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Περίηψη

Ο εντοπισμός αών σε προράμματα κατά τη διαδικασία της ανάπτυξης καώς και οι έεοι
σε ήδη υπάροντα κώδικα συνιστούν σημαντικό μέρος του ρόνου που απαιτείται ια την
ανάπτυξη και τη συντήρηση εφαρμοών. Συνεπώς η ανάπτυξη εραείν που οηούν τον
προραμματιστή στον εντοπισμό αών είναι σημαντική ια τον περιορισμό του απαιτούμενου
ρόνου και την αύξηση της αποτεεσματικότητας τν εέν. Αυτή η ερασία ίνεται στο
παίσιο του Dialyzer, ενός εραείου που ρησιμοποιεί στατική ανάυση ια να προσδιορίσει
άη σε προράμματα στη ώσσα Erlang. Η ανίνευση αών ασίζεται στην εξαή
τύπν με ρήση τύπν επιτυίας (success typings), η οποία όμς δεν υποστηρίζει πουμορφι-
κούς τύπους στα ορίσματα και στους τύπους επιστροφής τν συναρτήσεν. Σε αυτή την
ερασία επεκτείνονται οι δυνατότητες του Dialyzer με την εισαή πουμορφικών τύπν με
στόο την ανίνευση, με μεαύτερη ακρίεια, αών σε προράμματα όπου ρησιμοποιούνται
πουμορφικές δομές δεδομένν.

Λέξεις Κειδιά

Στατική ανάυση, Συμπερασμός τύπν, Τύποι επιτυίας, Πουμορφικοί τύποι, Erlang, Dia-
lyzer

5





Abstract

Error correction in programs during the development phase as well as in existing code
tends to consume a significant fraction of programmers’ time. Tools that address this
problem by automating error detection result in less time consumed during development
and testing as well as reduced number of bugs. This thesis is done in the context of the
Dialyzer, a static analysis tool that detects programmer errors in Erlang programs such as
definite type errors, unreachable code due to unsatisfiable conditions, concurrency errors,
etc. To detect type errors, Dialyzer is using type inference of success typings, which albeit
is currently restricted to inferring monomorphic types of arguments and return results of
functions. This thesis presents the extention of this analysis to add parametricity to these
types and thereby be able to possibly catch more errors in programs where polymorphic
types such as sets, trees, etc. are used.

Keywords

Static analysis, Type inference, Success Typings, Polymorphic types, Erlang, Dialyzer
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Chapter 1

Introduction

Erlang is a widely used programming language. Its main use is in the telecommunications
industry, where fault-tolerance and support for concurrency is essential. It is dynami-
cally typed, which allows fast development time and increased programmer productivity.
However, the flexibility of a dynamic type system is often a drawback rather than an
advantage when developping large scale applications. In this case, the failure of the type
system to impose strict constraints about the allowed use of language constructs often
leads to serious semantic errors being undetected at compile-time, which in turn results
in time consuming debugging after the error has been identified at runtime.

Dialyzer (DIscrepancy AnaLYZer for ERlang) is a static analysis tool, which was developed
in order to address this problem. It uses the type information that is implicit in Erlang
programs to infer the widest possible input and return types for which functions may
succeed. This approach leads to zero false positives, and only detects definite errors.
Apart from this analysis, based on success typings, Dialyzer has been gradually extended
in order to detect different classes of errors.

Aiming to improve Dialyzer’s accuracy even further, this thesis focuses on including poly-
morphic types in the analysis. Currently, Dialyzer is restricted to inferring monomorphic
types of arguments and return results of functions. Type variables are eliminated during
the analysis, thus information about polymorphic types is lost. The remaining informa-
tion expresses only the widest possible domain and range for which a function call may
succeed, and not the relationship between them. This analysis will improve the accuracy
of error detection in programs where polymorphic data structures are used by maintaining
type variables in the success typings of functions, as well as the corresponding constraints
about their types. As a result, more accurate constraints will be available at the call sites
of polymorphic functions, which will express the relationship between the types of the
arguments and the result during the analysis.

