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Abstract 
Computer Vision algorithms introduce mentionable computational complexity, 

which is usually non-sufficiently implemented onto general-purpose CPUs. Thus, it 

is common to employ specialized hardware accelerators which aim to improve the 

performance of critical kernels of these algorithms.  

 

The goal of this diploma thesis is to provide a sufficient hardware/software co-

design implementation of landmark matching algorithm onto a reconfigurable 

platform. More specifically, the timing critical kernels, as they were already derived 

from profiling procedure, was developed at reusable VHDL and successfully 

mapped onto the target FPGA (Virtex 6- XC6VLX240T ). By exploiting as much as 

possible the inherent parallelism found in this algorithm, in conjunction to a number 

of design techniques, lead to the maximum gains. Regarding the non-timing critical 

kernels of landmark matching, they continue to be executed onto a general-purpose 

CPU, since they do not affect the performance of entire system. 

 

The thesis is organized as follows: 

 

In Chapter 1, there is an introduction in FPGAs and in computer vision. Basic parts 

of each are being mentioned, while there is a special reference at their relationship. 

Chapter 2 gives the related work on landmark matching algorithm. Moreover, this 

chapter also highlights the motivation of this diploma thesis. The implementation of 

landmark matching core is discussed in Chapter 3. More specifically, first of all we 

provide a example about how this algorithm is executed, whereas then there is a 

detailed description about its architecture, as well as its implementation. Chapter 4 

covers the integration and communication between software (running onto a 

general-purpose CPU) and hardware (executed onto Xilinx Virtex-6 XC6VLX240T 

device). The corresponding modules of driver, controller and C program used for 

the communication are being explained. Experimental results that prove the 

effectiveness of introduced hardware/software co-design are discussed in in Chapter 

5. For shake of completeness, the results of our implementation are also compared 

against to relevant implementations found in literature (e.g. the C/C++ 
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implementation of the same algorithm). Chapter 6 summarizes the work performed 

during this diploma thesis and provides some potential directions about upcoming 

research in this topic. Finally, there is an appendix which provides detailed and 

useful information to interest readers about how to compile the project of Landmark 

Matching into Xilinx ISE framework, as well as details about the employed script 

for performing the Ethernet-based communication between PC and FPGA. 

 

Keywords: FPGA, Computer Vision, Landmark Matching, Virtex5, Virtex6, 
HW/SW co-design 
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Περίληψη 
 

Οι αλγόριθμοι της Όρασης Υπολογιστών εισάγουν αξιοσημείωτη υπολογιστική 

πολυπλοκότητα, η οποία συνήθως υλοποιείται μη επαρκώς σε ΚΜΕ γενικού 

σκοπού. Για αυτό τον σκοπό είναι σύνηθες να χρησιμοποιούμε  υλικό ειδικού 

σκοπού για να επιταχύνουμε την απόδοση των κρίσιμων κομματιών αυτών των 

αλγορίθμων.  

 

Ο σκοπός αυτής της διπλωματικής είναι να προτείνει και να παρουσιάσει μία 

ολοκληρωμένη υλοποίηση ενός τέτοιου συστήματος συνεργασίας μεταξύ software 

και hardware για τον αλγόριθμο landmark matching. Η υλοποίηση θα γίνει σε 

επαναδιαμορφώσιμη πλατφόρμα. Ειδικότερα, έχοντας βρει τα κρίσιμα κομμάτια 

του αλγόριθμου, χρησιμοποιήσαμε επαναχρησιμοποιήσιμη VHDL και 

απεικονίστηκαν επιτυχώς σε ένα FPGA (Virtex 6- XC6VLX240T0). 

Εκμεταλλευόμενοι όσο το δυνατόν περισσότερο τον παραλληλισμό που υπάρχει 

στον αλγόριθμο, σε συνδυασμό με ένα αριθμό τεχνικών σχεδίασης, οδηγηθήκαμε 

στο μέγιστο δυνατό κέρδος. Τα μη κρίσιμα κομμάτια του αλγόριθμο συνεχίζουν να 

εκτελούνται σε ΚΜΕ γενικού σκοπού, καθώς δεν επιβαρύνουν παραπάνω το 

συνολικό σύστημα. 

 

Η διπλωματική οργανώνεται ως ακολούθως: 

 

Στο κεφάλαιο 1, υπάρχει μια εισαγωγή στα FPPGA και στην όραση υπολογιστών. ο 

τα βασικά κομμάτια του καθενός, ενώ υπάρχει ειδική αναφορά στην μεταξύ τους 

σχέση. Στο κεφάλαιο 2, παρουσιάζουμε την σχετική δουλειά που υπάρχει ήδη πάνω 

στον αλγόριθμο landmark matching. Η υλοποίηση του πυρήνα παρουσιάζεται στο 

κεφάλαιο 3. Ειδικότερα. Ξεκινάμε με ένα παράδειγμα που παρουσιάζεται η βασική 

λειτουργία του αλγορίθμου και στην πορεία παρουσιάζουμε την αρχιτεκτονική του 

αλγορίθμου και την κυρίως υλοποίηση του, με την ανάλυση των βασικών 

συστατικών του. Στο κεφάλαιο 4, περιγράφουμε την υλοποίηση της επικοινωνίας 

μεταξύ του software (που τρέχει σε μία γενικού σκοπού ΚΜΕ)και του hardware 

(που τρέχει στο Xilinx Virtex-6 XC6VLX240T). Εξηγούνται αναλυτικά στο 
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κεφάλαιο αυτό τόσο το πρόγραμμα C που τρέχει στον υπολογιστή, το πρόγραμμα 

του ελεγκτή, και το κομμάτι του driver για την επικοινωνία τους.  

Στην συνέχεια παρουσιάζονται τα πειραματικά αποτελέσματα που αποδεικνύουν 

την αποτελεσματικότητα από την εισαγωγή της επικοινωνίας μεταξύ software/ 

hardware. Για να αποδειχτεί η ορθότητα τους, τα αποτελέσματα συγκρίνονται με 

αυτά άλλων υλοποιήσεων και συγκρίνουμε τις επιδόσεις τους. Το κεφάλαιο 6 

περιέχει την αποτίμηση των αποτελεσμάτων. Στο τέλος υπάρχει σχετικό παράρτημα 

με τα απαραίτητες πληροφορίες για την πλατφόρμα που χρησιμοποιήθηκε. Οδηγίες 

για το τρέξιμο τόσο σε hardware, όσο και για την επικοινωνία. 
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Chapter 1:  Introduction 

FPGA 

Introduction 
 

A field-programmable gate array (FPGA) is an integrated circuit designed to be 

configured by a customer or a designer after manufacturing—hence "field-

programmable". As opposed to Application Specific Integrated Circuits (ASICs), 

where the device is custom built for the particular design, FPGAs can be programmed 

to the desired application or functionality requirements. Although One-Time 

Programmable (OTP) FPGAs are available, the dominant types are SRAM-based 

which can be reprogrammed as the design evolves. FPGAs allow designers to change 

their designs very late in the design cycle– even after the end product has been 

manufactured and deployed in the field.  So, they are silicon chips which have the 

flexibility of software running on a processor-based system, but it is not limited by the 

number of processing cores available. What is remarkable for FPGAs is that they are 

parallel from nature so different processes do not compete for the same resources. Each 

independent processing task is assigned to a dedicated section of the chip, and can 

function autonomously without any influence from other logic blocks. 

 

The FPGA industry sprouted from 

History of FPGA 

programmable read-only memory (PROM) 

and programmable logic devices (PLDs). PROMs and PLDs both had the option of 

being programmed in batches in a factory or in the field (field programmable), 

however programmable logic was hard-wired between logic gates. In late 1980’s the 

first programmable logical gates were implemented and some years later, in 1985, the 

first commercially viable field programmable gate array was invented by Ross 

Freeman and Bernard Vonderschmitt. In the not so distant past, FPGA were marketed 

for primarily two uses:  

 For prototyping ASIC’s 

 For use in systems to achieve time to market 

http://en.wikipedia.org/wiki/Integrated_circuit�
http://en.wikipedia.org/wiki/Field-programmable�
http://en.wikipedia.org/wiki/Field-programmable�
http://www.xilinx.com/fpga/asic.htm�
http://en.wikipedia.org/wiki/Programmable_read-only_memory�
http://en.wikipedia.org/wiki/Programmable_logic_devices�
http://en.wikipedia.org/wiki/Ross_Freeman�
http://en.wikipedia.org/wiki/Ross_Freeman�
http://en.wikipedia.org/wiki/Bernard_Vonderschmitt�
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  Knowing they would be replaced with an ASIC implementation at the earliest 

opportunity. 

This is was the start of an FPGA market which was then populated by quite a number 

of vendors, including Xilinx, Altera, Actel, Lattice, Crosspoint, Algotronix, Prizm, 

Plessey, Toshiba, Motorola, and IBM. The market has now grown considerably and 

Gartner Dataquest indicated a market size growth to 4.5 billion in 2006, 5.2 billion in 

2007 and 6.3 billion in 2008. There have been many changes in the market, including a 

severe rationalization of technologies with many vendors such as Crosspoint, 

Algotronix, Prizm, Plessey, Toshiba, Motorola, and IBM disappearing from the market 

and a reduction in the number of FPGA families as well as the emergence of SRAM 

technology as the dominant technology largely due to cost. The market is now 

dominated by Xilinx and Altera and more importantly, the FPGA has grown from 

being a simple glue logic component to representing a complete System on 

Programmable Chip (SoPC) comprising on-board physical processors, soft processor, 

dedicated DSP hardware, memory and high-speed I/O. We can assume that 

development of FPGA’s can be divided into different eras:  The age of invention where 

FPGAs started to emerge and were being used as system components. The age of 

expansion is where the FPGA started to approach the problem size and thus design 

complexity was key. The final evolution stage is described as the period of 

accumulation where FPGA started to incorporate processors and high-speed 

interconnection. 

