

ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ

ΣΧΟΛΗ ΗΛΕΚΤΡΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ

ΚΑΙ ΜΗΧΑΝΙΚΩΝ ΥΠΟΛΟΓΙΣΤΩΝ

ΤΟΜΕΑΣ ΤΕΧΝΟΛΟΓΙΑΣ ΠΛΗΡΟΦΟΡΙΚΗΣ ΚΑΙ

ΥΠΟΛΟΓΙΣΤΩΝ

Υλοποίηση ρομποτικών αλγορίθμων όρασης σε

FPGA: Εφαρμογή στον αλγόριθμο landmark

matching

ΔΙΠΛΩΜΑΤΙΚΗ ΕΡΓΑΣΙΑ

Χαραλαμπίδης Ιγνάτιος

Επιβλέπων : Δημήτριος Σούντρης

 Επ. Καθηγητής Ε.Μ.Π.

Αθήνα, Ιούλιος 2012

ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ

ΣΧΟΛΗ ΗΛΕΚΤΡΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ

ΚΑΙ ΜΗΧΑΝΙΚΩΝ ΥΠΟΛΟΓΙΣΤΩΝ

ΤΟΜΕΑΣ ΤΕΧΝΟΛΟΓΙΑΣ ΠΛΗΡΟΦΟΡΙΚΗΣ ΚΑΙ

ΥΠΟΛΟΓΙΣΤΩΝ

Υλοποίηση ρομποτικών αλγορίθμων όρασης σε

FPGA: Εφαρμογή στον αλγόριθμο landmark

matching

ΔΙΠΛΩΜΑΤΙΚΗ ΕΡΓΑΣΙΑ

Χαραλαμπίδης Ιγνάτιος

Επιβλέπων : Δημήτριος Σούντρης

 Επ. Καθηγητής Ε.Μ.Π.

Εγκρίθηκε από την τριμελή εξεταστική επιτροπή την 18η Ιουλίου 2012.

Αθήνα, Ιούλιος 2012

............................
Δημήτριος Σούντρης

Επ. Καθηγητής Ε.Μ.Π.

............................
Κιαμάλ Πεκμεστζή
Καθηγητής Ε.Μ.Π.

............................
Γεώργιος Οικονομάκος
Επ. Καθηγητής Ε.Μ.Π.

...................................

Χαραλαμπίδης Ιγνάτιος

Διπλωματούχος Ηλεκτρολόγος Μηχανικός και Μηχανικός Υπολογιστών Ε.Μ.Π.

Copyright © ΧΑΡΑΛΑΜΠΙΔΗΣ ΙΓΝΑΤΙΟΣ, 2012

Με επιφύλαξη παντός δικαιώματος. All rights reserved.

Απαγορεύεται η αντιγραφή, αποθήκευση και διανομή της παρούσας εργασίας, εξ

ολοκλήρου ή τμήματος αυτής, για εμπορικό σκοπό. Επιτρέπεται η ανατύπωση,

αποθήκευση και διανομή για σκοπό μη κερδοσκοπικό, εκπαιδευτικής ή ερευνητικής

φύσης, υπό την προϋπόθεση να αναφέρεται η πηγή προέλευσης και να διατηρείται το

παρόν μήνυμα. Ερωτήματα που αφορούν τη χρήση της εργασίας για κερδοσκοπικό

σκοπό πρέπει να απευθύνονται προς τον συγγραφέα.

Οι απόψεις και τα συμπεράσματα που περιέχονται σε αυτό το έγγραφο εκφράζουν τον

συγγραφέα και δεν πρέπει να ερμηνευθεί ότι αντιπροσωπεύουν τις επίσημες θέσεις του

Εθνικού Μετσόβιου Πολυτεχνείου.

Υλοποίηση ρομποτικών αλγορίθμων όρασης σε FPGA: Εφαρμογή στον αλγόριθμο Landmark matching

 5

Abstract
Computer Vision algorithms introduce mentionable computational complexity,

which is usually non-sufficiently implemented onto general-purpose CPUs. Thus, it

is common to employ specialized hardware accelerators which aim to improve the

performance of critical kernels of these algorithms.

The goal of this diploma thesis is to provide a sufficient hardware/software co-

design implementation of landmark matching algorithm onto a reconfigurable

platform. More specifically, the timing critical kernels, as they were already derived

from profiling procedure, was developed at reusable VHDL and successfully

mapped onto the target FPGA (Virtex 6- XC6VLX240T). By exploiting as much as

possible the inherent parallelism found in this algorithm, in conjunction to a number

of design techniques, lead to the maximum gains. Regarding the non-timing critical

kernels of landmark matching, they continue to be executed onto a general-purpose

CPU, since they do not affect the performance of entire system.

The thesis is organized as follows:

In Chapter 1, there is an introduction in FPGAs and in computer vision. Basic parts

of each are being mentioned, while there is a special reference at their relationship.

Chapter 2 gives the related work on landmark matching algorithm. Moreover, this

chapter also highlights the motivation of this diploma thesis. The implementation of

landmark matching core is discussed in Chapter 3. More specifically, first of all we

provide a example about how this algorithm is executed, whereas then there is a

detailed description about its architecture, as well as its implementation. Chapter 4

covers the integration and communication between software (running onto a

general-purpose CPU) and hardware (executed onto Xilinx Virtex-6 XC6VLX240T

device). The corresponding modules of driver, controller and C program used for

the communication are being explained. Experimental results that prove the

effectiveness of introduced hardware/software co-design are discussed in in Chapter

5. For shake of completeness, the results of our implementation are also compared

against to relevant implementations found in literature (e.g. the C/C++

Υλοποίηση ρομποτικών αλγορίθμων όρασης σε FPGA: Εφαρμογή στον αλγόριθμο Landmark matching

 6

implementation of the same algorithm). Chapter 6 summarizes the work performed

during this diploma thesis and provides some potential directions about upcoming

research in this topic. Finally, there is an appendix which provides detailed and

useful information to interest readers about how to compile the project of Landmark

Matching into Xilinx ISE framework, as well as details about the employed script

for performing the Ethernet-based communication between PC and FPGA.

Keywords: FPGA, Computer Vision, Landmark Matching, Virtex5, Virtex6,
HW/SW co-design

Υλοποίηση ρομποτικών αλγορίθμων όρασης σε FPGA: Εφαρμογή στον αλγόριθμο Landmark matching

 7

Περίληψη

Οι αλγόριθμοι της Όρασης Υπολογιστών εισάγουν αξιοσημείωτη υπολογιστική

πολυπλοκότητα, η οποία συνήθως υλοποιείται μη επαρκώς σε ΚΜΕ γενικού

σκοπού. Για αυτό τον σκοπό είναι σύνηθες να χρησιμοποιούμε υλικό ειδικού

σκοπού για να επιταχύνουμε την απόδοση των κρίσιμων κομματιών αυτών των

αλγορίθμων.

Ο σκοπός αυτής της διπλωματικής είναι να προτείνει και να παρουσιάσει μία

ολοκληρωμένη υλοποίηση ενός τέτοιου συστήματος συνεργασίας μεταξύ software

και hardware για τον αλγόριθμο landmark matching. Η υλοποίηση θα γίνει σε

επαναδιαμορφώσιμη πλατφόρμα. Ειδικότερα, έχοντας βρει τα κρίσιμα κομμάτια

του αλγόριθμου, χρησιμοποιήσαμε επαναχρησιμοποιήσιμη VHDL και

απεικονίστηκαν επιτυχώς σε ένα FPGA (Virtex 6- XC6VLX240T0).

Εκμεταλλευόμενοι όσο το δυνατόν περισσότερο τον παραλληλισμό που υπάρχει

στον αλγόριθμο, σε συνδυασμό με ένα αριθμό τεχνικών σχεδίασης, οδηγηθήκαμε

στο μέγιστο δυνατό κέρδος. Τα μη κρίσιμα κομμάτια του αλγόριθμο συνεχίζουν να

εκτελούνται σε ΚΜΕ γενικού σκοπού, καθώς δεν επιβαρύνουν παραπάνω το

συνολικό σύστημα.

Η διπλωματική οργανώνεται ως ακολούθως:

Στο κεφάλαιο 1, υπάρχει μια εισαγωγή στα FPPGA και στην όραση υπολογιστών. ο

τα βασικά κομμάτια του καθενός, ενώ υπάρχει ειδική αναφορά στην μεταξύ τους

σχέση. Στο κεφάλαιο 2, παρουσιάζουμε την σχετική δουλειά που υπάρχει ήδη πάνω

στον αλγόριθμο landmark matching. Η υλοποίηση του πυρήνα παρουσιάζεται στο

κεφάλαιο 3. Ειδικότερα. Ξεκινάμε με ένα παράδειγμα που παρουσιάζεται η βασική

λειτουργία του αλγορίθμου και στην πορεία παρουσιάζουμε την αρχιτεκτονική του

αλγορίθμου και την κυρίως υλοποίηση του, με την ανάλυση των βασικών

συστατικών του. Στο κεφάλαιο 4, περιγράφουμε την υλοποίηση της επικοινωνίας

μεταξύ του software (που τρέχει σε μία γενικού σκοπού ΚΜΕ)και του hardware

(που τρέχει στο Xilinx Virtex-6 XC6VLX240T). Εξηγούνται αναλυτικά στο

Υλοποίηση ρομποτικών αλγορίθμων όρασης σε FPGA: Εφαρμογή στον αλγόριθμο Landmark matching

 8

κεφάλαιο αυτό τόσο το πρόγραμμα C που τρέχει στον υπολογιστή, το πρόγραμμα

του ελεγκτή, και το κομμάτι του driver για την επικοινωνία τους.

Στην συνέχεια παρουσιάζονται τα πειραματικά αποτελέσματα που αποδεικνύουν

την αποτελεσματικότητα από την εισαγωγή της επικοινωνίας μεταξύ software/

hardware. Για να αποδειχτεί η ορθότητα τους, τα αποτελέσματα συγκρίνονται με

αυτά άλλων υλοποιήσεων και συγκρίνουμε τις επιδόσεις τους. Το κεφάλαιο 6

περιέχει την αποτίμηση των αποτελεσμάτων. Στο τέλος υπάρχει σχετικό παράρτημα

με τα απαραίτητες πληροφορίες για την πλατφόρμα που χρησιμοποιήθηκε. Οδηγίες

για το τρέξιμο τόσο σε hardware, όσο και για την επικοινωνία.

Υλοποίηση ρομποτικών αλγορίθμων όρασης σε FPGA: Εφαρμογή στον αλγόριθμο Landmark matching

 9

Chapter 1: Introduction……………..…………………………………………… 11

1.1. FPGA……………………………………………………………………….... 11

1.2. Computer Vision………………………………………………………………13

1.3. Computer Vision and FPGA…………………………………………………………………………16

Chapter 2: Related Work ……………………………………………………………………………………17

2.1 Related Work………………………………………………………………………………………………..17

2.2 Motivation…………………………………………………………………………………………………….19

Chapter 3: FPGA implementation ………………………………………………………………………19

3.1 Algorithm description……………………………………………………………………………………19

3.2 Architecture of design………………………………………………………....21

3.3 Core implementation ………………………………………………………….25

Chapter 4: Communication …………………………………………………………………………………31

4.1 Algorithm description……………………………………………………………………………………31

4.2 Architecture of design…………………………………………………………32

4.3 Core implementation ………………………………………………………….36

Chapter 5: Implementation results ……………………………………………………………………..40

5.1 TestCase 1……………………………………………………………………………………………………41

5.2 TestCase 2……………………………………………………………………………………………………48

5.3 TestCase 3……………………………………………………………………………………………………50

5.4 TestCase 4……………………………………………………………………………………………………51

5.5 TestCase 5……………………………………………………………………………………………………53

5.6 Overall results………………………………………………………………………………………………53

Πίνακας Περιεχομένων

Υλοποίηση ρομποτικών αλγορίθμων όρασης σε FPGA: Εφαρμογή στον αλγόριθμο Landmark matching

 10

Chapter 6: Conclusion ………………………………………………………………………………………..60

Chapter 7: Appendix ……………………………………………………………………………………………62

7.1 Hardware platform………………………………………………………………………………………..62

7.2 Synthesis and simulation process…………………...71

7.3 Software execution process…………………..73

Reference: ……79

Υλοποίηση ρομποτικών αλγορίθμων όρασης σε FPGA: Εφαρμογή στον αλγόριθμο Landmark matching

 11

Chapter 1: Introduction

FPGA

Introduction

A field-programmable gate array (FPGA) is an integrated circuit designed to be

configured by a customer or a designer after manufacturing—hence "field-

programmable". As opposed to Application Specific Integrated Circuits (ASICs),

where the device is custom built for the particular design, FPGAs can be programmed

to the desired application or functionality requirements. Although One-Time

Programmable (OTP) FPGAs are available, the dominant types are SRAM-based

which can be reprogrammed as the design evolves. FPGAs allow designers to change

their designs very late in the design cycle– even after the end product has been

manufactured and deployed in the field. So, they are silicon chips which have the

flexibility of software running on a processor-based system, but it is not limited by the

number of processing cores available. What is remarkable for FPGAs is that they are

parallel from nature so different processes do not compete for the same resources. Each

independent processing task is assigned to a dedicated section of the chip, and can

function autonomously without any influence from other logic blocks.