The rest of this diploma thesis is organized as follows. In Chapter 2 we provide a general
background for Erlang and Dialyzer, essential for the comprehension of the problem we
address. In Chapter 3 we describe the changes that were required for the generation and
analysis of polymorphic types. Finally, Chapter 4 contains related work and suggestions
for further work related to this thesis.
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Chapter 2

Background

2.1 Erlang

Erlang is a general-purpose declarative programming language with automatic memory
management and support for distribition, fault-tolerance, soft-realtime execution and on-
the-fly code reloading. It also supports concurrency, with a small but powerful set of
primitives which allow the creation of processes and the communication between them.
Its sequential subset is a functional language, with single assignment, strict evaluation and
dynamic typing [2, 6].

Erlang was originally designed in order to improve the development of telephony appli-
cations. Its main implementation, the Erlang/OTP(Open Telecom Platform), developed
by Ericsson, has been open source since 1988 and has been used by several companies
worldwide, such as Ericsson, Nortel, T-mobile, for the development of large-scale appli-
cations. Nowadays, its main application remains in large-scale embedded control systems
developed by the telecommucications industry. However, its popularity is growing due to
the demand for concurrent fault-tolerant services.

2.2 Dialyzer

Dialyzer (DIscrepancy AnaLYZer for ERlang) is a static analysis tool used to detect dis-
crepancies in single erlang modules or applications [5]. These discrepancies may be definite
type errors, redundancies such as dead or unreachable code due to programmer error or
unsatisfiable conditions, and recently concurrency errors (race conditions) ([8, 9, 4]).

The analysis performed in Dialyzer is sound for error, since it aims to identify the widest
possible set of terms for which it can be proved that type clashes will occur. To this end,
Dialyzer’s inference algorithm is based on success typings, which is the set of terms for
which the abovementioned cannot be proved. For any function, its success typing is an
over-approximation of the set of terms for which the application will succeed. The domain
of a function’s success typing contains all the possible terms which the function can accept
as parameters, and its range contains all the possible return values corresponding to this
domain. The aim of the inference algorithm is to reduce the domain and the range of
the success typing as much as possible without excluding any valid terms. This approach

17



18 Chapter 2. Background

means that the success typing of a function contains all the correct uses of a function, as
well as some mistaken. If a function is used in a way that is compatible with its success
typing, then the call may or may not succeed, but if it is used in an incompatible way
then it will definitely fail.

2.2.1 Analysis

In order to find the success typings, Dialyzer traverses the code of all functions included
in the analysis in order to generate constraints. Dialyzer then iterates between constraint
solving (bottom-up) and dataflow analysis (top-down) until it reaches a fix point or until
the analysis fails. The fix point, if reached, constitutes the success typings.

2.2.2 Refinement

The module system of Erlang allows for specialising the success typings of module-local
functions based on their actual instead of their possible uses. For the refinement procces,
Dialyzer uses a dataflow analysis which propagates information forward in the control
flow. This analysis starts at the entry point of all functions that are not module-local,
assigning to their arguments the domains of their success typings, and takes into account
the fact that all the functions’ intended calls are known in order to tighten the existing
success typings. The refined succes typings allows Dialyzer to locate more type clashes,
case clauses that can never match, guards that will always fail, and other errors.

In Listing 2.1, the type of function id/1 will be calculated as any() -> any(). However,
since the function is not exported, its type will be further restricted based on its actual
uses, and its final type will be 42 -> 42.� �

1 -module(id).
2 -export([foo/0]).
3
4 id(X) -> X.
5
6 foo() -> id(42).� �

Listing 2.1: Refinement example

2.2.3 Type specifications

Dialyzer offers the programmer the ability to restrict the type of a function by providing a
contract that captures its intended uses. Dialyzer uses this information to further restrict
the success typing generated for the function. However, in order for Dialyzer to take the
contract into account, it must be more specialized that the available success type for the
above mentioned function.