 

Every FPGA chip is made up of a finite number of predefined resources with 

programmable interconnects to implement a reconfigurable digital circuit and I/O 

blocks to allow the circuit to access the outside world. FPGAs have evolved far beyond 

the basic capabilities present in their predecessors, and incorporate hard (ASIC type) 

blocks of commonly used functionality such as RAM, clock management, and DSP. 

Architecture and Basic blocks of FPGA 
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Figure 1.1: Different parts of an FPGA. 

 

The organization of an FPGA architecture can be summarized as follows: 

 Configurable Logic Blocks (CLBs) 

 Interconnect 

 SelectIO (IOBs) 

 Memory 

 Complete Clock Management 

 

The CLB is the basic logic unit in a FPGA. Exact numbers and features vary from 

device to device, but every CLB consists of a configurable switch matrix with 4 or 6 

inputs, some selection circuitry (MUX, etc), and flip-flops. The switch matrix is highly 

flexible and can be configured to handle combinatorial logic, shift registers or RAM. 

More architectural details can be found in the applicable device’s data sheet. 

Configurable Logic Blocks (CLBs) 
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Figure 1.2: Basic Configurable Logic Block Structure 

 

While the CLB provides the logic capability, flexible interconnect routing routes the 

signals between CLBs and to and from I/Os. Routing comes in several flavors, from 

that designed to interconnect between CLBs to fast horizontal and vertical long lines 

spanning the device to global low-skew routing for Clocking and other global signals. 

The design software makes the interconnect routing task hidden to the user unless 

specified otherwise, thus significantly reducing design complexity. 

Interconnect 

 

Today’s FPGAs provide support for dozens of I/O standards thus providing the ideal 

interface bridge in your system. I/O in FPGAs is grouped in banks with each bank 

independently able to support different I/O standards. Today’s leading FPGAs provide 

over a dozen I/O banks, thus allowing flexibility in I/O support. 

SelectIO (IOBs) 

 

Figure 1.3: SelectIO Basic Block structure 
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Embedded Block RAM memory is available in most FPGAs, which allows for on-chip 

memory in your design. These allow for on-chip memory for your design. 

Memory 

 

Digital clock management is provided by most FPGAs in the industry. The most 

advanced FPGAs offer both digital clock management and phase-looped locking that 

provide precision clock synthesis combined with jitter reduction and filtering. 

Complete Clock Management 

 

 
Figure 1.4: Overall FPGA block structure 

 

Although FPGAs offer many advantages, there are naturally some disadvantages. They 

are slower than equivalent ASICs (Application Specific Integrated Circuit) or other 

equivalent ICs, and additionally they are more expensive. (However ASICs are very 

expensive to develop by comparison). This means that the choice of whether to use an 

FPGA based design should be made early in the design cycle and will depend on such 

items as whether the chip will need to be re-programmed, whether equivalent 

functionality can be obtained elsewhere, and of course the allowable cost. Sometimes 

Disadvantages of FPGA 
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manufacturers may opt for an FPGA design for early product when bugs may still be 

found, and then use an ASIC when the design is fully stable. 

 

Applications of FPGAs include 

Applications 

digital signal processing, software-defined radio, 

aerospace and defense systems, ASIC prototyping, medical imaging, computer vision, 

speech recognition, cryptography, bioinformatics, computer hardware emulation, radio 

astronomy, metal detection and a growing range of other areas. 

 

FPGAs originally began as competitors to CPLDs and competed in a similar space, 

that of glue logic for PCBs. As their size, capabilities, and speed increased, they began 

to take over larger and larger functions to the state where some are now marketed as 

full systems on chips (SoC). Particularly with the introduction of dedicated multipliers 

into FPGA architectures in the late 1990s, applications which had traditionally been the 

sole reserve of DSPs began to incorporate FPGAs instead.  

 

Traditionally, FPGAs have been reserved for specific vertical applications where the 

volume of production is small. For these low-volume applications, the premium that 

companies pay in hardware costs per unit for a programmable chip is more affordable 

than the development resources spent on creating an ASIC for a low-volume 

application. Today, new cost and performance dynamics have broadened the range of 

viable applications. 

 

 

  

http://en.wikipedia.org/wiki/Digital_signal_processing�
http://en.wikipedia.org/wiki/Software-defined_radio�
http://en.wikipedia.org/wiki/Aerospace�
http://en.wikipedia.org/wiki/Defense_(military)�
http://en.wikipedia.org/wiki/Application-specific_integrated_circuit�
http://en.wikipedia.org/wiki/Medical_imaging�
http://en.wikipedia.org/wiki/Computer_vision�
http://en.wikipedia.org/wiki/Speech_recognition�
http://en.wikipedia.org/wiki/Cryptography�
http://en.wikipedia.org/wiki/Bioinformatics�
http://en.wikipedia.org/wiki/Emulator�
http://en.wikipedia.org/wiki/Radio_astronomy�
http://en.wikipedia.org/wiki/Radio_astronomy�
http://en.wikipedia.org/wiki/CPLD�
http://en.wikipedia.org/wiki/Glue_logic�
http://en.wikipedia.org/wiki/Printed_circuit_board�
http://en.wikipedia.org/wiki/System-on-a-chip�
http://en.wikipedia.org/wiki/Digital_signal_processor�
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Computer Vision 

Computer vision is a field that includes methods for acquiring, processing, analysing, 

and understanding images and, in general, high-dimensional data from the real world 

in order to produce numerical or symbolic information, e.g., in the forms of 

decisions. A theme in the development of this field has been to duplicate the abilities 

of human vision by electronically perceiving and understanding an image. This image 

understanding can be seen as the disentangling of symbolic information from image 

data using models constructed with the aid of geometry, physics, statistics, and 

learning theory. 

Introduction. 

 

Nowadays, there are many implemented computer vision algorithms and obviously 

computer vision has endless applications. Some of them are shown at the diagram 

below. 

 

 
Figure 1.5 Applications of Computer Vision 
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Computer vision algorithms are natural candidates for high performance computing 

due to their inherent parallelism and intense computational demands. For example, a 

simple 3 x 3 convolution on a 512 x 512 gray scale image at 30 frames per second 

requires 67.5 million multiplications and 60 million additions to be performed in one 

second. Computer vision tasks can be classified into three categories based on their 

computational complexity and communication complexity: low-level, intermediate-

level and high-level. Special-purpose hardware provides better performance compared 

to a general-purpose hardware for all the three levels of vision tasks. With recent 

advances in very large scale integration (VLSI) technology, an application specific 

integrated circuit (ASIC) can provide the best performance in terms of total execution 

time. However, long design cycle time, high development cost and in flexibility of a 

dedicated hardware deter design of ASICs. In contrast, field programmable gate arrays 

(FPGAs) support lower design verification time and easier design adaptability at a 

lower cost. Hence, FPGAs with an array of reconfigurable logic blocks can be very 

useful compute elements. FPGA-based custom computing machines are playing a 

major role in realizing high performance application accelerators. Three computer 

vision algorithms have been investigated for mapping onto custom computing 

machines:  

Computer Vision and FPGA 

(i) template matching (convolution)  a low level vision operation 

(ii) texture-based segmentation { an intermediate-level operation, and 

(iii) point pattern matching { a high level vision algorithm.  

The advantages demonstrated through these implementations are as follows. First, 

custom computing machines are suitable for all the three levels of computer vision 

algorithms. Second, custom computing machines can map all stages of a vision system 

easily. This is unlike typical hardware platforms where a separate subsystem is 

dedicated to a specific step of the vision algorithm. Third, custom computing approach 

can run a vision application at a high speed, often very close to the speed of special-

purpose hardware. 
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Chapter 2:  Related Work 

Related Work 

Searching on the web, there were not many resources available regarding landmark 

matching algorithm either its software implementation or its hardware. Landmark 

matching algorithm is used as part of vision algorithms regarding localization. 

Landmark matching was found as part of the so-called LTRC algorithm: Landmark 

Matching, Triangulation, Reconstruction, and Comparison. Visual Image data has the 

potential to disambiguate objects for localization, as it provides high resolution, and 

additional information such as color, texture, and shape. To compensate for 

accumulated navigation errors, mobile robots must use external sensors to estimate 

their position. Active ranging devices give direct distance measurements and have 

found widespread use for robot localization. However, these sensors do not provide 

features needed to resolve ambiguities between objects. In order to understand how 

landmark matching works, we must first understand some aspects of localization 

algorithms. Global localization, provides the initial position estimate for conventional 

robot-tracking algorithms (e.g., extended Kalman filtering) and enables the robot to 

identify its own position when previous odometry readings are either inaccurate or 

even not available (e.g., due to wheel slippage, or just after powering up). In terms of 

functionality, localization can be classified as global, incremental, or simultaneous 

localization and mapping (SLAM). Global localization identifies the robot position 

with respect to some external frame using only the current sensory data. Unlike the 

incremental methods, an historical position estimate is not required. The global 

localization application is targeted not only because it is essential to many robot 

navigation systems, but its independence from historical position estimates also 

clarifies the evaluation of the proposed algorithm in the presence of non-unique 

landmarks. Localization methods are often classified either as iconic or feature-based. 