The FPGA industry sprouted from

History of FPGA

programmable read-only memory (PROM)

and programmable logic devices (PLDs). PROMs and PLDs both had the option of

being programmed in batches in a factory or in the field (field programmable),

however programmable logic was hard-wired between logic gates. In late 1980’s the

first programmable logical gates were implemented and some years later, in 1985, the

first commercially viable field programmable gate array was invented by Ross

Freeman and Bernard Vonderschmitt. In the not so distant past, FPGA were marketed

for primarily two uses:

 For prototyping ASIC’s

 For use in systems to achieve time to market

http://en.wikipedia.org/wiki/Integrated_circuit�
http://en.wikipedia.org/wiki/Field-programmable�
http://en.wikipedia.org/wiki/Field-programmable�
http://www.xilinx.com/fpga/asic.htm�
http://en.wikipedia.org/wiki/Programmable_read-only_memory�
http://en.wikipedia.org/wiki/Programmable_logic_devices�
http://en.wikipedia.org/wiki/Ross_Freeman�
http://en.wikipedia.org/wiki/Ross_Freeman�
http://en.wikipedia.org/wiki/Bernard_Vonderschmitt�

Υλοποίηση ρομποτικών αλγορίθμων όρασης σε FPGA: Εφαρμογή στον αλγόριθμο Landmark matching

 12

 Knowing they would be replaced with an ASIC implementation at the earliest

opportunity.

This is was the start of an FPGA market which was then populated by quite a number

of vendors, including Xilinx, Altera, Actel, Lattice, Crosspoint, Algotronix, Prizm,

Plessey, Toshiba, Motorola, and IBM. The market has now grown considerably and

Gartner Dataquest indicated a market size growth to 4.5 billion in 2006, 5.2 billion in

2007 and 6.3 billion in 2008. There have been many changes in the market, including a

severe rationalization of technologies with many vendors such as Crosspoint,

Algotronix, Prizm, Plessey, Toshiba, Motorola, and IBM disappearing from the market

and a reduction in the number of FPGA families as well as the emergence of SRAM

technology as the dominant technology largely due to cost. The market is now

dominated by Xilinx and Altera and more importantly, the FPGA has grown from

being a simple glue logic component to representing a complete System on

Programmable Chip (SoPC) comprising on-board physical processors, soft processor,

dedicated DSP hardware, memory and high-speed I/O. We can assume that

development of FPGA’s can be divided into different eras: The age of invention where

FPGAs started to emerge and were being used as system components. The age of

expansion is where the FPGA started to approach the problem size and thus design

complexity was key. The final evolution stage is described as the period of

accumulation where FPGA started to incorporate processors and high-speed

interconnection.

Every FPGA chip is made up of a finite number of predefined resources with

programmable interconnects to implement a reconfigurable digital circuit and I/O

blocks to allow the circuit to access the outside world. FPGAs have evolved far beyond

the basic capabilities present in their predecessors, and incorporate hard (ASIC type)

blocks of commonly used functionality such as RAM, clock management, and DSP.

Architecture and Basic blocks of FPGA

Υλοποίηση ρομποτικών αλγορίθμων όρασης σε FPGA: Εφαρμογή στον αλγόριθμο Landmark matching

 13

Figure 1.1: Different parts of an FPGA.

The organization of an FPGA architecture can be summarized as follows:

 Configurable Logic Blocks (CLBs)

 Interconnect

 SelectIO (IOBs)

 Memory

 Complete Clock Management

The CLB is the basic logic unit in a FPGA. Exact numbers and features vary from

device to device, but every CLB consists of a configurable switch matrix with 4 or 6

inputs, some selection circuitry (MUX, etc), and flip-flops. The switch matrix is highly

flexible and can be configured to handle combinatorial logic, shift registers or RAM.

More architectural details can be found in the applicable device’s data sheet.

Configurable Logic Blocks (CLBs)

Υλοποίηση ρομποτικών αλγορίθμων όρασης σε FPGA: Εφαρμογή στον αλγόριθμο Landmark matching

 14

Figure 1.2: Basic Configurable Logic Block Structure

While the CLB provides the logic capability, flexible interconnect routing routes the

signals between CLBs and to and from I/Os. Routing comes in several flavors, from

that designed to interconnect between CLBs to fast horizontal and vertical long lines

spanning the device to global low-skew routing for Clocking and other global signals.

The design software makes the interconnect routing task hidden to the user unless

specified otherwise, thus significantly reducing design complexity.

Interconnect

Today’s FPGAs provide support for dozens of I/O standards thus providing the ideal

interface bridge in your system. I/O in FPGAs is grouped in banks with each bank

independently able to support different I/O standards. Today’s leading FPGAs provide

over a dozen I/O banks, thus allowing flexibility in I/O support.

SelectIO (IOBs)

Figure 1.3: SelectIO Basic Block structure

Υλοποίηση ρομποτικών αλγορίθμων όρασης σε FPGA: Εφαρμογή στον αλγόριθμο Landmark matching

 15

Embedded Block RAM memory is available in most FPGAs, which allows for on-chip

memory in your design. These allow for on-chip memory for your design.

Memory

Digital clock management is provided by most FPGAs in the industry. The most

advanced FPGAs offer both digital clock management and phase-looped locking that

provide precision clock synthesis combined with jitter reduction and filtering.

Complete Clock Management

Figure 1.4: Overall FPGA block structure

Although FPGAs offer many advantages, there are naturally some disadvantages. They

are slower than equivalent ASICs (Application Specific Integrated Circuit) or other

equivalent ICs, and additionally they are more expensive. (However ASICs are very

expensive to develop by comparison). This means that the choice of whether to use an

FPGA based design should be made early in the design cycle and will depend on such

items as whether the chip will need to be re-programmed, whether equivalent

functionality can be obtained elsewhere, and of course the allowable cost. Sometimes

Disadvantages of FPGA

Υλοποίηση ρομποτικών αλγορίθμων όρασης σε FPGA: Εφαρμογή στον αλγόριθμο Landmark matching

 16

manufacturers may opt for an FPGA design for early product when bugs may still be

found, and then use an ASIC when the design is fully stable.

Applications of FPGAs include

Applications

digital signal processing, software-defined radio,

aerospace and defense systems, ASIC prototyping, medical imaging, computer vision,

speech recognition, cryptography, bioinformatics, computer hardware emulation, radio

astronomy, metal detection and a growing range of other areas.

FPGAs originally began as competitors to CPLDs and competed in a similar space,

that of glue logic for PCBs. As their size, capabilities, and speed increased, they began

to take over larger and larger functions to the state where some are now marketed as

full systems on chips (SoC). Particularly with the introduction of dedicated multipliers

into FPGA architectures in the late 1990s, applications which had traditionally been the

sole reserve of DSPs began to incorporate FPGAs instead.

Traditionally, FPGAs have been reserved for specific vertical applications where the

volume of production is small. For these low-volume applications, the premium that

companies pay in hardware costs per unit for a programmable chip is more affordable

than the development resources spent on creating an ASIC for a low-volume

application. Today, new cost and performance dynamics have broadened the range of

viable applications.

http://en.wikipedia.org/wiki/Digital_signal_processing�
http://en.wikipedia.org/wiki/Software-defined_radio�
http://en.wikipedia.org/wiki/Aerospace�
http://en.wikipedia.org/wiki/Defense_(military)�
http://en.wikipedia.org/wiki/Application-specific_integrated_circuit�
http://en.wikipedia.org/wiki/Medical_imaging�
http://en.wikipedia.org/wiki/Computer_vision�
http://en.wikipedia.org/wiki/Speech_recognition�
http://en.wikipedia.org/wiki/Cryptography�
http://en.wikipedia.org/wiki/Bioinformatics�
http://en.wikipedia.org/wiki/Emulator�
http://en.wikipedia.org/wiki/Radio_astronomy�
http://en.wikipedia.org/wiki/Radio_astronomy�
http://en.wikipedia.org/wiki/CPLD�
http://en.wikipedia.org/wiki/Glue_logic�
http://en.wikipedia.org/wiki/Printed_circuit_board�
http://en.wikipedia.org/wiki/System-on-a-chip�
http://en.wikipedia.org/wiki/Digital_signal_processor�

Υλοποίηση ρομποτικών αλγορίθμων όρασης σε FPGA: Εφαρμογή στον αλγόριθμο Landmark matching

 17

Computer Vision

Computer vision is a field that includes methods for acquiring, processing, analysing,

and understanding images and, in general, high-dimensional data from the real world

in order to produce numerical or symbolic information, e.g., in the forms of

decisions. A theme in the development of this field has been to duplicate the abilities

of human vision by electronically perceiving and understanding an image. This image

understanding can be seen as the disentangling of symbolic information from image

data using models constructed with the aid of geometry, physics, statistics, and

learning theory.

Introduction.

Nowadays, there are many implemented computer vision algorithms and obviously

computer vision has endless applications. Some of them are shown at the diagram

below.

Figure 1.5 Applications of Computer Vision

Υλοποίηση ρομποτικών αλγορίθμων όρασης σε FPGA: Εφαρμογή στον αλγόριθμο Landmark matching

 18

Computer vision algorithms are natural candidates for high performance computing

due to their inherent parallelism and intense computational demands. For example, a

simple 3 x 3 convolution on a 512 x 512 gray scale image at 30 frames per second

requires 67.5 million multiplications and 60 million additions to be performed in one

second. Computer vision tasks can be classified into three categories based on their

computational complexity and communication complexity: low-level, intermediate-

level and high-level. Special-purpose hardware provides better performance compared

to a general-purpose hardware for all the three levels of vision tasks. With recent

advances in very large scale integration (VLSI) technology, an application specific

integrated circuit (ASIC) can provide the best performance in terms of total execution

time. However, long design cycle time, high development cost and in flexibility of a

dedicated hardware deter design of ASICs. In contrast, field programmable gate arrays

(FPGAs) support lower design verification time and easier design adaptability at a

lower cost. Hence, FPGAs with an array of reconfigurable logic blocks can be very

useful compute elements. FPGA-based custom computing machines are playing a

major role in realizing high performance application accelerators. Three computer

vision algorithms have been investigated for mapping onto custom computing

machines:

Computer Vision and FPGA

(i) template matching (convolution) a low level vision operation

(ii) texture-based segmentation { an intermediate-level operation, and

(iii) point pattern matching { a high level vision algorithm.

The advantages demonstrated through these implementations are as follows. First,

custom computing machines are suitable for all the three levels of computer vision

algorithms. Second, custom computing machines can map all stages of a vision system

easily. This is unlike typical hardware platforms where a separate subsystem is

dedicated to a specific step of the vision algorithm. Third, custom computing approach

can run a vision application at a high speed, often very close to the speed of special-

purpose hardware.

Υλοποίηση ρομποτικών αλγορίθμων όρασης σε FPGA: Εφαρμογή στον αλγόριθμο Landmark matching

 19

Chapter 2: Related Work

Related Work

Searching on the web, there were not many resources available regarding landmark

matching algorithm either its software implementation or its hardware. Landmark

matching algorithm is used as part of vision algorithms regarding localization.

