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Περίληψη

Σε αυτήν την διπλωματική εργασία εξετάζουμε μια κλάση δημοπρασιών, τις
δημοπρασίες σε μηχανές αναζήτησης, γνωστές και ως δημοπρασίες λέξεων-
κλειδί. Είναι ένας νέος τύπος ηλεκτρονικής διαφήμισης, όπου οι διαφημιστές
ανταγωνίζονται για μια θέση δίπλα στα αποτελέσματα αναζήτησης. Οι
κολοσσοί του διαδικτύου, Google, Yahoo!, Microsoft, πουλάνε χώρο για διαφήμιση
με αυτόν τον τρόπο, δημοπρατώντας θέσεις στις μηχανές αναζήτησης. Τα
κέρδη από αυτές τις δημοπρασίες καταλαμβάνουν μεγάλο ποσοστό των
συνολικών κερδών τους. Παρουσιάζω το βασικό μοντέλο για αυτές τις
δημοπρασίες και τους κύριους σχεδιαστικούς στόχους. Συγκεκριμένοι κανόνες
διανομής των θέσεων και πληρωμών παραθέτονται και εξετάζονται ώς προς
την ευστάθεια τους, την αποδοτικότητα τους και τα κέρδη. Νέα πειραματική
ανάλυση δείχνει ότι το βασικό μοντέλο είναι πολύ απλουστευμένο, μην
μπορώντας να αποτυπώσει εξωγενείς επιδράσεις μεταξύ των διαφημιστών.
Παρουσιάζω νέα μοντέλα που μπορούν να εκφράσουν τέτοιες επιδράσεις,
επεκτείνοντας το βασικό μοντέλο και αναλύοντας την ευστάθεια και αποδοτικότητα
μηχανισμών.

Λέξεις Κλειδιά

Αλγοριθμική Θεωρία Παιγνίων, Σχεδιασμός Μηχανισμών, Δημοπρασίες σε
Μηχανές Αναζήτησης, GSP, Εξωγενείς Επιδράσεις
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Abstract

In this thesis, I consider a special class of auctions, Sponsored Search Auctions, also
known as keyword auctions. It is a new form of online advertising, where advertisers
compete for a place next to the web search results. Internet giants Google, Yahoo!,
Microsoft sell online advertising by this form, who auction positions for sponsored
search links. Search revenues accounts for a large percentage of their massive revenues.
I introduce the basic setting in sponsored search auctions and the main design goals.
Certain types of allocation and payments are presented, judging their stability, allocation
efficiency and resulting revenue. Having new experimental analysis, it is proven that
the basic setting is inadequate and externalities between advertisers exist. I present new
settings to express such externalities, by expanding the basic setting, and analyze them
in terms of stability and allocation efficiency.

Keywords

Algorithmic Game Theory, Mechanism Design, Sponsored Search Auctions, GSP, Ex-
ternalities
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Chapter 1

Mechanism Design

1.1 Game Theory

Game theory is the study of mathematical models of conflict and cooper-
ation between intelligent rational decision-makers. It is the study of games
where every agent acts rationally and tries to maximize her personal payoff.
Many situations in real life can be modeled as a game and studied in depth.
The game-theoretic model is used in many different sciences which involves
conflicting parties, such as economics, computer science, political science and
biology. Game theory studies the possible outcomes of such systems and an-
alyzes their efficiency.

The most standard game to introduce game theory is the prisoner’s
dilemma. Two prisoners (agents) are interrogated and they have two choices,
to confess or remain silent. These choices are the agent’s strategies. Accord-
ing to the prisoners’ choices a final verdict is taken which gives them prison
sentences and servers as the outcome of the game. The two prisoners like or
dislike the final decision and evaluate it, resulting in private valuations for
each outcome. This game can be presented by two matrices, each depicting
the prisoner’s cost (prison sentence) for the 4 possible strategy combinations.
It’s a simple game with 2 agents and 2 strategies each.

The above game will be used to present the basic concepts of game the-
ory and its goals. Specifically, I will introduce a way to define a possible
outcome of a game, which must be formally stated, and present the context
to evaluate efficiency.

15



16 CHAPTER 1. MECHANISM DESIGN

Figure 1.1: The prisoner’s dilemma

1.1.1 Nash Equilibrium
Agents act according to their incentives, trying to maximize their own

payoff. They choose the best strategy, assuming that they know the other
agents’ strategies. A moment occures that the agents have chosen their
strategies and none has an incentive to change her strategy. This combi-
nation of strategies is known as a Nash equilibrium, depicting a notion of
stability and an outcome of the game.

Formally, an agent’s i strategy is chosen by a set of possible strategies,
namely σi ∈ Σi. When mentioning a specific agent the other agents’ strate-
gies are modeled by a vector σ−i, resulting in a complete vector of all strate-
gies σ = (σi, σ−i). Every agent i has a payoff for each outcome, namely gi(σ).
A Nash equilibrium refers in such a vector which satisfies the following equa-
tion:

∀i, σ′
i ∈ Σi : gi(σi, σ−i) ≥ gi(σ

′
i, σ−i).

Let’s present another game, similar to the prisoner’s dilemma and find a
Nash equilibrium. The game needs no description but only two payoff matri-
ces, depicting their payoff for each possible outcome. Generally these games
are called bimatrix games.

One can see that there are two strategy combinations (σ
(1)
A , σ

(1)
B ) and

(σ
(2)
A , σ

(2)
B ), where none has an incentive to change her strategy when knowing

the other agent’s strategy. Formally,

• (σ
(1)
A , σ

(1)
B ) :

gi(σ
(1)
A , σ

(1)
B ) = 5 > 1 = gi(σ

(2)
A , σ

(1)
B )

gi(σ
(1)
A , σ

(1)
B ) = 5 > 1 = gi(σ

(1)
A , σ

(2)
B )
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Figure 1.2: A bimatrix game

• (σ
(2)
A , σ

(2)
B ) :

gi(σ
(2)
A , σ

(2)
B ) = 6 > 2 = gi(σ

(1)
A , σ

(2)
B )

gi(σ
(2)
A , σ

(2)
B ) = 6 > 2 = gi(σ

(2)
A , σ

(1)
B )

1.1.2 Dominant Strategies Equilibrium
As shown in the above example an agent cannot determine her strategy

without knowing the other agents’ strategies. There is no ”ideal” strategy.
However, there are instances of games that the agents get the best payoff
by choosing a specific strategy independently of the other agents’ strategies.
The example of the prisoner’s dilemma stated above is such an instance.

Formally, a dominant strategy equilibrium satisfies the following equation:

∀σ−i ∈
∏

j∈[n]/i
Σj, σ

′
i ∈ Σi : gi(σi, σ−i) ≥ gi(σ

′
i, σ−i)

In the prisoner’s dilemma one can see that every prisoner, independently
of the other prisoner’s strategy, has an incentive to confess.

• If B confesses, A has an incentive to confess : gi(”Confess”, ”Confess”) =
4 < 5 = gi(”Silent”, Confess”)

• If B remains silent, A has an incentive to confess : gi(”Confess”, ”Silent”) =
1 < 2 = gi(”Silent”, ”Silent”)

Simirarly, B has an incentive to confess, independently of the A’s strategy.

The dominant strategies equilibrium is another concept which serves as
a way to define the possible outcomes of a game. The Nash equilibrium may
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not be so much satisfactory to define such a state because an agent does not
know the other player’s strategies in many cases. However, the dominant
strategies equilibrium defines a strategy for each agent which is a one-way
road. The system will surely end up at that state.

The above notions of a dominant strategy equilibrium and a Nash equi-
librium define the possible outcomes of a game. In the bibliography these
notions are stated as solution concepts. Game theory also analyzes the ef-
ficiency of the solutions of a game. To do so an objective must be set to
support the analysis. The most common objective is the social welfare max-
imization. The social welfare is the total payoff of all agents. I will describe
this concept for the prisoner’s dilemma as an introduction to the efficiency
analysis.

In this specific example, I will use the total cost with the objective of
minimizing it, because the matrices model costs instead of payoffs. The to-
tal cost is defined as C(σ) =

∑
i
gi(σ). The above example has one solution

(”Confess”,”Confess”) with total cost C(”Confess”, ”Confess”) = 3+3 = 6.
However, it can be seen that another strategy combination, though it isn’t a
solution, minimizes the total cost, namely C(”Silent”, ”Silent”) = 2+2 = 4.
So the efficiency can be seen as the ratio between the total cost achieved under
all possible solutions and the total cost achieved under an ”ideal” strategy
combination, which could be possible under a centralized guidance. The
same analysis can be done when choosing the Nash Equilibrium as a solution
concept.

1.2 What is Mechanism Design?
Research in computer science is concerned with protocols and algorithms

applied at interconnected collection of computers. The emergence of the In-
ternet motivated even more the study of such algorithms and protocols. How-
ever, the research before this breakthrough assumed a centralized authority
which fully instructs each part of the network. This opposes the structure
and rules of the Internet. The computers belong to different agents (persons
and organizations) and it is unlikely to follow the designed protocols and al-
gorithms. Their only concern could be to benefit the most. All this research
seems inadequate to be realistically applied.

Mechanism design, a subfield of economics which similarly is interested
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in economic systems, seems to fill the gap. The research done in mechanism
design assumes a game-theoretic setting, where the agents, the different mem-
bers of society, act rationally in order to benefit the most. By borrowing ideas
from mechanism design, it is possible to model the agents’ rationality and
construct algorithms which function in such settings. The new subfield of
computer science was named Algorithmic Mechanism Design. In order
to walk through, some basic ideas of mechanism design must be clarified.

A first approach to give some intuition for the difficulties of mechanism
design will be to study the social choice problem. A single decision is to be
made and every agent has private preferences for the final outcome. The
social choice is the aggregation of the agents’ preferences. The main diffi-
culty of the social choice problem is that agents act rationally, declaring fake
preference in order to mislead the mechanism and achieve a better outcome
for theirselves. Which is the best social choice and how can we find it when
agents lie? Condorcet’s Paradox shows that the problem is not only difficult
but also there are underlying difficulties which seem unapproachable. It also
serves as an introduction to voting systems, which will be used to define some
basic notions for mechanism design.

Condorcet’s Paradox: Every mechanism involves a set of alternatives,
i.e. the possible outcomes of the mechanism. Every agent has private prefer-
ences for the set of alternatives. These preferences can be modeled as private
values for every alternative or an ordering of the alternatives etc. Suppose
there are three alternatives A, B, C and three voters with private preferences:

• A �1 B �1 C

• B �2 C �2 A

• C �3 A �3 B

The social choice function is actually a function which takes as input the
agents’ private preferences and outputs the winning alternative. The most
natural social choice is the majority. The alternative that the majority prefers
must by chosen. However in such case it is obvious that all three alternatives
are equally prefered. Furthermore, a voter who will decide not to support his
prefered candidate, will have the opportunity to decide the outcome. For ex-
ample, agent 3 may decide not to support alternative C and choose between
A and B. His choice will simultaneously be the winning alternative.