The iconic method directly compares the raw data with the map, whereas the feature-

based method considers mainly the prominent features 

 

A pair of landmarks is said to be similar if the difference between their individual 

signatures (median color scalars) is sufficiently small. Expecting a consecutive match 
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along the entire landmark sequence is not realistic, due to partial occlusion and slight 

environmental changes. On the other hand, non-unique landmarks are a common 

occurrence. To reduce the rate of mismatching, only landmark sequences with at least 

three consecutive matched features are considered. The landmark signature list of the 

current image is compared with that generated from each of the reference images. The 

operation often finds multiple sets of consecutive matched landmarks. Robot position 

estimates are obtained from the triangulation of these matched landmark sets, and the 

best one is selected during the reconstruction and comparison stage. 

 

Motivation 

As already been said, computer vision algorithms use many computer resources and 

they are considered to be time-consuming. Aiming at low-cost and efficiency, this 

diploma proposes the use of field-programmable gate array device (FPGA) . We 

describe the translation of computer vision algorithms to VHDL and detail  the design 

of a working prototype. We present results showing that an FPGA device provides 

hardware speed to user applications, delivering real-time speeds for image 

segmentation at an affordable cost. An efficiency comparison is made among the 

hardware-implemented and a software-implemented (C language) system using the 

same algorithms. 

 

Challenges for the diploma thesis were: 

• The fact that there was not a single implantation of the specific algorithm on 

FPGA. 

• We would like to present real results on the speed up of a project if specific 

operations are performed on a FPGA. For that reason we will compare our 

results with both Matlab and C results. 

• In order to take advantage of HW/SW co-design, our goal is to provide a fully 

integrated alternative between an FPGA device with a host-PC in a way that PC 

can send data to our device just by calling a script. In this way, we take 

advantage of software\hardware co-design as we can call our module 

implemented on FPGA just like any other function in a high-level program. 
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Chapter 3:  Implementation of Landmark 

Matching 

 

 

The algorithm implemented in this diploma thesis is that of landmark matching. This 

algorithm was developed from scratch in reusable VHDL [25] and was successfully 

mapped onto Virtex-5 (XC5VLX50T) and Virtex-6 (XC6VLX240T) FPGA 

platforms. The design goals of this implementation are summarized as follows: 

 

 High-Performance 

 Low-Power  

 Sufficient area utilization 

 Integration through Ethernet protocol into a HW/SW system 

 

Algorithm Description 

In this diploma thesis we are going to implement landmark matching algorithm.  

Landmark matching uses many different frames of a single image and tries to identify 

certain spots in it.  

 

The core works like this: it takes as an input two arrays, each one consisting of some 

vectors. For every vector of array A, it computes and returns the minimum Euclidian 

distance between vectors of array B. This minimum distance is so-called “match” in 

Computer Vision. So, landmark matching finds the perfect matches. 
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An example of running our core is shown in the next figure: 
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Next, we describe in more details the architecture, as well as the implementation of 

Landmark Matching algorithm. 

 

Architecture of the design 

Landmark matching algorithm, as described in the previous sections, requires the 

simultaneous run of many processes, and for a considerable amount of times. As first 

approach, we tried to run all the required processed during the same cycle. Therefore 

we had a process responsible for subtracting the data, square them and added them to 

the previous sum. Such a design would drastically reduce the complexity of our 

design. But as a result of this, our clock was terrible and we were wasting so much 

time while we could run thing in parallel. For this reason, we used a different 

approach for our design and we used a form of pipeline. In the figure 1 there is a 

schematic example of our pipeline. 

  
Figure 3.1: different stages and logical units that are pipelined. 
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The functionality of pipeline could be explained as follow: 

 

 In cycle X, we compute the difference between our input data.  

 In the next cycle, this difference is being forwarded to the next stage and the 

square difference is computed. In the previous stage, new data have been 

imported and the new difference is being computed.  

 In cycle X+2, the square difference of cycle X+1, is being forwarded to next 

stage and we added to the previous sums. Like before, a new square difference 

and a new difference (that of our new data) are computed.  

 

 By doing this, we minimize our clock cycle because each logical unit performs an 

independent operation and will take only the time that it needs. Besides, there is no 

waiting for all the other logical units to finish their work. When each logical unit 

finishes its operation, it forwards the result to the next stage and waits for new data. 

 
Figure 3.2 schematic example of our pipeline 
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Figure 3.3 Schematic example of our pipeline. 

 

Core implementation: 

If we consider our core as a black box, we can see that it consists of the following 

inputs/outputs: 

 

entity landmark_1 is 

  generic 

  (data_length :integer := 16; 

  address_length:integer:=9 ; 

  comp_num:integer:=64; 

  total_number_A:integer:=13; 

  total_number_B:integer:=9); 

  port ( clk:in std_logic; 

  rst:in std_logic; 

  mem_data:in std_logic_vector(data_length-1 downto 0); 

  set: in std_logic; 

  mem_address: in std_logic_vector(address_length downto 0); 

  wea: in std_logic; 

  finished:in std_logic; 

  new_result: out std_logic; 
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  dout: out std_logic_vector(4*data_length-1 downto 0); 

  done: out std_logic 

  ); 

end landmark_1; 

 

Let’s take a closer look at each one: 

 

As far as the generic constants are concerned: 

 Data_length: Our length data. Our architecture supports generic data. That 

means that in synthesis time, length of input data has to be decides. In our 

simulations we chose as length that of 8, 16 bits for specific reasons explained 

in the appropriate section. 

 Address_length:  At synthesis time, length of our addresses has to be declared. 

 Comp_num:  It is the number of each vector’s coordinates. In our simulation 

was set to 64, although our architecture can support and arbitrary value. 

 Total_number_A, Total_number_B: integers declaring the total number of 

vectors in array A and in array B of our input. They must also be set before 

synthesis. 

 

Next, we analyze the input and output signals found in our developed core. 

 Clk: Clock of our design 

 Rst: Reset signal, used for initialization or setting the design back to is default 

value. 

 Mem_data: Input data of data_length bits. It represents the data that are going 

to be stored in the local single port memory. Use of this signal is described in 

the following section. 

 Set:  Logical input used for identifying which array my data belong. When set 

to L data are elements of input array A, while when H data belong to array B.  
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 Mem_address: Signal of address_length bits, used for representing the address 

in which data are stored in the local memory. 

 Wea: Write enable signal for the local memories. 

 Finished: Logical signal, used as flag for computation process to start. When 

set to H, all data have been written in Ram and we can safely start our 

computation. 

 New_result: Output logical signal. It is H only for a single cycle, when a new 

result has been computed. It is used from our controller in order to identify 

that a new result has arisen. That’s why its use will be explained in details in 

the section of the controller. 

 Dout:  Our output signal. Whenever a result is available (a minimum Euclidian 

distance for each vector of array A), its value is assigned to dout. 

 Done:  Output logical signal. Used for knowing the end of the core process. 

When set to H, computation has finished and all data have been transferred to 

the upper level (that of controller) or the standard output. 

 

What is worth mentioning is the fact that dout has been chosen to be of 4x data_length 

bits. We decided that for the following reasons: 

 

1. First of all, we took in mind the worst case scenario. Given data of data_length   

bits, worst case result when subtracting in order not to lose accuracy because of 

overflow is to keep data_length+1 bits for my result. Later, this result is squared 

so in that worst case we need 2 ∗ (𝑑𝑎𝑡𝑎_𝑙𝑒𝑛𝑔𝑡ℎ + 1) bits. That result must be 

added to the previous sums, and the maximum number od adds that are going to 

be performed are comp_num. In all of our simulation comp_num was set to 64. So 

worst case scenario is perform 64 adding’s of these results. So we need 2 ∗

(𝑑𝑎𝑡𝑎_𝑙𝑒𝑛𝑔𝑡ℎ + 1) + 6 bits which gives us 2 ∗ 𝑑𝑎𝑡𝑎 − 𝑙𝑒𝑛𝑔𝑡ℎ + 8 bits, which 

in case of 8 bits is 3 ∗ 𝑑𝑎𝑡𝑎_𝑙𝑒𝑛𝑔𝑡ℎ.  
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2. As it is clear from the beginning the basic goals of this diploma thesis was 

integration with the Ethernet. In order to use the Ethernet driver the limitations 

were the following: 

i) Input data must be of 8 bits. 

ii) Result written back in a character buffer must be of 32 bits. 

 

Combining the above reasons, we concluded in the choice of 4 ∗ 𝑑𝑎𝑡𝑎_𝑙𝑒𝑛𝑔𝑡ℎ 𝑏𝑖𝑡𝑠 

which are exactly the bits I need for the simulations of 8-bit data. 

 

 
Figure 3.4 Input and Output signals of landmark module. 

 

Next, we are going to analyze the basic components of our design. As already 

mentioned, we have used two (2) single port RAM memories, each one for each array. 

Input data are first saved in the memory, before out computation starts. Memory for 

vectors of array B is necessary because these vectors need to be recalled for every 

vector of array A.  So it’s much more efficient to fetch them directly from a local 

memory. Another approach in order to reduce the memory utilization would be not to 

store vectors of array A, because each one is used only once. When computation of its 
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Euclidian distance has finished, there is no need for using it again. In that case, our 

input has to been modified because we would be unable to read our data with the 

same order as provided for example at Matlab simulation. That’s why we decided that 

it is more helpful to store these vectors in a memory despite the fact that they are not 

going to be used repetitively. 

 

component ram_A IS 

  PORT ( 

    clka : IN STD_LOGIC; 

    wea : IN STD_LOGIC_VECTOR(0 DOWNTO 0); 

    addra : IN STD_LOGIC_VECTOR(9 DOWNTO 0); 

    dina : IN STD_LOGIC_VECTOR(15 DOWNTO 0); 

    douta : OUT STD_LOGIC_VECTOR(15 DOWNTO 0) 

  ); 

END component; 

component ram_B IS 

  PORT ( 

    clka : IN STD_LOGIC; 

    wea : IN STD_LOGIC_VECTOR(0 DOWNTO 0); 

    addra : IN STD_LOGIC_VECTOR(9 DOWNTO 0); 

    dina : IN STD_LOGIC_VECTOR(15 DOWNTO 0); 

    douta : OUT STD_LOGIC_VECTOR(15 DOWNTO 0) 

  ); 

END component; 
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Figure 3.5 Input and Output signals of SRAMs. 