Landmark matching was found as part of the so-called LTRC algorithm: Landmark

Matching, Triangulation, Reconstruction, and Comparison. Visual Image data has the

potential to disambiguate objects for localization, as it provides high resolution, and

additional information such as color, texture, and shape. To compensate for

accumulated navigation errors, mobile robots must use external sensors to estimate

their position. Active ranging devices give direct distance measurements and have

found widespread use for robot localization. However, these sensors do not provide

features needed to resolve ambiguities between objects. In order to understand how

landmark matching works, we must first understand some aspects of localization

algorithms. Global localization, provides the initial position estimate for conventional

robot-tracking algorithms (e.g., extended Kalman filtering) and enables the robot to

identify its own position when previous odometry readings are either inaccurate or

even not available (e.g., due to wheel slippage, or just after powering up). In terms of

functionality, localization can be classified as global, incremental, or simultaneous

localization and mapping (SLAM). Global localization identifies the robot position

with respect to some external frame using only the current sensory data. Unlike the

incremental methods, an historical position estimate is not required. The global

localization application is targeted not only because it is essential to many robot

navigation systems, but its independence from historical position estimates also

clarifies the evaluation of the proposed algorithm in the presence of non-unique

landmarks. Localization methods are often classified either as iconic or feature-based.

The iconic method directly compares the raw data with the map, whereas the feature-

based method considers mainly the prominent features

A pair of landmarks is said to be similar if the difference between their individual

signatures (median color scalars) is sufficiently small. Expecting a consecutive match

Υλοποίηση ρομποτικών αλγορίθμων όρασης σε FPGA: Εφαρμογή στον αλγόριθμο Landmark matching

 20

along the entire landmark sequence is not realistic, due to partial occlusion and slight

environmental changes. On the other hand, non-unique landmarks are a common

occurrence. To reduce the rate of mismatching, only landmark sequences with at least

three consecutive matched features are considered. The landmark signature list of the

current image is compared with that generated from each of the reference images. The

operation often finds multiple sets of consecutive matched landmarks. Robot position

estimates are obtained from the triangulation of these matched landmark sets, and the

best one is selected during the reconstruction and comparison stage.

Motivation

As already been said, computer vision algorithms use many computer resources and

they are considered to be time-consuming. Aiming at low-cost and efficiency, this

diploma proposes the use of field-programmable gate array device (FPGA) . We

describe the translation of computer vision algorithms to VHDL and detail the design

of a working prototype. We present results showing that an FPGA device provides

hardware speed to user applications, delivering real-time speeds for image

segmentation at an affordable cost. An efficiency comparison is made among the

hardware-implemented and a software-implemented (C language) system using the

same algorithms.

Challenges for the diploma thesis were:

• The fact that there was not a single implantation of the specific algorithm on

FPGA.

• We would like to present real results on the speed up of a project if specific

operations are performed on a FPGA. For that reason we will compare our

results with both Matlab and C results.

• In order to take advantage of HW/SW co-design, our goal is to provide a fully

integrated alternative between an FPGA device with a host-PC in a way that PC

can send data to our device just by calling a script. In this way, we take

advantage of software\hardware co-design as we can call our module

implemented on FPGA just like any other function in a high-level program.

Υλοποίηση ρομποτικών αλγορίθμων όρασης σε FPGA: Εφαρμογή στον αλγόριθμο Landmark matching

 21

Chapter 3: Implementation of Landmark

Matching

The algorithm implemented in this diploma thesis is that of landmark matching. This

algorithm was developed from scratch in reusable VHDL [25] and was successfully

mapped onto Virtex-5 (XC5VLX50T) and Virtex-6 (XC6VLX240T) FPGA

platforms. The design goals of this implementation are summarized as follows:

 High-Performance

 Low-Power

 Sufficient area utilization

 Integration through Ethernet protocol into a HW/SW system

Algorithm Description

In this diploma thesis we are going to implement landmark matching algorithm.

Landmark matching uses many different frames of a single image and tries to identify

certain spots in it.

The core works like this: it takes as an input two arrays, each one consisting of some

vectors. For every vector of array A, it computes and returns the minimum Euclidian

distance between vectors of array B. This minimum distance is so-called “match” in

Computer Vision. So, landmark matching finds the perfect matches.

Υλοποίηση ρομποτικών αλγορίθμων όρασης σε FPGA: Εφαρμογή στον αλγόριθμο Landmark matching

 22

An example of running our core is shown in the next figure:

Υλοποίηση ρομποτικών αλγορίθμων όρασης σε FPGA: Εφαρμογή στον αλγόριθμο Landmark matching

 23

Next, we describe in more details the architecture, as well as the implementation of

Landmark Matching algorithm.

Architecture of the design

Landmark matching algorithm, as described in the previous sections, requires the

simultaneous run of many processes, and for a considerable amount of times. As first

approach, we tried to run all the required processed during the same cycle. Therefore

we had a process responsible for subtracting the data, square them and added them to

the previous sum. Such a design would drastically reduce the complexity of our

design. But as a result of this, our clock was terrible and we were wasting so much

time while we could run thing in parallel. For this reason, we used a different

approach for our design and we used a form of pipeline. In the figure 1 there is a

schematic example of our pipeline.

Figure 3.1: different stages and logical units that are pipelined.

Υλοποίηση ρομποτικών αλγορίθμων όρασης σε FPGA: Εφαρμογή στον αλγόριθμο Landmark matching

 24

The functionality of pipeline could be explained as follow:

 In cycle X, we compute the difference between our input data.

 In the next cycle, this difference is being forwarded to the next stage and the

square difference is computed. In the previous stage, new data have been

imported and the new difference is being computed.

 In cycle X+2, the square difference of cycle X+1, is being forwarded to next

stage and we added to the previous sums. Like before, a new square difference

and a new difference (that of our new data) are computed.

 By doing this, we minimize our clock cycle because each logical unit performs an

independent operation and will take only the time that it needs. Besides, there is no

waiting for all the other logical units to finish their work. When each logical unit

finishes its operation, it forwards the result to the next stage and waits for new data.

Figure 3.2 schematic example of our pipeline

Υλοποίηση ρομποτικών αλγορίθμων όρασης σε FPGA: Εφαρμογή στον αλγόριθμο Landmark matching

 25

Figure 3.3 Schematic example of our pipeline.

Core implementation:

If we consider our core as a black box, we can see that it consists of the following

inputs/outputs:

entity landmark_1 is

 generic

 (data_length :integer := 16;

 address_length:integer:=9 ;

 comp_num:integer:=64;

 total_number_A:integer:=13;

 total_number_B:integer:=9);

 port (clk:in std_logic;

 rst:in std_logic;

 mem_data:in std_logic_vector(data_length-1 downto 0);

 set: in std_logic;

 mem_address: in std_logic_vector(address_length downto 0);

 wea: in std_logic;

 finished:in std_logic;

 new_result: out std_logic;

Υλοποίηση ρομποτικών αλγορίθμων όρασης σε FPGA: Εφαρμογή στον αλγόριθμο Landmark matching

 26

 dout: out std_logic_vector(4*data_length-1 downto 0);

 done: out std_logic

);

end landmark_1;

Let’s take a closer look at each one:

As far as the generic constants are concerned:

 Data_length: Our length data. Our architecture supports generic data. That

means that in synthesis time, length of input data has to be decides. In our

simulations we chose as length that of 8, 16 bits for specific reasons explained

in the appropriate section.

 Address_length: At synthesis time, length of our addresses has to be declared.

 Comp_num: It is the number of each vector’s coordinates. In our simulation

was set to 64, although our architecture can support and arbitrary value.

 Total_number_A, Total_number_B: integers declaring the total number of

vectors in array A and in array B of our input. They must also be set before

synthesis.

Next, we analyze the input and output signals found in our developed core.

 Clk: Clock of our design

 Rst: Reset signal, used for initialization or setting the design back to is default

value.

 Mem_data: Input data of data_length bits. It represents the data that are going

to be stored in the local single port memory. Use of this signal is described in

the following section.

 Set: Logical input used for identifying which array my data belong. When set

to L data are elements of input array A, while when H data belong to array B.

Υλοποίηση ρομποτικών αλγορίθμων όρασης σε FPGA: Εφαρμογή στον αλγόριθμο Landmark matching

 27

 Mem_address: Signal of address_length bits, used for representing the address

in which data are stored in the local memory.

 Wea: Write enable signal for the local memories.

 Finished: Logical signal, used as flag for computation process to start. When

set to H, all data have been written in Ram and we can safely start our

computation.

 New_result: Output logical signal. It is H only for a single cycle, when a new

result has been computed. It is used from our controller in order to identify

that a new result has arisen. That’s why its use will be explained in details in

the section of the controller.

 Dout: Our output signal. Whenever a result is available (a minimum Euclidian

distance for each vector of array A), its value is assigned to dout.

 Done: Output logical signal. Used for knowing the end of the core process.

When set to H, computation has finished and all data have been transferred to

the upper level (that of controller) or the standard output.

What is worth mentioning is the fact that dout has been chosen to be of 4x data_length

bits. We decided that for the following reasons:

1. First of all, we took in mind the worst case scenario. Given data of data_length

bits, worst case result when subtracting in order not to lose accuracy because of

overflow is to keep data_length+1 bits for my result. Later, this result is squared

so in that worst case we need 2 ∗ (𝑑𝑎𝑡𝑎_𝑙𝑒𝑛𝑔𝑡ℎ + 1) bits. That result must be

added to the previous sums, and the maximum number od adds that are going to

be performed are comp_num. In all of our simulation comp_num was set to 64. So

worst case scenario is perform 64 adding’s of these results. So we need 2 ∗

(𝑑𝑎𝑡𝑎_𝑙𝑒𝑛𝑔𝑡ℎ + 1) + 6 bits which gives us 2 ∗ 𝑑𝑎𝑡𝑎 − 𝑙𝑒𝑛𝑔𝑡ℎ + 8 bits, which

in case of 8 bits is 3 ∗ 𝑑𝑎𝑡𝑎_𝑙𝑒𝑛𝑔𝑡ℎ.

Υλοποίηση ρομποτικών αλγορίθμων όρασης σε FPGA: Εφαρμογή στον αλγόριθμο Landmark matching

 28

2. As it is clear from the beginning the basic goals of this diploma thesis was

integration with the Ethernet. In order to use the Ethernet driver the limitations

were the following:

i) Input data must be of 8 bits.

ii) Result written back in a character buffer must be of 32 bits.

Combining the above reasons, we concluded in the choice of 4 ∗ 𝑑𝑎𝑡𝑎_𝑙𝑒𝑛𝑔𝑡ℎ 𝑏𝑖𝑡𝑠

which are exactly the bits I need for the simulations of 8-bit data.

Figure 3.4 Input and Output signals of landmark module.

Next, we are going to analyze the basic components of our design. As already

mentioned, we have used two (2) single port RAM memories, each one for each array.

Input data are first saved in the memory, before out computation starts. Memory for

vectors of array B is necessary because these vectors need to be recalled for every

vector of array A. So it’s much more efficient to fetch them directly from a local

memory. Another approach in order to reduce the memory utilization would be not to

store vectors of array A, because each one is used only once. When computation of its

Υλοποίηση ρομποτικών αλγορίθμων όρασης σε FPGA: Εφαρμογή στον αλγόριθμο Landmark matching

 29

Euclidian distance has finished, there is no need for using it again. In that case, our

input has to been modified because we would be unable to read our data with the

same order as provided for example at Matlab simulation. That’s why we decided that

it is more helpful to store these vectors in a memory despite the fact that they are not

going to be used repetitively.

component ram_A IS

 PORT (

 clka : IN STD_LOGIC;

 wea : IN STD_LOGIC_VECTOR(0 DOWNTO 0);

 addra : IN STD_LOGIC_VECTOR(9 DOWNTO 0);

 dina : IN STD_LOGIC_VECTOR(15 DOWNTO 0);

 douta : OUT STD_LOGIC_VECTOR(15 DOWNTO 0)

);

END component;

component ram_B IS

 PORT (

 clka : IN STD_LOGIC;

 wea : IN STD_LOGIC_VECTOR(0 DOWNTO 0);

 addra : IN STD_LOGIC_VECTOR(9 DOWNTO 0);

 dina : IN STD_LOGIC_VECTOR(15 DOWNTO 0);

 douta : OUT STD_LOGIC_VECTOR(15 DOWNTO 0)

);

END component;

Υλοποίηση ρομποτικών αλγορίθμων όρασης σε FPGA: Εφαρμογή στον αλγόριθμο Landmark matching

 30

Figure 3.5 Input and Output signals of SRAMs.

