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Περίηψη

Η JavaScript είναι μία δημοφιής ώσσα προραμματισμού, που ρησιμοποιείται κυρίς
ια προραμματισμό στον ιστό, αά και ια προραμματισμό ενικού σκοπού. Η ώσσα
αυτή έει δυναμικό και ααρό σύστημα τύπν, και κατά συνέπεια τα άη σε προράμματα
JavaScript είναι δύσκοο να εντοπιστούν. Παρόα αυτά, η υπάρουσα υποστήριξη από
αυτόματα εραεία ια τη ώσσα είναι περιορισμένη. Η ερασία μας στοεύει στη ετίση
αυτής της κατάστασης. Αναπτύσσουμε μία διαδικασία στατικής ανάυσης ια προράμματα
JavaScript που καύπτει όα τα αρακτηριστικά της ώσσας. Η ανάυσή μας είναι ικανή
να εξάει πηροφορίες σετικές με τους τύπους κατά την εκτέεση, τους ράφους κήσεν,
τη διάδοση εξαιρέσεν και τη δομή τν αντικειμένν, ρησιμοποιώντας μια ικανοποιητική
αφαίρεση ια οόκηρο το runtime σύστημα της ώσσας και ια τον ασυνήιστο μηανισμό
προτοτύπν που διαέτει. Σε αυτή τη διπματική, παρουσιάζουμε επτομερώς αυτή την
αφαίρεση και την αντιστοιία της με την προδιαραφή της ώσσας. Επίσης, περιράφουμε
τον αόριμο στατικής ανάυσης που ρησιμοποιήηκε και δίνουμε ενδεικτικά παραδείματα.

Λέξεις Κειδιά

Στατική Ανάυση, Εξαή Τύπν, Ανάυση Ροής Δεδομέν, JavaScript
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Abstract

JavaScript is a popular programming language, that is mostly used for client-side web
scripting, but also for general purpose programming. The language is dynamically and
weakly typed, and thus errors in JavaScript programs are difficult to spot. However the
existing tools that support JavaScript programmers are limited. Our work aims to the
improvement of this situation: We develop a framework for static analysis of JavaScript
programs that covers all the features of the language. Our framework is able to infer
information about the runtime types, call graphs, exception flow and object structure
by successfully abstracting the language’s whole runtime environment and its uncommon
prototype mechanism. In this theses, we present in detail our abstraction and its corre-
spondence with the JavaScript specification. Also, the static analysis algorithm used by
our framework is described and demonstrated.

Keywords

Static Analysis, Type Inference, Dataflow Analysis, JavaScript
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Chapter 1

Introduction

JavaScript is a widely used programming language. Its main use lies in client-side web
scripting: Most of the dynamic features of a web page are due to embedded JavaScript code
in its HTML description and almost every web browser ships with a JavaScript Engine in
order to be able to present such dynamic content to the user. The main reason behind
JavaScript’s success as a scripting language is its extremely flexible nature that encourages
quick-and-dirty programming. Indeed, JavaScript always tries its best not to fail the
programmer: it is dynamically typed, so that the programmer does not have to declare
types for the variables, and supports almost every possible implicit type conversion in order
to relieve the programmer from the need of checking type mismatches and correcting them
with explicit type castings. Even reads of non-existing object properties will not fail, since
the undefined value, which they return, can be further propagated with the necessary
conversions.

However, this flexibility does not come without a cost. The inability of the language to
impose a more strict programming paradigm, is a drawback when it comes to the design
and implementation of larger-scale applications. What is more, the debugging process of
such applications is very hard, since most semantic errors are not going to cause program
failure, but instead they will lead to unexcepected results, the source of which is difficult
to be traced back.

JsAnalyzer is a static analysis framework, that intends to facilitate the debugging process
of JavaScript programs. The framework supports a full scale dataflow analysis of the input
program, that infers the possible types of the program variables, the exception flow and
the program call graph. The information can be used to discover errors or to assist other
more sophisticated static analyses.

The rest of this diploma thesis is organized as follows. In Chapter 2 we briefly present
the JavaScript language and some of its current implementations. We also refer to the
monotone framework algorithm, which is used for dataflow analysis by the JsAnalyzer
framework. In Chapter 3 we describe the design and the implementation of the dataflow
analysis and give examples of use. Finally, Chapter 4 contains related work and suggests
possibilities for further work on the topics of this thesis.
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Chapter 2

Background

2.1 The JavaScript language

JavaScript is a dynamically typed, interpreted language. It is classified as a scripting
language and, like most languages of this category, it is a procedural language with some
functional and object oriented characteristics. JavaScript offers the usual C-like control
flow structures (i.e. if, switch, for and while statements) as well as an exception
handling mechanism with try-catch clauses, similar to that of Java. As far as the object
oriented aspect of the language is concerned, JavaScript uses a prototype-based mechanism
to implement classes and inheritance and Javascript objects are hash table-like structures,
that map property names to Javascript values of any type. On the other hand, JavaScript’s
functional characteristics include first-class and higher-order functions and function literals
that allow the programmer to define anonymous function closures, that can be used like
ordinary Javascript values.

In the following paragraphs we will briefly present some important features of the JavaScript
language, such as its type system and the prototype-based mechanism. Also, we will refer
to the most widely used JavaScript implementations.

2.1.1 Type System

As stated before, JavaScript is a dynamically typed language. Also it is weakly typed,
since almost any operation triggers type conversions instead of failing, if the types of the
arguments are not the ones expected by this operation. The possible types of JavaScript
values during the execution of a JavaScript program are:

Undefined Type The Undefined type contains exactly one value, the undefined value,
which is used as the initial value of every variable that has not be assigned a value.

Null Type The Null type contains exactly one value: null.

Boolean Type The Boolean type contains two values: true and false. Any JavaScript
value can be converted to a value of type Boolean with the internal procedure To-
Boolean, as it is defined in the specification of the JavaScript language.

15



16 Chapter 2. Background

String Type Values of type String are sequences of zero or more 16-bit unsigned inte-
gers, that correspond to UTF-16 units. JavaScript strings are immutable values.
Any JavaScript value can be converted to a value of type String with the internal
procedure ToString, as it is defined in the specification of the JavaScript language.

Number Type Values of type Number are 64-bit floating-point numbers, that conform
with the double-precision 64-bit IEEE 754 format. Some special subtypes of the
Number type are the Integer type (contains only integral Number type values),
the Int32 type (contains the Integer type values less than 231 and greater than or
equal with -231), the UInt32 type (contains the Integer type values less than 232

and greater than or equal with 0) and the UInt16 type (contains the Integer type
values less than 216 and greater than or equal with 0). Any JavaScript value can be
converted to a value of type Number or its subtypes with the internal procedures
ToNumber, ToInteger, ToInt32, ToUInt32 and ToUInt16. These are defined in the
specification of the JavaScript language.

Object Type Values of type Object are sets of properties. Each property has a name
of type String, a value of any JavaScript type and zero or more attributes. There
are three property attributes: ReadOnly, DontDelete and DontEnum. One can read
and modify the value of a property, or even delete the property using its name, as
long as the attributes of the property permit the operation. If the property has the
ReadOnly attribute, attempts to modify its value will be ignored. If the property
has the DontDelete attribute, attempts to delete it will be ignored. Properties
with the DontEnum attribute do not appear in enumerations performed by for/in
loops. Finally, trying to access a non-existing property of an object will return the
undefined value.
Also every object value carries some additional information, like a prototype value
and a default value. The prototype value will be explained later (see Section 2.1.3).
The default value is used for the conversion of the object to other types and vice
versa. There is no seperate function type in JavaScript, instead functions are special
values of the Object type.
JavaScript values of types other than Undefined and Null can be converted to a
value of type Object with the internal procedure ToObject, as it is defined in the
specification of the JavaScript language. However, attempts to convert the null and
undefined values to objects will raise an exception.

