

∫ 1

1/2

(
x(1− x)u(x)

[
1

2
xu(x) + y(x)

]
− u(x)µ(x)

)
dx

s.t y
′

= −x · u(x)

z
′

= u(x)

u(x)µ(x) = 0, µ(x) ≥ 0, y(1) = 0, z(1/2) = 0, z(1) = 1

Let H be the Hamiltonian of our system:

H = x(1− x)u(x)

[
1

2
xu(x) + y(x)

]
− u(x)µ(x) + λ1(x) [−xu(x)] + λ2(x)u(x)
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We will solve this problem using the Euler-Lagrange equations:

Hu = 0 ⇔ x2(1− x)u+ x(1− x)y − µ− λ1x+ λ2 = 0

λ
′
1 = −∂H

∂y
⇔ λ

′
1 = x(1− x)u

λ
′
2 = −∂H

∂z
⇔ λ

′
2 = 0

y
′

= −x · u(x)

z
′

= u(x)

u(x)µ(x) = 0, µ(x) ≥ 0 ⇒ u(x) > 0⇒ µ(x) = 0

with the necessary initial and terminal conditions:

λ1(1/2) = 0, y(1) = 0, z(1/2) = 0, z(1) = 1

We have ended up with a Two Point Boundary Value Problem (TPBVP). We may not be
able to solve it analytically but there are well developed numerical methods for solving such
problems, see Applied Optimal Control [24].

6.4.2 Eigen-Distributions

The above discussion motivates us to generalize our approach
and instead of considering a single probability distribution
common for every node i, we can consider that every node
i is assigned a probability of acceptance x according to his
own distribution Pi(x). Let Ni be the set of indices that are
adjacent to node i ,then the expected Revenue that we exert
from node i is:

Ri =

∫ 1

1/2
x(1− x)Pi(x)

1

2
x
∑
j∈Ni

AjiPj(x) +
∑
j∈Ni

Aji

∫ 1

x
tPj(t)dt

 dx
Now the total revenue can be expressed as a sum of the expected revenue from each node
R =

∑
i∈V Ri. Let S be the space of a valid probability distribution with support on the

domain [1/2, 1], we want to optimize the total expected revenue on the product space Sn:

max R(P1, . . . ,Pn) =

∫ 1

1/2

∑
i∈V

x(1− x)Pi(x)

1

2
x
∑
j∈Ni

AjiPj(x) +
∑
j∈Ni

Aji

∫ 1

x
tPj(t)dt

 dx
s.t

∫ 1

1/2
Pi(x)dx = 1, Pi(x) ≥ 0, ∀i ∈ V.

Extending our treatment of the single distribution setting we define yi(x) =
∫ 1
x tPj(t)dt,

zi(x) =
∫ x
1/2 Pj(t)dt and the control variables ui(x) = Pi(x). We calculate the Hamiltonian

anew:

H = x(1− x)
∑
i∈V

ui(x)

1

2

∑
j∈Ni

Ajiuj +
∑
j∈Ni

Ajiyj

+
∑
i∈V

λi,2ui − λi,1xui(x)− µi(x)ui(x)
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Applying the Euler-Lagrange equations for every i ∈ V we get:

x2(1− x)
∑
j∈Ni

Ajiuj + x(1− x)
∑
j∈Ni

Ajiyj − µi − λi,1x+ λi,2 = 0

λ
′
1 = −x(1− x)

∑
j∈Ni

Aijuj ,

λ
′
i,2 = 0

y
′
i = −x · ui(x)

z
′
i = ui(x)

ui(x)µi(x) = 0, µi(x) ≥ 0 ⇒ ui(x) > 0⇒ µi(x) = 0

with the necessary initial and terminal conditions:

λi,1(1/2) = 0, yi(1) = 0, zi(1/2) = 0, zi(1) = 1, ∀i ∈ V

In this setting we have embedded the actual graph structure in the above dynamical system.
We can solve the problem numerically only if all the eigenvalues of the adjacency matrix are
non-zero, as we can calculate the ui’s only from the system of linear equations that arises
from the first set equations (∂H/∂ui = 0). Actually, it suffices for the eigenvalues of the
corresponding adjacency matrices of the connected components to have positive eigenvalues.