The contracts can be overloaded, but if they overlap, or if they are not specific enough for
the analysis to choose which clause to consider, they are collapsed by taking the union of
their clauses. Listing 2.2 contains a simple and an overloaded, thus more restrictive, spec
for a function which perfors a numerical operation to one argument.
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� �
1 -spec numeric_function(number()) -> number().
2
3 -spec numeric_function(integer()) -> integer();
4 (float()) -> float().� �

Listing 2.2: Contract example

2.3 Type System

2.3.1 Sets of terms

A piece of data of any data type is an Erlang term. Erlang provides more specific data
types for all the basic term sets. These types constitute a lattice, with the type any()
being the top type and the type none() being the bottom type. Table 2.1 describes these
sets.

Set of terms Description Examples
Integer A mathematical integer -17,0,1,42
Float A floating point number -3.14,2.718
Atom A constant with name hello,’hi’
Bitstring An untyped series of bits 3:1,7:6
Binary An untyped series of bytes 1, 17, 42, ”abc”
Reference A term unique in Erlang runtime

system
—

Function Functional object fun(X) -> X + 1 end.
fun lists:map/2

Port Identifier A handle for referring to external
programs

—

Proccess Identifier A handle for referring to Erlang pro-
cesses

—

Tuple A compound term with a fixed num-
ber of elements of any type

{adam, 2}
{tree, left_leaf, right_leaf}

List A compound term with a variable
number of elements of any, not nec-
essarily the same, type

[1, 2, 3]
[42]
[1, foo, [3, 4, bar]]

Table 2.1: Common sets of terms

2.3.2 Built-in Erlang Types

The Erlang types that describe the previous sets of terms are included in Table 2.2.
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Set of terms Related Erlang Type Description

Integers

integer() all integers
neg_integer() negative integers
non_neg_integer() non-negative integers
pos_integer() positive integers
<Int> a specific integer (singleton type)
<Lo>..<Hi> integers between Lo and Hi

Floats float() all floats

Atoms <Atom> a specific atom (singleton type)
atom() all atoms

Bitstrings

bitstring() all bitstrings
 the empty bitstring (singleton type)
_:_*<U>  bitstrings of length ele-

ments_number * U (in bits)
_:<B>,_:_*<U>  bitstrings of length B*U (in bits)

Binaries
binary() all binaries
 the empty binary (singleton type)
_:<B>  binaries of length B (in bytes)

References reference() all references

Functions

fun() all functions
fun((...) -> Type) functions of any arity returning

Type
fun(() -> Type) functions of zero arity returning

Type
fun((T1,...,Tn)-> R) functions of arity N, accepting ar-

guments of types T1, ..., Tn respec-
tively and returning R

Ports port() all ports
Pids pid() all pids

Tuples
tuple() all tuples
{} the zero-size tuple (singleton type)
{T1,...,Tn} N-arity tuple with elements of types

T1, ..., Tn respectively

Lists
[] the empty list (singleton type)
list(T),[T] lists with elements of type T

(proper)
[T,...] lists with elements of type T

(proper)
T1|...|Tn the union of terms represented by

types T1, ..., Tn
any() all Erlang terms
none() no terms

Table 2.2: Built-in erlang types



2.4 Analysis 21

2.4 Analysis

For efficiency reasons, the analysis begins by creating the global function callgraph, which
is a directed graph with functions as nodes. The callgraph represents the dependencies
between functions, using the notation that if function f calls function h then the graph
contains an edge (f,h). Calls between mutually dependent functions form cycles in the call
graph, which constitute strongly connected components. The callgraph is then condensed
to its SCCs, ending up to be a directed acyclic graph. The resulting DAG is sorted
topologically in order to determine functions with no dependencies (which belong to the
SSCs that are the leafs of the DAG). These functions are the starting point of the inference
algorithm, which continues bottom-up. During the analysis phase, each variable detected
in the code is assigned a type variable, each function is assigned two type variables (one
general and one for self-calls and calls within the function’s SCC), and this mapping is
stored. After that, the code is traversed in order to generate constraints. Dialyzer iterates
between constraint solving (bottom-up) and dataflow analysis (top-down) until it reaches
a fix point or until the analysis fails. The fix point of the analysis is the success typings
for the functions of the SCC.