The conversion procedures described above are always used when a value of any type is
used in a context, where a different type is needed. The only cases, that raise an exception,
are the attempts to convert a null or undefined value to an object. Also, attempts to
call a value that is not a function object always raise an exception.

2.1.2 Variable Scope

A JavaScript program consists of a script that contains statements, variable definitions and
function definitions. The body of a function has the same structure, so nesting of function
definitions is allowed. Also, functions may be defined as function literals anywhere a value
is needed in the program. During the execution of the main script or a function, a scope
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chain is associated with the execution context. The scope chain is actually a list of objects
with properties that correspond to the defined variables at the moment. These objects
are added to the scope chain whenever a function is called, during parameter passing.

Initially, the scope chain associated with the execution of the main script contains only one
object, the global object. The properties of this object are defined in the specification of
the Javascript language and correspond to every built-in object or function of the language.
Before the execution of the main script starts, a property is added to the global object for
every variable definition contained in the main script, with the name of the variable as
its name and undefined as its initial value. Also, for every function definition contained
in the main script, a property is added to the global object, with name of the function as
its name. The initial value of these properties are newly created function objects. Every
such function object has also a scope chain associated with it, which is the current scope
chain of the execution context of the main script. Function objects for function literals
are similarly created, but their creation takes place when and if the value of the literal is
needed, during execution.

When a function is called, an object, called variable object, is created. This object has
properties with the names of the formal parameters of the function, and with the values of
the actual parameters of the function call. The variable object followed by the scope chain
of the called function object make the scope chain, that is associated with the execution
context of the called function. Before the execution of the called function, properties are
added to the variable object for every variable and function definition contained in the
function body, in a way similar to the one described above for the global object.

Therefore, a variable name, anywhere in the program, refers to a corresponding property
of the first object of the current scope chain, that contains a property with this name. If
there is no such property in any of the scope chain’s objects and the variable is used as
an r-value then an exception is raised. Else, if the variable is used as an l-value then a
new property is defined in the global object (which is always the last object of any scope
chain), and the variable refers to that property.

Finally, one can add an abritary object to the front of the current scope chain by using a
with statement. After the body of the statement is executed, the object is removed from
the current scope chain.

2.1.3 Objects and the Prototype Mechanism

Objects are created using object literals or constructor functions. Object literals are
expressions that evaluate to an object value, which contains the name-value pairs described
in the literal. Constructor functions are used to initialize an object created by a new
expression. A new expression consists of the keyword new and a function call. When
evaluated, it creates an empty object and then it calls the function. What is special about
this call is the fact that, during the execution of the called function the this keyword
evaluates the newly created object. Thus, the constructor functions are able to use the
this keyword to define and initialize the properties of the newly created object.

The this keyword is also important when a function is called as a method, meaning it
is invoked as property of an object. In this case, during the execution of the method the
this keyword evaluates to the object, through which the method was invoked. Therefore,
the methods can access and modify properties of the object, through which they were
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invoked. Finally, in a normal function call, during the execution of the called function the
this keyword evaluates to the global object.

Every object (but one) has a prototype value associated with it. This value is a pointer
to another object, which is called the prototype object. Whenever a property of an object
is requested, but it is not found in the object, the same property is requested from the
prototype object. As a result, the object inherits all the properties of its prototype. The
search continues until the last object of the prototype chain is examined. In case the
property is still not found, it is considered to have the undefined value. However, this is
true only when a property is requested for reading. If one tries to modify a non-existing
property of an object, a new property is created in the object, instead of attempting to
modify a property with the same name in the prototype object.

Every function object, either user-defined or built-in, has a property with name prototype
and an object value. This value is different from the prototype object of the function
object! When an object is created with a new expression, its prototype object is set to be
the object that is the value of the prototype property of the constructor function. The
value of the prototype property of a built-in constructor is usually another built-in object
with various useful properties and methods, that will be inherited by the newly created
objects. For instance, the prototype property of the built-in Object constructor contains
methods to be inherited by the objects created with the constructor. Since every object,
created by an object literal expression, is actually created by the Object constructor, every
such object has the Object.prototype object as its prototype. On the other hand, the
value of the prototype property of a user-defined function object is an empty object, in
which one can add desired functionality in case the user-defined function is about to be
used as a constructor. This empty object also has the Object.prototype object as its
prototype. Generally speaking, every prototype chain ends with the Object.prototype
object, which is the only object without a prototype.

2.1.4 Dynamically Generated Code

The JavaScript language specification defines a built-in function, eval, and a built-in
constructor, Function, that allow part of the program code to be dynamically created
and executed. The eval function accepts a string argument, that is parsed and executed
as JavaScript code. The Function constructor accepts, various string arguments that
stand for the name, the formal parameters and the body of a function, and it creates a
corresponding function object. The main reason for using these features is for dynamic gen-
eration of code driven from some kind of external input. The static analysis of programs,
that use these features, presents inherent difficulties, because the dynamically generated
code cannot be easily predicted statically as well as the number and the bodies of the
functions are not statically known.

2.1.5 JavaScript Implementations

The JavaScript language is interpreted and the implementation should provide various
functionalities in the form of built-in objects and functions (accessed as object methods).
The core language and its built-in functionalities are standardized by ECMA International.
The more widely-used standard is the ECMA 262, edition 3 [3], while the latest standard
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is ECMA 262, edition 5.1 [4]. Almost all existing implementations (mainly browser imple-
mentations) conform with the standard specification, but also provide various language
extensions.
The most common use of JavaScript is for client-side web scripting. JavaScript scripts
can be imported to HTML documents and sent to a browser along with the HTML.
Almost every web browser comes with a JavaScript implementation, so it is able to execute
JavaScript scripts in the user’s terminal in order to interact with him and dynamically
modify the presented content. To this end, the JavaScript implementations of browsers
include additional functionality for interacting with the user and accessing and modifying
the content of HTML documents. This additional functionality is included in the so called
Document Object Model (DOM) interface of the browser. According to W3C [14], the
DOM is a platform- and language-neutral interface that will allow programs and scripts
to dynamically access and update the content, structure and style of documents. W3C
has created a specification of the features that a DOM must support in order to enhance
inter-browser compatibility of client-side scripts (in any language, including JavaScript).
The Rhino Interpreter [9] is the most widely used implementation of the core JavaScript
language. It is an open source project and it conforms with the 3rd edition of the ECMA
standard. Another significant implementation is the SpiderMonkey JavaScript Engine [11],
an open source project developed by Mozilla. It is used in Firefox web browser and many
other Mozilla projects and conforms with the 5th edition of the ECMA standard. Finally,
the v8 JavaScript Engine [13] is an open source project developed by Google. It is used
in Google Chrome web browser, but it can also be used as a standalone interpreter. The
v8 engine also conforms with the 5th edition of the ECMA standard.
This work is based on the 3rd edition of the ECMA standard for the JavaScript language.

2.2 Dataflow Analysis with the Monotone Framework Al-
gorithm

The monotone framework algorithm is a fixpoint algorithm used for the solution of many
dataflow related problems in flow graphs. To describe the algorithm we need the following
definitions:

• A flow graph G with a set of nodes N and a set of directed edges E. The set of nodes
N should contain two special nodes, ENTRY and EXIT. The ENTRY node should
have only outcoming edges attached to it, while the EXIT node should have only
incoming edges.