Condorcet’s Paradox shows that there are difficulties. An impossibility
theorem will be presented that will form the setting and guide us to fully
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understand these underlying difficulties. As we will see an ”ideal” mecha-
nism may be a difficult task to design. But what is an ”ideal mechanism”?
Surely a system, which managed to extract all private orderings truthfully
could succeed. L is the set of all possible private orderings. The following
definition proposes the ”ideal” social choice function:

Definition A social choice function f can be strategically manipulated by
voter i if for some ≺1, . . . ,≺n∈ L and some ≺′

i∈ L we have that a ≺i a
′ where

a = f(≺1, . . . ,≺i, . . . ,≺n) and a′ = f(≺1, . . . ,≺′
i, . . . ,≺n). That is, voter i

that prefers a′ to a can ensure that a′ gets socially chosen rather than a by
strategically misrepresenting his preferences to be ≺′

i rather than ≺i. f is
called incentive compatible if it cannot be manipulated.

However, there is a negative property that a mechanism should avoid.
This is when f is a dicatorship, formally:

Definition Voter i is a dictator in social choice function f if for all ≺1

, . . . ,≺n∈ L, ∀b 6= a, a �i b ⇒ f(≺1, . . . ,≺n) = a, f is called a dictator-
ship if some i is a dictator in it.

Thus, an ”ideal” mechanism can be considered to be an incentive compati-
ble mechanisms with no dictators in it. Unfortunately, Gibbard-Satterthwaite
proved that there is no such mechanism.

Theorem 1.2.1 Let f be an incentive compatible social choice function onto
A, where |A| ≥ 3, then f is a dictatorship.

The theorem seems pessimistic and that the only way is to choose be-
tween dictatorships and strategically manupulated mechanisms. However,
as any barrier, this theorem can be examined in depth to extract the real
properties that make the task impossible. It makes clear that a mechanism
must be enriched with additional features, in order to overcome this barrier.

1.3 Mechanism Design with money
A special class of mechanism design problems is those closely related

with “money”. In real world in most circumstances the mechanism designer
(seller) seeks revenue for the goods distributed through the mechanism. So
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it is completely natural for a mechanism to identify these payments from the
agents to the mechanism designer. By using money it is also much more eas-
ier to model an agent’s preferences and quantify the difference for an agent
between any two outcomes. This additional feature makes it possible to skip
the imposibility theorems, mentioned before, and achieve mechanisms with
the prefered properties. Basic notation will be presented for a general mech-
anism design model.

We assume that every agent has a utility function and intends to max-
imize it. The mechanism has a goal to produce an output (algorithm) and
define the payments for every agent. The agents’ utilities must form a Nash
equilibrium, meaning that by changing their declared preferences they can-
not meliorate their utility.

• n agents

• Agent’s Private Valuations: vi ∈ Vi

• Output: f = f(v1, . . . , vn)

• Payments: pi = pi(v1, . . . , vn)

• Agent’s Utility: ui(v
1, . . . , vn) = vi(f(v

1, . . . , vn))− pi(v
1, . . . , vn)

There is a special class of mechanisms, called incentive compatible mech-
anisms. An incetive compatible mechanism imposes an agent to truthfully
declare her preferences. An agent admits her maximum utility when declar-
ing her true value.

Definition A mechanism (f, p1, . . . , pn) is called incentive compatible if for
every player i, every v1 ∈ V1, . . . , vn ∈ Vn and every v′i ∈ Vi, if we denote
a = f(vi, v−i) and a′ = f(v′i, v−i), then vi(a)−pi(vi, v−i) ≥ vi(a

′)−pi(v
′
i, v−i).

1.3.1 Vickrey Auction
The well known Vickrey Auction is actually a single item auction with n

agents bidding for the item. All agents have private valuations vi for winning
the item and zero valuation otherwise. The agents declare their values by
bidding bi. Ideally, the bids match their private valuations. The main goal
of the mechanism is to generate the maximum social welfare. The natural
social choice function f allocates the item to the agent bidding the most. The
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social welfare is equal to SW (b) = v
f(b)

. If the agents bid truthfully this
function achieves its goal. However, an agent may win the item without hav-
ing the maximum valuation by bidding the most. The social choice function
accompanied with a payment scheme determines the agents’ behaviour and
eventually the auction’s efficiency. Let’s examine the above setting with the
most natural payment scheme, ie the agent winning the item pays its bid.
This is the single item first price auction.

The first price auction has a social choice function f(b) = arg max
i

bi

and a pricing scheme pi =

{
bi if i = f(b)
0 otherwise . The agents have utility ui ={

vi − pi if i = f(b)
0 otherwise =

{
vi − bi if i = f(b)
0 otherwise . At first sight it is clear

that an agent tends to bid lower that his true valuation in order to achieve
a lower price.

Let’s assume 2 players with valuations v1 > v2 and truthful bidding,
namely b1 = v1 and b2 = v2. The item goes to player 1 and the agents
have utilities u1 = v1 − p1 = v1 − b1 = v1 − v1 = 0 and u2 = 0. Agent 1
tends to lower her bid to v2 + ε in order to get the item and achieve utility
u1 = v1 − (v2 + ε) ≈ v1 − v2. Thus, a first price auction supports strategic
bidding. In this situation, strategic bidding cannot affect the mechanism’s
efficiency but in other cases there might be a problem. However, as an intro-
duction, we will see a very natural way, eventually, to achieve truthfulness,
which could seem a very demanding task at first sight.

Actually the idea of strategy-proofness is that at the state of truth-
ful bidding, no agent has an incentive to change her bid, assuming that
all others keep their bids as they are. No agent can achieve greater util-
ity by changing her bid. As mentioned before, the problem with the first
price auction appears as the winner bidder tends to pay the least he can
to keep the item. This is actually the best second bid. Thus, it may be
a good idea to impose a pricing according to the following bid. This also
includes the obvious for a payment, which should not depend directly on the
agent’s bid. This is the single item second price auction or the Vickrey auc-
tion. It has a social choice functionf(b) = arg max

i
bi and a pricing scheme

pi =

{
barg maxj 6=i bj if i = f(b)
0 otherwise .

Let’s consider that agents bid truthfully. There is the winner f(v), who
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has positive utility and all other players with zero utility. We’ll examine the
two cases seperately to see if the agents have an incentive to change their
bids.

• Winner: The advantage of such a mechanism is that an agent’s utility
won’t change unless the allocation changes. Thus, the winner can only
consider to lower her bid so that the item can be allocated to another
agent. If this happens, her utility collapses to zero. Since at truthful
bidding her utility is positive, the winner has no incentive to change
her bid.

• Losers: Similarly, an agent can only consider bidding higher than the
winner and gaining the item. However, such an allocation will generate
negative utility, namely ui = vi−pi = vi− vw, where vw is the winner’s
valuation. Since the winner is the one with the maximum valuation
ui < 0. Thus, the agent has no incentive to change her bid.

The second price auction may now seem natural since it uses a natural
social choice function and tries to impose the payments that an agent would
use a strategy to go for. In the first price auction an agent would lower her
bid to the least in order to gain the item. So in the second price auction they
charge her this price from the beginning, so she would not consider lowering
her bid. This gives an intuition of a mechanism which itself simulates the
agent’s strategic behaviour. A mechanism which manipulates the agents’
bids before passing them into the natural mechanism.

1.3.2 Incentive Compatible Mechanisms
The following theorem makes use of this intuition to support the exis-

tence of incentive compatible mechanisms.

Theorem 1.3.1 If there exists an arbitrary mechanism that implements f
in dominant strategies, then there exists an incentive compatible mechanism
that implements f. The payments of the agents in the incentive compatible
mechanism are identical to those, obtained at equilibrium of the original
mechanism.

Now that the existence of incentive compatible mechanisms is theoreti-
cally proven, there is a question whether there is a standard method to design
such mechanisms. In fact a family of incentive compatible mechanisms will
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be presented, which can be applied for every possible space of alternatives
and social choice function. This is the Vickrey-Clarke-Groves mechanism.
Actually it is a generalization of the mechanism proposed for the Vickrey
auction. As mentioned before, a mechanism is a combination of a social
choice function and a vector of payments for all agents. Let’s consider the
most natural social choice, that which maximizes the social welfare, namely∑
i
vi(a).

Vickrey-Clarke-Groves Mechanism: For all v1 ∈ V1, . . . vn ∈ Vn :
pi(v1, . . . , vn) = hi(v−i) −

∑
j 6=i

vj(f(v1, . . . , vn)), where hi : V−i → R, which

does not depend on vi. It is clear now that a user’s utility keeps up with the
social welfare. Since the social choice is the one with the maximum social
welfare, a user gains when the mechanism works properly, so he acts truth-
fully.

Theorem 1.3.2 Every VCG mechanism is incentive compatible.

Proof Let’s consider agent’s i private value vi and all other players’ values
v−i. The agent must not have an incentive to falsely declare v′i 6= vi. Addi-
tionally, a = f(vi, v−i) and a′ = f(v′i, v−i). If a = a′ the social choice does
not change and the user has the same utility and no incentive to falsely de-
clare his value. If a 6= a′, vi(a) − pi(vi, v−i) = vi(a) +

∑
j 6=i

vj(a) − hi(v−i) ≥

vi(a
′) +

∑
j 6=i

−hi(v−i) = vi(a
′) − pi(v

′
i, v−i). The inequality follows since a is

the choice with the maximum social welfare. This completes the proof.

However, the functions h−i(v−i) have not been defined. This function
is independent of the agent’s private valuation and must be manipulated
in order to satisfy additional properties. The most natural properties of a
mechanism are the following:

• Individually Rational: vi(f(v1, . . . , vn))− pi(v1, . . . , vn) ≥ 0

• No Positive Transfers: ∀i : pi(v1, . . . , vn) ≥ 0

Applying these constraints in the Vickrey-Clarke-Groves mechanism the
following equations must by satisfied for every agent i:

• Individually Rational: ∑
i
vi(a) ≥ h(v−i)

• No Positive Transfers: ∑
j 6=i

vj(a) ≤ h(v−i)
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The Clarke pivot rule occurs, formally hi(v−i) = max
b∈A

∑
j 6=i

vi(b). So the

VCG payment with the clarke pivot rule is the following

pi(v1, . . . , vn) = maxb

∑
j 6=i

vi(b)−
∑
j 6=i

vi(a)

, where a = f(v1, . . . , vn).

The above VCG mechanism was applied for a special social choice func-
tion, which maximizes the social welfare. However, this is a special incentive
compatible mechanism applied into a specific social choice function. An in-
centive compatible mechanism’s goal is, given a problem’s properties and a
desired social choice function, to define a vector of payments which admits
strategy-proofness.

A problem’s properties are in fact the set of alternatives, the valuation’s
behaviour over this set and the social choice function. It is challenging to
start analyzing the ability to constuct an incentive compatible mechanism
for different domains of preferences and social choice functions. Initially the
case that the domain of preferences is unrestricted, namely Vi = RA, will
be examined. In such situation it was shown that an incentive compatible
mechanism can be imposed for a social choice function which is an ”affine
maximizer”.

Definition A social choice function f is called an affine maximizer if for
some subrange A′ ⊂ A for some player weights w1, . . . , wn ∈ R+ and for
some outcome weights ca ∈ R for every a ∈ A′, we have that f(v1, . . . , vn) ∈
arg max

a∈A′
(ca +

∑
i
wivi(a)).

The following theorem restricts us to consider only affine maximizers for
the unrestricted case.

Theorem 1.3.3 If |A| ≥ 3, f is onto A, Vi = RA for every i, and (f, p1, . . . , pn)
is incentive compatible then f is an affine maximizer.