2.4.1 Constraint Generation

At the beginning of the analysis phase, Dialyzer traverses the code and constraints are
generated. The constraints are of the following types:

� �
1 -type constr() :: constraint() | constraint_list() | constraint_ref().� �

Listing 2.3: Constraint types

Simple Constraint: This form of constraint expresses the relationship or equality of
subtyping between the left hand side and the right hand side of the constraint. An
example of its generation during the initial phase of the analysis is a function call,
to state that the types of the actual arguments and the result of the call must be
subtypes of the types of the formal arguments and the result of the function according
to its success typing.

Conjuctive List: This form of constraints expresses the fact that all the constraints
which are contained must be satisfied simultaneously. Typically, conjuctive lists of
constraints are generated from traversing simple functions with no branches, and
contain simple constraints.

Disjunctive List: This form of constraints is used to represent constraints whose dis-
junction must hold. This is the case when any kind of branches is present at the
code, for example functions with multiple clauses, if statements and case state-
ments. For this case, the constraints for each clause/branch form a conjuctive list,
and and these lists are joined in a disjunctive list.

Constraint References: This type of constraint is generated by anonymous or higher
order functions.
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The module demo in Listing 2.4 will be used to demonstrate the main types of constraints
that are generated.� �

1 -module(demo).
2 -export([bar/1]).
3
4 foo(1) -> 3;
5 foo(2) -> 4.
6
7 bar(X) -> Y = foo(X), Y.� �

Listing 2.4: Constraint example

The constraints for function foo/1 (Listing 2.5) are:� �
1 Conjunctive List 3:
2 % Assosiates the type of the function with its arguments and return type:
3 fun((var(4)) -> var(11)) eq var(12)
4 % Every function with one argument must be subtype of the type any() -> any():
5 var(12) sub fun((_) -> any())
6 % Generated because foo/1 has two clauses:
7 Disjunctive list 2:
8 % Constraints for the first clause:
9 Conjunctive List 0: 1 eq var(4), 3 eq var(11)
10 % Constraints for the second clause:
11 Conjunctive List 1: 2 eq var(4), 4 eq var(11)
12 ...
� �

Listing 2.5: Constraints for function foo/1

The success typing for function foo/1 at the end of the analysis (Listing 2.6) is:� �
1 Succ typings:
2 {demo,foo,1} :: fun((1 | 2) -> 3 | 4)
� �

Listing 2.6: Success type of foo/1

Dialyzer uses this result to analyze function bar/1. The constraint list can be seen in
Listing 2.7.
In this example, we notice some general constraints:

Function constraint: This constraint has the general form that is shown at the first
element at lists 0 and 3. Its purpose is to assosiate the type of the function with its
arguments and the result. Function foo is assosiated with the type variable var(12),
which is the type variable of a function with arity 1, one argument assosiated with
the type variable var(4) and return type assosiated with the type variable var(11).
Solving this constraint actually binds the function to its type.

Contraints from clauses: List 2 is a disjunctive list of constraints corresponding to the
two clauses. Generally, there will be as many elements in the disjunction as many
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� �
1 Conjunctive List 0:
2 % Assosiates the type of the function with its arguments and return type:
3 fun((var(13)) -> var(23)) eq var(24)
4 % Every function with one argument must be subtype of the type any() -> any():
5 var(24) sub fun((_) -> any())
6 % Result of function call:
7 fun((var(45)) -> var(44)) eq var(43)
8 % Result of function call:
9 var(43) sub fun((1 | 2) -> 3 | 4))
10 % Result of function call:
11 var(15) sub 3 | 4
12 % Result of function call:
13 var(15) sub var(44)
14 % Result of function call:
15 var(14) sub 1 | 2
16 % Result of function call:
17 var(14) sub var(45)
18 ...
� �

Listing 2.7: Constraint example for function bar/1

clauses the function has. Similarly, disjunctive lists are the result of other branches,
like case and if statements.