• A domain V of values and a binary join operator ∧ for the values of V. The values
will be assigned to the nodes and edges of the flow graph. The value assigned to the
node n ∈N is stored in VN [n] and the value assigned to the edge e ∈E is stored in
VE [e].

• A set F of transfer functions from V to V. Every node and edge of the flow graph
is assigned one transfer function from the set F. Let fn be the transfer function
assigned to the node n ∈N, and fe be the transfer function assigned to the edge e
∈E. The special nodes ENTRY and EXIT should be assigned an identity transfer
function.
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The join operator ∧ should satisfy the following properties:

• ∀x ∈V : x ∧ x = x

• ∀x,y ∈V : x ∧ y = y ∧ x

• ∀x,y,z ∈V : x ∧ (y ∧ z)= (x ∧ y) ∧ z

• There is a bottom element ⊥ ∈V such that: ∀x ∈V : x ∧ ⊥ = x

The join operator defines a partial order (≤) for the values of the domain V :

∀x,y ∈V : x ≤ y ⇐⇒ x ∧ y = y

The proof the above defined relation (≤) is a partial order of the values of the domain V
has been omitted here, but it is based on the properties of the join operator. It is obvious
that

∀x ∈V : ⊥ ≤ x

The {V, ∧, F} triple is called a dataflow framework. A dataflow framework is monotone
if

∀x,y ∈V and ∀f ∈F: x ≤ y =⇒ f (x) ≤ f (y)

The algorithm computes a value from the domain V for every node and edge of the flow
graph. These values are computed as the fixpoint of an iterative process. Firstly, the
algorithm assignes an initial input value vin to the ENTRY node and the ⊥ value to every
other node and edge of the flow graph. Then, it applies the transfer functions related with
the nodes and edges of the graph in order to update their values. The process is repeated
until no change in the values of the nodes and edge is observed, thus a fixpoint has been
reached. The algorithm is shown in Listing 2.1.� �

1 VN[ENTRY] = vin;
2
3 for (every n ∈N with n 6= ENTRY)
4 VN[n] = ⊥;
5
6 for (every e ∈E)
7 VE[e] = ⊥;
8
9 while (changes to states of nodes and edges occur)
10 for (every n ∈N with n 6= ENTRY) {
11 VN[n] =

∧
e an incoming edge to n fe(VE[e]);

12 for (every e ∈E with e an outcoming edge from n)
13 VE[e] = fn(VN[n]);
14 }� �

Listing 2.1: The monotone framework algorithm

The algorithm is guaranteed to terminate, if the dataflow framework is monotone and the
height of the semilattice for V, defined from the partial ordering ≤, is finite. However,
these are just sufficient conditions for the termination of the algorithm, so it may terminate
for a framework with a semilattice of infinite height.



Chapter 3

JsAnalyzer Design and
Implementation

In this Chapter we will present the design and some implementation details of a framework
for performing static analysis to JavaScript programs. Our framework uses an abstract
interpretation of the state of a JavaScript program and performs dataflow analysis to
estimate the abstract state in every point of the input program. During the analysis, we
can infer information about the types of the program variables and the actual arguments
of functions, the call graph of the input program, and the possible exception flow. Of
course, the analysis may produce over approximated results.

The Ocaml programming language [8] was used for the implementation of our framework.

3.1 Intermediate Representation of JavaScript Programs

The intermediate representation (IR) used by our framework consists of control flow graphs
for every function or function literal that appears in the input program, as well as a call
graph, that stores the caller-callee relations that are discovered through the analysis. The
control flow graphs are constructed in the phase of parsing of the input program, while
the call graph is updated on-the-fly during the actual dataflow analysis.

In particular, for every function and function literal that appears in the input program,
the following infromation is stored by out framework:

• The function allocation site id (see Section 3.1.1)

• The function kind (main script, defined function, anonymous function literal or
named function literal)

• The names and order of the formal parameters

• The names and order of the variable definitions in the body of the function

• The names, the allocation site ids (see Section 3.1.1), and order of the function
definitions in the body of the function

• The control flow graph of the function (see Section 3.1.2)

21
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3.1.1 Basic data types for the IR

For our intermadiate representation we need some basic types, which are described below.

name The type name is used for the internal representation of JavaScript strings (see
Section 2.1.1), and it is a list of integers. Listing 3.1 shows the interface for the name
type.

tid The type tid is used for the internal representation of the temporary variables created
during the construction of the control flow graphs. Composite expressions, which
combine many operators and arguments, are being broken down to binary operations
whith the introduction of such temporary variables. Listing 3.2 shows the interface
for the tid type.

allocation_site_id The type allocation_site_id is used for the internal representa-
tion of the points in the program source code, where new objects are possibly created.
These points are discovered during the dataflow analysis, with one exception: Func-
tion definitions and uses of function literals are assigned an allocation site id, during
the parsing phase, and these ids are also used as references for the corresponding
functions. Listing 3.3 shows the interface for the allocation_site_id type.

call_site_id The type call_site_id is used for the internal representation of the points
in the program source code, where a function is called. These points are, also,
discovered during the dataflow analysis. Listing 3.4 shows the interface for the
call_site_id type.

� �
1 type name = int list
2 module NameMap : Map.S with type key = name
3 val empty_name : name
4 val length_of_name : name -> int
5 val name_char_at : name -> int -> name
6 val concat_names : name -> name -> name
7 val name_of_string : string -> name� �

Listing 3.1: name type interface

� �
1 type tid
2 module TmpMap : Map.S with type key = tid
3 val same_tid : tid -> tid -> bool
4 val compare_tids : tid -> tid -> int� �

Listing 3.2: tid type interface
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� �
1 type allocation_site_id
2 val same_allocation_site_id : allocation_site_id -> allocation_site_id -> bool
3 val compare_allocation_site_ids : allocation_site_id -> allocation_site_id -> int
4 val hash_allocation_site_id : allocation_site_id -> int
5 val get_alloc_site_id : unit -> allocation_site_id� �

Listing 3.3: allocation_site_id type interface

� �
1 type call_site_id
2 val compare_call_sites : call_site_id -> call_site_id -> int
3 val dummy_call_site : call_site_id
4 val get_new_call_site_id : unit -> call_site_id� �

Listing 3.4: call_site_id type interface

3.1.2 Control Flow Graph

The control flow graphs, produced by our framework, represent all the possible execution
paths of the source program, taking into account both the normal control flow and the
exception handling. Every node of a control flow graph is labeled with the operation that
this node represents along with the operands of this operation. The Listing 3.5) shows
the data type for the node labels, but the definitions of the unop and binop types are
suppressed for space efficiency. These types are enumerations of the unary and binary
operators of the JavaScript language. The unary operators delete and typeof are associ-
ated with special control blocks, because their behaviour is slightly different when they are
given an object property as argument. Also, there are no compound assignment operators
(e.g. +=), since the compound assignments are further analyzed in their two steps.
We will further explain the use of some important constructors of the control_block
type, which is the type for node labels:

Start_block, End_block, Exception_end_block These labels are given to the entry
node and the exit nodes of the control flow graph, correspondingly. Execution paths
that end at the Exception_end_block are those that contain a raise of an uncaught
(inside the function) exception.

Unop_block (temp, unop, arg), Binop_block (temp, binop, arg1, arg2) These la-
bels are given to nodes that represent various JavaScript operations.

If_block cond, Ifop_block (binop, arg1, arg2) These labels are given to nodes that
represent a conditional flow. In the first case, the flow is determined by the boolean
value of the argument cond, while in the second case, the flow is determined by the
boolean result of the application of the binop operator to the arguments arg1 and
arg2. Only comparison operators are allowed as argumnets of the second construnc-
tor.