6.4.3 Eigen-Generalized Influence and Exploit

A natural alternative to working in a infinite dimensional space is to consider a finite dis-
cretization pi = P(xi) of the distribution P(x) where xi could be for instance xi = 1− i−1

2∗(m−1)
and m the number of “buckets”. Now the problem can be written:

Motivated by the first section and to obtain a graph specific pricing algorithm, we consider
a discretized probability distribution pik for each node i. Specifically, the problem is formulated
as:

max R(p1, . . . ,pn) =
n∑
i=1

m∑
k=1

xk(1− xk)pik

1

2
xk
∑
j 6=i

Ajip
j
k +

k−1∑
r=1

xr
∑
j 6=i

Ajip
j
r


s.t

m∑
k=1

pik = 1, pik ≥ 0, k = 1, . . . ,m, i = 1, . . . , n

Again we have the same Quadratic structure for the objective function. Specifically the matrix

Q =

[
∂2R

∂pik∂p
j
`

]
:

∂2R

∂pik∂p
j
`

= xk(1− xk)x`Aji, ` < k

∂2R

∂pik∂p
j
k

= xk(1− xk)xkAji, ` = k

∂2R

∂pik∂p
j
`

= x`(1− x`)xkAij , ` > k



6.4. PRICING VIA CALCULUS OF VARIATIONS 71

Thus, we could initialize all the distributions with the solution we derived from the uniform
case which would guarantee us a 0.7059 approximation ratio and therefore from the solution
of the Quadratic program obtain an improved node specific solution. We have developed a
quite general framework for designing pricing strategies both in the continuous setting as well
as in the discrete setting.



72 CHAPTER 6. LOCAL SEARCH AND HEURISTICS



Chapter 7

Conclusion

In this thesis, we studied the Revenue Maximization problem under a very specific model
of marketing and positive externalities. The main assumptions made are:(i) buyers are ap-
proached individually in a sequence by the seller, (ii) the seller implements discriminative
pricing, (iii) the influence is additive. The first assumption although leading to marketing
strategies that may be implementable(through promotional emails or messages), is in reality
impractical as buyers are in general reluctant to respond positively to such offers and even
if they do so there would be a significant delay, rendering the sequential promotion process
too slow. Discriminative pricing, on the other hand, is known to lead to negative reactions
from buyers especially when it happens in their close social circle. Finally, the additive influ-
ence assumption is a very rough approximation to buyers valuations which are known to be
governed by a diminishing returns property(concave or submodular functions).

Considering the first two issues, we propose a way by which they can be mitigated even
in this model of sequential discriminative marketing. Sequential marketing suffers from the
inherent problem that the time to execute a marketing strategy is proportional to the number
of buyers n, which usually is very large. A reasonable constraint on the steps executed by
a marketing strategy could be that they should be at most a logarithmic function(O(log n))
of the number of buyers. This constraint naturally imposes a marketing strategy that at
each step the number of buyers considered is geometrically increasing, i.e. at each step we
consider constant times(e.g. twice as many) more buyers than the previous. Therefore, we
cluster buyers in O(log(n)) groups and make simultaneous offers to buyers in each group.
The clustering can be made either by adapting appropriately random sampling(Generalized
IE), local search procedures[110, 50] or by ranking through Eigenvector Centrality(“Stingy
PageRank”) techniques. This method might reduce the execution time of the marketing
strategy but the negative effects of discriminative pricing remain at large.

To alleviate the negative effects of discriminative pricing and still be able to preserve some
control over the marketing process, the Influence-and-Exploit idea is apposite. Offering the
product for free to some buyers and offering a regular price to the rest is an accepted by
consumers marketing practice. Furthermore, it is easily implementable via a gift and posted
price mechanism(same price available to all buyers). The Influence-and-Exploit strategy is a
clever way to find a good solution to complex problems by breaking the symmetry between the
decision variables in order to exploit partial knowledge and intuition about the structure of
the optimal solution. Some instances where this idea has been succesfully applied are [27, 65].

The Revenue Maximization and Influence Maximization problems study the same process
from different viewpoints, that of value and information propagation respectively. However, in
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reality these two aspects are intertwined and it is an interesting direction to merge them under
one model. Towards, that direction the Linear Threshold Model looks quite promising as it
could incorporate the dynamics by considering for each vertex two thresholds θV , θI (about
value and information respectively) and a joint distribution over them FPt,St depending on
the price trajectory Pt = (p0, . . . , pt) and the adoption trajectory St = (s0, . . . , st) of its
neighbours, where pt is the posted price and st is the set of neighbours that own the product
at time t. The goal would be to exploit the knowledge of the dependencies between buyer
to design a marketing strategy that maximizes the expected profit. The marketing strategy
would be comprised by three parts. A mass marketing campaign with cost which is a non-
decreasing function of the probability that a random buyer is informed about the product. A
promotion process where a set of buyers are given the product for free with possibly variable
cost for each buyer and a posted price trajectory according to which an arbitrary buyer can
buy the product at each time point. If these challenges are(or can be) met, then we would
obtain a truly Algorithmic Theory of Marketing.
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