Function Calls: Function calls generate a conjunctive list which requires the types of all
actual arguments and the actual return type of the function call to be subtypes of
the respective types in the success type of the function.

2.4.2 Constraint Solving

Constraint solving is an iterative process, and continues until it reaches a fixpoint. For
simple constraints, solving simply requires restricting the type of the type variables in-
volved according to the operation that is described by the costraint (equality or subtyping)
and updating the mapping with the current result. Solving constraint lists or refs require
storing the previous mappings and compare to with the result of another iteration in order
to determine whether changes occur.

2.4.3 Storing

When a fixpoint is reached, the success types are stored in a Persistent Lookup Table
(PLT). The PLT can be used for future reference, as a base of trusted and type-checked
code in order to analyze other erlang functions and modules which contain calls to analyzed
code.
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Polymorphic Types

Currently, Dialyzer is restricted to inferring monomorphic types of arguments and return
results of functions. At the beginning of the analysis, the most general type for every type
variable is assumed, that is any() for every variable and fun(any(), ..., any()) -> any()
(any() is repeated N times as an argument type) for every function with arity N. While
solving a simple constraint, Dialyzer maps the left hand side of a subtyping constraint or
both sides of an equality constraint with the widest possible type that is contained in both
types (erl_types:t_inf/2), as they derive from the current mapping, and updates the
mapping. As a result, the types are gradually restricted, but information about equality
between type variables is lost. It is this problem that is addressed here, in that managing
to collect and use information about the equality between type variables that is included
in the constraints will result in detecting polymorphic types, which in turn will increase
the accuracy of error detection due to more strict constraints derived from the call sites
of polymorphic functions.

3.1 Storing

In order to produce and use information about polymorphic types in the analysis, keeping
information about type variables is essential. The current representation of function types
in the PLT is in the format {Result_Type, [Argument_Type]}, where the Result_Type
and the list of elements of type Argument_Type are restricted to constant erlang types.
This needed to be extended, in order to include both the constant type of the function,
for consistency of the current analysis, and the polymorphic type as well as the con-
straints that apply to the type variables that it contains. As a result, an entry to the PLT
may be {Result_Type, [Argument_Type]} or {Result_Type, [Argument_Type], {Poly-
morphic_Function_Type, [Constraints]}}. For simplicity, since these constraints always
express subtyping, each of them is represented as a tuple {Type Variable, Corresponding
Type}.

3.2 State Definition

During the analysis of an SCC, information required for the analysis are stored in a record
of type state. This record will be referred as State. The fields that are of interest are
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mentioned:

cmap: A dictionary which after traversing the code of each function in the SCC contains
the constraint list for every function in the SCC.

next_label: A field of type label, whose value is higher that any label used in the code.

In order to generate and use information abut polymorphic types, the record State is used
to store some additional information.

p_labels: For the purposes of the analysis, a field of type [label] is kept, and is initialized
as an empty list when the record State is created. This field will be used to determine
which type variables were inserted due to polymorphic function constraints, thus will
be treated differently in constraint solving.

fun_vars: A dictionary which maps each polymorphic function to its polymorphic type,
if one has been generated.

3.3 Constraint Generation

In order for the analysis to use information about polymorphic types, two elements are
required.
Firstly, unique type variables must be assigned to the variables that are used to capture in-
formation about each call. This is essential, because although a polymorphic type variable
is bound to a type during a call, this type is generally subject to change between different
calls. For this reason, the type variables related to the constraints generated from one call
are given a unique identifier, rather than using a symbolic name, permanently stored in
the PLT. This is accomplished by the function create_pvars (Listing 3.1), which returns
a mapping between the plt type variables and the unique ones that will be used for analy-
sis. This function also returns the new record State from which the constraint generation
will continue, to ensure the uniqueness of type variables and to provide information about
the created polymorphic type variables.� �

1 create_pvars([],Mapping,State) -> {dict:from_list(Mapping),State};
2 create_pvars([Hvar|Tvars],Mapping,State) ->
3 {NewState, NewVar} = state__mk_var(State),
4 OldId = erl_types:t_var_name(Hvar),
5 NewId = erl_types:t_var_name(NewVar),
6 create_pvars(Tvars,[{OldId,NewId}|Mapping],
7 NewState#state{p_labels = [NewId|p_labels]}).� �

Listing 3.1: Generation of unique type variables

Secondly, appropriate constraints must be generated when acquiring information about
the function type from the PLT.
These goals are accomplished by the following procedure (Listing 3.2), which is now in-
cluded in function dialyzer_typesig:get_plt_constr/4. While describing this proce-
dure, we refer to the function’s polymorphic type in the PLT as PltPolType and to the
list of constraints that contains the information about its type variables as ConList.
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• collect the type variables that are used in the function success typing

• for each type variable that is required for the representation of the polymorphic type,
generate a new type variable. The result of the function is a mapping between the
plt type variables and the unique ones that will be used for analysis. This function
also returns the new record State from which the generation will continue, to ensure
the uniqueness of type variables

• use the polymorphic type instead of the constant type in order to determine the
Result_Type and [Argument_Type]

• isolate the types of the polymorphic type variables

• express the constraint by using the unique type variable for each constraint

• create a conjunctive list of constraints about the function’s actual arguments, result
and type variables.

� �
1 VarList = erl_types:t_collect_vars(PltPolType)
2 {NewVarDict,NewState} = create_pvars(VarList,[],State)
3 ActualParType = erl_types:t_replace_vars(PltPolType, NewVarDict)
4 ActualRetType = erl_types:t_range(ActualParType)
5 ActualArgTypes = erl_types:t_fun_args(ActualParType)
6 {PltVars,Types} = lists:unzip(ConList)
7 ActualVars = lists:map(fun (X) -> erl_types:t_replace_vars(X, NewVarDict) end,
8 PltVars)
9 state__store_conj_lists(lists:append([Dst|ArgVars],Types), sub,
10 lists:append([ActualRetType|ActualArgTypes],ActualVars),
11 NewState)� �

Listing 3.2: Constraint generation for call to a polymorphic function

3.4 Solving

3.4.1 Find polymorphic types

In order to detect polymorphic types, we need to find which types are related with equal-
ity constraints within a conjunctive list of constraints. It is required that the equality
constraints are not part of disjunctive lists of constraints. If this is the case, then there
might be a clause where two types are equal, but there is no guarantee that equality holds
in general, thus it is not safe to include information from these constraints.

To accomplish that, we use a union-find approach for each function [1], whose steps are
dercribed briefly.

• The constraints for each function in the current analysis phase are gathered from
the current record State (field cmap of record State containts the mapping between
a function’s identifier and the respective list of constraints).
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• The type variables that are bound with the function’s domain and range are inserted
in a union-find data structure. The constraint list is traversed, in order to gather
information about the types that are detected in equality constraints. These types
are also inserted in the union-find data structure as singleton sets.

• The constraint list is traversed again, and for every equality constraint that we detect
the types of the left hand side and the right hand side of the constraint are unified.
The new representative of the set is determined by the following rule:

– Between two type variables, the type variable with the smaller identifier is
chosen.

– Between a type variable and any other type, the latter is chosen.

• The domain and the range of the function are the types of the representatives of
their sets. The type variables that are contained in the domain and the range are
extracted, and if every type variable in the function’s range also occurs in its domain,
the function is polymorphic and its type is calculated using the interface provided
in erl_types, and specifically the function t_fun(Domain,Range).