GetValue_block (temp, rvalue), Assign_block (lvalue, rvalue) These labels are
given to nodes that represent reads and writes from and to variables.
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� �
1 type control_block =
2 Start_block
3 | End_block
4 | Exception_end_block
5 | If_block of operand
6 | Ifop_block of binop * operand * operand
7 | ToObject_block of tid * operand
8 | EnumProperty_block of tid * operand
9 | Ret_block of operand option
10 | Throw_block of operand
11 | Enter_catch_block of name
12 | Exit_catch_block
13 | Enter_with_block of operand
14 | Exit_with_block
15 | Assign_block of operand * operand
16 | GetValue_block of tid * operand
17 | Unop_block of tid * unop * operand
18 | Binop_block of tid * binop * operand * operand
19 | Read_property_block of tid * operand * operand
20 | Write_property_block of operand * operand * operand
21 | Delete_variable_block of tid * name
22 | Delete_property_block of tid * operand * operand
23 | Typeof_variable_block of tid * name
24 | Typeof_block of tid * operand
25 | Call_block of tid * operand * operand list
26 | Call_method_block of tid * operand * operand * operand list
27 | New_block of tid * operand * operand list
28 | ObjectInitializer_block of tid * (prop_name * operand) list
29 | ArrayInitializer_block of tid * array_elem list
30 | RegExpInitializer_block of tid * (string * string)
31 | FunctionObjInitializer_block of tid * allocation_site_id
32 and prop_name =
33 PropString of name
34 | PropNum of float
35 and array_elem =
36 SkippedElem
37 | Elem of operand
38 and unop (* = ... *)
39 and binop (* = ... *)
40 and operand =
41 Variable_operand of name
42 | Temporary_operand of tid
43 | Number_operand of float
44 | String_operand of name
45 | Boolean_operand of bool
46 | Null_operand
47 | This_operand� �

Listing 3.5: Control flow graph node labels
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Read_property_block (temp, base, index), Write_property_block (base, index, rvalue)
These labels are given to nodes that represent reads and writes from and to object
properties.

Delete_property_block (temp, base, index), Delete_variable_block (temp, var)
These labels are given to nodes that represent delete operations. The temp argument
is of type tid and serves for storing the operation’s result, which is a boolean value
that indicates whether the delete was successful.

Call_block (temp, func, args), Call_method_block (temp, base, index, args)
These labels are given to nodes that represent function and method calls. After the
return of the call the flow continues to the successors of the call node.

New_block (temp, func, args) This label is given to nodes that represent calls to con-
structor fuctions. After the return of the call the flow continues to the successors of
the call node.

Throw_block arg This label is given to nodes that represent the explicit raise of an ex-
ception.

Enter_catch_block name, Exit_catch_block These labels are given to nodes that rep-
resent exception handling operations. Every execution path that contains an enter-
catch node, also contains a corresponding exit-catch node.

Enter_with_block arg, Exit_with_block These labels are given to nodes that repre-
sent entrance to and exit from the body of a with statement. Every execution path
that contains an enter-with node, also contains a corresponding exit-with node.

Every node of a control flow graph can be registered as an allocation site or/and a call
site, by assigning him an appropriate id value. As stated before, this happens during the
dataflow analysis.
The control flow graph nodes are connected with edges, according to the possible execution
flow paths. Each edge is labeled with the kind of the flow that this edge represents (see
Listing 3.6). The label Normally is given to edges that connect nodes that are possible to
be consecutive in a normal excecution path. The labels When_true and When_false are
given to edges which have a condition node as their source. Finally the When_exception
label is given to edges that represent the execution flow, when the operation of their source
node raises an exception.

3.1.3 Call Graph

The call graph that is stored in the intermediate representation is a typical one. It consists
of nodes labeled with an allocation site id and edges labeled with a call site id. Every edge
of the call graph indicates a caller-callee relation between the functions that correspond
to the source’s and destination’s labels. The call point on the caller function source code
is indicated by the call site id of the edge. The dataflow analysis adds edges to the call
graph as it discovers them.
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� �
1 type flow_type =
2 Normally
3 | When_true
4 | When_false
5 | When_exception� �

Listing 3.6: Control flow graph edge labels

3.2 Abstract State for JavaScript Programs

During the dataflow analysis, an abstract state is assigned to the nodes and the edges of
the control flow graphs of the IR. The abstract state of a node should summarize every
possible program state when the execution reaches that node. We will present in detail the
type of the abstract state used by our framework. This type should abstract the possible
values of variables and properties, as well as the features of the runtime environment, such
as the execution context and the scope chain. The type of the abstract state is based on
the work of Jensen et al. [6].

3.2.1 Representation of JavaScript Values

JavaScript values can have any of the types described in Section 2.1.1. For every of these
types we define an equivalent OCaml variant type, the constructors of which represent
different subsets of the corresponding JavaScript type. The OCaml variant types are used
to represent JavaScript values in our abstract state. A value is represented by an as strict
as possible OCaml variant type. The following Listings 3.7 - 3.11 show the OCaml variant
types along with the set of JavaScript values they represent.

Note that the compare functions return a tuple of three values. The first one, which has
type typeset_relation, indicates the set relation between the compared types. (Possi-
ble relations are, the first being a subset/superset of the second or the two types being
equal/intersecting/disjoint). The other two values are the union and the intersection of
the compared types.

On the other hand, the cmp functions just provide an arbitary total ordering to the
members of each variant type, which is useful for creating maps or sets for the type.

The compare, cmp, and equality testing fuctions for every OCaml variant type satisfy the
following property for any pair of compared types: The equality testing fuction returns
true if and only if the compare function also indicates that the compared types are equal
and if and only if the cmp function returns a zero result.

We do not define an OCaml variant type for the JavaScript object type. The object
values are represented by their allocation site ids. More precisely, they are represented
by allocation sites. As stated before, allocation site ids are given to control flow nodes
that describe the creation of an object. We define two allocation sites for every allocation
site id: one singleton, that refers to the most recent object created at that site, and one
summary that refers to the summary of the older objects created there. More details about
allocation sites are given in the next section (see Section 3.3.2). The Listing 3.12 presents
the definition and the interface of the alloaction_site type.
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� �
1 type js_undefined_type =
2 Undefined (* represents the JavaScript undefined value *)
3 | Bottom_undefined (* represents the absence of an undefined value *)
4
5 val compare_undefined_types :
6 js_undefined_type -> js_undefined_type ->
7 typeset_relation * js_undefined_type * js_undefined_type
8 val equal_undefined_types : js_undefined_type -> js_undefined_type -> bool
9 val is_subtype_undefined : js_undefined_type -> js_undefined_type -> bool
10 val create_union_of_undefined : js_undefined_type list -> js_undefined_type
11 val cmp_undefined_types : js_undefined_type -> js_undefined_type -> int� �

Listing 3.7: Definition and interface for the js_undefined_type type

� �
1 type js_null_type =
2 Null (* represents the JavaScript null value *)
3 | Bottom_null (* represents the absence of a null value *)
4
5 val compare_null_types :
6 js_null_type -> js_null_type -> typeset_relation * js_null_type * js_null_type
7 val equal_null_types : js_null_type -> js_null_type -> bool
8 val is_subtype_null : js_null_type -> js_null_type -> bool
9 val create_union_of_null : js_null_type list -> js_null_type
10 val cmp_null_types : js_null_type -> js_null_type -> int� �

Listing 3.8: Definition and interface for the js_null_type type

� �
1 type js_string_type =
2 Any_string (* represents the JavaScript string type *)
3 | UInt32Str (* represents the set of JavaScript string values that *
4 * convert to UInt32 numbers *)
5 | NotUInt32Str (* represents the set of JavaScript string values that *
6 * do not convert to UInt32 numbers *)
7 | ConstStr of name (* represents a sigleton set of a JavaScript string value *)
8 | String_union of string_union (* represents a set of JavaScript string *
9 * values that can only be described as *
10 * the union of sets represented by the *
11 * other constructors *)
12 | Bottom_string (* represents the absence of a string value *)
13 and string_union
14
15 val compare_string_types :
16 js_string_type ->
17 js_string_type -> typeset_relation * js_string_type * js_string_type
18 val equal_string_types : js_string_type -> js_string_type -> bool
19 val is_subtype_string : js_string_type -> js_string_type -> bool
20 val create_union_of_strings : js_string_type list -> js_string_type
21 val fold_string_union : (js_string_type -> ’a -> ’a) -> string_union -> ’a -> ’a
22 val filter_string_type :
23 (js_string_type -> bool) -> js_string_type -> js_string_type
24 val cmp_string_types : js_string_type -> js_string_type -> int� �

Listing 3.9: Definition and interface for the js_string_type type
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� �
1 type js_number_type =
2 Any_number (* represents the JavaScript number type *)
3 | Infinite (* represents the positive and negative infinity *
4 * JavaScript values *)
5 | UInt32 (* represents the UInt32 subtype of the JavaScript *
6 * number type *)
7 | NotUInt32 (* represents the set of JavaScript number values that *
8 * do not belong to the UInt32 numbers and are not *
9 * infinite neither NaN *)
10 | NaN (* represents the JavaScript NaN value *)
11 | PosInf (* represents the JavaScript positive infinity value *)
12 | NegInf (* represents the JavaScript negative infinity value *)
13 | NegZero (* represents the JavaScript negative zero value *)
14 | ConstNum of float (* represents a sigleton set of a JavaScript number value *)
15 | Number_union of number_union (* represents a set of JavaScript number *
16 * values that can only be described as *
17 * the union of sets represented by the *
18 * other constructors *)
19 | Bottom_number (* represents the absence of a number value *)
20 and number_union
21
22 val compare_number_types :
23 js_number_type ->
24 js_number_type -> typeset_relation * js_number_type * js_number_type
25 val equal_number_types : js_number_type -> js_number_type -> bool
26 val is_subtype_number : js_number_type -> js_number_type -> bool
27 val create_union_of_numbers : js_number_type list -> js_number_type
28 val fold_number_union : (js_number_type -> ’a -> ’a) -> number_union -> ’a -> ’a
29 val filter_number_type :
30 (js_number_type -> bool) -> js_number_type -> js_number_type
31 val cmp_number_types : js_number_type -> js_number_type -> int� �

Listing 3.10: Definition and interface for the js_number_type type

� �
1 type js_boolean_type =
2 Any_boolean (* represents the JavaScript boolean type *)
3 | True (* represents the JavaScript true value *)
4 | False (* represents the JavaScript false value *)
5 | Bottom_boolean (* represents the absence of a boolean value *)
6
7 val compare_boolean_types :
8 js_boolean_type -> js_boolean_type ->
9 typeset_relation * js_boolean_type * js_boolean_type
10 val equal_boolean_types : js_boolean_type -> js_boolean_type -> bool
11 val is_subtype_boolean : js_boolean_type -> js_boolean_type -> bool
12 val create_union_of_booleans : js_boolean_type list -> js_boolean_type
13 val cmp_boolean_types : js_boolean_type -> js_boolean_type -> int� �

Listing 3.11: Definition and interface for the js_boolean_type type
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� �
1 type allocation_site =
2 Singleton of allocation_site_id
3 | Summary of allocation_site_id
4 module AllocSitesSet : Set.S with type elt = allocation_site
5 val same_allocation_site_id : allocation_site_id -> allocation_site_id -> bool
6 val compare_allocation_site_ids : allocation_site_id -> allocation_site_id -> int
7 val hash_allocation_site_id : allocation_site_id -> int
8 val get_alloc_site_id : unit -> allocation_site_id� �

Listing 3.12: allocation_site type interface

Finally, the type value, that is used to abstract the JavaScript values, is a union of all
the previous types along with a set of allocation sites for the possible object values. The
values of the value type are joined using the type union, returned by the corresponding
compare function, for the non-object fields and the set union operation for the sets of
object allocation sites.

� �
1 type value = {
2 number_value : js_number_type;
3 string_value : js_string_type;
4 boolean_value : js_boolean_type;
5 undefined_value : js_undefined_type;
6 null_value : js_null_type;
7 object_locations : AllocSitesSet.t;
8 }
9 val join_values : value -> value -> value
10 val cmp_values : value -> value -> int
11 val equal_values : value -> value -> bool� �

Listing 3.13: Definition and interface for the value type

3.2.2 Representation of Objects and Execution Contexts

The abstract state should have a representation of the running execution context. This
representation consists of the scope chain, that is associated with the execution context,
and the allocation sites of the this object and the variable object. The scope chain is a list
of object allocation sites. These concepts have been described in detail in Section 2.1.2.
The definition of the execution_context and the scope_chain types is as follows is shown
in the Listing 3.14.

Every allocation site should refer to an object in the heap of the abstract state. The obj
type contains the information stored in a JavaScript object and its definition is shown in
the Listing 3.15. It contains a map from property names to property values and attributes,
the possible allocation sites of the prototype object, the default value, and a set of possible
scope chains in case it is a function object. The default_other and default_index fields
contain a possible default value for a property that does not exist in the property map of
the object (the default_index field is used for property names that convert to UInt32
numbers). These values are used in read and write opearations when the property names
are not specific (e.g. Any_string or UInt32Str). The is_array field indicates whether
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� �
1 type execution_context = {
2 scope : scope_chain;
3 var_object : allocation_site;
4 arg_object : allocation_site;
5 this_object : allocation_site;
6 }
7 and scope_chain = allocation_site list
8 module ExecutionContextSet : Set.S with type elt = execution_context
9 module ScopeChainSet : Set.S with type elt = scope_chain
10 val cmp_execution_contexts : execution_context -> execution_context -> int
11 val cmp_scope_chains : scope_chain -> scope_chain -> int
12 val equal_execution_contexts : execution_context -> execution_context -> bool
13 val equal_scope_chains : scope_chain -> scope_chain -> bool� �

Listing 3.14: Definition and interface for the execution_context type

or not the object is an array object. These objects require some special treatment, when
a property of them is updated.

Every object property has an is_absent flag, that indicates whether the property is
possibly absent. When two objects are joined to form a summarized object, if a property
is absent in the one and present in the other, then it is present in the summary object but
its is_absent flag is set to the value Maybe_absent.

3.2.3 Representation of the Abstract State

The representation of the abstract state combines the previous abstractions and is shown
in the Listing 3.16. It contains a heap, that is a map from allocation sites to objects
(values of the obj type), a similar map for the values of the temporary variables, and a set
of possible execution contexts. We can always be sure that every allocation site anywhere
in the abstract state representation is mapped to an actual object in the heap of the state.
The field object_refs contains the set of all these allocation sites. So, using them as
roots, one can perform abstract garbage collection to the heap of the state.