The only incentive compatible mechanisms imposed for affine maximizers
are a generalization of the VCG mechanism.
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Theorem 1.3.4 Let f be an affine maximizer. Define for every i, pi(v1, . . . , vn) =
hi(v−i)−

∑
j 6=i

wj

wi
vj(a)− ca

wi
, where hi is an arbitrary function that does not de-

pend on vi. Then, (f, p1, . . . , pn) is incentive compatible.

It is natural to have difficulties in such a general case. However, by
relaxing the Vi = RA constraint, more mechanisms may be applied. A well
studied case are the single-parameter domains, where the domains Vi can be
determined by a single parameter. We define for every agent i, a winning
set Wi ⊆ A such that for every a ∈ Wi : vi(a) = vi, and it’s complement for
which vi(a) = 0.

Definition A single parameter domain Vi is defined by a Wi ⊂ A and a
range [t0, t1]. Vi is the set of vi such that for some t0 ≤ t ≤ t1, vi(a) = t, for
all a ∈ Wi and vi(a) = 0 for all a /∈ Wi.

The following two definitions are necessary for defining the class of incen-
tive compatible mechanisms in single-parameter domains.

Definition A social choice function f on a single parameter domain is called
monotone in vi if for every v−i and every vi ≤ v′i ∈ R we have that f(vi, v−i) ∈
Wi implies that f(v′i, v−i) ∈ Wi. That is, if valuation vi makes i win, then so
will every higher valuation v′i ≥ vi.

Definition The critical value of a monotone social choice function f on a
single parameter domain is ci(v−i) = sup

vi:f(vi,v−i)∈Wi

vi. The critical value at

v−i is undefined if {vi|f(vi, v−i) /∈ Wi} is empty.

The following theorem fully determines the incentive compatible mecha-
nisms in single-parameter domains.

Theorem 1.3.5 A normalized mechanism (f, p1, . . . , pn) on a single param-
eter domain is incentive compatible if and only if the following conditions
hold:

• f is monotone in every vi.

• Every winning bid pays the critical value. Formally, for every i, vi,v−i

such that f(vi, v−i) ∈ Wi, we have that pi(vi, v−i) = ci(v−i).
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This mechanism may be the first attempt to relax the assumption of un-
restricted domain, but also serves as a complement to Arrow’s theorem for
the case of |A| = 2. The case of two alternatives falls into the category of
single parameter settings, since only one parameter is able to express the
valuation difference between the two alternatives.

1.4 Auctions - Examples
Auctions serve as the most practical and intuitive setting to study mech-

anism design. Technically, many mechanisms can be viewed as an auction.
Furthermore, auctions are met in many instances of real life, so they are
practically interesting. Two special classes of auctions follow in order to get
well with the properties and challenges of auction design and mechanism de-
sign generally.

1.4.1 Combinatorial Auctions
In contrast with the single item auction, there may be a set of different

items for sale. All n agents tend to purchase these m items and have private
valuations for every possible combination of items.

Definition A valuation v is a real-valued function for each subset S of items,
v(S) is the value that bidder i obtains if he receives this bundle of items. A
valuation must have ”free-disposal”, i.e., be monotone: for S ⊆ T we have
that v(S) ≤ v(T ), and it should be ”normalized”: v(∅) = 0.

Every agent must report her private valuations for every possible bun-
dle. However, she can behave strategically to manipulate the mechanism
and achieve better utility. The mechanism has to allocate the m items to the
n agents with the most efficient method (social choice function) and price
accordingly. The mechanism’s efficiency is measured by the social welfare
SW =

∑
i
vi(Si), where Si is agent’s i purchased set of items.

Such mechanisms are extremely demanding and there are many obstacles
in the way. In this auctions the problems may start from the social choice
function, that before was taken for granted. Since we talk for bundles of
items, there is an exponential number of possible allocations. Consider that
it is already timeworthy for an agent to declare her private valuations and
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the social choice problem might be hard. Furthermore, it is very challenging
to design incentive compatible mechanisms or efficient mechanisms generally.

1.4.2 Digital Goods
Due to advance of technology and the Internet, a new type of auctions

emerged. A company possesses audio files and can distribute them through
the Internet. There are no constraints at the number of copies and down-
loads distributed. An auction is formated where the auctioneer sells an item,
which is available in unlimited supply.

We assume that the auctioneer has no cost for each copy. There are
different settings that this process may be applied. The auctioneer may be
called to set a fixed price or set a price and as the agents buy copies she can
manipulate the price. In such a setting a basic concept is the efficiency of the
mechanism. A maximum social welfare objective seems trivial, as the auc-
tioneer can distribute for free the audio file. In such a case all agents would
buy the copy. However, such a mechanism is unrealistic since the auctioneer
has no payoff. Thus, we introduce new objectives. The auctioneer tends to
increase her revenue, ie the sum of payments in a setting where the agents’
private valuations follow probability distributions, since she has no informa-
tion of them. These auctions are suitable for the study of other objectives,
such as the revenue maximization.





Chapter 2

Introduction in Sponsored
Search Auctions

2.1 Motivation
Internet is the phenomenon of our age, which seems that it ushered in

a new revolution as important as the industrial revolution. Long ago the
creation of the Internet, the necessity of communication, imformation was
known for their role in peoples’ lives. Internet appears to be the breakthrough
due to the direct communication of every two nodes in the whole world and
the absence of limitations. At 2012, it is estimated that approximately 30%
of the world population use the Internet, meaning up to 2,000,000,000 people.
This new medium, due to its acceptance, created a new economy in terms
of exchange and commerce. This was expected as the Internet has become a
large portion of our society, where people can take actions similar to those
in true life.

Google, Microsoft, Yahoo, Facebook are the pioneers of the Internet in
our days. They provide services which attract the average user. Services
which are trivial at first sight, however they are carefully and in depth devel-
oped and closely related to the main aspects of the Internet. Services which
facilitate communication and imformation retrieval, such as communication
clients, social networks and search engines. Google managed to claim over
1,000,000,000 unique users on its websites in a single month. It is quite an
amazing stat if one considers the tremendous impact a company like that
can have.

The most popular services mentioned are free. A single user can use
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them by only registering in the corresponding websites. This seems mislead-
ing, why such companies do not make money from the services they provide.
However the answer is that they do make money indirectly, managing to
maintain the popularity of their services. In order to monetize their free ser-
vices they sell advertising. The area used in the websites for advertising may
seem attractive for advertisers, if one considers the wide audience. In such
way the companies manage to extract revenue and exploit their popularity.
Examples of online advertising include contextual ads on search engine re-
sults pages, banner ads, blogs, Rich Media Ads, Social network advertising,
interstitial ads, online classified advertising, advertising networks and e-mail
marketing, including e-mail spam.

Auctions seem the predominant way to monetize these services. As men-
tioned before the advertising area is sold and it is limited in a sence. The most
effective way of advertising until today are the sponsored search auctions.
People use daily a search engine to gather information. It is the service that
most users take for granted when they “surf” through the Internet. Spon-
sored search auctions is a clever way to monetize this service. When a user
searches for a keyword, the search engine returns to him the most relevant
and popular websites, in which the keyword appears. These are the so-called
organic results of the search engine. Usually above or in the right of the
organic results sponsored results appear. These results resemble the organic
ones but they are the outcome of an auction. An auction which takes place
every time this specific keyword is searched. In many occassions, sponsored
results appear in websites, when a search engine reserves an advertising area.

Before defining the structure of Sponsored Search Auctions, it would be
motivating to present their significance using stats. According to the Internet
Advertising Revenue Report the internet advertising revenues in the United
States totaled 31.7 billion dollars. Sponsored Search Auctions account for
46.5% of 2011 revenues and remains the most profitable advertising format.
It is remarkable also that internet advertising has surpassed cable television
advertising in revenues and Internet has become the most preferable adver-
tising media before broadcast TV. It is clear now that internet advertising
has become a huge industry and approximately half of its revenues come
from Sponsored Search Auctions. Their significance is even more evident if
one considers that up to 90% of Google’s revenues also come from Sponsored
Search Auctions. Google is considered one of the pioneers of the Internet
with a significant contribution to innovation.
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Figure 2.1: Internet Advertising

2.2 Structure
As mentioned before, Sponsored Search Auction refer to keyword auc-

tions which take place every time a user searches for a keyword in a search
engine. The search returns the main results which are the organic ones and
another set of results called the sponsored results. Some times there is a set
of sponsored results above the organic results and Microsoft Bing pioneered
presenting sponsored results below the organic ones. The common format of
a set of sponsored results is a listing of slots where every advertiser occupies
an available slot. Each ad contains a title, which serves as a hyperlink to
redirect the user to the ad’s website, and a brief description.

The prevelance of sponsored search auctions as an advertising format is
explained by the fact that seperate auctions run for each seperate search
query. The user expresses her intent by searching for a query. This is in-
dicative of the advertisements which could affect him the most and satisfy
her desires.

Furthermore, the structure of these auctions impose the advertisers to
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Figure 2.2: Sponsored Search Auctions format

choose a search query and submit single bids. The bids serve as the input of
the auction. These bids express the maximum willingness of the advertisers
to pay for each click. So the user pays per click. In the case of sponsored
search auctions it is not clear of what is exactly sold. From the search en-
gine’s perspective, the unit sold is the impression made to the user who
searches for a keyword. This suggests a payment per-impression. On the
other side, it is natural for an advertiser to pay every time a user clicks on an
advertisement and actually proceeds on a transaction. This suggests a pay-
ment per-conversion, which particularly is difficult to apply because of the
difficulty to measure the actual effectiveness of the advertisement. Payment
per-click actually serves as a middle ground between the natural payment
methods of the two sides. Click fraud is brick wall which had to be over-
comed. It is a technique used by rival parties who produced a large number of
clicks, in order to charge a particular advertiser. Click fraud was considered
unlawful and steps were made to be treated. These steps consist of methods
to recognize such actions and restructure the rules of the auction to alleviate
the bad effects.

Let’s talk about bids. Advertisers submit single bids for a keyword auc-
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tion. However an auction takes place each time a keyword is searched. This
leaves the opportunity to an advertiser to change his bid between each two
auctions. The model used suggests a continuous and infinitely repeated game,
where each advertiser’s profit is approximated in the long run and he may
change bid accordingly.

Finally, despite the environment’s special characteristics the advertisers
submit single bids. It seems controversial as there are multiple positions with
unique desirability for each position. For example two advertisers may prefer
the first position from the second one, but a single type seems inadequate
to fully determine their vague preferences. One bid per keyword may not be
sufficiently expressive to fully convey preferences. On the other hand, the
limitations put are not large enough to justify added complexity in the bid-
ding language. A single bid accompanied with position-defined coefficients
may do the job. At next chapters, consideration of externalities between
advertisers will oppose our choice.

2.3 Notation
Sponsored search auctions admit K slots and n agents. The available slots

are numbered from top to bottom. The unique structure of the game imposes
a complete information setting, meaning that agents have full information
of the other agents’ bids. This makes sence if one considers that expertised
advertisers can extract such information using statistical methods and by
testing different bids and observing fluctuations in the allocation process.
Each agent is indexed i ∈ {1, . . . , n}. An agent’s preference can be expressed
by his valuation vi of a single click. A bid bi is used to capture this variable
and also expresses, as mentioned before, an agent’s maximum willingness to
pay for a click. Every time an auction takes place, the mechanism charges
payments pi.