To sum up, our core received data and stores them in 2 local memories. When

finished reading, computation process can start. Our core was tested in several

versions:

 Version 1:

 Input was provided by a file. At this version, the time measurement

includes the reading/writing to RAM Blocks.

Version 2:

 Input was loaded from a.coe file into ROM memories: In that case,

there was no need for RAM, since they are replaced from two single-port

ROM. This allows measuring the actual time required for algorithm execution

(main process computation).

Version 3:

 Input was provided using the Ethernet driver. Input data were read

by a file, with the use of a high level language like C, and being passed to our

core through a controller, which was also responsible for the write back

process. At next chapter we explain in more details these 3 modules

(controller, driver and C program).

Υλοποίηση ρομποτικών αλγορίθμων όρασης σε FPGA: Εφαρμογή στον αλγόριθμο Landmark matching

 31

Chapter 4: Integration

As already been said, the goal of his diploma thesis was not only the implementation

of core but to provide a full integration between software and hardware. In order to

achieve that, we have implemented several other modules, for enabling

communication between software and hardware. First of all, we need a driver that will

be able to pass our data to our core. But because these data are raw, between the

driver and the core we have inserted a controller who receives these raw data,

modifies them and transmits them to the core. This controller is also responsible for

the write back process, as it receives the output of the core and transmits it to the

driver.

Figure 4.1 Communication diagram between modules

Υλοποίηση ρομποτικών αλγορίθμων όρασης σε FPGA: Εφαρμογή στον αλγόριθμο Landmark matching

 32

Controller Description

Component module as a black box has the following declaration.

entity controller is

 generic(

 data_length :integer := 8;

 address_length:integer:=7 ;

 comp_num:integer:=4;

 total_number:integer:=2);

 port (

 clk: in std_logic;

 rst: in std_logic;

 reading_state: in std_logic;

 din: in std_logic_vector (31 downto 0);

 dout_temp:out std_logic_vector (7 downto 0);

 core_address:out std_logic_vector(address_length downto 0);

 cntr_address: in std_logic_vector(7 downto 0);

 c_done: out std_logic;

 dout:out std_logic_vector (31 downto 0)

);

end controller;

Figure 4.2 Controller module input/output.

Υλοποίηση ρομποτικών αλγορίθμων όρασης σε FPGA: Εφαρμογή στον αλγόριθμο Landmark matching

 33

Let’s take a closer look at each of them.

 As far as the generic constants are concerned:

 Data_length, comp_num as previous.

 Address_length: Natural number used for the representation of number of bits

need for the 32 bits that controller reads from the Ethernet driver. Used for

controller’s local memory.

 Total_number_A, total_number_B as previous.

Inputs and output signals are the following:

 Clk: Clock of our design.

 Rst: reset signal, used for necessary initializations or for setting our design

back to default.

 Reading_state: Std_logic signal. Signal stays L as long as controller receives

data from the driver. When driver stops sending data, signal becomes H and

controller will start next process: that of sending data to the core.

 Din: Input data received from a char buffer over the Ethernet driver. Data are

of 32 bits length, as char buffer reads and transits 4 bytes.

 Cntr_address: Address of controller’s local memory.

 Core_address: Address of our core memory.

 C_done: Output signal. Signal is set to H when controller has finished.

 Dout: used for sending data back to the driver during the write back process.

So our controller works like that: Controller receives data from a char buffer over the

Ethernet driver. These data are saved in a controller’s local single port RAM. When

controller has received all the data, is ready for sending them to the core. So it fetches

each 32bit element from the RAM, breaks it up to 4 separate 8 bit data, and send these

Υλοποίηση ρομποτικών αλγορίθμων όρασης σε FPGA: Εφαρμογή στον αλγόριθμο Landmark matching

 34

data to the core alongside with all the necessary information described previous

(address of the current data, set of the data, and if there more data to be sent or not).

For our controller design we used an FSM of 8 stages. In the first stage, the reading is

performed while in stages 3 to 7 is the process of breaking the 32 bits into 4 unique.

We decided to use a local memory for storing the data in order to be sure that

synchronization problems will not arise. Since all data have been passed to our core,

controller is in a wait stage and receives every output data of our core. This output

also passes to the Ethernet driver in order to be written in a character buffer for

transmition back to screen.

Figure 4.3 SRAM used in controller for storing 32 bits data

Υλοποίηση ρομποτικών αλγορίθμων όρασης σε FPGA: Εφαρμογή στον αλγόριθμο Landmark matching

 35

The FSM flow of the controller is shown in the next diagram:

Figure 4.4 FSM flow of controller

Υλοποίηση ρομποτικών αλγορίθμων όρασης σε FPGA: Εφαρμογή στον αλγόριθμο Landmark matching

 36

Driver description:

The main goal of the driver is reading the data from the pc and sending them over

Ethernet cable to our controller. Moreover, it is responsible for getting data from the

controller and sends them to the pc over the Ethernet again. Use of Ethernet provides

us with greater flexibility and will make core simulations easier as there is no need for

someone to be familiar with VHDL or how to run a VHDL program. The user only

has to know a high level language. In this diploma thesis, program was written in C

language. So, driver is responsible for reading data that are generated by the C

program.

First of all, driver read 4 bytes containing the number of data that are going t be

transferred. After that, driver read packages of 4 bytes until data are finished. Every

32bit data that is read is being transferred in the controller, for storing it in the local

RAM as previously described. Driver uses 2 counter: an overall counter and an inner

counter which is used like this: the driver uses a buffer to store data received over

Ethernet. Driver’s capacity is 1500 bytes. So, overall counter counts total bytes left,

while inner counter counts how many bytes are left until the buffer of 1500 bytes is

fully filled.

When the reading has finished the driver gets in a state where variables for write back

process are initialized, such as number of output data. Driver reads data from the

controller and stores them in a char buffer until the driver receives and

acknowledgement signal. At this time, data are being transferred back.

When process is done, driver returns to its initial state. Obviously, driver is described

with the use of an FSM, with each state’s functionality to be described above.

Υλοποίηση ρομποτικών αλγορίθμων όρασης σε FPGA: Εφαρμογή στον αλγόριθμο Landmark matching

 37

Documentation of the driver is being presented right now.

Figure 4.5 Driver documentation

• clk (std_logic)

Inputs :

• rst (std_logic)

• E_COL (std_logic) : Collision Detected. The PHY asynchronously asserts the

collision signal E_COL after the collision has been detected on the media.

When deasserted, no collision is detected on the media.

• E_CRS (std_logic) : Carrier Sense. The PHY asynchronously asserts the

carrier sense E_CRS signal after the medium is detected in a non-idle state.

When deasserted, this signal indicates that the media is in an idle state (and the

transmission can start).

• E_MDC (std_logic) : Management Data Clock. This is a clock for the

E_MDIO serial data channel.

• E_MDIO (std_logic) : Management Data Input/Output. Bi-directional serial

data channel for PHY/STA communication.

• E_RX_CLK (std_logic) : Transmit Nibble or Symbol Clock. The PHY

provides the E_Tx_Clk signal. It operates at a frequency of 25 MHz (100

Mbps) or 2.5 MHz (10 Mbps). The clock is used as a timing reference for the

transfer of E_TXD[3:0], E_TX_EN, and E_TX_ER.

Υλοποίηση ρομποτικών αλγορίθμων όρασης σε FPGA: Εφαρμογή στον αλγόριθμο Landmark matching

 38

• E_RX_DV (std_logic) : Receive Data Valid. The PHY asserts this signal to

indicate to the Rx MAC that it is presenting the valid.

• E_RXD (std_logic) : Receive Data Nibble. These signals are the receive data

nibble. They are synchronized to the rising edge of E_RX_CLK. When

E_RX_DV is asserted, the PHY sends a data nibble to the Rx MAC. For a

correctly interpreted frame, seven bytes of a preamble and a completely

formed SFD must be passed across the interface.

• E_TX_CLK (std_logic) : Transmit Nibble or Symbol Clock. The PHY

provides the E_Tx_Clk signal. It operates at a frequency of 25 MHz (100

Mbps) or 2.5 MHz (10 Mbps). The clock is used as a timing reference for the

transfer of E_TXD[3:0], E_TX_EN, and E_TX_ER.

• E_RX_ER (std_logic) : Receive Error. The PHY asserts this signal to indicate

to the Rx MAC that a media error was detected during the transmission of the

current frame. E_RX_ER is synchronous to the E_RX_CLK and is asserted for

one or more E_RX_CLK clock periods and then deasserted.

• E_MDIO (std_logic) : Management Data Input/Output. Bi-directional serial

data channel for PHY/STA communication.

Outputs:

• E_TX_EN (std_logic) : Transmit Enable. When asserted, this signal indicates

to the PHY that the data E_TXD[3:0] is valid and the transmission can start.

The transmission starts with the first nibble of the preamble. The signal

remains asserted until all nibbles to be transmitted are presented to the PHY. It

is deasserted prior to the first E_TX_CLK, following the final nibble of a

frame.

• E_TXD (std_logic) : Transmit Data Nibble. Signals are the transmit data

nibbles. They are synchronized to the rising edge of E_TX_CLK. When

E_TX_EN is asserted, PHY accepts the E_TXD.

• E_TX_ER (std_logic) : Transmit Coding Error. When asserted for one

E_TX_CLK clock period while E_TX_EN is also asserted, this signal causes

the PHY to transmit one or more symbols that are not part of the valid data or

delimiter set somewhere in the frame being transmitted to indicate that there

has been a transmit coding error.

• PHYA_RESET (std_logic) .

Υλοποίηση ρομποτικών αλγορίθμων όρασης σε FPGA: Εφαρμογή στον αλγόριθμο Landmark matching

 39

Chapter 5: Implementation results

In this chapter, we are going to demonstrate measurements taken for several inputs. In

order to collect the inputs, we run several images obtained from link [1]. We run these

images in matlab and we kept in a file the input traces for our function, which is

landmark matching algorithm. After doing so, our inputs were refined. Since matlab

has greatest accuracy with floats numbers we run several different instances of each

input.

First of all, input was between -1 and 1. That means that it is safe for us to neglect the

integer part, and only keep for input the fractional part. Because in VHDL the input

must be declared and will be of standard length we had some limitations. When our

input was set to 8 bits, our data should be between -128 and +127. That means that

any number out of this range had to be adjusted in its closest limit. Similarly, when

our input data was set to 16 bits length, the space has turned into -32767 and 32767.

Because of the above, we expect that there will be a slight deviation to our core results

with the matlab results. We also expect that the longer the length will be, the less will

be the deviation. In order to check that results of our core are correct, we also wrote a

C program doing the exact same thing.

So we first run the project in matlab and we collected the results for the landmark.

Then collected input was defined, and we run project for 8 bits, 16 bits both in C and

VHDL. Demos for 8 bits were also tested with our integration project, and the use of

controller and the Ethernet driver as described in the previous chapters.

So, at first, we are going to present measurements for our core.

Υλοποίηση ρομποτικών αλγορίθμων όρασης σε FPGA: Εφαρμογή στον αλγόριθμο Landmark matching

 40

Design properties of the devices used in our measurements are the following:

Family Virtex5 Virtex6

Device XC5VLX50T XC6VLX240T

Package FF1136 FF156

Speed -2 -2

Core implementation results

Next we provide the experimental results about core implementation. For

evaluation purposes, five different testcases are employed, whereas at the

end there is a discussion about the overall power consumption.

TestCase 1:

At first we used for an input image, the following 4 frames.

Figure 5.1: Input for the testcase 1 with image size 256x128.

Υλοποίηση ρομποτικών αλγορίθμων όρασης σε FPGA: Εφαρμογή στον αλγόριθμο Landmark matching

 41

Running the code in matlab gave us a result an array A with 13 vectors, each one

consisting of 64 coordinates, while array B had 9 vectors, each one consisting of 64

coordinates. We had mentioned at the beginning, that the number of coordinates will

always be 64 so in the next examples will not be mentioned at all. Matlab results are

shown in the table below.