3.3 Details for the Dataflow Analysis

The dataflow analysis uses the monotone framework algorithm (see Section 2.2) in order
to compute a state for every node and edge of the control flow graphs of the functions. So
we need to define a join function for the abstract states and a set of transfer functions for
every node and edge label. Also, we need to highlight various details about the analysis,
such as how control flow is passed from a caller to a callee function and vice versa, how
objects are assigned to their allocation sites and how many and which states for every
node or edge are kept apart, in order for the analysis to be flow-sensitive. All these are
presented to the following paragraphs.
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� �
1 type descriptor = {
2 value : value;
3 is_absent : absent;
4 attributes : attributes
5 }
6 and absent = Maybe_absent | Not_absent
7 and attributes = {
8 is_read_only : read_only;
9 is_configurable : configurable;
10 is_enumerable : enumerable;
11 }
12 and read_only = Maybe_RO | RO | Not_RO | Undefined_RO
13 and configurable = Maybe_config | Config | Not_config | Undefined_config
14 and enumerable = Maybe_enum | Enum | Not_enum | Undefined_enum
15 type obj = {
16 properties : descriptor NameMap.t;
17 prototype : AllocSitesSet.t;
18 default_value : value;
19 default_index : value;
20 default_other : value;
21 is_array : js_boolean_type;
22 function_scope : ScopeChainSet.t
23 }
24 val join_objects : obj -> obj -> obj
25 val equal_objects : obj -> obj -> bool� �

Listing 3.15: Definition and interface for the obj type

� �
1 module ObjectMap : Map.S with type key = allocation_site
2 module TmpMap : Map.S with type key = ControlFlow.tid
3 type abstract_state = {
4 object_store : obj ObjectMap.t;
5 call_stack : abstract_stack;
6 }
7 and abstract_stack = {
8 temp_store : value TmpMap.t;
9 exec_context : ExecutionContextSet.t;
10 object_refs : AllocSitesSet.t;
11 }
12 val join_abstract_states : abstract_state -> abstract_state -> abstract_state
13 val equal_abstract_states : abstract_state -> abstract_state -> bool
14 val gc_abstract_state : abstract_state -> abstract_state� �

Listing 3.16: Definition and interface for the abstract_state type
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3.3.1 Join and Equal Functions for the Abstract States

The components of the abstract state that are maps or products (represented by OCaml
maps and records respectively), are joined pointwise, while the sets (represented by OCaml
sets) are joined using the set union function. As stated before, joining property maps of
objects requires special treatment of the maybe_absent flag. As far as the values are
concerned, they are joined by using the compare functions of the corresponding OCaml
variant types. In particular, the join of two types is their union type.

Two abstract states are tested for equality by the equal_abstract_states function (see
Listing 3.16). The function uses the equality testing functions for every component of the
abstract states.

3.3.2 Object Allocation Sites and Recency Abstraction

Properties can be added and removed from a JavaScript object at any time during its life
time, but it is most usual, that the object keeps the properties added to it when it was
created, and only the values of these properties are modified from this point on. In order
to accurately capture this common pattern in our analysis, we need to be able to perform
strong updates in the abstract representation of an object. This is achieved with the use of
recency abstraction [2]. In particular, we have already mentioned that objects are related
with the points in the program code where they are created, or with their allocation sites.
Moreover, for every point in the program where an object may be created, we define two
allocation sites: one signleton and one summary allocation site. The singleton allocation
site refers to the object most recently created from that site. The abstract representation
of this object can be strongly updated from following operations. However, more than
one objects may be created from the same site (i.e. if the creation happens inside a loop).
The summary allocation site refers to an abstract object that summarizes all these objects.
When a new object should be created, the object that refers to the corresponding singleton
allocation site is joined with the object refering to the summary allocation site and also
every reference to that signleton allocation site in the abstract state representation is
changed to reference to the summary allocation site. Finally, a new object is created and
it is assigned the singleton allocation site as its value.

An example is provided in Section 3.4.1

3.3.3 Interprocedural Analysis

Our analysis is interprocedural, meaning it takes into account function calls and returns.
The semantics of JavaScript function calls have been described in detail in Section 2.1.2.
Our analysis abstracts the process as follows: A new variable object is created and ini-
tialized according to the actual arguments of the call. The control flow graph node that
represents the function call is registered as the allocation site of the variable object and
as a call site. A new state is produced for every function object, that is a possible target
of the call, by adding the variable object in the front of the scope chain (or the scope
chains) associated with the object, and using the new scope chain to create the execution
context (or the execution context set) for the new state. The this value of the execution
context(s) depends on the type of the call. The object heap of the new state is that of
the caller state. Also, for every possible callee function an edge is added in the call graph
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of the IR, if it has not already been added previously. The new state serves as the initial
state of the callee function.

As far as the return process is concerned, the states, which are assigned to the exit nodes
of the callee function, are returned to the caller. The return state of the caller has the
same execution context with the state before the call, but the object heap is taken from
the states returned from the callee. This return state is assigned to the outcoming edges
of the node that represents the function call. As a result, the transfer functions of nodes
that represent calls do not have a different behaviour from other transfer functions (see
Section 3.3.5).

3.3.4 Flow-sensitive Analysis

Our analysis is flow-senstivite, that is it keeps more than one abstract states for every
node, depending of the possible different call sequences that may lead to the function, in
which the node belongs. A call sequence is the sequence of function calls that end to a
specific function. The input states arriving to a function from different call sequences are
kept separate and multiple instances of the dataflow analysis are performed. Although,
the flow-sensitivity adds greatly to the accuracy of the analysis, it is not possible to keep
an arbitrary number of states for the nodes of every function, if we want the analysis
to terminate. Therefore, there is a configurable limit to that number. If the different
call sequences leading to a function exceed that limit, the corresponding entry states are
joined together and the analysis of this function (and of every function it calls) becomes
flow-insensitive.

3.3.5 Transfer Functions

The transfer functions of the control flow graph nodes transform the input state that
reaches the node and produce one, two or three output states. A normal output state is
produced when there is no possibility of an exception to be raised in the node. If it is
certain, given the input state and the node’s label, that an exception will be raised, then
only an exception output state is produced. Both a normal and an exceptional state are
produced, when both possibilites exist. Finally, if the node represents a conditional flow,
then two normal states are produced instead of one, for the cases the condition is true or
false. The transfer functions assign the resulted states to appropriate outcoming edges.
The normal output state can be assigned to edges with the Normally label, while the
exception output state is assigned only to edges with the When_exception label. Normal
output states of conditional flow nodes are assigned to edges with either the When_true
or the When_false label.

There are no transfer functions for the control flow graph edges, since the assignment of
different output states to differently labeled edges substitutes the functionality of edge
transfer functions.

If the input state for a transfer function is not defined (i.e. because the algorithm has not
propagated a state to the corresponding node yet), the input is considered to be a bottom
state that always results to a bottom output state.

When a transfer function has to create an object, i.e. because of a necessary to-object
conversion, it always registers the corresponding node as an allocation site. If the node
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is already registered, the transfer functions use recency abstraction (see Section 3.3.2) to
create singleton and summary objects allocated from this node.
A brief description of some important transfer functions is following. The transfer functions
are associated with the different node labels. Their actions abstract the corresponding
procedures defined by the JavaScript language.

Start_block, End_block, Exception_end_block The transfer functions for these la-
bels are identity functions, as the corresponding nodes serve only as starting and
ending points of the analysis.

GetValue_block (temp, rvalue) The transfer function will assign the value of the rvalue
operand to the temporary with id temp. In case the rvalue operand is a Vari-
able_operand then its value will be looked for at the properties of the objects of the
scope chain of the input state’s execution context. If the input state has multiple
execution contexts, a union of values will be produced (one for every scope chain).

Assign_block (lvalue, rvalue) The transfer function will assign the value of the rvalue
operand to the l-value of the lvalue operand (it should be either a temporary, a
variable or this). The variables are located as described above. If the l-value is vari-
able and its name is not found in a scope chain, the variable is added as a property
of the global object.