In order to define a model for sponsored search auctions using a single
parameter to express the agents’ preferences, it is necessary to present a
measure for the differences of different allocations of the slots to advertis-
ers. Click through rate, which serves as a measure, is the probability that
a specific ad is clicked under a specific allocation instance. It depends on
the allocation rule to fully define click-through rate. It is also a very conve-
nient way to express the desire for specific slots. For example, an advertiser
may want to be allocated the first slot because the outcome will guarantee
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a high click-through rate. Intuitively this is true because advertisers yearn
for a high probability of clicking their ad, in order to redirect the user at the
corresponding website. Generally, we assume that click-through rates are
known to the auctioneer and the agents.

We will use a basic model to analyze sponsored search auctions. Click-
through rate may depend from a variety of factors. Any difference between
two allocation instances may affect each agent’s CTR. For a start, the model
should satisfy two requirements. Firstly, an ad’s click-through rate surely
depends on it’s quality. We will model it’s quality as a probability to be
clicked if a user views the corresponding slot. We call this probability rele-
vance qi. Furthermore, it appears that higher slots have a greater probability
to be viewed. As a consequence, every slot has a probability λk to be viewed,
satisfying λ1 ≥ λ2 ≥ . . . ≥ λk. Naturally, the click-through rate depends on
both probabilities and we model it as CTRk,i = λk · qi for agent i occupying
slot k. This is the seperable click-through rate model.

An advertiser i has a valuation vi for every click and pays pi. The mech-
anism allocates, according to the bids, every slot to an advertiser and we
assume that advertiser i occupies slot k. So she has a probability CTRk,i to
gain a click or equivalently gains CTRk,i clicks per period. The advertiser’s
profit or utility is ui = CTRk,i · (vi − pi). The agent wants to maximize this
utility, acts selfishly and is willing to change her bid to achieve it. In order
to overcome such a problem there is the need of a stable mechanism. The
notion of stability in such circumstances is given by Nash. In our setting at a
Nash equilibrium, no advertiser can change her bid, keeping other bids fixed,
to maximize his utility:

∀i, b′i : ui(bi, b−i) ≥ ui(b
′
i, b−i)

. Only a mechanism, which guarantees at least a Nash equilibrium at every
instance can be accepted and analyzed.

To evaluate the outcome of a mechanism we will use the social welfare.
The social welfare is the sum of profits gained by all agents and the auction-
eer. Thus, SW =

∑
i
ui+

∑
i
CTRk,i ·pi =

∑
i
CTRk,i ·(vi−pi)+

∑
i
CTRk,i ·pi =∑

i
CTRk,i ·vi. The social welfare measures the allocation efficiency of a given

mechanism and actually doesn’t depend on the payment but only on the
allocation process. The maximization of the social welfare can be seen as
a classical algorithmic problem, which is trivial in the basic case as we will
see later. In our case the mechanism designer is the auctioneer, whose main
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goal is to maximize his revenue. Thus, another measure for evaluation is the
revenue R =

∑
i
CTRk,i · pi, meaning the sum of all agents’ payments. The

mechanism designer aims to construct a mechanism, which maximizes the
social welfare and the auctioneer’s revenue. Generally, such a mechanism
may not exist, but intuitively we could guess that a mechanism with a high
enough social welfare will guarantee a high revenue for the auctioneer. Vice
versa a mechanism with low social welfare cannot locate high payments.





Chapter 3

Allocation and Pricing in
Sponsored Search Auctions

As mentioned in the previous chapter, a mechanism designer aims to con-
struct a mechanism, which is stable and guarantees high social welfare and
revenue for the auctioneer. Her goal is even more difficult, as the input of the
mechanism may depict false values, clearly meaning the bids which should be
identical with the private valuations. An ideal mechanism should push the
agents to declare their true values. However this is not obligatory, as many
mechanisms give rise to strategic behaviours which bring approximately good
outcomes.

The mechanism can be divided into two parts. The allocation process
which allocates the slots to specific agents and the pricing process which
defines every agent’s payment according to the allocation process. The al-
location seems a simple maximization problem at first glance. However, it
cannot be taken for granted because it may affect agents to falsely declare
their private valuations. It is clear now that the process can be divided into
two steps but the analysis requires the whole mechanism to evaluate. As
I proceed, I will describe various allocation and pricing rules and combine
them to analyze and evaluate the corresponding mechanisms.

3.1 Allocation
An allocation rule cannot be seen only as a simple maximization problem.

As I said it may lead to strategic behaviours but also there is the need of
simple allocation rules. A search engine must use simple rules to be easy
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for the user to understand them and effectively use them. Furthermore an
allocation rule must meet a fairness requirement. For example, an advertiser
may have very low quality and that leads to very low click-through rates.
However it is unfair to never let her get a slot. An advertiser like that should
have the opportunity to occupy a slot by bidding a little better that the
others. With these in mind two allocation rules for the basic model have
been proposed:

• Rank by Bid: Advertisers are ranked in the decreasing order of the
submitted bids.

• Rank by Revenue: Advertisers are ranked in the decreasing order of
the ranking scores, where the ranking score of an advertiser is defined
as the product of the advertiser’s bid and relevance (ri = qi · bi).

3.2 Pricing
Now that the basic allocation rules are clear, I will describe the basic

payment rules. An analysis follows the description for every payment rule
combining it with the rank by revenue rule. This is without loss of generality
as the mechanism’s behaviour remains the same with little differences. Rank
by revenue achieves better results and that is the reason that it is currently
used.

3.2.1 GFP
Generalized First Price payment rule was introduced in the first spon-

sored search auction design in 1997. It is a traditional payment rule, which
reminiscent the traditional auctions. Every agent submits a bid, as a declara-
tion of her willingness to pay, and if clicked pays this ammount. The format
was used for several years but it had negative results and in 2002 a new rule
was introduced to replace it. Gradually, the whole market abandoned the
GFP pricing rule.

A basic property we seek from a mechanism is to be truthful. In our case,
an agent’s bid ideally should be indentical with her valuation. It is clear
that GFP fails to acheive this. If an agent declares her true valuation and be
clicked, she would pay the same ammount. This brings zero profit, which is
unwanted for every agent. Thus, an agent would falsely declare a lower bid
to occupy a slot and pay less. As mentioned before, not having a truthful
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auction is not basically a problem but becomes more complicated to achieve
stable and effective mechanisms.

During the use of the GFP pricing rule, it was observed that it culti-
vated a bidding strategic behavour. Agents continuously changed their bids
to maximize their utility. This starts to make sence if one considers that in
this case not only the allocation but also the bid itself affects the payment.
It seems natural now to analyze the mechanism in order to test it’s stability.
As mentioned before, we assume that a mechanism is stable if it has a Nash
equilibrium. Presenting a simple example, it would be clear that the GFP
mechanism, under the rank by bid rule without loss of generality, is unstable
in the general case.

Example: Suppose there are two slots and three advertisers. All agents’
qualities are excluded, meaning that ∀i : qi = 1. I assume that the first
slot receives 200 clicks per period and the second slot 100 clicks per period.
Furthermore, the agents 1, 2, 3 have valuations $10. $4 and $2 per click
respectively. The agents’ initial bids are $2.02, $2.01, $2 respectively. Let’s
observe the agents’ behaviour (Figure 3.1).

Figure 3.1: Example: First Price Auction

One can observe, that advertisers can use autobid systems to adjust their
bids at any time, in order to achieve desired placement and avoid overbid-
ding. It becomes now a matter of how quickly can one respond to changes and
readjust her bid. This was observed empirically as the autobidders formed a
distinctive “sawtooth” pattern by continuously readjusting their bids. This
is undesirable generally. However, the failure of the generalized first price
auction has gained importance as it generated revenue losses for the auction-
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eer.

Figure 3.2: Sawtooth bidding pattern. (a) 14 hours (b) 1 week

Theoretically, revenue losses can be proven by combining the revenue
generated from a first price auction and the revenue generated from a second
price auction. A second price auction means that a bidder pays the bid of the
agent located underneath her. As we see the second price auction, charges
prices sustantially lower than the first price auction, but finally the revenue
collected remains the same. Let’s consider two agents a and b with private
valuations va > vb. Similarly with the example presented, the two bidders
increase bids step by step from the minimum possible amount ε to vb. As-
suming that the agents spend equal time at each step the average revenue
generated under the GFP rule is vb+ε

2
. At the second price auction, if agents

bid va and vb, agent a occupies the first slot and pays vb. This is clearly a
Nash equilibrium. Thus, the first price auction fails to generate high revenue.
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3.2.2 VCG
Having in mind the failure of GFP pricing scheme, it is natural trying to

design a truthful auction. A truthful auction will be stable, as declaring the
true valuations is a dominant strategy. It would be very convenient for the
agents to participate in a truthful auction, as it would be no more necessary
to determine a strategy but simply to declare her true valuation. This would
simplify the bidding process significantly. After the design of a truthful auc-
tion, an analysis follows in terms of allocation efficiency and revenue.

The most natural choice seems to be a VCG mechanism which outputs
the same ordering with the rank by revenue rule. A VCG mechanism admits
a social choice function f, which is an affine maximizer, f(υ1, υ2, . . . , υn) ∈
arg max

a∈A
(ca+

∑
i
wiυi(a)). It only remains to specify the weights {w1, w2, . . . , wn}

and the bias ca. In our case, if allocation a gives slot j to advertiser i,
υi(a) = CTRj,i · vi = λj · qi · vi = λj · ri. As the position multipliers are
decreasing slot by slot, it is clear that an affine maximizer with wi = 1,∀i
and ca = 0, ∀a ranks the agents according to the rank by revenue rule. The
rank by bid rule could also be simulated with a similar VCG mechanism with
weights wi =

1
qi

. However, in this section, I would only analyze the rank by
revenue case.

Without loss of generality, I assume that agents are indexed such that ad-
vertiser i occupies slot i. At the long run an agent pays CTRi,i ·pi. According
to the VCG rule

CTRi,i · pi = OPT−i −
∑
j 6=i

CTRj,j · bj =
k∑

j=i

(CTRj,j+1 −CTRj+1,j+1) · bj+1 =

k∑
j=i

(CTRj,i − CTRj+1,i) ·
qj+1

qi
· bj+1

⇒ pi =
k∑

j=i

(
CTRj,i − CTRj+1,i

CTRi,i

)
qj+1

qi
bj+1

The above VCG mechanism was named from it’s inspirators as laddered
auction due to its recursive nature.

Theorem 3.2.1 The laddered auction is truthful. Further, it is the unique
truthful auction that ranks according to decreasing ri = qi · bi.
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Proof It is clear that changing a bid without any change on the allocation,
an agent’s utility remains the same. There is a change when the allocation
changes.

Firstly, I will prove that the laddered auction is truthful. Consider an
advertiser M, who occupies slot j and pays p(j). If agent bids her true valu-
ation vM , she occupies slot x. r is the closest rank to x, which generates the
maximum profit for the agent. if r > x then the change to moving in slot
r − 1 is (CTRr−1,x − CTRr,x)(vx − qr

qx
br) ≥ 0. if r < x then the change to

moving in slot r + 1 is (CTRr+1,x − CTRr,x)(vx − qr
qx
br) ≥ 0.

Secondly, I prove that the laddered auction is the unique truthful auction
which ranks by revenue. Let’s consider any auction A, which also ranks by
revenue. Agent M pays pA(j), when occupying slot j. All other agents are
indexed in the decreasing order of wibi, excluding M.