 

 

To sum up, our core received data and stores them in 2 local memories.  When 

finished reading, computation process can start. Our core was tested in several 

versions: 

 Version 1:

 

 Input was provided by a file. At this version, the time measurement 

includes the reading/writing to RAM Blocks. 

Version 2:

 

 Input was loaded from a.coe file into ROM memories: In that case, 

there was no need for RAM, since they are replaced from two single-port 

ROM. This allows measuring the actual time required for algorithm execution 

(main process computation). 

Version 3:

 

 Input was provided using the Ethernet driver. Input data were read 

by a file, with the use of a high level language like C, and being passed to our 

core through a controller, which was also responsible for the write back 

process.  At next chapter we explain in more details these 3 modules 

(controller, driver and C program). 
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Chapter 4: Integration 

 
As already been said, the goal of his diploma thesis was not only the implementation 

of core but to provide a full integration between software and hardware. In order to 

achieve that, we have implemented several other modules, for enabling 

communication between software and hardware. First of all, we need a driver that will 

be able to pass our data to our core. But because these data are raw, between the 

driver and the core we have inserted a controller who receives these raw data, 

modifies them and transmits them to the core. This controller is also responsible for 

the write back process, as it receives the output of the core and transmits it to the 

driver. 

 
Figure 4.1 Communication diagram between modules 
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Controller Description 

Component module as a black box has the following declaration. 

entity controller is 

 generic( 

 data_length :integer := 8; 

 address_length:integer:=7 ; 

 comp_num:integer:=4; 

 total_number:integer:=2); 

 port ( 

 clk: in std_logic; 

 rst: in std_logic; 

 reading_state: in std_logic; 

 din: in std_logic_vector (31 downto 0); 

 dout_temp:out std_logic_vector (7 downto 0); 

 core_address:out std_logic_vector(address_length downto 0); 

 cntr_address: in std_logic_vector(7 downto 0); 

 c_done: out std_logic; 

 dout:out std_logic_vector (31 downto 0)  

 ); 

end controller; 

 

 
Figure 4.2 Controller module input/output. 
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Let’s take a closer look at each of them. 

 

 As far as the generic constants are concerned: 

 Data_length, comp_num as previous. 

 Address_length: Natural number used for the representation of number of bits 

need for the 32 bits that controller reads from the Ethernet driver. Used for 

controller’s local memory. 

 Total_number_A, total_number_B as previous. 

 

Inputs and output signals are the following: 

 Clk: Clock of our design. 

 Rst: reset signal, used for necessary initializations or for setting our design 

back to default. 

 Reading_state: Std_logic signal. Signal stays L as long as controller receives 

data from the driver. When driver stops sending data, signal becomes H and 

controller will start next process: that of sending data to the core. 

 Din:  Input data received from a char buffer over  the Ethernet driver. Data are 

of 32 bits length, as char buffer reads and transits 4 bytes. 

 Cntr_address: Address of controller’s local memory. 

 Core_address: Address of our core memory. 

 C_done: Output signal. Signal is set to H when controller has finished. 

 Dout: used for sending data back to the driver during the write back process. 

 

So our controller works like that: Controller receives data from a char buffer over the 

Ethernet driver. These data are saved in a controller’s local single port RAM. When 

controller has received all the data, is ready for sending them to the core. So it fetches 

each 32bit element from the RAM, breaks it up to 4 separate 8 bit data, and send these 



Υλοποίηση ρομποτικών αλγορίθμων όρασης σε FPGA: Εφαρμογή στον αλγόριθμο Landmark matching 
 

  34 

data to the core alongside with all the necessary information described previous 

(address of the current data, set of the data, and if there more data to be sent or not). 

For our controller design we used an FSM of 8 stages. In the first stage, the reading is 

performed while in stages 3 to 7 is the process of breaking the 32 bits into 4 unique. 

We decided to use a local memory for storing the data in order to be sure that 

synchronization problems will not arise. Since all data have been passed to our core, 

controller is in a wait stage and receives every output data of our core. This output 

also passes to the Ethernet driver in order to be written in a character buffer for 

transmition back to screen. 

 

 
Figure 4.3 SRAM used in controller for storing 32 bits data 
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The FSM flow of the controller is shown in the next diagram: 

 

 
Figure 4.4 FSM flow of controller 
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Driver description: 

The main goal of the driver is reading the data from the pc and sending them over 

Ethernet cable to our controller. Moreover, it is responsible for getting data from the 

controller and sends them to the pc over the Ethernet again. Use of Ethernet provides 

us with greater flexibility and will make core simulations easier as there is no need for 

someone to be familiar with VHDL or how to run a VHDL program. The user only 

has to know a high level language. In this diploma thesis, program was written in C 

language. So, driver is responsible for reading data that are generated by the C 

program.  

 

First of all, driver read 4 bytes containing the number of data that are going t be 

transferred. After that, driver read packages of 4 bytes until data are finished. Every 

32bit data that is read is being transferred in the controller, for storing it in the local 

RAM as previously described. Driver uses 2 counter: an overall counter and an inner 

counter which is used like this: the driver uses a buffer to store data received over 

Ethernet. Driver’s capacity is 1500 bytes. So, overall counter counts total bytes left, 

while inner counter counts how many bytes are left until the buffer of 1500 bytes is 

fully filled.  

 

When the reading has finished the driver gets in a state where variables for write back 

process are initialized, such as number of output data. Driver reads data from the 

controller and stores them in a char buffer until the driver receives and 

acknowledgement signal. At this time, data are being transferred back. 

 

When process is done, driver returns to its initial state. Obviously, driver is described 

with the use of an FSM, with each state’s functionality to be described above. 
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Documentation of the driver is being presented right now. 

 
Figure 4.5 Driver documentation 

 

• clk (std_logic) 

Inputs : 

• rst (std_logic) 

• E_COL (std_logic) : Collision Detected. The PHY asynchronously asserts the  

collision signal E_COL after the collision has been detected on the media. 

When deasserted, no collision is detected  on the media. 

• E_CRS (std_logic) : Carrier Sense. The PHY asynchronously asserts the 

carrier sense E_CRS signal after the medium is detected in a non-idle state. 

When deasserted, this signal indicates that the media is in an idle state (and the 

transmission can start). 

• E_MDC (std_logic) : Management Data Clock. This is a clock for the 

E_MDIO serial data channel. 

• E_MDIO (std_logic) : Management Data Input/Output. Bi-directional serial 

data  channel for PHY/STA communication. 

• E_RX_CLK  (std_logic) : Transmit Nibble or Symbol Clock. The PHY 

provides the E_Tx_Clk signal. It operates at a frequency of 25 MHz (100 

Mbps) or 2.5 MHz (10 Mbps). The clock is used as a timing reference for the 

transfer of E_TXD[3:0], E_TX_EN, and E_TX_ER. 
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• E_RX_DV (std_logic) : Receive Data Valid. The PHY asserts this signal to 

indicate to the Rx MAC that it is presenting the valid. 

• E_RXD (std_logic) : Receive Data Nibble. These signals are the receive data 

nibble. They are synchronized to the rising edge of E_RX_CLK. When 

E_RX_DV is asserted, the PHY sends a data nibble to the Rx MAC. For a 

correctly interpreted frame, seven bytes of a preamble and a completely 

formed SFD must be passed across the interface. 

• E_TX_CLK (std_logic) : Transmit Nibble or Symbol Clock. The PHY 

provides the E_Tx_Clk signal. It operates at a frequency of 25 MHz (100  

Mbps) or 2.5 MHz (10 Mbps). The clock is used as a timing reference for the 

transfer of E_TXD[3:0], E_TX_EN, and E_TX_ER. 

• E_RX_ER (std_logic) : Receive Error. The PHY asserts this signal to indicate 

to the Rx MAC that a media error was detected during the transmission of the 

current frame. E_RX_ER is synchronous to the E_RX_CLK and is asserted for 

one or more E_RX_CLK clock periods and then deasserted. 

• E_MDIO (std_logic) : Management Data Input/Output. Bi-directional serial 

data  channel for PHY/STA communication. 

Outputs: 

• E_TX_EN (std_logic) : Transmit Enable. When asserted, this signal indicates 

to the PHY that the data E_TXD[3:0] is valid and the transmission can start. 

The transmission starts with the first nibble of the preamble. The signal 

remains asserted until all nibbles to be transmitted are presented to the PHY. It 

is deasserted prior to the first E_TX_CLK, following the final nibble of a 

frame. 

• E_TXD (std_logic) : Transmit Data Nibble. Signals are the transmit data 

nibbles. They are synchronized to the rising edge of E_TX_CLK. When 

E_TX_EN is asserted, PHY accepts the E_TXD. 

• E_TX_ER (std_logic) : Transmit Coding Error. When asserted for one 

E_TX_CLK clock period while E_TX_EN is also asserted, this signal causes 

the PHY to transmit one or more symbols that are not part of the valid data or 

delimiter set somewhere in the frame being transmitted to indicate that there 

has been a transmit coding error. 

• PHYA_RESET (std_logic) . 
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Chapter 5: Implementation results 

 

In this chapter, we are going to demonstrate measurements taken for several inputs. In 

order to collect the inputs, we run several images obtained from link [1]. We run these 

images in matlab and we kept in a file the input traces for our function, which is 

landmark matching algorithm. After doing so, our inputs were refined. Since matlab 

has greatest accuracy with floats numbers we run several different instances of each 

input. 