Read_property_block (temp, base, index) The transfer function will assign the value
of the indexed property to the temporary with id temp. First, the value of the base
operand should be converted to an object, using the abstract ToObject procedure,
and the value of the index operand should be converted to a string, with the abstract
ToString procedure. These and other abstract conversion procedures simulate the
procedures defined for the respective JavaScript types, but they operate in abstract
values. The computed property names are looked for at the possible objects, that
resulted from the evaluation of the base, as well as in their prototype chains, if some
possible property names are not found in them. In case of more general property
names (like Any_string) the values of the fields default_other and default_index
are also included in the result of the read.

Write_property_block(base, index, rvalue) The transfer function will assign the value
of the rvalue operand to the object’s property. As described above, the values of
the base and index operands are converted to values of appropriate types, and the
value of the rvalue operand is fetched from the input state. However, the r-value
is assigned to properties of the objects that resulted from the base operand, and
the prototype chain is not considered in case the property name is not found in
some of them. Instead, a new property with that name is created, if this is the
case. Again, if the property names that resulted from the index operand are general
(like UInt32Str), the values of the fields default_other and default_index are
updated. The update of an object may be strong or not, depending on whether it is
a singleton or summary object. The not strong updates just join the existing values
with the new ones, while the strong updates overwrite them. Properties with the RO
atribute are never updated, while properties with the Maybe_RO attribute are never
strongly updated.
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Delete_variable_block (temp, var), Delete_property_block (temp, base, index)
The transfer function of the Delete_property_block label is similar with the one
for the Write_property_block label, but instead of updating a property’s value
it deletes the property from the object. If a property is not found the prototype
chain is not considered, and no action is done. Properties of singleton objects may
be completely removed, while properties of summary objects can only be flagged as
Maybe_absent. Properties with the Not_config atribute are never removed, while
properties with the Maybe_config attribute can only be flagged as Maybe_absent.
The transfer function of the Delete_variable_block label first searches the scope
chain(s) for variable objects that contain the variable var as their property and then
proceeds in the same way. Note that, declared variables have always the Not_config
attribute as properties of variable objects, so they cannot be deleted. Finally, the
true value is assigned to the temp temporary, if the deletion was permitted and the
false value if it was denied. In case the deletion was not strong or it happened in
some objects, the Any_boolean value is used.

Unop_block (temp, unop, arg), Binop_block (temp, binop, arg1, arg2) The trans-
fer function will assign the value of the described by the label operation to the tem-
porary with id temp. First, the values of the argument operands are fetched from the
input state and converted as needed by the operation. Then, the abstract procedure
for that operation is used to produce the result. The abstract procedures simulate
the procedures defined for the respective JavaScript operations, but they operate in
abstract values.

If_block cond, Ifop_block (binop, arg1, arg2) The transfer function will compute
the condition result, in the first case by fetching the value of the cond operand
and converting it to boolean, and in the second case by fetching the values of the
argument operands and executing the coresponding abstract operation. The result
is two states, for the cases the condition is true or false, which will be assigned to the
outcoming When_true and When_false edges respectively. If the condition result is
known to be true or false the the bottom state is used for the oppositely labeled edge.
This way, the flow of this edge is effectively discarded. Moreover, if the condition
result is Any_boolean, the condition itself may be used to constraint some variable
values in a different way in the two resulting states.

EnumProperty_block (temp, arg) This label is needed in the representation of for/in
statements. The value of the arg operand is fetched from the input state and is
converted to an object value. The transfer function assigns the union of property
names of the objects, resulted from the arg operand, to the temporary with id temp.
The property names of the objects of the prototype chain are also included. However,
properties with the Not_enum attribute are not included. The resulting state is
given to the outcoming When_true edge. The state that is given to the outcoming
When_false edge has the undefined value assigned to the temp temporary. This
flow represents the exit from the for/in loop.

Call_block (temp, func, args),

Call_method_block (temp, base, index, args),
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New_block (temp, func, args) The transfer function will assign the return value of the
call to the temporary with id temp. First, the operands in the args list are fetched
from the input state. Second, the possible callee functions are identified either by
fetching the value of the func operand from the input state or by performing a read
as described above. The details and mechanics for the function call and return are
given in the paragraphs 2.1.2 and 3.3.3. The this value is the global object in the
first case, the objects resulting from the base operand in the second and a newly
created object in the third.

Throw_block arg The transfer function creates only an exception state (the outputed
normal state is the bottom state) in order to begin the porpagation of the value of
the arg operand, which is the thrown exception.

Enter_catch_block name, Exit_catch_block The transfer function for the Enter_catch_block
label will add a new object in the scope chain(s) of the current execution context(s).
The object will have a property with name name and with value the exception that
was propagated to the node. The transfer function for the Exit_catch_block label
will remove that object from the scope chain(s).

Enter_with_block arg, Exit_with_block First, the value of the arg operand is fetched
from the input state and it is converted to an object value, that may include one or
more objects. The transfer function for the Enter_with_block label will add every
new object in the scope chain(s) of the current execution context(s). Therefore a new
set of execution contexts will be created for the output state. The transfer function
for the Exit_with_block label will remove the front object from the scope chain(s)
of the current execution context(s).

3.3.6 Termination

We will not strictly prove the termination of our analysis. Instead we will give some
intuitive reasons, why our analysis should always terminate.

• The number of different allocation sites is bounded by the number of points of new
object creation in the input program.

• The number of different property names is bounded by the number of property names
used in the input program.

• The size of number and string unions (see Section 3.2.1) is limited by a constant
value. When a union gets bigger than allowed, it is extended to a more general type.

• The number of separate states for every node and edge due to flow-sensitive analysis
is also bounded. As we saw, if there is need for more different states, the analysis of
the function becomes flow-insensitive, and the states are joined together.

3.4 Examples

In this section, we will provide some examples to demonstrate the use and the results of
the analysis.
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3.4.1 Recency Abstraction Example

In the example of Listing 3.17, the function make_list creates a list of objects with an
integer value property. Since make_list is recursive, more than one objects (actually 4 of
them) will be created at the same point (line 3). Using recency abstraction, the analysis
creates two abstract objects: the singleton, that contains only the number value 1, which
indeed is the value of the most recent object created at line 3, and the summary, that
contains any of the number values 2, 3 and 4. The function returns the singleton object
(line 9) and therefore, we are able to strongly update its value (line 10). The results of
the analysis are shown in Listing 3.18.

� �
1 function make_list(i, l) {
2 if (i === 0) return l;
3 var cell = {};
4 cell.value = i;
5 cell.next = l;
6 return make_list(i-1,cell);
7 }
8
9 var list = make_list(4);
10 list.value = 42;� �

Listing 3.17: Example of use: recency abstraction

� �
1 > ./jsanalyzer -v exampleRecency.js
2 Estimated Types
3 Script variables:
4 Normally
5 list:{objects: {Singleton 43,}}
6 objects:
7 ...
8 Summary 43 ->
9 properties:
10 next->[value: {undefined, objects: {Summary 43,}}]
11 value->[value: {numbers: {2,3,4,}}]
12 prototype: {Object.prototype,}
13 default value: {}
14 default index: {}
15 default other: {}
16 scope: none
17 Singleton 43 ->
18 properties:
19 next->[value: {objects: {Summary 43,}}]
20 value->[value: {numbers: 42}]
21 prototype: {Object.prototype,}
22 default value: {}
23 default index: {}
24 default other: {}
25 scope: none
26 ...
� �

Listing 3.18: Analysis result: recency abstraction



38 Chapter 3. JsAnalyzer Design and Implementation

3.4.2 Error Example

In this example, we show a common error in JavaScript programs. The Listing 3.19
contains the definition of a variable s and its initialization to a string value (line 1). Then,
we attempt to set a property of s (line 2). This a valid JavaScript expression, and what
happens is that, the value of s is converted to an object and the property of that object
is set. This is shown in the analysis result at Listing 3.20: the Singleton 41 object is the
wrapper object, that was created by the conversion, and its append property is set to the
correct function literal. However, when we use the variable s as an object again is line 3,
a new conversion takes places and a new object is created, the Singleton 42 object of the
analysis result. The latter does not have an append property, as the programmer might
think. As a result, the property access returns the undefined value, and the attempt to
call this value as a function raises a type error. The execution of the program ends and
the g variable remains with its initial undefined value.