Lemma 3.2.2 pA(j)− pA(j + 1) = (CTRj,M − CTRj+1,M) qj+1

qM
bj+1

Proof • Suppose vM = qj+1

qM
bj+1+ε: if M bids truthfully, she is ranked at

slot j. The additional valuation of being ranked at slot j instead of slot
j+1 is (CTRj,M −CTRj+1,M)vM . In order to prevent agent M wanting
slot j+1 the payment difference should be lower.

pA(j)− pA(j + 1) ≤ (CTRj,M − CTRj+1,M)
qj+1

qM
bj+1

• Suppose vM = qj+1

qM
bj+1 − ε: if M bids truthfully, she is ranked at slot

j+1. The additional valuation of being ranked at slot j instead of slot
j+1 is (CTRj,M −CTRj+1,M)vM . In order to prevent agent M wanting
slot j the payment difference should be lower.

pA(j)− pA(j + 1) ≥ (CTRj,M − CTRj+1,M)
qj+1

qM
bj+1

It is natural to assume that pA(k+1) = 0. Using the above lemma re-
cursively the laddered auction pricing scheme is formatted. Assuming that
our proposition is true for agent i occupying truthfully slot i, pA(i + 1) =

k∑
j=i+1

(CTRj,i−CTRj+1,i)
qj+1

qi
bj+1. Using the recursion of the lemma, pA(i) =

pA(i + 1) + (CTRi,i − CTRi+1,i)
qi+1

qi
bi+1 =

k∑
j=i

(CTRj,i − CTRj+1,i)
qj+1

qi
bj+1.
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In this section I described a truthful auction for keyword auctions. By
imposing such payment, every agent bids her true valuation and afterwards
all agents are ranked accordingly. By ranking them in the decreasing order
of qibi, the social welfare is maximized. This is an ideal outcome in one sence.
We do not know so far, how much revenue is generated for the auctioneer.
An answer of this question will be given in the next section by comparing it
with the second-price auction.

3.2.3 GSP
The drawbacks of the GFP scheme, have given rise to the idea that an

advertiser will never want to pay one bid increment above the bid of the
advertiser beneath her. In relation with the Vickrey auction format in 2002,
Google introduced the Generalized Second Price auction. The allocation
rules remain the same. Initially, Google used the rank by bid rule and af-
terwards changed it to the rank by revenue rule. Regarding the pricing, an
agent pays per click an amount equal to the bid of the advertiser beneath
her. This pricing scheme seems to constrain a strategic bidder behaviour.

An analysis of the GSP format will test its stability, its efficiency and
the revenue generated. Before proceeding with the analysis, I consider it
necessary to clarify some basic notion familiar with the GSP.

Stability In order to prove its stability, it is sufficient for the common sence
to prove that the auction has a Nash equilibrium for all possible instances
of agents’ valuations. An analysis will be given for the rank by revenue rule,
but the rank by bid case is entirely analogous.

Theorem 3.2.3 There always exists an efficient complete information Nash
equilibrium in pure strategies in the Generalized Second-Price Rank by Rev-
enue slot auction.

Proof The following lemma is essential for the proof:

Lemma 3.2.4 Given an allocation σ : [K] → [n], there exists a Nash equi-
librium profile of bids b leading to σ in a Second-Price Rank by Revenue slot
auction if and only if

(1− λi

λj+1

)rσ(i) ≤ rσ(j)
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for 1 ≤ j ≤ n− 2 and i ≥ j + 2.

The proof of the lemma can be found in the original paper. Actually, it
presents the state of a Nash equilibrium as a linear system, with the Nash
equilibrium constraints and the bids as variables. The equation above is pro-
duced by examining the existence of a solution for the linear system.

Regarding the lemma, let’s consider a ranking σ according to the agents’
true valuations. This ranking totally agrees with the conditions of the lemma,
as i > j : rσi

≤ rσj
. Therefore, there exists a bid profile which leads to a

Nash equilibrium.

Since the stability has been proven, meaning that there exists a Nash
equilibrium at all instances, it is time to further analyze the game’s Nash
equilibria. I will mention a stronger class of equilibria, ie a stronger solution
concept, called locally envy-free equilibria. These were the first steps made to
justify the choice of the GSP scheme. The following analysis will be shown
in terms of a simplified model were all agents have the same relevance qi.
Thus, an agent occupying slot i pays p(i) = λibσ(i+1).

Definition An equilibrium of the simultaneous-move game induced by GSP
is locally envy-free if an agent cannot improve her payoff by exchanging bids
with the agent ranked one position above her. More formally, in a locally
envy-free equilibrium, for any i ≤ min(n+ 1, K),

λivσ(i) − p(i) ≥ λi−1vσ(i) − p(i−1)

At the definition, a change with an agent above is mentioned because
in the opposite direction the definition of a Nash equilibrium and a locally
envy-free equilibrium are identical. Sometimes the definition of a Nash equi-
librium is weak to prove stability in real life, as it admits that the rest agents
keep their strategies stable. However, in our case, let’s consider an agent
increasing his bid to occupy a slot above her. The Nash equilibrium admits
that the agent would bid more than the agent above her. That’s not the
case since as increasing her bid, the agent above her pays more and may be
obliged to lower her bid. That means that occupying slot i-1 doesn’t admit
paying bσ(i−1), as the Nash equilibrium says. The extreme is when by a slight
increase of agent’s i bid, agent i-1 lowers her bid exactly beneath by bidding
bσ(i). Thus, agent i finally pays p(i−1).
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So, locally envy-free equlibria is a stronger class of equilibria than Nash
equiblibrium and manages to ensure total stability in bids.

The following theorem is offered to justify the use of the GSP scheme as it
proves the existence of efficient equilibria and the prevelance of GSP against
the VCG scheme, in terms of revenue generated. A VCG mechanism would
impose payments, which expresses the negative impact of an advertiser to
the rest, namely pV,i = (λi − λi+1)bi+1 + pV,(i+1). For the theorem a strategy
profile B∗ is mentioned, which is also a locally envy-free equilibrium. All
agents bid b∗i = pV,(i−1)

λi−1
, b∗1 = v1 and are indexed in the decreasing order of

their bid.

Theorem 3.2.5 Strategy profile B∗ is a locally envy-free equilibrium of game
Γ. In this equilibrium , each advertiser’s position and payment are equal to
those in the dominant-strategy equilibrium of the game induced by VCG. In
any other locally envy-free equilibrium of game Γ, the total revenue of the
seller is at least as high as in B∗.

Proof Firstly, it must be proven that the allocation and payments, under B∗,
coincide with those in the VCG mechanism. Regarding the allocation agents
must be ranked in the decreasing order of their values, namely b∗i ≥ b∗i+1:

pV,(i−1)

λi−1

≥ pV,i

λi

(λi−1 − λi)vi + pV,i

λi−1

≥ pV,i

λi

ai(λi−1 − λi)vi ≥ (λi−1 − λi)p
V,i

λivi ≥ pV,i

which is true since agents pay less than they earn. It easy to check for the
first agent:

b∗1 ≥ b∗2

v1 ≥
pV,1

λ1

λ1v1 ≥ pV,1

Thus, allocation outcomes coincide. Under such a strategy profile, agent i
pays λib

∗
i+1 = λi

pV,i

λi
= pV,i. Thus, payments coincide.
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Secondly, it must be proven that strategy profile B∗ is a locally envy-
free equilibrium. It is trivial to prove that strategy profile B∗ is a Nash
equilibrium. It remains to prove that agent i has no incentive to swap her
bids with the agent above, namely i− 1:

λivi − λib
∗
j+1 ≥ λi−1vi−1b

∗
j

λivi − pV,(i) ≥ λi−1vi−1 − pV,(i−1)

λivi − λivi ≥ λi−1vi−1 − λi−1vi−1

Thus, in order to complete the proof, the revenue under this strategy profile
must be compared with the revenue of the VCG mechanism.

The allocation in a locally envy-free equilibrium coincides with a stable
assignment, proposed by Shapley and Shubik (1972). The core-elongation
property informs us that there exists an allocation with the worst payments
from all advertisers. I prove that strategy profile B∗ admits the worst pay-
ments. In any locally envy-free equilibrium p(k) = λkvk+1 = pV,(k). Let’s
assume that p(i+1) ≥ pV,(i+1) to prove by induction. All other payments
should at least satisfy p(i) − p(i+1) ≥ (λi − λi+1)vi+1, otherwise agent i + 1
would find it profitable to bid for slot i. Thus, p(i) ≥ (λi−λi+1)vi+1+p(i+1) ≥

(λi − λi+1)vi+1 + pV,(i+1) = pV,(i). Thus, the total revenue is at least
k∑

i=1
pV,(i)

and there is no locally envy-free equilibrium with worse payments that those.
This completes the proof.

Allocation Efficiency As mentioned before, the VCG mechanism has a
dominant strategy of truthful bidding. Truthful bidding and a rank by rev-
enue allocation maximizes the social welfare guaranteed. However, due to its
prevelance against the VCG mechanism in terms of revenue, the GSP mech-
anism is currently used. It was proven that the GSP mechanism is stable
and has Nash equilibria, which acheive allocation efficiency. In order to fully
clarify the allocation efficiency of a mechanism it is necessary to consider all
possible Nash equilibria. The most popular way to measure such quantity is
the Price of Anarchy.

The mechanism’s input is a vector b of the agents’ bids. I denote as W (b)
the social welfare generated under a Nash equilibrium of the game and OPT
the optimal allocation of the game. Specifically, by labeling the agents in
decreasing order of their values, namely v1 ≥ v2 ≥ . . . ≥ vn, OPT =

∑
i
λivi

and W (b) = λivσ(i).
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Definition The price of anarchy of a game over a given class of equilibria is
defined as the worst ratio of the optimal social welfare over the social welfare
of an equilibrium.

PoA = max
b

OPT

W (b)

At first sight, instances can be found that the price of anarchy can be
arbitrarily large. Suppose an auction with two slots and two agents, with
λ1 = 1, λ2 = r, v1 = 1, v2 = 0 and b1 = 0, b2 = 1 − r. According to these
bids the second agent occupies the first slot and the first agent the second
slot. This strategy profile is a Nash equilibrium, since changing a bid is of
no interest. Specifically,

1 : λ2(v1 − 0) ≥ λ1(v1 − b2)

r ≥ 1− (1− r)

r ≥ r

2 : λ1(v2 − b1) ≥ λ2(v2 − 0)

0 ≥ 0

The ratio in such an instance is λ1v1+λ2v2
λ1v2+λ2v1

= 1
r
, which can be arbitrarily large.

However, such an instance is not realistic. It seems strange for an agent
to bid over her valuation, as it is risky to have a negative utility. As a
consequence, we admit only conservative bidders, namely bi ≤ vi. The price
of anarchy will be calculated over the class of conservative bidders equilibria.
Such a hypothesis is in fact justified, because an agent doesn’t gain by bidding
over her valuation:

Lemma 3.2.6 A bid b′i > vi is dominated by b′i = vi.

Proof There are two cases:

• ∃j : b′i > bj > vi. Such case is not a Nash equilibrium, since agent i has
negative utility.

• ∃!j : b′i > bj > vi. In such a case, the allocation doesn’t change and
agent i has the same utility.

It is time to analyze the price of anarchy and eventually calculate it, over
the class of conservative bidders. The analysis will start with simple cases of
2 and three bidders and then will be generalized.
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Theorem 3.2.7 The price of anarchy over pure Nash equilibria of GSP
auction games with 2 conservative bidders is at most 1.25.