 

First of all, input was between -1 and 1. That means that it is safe for us to neglect the 

integer part, and only keep for input the fractional part. Because in VHDL the input 

must be declared and will be of standard length we had some limitations. When our 

input was set to 8 bits, our data should be between -128 and +127. That means that 

any number out of this range had to be adjusted in its closest limit. Similarly, when 

our input data was set to 16 bits length, the space has turned into -32767 and 32767.  

 

Because of the above, we expect that there will be a slight deviation to our core results 

with the matlab results. We also expect that the longer the length will be, the less will 

be the deviation. In order to check that results of our core are correct, we also wrote a 

C program doing the exact same thing. 

 

So we first run the project in matlab and we collected the results for the landmark. 

Then collected input was defined, and we run project for 8 bits, 16 bits both in C and 

VHDL. Demos for 8 bits were also tested with our integration project, and the use of 

controller and the Ethernet driver as described in the previous chapters. 

 

So, at first, we are going to present measurements for our core. 
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Design properties of the devices used in our measurements are the following: 

 

Family Virtex5 Virtex6 

Device XC5VLX50T XC6VLX240T 

Package FF1136 FF156 

Speed -2 -2 

 

Core implementation results 

Next we provide the experimental results about core implementation. For 

evaluation purposes, five different testcases are employed, whereas at the 

end there is a discussion about the overall power consumption. 

 
TestCase 1: 
 

At first we used for an input image, the following 4 frames. 

          
 

 

             
Figure 5.1: Input for the testcase 1 with image size 256x128. 
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Running the code in matlab gave us a result an array A with 13 vectors, each one 

consisting of 64 coordinates, while array B had 9 vectors, each one consisting of 64 

coordinates. We had mentioned at the beginning, that the number of coordinates will 

always be 64 so in the next examples will not be mentioned at all. Matlab results are 

shown in the table below. 

Results for Image 1 from Matlab 

 

Table 5.1: Matlab results for testcase 1 

Vector of Array A result 

Vector 1 0.151713 

Vector 2 0.425982 

Vector 3 0.156278 

Vector 4 0.253199 

Vector 5 0.286622 

Vector 6 0.354446 

Vector 7 0.009701 

Vector 8 0.267147 

Vector 9 0.197427 

Vector 10 0.029481 

Vector 11 0.011157 

Vector 12 0.004622 

Vector 13 0.006055 

 

 

As it was expected, we got 13 outputs, and each one is the minimum Euclidian 

distance between specific vector of A and vectors of array B. 

 

Afterwards, we readjusted the input data to 8 bits and we run the core in C and VHDL 

for the reformatted input. 
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VHDL Implementation with 8bit accuracy  

Our core was run in VHDL, and screenshots of the execution are shown below. 

 

 
Figure 5.2 Reading ended in VHDL 8 bits 

 

 

 
Figure 5.3 Output VHDL 8 bits. 
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We also run C program in order to check our results and we see that they are same. 

So, our core works perfectly.  Results are being shown in the next table: 

 

Table 5.2 Comparison results between C and VHDL 

Vector Output from C Output from VHDL  

Vector 1 360,667 360,667 

Vector 2 423,350 423,350 

Vector 3 282,327 282,327 

Vector 4 403,470 403,470 

Vector 5 501,065 501,065 

Vector 6 449,097 449,097 

Vector 7 365,093 365,093 

Vector 8 310,860 310,860 

Vector 9 449,698 449,698 

Vector 10 462,896 462,896 

Vector 11 366,795 366,795 

Vector 12 352,639 352,639 

Vector 13 291,080 291,080 
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VHDL Implementation with 16bit accuracy  

As explained earlier, we run our core for inputs of length 16. Screenshots from 

Modelsim execution are shown below: 

 

 
Figure 5.4 Reading 16 bits 

 

 
Figure 5.5 output 16 bits 
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As we can see from the above images, total time was the same in both bits. This is 

expected because they are not run with minimum clock cycle, but with a clock o 

period 10ns (or 100MHz). Moreover, we expect the number of cycles to be constant 

whatever the length is. 

 

Results are shown in the table below. 

 

Table 5.3: VHDL output for testcase 1, 32 bits 

Vector C output VHDL output 

Vector 1 42330408897 0011111100010011110001010000000001 

Vector 2 6589236221 0110001000101111111100001111111101 

Vector 3 5900855127 0101011111101101111110011101010111 

Vector 4 6568030677 0110000111011111000011000111010101 

Vector 5 14623368258 1101100111100111101110010101010000 

Vector 6 12330778345 1011011110111110001011111011101001 

Vector 7 4898325217 0100100011111101101000001011100001 

Vector 8 7065353182 0110100101001000001011101111011110 

Vector 9 15325579823 1110010001011110011100101000101111 

Vector 10 5562675954 0101001011100011111011001011110010 

Vector 11 4614745506 0100010011000011110110110110100010 

Vector 12 5927199995 0101100001010010011110010011111011 

Vector 13 5016801594 0100101011000001100101000100111010 

 

 

As we can see, output in VHDL cannot be shown in decimal form, because it exceeds 

32bits which is the integer range. But if we convert it to integer with a calculator we 

can verify that results are correct. 

 

After post-time synthesis (see complete steps and explanation at appendix A) cycles 

for each device are shown in the table below. 
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In the next diagram, we compare the time for our different executions for testcase1. 

As we can see we need more time when using 16 bits. In both cases, we see that 

VHDL implementation is much quicker that C implementation. 

 

 
Figure 5.6  Time results for test case 1  (8 bits) 

 

 
Figure 5.7 Time results for test case 1 (16 bits) 

 

In the next table we preview the results of our 3 implementations (Matlab, VHDL/C). 
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TestCase 2. 

 

In our next simulation we used the following frames. 

       

             
Figure 5.8: Input for the testcase 2 with mage size 128x128 

 

Running the simulation in Matlab the two arrays are of (89x64, 99x64) elements 

which means that our input is of about 12,000 elements. 

  

Like previous, we run our core in Matlab, VHDL and C for both 8 and 16 bits. We 

can verify that our core works fine, as we get the correct results. As we can see from 

the above charts, C implementation is much more affected from the range of data, 

while VHDL does not. 

 

Implementation results are given in the following diagrams: 

 
Figure 5.9 Time Results for test case 2 (8 bits) 
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Figure 5.10  Time Results for image 2 (16bits) 
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TestCase 3 

In our next simulation we used the following frames. 

 

         
Figure 5.11 Input for the test case 3 with image size 64 x 50 

 

 
Figure 5.12 8 bits results 

 

 
 

Figure 5.13 16 bits results 
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TestCase 4 

 

In our next simulation we used the following frames. 

 

       
 

 
Figure 5.14: Input for the testcase 4 with image size 256x200 

 

 

Running the simulation in Matlab the two arrays are of (89x64, 99x64) elements 

which means that our input is of about 12000 bytes. 

  

Like previous, we run our core in Matlab, VHDL and C for both 8 and 16 bits. We 

can verify that our core works fine, as we get the correct results. 

 

Implementation results in terms of time needed of our core and time needed for C 

program are given in the following diagrams: 
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Figure 5.15 Time results for test case 4 ( 8 bits ) 

 

 

 
Figure 5.16 Time results for test case 4 (16 bits) 
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TestCase 5 

 

In our next simulation we used the following frames. 

 

                         
 

 
Figure 5.17: Input for the testcase 5 with image size 512x200 

 

Running the simulation in Matlab the two arrays are of (125x64, 110x64) elements 

which means that our input is of about 15000 bytes. 

  

Like previous, we run our core in Matlab, VHDL and C for both 8 and 16 bits. We 

can verify that our core works fine, as we get the correct results. 
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Implementation results are given in the following diagrams: 

 

 
Figure 5.18 Time results for test case 5 (8 bits) 

 

 

 
Figure 5.19 Time results for test case 5 (16 bits) 
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Overall Results 

In this section we are going to present our overall result and how the numbre of data 
influences the time needed from our core in comparison to time needed from C 
program. 
 
Moreover we have taken results, regarding power consumption and leakage power 
regarding the number of bytes, at a specific device (Virtex 6 device). 
 
At the end of the section, we provide our overall results regarding cycles needed from 
our core and from C program in order to show the speedup we have gained which was 
the initial goal of the design. 
 
 
 
 

 
Figure 5.20 Time comparison for different inputs (8 bits) 
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Figure 5.21 Time comparison for different inputs (16 bits) 

 

As we can see, FPGA implementation is always faster than C implementation. In the 

next diagram we compare directly the cycles needed for each test case, where we can 

see clearly the speed up we have achieved with FPGA implementation. 

 

For example, for different number of bytes input (used the test cases from above) the 

cycles needed for C implementation and FPGA implementation comparatively are 

shown in the following diagram: 
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Figure 5.22 Cycles needed for input of 10,000 bytes 

 

 
Figure 5.23 Cycles needed for input of 15,000 bytes 
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Figure 5.24 Cycles needed for input of 100,000 bytes 

 

From the above diagram we can see that there is a huge difference in cycles needed 

from our core in comparison with the implementation of the program in a language 

like C. We expect this difference to be risen as lon as we use larger inputs. 

 

In the next section we see results for power consumption for the previous test cases, 

taken from XPower tool of Xilinx ISE. 

 

Power results: 

 

 
Figure 5.25 Power consumption on Virtex6 for different input 
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Leakage: 

 

 
Figure 5.26 Leakage Power on Virtex6 for different inputs 

 

As we can see from the above diagrams, there is a huge rise in power consumption 

between 500 bytes and 10000 bytes. This difference is expected because the amount 

of input data is being risen and as a result of this the utilization of components in 
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Chapter 6: Conclusions 

 

From the implementation results of the previous section we conclude that if we take 

advantage of parallelism of an FPGA we manage to speed up our implementation. 