� �
1 var s = ”hello!”;
2 s.append = function (s1) { return this+s1; };
3 var g = s.append(”hi!”);� �

Listing 3.19: Example of use: error

� �
1 > ./jsanalyzer -v exampleError.js
2 Estimated Types
3 Script variables:
4 When exception ({objects: {TypeErrorInstance ,}})
5 s:{strings: ”hello!”}
6 g:{undefined}
7 objects:
8 Singleton 41 ->
9 properties:
10 append->[value: {objects: {Anonymous Function Literal (line 2),}}]
11 length->[value: {numbers: 6}, readonly, not_configurable, not_enumerable]
12 prototype: {String.prototype,}
13 default value: {strings: ”hello!”}
14 default index: {}
15 default other: {}
16 scope: none
17 Singleton 42 ->
18 properties:
19 length->[value: {numbers: 6}, readonly, not_configurable, not_enumerable]
20 prototype: {String.prototype,}
21 default value: {strings: ”hello!”}
22 default index: {}
23 default other: {}
24 scope: none
� �

Listing 3.20: Analysis result: error
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3.4.3 Objects and Prototypes Example

The Listing 3.21 shows an example of simulating classes and inheritance in JavaScript.
As stated before, the constructor functions, when used with the new keyword, not only
initialize the newly created object, but also they set its prototype object to be the value
of their prototype property. Therefore, one can use the prototype property object of a
constructor function, in order to store functions, which can be used as methods by the
objects created with the constructor function. This is the case with the function literal
assignments of lines 6 and 21. Also, by setting the prototype property of a constructor
function to be an object created with another constructor function, one can simulate in-
heritance, since through the prototype chain, the properties of the objects created with the
latter constructor are available to the objects created with the former constructor. In our
example, the property move that is available to objects created with the constructor Shape
is also available to objects created with the constructor Circle, because the prototype
object of the latter is a Shape object (see line 17), the prototype object of which contains
the move property.

The analysis result for this example is shown in Listing 3.22. The for/in loop visits
all the available properties of the c object. This object is constructed with the Circle
constructor. The p variable accumulates all the possible property names, while the ans
variable is a union of the values of these properties. The constructor objects and their
prototype property objects are also shown. We can see that a prototype chain has been
formed: the c object (Singleton 52) has the Circle.prototype object (Singleton 49) as its
prototype object, and that has the Shape.prototype (Singleton 2) object as its prototype
object. As always, the prototype chain ends at the Object.prototype object.
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� �
1 function Shape(x,y) {
2 this.x = x;
3 this.y = y;
4 }
5
6 Shape.prototype.move = function (dx,dy) {
7 this.x += dx; this.y += dy;
8 };
9
10 function Circle(x,y,r) {
11 this.s = Shape;
12 this.s(x,y);
13 delete this.s;
14 this.radius = r;
15 }
16
17 Circle.prototype = new Shape;
18 delete Circle.prototype.x;
19 delete Circle.prototype.y;
20 Circle.prototype.constructor = Circle;
21 Circle.prototype.area = function () {
22 return 3.14*this.radius*this.radius;
23 };
24
25 var c = new Circle(7,8,12);
26 var ans;
27
28 c.move(2,2);
29 for (var p in c)
30 ans = c[p];� �

Listing 3.21: Example of use: objects and prototypes
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� �
1 > ./jsanalyzer -v exampleObjects.js
2 Estimated Types
3 Script variables:
4 Normally
5 c:{objects: {Singleton 52,}}
6 ans:{numbers: {9,10,12,}, undefined, objects: {
7 Anonymous Function Literal (line 6),Function Circle (line 10),
8 Anonymous Function Literal (line 21),}}
9 p:{strings: {”area”,”constructor”,”move”,”radius”,”x”,”y”,}, undefined}
10 objects:
11 Function Shape (line 1) ->
12 properties:
13 length->[value: {numbers: 2}, readonly, not_configurable, not_enumerable]
14 prototype->[value: {objects: {Singleton 2,}}, not_configurable]
15 prototype: {Function.prototype,}
16 default value: {}
17 default index: {}
18 default other: {}
19 scope: {[global,],}
20 Singleton 2 ->
21 properties:
22 constructor->[value: {objects: {Function Shape (line 1),}}, not_enumerable]
23 move->[value: {objects: {Anonymous Function Literal (line 6),}}]
24 prototype: {Object.prototype,}
25 default value: {}
26 default index: {}
27 default other: {}
28 scope: none
29 Function Circle (line 10) ->
30 properties:
31 length->[value: {numbers: 3}, readonly, not_configurable, not_enumerable]
32 prototype->[value: {objects: {Singleton 49,}}, not_configurable]
33 prototype: {Function.prototype,}
34 default value: {}
35 default index: {}
36 default other: {}
37 scope: {[global,],}
38 Singleton 49 ->
39 properties:
40 area->[value: {objects: {Anonymous Function Literal (line 21),}}]
41 constructor->[value: {objects: {Function Circle (line 10),}}]
42 prototype: {Singleton 2,}
43 default value: {}
44 default index: {}
45 default other: {}
46 scope: none
47 Singleton 52 ->
48 properties:
49 radius->[value: {numbers: 12}]
50 x->[value: {numbers: 9}]
51 y->[value: {numbers: 10}]
52 prototype: {Singleton 49,}
53 default value: {}
54 default index: {}
55 default other: {}
56 scope: none
57 ...
� �

Listing 3.22: Analysis result: objects and prototypes
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Related and Future Work

4.1 Related Work

As far as JavaScript is concerned, Thiemann and Heidegger have presented a type system
that uses recency types and demotions [12, 2]. Jensen, Thiemann and Møller have de-
signed the dataflow analysis, which is used by JsAnalyzer [6]. They have also proposed a
method of lazy propagation for improving the performance of the interprocedural dataflow
analysis [7]. Jang et al. have described a points-to analysis for JavaScript programs, which
is based on a context-insensitive analysis and the collection and solution of constraints [5].
Finally, Richards et al. have published an empirical study about the actual usage of
JavaScript’s dynamic features, useful for the design and the evaluation of static analyses
for the language [10].

Ruby is another dynamically typed scripting programming language, that has been at-
tempted to be analyzed statically. In their work, Furr et al., have designed a static type
system and an inference algorithm for the language [1]. Their tool, Diamondback Ruby,
can infer types for ruby programs or check annotated types provided by the user.

4.2 Future Work

A lot of future work can be done in the direction of improving the analysis method and
its results. In its current form the analysis lacks support for some special categories of
objects, like Date and RegExp objects. It also does not handle the language features for
dynamically generated code. These features are widely used, thus an effective method to
blend them in the analysis will significantly add to its power. Finally, some optimizations,
like lazy propagation, can be implemented to improve the analysis’ performance.

Furthermore, JsAnalyzer is a static analysis framework that can be used to assist various
purposes. To begin with, a dataflow analysis is needed in almost every method for error
dedection. In particular, this work is aimed to be used in a static analysis tool that
provides sound error information, which is extremely useful for languages with dynamic
type systems, like JavaScript. Also, the flow and type information produced by the analysis
can be used in JavaScript interpreters for optimization purposes.
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