Proof The proof for the case of 1 slot is trivial. The price of anarchy is
1. Consider the case of two slots, with λ1 = 1 and λ2 = r. By normalizing
the agents’ valuation, I assume that λ1v1 + λ2v2 = 1 ⇒ v1 = 1 − rv2. The
incovenient case is when bidder 2 occupies the first slot, namely b1 ≤ b2. A
Nash equilibrium and the conservative bidders hypothesis imply:

λ2(v1 − 0) ≥ λ1(v1 − b2) ≥ λ1(v1 − v2)

r(1− rv2) ≥ (1− rv2)− v2

[1 + r(1− r)]v2 ≥ 1− r

v2 ≥
1− r

1 + r(1− r)

Regarding the price of anarchy: OPT
W (b)

= λ1v1+λ2v2
λ1v2+λ2v1

= 1
v2+r(1−rv2)

= 1
r+(1−r2)v2

≤
1

r+(1−r2) 1−r
1+r(1−r)

= 1+r(1−r)
r[1+r(1−r)]+(1−r2)(1−r)

= 1 + r(1− r) ≤ 1.25.

In order to prove the following bounds for the price of anarchy, the anal-
ysis will be given for a wider class than the class of pure Nash equilibria.
Specifically, an upper bound will be found by testing weakly feasible assign-
ments, a broader solution concept.

Definition An assignment σ is weakly feasible if for each pair of bidders i,j,
it holds that λσ−1(i)vi ≥ λσ−1(j)(vi − vj).

Clearly, the class of weakly feasible assignments are wider than the class of
pure Nash equilibria, since the inequality of the weakly feasible assignments
doesn’t consider the payment at the current slot. Furthermore, a weakly
feasible assignment is called proper if for any two slots i < j with equal
click-through rates, it holds that σ(i) < σ(j). Generally, a weakly feasible
assignment can be expressed with a graph G(σ) which redirects every agent
to the occupied slot, as it is evident from the image.

It is clear that such a graph will form cycles. In the optimal case, there
will be no cycles, but otherwise there will be formed a number of cycles. In
case that a single cycle is formed the graph is denoted as irreducible. In the
opposite case, the graph will be called reducible.
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Figure 3.3: Graph G(σ)

Figure 3.4: (a) Reducible Graph (b) Irreducible Graph

For each cycle, we can construct c auction subgames which correspond to
the cycles. Regarding each cycle l = 1, . . . , c, σl is the assignment of the l-th
subgame. The following lemma is important for the analysis of the upper
bounds.

Lemma 3.2.8 If assignment σ is weakly feasible for the original GSP auction
game, the σl is weakly feasible for the l-th subgame as well, for l = 1, . . . , c.
Then the efficiency of σ is at most the maximum efficiency among the as-
signments σl for l = 1, . . . , c.

Proof It is trivial to prove that σl is weakly feasible, since the inequality
is satisfied for the remaining agents of the l-th subgame. Furthermore, the
lemma is trivial to prove for the case of irreducible graphs and thus I will
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restrict my attention in reducible graphs. The total social welfare is the
aggregation for all the c subgames, due to the linearity of the social welfare.
Applying a+c

b+d
≤ max(a

c
, b
d
), it follows:

OPT

SW
≤ max

i∈[c]
(
OPT (i)

SW (i)
)

, where SW (i) and OPT (i) the social welfare and optimal social welfare of
the i-th subgame.

The analysis of an upper bound for weakly feasible assignments with 3
conservative bidders follows. This upper bound also serves as an upper bound
for the price of anarchy.

Theorem 3.2.9 The price of anarchy over pure Nash equilibria of GSP
auction games with 3 conservative bidders is at most 1.259134.

Proof The agents are indexed in decreasing order of their values, v1 ≥ v2 ≥
v3. Suppose there are 3 slots and the agents are ranked according to a proper
weakly feasible assignment σ. In case of reducible graphs G(σ) the upper
bound drops to the case of two bidders, which is calculated to 1.25. Actually,
in the case of three bidders this is the only case but such a proposition will
be applied for n agents. In case of irreducible graphs, there are two subcases,
evident in the following image.

Figure 3.5: Two possible permutations

Without loss of generality, I restrict the analysis to the assignment σ(1) =
3, σ(2) = 1, σ(3) = 2. The agents’ valuations are given by v2 = λv1, v3 = µv1
and the click-through rates are given by a2 = βa1, a3 = γa1.
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OPT
W (σ)

= 1+βλ+γµ
µ+β+γλ

=
1+λ−µλ+µ−µ2

λ
+δλ+εµ

1+λ−µδ+ελ
≤ 1+λ−µλ+µ−µ2

λ

1+λ−µ

In order to find the maximum, I find the derivative with respect to µ and
nullify it for µ ∈ [0, 1]. It follows, OPT

W (σ)
≤ λ2+λ+2−2

√
λ3+1

λ
≤ 1.259134.

An upper bound for the efficiency of the auction with n agents follows,
in the same sence with the 3 conservative bidders.

Theorem 3.2.10 The price of anarchy over pure Nash equilibria of GSP
auction games with conservative bidders is at most 61+7

√
217

128
≈ 1.28216.

The GSP mechanism proves to be quite impressive in terms of stability,
allocation efficiency and revenue generated, since it combines all three fac-
tors. It’s dominance against the GFP and VCG mechanisms was clarified
and that’s the reason it is currently used.





Chapter 4

The Cascade Model

4.1 A New Model - Experimental Analysis
Sponsored search auctions involve advertisers, bidding for a position in

the sponsored list. Most times advertisers in the same list are competitors.
It is believed that each one influences the rest. For example, an advertiser
occypying the first slot may affect the click-through rate of the advertisers
beneath her. Such an interaction between advertisers is called externalities,
and are distinguished in positive and negative externalities. Surely such a
concept must be simulated with a new model which revisits the formula of
the click-through rate.

In 2008, Microsoft distributed clicking data from Microsoft Live to boost
the research of the end user’s clicking behaviour. Gomes, Immorlica and
Markakis studied these data and proposed a new model which empirically
seems closer than the separable model. The clicking data present the users’
behaviour for specific keywords. From the data it is obvious that advertisers
affect the ones beneath. It can be seen that the click-through rate of some
ads vary analogously to the ads above. The original paper highlights these
position externalities stating that a user may be tired from the poorly related
ads or be satisfied from a specific ad. Let’s define the new model, which is
denoted as the cascade model.

The concept remains the same, meaning that an agent’s profit is the
product of a private valuation vi and the click-through rate. However, in
this case, the click-through rate’s formula is different, in order to assimilate
the characteristics of the new model. As mentioned before, in the cascade
model we assume that the end user starts searching the slots from top to

54
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bottom. Thus, a continuation probability ca is imposed, as the probability
that a user will continue searching to the ads beneath after a specific slot
a. A quality measure is also used, as being used in the seperable model,
which is expressed as a quality probability qa. The click-through rate of ad
ai, occupying slot i, is rai = qai ·

i−1∏
j=1

caj . Ci =
i−1∏
j=1

caj serves as a cumulative
continuation probability of the ads above.

Figure 4.1: Cascade Model

4.2 Allocation
Let’s study the allocation problem without considering any payments and

the constraints imposed by the need of stability. The auctioneer has to choose
k ads a1, a2, . . . ak, in order to maximize the social welfare

k∑
i=1

[bai · qai ·
i−1∏
j=1

caj ].
At first glance, we see that an advertiser with high revenue qai · bai should
occupy a high slot, but in the other hand if she has low continuation prob-
ability, by occupying a high slot, the remaining advertisers admit very low
click-through rate. The following lemma makes clear how an optimal solu-
tion will look like.

Lemma 4.2.1 Assume that the optimal solution places ad ai in position i.
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Then, without loss of generality,

qa1ba1
1− ca1

≥ qa2ba2
1− ca2

≥ . . . ≥ qakbak
1− cak

Proof The idea of the lemma is that if we are given the right set of k ad-
vertisers, we know their order. It can be observed that if two agents aren’t
in the right order the advertisers above them and beneath them are not af-
fected, since the click-through rate is a simple product of the continuation
probabilities. Thus, in the proof I will make use of this by comparing the
welfare generated SW by two consecutive advertisers in the right order and
in the opposite order SW ′. The welfare of the rest advertisers remain the
same.

• SW = baiqai
i−1∏
j=1

caj + bai+1
qai+1

i∏
j=1

caj = Ci · (baiqai + bai+1
qai+1

cai)

• SW ′ = bai+1
qai+1

i−1∏
j=1

caj + baiqaicai+1

i−1∏
j=1

caj = Ci · (baiqaicai+1
+ bai+1

qai+1
)

SW − SW ′ ≥ 0

Ci · [baiqai + bai+1
qai+1

cai − baiqaicai+1
− bai+1

qai+1
] ≥ 0

baiqai(1− cai+1
) ≥ bai+1

qai+1
(1− cai)

baiqai
1− cai

≥
bai+1

qai+1

1− cai+1

This completes the proof.

Now that we know the right order when k advertisers are chosen, we
restrict our attention in deciding the right set. A natural thought is to sort
the agents according to the order of the lemma and start computing the
optimal solution by adding every time a new agent i, for i = n, . . . , 1. Each
time an optimal solution must be computed, we have the choice to add or not
to add the new agent in our solution. If the agent is not added the optimal
solution remains the same as it was without the new agent. If the agent is
added, she will occupy the first slot. Thus, if we have n agents and k slots a
recursive equation can be extracted, since the optimal solution is either the
solution for n-1 agents and k slots, either the solution for agents 2, . . . , n and
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k-1 slots and the first slot occupied by the first agent. Analytically for ads
a, . . . , n and slots i, . . . , k the recursive equation states:

A[a, i] = max(A[a+ 1, i], baqa + caA[a+ 1, i+ 1])

An algorithm via dynamic programming, using the above equation, extracts
the optimal solution. The algorithm sorts n agents in time O(nlogn) and
computes the matrix A in time O(nk).

Theorem 4.2.2 There is an algorithm with a running time of O(nlogn+nk)
which computes the optimal placement of n ads in k slots in the simple Cascade
Model.

4.3 Pricing
4.3.1 VCG Mechanism

At first glance, one would propose the Vickrey-Clarke-Groves mechanism
to manage truthfull bidding. The VCG mechanism would accompany the
above algorithm. Since the bidders report their valuations truthfully and the
algorithm manages to extract the optimal solution, the mechanism admits
maximum efficiency. The VCG mechanism sets standard payments which
resemble the negative exteranality that the agent imposes to the rest. Clearly,
the mechanism concerns the total payments. Formally, the agent occupying
slot i pays:

Ci · pi = OPT−σ(i) − (OPT − vσ(i))

pi =
OPT−σ(i) − (OPT − vσ(i))

Ci

pi =
OPT−σ(i) − (OPT − vσ(i))

(
i−1∏
j=1

cσ(j)) · qσ(i)

,where OPT−j the social welfare of the optimal solution without agent j.

4.3.2 GSP Mechanism
The standard GSP mechanism, currently used, ranks the advertisers

in the decreasing order of qibi and the advertiser occupying slot j pays
pj = bσ(j+1)

qσ(j+1)

qσ(j)
. In contrast to the seperable model, the click-through
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rate’s formula has changed and the mechanism must be analyzed again. Now,
the advertiser’s utility becomes uσ(i) =

i−1∏
j=1

cσ(j) · qσ(i) · (vσ(j) − bσ(j+1)
qσ(j+1)

qσ(j)
).