Moreover, FPGA implementation seems to be unaffected from range of input data 

while languages like C are getting really slow in number of a wide range. 

 

Especially when comparing cycles needed from the core, we can see that FPGA 

implementation is much quicker and it requires only the 10% of cycles needed from 

by C program. As a result of this, if we run our result in an embedded system, our 

implementation will be faster that running it in a high level language. 

 

We also expect that when number of input increases, FPGA implementation will 

speed up our project at a greater percent. 

 

From the results provided above, we can see that goals have been complete and we 

have provided a way that by using hardware for software processes we managed to 

speed up the algorithm of landmark matching. 
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Chapter 7: Appendix 

Hardware Platform 

 

The device we use for the FPGA implementation is the Xilinx Virtex 6. 

 

 

General Description 

The Virtex®-6 family provides the newest, most advanced features in the FPGA 

market. Virtex-6 FPGAs are the programmable silicon foundation for Targeted 

Design Platforms that deliver integrated software and hardware components to enable 

designers to focus on innovation as soon as their development cycle begins. Using the 

third-generation ASMBL™ (Advanced Silicon Modular Block) column based 

architecture, the Virtex-6 family contains multiple distinct sub-families. This 

overview covers the devices in the LXT, SXT, and HXT sub-families. Each sub-

family contains a different ratio of features to most efficiently address the needs of a 

wide variety of advanced logic designs. In addition to the high-performance logic 

fabric, Virtex-6 FPGAs contain many built-in system-level blocks. These features 

allow logic designers to build the highest levels of performance and functionality into 

their FPGA-based systems. Built on a 40 nm state-of-theartcopper process 

technology, Virtex-6 FPGAs are a programmable alternative to custom ASIC 

technology. Virtex-6 FPGAs offer the best solution for addressing the needs of high-

performance logic designers, high-performance DSP designers, and high-performance 

embedded systems designers with unprecedented logic, DSP, connectivity, and soft 

microprocessor capabilities. 

 

Virtex-6 FPGAs store their customized configuration in SRAM-type internal latches. 

The number of configuration bits is between 26 Mb and 177 Mb, depending on device 

size but independent of the specific user-design implementation, unless compression 

mode is used. The configuration storage is volatile and must be reloaded whenever the 

FPGA is powered up. This storage can also be reloaded at any time by pulling the 

Configuration 



Υλοποίηση ρομποτικών αλγορίθμων όρασης σε FPGA: Εφαρμογή στον αλγόριθμο Landmark matching 
 

  62 

PROGRAM_B pin Low. Several methods and data formats for loading configuration 

are available, determined by the three mode pins. Bit-serial configurations can be 

either master serial mode where the FPGA generates the configuration clock (CCLK) 

signal, or slave serial mode where the external configuration data source also clocks 

the FPGA. For byte- and word-wide configurations, master SelectMAP mode 

generates the CCLK signal while slave SelectMAP mode receives the CCLK signal 

for the 8-, 16-, or 32-bit-wide transfer. Alternatively, serial-peripheral interface (SPI) 

and byte-peripheral interface (BPI) modes are used with industry-standard flash 

memories and are clocked by the CCLK output of the FPGA. JTAG mode uses 

boundary-scan protocols to load bit-serial configuration data. The bitstream 

configuration information is generated by the ISE® software using a program called 

BitGen. The configuration process typically executes the following sequence: 

• Detects power-up (power-on reset) or PROGRAM_B when Low. 

• Clears the whole configuration memory. 

• Samples the mode pins to determine the configuration mode: master or slave, bit-

serial or parallel, or bus width. 

• Loads the configuration data starting with the bus-width detection pattern followed 

by a synchronization word, checks for the proper device code, and ends with a cyclic 

redundancy check (CRC) of the complete bitstream. 

• Start-up executes a user-defined sequence of events: releasing the internal reset (or 

preset) of flip-flops, optionally waiting for the phase-locked loops (PLLs) to lock 

and/or the DCI to match, activating the output drivers, and transitions the DONE pin 

High. 

 

Dynamic Reconfiguration Port 

The dynamic reconfiguration port (DRP) gives the system designer easy access to 

configuration bits and status registers for three block types: 32 locations for each 

clock tile, 128 locations for the System Monitor, and 128 locations for each serial 

GTX or GTH transceiver. The DRP behaves like memory-mapped registers, and can 

access and modify block-specific configuration bits as well as status and control 

registers. 
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Encryption, Readback, and Partial Reconfiguration 

As a special option, the bitstream can be AES-encrypted to prevent unauthorized 

copying of the design. The Virtex-6 FPGA performs the decryption using the 

internally stored 256-bit key that can use battery backup or alternative non-volatile 

storage. Most configuration data can be read back without affecting the system’s 

operation. Typically, configuration is an all-ornothing operation, but the Virtex-6 

FPGA also supports partial reconfiguration. When applicable in certain designs, 

partial reconfiguration can greatly improve the versatility of the FPGA. It is even 

possible to reconfigure a portion of the FPGA while the rest of the logic remains 

active i.e., active partial reconfiguration. 

 

The look-up tables (LUTs) in Virtex-6 FPGAs can be configured as either one 6-input 

LUT (64-bit ROMs) with one output, or as two 5-input LUTs (32-bit ROMs) with 

separate outputs but common addresses or logic inputs. Each LUT output can 

optionally be registered in a flip-flop. Four such LUTs and their eight flip-flops as 

well as multiplexers and arithmetic carry logic form a slice, and two slices form a 

configurable logic block (CLB). Four flip-flops per slice (one per LUT) can optionally 

be configured as latches. In that case, the remaining four flip-flops in that slice must 

remain unused. Between 25–50% of all slices can also use their LUTs as distributed 

64-bit RAM or as 32-bit shift registers (SRL32) or as two SRL16s. Modern synthesis 

tools take advantage of these highly efficient logic, arithmetic, and memory features. 

Expert designers can also instantiate them. 

CLBs, Slices, and LUTs 

 

Each Virtex-6 FPGA has up to nine clock management tiles (CMTs), each consisting 

of two mixed-mode clock managers (MMCMs), which are PLL based. 

Clock Management 

 

Phase-Locked Loop 

The MMCM can serve as a frequency synthesizer for a wider range of frequencies 

and as a jitter filter for incoming clocks. The heart of the MMCM is a voltage-

controlled oscillator (VCO) with a frequency from 600 MHz up to 1600 MHz, 

spanning more than one octave. There are three sets of programmable frequency 

dividers (D, M, and O). The pre-divider D (programmable by configuration) reduces 
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the input frequency and feeds one input of the traditional PLL phase/frequency 

comparator. The feedback divider (programmable by configuration) acts as a 

multiplier because it divides the VCO output frequency before feeding the other input 

of the phase comparator. D and M must be chosen appropriately to keep the VCO 

within its specified frequency range. The VCO has eight equally-spaced output phases 

(0°, 45°, 90°, 135°, 180°, 225°, 270°, and 315°). Each can be selected to drive one of 

the seven output dividers, O0 to O6 (each programmable by configuration to divide 

by any integer from 1 to 128). 

 

MMCM Programmable Features 

The MMCM has three input-jitter filter options: low bandwidth, high bandwidth, or 

optimized mode. Low-bandwidth mode has the best jitter attenuation but not the 

smallest phase offset. High-bandwidth mode has the best phase offset, but not the best 

jitter attenuation. Optimized mode allows the tools to find the best setting. The 

MMCM can have a fractional counter in either the feedback path (acting as a 

multiplier) or in one output path. Fractional counters allow non-integer increments of 

1/8 and can thus increase frequency synthesis capabilities by a factor of 8. The 

MMCM can also provide fixed or dynamic phase shift in small increments that 

depend on the VCO frequency. At 600 MHz the phase-shift timing increment is 30 ps; 

at 1600 MHz, it is 11.5 ps. 

 

Clock Distribution 

Each Virtex-6 FPGA provides five different types of clock lines (BUFG, BUFR, 

BUFIO, BUFH, and the high-performance clock) to address the different clocking 

requirements of high fanout, short propagation delay, and extremely low skew. 

 

Global Clock Lines 

In each Virtex-6 FPGA, 32 global-clock lines have the highest fanout and can reach 

every flip-flop clock, clock enable, set/reset, as well as many logic inputs. There are 

12 global clock lines within any region. Global clock lines can be driven by global 

clock buffers, which can also perform glitchless clock multiplexing and the clock 

enable function. Global clocks are often driven from the CMT, which can completely 

eliminate the basic clock distribution delay. 
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Regional Clocks 

Regional clocks can drive all clock destinations in their region as well as the region 

above and below. A region is defined as any area that is 40 I/O and 40 CLB high and 

half the chip wide. Virtex-6 FPGAs have between 6 and 18 regions. There are 6 

regional clock tracks in every region. Each regional clock buffer can be driven from 

either of four clock-capable input pins, and its frequency can optionally be divided by 

any integer from 1 to 8. 

 

I/O Clocks 

I/O clocks are especially fast and serve only I/O logic and serializer/deserializer 

(SerDes) circuits, as described in the I/O Logic section. Virtex-6 devices have a high-

performance direct connection from the MMCM to the I/O directly for low-jitter, 

high-performance interfaces. 

 

Every Virtex-6 FPGA has between 156 and 1064 dual-port block RAMs, each storing 

36 Kbits. Each block RAM has two completely independent ports that share nothing 

but the stored data. 