Results for Image 1 from Matlab

Table 5.1: Matlab results for testcase 1

Vector of Array A result

Vector 1 0.151713

Vector 2 0.425982

Vector 3 0.156278

Vector 4 0.253199

Vector 5 0.286622

Vector 6 0.354446

Vector 7 0.009701

Vector 8 0.267147

Vector 9 0.197427

Vector 10 0.029481

Vector 11 0.011157

Vector 12 0.004622

Vector 13 0.006055

As it was expected, we got 13 outputs, and each one is the minimum Euclidian

distance between specific vector of A and vectors of array B.

Afterwards, we readjusted the input data to 8 bits and we run the core in C and VHDL

for the reformatted input.

Υλοποίηση ρομποτικών αλγορίθμων όρασης σε FPGA: Εφαρμογή στον αλγόριθμο Landmark matching

 42

VHDL Implementation with 8bit accuracy

Our core was run in VHDL, and screenshots of the execution are shown below.

Figure 5.2 Reading ended in VHDL 8 bits

Figure 5.3 Output VHDL 8 bits.

Υλοποίηση ρομποτικών αλγορίθμων όρασης σε FPGA: Εφαρμογή στον αλγόριθμο Landmark matching

 43

We also run C program in order to check our results and we see that they are same.

So, our core works perfectly. Results are being shown in the next table:

Table 5.2 Comparison results between C and VHDL

Vector Output from C Output from VHDL

Vector 1 360,667 360,667

Vector 2 423,350 423,350

Vector 3 282,327 282,327

Vector 4 403,470 403,470

Vector 5 501,065 501,065

Vector 6 449,097 449,097

Vector 7 365,093 365,093

Vector 8 310,860 310,860

Vector 9 449,698 449,698

Vector 10 462,896 462,896

Vector 11 366,795 366,795

Vector 12 352,639 352,639

Vector 13 291,080 291,080

Υλοποίηση ρομποτικών αλγορίθμων όρασης σε FPGA: Εφαρμογή στον αλγόριθμο Landmark matching

 44

VHDL Implementation with 16bit accuracy

As explained earlier, we run our core for inputs of length 16. Screenshots from

Modelsim execution are shown below:

Figure 5.4 Reading 16 bits

Figure 5.5 output 16 bits

Υλοποίηση ρομποτικών αλγορίθμων όρασης σε FPGA: Εφαρμογή στον αλγόριθμο Landmark matching

 45

As we can see from the above images, total time was the same in both bits. This is

expected because they are not run with minimum clock cycle, but with a clock o

period 10ns (or 100MHz). Moreover, we expect the number of cycles to be constant

whatever the length is.

Results are shown in the table below.

Table 5.3: VHDL output for testcase 1, 32 bits

Vector C output VHDL output

Vector 1 42330408897 0011111100010011110001010000000001

Vector 2 6589236221 0110001000101111111100001111111101

Vector 3 5900855127 0101011111101101111110011101010111

Vector 4 6568030677 0110000111011111000011000111010101

Vector 5 14623368258 1101100111100111101110010101010000

Vector 6 12330778345 1011011110111110001011111011101001

Vector 7 4898325217 0100100011111101101000001011100001

Vector 8 7065353182 0110100101001000001011101111011110

Vector 9 15325579823 1110010001011110011100101000101111

Vector 10 5562675954 0101001011100011111011001011110010

Vector 11 4614745506 0100010011000011110110110110100010

Vector 12 5927199995 0101100001010010011110010011111011

Vector 13 5016801594 0100101011000001100101000100111010

As we can see, output in VHDL cannot be shown in decimal form, because it exceeds

32bits which is the integer range. But if we convert it to integer with a calculator we

can verify that results are correct.

After post-time synthesis (see complete steps and explanation at appendix A) cycles

for each device are shown in the table below.

Υλοποίηση ρομποτικών αλγορίθμων όρασης σε FPGA: Εφαρμογή στον αλγόριθμο Landmark matching

 46

In the next diagram, we compare the time for our different executions for testcase1.

As we can see we need more time when using 16 bits. In both cases, we see that

VHDL implementation is much quicker that C implementation.

Figure 5.6 Time results for test case 1 (8 bits)

Figure 5.7 Time results for test case 1 (16 bits)

In the next table we preview the results of our 3 implementations (Matlab, VHDL/C).

0

0,02

0,04

0,06

0,08

0,1

0,12

Image 1 (8 bits)

time (μs)

C implementation

VHDL Virtex5

VHDL Virtex 6

0.000

0.000

0.000

0.000

0.000

0.000

0.000

0.000

0.000

0.000

Image 1 (16 bits)

time(μs)

C implementation

VHDL Virtex5

VHDL Virtex 6

Υλοποίηση ρομποτικών αλγορίθμων όρασης σε FPGA: Εφαρμογή στον αλγόριθμο Landmark matching

 47

TestCase 2.

In our next simulation we used the following frames.

Figure 5.8: Input for the testcase 2 with mage size 128x128

Running the simulation in Matlab the two arrays are of (89x64, 99x64) elements

which means that our input is of about 12,000 elements.

Like previous, we run our core in Matlab, VHDL and C for both 8 and 16 bits. We

can verify that our core works fine, as we get the correct results. As we can see from

the above charts, C implementation is much more affected from the range of data,

while VHDL does not.

Implementation results are given in the following diagrams:

Figure 5.9 Time Results for test case 2 (8 bits)

0

0,01

0,02

0,03

0,04

0,05

0,06

0,07

0,08

Image 2 (8 bits)

time (μs)

C implementation

VHDL Virtex5

VHDL Virtex 6

Υλοποίηση ρομποτικών αλγορίθμων όρασης σε FPGA: Εφαρμογή στον αλγόριθμο Landmark matching

 48

Figure 5.10 Time Results for image 2 (16bits)

0.000

0.000

0.000

0.000

0.000

0.000

0.000

0.000

0.000

Image 2 (16 bits)

time (μs)

C implementation

VHDL Virtex5

VHDL Virtex 6

Υλοποίηση ρομποτικών αλγορίθμων όρασης σε FPGA: Εφαρμογή στον αλγόριθμο Landmark matching

 49

TestCase 3

In our next simulation we used the following frames.

Figure 5.11 Input for the test case 3 with image size 64 x 50

Figure 5.12 8 bits results

Figure 5.13 16 bits results

0

0,05

0,1

0,15

0,2

0,25

Image 3 (8 bits)

time (μs)

C implementation

VHDL Virtex5

VHDL Virtex 6

0.000

0.000

0.000

0.000

0.000

0.000

0.000

0.000

0.000

0.000

0.000

Image 3 (16 bits)

time (μs)

C implementation

VHDL Virtex5

VHDL Virtex 6

Υλοποίηση ρομποτικών αλγορίθμων όρασης σε FPGA: Εφαρμογή στον αλγόριθμο Landmark matching

 50

TestCase 4

In our next simulation we used the following frames.

Figure 5.14: Input for the testcase 4 with image size 256x200

Running the simulation in Matlab the two arrays are of (89x64, 99x64) elements

which means that our input is of about 12000 bytes.

Like previous, we run our core in Matlab, VHDL and C for both 8 and 16 bits. We

can verify that our core works fine, as we get the correct results.

Implementation results in terms of time needed of our core and time needed for C

program are given in the following diagrams:

Υλοποίηση ρομποτικών αλγορίθμων όρασης σε FPGA: Εφαρμογή στον αλγόριθμο Landmark matching

 51

Figure 5.15 Time results for test case 4 (8 bits)

Figure 5.16 Time results for test case 4 (16 bits)

0

1

2

3

4

5

6

Image 4 (8 bits)

time (μs)

C implementation

VHDL Virtex5

VHDL Virtex 6

0.000

0.001

0.002

0.003

0.004

0.005

0.006

Image 4 (16 bits)

time (μs)

C implementation

VHDL Virtex5

VHDL Virtex 6

Υλοποίηση ρομποτικών αλγορίθμων όρασης σε FPGA: Εφαρμογή στον αλγόριθμο Landmark matching

 52

TestCase 5

In our next simulation we used the following frames.

Figure 5.17: Input for the testcase 5 with image size 512x200

Running the simulation in Matlab the two arrays are of (125x64, 110x64) elements

which means that our input is of about 15000 bytes.

Like previous, we run our core in Matlab, VHDL and C for both 8 and 16 bits. We

can verify that our core works fine, as we get the correct results.

Υλοποίηση ρομποτικών αλγορίθμων όρασης σε FPGA: Εφαρμογή στον αλγόριθμο Landmark matching

 53

Implementation results are given in the following diagrams:

Figure 5.18 Time results for test case 5 (8 bits)

Figure 5.19 Time results for test case 5 (16 bits)

0

1

2

3

4

5

6

7

Image 5 (8 bits)

time (μs)

C implementation

VHDL Virtex5

VHDL Virtex 6

0.000

0.001

0.002

0.003

0.004

0.005

0.006

0.007

0.008

0.009

0.010

Image 5 (16 bits)

time (μs)

C implementation

VHDL Virtex5

VHDL Virtex 6

Υλοποίηση ρομποτικών αλγορίθμων όρασης σε FPGA: Εφαρμογή στον αλγόριθμο Landmark matching

 54

Overall Results

In this section we are going to present our overall result and how the numbre of data
influences the time needed from our core in comparison to time needed from C
program.

Moreover we have taken results, regarding power consumption and leakage power
regarding the number of bytes, at a specific device (Virtex 6 device).

At the end of the section, we provide our overall results regarding cycles needed from
our core and from C program in order to show the speedup we have gained which was
the initial goal of the design.

Figure 5.20 Time comparison for different inputs (8 bits)

Υλοποίηση ρομποτικών αλγορίθμων όρασης σε FPGA: Εφαρμογή στον αλγόριθμο Landmark matching

 55

Figure 5.21 Time comparison for different inputs (16 bits)

As we can see, FPGA implementation is always faster than C implementation. In the

next diagram we compare directly the cycles needed for each test case, where we can

see clearly the speed up we have achieved with FPGA implementation.

For example, for different number of bytes input (used the test cases from above) the

cycles needed for C implementation and FPGA implementation comparatively are

shown in the following diagram:

Υλοποίηση ρομποτικών αλγορίθμων όρασης σε FPGA: Εφαρμογή στον αλγόριθμο Landmark matching

 56

Figure 5.22 Cycles needed for input of 10,000 bytes

Figure 5.23 Cycles needed for input of 15,000 bytes

0

2000000

4000000

6000000

8000000

10000000

12000000

1

Cycles

Input of 10,000 Bytes

C implementation

VHDL implementation

0

2000000

4000000

6000000

8000000

10000000

12000000

14000000

1

Cycles

Input of 12,000 Bytes

C implementation

VHDL implementation

Υλοποίηση ρομποτικών αλγορίθμων όρασης σε FPGA: Εφαρμογή στον αλγόριθμο Landmark matching

 57

Figure 5.24 Cycles needed for input of 100,000 bytes

From the above diagram we can see that there is a huge difference in cycles needed

from our core in comparison with the implementation of the program in a language

like C. We expect this difference to be risen as lon as we use larger inputs.

In the next section we see results for power consumption for the previous test cases,

taken from XPower tool of Xilinx ISE.

Power results:

Figure 5.25 Power consumption on Virtex6 for different input

0

100000

200000

300000

400000

500000

600000

1

Cycles

Input of 10000 bytes

C implementation

FPGA implementation

,00

,500

1,00

1,500

2,00

2,500

3,00

3,500

1 2 3 4 5 6

Power (W)

Power Consumed

Power Consumed

Υλοποίηση ρομποτικών αλγορίθμων όρασης σε FPGA: Εφαρμογή στον αλγόριθμο Landmark matching

 58

Leakage:

Figure 5.26 Leakage Power on Virtex6 for different inputs

As we can see from the above diagrams, there is a huge rise in power consumption

between 500 bytes and 10000 bytes. This difference is expected because the amount

of input data is being risen and as a result of this the utilization of components in

FPGA increases.