The GSP mechanism is actually stable, since a Nash equilibrium always
exists. Bidders are indexed in the decreasing order of qivi. The following
bids admit a Nash equilibrium.

bsqs =


v1q1 for s = 1
k+1∑

j=s−1
(

j∏
i=s

ci)vjqj(1− cj+1) for 1 > s ≥ k

vsqs for k > s

Since the stability of the GSP mechanism is guaranteed, it is important
to test it in terms of efficiency. When testing the mechanism generally with-
out any restrictions, the outcome is pessimistic, as in the basic model. Let’s
consider 1 slot and two players such that q1v1 = 0, q2v2 = X and b1 > X,
b2 = 0. In the optimal allocation player 2 occupies the slot generating social
welfare SW = a1X. However, our case is a Nash equilibrium with social
welfare SW ′ = 0. It is clear that the the price of anarchy is infinite.

Again the mechanism will be examined by resticting the analysis in the
case of conservative bidders, bi < vi. The following theorem reveals the effi-
ciency of the GSP mechanism.

Theorem 4.3.1 The price of anarchy of GSP equilibria both against VCG
and the best GSP equilibrium is k (the number of slots) in case of conservative
bidders.

Proof In order to prove the above theorem, I should prove an upper bound
that the price of anarchy cannot overcome and then mention a case where
the price of anarchy really touches this bound, so it is also a lower bound.

Upper Bound: We consider the player with the maximum revenue and
analyze the case that she occupies the first slot and the case that she is side-
lined. Let’s assume that qxvx = max

i
qivi. In case that she occupies the first

slot, the efficiency is clearly 1
k
. In case that player x is sidelined, player y

occupies the first slot and player x awarded slot j. Since we have a Nash
equilibrium Cjqx(vx − pj) ≥ qx(vx − by

qy
qx

.

qxvx − qyvy ≤ qx(vx − by
qy
qx

≤ Cjqx(vx − pj) ≤ Cjqxvx
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qxvx − qyvy ≤ Cjqxvx

qxvx ≤ Cjqxvx + qyvy

The social welfare of the mechanism in such an equilibrium is greater
than Cjqxvx + qyvy. So, an upper bound of 1

k
is guaranteed.

Lower Bound: A specific instance of the game will be presented, and
specific equilibria will be presented to justify the lower bound.

Table 4.1: Example
Player 1 2 3 . . . k k+1

V X X − δ X − 1− δ . . . X − 1− δ X − 1− δ
c 0 1

1+δ
1 … 1 1

q 1 1 1 . . . 1 1

At the table above I consider small positive constants ε, δ and large
enough X.

Optimal Allocation: It is easy to check that the optimal allocation is [k+
1, k, . . . , 4, 3, 1]. The optimal allocation generates a social welfare SWOPT =
kX − (k − 1)(1 + δ).

Nash Equilibrium (NE1): All players bid their values except player 1 who
bids X−1− δ. The resulting allocation is [2, 3, . . . , k, 1] with a social welfare
SWNE1 = X − δ + 1

1+δ
((k − 1)X − (k − 2)(1 + δ)) ≥ 1

1+δ
kX − εX.

Nash Equilibrium (NE2): All players bid their values except player 2 who
bids X−1. The resulting allocation is [1, 2, . . . , k−1, k] with a socail welfare
SWNE2 = X.

Both against the VCG and the GSP equilibria, there is an instance with
a price of anarchy

1
1+δ

kX − εX

X
≥ 1

1 + δ
k − ε

A similar theorem is given for the price of stability of the mechanism,
which also reveals some thoughts for the efficiency of the mechanism. The
theorem will be given without proof.
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Theorem 4.3.2 The price of stability of GSP equilibria against the VCG
mechanism is k, and between k

2
and k in case of conservative bidders.

The GSP mechanism’s behaviour, in terms of efficiency, are reviewed in
the following table:

Table 4.2: Efficiency
PoA PoS

Conservative bidders k k/2
Non-Conservative bidders ∞ [k/2,k]





Chapter 5

Modeling Externalities

While the new cascade model was presented, simultaneously research was
conducted to better understand the end user’s behavior towards a sponsored
list. The cascade model explains some experimental observations which were
made, but the situation seems much more complicated. By studying the
user’s data mentioned before, the cascade model is unable to go with the
experimental analysis. Jeziorski and Segal made a more complete study over
Microsoft’s data, made significant observations and finally proposed a model
for the end user’s behavior. This model is much more general than the re-
strictive seperable and cascade models.

The first interesting observations made were the opposition of the seper-
able click-through rate model. The click-through rates of the advertisements
of certain search strings were studied for a period of time. It is evident that
the click-through rate of a certain domain in a certain position differs anal-
ogously to the advertisements in the other slots. For example, if a domain
had a very competitive advertisement above it’s click-through rate was low.
The differences were statistically significant to extract safe conclusions for
the presence of externalities. The externalities among advertisers seem to be
negative due to the user’s satiation. However, it is believed that there are
also positive externalities but are not so evident from the experimental anal-
ysis due to the prevelance of the negative externalities. A user’s satisfaction
from a certain ad may raise her expectation about the relevance of the other
ads.

From the data there is evidence that the cascade model is also unable to
describe the end user’s behavior. Namely,

• 46 % of users who click do not click in the sequential order of positions
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• 57 % of users who click more than once do not “cascade”, i.e., click on
a higher position after clicking on a lower position.

5.1 Model
According to the seperable model an advertiser’s click-through rate is

the product of her relevance and a slot-specific multiplier. However, there
is the need for a general model, which also accounts for the externalities
between winning advertisers. The characteristics of the new model will be
instilled in the click-through rate. The position-dependent multiplier will
remain and the externalities will be instilled in the advertiser’s relevance.
The externalities between advertisers can be modeled with two Graphs G+

and G−. The allocation is given by a winning set S and a permutation func-
tion π : [n] ⇒ [k]. So a players click-through rate is given by the product
CTRi(S, π) = λi ·Qi(S, π).

So a player’s utility is given by ui(S, π) = λπ(i) · Qi(S, π) · (vi − pi)
and the resulting social welfare is SW (S, π) =

∑
i∈S

λπ(i) · Qi(S, π) · vi =∑
i∈S

ui(S, π) +
∑
i∈S

λπ(i) · Qi(S, π) · pi. It remains to define the player’s rele-
vance according to the winning set and the permutation function π.

Figure 5.1: Winner Determination
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A player has a probability qi to be clicked independently of the other
agents. However, his actual probability of being clicked also depends on the
other agents and their relative position. Positive externalities can be ex-
pressed by the probability that a user is clicked, independently of others or
after clicking an advertiser who influences positively. So, agent’s i probability
to be clicked is Q+

i (S, π) = 1−(1−qi)·
∏

j∈N+
i (S)

((1−qj)+qj(1−wji(dπ(j, i)))) =

1 − (1 − qi) ·
∏

j∈N+
i (S)

(1 − qjwji(dπ(j, i))). Additionally negative externalities

are expressed by the probability that the user’s attention is not distracted by
other advertisers. So, Q−

i (S, π) =
∏

j∈N−
i (S)

((1 − qj) + qj(1 − wji(dπ(j, i)))) =∏
j∈N−

i (S)

(1 − qjwji(dπ(j, i))). The actual relevance is the product of the two

probabilities: Qi(S, π) = Q+
i (S, π) ·Q−

i (S, π).

The model proposed is a general model, which includes many different
cases of models. Facing this model, it is a priority to forget the game-theoretic
aspects and verge it as an allocation problem. Specifically it would be in-
teresting to determine the winning set S and permuation function π, which
produces the optimal allocation. This is the Winner Determination problem.
In the general case we denote the problem as MSW-E (Maximum Social
Welfare with Externalities). Due to its generality, at first sight, the problem
seems hard to compute. So it would be interesting to present specific sub-
cases of the general model to analyze their behavior.

From the analysis of Microsoft’s data, it seems that the users when brows-
ing through the ads are affected towards an ad only by advertisers nearby
it. So a window c can be proposed which includes a subset of successive ads
which affect a specific ad. A new problem is proposed, similar to the initial
one, where wji(l) = 0,if |l| > c. This is the MSW-E(c) problem.

Simpler instances of the above problems are the problem with positive
externalities MSW-PE(c), meaning E− = ∅ and the problem of forward-
only positive externalities MSW-FPE(c), meaning wji(l) = 0, if l < 0. The
forward-only externalities are inspired from the cascade model, where an ad
is influenced by ads allocated above it.
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Figure 5.2: Window

5.2 Winner Determination
5.2.1 Computational Hardness
Theorem 5.2.1 MSW-FPE(1) is NP-hard even in the special case of uni-
form position multipliers, valuation, and qualities.

Proof A reduction to the Longest Path problem is given. The Longest path
problem involves a directed graph G(V,E) and an integer k ≥ 2 and a deci-
sion problem of giving a path with length k. Considering the Longest path
problem, we construct an instance of the MSW-FPE(1) with valuations 1,
relevance 1

2
, k slots and externalities graph G(V,E,∅) with wji(1) =

1
2
. There

are two cases: a) An ad i is not influenced by the slot above it and generates
welfare qi · vi = 1

2
· 1 = 1

2
or b) an ad is influenced by slot j above it and

generates welfare 1− (1− qi)((1− qj)+ qj(1−wji(1))) = 1− 1
2
(1
2
+ 1

2
· 1
2
) = 5

8
.

An upper bound for the optimal allocation is k successive ads correlated one
by one with welfare 1

2
+ (k− 1)5

8
. If there existed a path with k nodes, there

also exists an allocation with such a welfare. So if we knew the optimal al-
location, we could also decide for the longest path problem. This completes
the proof since the longest path problem is NP-complete.

Theorem 5.2.2 MSW-FPE(1) is APX-hard even in the special case of uni-
form position multipliers, valuation, and qualities.

To sketch the proof a reduction to the Traveling Salesperson problem with
distances 1 and 2 is given. TSP(1,2) involves an undirected graph G(V,E)
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with edges of distance 1. All non-edges can be assumed to have distance
2. The goal is to find a path, which includes all vertices, with minimum
total length. Given the graph G(V,E) we construct an instance of the MSW-
FPE(1) problem. It can be proven that given a (1 + ε)-approximation of the
MSW-FPE(1), a (1 + O(ε))-approximation can be extracted for TSP(1,2).
Since TSP(1,2) is APX-hard, MSW-FPE(1) is also APX-hard.

5.2.2 Algorithms
The problem as stated is NP-hard to solve. However, by using the win-

dow there is not the need to choose from all possible permutations. With an
algorithm based in color coding the number of permuations can be reduced.

Theorem 5.2.3 MSW-E(c) can be solved optimally in 2O(k)n2c+1log2n.

Trivially, the winner determination problem could be solved by enumer-
ating all possible permutations and choosing the one which generates the
maximum welfare. All possible permutations are

(
n
k

)
. So O(nk) time is

needed. However the proposed algorithm clearly lowers the complexity and
for k = O(poly(logn)) achieves polynomial complexity.

However, the computational time is exponential. In order to compute in
polynomial time an approximation algorithm should be proposed. I would
use an approach to the problem which makes a reduction to the 3-set packing
problem. Before stating the theorem and proving it, a few words for the 3-set
packing problem.