Block RAM 

 

Synchronous Operation 

Each memory access, read and write, is controlled by the clock. All inputs, data, 

address, clock enables, and write enables are registered. Nothing happens without a 

clock. The input address is always clocked, retaining data until the next operation. An 

optional output data pipeline register allows higher clock rates at the cost of an extra 

cycle of latency. During a write operation, the data output can reflect either the 

previously stored data, the newly written data, or remain unchanged. 

 

Programmable Data Width 

• Each port can be configured as 32K x 1, 16K x 2, 8K x 4, 4K x9 (or 8), 2K x 

18 (or 16), 1K x 36 (or 32), or 512 x 72 (or 64). The two ports can have 

different aspect ratios, without any constraints. 

• Each block RAM can be divided into two completely independent 18 Kb 

block RAMs that can each be configured to any aspect ratio from 16K x 1 to 
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512 x 36. Everything described previously for the full 36 Kb block RAM also 

applies to each of the smaller 18 Kb block RAMs. 

• In 18 Kb block RAMs, only simple dual-port mode can provide data width of 

>36 bits. In this mode, one port is dedicated to read and the other port is 

dedicated to write operation. In SDP mode one side (read or write) can be 

variable while the other is fixed to 32/36 or 64/72. There is no read output 

during write. The dual-port 36 Kb RAM both sides can be of variable width. 

• Two adjacent 36 Kb block RAMs can be configured as one cascaded 64K Å~ 

1 dual-port RAM without any additional logic. 

 

Error Detection and Correction 

Each 64 bit-wide block RAM can generate, store, and utilize eight additional 

Hamming-code bits, and perform single-bit error correction and double-bit error 

detection (ECC) during the read process. The ECC logic can also be used when 

writing to, or reading from external 64/72-wide memories. This works in simple dual-

port mode and does not support read-during-write. 

 

The built-in FIFO controller for single-clock (synchronous) or dual-clock 

(asynchronous or multirate) operation increments the internal addresses and provides 

four handshaking flags: full, empty, almost full, and almost empty. The almost full 

and almost empty flags are freely programmable. Similar to the block RAM, the FIFO 

width and depth are programmable, but the write and read ports always have identical 

width. First-word fall-through mode presents the first-written word on the data output 

even before the first read operation. After the first word has been read, there is no 

difference between this mode and the standard mode. 

FIFO Controller 

 

DSP applications use many binary multipliers and accumulators, best implemented in 

dedicated DSP slices. All Virtex-6 FPGAs have many dedicated, full-custom, low-

power DSP slices combining high speed with small size, while retaining system 

design flexibility. Each DSP48E1 slice fundamentally consists of a dedicated 25 x 18 

bit two's complement multiplier and a 48-bit accumulator, both capable of operating 

Digital Signal Processing—DSP48E1 Slice 
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at 600 MHz. The multiplier can be dynamically bypassed, and two 48-bit inputs can 

feed a single-instruction-multiple-data (SIMD) arithmetic unit (dual 24-bit 

add/subtract/accumulate or quad 12-bit add/subtract/accumulate), or a logic unit that 

can generate any one of 10 different logic functions of the two operands. The 

DSP48E1 includes an additional pre-adder, typically used in symmetrical filters. This 

new pre-adder improves performance in densely packed designs and reduces the logic 

slice count by up to 50%. The DSP48E1 slice provides extensive pipelining and 

extension capabilities that enhance speed and efficiency of many applications, even 

beyond digital signal processing, such as wide dynamic bus shifters, memory address 

generators, wide bus multiplexers, and memory-mapped I/O register files. The 

accumulator can also be used as a synchronous up/down counter. The multiplier can 

perform logic functions (AND, OR) and barrel shifting. 

 

The number of I/O pins varies from 240 to 1200 depending on device and package 

size. Each I/O pin is configurable and can comply with a large number of standards, 

using up to 2.5V. The Virtex-6 FPGA SelectIO Resources User Guide describes the 

I/O compatibilities of the various I/O options. With the exception of supply pins and a 

few dedicated configuration pins, all other package pins have the same I/O 

capabilities, constrained only by certain banking rules. 

Input/Output 

All I/O pins are organized in banks, with 40 pins per bank. Each bank has one 

common VCCO output supply-voltage pin, which also powers certain input buffers. 

Some single-ended input buffers require an externally applied reference voltage 

(VREF). There are two VREF pins per bank (except configuration bank 0). A single 

bank can have only one VREF voltage value. 

 

I/O Electrical Characteristics 

Single-ended outputs use a conventional CMOS push/pull output structure driving 

High towards VCCO or Low towards ground, and can be put into high-Z state. The 

system designer can specify the slew rate and the output strength. The input is always 

active but is usually ignored while the output is active. Each pin can optionally have a 

weak pull-up or a weak pulldown resistor. Any signal pin pair can be configured as 

differential input pair or output pair. Differential input pin pairs can optionally be 

terminated with a 100Ω internal resistor. All Virtex-6 devices support differential 
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standards beyond LVDS: HT, RSDS, BLVDS, differential SSTL, and differential 

HSTL. 

 

Digitally Controlled Impedance 

Digitally controlled impedance (DCI) can control the output drive impedance (series 

termination) or can provide parallel termination of input signals to VCCO, or split 

(Thevenin) termination to VCCO/2. DCI uses two pins per bank as reference pins, but 

one such pair can also control multiple banks. VRN must be resistively pulled to 

VCCO, while VRP must be resistively connected to ground. The resistor must be 

either 1x or 2x the characteristic trace impedance, typically close to 50Ω. 

 

I/O Logic 

Input and Output Delay 

This section describes the available logic resources connected to the I/O interfaces. 

All inputs and outputs can be configured as either combinatorial or registered. Double 

data rate (DDR) is supported by all inputs and outputs. Any input or output can be 

individually delayed by up to 32 increments of ~78 ps each. This is implemented as 

IODELAY. The number of delay steps can be set by configuration and can also be 

incremented or decremented while in use. For using either IODELAY, the system 

designer must instantiate the IODELAY control block and clock it with a frequency 

close to 200 MHz. Each 32-tap total IODELAY is controlled by that frequency, thus 

unaffected by temperature, supply voltage, and processing variations. 

 

ISERDES and OSERDES 

Many applications combine high-speed bit-serial I/O with slower parallel operation 

inside the device. This requires a serializer and deserializer (SerDes) inside the I/O 

structure. Each input has access to its own deserializer (serial-to-parallel converter) 

with programmable parallel width of 2, 3, 4, 5, 6, 7, 8, or 10 bits. Each output has 

access to its own serializer (parallel-to-serial converter) with programmable parallel 

width of up to 8 bits wide for single data rate (SDR), or up to 10 bits wide for double 

data rate (DDR). 
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Every Virtex-6 FPGA contains a System Monitor circuit providing thermal and power 

supply status information. Sensor outputs are digitized by a 10-bit 200kSPS analog-

to-digital converter (ADC). This fully tested and specified ADC can also be used to 

digitize up to 17 external analog input channels. The System Monitor ADC utilizes an 

on-chip reference circuit thereby eliminating the need for any external active 

components. On-chip temperature and power supplies are monitored with a 

measurement accuracy of ±4°C and ±1% respectively. By default the System Monitor 

continuously digitizes the output of all on-chip sensors. The most recent measurement 

results together with maximum and minimum readings are stored in dedicated 

registers for access at any time through the DRP or JTAG interfaces. User defined 

alarm thresholds can automatically indicate over temperature events and unacceptable 

power supply variation. A specified limit (for example: 125°C) can be used to initiate 

an automatic power down. The System Monitor does not require explicit instantiation 

in a design. Once the appropriate power supply connections are made, measurement 

data can be accessed at any time, even pre-configuration or during power down, 

through the JTAG test access port (TAP). 

System Monitor 

 

Ultra-fast serial data transmission between ICs, over the backplane, or over longer 

distances is becoming increasingly popular and important. It requires specialized 

dedicated on-chip circuitry and differential I/O capable of coping with the signal 

integrity issues at these high data rates. All but one Virtex-6 device has between 8 to 

72 gigabit transceiver circuits. Each GTX transceiver is a combined transmitter and 

receiver capable of operating at a data rate between 480 Mb/s and 6.6 Gb/s. Lower 

data rates can be achieved using FPGA logic-based oversampling. Each GTH 

transceiver is a combined transmitter and receiver capable of operating at a rate 

between 2.488 Gb/s and 11.18 Gb/s. The GTX transmitter and receiver are 

independent circuits that use separate PLLs to multiply the reference frequency input 

by certain programmable numbers between 4 and 25, to become the bit-serial data 

clock. The GTH transceiver is a purpose-built design for 10 Gb/s rates and shares a 

single high-performance PLL between four transmitter and receiver circuits. Each 

GTX and GTH transceiver has a large number of user-definable features and 

parameters. All of these can be defined during device configuration, and many can 

Low-Power Gigabit Transceivers 
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also be modified during operation. 

 

Transmitter 

The GTX transmitter is fundamentally a parallel-to-serial converter with a conversion 

ratio of 8, 10, 16, 20, 32, or 40. The GTH transmitter offers bit widths of 16, 20, 32, 

40, 64, or 80 to allow additional timing margin for high-performance designs. These 

transmitter outputs drive the PC board with a single-channel differential current-mode 

logic (CML) output signal. TXOUTCLK is the appropriately divided serial data clock 

and can be used directly to register the parallel data coming from the internal logic. 

The incoming parallel data is fed through a small FIFO and can optionally be 

modified with the 8B/10B, 64B/66B, or the 64B/67B (GTX only) algorithm to 

guarantee a sufficient number of transitions. The bit-serial output signal drives two 

package pins with complementary CML signals. This output signal pair has 

programmable signal swing as well as programmable pre-emphasis to compensate for 

PC board losses and other interconnect characteristics. 