0
0,5

1
1,5

2
2,5

3
3,5

Power (W)

Number of bytes

Leakage Power

Leakage Power

Υλοποίηση ρομποτικών αλγορίθμων όρασης σε FPGA: Εφαρμογή στον αλγόριθμο Landmark matching

 59

Chapter 6: Conclusions

From the implementation results of the previous section we conclude that if we take

advantage of parallelism of an FPGA we manage to speed up our implementation.

Moreover, FPGA implementation seems to be unaffected from range of input data

while languages like C are getting really slow in number of a wide range.

Especially when comparing cycles needed from the core, we can see that FPGA

implementation is much quicker and it requires only the 10% of cycles needed from

by C program. As a result of this, if we run our result in an embedded system, our

implementation will be faster that running it in a high level language.

We also expect that when number of input increases, FPGA implementation will

speed up our project at a greater percent.

From the results provided above, we can see that goals have been complete and we

have provided a way that by using hardware for software processes we managed to

speed up the algorithm of landmark matching.

Υλοποίηση ρομποτικών αλγορίθμων όρασης σε FPGA: Εφαρμογή στον αλγόριθμο Landmark matching

 60

Υλοποίηση ρομποτικών αλγορίθμων όρασης σε FPGA: Εφαρμογή στον αλγόριθμο Landmark matching

 61

Chapter 7: Appendix

Hardware Platform

The device we use for the FPGA implementation is the Xilinx Virtex 6.

General Description

The Virtex®-6 family provides the newest, most advanced features in the FPGA

market. Virtex-6 FPGAs are the programmable silicon foundation for Targeted

Design Platforms that deliver integrated software and hardware components to enable

designers to focus on innovation as soon as their development cycle begins. Using the

third-generation ASMBL™ (Advanced Silicon Modular Block) column based

architecture, the Virtex-6 family contains multiple distinct sub-families. This

overview covers the devices in the LXT, SXT, and HXT sub-families. Each sub-

family contains a different ratio of features to most efficiently address the needs of a

wide variety of advanced logic designs. In addition to the high-performance logic

fabric, Virtex-6 FPGAs contain many built-in system-level blocks. These features

allow logic designers to build the highest levels of performance and functionality into

their FPGA-based systems. Built on a 40 nm state-of-theartcopper process

technology, Virtex-6 FPGAs are a programmable alternative to custom ASIC

technology. Virtex-6 FPGAs offer the best solution for addressing the needs of high-

performance logic designers, high-performance DSP designers, and high-performance

embedded systems designers with unprecedented logic, DSP, connectivity, and soft

microprocessor capabilities.

Virtex-6 FPGAs store their customized configuration in SRAM-type internal latches.

The number of configuration bits is between 26 Mb and 177 Mb, depending on device

size but independent of the specific user-design implementation, unless compression

mode is used. The configuration storage is volatile and must be reloaded whenever the

FPGA is powered up. This storage can also be reloaded at any time by pulling the

Configuration

Υλοποίηση ρομποτικών αλγορίθμων όρασης σε FPGA: Εφαρμογή στον αλγόριθμο Landmark matching

 62

PROGRAM_B pin Low. Several methods and data formats for loading configuration

are available, determined by the three mode pins. Bit-serial configurations can be

either master serial mode where the FPGA generates the configuration clock (CCLK)

signal, or slave serial mode where the external configuration data source also clocks

the FPGA. For byte- and word-wide configurations, master SelectMAP mode

generates the CCLK signal while slave SelectMAP mode receives the CCLK signal

for the 8-, 16-, or 32-bit-wide transfer. Alternatively, serial-peripheral interface (SPI)

and byte-peripheral interface (BPI) modes are used with industry-standard flash

memories and are clocked by the CCLK output of the FPGA. JTAG mode uses

boundary-scan protocols to load bit-serial configuration data. The bitstream

configuration information is generated by the ISE® software using a program called

BitGen. The configuration process typically executes the following sequence:

• Detects power-up (power-on reset) or PROGRAM_B when Low.

• Clears the whole configuration memory.

• Samples the mode pins to determine the configuration mode: master or slave, bit-

serial or parallel, or bus width.

• Loads the configuration data starting with the bus-width detection pattern followed

by a synchronization word, checks for the proper device code, and ends with a cyclic

redundancy check (CRC) of the complete bitstream.

• Start-up executes a user-defined sequence of events: releasing the internal reset (or

preset) of flip-flops, optionally waiting for the phase-locked loops (PLLs) to lock

and/or the DCI to match, activating the output drivers, and transitions the DONE pin

High.

Dynamic Reconfiguration Port

The dynamic reconfiguration port (DRP) gives the system designer easy access to

configuration bits and status registers for three block types: 32 locations for each

clock tile, 128 locations for the System Monitor, and 128 locations for each serial

GTX or GTH transceiver. The DRP behaves like memory-mapped registers, and can

access and modify block-specific configuration bits as well as status and control

registers.

Υλοποίηση ρομποτικών αλγορίθμων όρασης σε FPGA: Εφαρμογή στον αλγόριθμο Landmark matching

 63

Encryption, Readback, and Partial Reconfiguration

As a special option, the bitstream can be AES-encrypted to prevent unauthorized

copying of the design. The Virtex-6 FPGA performs the decryption using the

internally stored 256-bit key that can use battery backup or alternative non-volatile

storage. Most configuration data can be read back without affecting the system’s

operation. Typically, configuration is an all-ornothing operation, but the Virtex-6

FPGA also supports partial reconfiguration. When applicable in certain designs,

partial reconfiguration can greatly improve the versatility of the FPGA. It is even

possible to reconfigure a portion of the FPGA while the rest of the logic remains

active i.e., active partial reconfiguration.

The look-up tables (LUTs) in Virtex-6 FPGAs can be configured as either one 6-input

LUT (64-bit ROMs) with one output, or as two 5-input LUTs (32-bit ROMs) with

separate outputs but common addresses or logic inputs. Each LUT output can

optionally be registered in a flip-flop. Four such LUTs and their eight flip-flops as

well as multiplexers and arithmetic carry logic form a slice, and two slices form a

configurable logic block (CLB). Four flip-flops per slice (one per LUT) can optionally

be configured as latches. In that case, the remaining four flip-flops in that slice must

remain unused. Between 25–50% of all slices can also use their LUTs as distributed

64-bit RAM or as 32-bit shift registers (SRL32) or as two SRL16s. Modern synthesis

tools take advantage of these highly efficient logic, arithmetic, and memory features.

Expert designers can also instantiate them.

CLBs, Slices, and LUTs

Each Virtex-6 FPGA has up to nine clock management tiles (CMTs), each consisting

of two mixed-mode clock managers (MMCMs), which are PLL based.

Clock Management

Phase-Locked Loop

The MMCM can serve as a frequency synthesizer for a wider range of frequencies

and as a jitter filter for incoming clocks. The heart of the MMCM is a voltage-

controlled oscillator (VCO) with a frequency from 600 MHz up to 1600 MHz,

spanning more than one octave. There are three sets of programmable frequency

dividers (D, M, and O). The pre-divider D (programmable by configuration) reduces

Υλοποίηση ρομποτικών αλγορίθμων όρασης σε FPGA: Εφαρμογή στον αλγόριθμο Landmark matching

 64

the input frequency and feeds one input of the traditional PLL phase/frequency

comparator. The feedback divider (programmable by configuration) acts as a

multiplier because it divides the VCO output frequency before feeding the other input

of the phase comparator. D and M must be chosen appropriately to keep the VCO

within its specified frequency range. The VCO has eight equally-spaced output phases

(0°, 45°, 90°, 135°, 180°, 225°, 270°, and 315°). Each can be selected to drive one of

the seven output dividers, O0 to O6 (each programmable by configuration to divide

by any integer from 1 to 128).

MMCM Programmable Features

The MMCM has three input-jitter filter options: low bandwidth, high bandwidth, or

optimized mode. Low-bandwidth mode has the best jitter attenuation but not the

smallest phase offset. High-bandwidth mode has the best phase offset, but not the best

jitter attenuation. Optimized mode allows the tools to find the best setting. The

MMCM can have a fractional counter in either the feedback path (acting as a

multiplier) or in one output path. Fractional counters allow non-integer increments of

1/8 and can thus increase frequency synthesis capabilities by a factor of 8. The

MMCM can also provide fixed or dynamic phase shift in small increments that

depend on the VCO frequency. At 600 MHz the phase-shift timing increment is 30 ps;

at 1600 MHz, it is 11.5 ps.

Clock Distribution

Each Virtex-6 FPGA provides five different types of clock lines (BUFG, BUFR,

BUFIO, BUFH, and the high-performance clock) to address the different clocking

requirements of high fanout, short propagation delay, and extremely low skew.

Global Clock Lines

In each Virtex-6 FPGA, 32 global-clock lines have the highest fanout and can reach

every flip-flop clock, clock enable, set/reset, as well as many logic inputs. There are

12 global clock lines within any region. Global clock lines can be driven by global

clock buffers, which can also perform glitchless clock multiplexing and the clock

enable function. Global clocks are often driven from the CMT, which can completely

eliminate the basic clock distribution delay.

Υλοποίηση ρομποτικών αλγορίθμων όρασης σε FPGA: Εφαρμογή στον αλγόριθμο Landmark matching

 65

Regional Clocks

Regional clocks can drive all clock destinations in their region as well as the region

above and below. A region is defined as any area that is 40 I/O and 40 CLB high and

half the chip wide. Virtex-6 FPGAs have between 6 and 18 regions. There are 6

regional clock tracks in every region. Each regional clock buffer can be driven from

either of four clock-capable input pins, and its frequency can optionally be divided by

any integer from 1 to 8.

I/O Clocks

I/O clocks are especially fast and serve only I/O logic and serializer/deserializer

(SerDes) circuits, as described in the I/O Logic section. Virtex-6 devices have a high-

performance direct connection from the MMCM to the I/O directly for low-jitter,

high-performance interfaces.

Every Virtex-6 FPGA has between 156 and 1064 dual-port block RAMs, each storing

36 Kbits. Each block RAM has two completely independent ports that share nothing

but the stored data.

Block RAM

Synchronous Operation

Each memory access, read and write, is controlled by the clock. All inputs, data,

address, clock enables, and write enables are registered. Nothing happens without a

clock. The input address is always clocked, retaining data until the next operation. An

optional output data pipeline register allows higher clock rates at the cost of an extra

cycle of latency. During a write operation, the data output can reflect either the

previously stored data, the newly written data, or remain unchanged.

Programmable Data Width

• Each port can be configured as 32K x 1, 16K x 2, 8K x 4, 4K x9 (or 8), 2K x

18 (or 16), 1K x 36 (or 32), or 512 x 72 (or 64). The two ports can have

different aspect ratios, without any constraints.

• Each block RAM can be divided into two completely independent 18 Kb

block RAMs that can each be configured to any aspect ratio from 16K x 1 to

Υλοποίηση ρομποτικών αλγορίθμων όρασης σε FPGA: Εφαρμογή στον αλγόριθμο Landmark matching

 66

512 x 36. Everything described previously for the full 36 Kb block RAM also

applies to each of the smaller 18 Kb block RAMs.

• In 18 Kb block RAMs, only simple dual-port mode can provide data width of

>36 bits. In this mode, one port is dedicated to read and the other port is

dedicated to write operation. In SDP mode one side (read or write) can be

variable while the other is fixed to 32/36 or 64/72. There is no read output

during write. The dual-port 36 Kb RAM both sides can be of variable width.

• Two adjacent 36 Kb block RAMs can be configured as one cascaded 64K Å~

1 dual-port RAM without any additional logic.

Error Detection and Correction

Each 64 bit-wide block RAM can generate, store, and utilize eight additional

Hamming-code bits, and perform single-bit error correction and double-bit error

detection (ECC) during the read process. The ECC logic can also be used when

writing to, or reading from external 64/72-wide memories. This works in simple dual-

port mode and does not support read-during-write.

The built-in FIFO controller for single-clock (synchronous) or dual-clock

(asynchronous or multirate) operation increments the internal addresses and provides

four handshaking flags: full, empty, almost full, and almost empty. The almost full

and almost empty flags are freely programmable. Similar to the block RAM, the FIFO

width and depth are programmable, but the write and read ports always have identical

width. First-word fall-through mode presents the first-written word on the data output

even before the first read operation. After the first word has been read, there is no

difference between this mode and the standard mode.