The 3-set packing problem involves sets with 3 elements at most and
positive weights. The goal is to find the collection of disjoint sets with the
maximum total weight. The problem is NP-hard but some approximation
algorithms are known. The greedy algorithm achieves an approximation ra-
tio of m, and there are two algorithms which give an approximation ratio of
2
3
m and m+1

2
in quadratic and polynomial time respectively.

Theorem 5.2.4 Given an α-approximation T (ν)-time algorithm for Weighted
3-Set Packing with ν sets, we obtain a 2αc-approximation T (kn2)-time algo-
rithm for MSW-PE(c) with n ads and k slots.
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Figure 5.3: 3-set Packing Problem

Proof Initially, it will be proven that the welfare generated by the optimal
allocation can be achieved by 2c instances of the weighted 3-set packing prob-
lem. As a consequence, the optimal welfare of the 3-set packing problem is
a 2c-approximation of the optimal allocation’s welfare. A description follows.

k slots are partitioned into k
2

pairs. Every pair is labeled, p = 1, . . . , k
2
.

In every instance of the allocation problem, a pair is occupied by 2 ads i1
and i2. We construct all possible sets {i1, i2, p} with welfare W (i1, i2, p) =
max{λpQi1(i1, i2)vi1 + λp+1Qi2(i1, i2)vi2 , λpQi2(i2, i1)vi2 + λp+1Qi1(i2, i1)vi1}.
We assume that an ad’s relevance is only influenced by his partner in a pair,
so Qi1(i1, i2) = 1− (1− qi1)(1− qi2wi2i1(1)) and Qi2(i1, i2) = 1− (1− qi2)(1−
qi1wi1i2(−1)).

Lemma 5.2.5 Let c by any positive integer. Given a list (1, . . . , k), there
is a collection of 2c feasible 3-set packings such that for each pair i1, i2 of
ads in (1, . . . , k) with |i1 − i2| ≤ c, the union of these packings contains a set
{i1, i2, p} with p ≤ min{i1, i2}.

Let’s consider W (j) the welfare generated by the j-th feasible 3-set pack-
ing. Due to the lemma

2c∑
j=1

W (j) ≥
k∑

i=1

λivi
2c∑
j=1

Q
(j)
i ≥

k∑
j=1

λiQ
∗
i vi = W ∗

In order to justify the second inequality let’s focus on an ad i with c < i <

k− c. It’s relevance in the optimal allocation is Q∗
i = 1− (1− qi)

i+c∏
j=i−c,j 6=i

(1−
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qjwji(j − i)). Simirarly it’s relevance in the j-th set packing is Q
(j)
i = 1 −

(1− qi)(1− qjwji(−1)). By repeatedly applying that for every x, y, z ∈ [0, 1],
(1− xy) + (1− xz) ≥ 1− xyz we conclude that

i+c∑
j=i−c,j 6=i

(1−(1−qi)(1−qjwji(j−i))) ≥ 1−(1−qi)
i+c∏

j=i−c,j 6=i

(1−qjwji(j−i)) = Q∗
i

Given the optimal weighted 3-set packing, which is a 2c-approximation
of the optimal allocation, the corresponding allocation also serves as a 2c-
approximation, since we assume only positive externalities. So the additional
externalities between corelated ads, which are in different pairs, can only in-
crease the total welfare of the approximate solution.

Since the optimal weighted 3-set packing is a 2c-approximation of the
optimal allocation, a α-approximation of the optimal weighted 3-set packing
is a 2αc-approximation of the optimal allocation.

A more general theorem can be stated by generalizing to the m-set pack-
ing problem.

Theorem 5.2.6 An f(m)-approximation T (ν,m)-time algorithm for Weighted
m-Set Packing with ν sets yields a 2f(2c + 1)-approximation O(ckn2c +
T (kn2c, 2c+ 1))- time algorithm for MSW-PE(c) with n ads and k slots.

5.3 Mechanisms
In order to achieve strategy-proofness the VCG mechanism can be ap-

plied when the allocation algorithm is monotone, since we consider a single-
parameter setting. The exact algorithm for the winner determination prob-
lem, mentioned above, satisfies the monotonicity issue and can be paired with
VCG payments. The VCG mechanism is well studied and very well known.
In this section an analysis will be given for the GSP mechanism, since it is
also the mechanism which is currently used. It will be examined in terms of
stability, under the proposed model, and it’s efficiency for some special cases.
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5.3.1 GSP mechanism
The common use of the GSP mechanism is accompanied with the Rank

by Revenue rule. Given a vector b the slots are allocated to advertisers ac-
cording to φb : K → N . Slot i is allocated to advertiser φb(i). The payment
rule imposes to advertiser i a price (qφb(i+1)·bφb(i+1))

qφb(i)
. Thus, an advertiser φb(i)

has utility uφb(i)(b) = λi ·Qφb(i) · (vφb(i) −
qφb(i+1)

qφb(i)
· bφb(i+1)). The GSP mech-

anism is tested in terms of stability and efficiency, under the assumption of
conservative bidders. The proofs of the following theorems can be found in
the original paper. The player’s private valuation, the externalities and the
position multipliers are carefully chosen in order to admit situations where
there cannot be a stable allocation.

Theorem 5.3.1 The strategic game induced by the Generalized Second Price
Auction mechanism under the RBR rule and deterministic tie-braking does
not generally have pure Nash equilibria in presence of forward positive exter-
nalities, even for 3 conservative agents and 2 slots.

Theorem 5.3.2 The strategic game induced by the Generalized Second Price
Auction under the RBR rule and deterministic tie-braking does not generally
have pure Nash equilibria in presence of bidirectional positive externalities,
even for 3 conservative agents and 3 slots.

Theorem 5.3.3 There is an infinite family of instances of the strategic game
induced by the Generalized Second Price Auction mechanism with unbounded
Price of Stability, even with conservative bidders.

In contrast to the optimistic results in terms of stability and efficiency,
under the seperable model and the cascade model, when externalities are
taken into consideration the GSP mechanism seems unable to guarantee a
similar result.

5.4 Bidding Language Extension
In the present chapter, after it was experimentally shown that externali-

ties between advertisers surely exist, we are trying to construct a model which
includes such externalities. In the beginning, an advertiser’s profit is defined
as the product of her value per click times all clicks. The number of clicks
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were represented by the click-through rate. The main efforts to express ex-
ternalities between advertisers were made by changing the click-through rate
model, as shown. A user’s attention can be distracted from a specific ad and
be influenced to click or not to click other ads. Truly, it was experimentally
shown that the total clicks of an ad are affected by the other allocated ads.
This kind of externalities are called quantity externalities.

However, the externalities between advertisers are not present only in
the clicking process. After a user click in several advertisement she chooses
from them. If two ads are competitors, there is a small possibility for the
user to buy both. So an agent’s value per click may vary, depending on the
allocated ads. This can be better undestood as the value per click can be
seen as vclick = vconv ·Pr(conv|click). The probability that a user’s click will
be converted to a sale depends on the other clicked ads. This means that
a single-dimensional representation of a user’s value per click totally ignores
any externalities. This kind of externalities are called value externalities.

Since the bids of these auctions express this value, in order to express
such externalities it seems inevitable to extend the bidding language. The
ideal model would require from every agent to report a value for every pos-
sible allocation of the agents to the slots. However, this would be extremely
challenging from the user’s perspective and it would dramatically increase
the computational complexity of the allocation problem. There is a need for
a middle solution. A bidding language which would not increase the bid’s
dimension a lot, but lets the agent to express her preferences. The research
in such direction is a poor since a change in the bidding language would be
difficult to be assimilated by the existing system.

Although, to have a better look in such direction I would present simple
models which expand the current one. The models attempt to change the
bid dimension as less as possible using clever ways. An analysis will propose
possible mechanisms and test their stability, efficiency and revenue. At all
times mechanisms which extend the current GSP mechanism would be pref-
ered since they can extend the existing system. Subsequently, i will mainly
describe such models and give a small intuition on how an analysis can be
done.
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5.4.1 Unit-bidder Constraints

Having in mind the prevelance of negative externalities it would be a great
idea to let agents report their undesirable allocations. So, an advertiser can
report her preferences with a two-dimensional vector for the desirable and un-
desirable allocations. So, an agent’s bid is composed from a two-dimensional
vector and a set of constraints. For example, an agent 1 reports that she
doesn’t want agent 2 above her. Formally, unit-bidder constraints can be
represented by a set of triples (posi, j, posj). This means that bidder i, if
allocated at slot posi, doesn’t want bidder j at position posj. So a user can
restrict possible allocations targeting on specific bidders. This model cannot
fully define desirable and undesirable allocations but is quite close and ex-
tremely intuitive.

Such model also has the property to admit identity-specific and slot-
specific constraints. Namely, a user can restrict a specific bidder being above
her or restrict herself being below a specific slot. A user can also report
that she want a specific bidder to be excluded from the sponsored list. This
is quite intuitive if such a bidder is a major competitor. All these special
constraints are actually subcategories of the general unit-bidder constraints.

A natural mechanism used for such a model is the expressive GSP (eGSP).
The expressive GSP is an extension of the existing system and allocates slots
to bidders greedily choosing every time from a set of bidders, in such a way
that a constraint of the already allocated bidder is not violated. The allo-
cated bidder is then charged the minimum bid she should have to gain the
same place.

The approximation ratio of eGSP can be bounded but actually the sta-
bility analysis is worth mentioning. Bidders are called to report their con-
straints, meaning that they can falsely report them. This makes our job quite
tricky because truthfulness cannot be achieved with standard ways. It can
be shown that really this is extremely difficult, if not impossible, to achieve.
So the analysis is done in the basis that bidders truly report their constraints
but can falsely report their values. So we try to achieve semi-truthfulness.
Even in this simplified version the task is challenging and only for special
cases, such as for exclusion constraints, it can be achieved. See [6] for clear-
ance.
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5.4.2 Exclusive and non-Exclusive Display
Another simplified idea is that an advertiser may wish to be allocated a

slot without any others nearby. This is called exclusive display. In such way
she gets rid of negative externalities from competitors. For specific values of
externalities and a user’s values, the social welfare of the mechanism may be
higher for exclusive display. Consider n agents having valuation ε if allocated
together and an agent having valuation 1 if exclusively allocated. For small ε
the exclusive display is optimal. Having this in mind a reasonal mechanism
takes input from agents a two-dimensional bid (b, b′) for exclusive and non-
exclusive display.

So bidders report their values and a single bidder is allocated or multiple
bidders. Two reasonable mechanism can be proposed. GSP2D is a general-
ization of the GSP mechanism which charges the same if multiple bidders
are displayed. However, if a bidder has higher valuation being exclusively
displayed, so is done. She pays the social welfare achieved if multiple bidders
were allocated. NP2D is also a generalization of the GSP mechanism but is
based on the next-price rule. The mechanism computes the optimal alloca-
tion and then charges every agent the minimum bid to retain her position.
In such a two-dimensional setting, which is the next price. If an agent is
exclusively displayed, she is charged the second maximum b or the minimum
bid to retain the exclusive display. If an agent is displayed in a list, she is
charged the maximum of the following advertiser’s bid or the minimum bid
to retain the non-exclusive display.

See [12] for stability and efficiency analysis and the revenue generated.
Both mechanisms have equilibria and they are compared in terms of efficiency
and revenue generated. They are also compared with VCG mechanism which
achieves truthfulness. No mechanism is prefered since in some cases each one
is better.
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