3.4.2 Storing polymorphic types

After completing the analysis of a function or an SCC, a mapping between the identifiers
and the types of each analyzed function is returned. This information is later stored in
the PLT for future reference. Currently, a function’s type is looked up in a mapping with
its unique function key as identifier. In order to provide information about polymorphic
types as well, the previously created field fun_vars is required. The function’s type is
looked up in both the original mapping and fun_vars. If fun_vars contains a polymor-
phic type, then the type variables that are assosiated with it are looked up in the same
mapping in order for their types to be found in the context of the function/SCC. Then,
the appropriate list of subtyping constraints (in the form discussed earlier) are produced,
and the function returns a tuple with two elements: the function’s constant type, and the
function’s polymorphic type along with the subtyping constraints for its arguments and
range. Otherwise, the function’s constant type is returned.

3.4.3 Analysis of polymorphic types

The heart of the analysis algorithm is the function dialyzer_typesig:solve_one_c/3,
which solves a simple constraint (first argument) in the context of a given mapping (second
argument), and returns a new mapping with the types assosiated with the type variables
of the constraint. As mentioned before, a function call generates subtyping constraints
between its actual arguments and result and its corresponding success type. The problem
addressed here is that in the case of polymorphic functions, we can further restrict the
polymorphic type of the function, for a specific call. Since the function is polymorphic,
and unique type variables are used to express the constraints for this call, then we can
safely

• narrow the type of the function’s formal argument for the specific call to be equal
to the types of its actual parameters. If this type is more general that the one
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specified for the function by its success type, then the type of the actual parameter
will be restricted instead, as usual. For example, a constraint generated for an actual
argument with type var(x) and corresponding formal argument var(y), restricted to
integer(), would be {lhs = var(x), op = sub, rhs = var(y)}, {lhs = var(y),
op = sub, rhs = integer()}. Assume that var(x) is bound to type 0. Currently,
the solution of this set of constraints will match the type variable var(y) to the type
integer(), when clearly it can be further restricted to the type 0 for this call.

• in the same way, narrow the type of the function’s result for the specific call to be
equal to the type of the actual result.

In other words, when constraints related to calls of polymorphic functions occur, the
subtyping constraints can be treated as equality constraints.

This is accomplished by introducing the reverse constraint when solving constraints whose
right hand side is a type variable of a polymorphic type. The variables that were intro-
duced due to polymorphic function types can be detected by using the field p_labels that
is kept in the record State for the current SSC. Since it was updated with the correspond-
ing identifier for every type variable that was introduced during constraint generation for
calls of polymorphic functions, it contains an exhaustive list of all these variables during
the solving phase. As a result, a new function solve_one_c/4 is defined, whose fourth
argument is the record State. After invoking solve_one_c/3, it checks whether the con-
straint has a type variable which was introduced during a call to a polymorphic function
as its right hand side. If this is the case, then this constraint expresses the abovemen-
tioned relationship between a polymorphic function’s actual and formal arguments, and
as a result solve_one_c/3 is invoked again for the reverse costraint.

3.5 Evaluation of proposed analysis

The proposed analysis is demonstrated using a small erlang module, shown in Listing 3.3.� �
1 -module(foo_bar).
2 -export([foo/2,bar/0]).
3
4 foo(X,Y) -> {Y,X}.
5
6 bar() -> {A,B} = foo(1,’hi’), A+B.� �

Listing 3.3: Definite type error

As mentioned earlier, the analysis currently performed by Dialyzer does not detect the
type error, thus runtime failure will occur. This type error cannot be detected because
the success typing of function foo/2 is fun((any(),any()) -> {any(),any()}, which fully
captures the constraints about the expected inputs and the output but does not express
the relationship between the input arguments and the result. The constraints generated for
function bar/0 (Listing 3.4) demonstrate the fact that the actual arguments of the function
call are restricted to be subtypes of the function’s formal arguments (type variables var(55)
and var(56)) and also the result at the call site of the function (type variable var(19)) is
restricted to be subtype of the function’s result (type variable var(54)).
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� �
1 Conjunctive list 0
2 % Generic function constraint
3 fun(() -> var(33)) eq var(34)
4 % A function with arity 0 is subtype of fun(() -> any())
5 var(34) sub fun(() -> any())
6 % Type of foo/2
7 fun((var(55),var(56)) -> var(54)) eq var(53)
8 % Type of first actual argument of foo is subtype of first formal argument
9 1 sub var(55)
10 % Type of second argument of foo is subtype of second formal argument
11 ’hi’ sub var(56)
12 % The return result of the function call is subtype of the function’s result type
13 var(19) sub var(54)
14
15 {var(57),var(58)} eq var(19)
16 var(19) sub Fun@L781(var(19))
17 % A tuple with two elements is subtype of {any(),any()}
18 var(19) sub {_,_}
19 ...
� �

Listing 3.4: Constraints for function bar/0

Our analysis, using the union-find algorithm that was described earlier (3.4.1) will gen-
erate the polymorphic success typing fun((var(1),var(2))->{var(2),var(1)}) for function
foo/2. This type will be stored in the PLT, as well as the corresponding PLT constraints
[{var(1),any()},{var(2),any()}]. Given the polymorphic type of function foo/2, the con-
straint generation process that is presented in the above section (3.3) will produce the
following constraints (Listing 3.5):

� �
1 Conjunctive list 0
2 % Generic function constraint
3 fun(() -> var(33)) eq var(34)
4 % A function with arity 0 is subtype of fun(() -> any())
5 var(34) sub fun(() -> any())
6 % Type of foo/2
7 fun((var(55),var(56)) -> var(54)) eq var(53)
8 % Type of first actual argument of foo is subtype of first formal argument
9 1 sub var(55), var(55) sub any()
10 % Type of second argument of foo is subtype of second formal argument
11 ’hi’ sub var(56), var(56) sun any()
12 % The return result of the function call is subtype of the function’s result type
13 var(19) sub var(54), var(54) sub {var(56),var(55)}
14 ...
� �

Listing 3.5: Constraints for function bar/0

During the constraint generation, the type variables var(54), var(55) and var(56) will be
added in the field p_labels of the record State, in order to indicate the fact that they are
generated to describe the application of a polymorphic function.
During the analysis of function bar/0, described in section 3.4.3, the constraints {lhs =
1, op = sub, rhs = var(55)} and {lhs = ’hi’, op = sub, rhs = var(56)} will be
treated as equality constraints, and the types of the type variables var(55) and var(56)
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will be bound to the types 1 and ’hi’ respectively. As a result, the result of the function
call at this site will be restricted to {’hi’,1}. The analysis will then be able to detect the
type error that occurs due to the use of operator ’+’ with non-arithmetic operands.

This example, however small, demonstrates the significant type information that can be
captured using polymorphic types. Applying this analysis in larger modules, where poly-
morphic data structures are used, will have similar effect in the accuracy of error detection.





Chapter 4

Related and Future Work

4.1 Related Work

As far as Erlang is concerned, Tobias Lindahl and Konstantinos Sagonas have proposed
and developed a static analysis tool, Dialyzer, which is based on the concept of success
typings, and is used to extract type information that is implicit in Erlang programs and
to detect definite errors [8], as opposed to the usual approach of static type systems,
which are sound for correctness. Additionally, a language for specifying type contracts
at the level of individual functions has been developed [7] by Miguel Jimenez, Tobias
Lindahl and Konstantinos Sagonas. This language allows the user to provide information
about the intended uses of a function despite its more general type, and as a result allow
further specialization of the inferred type. Dialyzer has recently been extended to emmit
warnings about different classes of errors, like data races ([4]). Also, the type system has
been extended to include intersection types, which improved the accuracy of the analysis
and the ability to detect actual errors ([3]).

4.2 Future Work

4.2.1 Sophisticated analysis for polymorphic types

Currently, the analysis is restricted to generate polymorphic types for simple functions.
Future work can focus on developing a more sophisticated approach, that can generate
polymorphic types for functions with many clauses or self-recursive functions.

4.2.2 Polymorphic contracts

The constraint generation and analysis for polymorphic functions can easily be extended
in order to include user-provided information. As a result, polymorphic type specifications
may also be used in order to further improve the accuracy of the analysis.
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