FIFO Controller

DSP applications use many binary multipliers and accumulators, best implemented in

dedicated DSP slices. All Virtex-6 FPGAs have many dedicated, full-custom, low-

power DSP slices combining high speed with small size, while retaining system

design flexibility. Each DSP48E1 slice fundamentally consists of a dedicated 25 x 18

bit two's complement multiplier and a 48-bit accumulator, both capable of operating

Digital Signal Processing—DSP48E1 Slice

Υλοποίηση ρομποτικών αλγορίθμων όρασης σε FPGA: Εφαρμογή στον αλγόριθμο Landmark matching

 67

at 600 MHz. The multiplier can be dynamically bypassed, and two 48-bit inputs can

feed a single-instruction-multiple-data (SIMD) arithmetic unit (dual 24-bit

add/subtract/accumulate or quad 12-bit add/subtract/accumulate), or a logic unit that

can generate any one of 10 different logic functions of the two operands. The

DSP48E1 includes an additional pre-adder, typically used in symmetrical filters. This

new pre-adder improves performance in densely packed designs and reduces the logic

slice count by up to 50%. The DSP48E1 slice provides extensive pipelining and

extension capabilities that enhance speed and efficiency of many applications, even

beyond digital signal processing, such as wide dynamic bus shifters, memory address

generators, wide bus multiplexers, and memory-mapped I/O register files. The

accumulator can also be used as a synchronous up/down counter. The multiplier can

perform logic functions (AND, OR) and barrel shifting.

The number of I/O pins varies from 240 to 1200 depending on device and package

size. Each I/O pin is configurable and can comply with a large number of standards,

using up to 2.5V. The Virtex-6 FPGA SelectIO Resources User Guide describes the

I/O compatibilities of the various I/O options. With the exception of supply pins and a

few dedicated configuration pins, all other package pins have the same I/O

capabilities, constrained only by certain banking rules.

Input/Output

All I/O pins are organized in banks, with 40 pins per bank. Each bank has one

common VCCO output supply-voltage pin, which also powers certain input buffers.

Some single-ended input buffers require an externally applied reference voltage

(VREF). There are two VREF pins per bank (except configuration bank 0). A single

bank can have only one VREF voltage value.

I/O Electrical Characteristics

Single-ended outputs use a conventional CMOS push/pull output structure driving

High towards VCCO or Low towards ground, and can be put into high-Z state. The

system designer can specify the slew rate and the output strength. The input is always

active but is usually ignored while the output is active. Each pin can optionally have a

weak pull-up or a weak pulldown resistor. Any signal pin pair can be configured as

differential input pair or output pair. Differential input pin pairs can optionally be

terminated with a 100Ω internal resistor. All Virtex-6 devices support differential

Υλοποίηση ρομποτικών αλγορίθμων όρασης σε FPGA: Εφαρμογή στον αλγόριθμο Landmark matching

 68

standards beyond LVDS: HT, RSDS, BLVDS, differential SSTL, and differential

HSTL.

Digitally Controlled Impedance

Digitally controlled impedance (DCI) can control the output drive impedance (series

termination) or can provide parallel termination of input signals to VCCO, or split

(Thevenin) termination to VCCO/2. DCI uses two pins per bank as reference pins, but

one such pair can also control multiple banks. VRN must be resistively pulled to

VCCO, while VRP must be resistively connected to ground. The resistor must be

either 1x or 2x the characteristic trace impedance, typically close to 50Ω.

I/O Logic

Input and Output Delay

This section describes the available logic resources connected to the I/O interfaces.

All inputs and outputs can be configured as either combinatorial or registered. Double

data rate (DDR) is supported by all inputs and outputs. Any input or output can be

individually delayed by up to 32 increments of ~78 ps each. This is implemented as

IODELAY. The number of delay steps can be set by configuration and can also be

incremented or decremented while in use. For using either IODELAY, the system

designer must instantiate the IODELAY control block and clock it with a frequency

close to 200 MHz. Each 32-tap total IODELAY is controlled by that frequency, thus

unaffected by temperature, supply voltage, and processing variations.

ISERDES and OSERDES

Many applications combine high-speed bit-serial I/O with slower parallel operation

inside the device. This requires a serializer and deserializer (SerDes) inside the I/O

structure. Each input has access to its own deserializer (serial-to-parallel converter)

with programmable parallel width of 2, 3, 4, 5, 6, 7, 8, or 10 bits. Each output has

access to its own serializer (parallel-to-serial converter) with programmable parallel

width of up to 8 bits wide for single data rate (SDR), or up to 10 bits wide for double

data rate (DDR).

Υλοποίηση ρομποτικών αλγορίθμων όρασης σε FPGA: Εφαρμογή στον αλγόριθμο Landmark matching

 69

Every Virtex-6 FPGA contains a System Monitor circuit providing thermal and power

supply status information. Sensor outputs are digitized by a 10-bit 200kSPS analog-

to-digital converter (ADC). This fully tested and specified ADC can also be used to

digitize up to 17 external analog input channels. The System Monitor ADC utilizes an

on-chip reference circuit thereby eliminating the need for any external active

components. On-chip temperature and power supplies are monitored with a

measurement accuracy of ±4°C and ±1% respectively. By default the System Monitor

continuously digitizes the output of all on-chip sensors. The most recent measurement

results together with maximum and minimum readings are stored in dedicated

registers for access at any time through the DRP or JTAG interfaces. User defined

alarm thresholds can automatically indicate over temperature events and unacceptable

power supply variation. A specified limit (for example: 125°C) can be used to initiate

an automatic power down. The System Monitor does not require explicit instantiation

in a design. Once the appropriate power supply connections are made, measurement

data can be accessed at any time, even pre-configuration or during power down,

through the JTAG test access port (TAP).

System Monitor

Ultra-fast serial data transmission between ICs, over the backplane, or over longer

distances is becoming increasingly popular and important. It requires specialized

dedicated on-chip circuitry and differential I/O capable of coping with the signal

integrity issues at these high data rates. All but one Virtex-6 device has between 8 to

72 gigabit transceiver circuits. Each GTX transceiver is a combined transmitter and

receiver capable of operating at a data rate between 480 Mb/s and 6.6 Gb/s. Lower

data rates can be achieved using FPGA logic-based oversampling. Each GTH

transceiver is a combined transmitter and receiver capable of operating at a rate

between 2.488 Gb/s and 11.18 Gb/s. The GTX transmitter and receiver are

independent circuits that use separate PLLs to multiply the reference frequency input

by certain programmable numbers between 4 and 25, to become the bit-serial data

clock. The GTH transceiver is a purpose-built design for 10 Gb/s rates and shares a

single high-performance PLL between four transmitter and receiver circuits. Each

GTX and GTH transceiver has a large number of user-definable features and

parameters. All of these can be defined during device configuration, and many can

Low-Power Gigabit Transceivers

Υλοποίηση ρομποτικών αλγορίθμων όρασης σε FPGA: Εφαρμογή στον αλγόριθμο Landmark matching

 70

also be modified during operation.

Transmitter

The GTX transmitter is fundamentally a parallel-to-serial converter with a conversion

ratio of 8, 10, 16, 20, 32, or 40. The GTH transmitter offers bit widths of 16, 20, 32,

40, 64, or 80 to allow additional timing margin for high-performance designs. These

transmitter outputs drive the PC board with a single-channel differential current-mode

logic (CML) output signal. TXOUTCLK is the appropriately divided serial data clock

and can be used directly to register the parallel data coming from the internal logic.

The incoming parallel data is fed through a small FIFO and can optionally be

modified with the 8B/10B, 64B/66B, or the 64B/67B (GTX only) algorithm to

guarantee a sufficient number of transitions. The bit-serial output signal drives two

package pins with complementary CML signals. This output signal pair has

programmable signal swing as well as programmable pre-emphasis to compensate for

PC board losses and other interconnect characteristics.

Receiver

The receiver is fundamentally a serial-to-parallel converter, changing the incoming bit

serial differential signal into a parallel stream of words, each 8, 10, 16, 20, 32, or 40

bits wide. The GTH transceiver offers 16, 20, 32, 40, 64, and 80 bit widths to allow

greater timing margin. The receiver takes the incoming differential data stream, feeds

it through a programmable equalizer (to compensate for PC board and other

interconnect characteristics), and uses the FREF input to initiate clock recognition.

There is no need for a separate clock line. The data pattern uses non-return-to-zero

(NRZ) encoding and optionally guarantees sufficient data transitions by using the

selected encoding scheme. Parallel data is then transferred into the FPGA logic using

the RXUSRCLK clock. The serial-to-parallel conversion ratio for GTX transceivers

can be 8, 10, 16, 20, 32, or 40. The serial-to-parallel conversion ratio for GTH

transceivers can be 16, 20, 32, 40, 64, or 80 for GTH.

Out-of-Band Signaling

The GTX transceivers provide Out-of-Band (OOB) signaling, often used to send low-

speed signals from the transmitter to the receiver, while high-speed serial data

transmission is not active, typically when the link is in a power-down state or has not

Υλοποίηση ρομποτικών αλγορίθμων όρασης σε FPGA: Εφαρμογή στον αλγόριθμο Landmark matching

 71

been initialized. This benefits PCI Express and SATA/SAS applications.

The PCI Express standard is a packet-based, point-to-point serial interface standard.

The differential signal transmission uses an embedded clock, which eliminates the

clock-to-data skew problems of traditional wide parallel buses. The PCI Express Base

Specification Revision 2.0 is backwards compatible with Revision 1.1 and defines a

configurable raw data rate of 2.5 Gb/s, or 5.0 Gb/s per lane in each direction. To scale

bandwidth, the specification allows multiple lanes to be joined to form a larger link

between PCI Express devices. All Virtex-6 devices (except the XC6VLX760) include

at least one integrated interface block for PCI Express technology that can be

configured as an Endpoint or Root Port, compliant to the PCI Express Base

Specification Revision 2.0. The Root Port can be used to build the basis for a

compatible Root Complex, to allow custom FPGA-FPGA communication via the PCI

Express protocol, and to attach ASSP Endpoint devices such as Fibre Channel HBAs

to the FPGA. This block is highly configurable to system design requirements and can

operate 1, 2, 4, or 8 lanes at the 2.5 Gb/s data rate and the 5.0 Gb/s data rate. For high-

performance applications, advanced buffering techniques of the block offer a flexible

maximum payload size of up to 1024 bytes. The integrated block interfaces to the

GTX transceivers for serial connectivity, and to block RAMs for data buffering.

Combined, these elements implement the Physical Layer, Data Link Layer, and

Transaction Layer of the PCI Express protocol. Xilinx provides a light-weight,

configurable, easy-to-use LogiCORE™ wrapper that ties the various building blocks

(the integrated block for PCI Express, the GTX transceivers, block RAM, and

clocking resources) into an Endpoint or Root Port solution. The system designer has

control over many configurable parameters: lane width, maximum payload size,

FPGA logic interface speeds, reference clock frequency, and base address register

decoding and filtering.

Integrated Interface Blocks for PCI Express Designs

An integrated Tri-mode Ethernet MAC (TEMAC) block is easily connected to the

FPGA logic, the GTX transceivers, and the SelectIO resources. This TEMAC block

saves logic resources and design effort. All of the Virtex-6 devices (except the

10/100/1000 Mb/s Ethernet Controller (2,500 Mb/s Supported)

Υλοποίηση ρομποτικών αλγορίθμων όρασης σε FPGA: Εφαρμογή στον αλγόριθμο Landmark matching

 72

XC6VLX760) have four TEMAC blocks, implementing the link layer of the OSI

protocol stack. The CORE Generator™ software GUI helps to configure flexible

interfaces to GTX transceiver or SelectIO technology, to the FPGA logic, and to a

microprocessor (when required). The TEMAC is designed to the IEEE Std 802.3-

2005 specification. 2,500 Mb/s support is also available.

Synthesis and Simulation Process

The free version of the Xilinx design suite, Integrated Software Environment

13.4, has been used to implement the design in software. The design should be

created, tested and verified in the software before the hardware can be

configured.