 

Receiver 

The receiver is fundamentally a serial-to-parallel converter, changing the incoming bit 

serial differential signal into a parallel stream of words, each 8, 10, 16, 20, 32, or 40 

bits wide. The GTH transceiver offers 16, 20, 32, 40, 64, and 80 bit widths to allow 

greater timing margin. The receiver takes the incoming differential data stream, feeds 

it through a programmable equalizer (to compensate for PC board and other 

interconnect characteristics), and uses the FREF input to initiate clock recognition. 

There is no need for a separate clock line. The data pattern uses non-return-to-zero 

(NRZ) encoding and optionally guarantees sufficient data transitions by using the 

selected encoding scheme. Parallel data is then transferred into the FPGA logic using 

the RXUSRCLK clock. The serial-to-parallel conversion ratio for GTX transceivers 

can be 8, 10, 16, 20, 32, or 40. The serial-to-parallel conversion ratio for GTH 

transceivers can be 16, 20, 32, 40, 64, or 80 for GTH. 

 

Out-of-Band Signaling 

The GTX transceivers provide Out-of-Band (OOB) signaling, often used to send low-

speed signals from the transmitter to the receiver, while high-speed serial data 

transmission is not active, typically when the link is in a power-down state or has not 
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been initialized. This benefits PCI Express and SATA/SAS applications. 

 

The PCI Express standard is a packet-based, point-to-point serial interface standard. 

The differential signal transmission uses an embedded clock, which eliminates the 

clock-to-data skew problems of traditional wide parallel buses. The PCI Express Base 

Specification Revision 2.0 is backwards compatible with Revision 1.1 and defines a 

configurable raw data rate of 2.5 Gb/s, or 5.0 Gb/s per lane in each direction. To scale 

bandwidth, the specification allows multiple lanes to be joined to form a larger link 

between PCI Express devices. All Virtex-6 devices (except the XC6VLX760) include 

at least one integrated interface block for PCI Express technology that can be 

configured as an Endpoint or Root Port, compliant to the PCI Express Base 

Specification Revision 2.0. The Root Port can be used to build the basis for a 

compatible Root Complex, to allow custom FPGA-FPGA communication via the PCI 

Express protocol, and to attach ASSP Endpoint devices such as Fibre Channel HBAs 

to the FPGA. This block is highly configurable to system design requirements and can 

operate 1, 2, 4, or 8 lanes at the 2.5 Gb/s data rate and the 5.0 Gb/s data rate. For high-

performance applications, advanced buffering techniques of the block offer a flexible 

maximum payload size of up to 1024 bytes. The integrated block interfaces to the 

GTX transceivers for serial connectivity, and to block RAMs for data buffering. 

Combined, these elements implement the Physical Layer, Data Link Layer, and 

Transaction Layer of the PCI Express protocol. Xilinx provides a light-weight, 

configurable, easy-to-use LogiCORE™ wrapper that ties the various building blocks 

(the integrated block for PCI Express, the GTX transceivers, block RAM, and 

clocking resources) into an Endpoint or Root Port solution. The system designer has 

control over many configurable parameters: lane width, maximum payload size, 

FPGA logic interface speeds, reference clock frequency, and base address register 

decoding and filtering. 

Integrated Interface Blocks for PCI Express Designs 

  

 

An integrated Tri-mode Ethernet MAC (TEMAC) block is easily connected to the 

FPGA logic, the GTX transceivers, and the SelectIO resources. This TEMAC block 

saves logic resources and design effort. All of the Virtex-6 devices (except the 

10/100/1000 Mb/s Ethernet Controller (2,500 Mb/s Supported) 
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XC6VLX760) have four TEMAC blocks, implementing the link layer of the OSI 

protocol stack. The CORE Generator™ software GUI helps to configure flexible 

interfaces to GTX transceiver or SelectIO technology, to the FPGA logic, and to a 

microprocessor (when required). The TEMAC is designed to the IEEE Std 802.3-

2005 specification. 2,500 Mb/s support is also available. 

 

Synthesis and Simulation Process 

The free version of the Xilinx design suite, Integrated Software Environment 

13.4, has been used to implement the design in software. The design should be 

created, tested and verified in the software before the hardware can be 

configured. 

 

The first step in the design flow is the HDL description of the circuit. In this step, 

the design files are created using one of the hardware description languages. For 

this thesis work, VHDL was the language used. These source files can be 

simulated to verify the functionality of the design in software. However, 

successful behavioral simulation does not guarantee successful implementation 

on the hardware. 

 

The next step is to synthesize the design files that were created in the previous 

step. During this step, the software checks syntax errors, applies user constraints 

and optimizes the logic to the target device. The constraints include a 

requirement about the value of the clock frequency and placement of input and 

output pins based on the physical connections of FPGA pins to circuits on the 

development board. These connections are described in the documentation for 

the development board. The output files from this step will be used in the next 

step.  

 

The third step is the implementation step. During this step, the software verifies 

whether the design can be implemented on the hardware, for example, it checks 

how the design will be routed on the chip and optimizes the design according to 
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the timing specifications. The design suite provides tools such as the Floorplan 

editor and FPGA editor that let the designer to create constraints, and see how 

the design will be placed and routed on the FPGA, and let the designer perform 

placing and routing manually. The software generates detailed analysis reports 

about the implementation. 

 

The final step in the software design is to generate the programming file to be 

used configure the FPGA. The programming file thus generated is then 

downloaded onto the FPGA through JTAG cable.  

 

More information about each step: 

 

Translate

 

 : The Translate process merges all of the input netlists and design 

constraints and outputs a Xilinx Native Generic Database (NGD) file, 

which describes the logical design reduced to Xilinx primitives. 

Table 7.1 translation documentation 

Command line tool  NGDBuild 

Tcl command  process run "Translate" 

Input files  EDIF, SEDIF, EDN, EDF, NGC, UCF, NCF, 

URF, NMC, BMM 

Output files  BLD (report), NGD 

Tools available after running process  Constraints Editor, PlanAhead software 

 

 

Map

 

 :  The Map process maps the logic defined by an NGD file into FPGA    

elements, such as CLBs and IOBs. The output design is a Native Circuit 

Description (NCD) file that physically represents the design mapped to 

the components in the Xilinx FPGA. 
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Table 7.2 mapping documentation 

 

Command line tool  MAP 

Tcl command  process run "Map" 

Input files  NGD, NMC, NCD, NGM 

Note : The NCD and NGM files are for 

guiding. 

Output files  NCD, PCF, NGM, MRP (report), GRF, MAP, 

PSR 

Tools available after running process  FPGA Editor, PlanAhead software, Timing 

Analyzer 

 

Place and Route

 

 : The Place and Route process takes a mapped NCD file, places 

and routes the design, and produces an NCD file that is used as 

input for bitstream generation. 

Table 7.3 place and route documentation 

Command line tool  PAR 

Tcl command  process run "Place & Route" 

Input files  NCD, PCF 

Note : In addition to the NCD file from 

MAP, PAR also accepts an NCD file for 

guiding. 

Output files  NCD, PAR (report), PAD, CSV, TXT, GRF, 

DLY 

Tools available after running process  FPGA Editor, PlanAhead software, Timing 

Analyzer, TRACE, XPower Analyzer  
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Generate Programming File

 

 : The Generate Programming File process produces a 

bitstream for Xilinx device configuration. After the 

design is completely routed, you must configure the 

device so it can execute the desired function. 

Table 7.4 generating bitstream documentation 

Command line tool  BitGen 

Tcl command  process run "Generate Programming File" 

Input files  NCD, PCF, NKY 

Output files  BGN, BIN, BIT, DRC, ISC, LL, MSD, MSK, 

NKY, ISC, RBA, RBB, RBD, RBT 

Tools available after running process  iMPACT 

 

Software execution process 
The goal of this appendix is to provide a detailed description on how to run the 

project, even for someone who knows nothing about VHDL. Basic prerequisite is that 

reader will be familiar with C language and the UNIX environment.  Because driver is 

implemented for unix, we are going to use a machine running unix. Specifically we 

used LinuxMint Maya. 

 

First of all, we have to install the driver. Suppose ht the driver is installed in a 

directory in Desktop with the name driver, we do the following. 

 

 Open up a terminal and type: 

 

 

Cd /Desktop/driver 

 

 

In this folder if we type ls we must see our driver file, and the Makefile. 
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 Then we compile it by typing 

 

Make 

 

 

Next thing to do is to insert the module of the driver to our linux kernel. In order to do 

this, we must have root privileges so first we type su and make ourselves root. 

 

Having done this, we are ready to insert the module. 

 

 We execute the following command:  

 

insmod fpga.ko 

 

 

If there is no error, nothing must be written on the terminal. Now we are ready to run 

our program. 

 

Suppose that our C programs for writing and reading to the driver are in a folder 

named reading, in a directory under desktop.  

 

 We open a terminal and type: 

 

Cd /Desktop/reading 

 

 

 

Then we compile and run our programs by typing: 

 

gcc –o tx_file_plus_len tx_file_plus_len.c 

gcc –o rx_file rx_file.c 
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And we run them as follows: 
 
 
./tx_file_plus_len <file> 
 
 
 
 
Where file id the file from where we are about to read our input. 
 
In order to receive data from the driver, we execute: 
 
 
./rx_file <file> <number of bytes> <flag> 
 
 
 
Where: 

• File is the output file to where we are about to write our results. 
• Number of bytes is the bytes of expected output. 
• Flag is a single value: 0 for overwriting data and 0 for appending. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



Υλοποίηση ρομποτικών αλγορίθμων όρασης σε FPGA: Εφαρμογή στον αλγόριθμο Landmark matching 
 

  78 
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