The first step in the design flow is the HDL description of the circuit. In this step,

the design files are created using one of the hardware description languages. For

this thesis work, VHDL was the language used. These source files can be

simulated to verify the functionality of the design in software. However,

successful behavioral simulation does not guarantee successful implementation

on the hardware.

The next step is to synthesize the design files that were created in the previous

step. During this step, the software checks syntax errors, applies user constraints

and optimizes the logic to the target device. The constraints include a

requirement about the value of the clock frequency and placement of input and

output pins based on the physical connections of FPGA pins to circuits on the

development board. These connections are described in the documentation for

the development board. The output files from this step will be used in the next

step.

The third step is the implementation step. During this step, the software verifies

whether the design can be implemented on the hardware, for example, it checks

how the design will be routed on the chip and optimizes the design according to

Υλοποίηση ρομποτικών αλγορίθμων όρασης σε FPGA: Εφαρμογή στον αλγόριθμο Landmark matching

 73

the timing specifications. The design suite provides tools such as the Floorplan

editor and FPGA editor that let the designer to create constraints, and see how

the design will be placed and routed on the FPGA, and let the designer perform

placing and routing manually. The software generates detailed analysis reports

about the implementation.

The final step in the software design is to generate the programming file to be

used configure the FPGA. The programming file thus generated is then

downloaded onto the FPGA through JTAG cable.

More information about each step:

Translate

 : The Translate process merges all of the input netlists and design

constraints and outputs a Xilinx Native Generic Database (NGD) file,

which describes the logical design reduced to Xilinx primitives.

Table 7.1 translation documentation

Command line tool NGDBuild

Tcl command process run "Translate"

Input files EDIF, SEDIF, EDN, EDF, NGC, UCF, NCF,

URF, NMC, BMM

Output files BLD (report), NGD

Tools available after running process Constraints Editor, PlanAhead software

Map

 : The Map process maps the logic defined by an NGD file into FPGA

elements, such as CLBs and IOBs. The output design is a Native Circuit

Description (NCD) file that physically represents the design mapped to

the components in the Xilinx FPGA.

Υλοποίηση ρομποτικών αλγορίθμων όρασης σε FPGA: Εφαρμογή στον αλγόριθμο Landmark matching

 74

Table 7.2 mapping documentation

Command line tool MAP

Tcl command process run "Map"

Input files NGD, NMC, NCD, NGM

Note : The NCD and NGM files are for

guiding.

Output files NCD, PCF, NGM, MRP (report), GRF, MAP,

PSR

Tools available after running process FPGA Editor, PlanAhead software, Timing

Analyzer

Place and Route

 : The Place and Route process takes a mapped NCD file, places

and routes the design, and produces an NCD file that is used as

input for bitstream generation.

Table 7.3 place and route documentation

Command line tool PAR

Tcl command process run "Place & Route"

Input files NCD, PCF

Note : In addition to the NCD file from

MAP, PAR also accepts an NCD file for

guiding.

Output files NCD, PAR (report), PAD, CSV, TXT, GRF,

DLY

Tools available after running process FPGA Editor, PlanAhead software, Timing

Analyzer, TRACE, XPower Analyzer

Υλοποίηση ρομποτικών αλγορίθμων όρασης σε FPGA: Εφαρμογή στον αλγόριθμο Landmark matching

 75

Generate Programming File

 : The Generate Programming File process produces a

bitstream for Xilinx device configuration. After the

design is completely routed, you must configure the

device so it can execute the desired function.

Table 7.4 generating bitstream documentation

Command line tool BitGen

Tcl command process run "Generate Programming File"

Input files NCD, PCF, NKY

Output files BGN, BIN, BIT, DRC, ISC, LL, MSD, MSK,

NKY, ISC, RBA, RBB, RBD, RBT

Tools available after running process iMPACT

Software execution process
The goal of this appendix is to provide a detailed description on how to run the

project, even for someone who knows nothing about VHDL. Basic prerequisite is that

reader will be familiar with C language and the UNIX environment. Because driver is

implemented for unix, we are going to use a machine running unix. Specifically we

used LinuxMint Maya.

First of all, we have to install the driver. Suppose ht the driver is installed in a

directory in Desktop with the name driver, we do the following.

 Open up a terminal and type:

Cd /Desktop/driver

In this folder if we type ls we must see our driver file, and the Makefile.

Υλοποίηση ρομποτικών αλγορίθμων όρασης σε FPGA: Εφαρμογή στον αλγόριθμο Landmark matching

 76

 Then we compile it by typing

Make

Next thing to do is to insert the module of the driver to our linux kernel. In order to do

this, we must have root privileges so first we type su and make ourselves root.

Having done this, we are ready to insert the module.

 We execute the following command:

insmod fpga.ko

If there is no error, nothing must be written on the terminal. Now we are ready to run

our program.

Suppose that our C programs for writing and reading to the driver are in a folder

named reading, in a directory under desktop.

 We open a terminal and type:

Cd /Desktop/reading

Then we compile and run our programs by typing:

gcc –o tx_file_plus_len tx_file_plus_len.c

gcc –o rx_file rx_file.c

Υλοποίηση ρομποτικών αλγορίθμων όρασης σε FPGA: Εφαρμογή στον αλγόριθμο Landmark matching

 77

And we run them as follows:

./tx_file_plus_len <file>

Where file id the file from where we are about to read our input.

In order to receive data from the driver, we execute:

./rx_file <file> <number of bytes> <flag>

Where:

• File is the output file to where we are about to write our results.
• Number of bytes is the bytes of expected output.
• Flag is a single value: 0 for overwriting data and 0 for appending.

Υλοποίηση ρομποτικών αλγορίθμων όρασης σε FPGA: Εφαρμογή στον αλγόριθμο Landmark matching

 78

Υλοποίηση ρομποτικών αλγορίθμων όρασης σε FPGA: Εφαρμογή στον αλγόριθμο Landmark matching

 79

References
[1] Y. Yagi, Y. Nishizawa, and M. Yachida, “Map-based navigation for a mobile

robot with omnidirectional image sensor COPIS,” IEEE Trans.Robot. Autom., vol. 11,

pp. 634–647, Oct. 1995.

[2] Z. Zhu, S. Yang, G. Xu, X. Lin, and D. Shi, “Fast road classification and

orientation estimation using omni-view images and neural networks,” IEEE Trans.

Image Process., vol. 7, pp. 1182–1197, Aug. 1998.

[3] R. R. Murphy, Introduction to AI Robotics. Cambridge, MA: MIT Press, 2000, p.

415.

[4] J. Zhang, A. Knoll, and V. Schwert, “Situated neuro-fuzzy control for vision-

based robot localization,” Robot. Auton. Syst., vol. 28, pp. 71–82, 1999.

[5] A. Rizzi and R. Cassinis, “A robot self-localization system based on

omnidirectional color images,” Robot. Auton. Syst., vol. 30, pp. 23–38, 2001.

[6] H. Ishiguro and S. Tsuji, “Image-based memory of environment,” in Proc.

IEEE/RSJ Int. Conf. Intell. Robots Syst., vol. 2, 1996, pp. 634–639.

[7] H. Ishiguro, K. Kato, and M. Barth, “Identifying and localizing robots with

omnidirectional vision sensors,” in Panoramic Vision: Sensors,

Theory, and Application, R. Benosman and S. B. Kang, Eds. New York: Springer-

Verlag, 2001, pp. 376–391.

[8] S. Atiya and G. D. Hager, “Real-time vision-based robot localization,” IEEE

Trans. Robot. Autom., vol. 9, pp. 785–800, Dec. 1993.

[9] D. G. Lowe, “Object recognition from local scale-invariant features,” in Proc. Int.

Conf. Computer Vision, Corfu, Greece, 1999, pp. 1150–1157.

[10] S. Se, D. G. Lowe, and J. Little, “Global localization using distinctive visual

features,” in Proc. Int. Conf. Intell. Robots Syst., Lausanne, Switzerland, 2002, pp.

226–231.

[11] A. Gruen and T. Huang, Eds., Calibration and Orientation of Cameras in

Computer Vision. New York: Springer, 2001, pp. 63–94.

[12] M. A. Fischler and R. C. Bolles, “Random sample consensus: A paradigm for

model fitting with applications to image analysis and automated cartography,”

Commun. ACM, vol. 24, no. 6, pp. 381–395, 1981.

[13] F. Dellaert, S. M. Seitz, C. E. Thorpe, and S. Thrun, “EM, MCMC, and chain

flipping for structure from motion with unknown correspondence,”

Υλοποίηση ρομποτικών αλγορίθμων όρασης σε FPGA: Εφαρμογή στον αλγόριθμο Landmark matching

 80

Machine Learning, vol. 50, pp. 45–71, 2003.

[14] C. C. Slama, Manual of Photogrammetry, 4th ed. Bethesda, MD: Amer. Soc.

Photogrammetry, Remote Sensing, 1980.

[15] J. O’Rourke, Art Gallery Theorems and Algorithms. Cambridge, U.K.:Oxford

Univ. Press, 1987, p. 126.

[16] K. T. Simsarian, T. J. Olson, and N. Nandhakumar, “View-invariant regions and

mobile robot self-localization,” IEEE Trans. Robot. Autom., vol. 12, pp. 810–816,

Oct. 1996.

[17] A. Okabe, B. Boots, K. Sugihara, and S. N. Chiu, Spatial Tessellations:Concepts

and Applications of Voronoi Diagrams, 2nd ed. New York: Wiley, 2000, pp. 169–

178.

[18] N. S. Rao, N. Stoltzfus, and S. Iyengar, “A “retraction” method for learned

navigation in unknown terrains for a circular robot,” IEEE Trans.Robot. Autom., vol.

7, pp. 699–707, Oct. 1991.

[19] O. Takahashi and R. Schilling, “Motion planning in a plane using generalized

Voronoi diagram,” IEEE Trans. Robot. Autom., vol. 5, pp. 143–150, Apr. 1989.

[20] S. Thrun, “Learning metric-topological maps for indoor mobile robot

navigation,” Artif. Intell., vol. 99, pp. 21–71, 1998.

[21] H. Choset and K. Nagatani, “Topological simultaneous localization and mapping

(SLAM): Toward exact localization without explicit localization,” IEEE Trans.

Robot. Autom., vol. 17, pp. 125–137, Apr. 2001.

[22] I. Konukseven and H. Choset, “Mobile robot navigation: Implementing the GVG

in the presence of sharp corners,” in Proc. IEEE/RSJ Int. Conf. Intell. Robots Syst.,

vol. 3, 1997, pp. 1218–1223.

[23] D. C. Yuen and B. A. MacDonald, “Natural landmark based localization system

using panoramic images,” in Proc. IEEE Int. Conf. Robot.

Autom., vol. 1, Washington, DC, May 2002, pp. 915–920.

[24] , David C. K. Yuen, Member, IEEE, and Bruce A. MacDonald, Senior Member,

IEEE, Vision-Based Localization Algorithm Based on Landmark Matching,

Triangulation, Reconstruction, and Comparison, IEEE TRANSACTIONS ON

ROBOTICS, VOL. 21, NO. 2, APRIL 2005 217,

[25] Vytautas ŠTUIKYS, Design of Reusable VHDL Component Using External
Functions, INFORMATICA, 1998, Vol. 9, No. 4, 491–506 491, Ó 1998 Institute of
Mathematics and Informatics, Vilnius

	Περίληψη
	Chapter 1: Introduction

	FPGA
	Figure 1.2: Basic Configurable Logic Block Structure
	Computer Vision
	Chapter 2: Related Work

	Related Work
	Motivation
	Chapter 3: Implementation of Landmark Matching

	Algorithm Description
	Architecture of the design
	Core implementation:
	Chapter 4: Integration
	Chapter 5: Implementation results

	Core implementation results
	Next we provide the experimental results about core implementation. For evaluation purposes, five different testcases are employed, whereas at the end there is a discussion about the overall power consumption.
	TestCase 2.
	/
	/
	TestCase 3
	/
	TestCase 4
	TestCase 5

	Overall Results
	Chapter 6: Conclusions
	Chapter 7: Appendix

	Hardware Platform
	Synthesis and Simulation Process
	Software execution process
	References

