
Ενικό Μετσόιο Πουτενείο
Σοή Ηεκτροόν Μηανικών και Μηανικών Υποοιστών

Τομέας Τενοοίας Πηροφορικής και Υποοιστών

Σεδίαση και υοποίηση ενός εραείου
ανάυσης της εκτέεσης ενός προράμματος

σε πουπύρηνες αριτεκτονικές ια τη
ώσσα Erlang

Διπματική Ερασία
του

Αανάσιου Τιντινίδη

Επιέπν: Κστής Σαώνας
Αν. Καηητής Ε.Μ.Π.

Εραστήριο Τενοοίας Λοισμικού
Αήνα, Σεπτέμριος 2012

Ενικό Μετσόιο Πουτενείο
Σοή Ηεκτροόν Μηανικών και Μηανικών Υποοιστών
Τομέας Τενοοίας Πηροφορικής και Υποοιστών
Εραστήριο Τενοοίας Λοισμικού

Σεδίαση και υοποίηση ενός εραείου
ανάυσης της εκτέεσης ενός προράμματος

σε πουπύρηνες αριτεκτονικές ια τη
ώσσα Erlang

Διπματική Ερασία
του

Αανάσιου Τιντινίδη

Επιέπν: Κστής Σαώνας
Αν. Καηητής Ε.Μ.Π.

Εκρίηκε από την τριμεή εξεταστική επιτροπή την 19η Σεπτεμρίου, 2012.

........................
Κστής Σαώνας Νικόαος Παπασπύρου Νεκτάριος Κοζύρης

Αν. Καηητής Ε.Μ.Π. Επικ. Καηητής Ε.Μ.Π. Αν. Καηητής Ε.Μ.Π.

Αήνα, Σεπτέμριος 2012

... ...
Αανάσιος Τιντινίδης
Διπματούος Ηεκτροόος Μηανικός και Μηανικός Υποοιστών Ε.Μ.Π.

Copyright © – All rights reserved Αανάσιος Τιντινίδης, 2012.
Με επιφύαξη παντός δικαιώματος.

Απαορεύεται η αντιραφή, αποήκευση και διανομή της παρούσας ερασίας, εξ οοκήρου
ή τμήματος αυτής, ια εμπορικό σκοπό. Επιτρέπεται η ανατύπση, αποήκευση και διανομή
ια σκοπό μη κερδοσκοπικό, εκπαιδευτικής ή ερευνητικής φύσης, υπό την προϋπόεση να
αναφέρεται η πηή προέευσης και να διατηρείται το παρόν μήνυμα. Ερτήματα που αφορούν
τη ρήση της ερασίας ια κερδοσκοπικό σκοπό πρέπει να απευύνονται προς τον συραφέα.

Οι απόψεις και τα συμπεράσματα που περιέονται σε αυτό το έραφο εκφράζουν τον
συραφέα και δεν πρέπει να ερμηνευεί ότι αντιπροσπεύουν τις επίσημες έσεις του Ενικού
Μετσόιου Πουτενείου.

Περίηψη

Η μετάαση σε πουπύρηνες αριτεκτονικές παρουσιάζει διάφορες προκήσεις - τα προράμματα
πρέπει να παραοποιηούν αποδοτικά, αποφεύοντας προήματα όπς αμοιαίος αποκεισμός
και σημεία συμφόρησης. Ακόμα και σε ώσσες προραμματισμού όπς η Erlang, της
οποίας το μοντέο ταυτoρονισμού και οι άσεις της στο συναρτησιακό προραμματισμό
επιτρέπουν στο προραμματιστή να αποφύει τις περισσότερες μορφές αμοιαίου αποκεισμού
και συνηκών αντανισμού και να δημιουρήσει ασφαείς, επεκτάσιμες και αποδοτικές
εφαρμοές, ποές φορές είναι ανακαίο να εξεταστεί η πορεία εκτέεσης ώστε να εντοπιστούν
σημεία συμφόρησης και άα προήματα που περιορίζουν την επιτάυνση ό τν ποαπών
πυρήνν.

Σε αυτή τη διπματική ερασία α περιράψουμε την αριτεκτονική, σεδιαστικές αποφάσεις
και επτομέρειες υοποίησης ενός νέου εραείου profiling ια την Erlang με το όνομα Sched-
plot. Το εραείο αυτό συέει δεδομένα κατά τη διάρκεια εκτέεσης ενός προράμματος
Erlang και στη συνέεια παρουσιάζει το αμό αξιοποίησης ανά το ρόνο του κάε scheduler
(ο οποίος συνής αντιστοιεί σε ένα νήμα ΚΜΕ που αντιστοιεί σε ένα πυρήνα) και του
συέκτη σκουπιδιών. Προσπαήσαμε να σεδιάσουμε την αναπαράσταση ώστε ο μεάος
όκος δεδομένν, που παράεται από την εκτέεση προραμμάτν Erlang με υψηό αμό
παραηοποίησης σε πουπύρηνες αριτεκτονικές, να είναι εύκοα κατανοητός. Ένα από
τα κυριότερα ζήτημα ήταν η δειματοηψία του ρονοδιαράμματος ώστε να προκύψει μια
σμίκρυνση που να μην αοιώνει τη σημασιοοία. Επίσης, ια τη ρήορη αποήκευση
τν δεδομένν ρίς σημαντική επιάρυνση του ρόνου εκτέεσης σεδιάστηκε μια δυαδική
κδικοποίηση. Τέος, μεετήσαμε την επιάρυνση εξαιτίας της ρήσης της erlang:trace/3
που έδειξε ότι περαιτέρ ετίση α επιτύουν σημαντική ετίση της επεκτασιμότητας
και μείση της επιάρυνσης.

Λέξεις Κειδιά

πουπύρηνες αριτεκτονικές, παραηοποίηση, ταυτορονισμός, Erlang, profiler, scalabil-
ity, σημείο συμφόρησης

5

Abstract

The shift towards multi-core architectures poses several challenges in software develop-
ment as programs should be efficiently parallelized while avoiding related dangers such as
deadlocks and bottlenecks. Even in languages such as Erlang, whose concurrency model
and functional foundations enable the programmer to avoid most deadlocks and race con-
ditions and build safe, scalable and efficient applications, it is often required to examine
the execution in order to detect bottlenecks and other factors that limit the speedup.

This thesis describes the architecture, design choices and implementation details of a new
profiling tool for Erlang named Schedplot. Schedplot gathers data during the execution
time and then, offline, visualizes the workload of each scheduler (which most of the time
maps in a CPU-thread which maps in a core) and the garbage collector. We tried to opti-
mize the graphical representation in order to aid the user’s comprehension of the large vol-
ume of data generated by highly scalable Erlang programs run in multicore architectures;
one of the main problems encountered was sampling the timeline to provide a zoomed-out
view without altering the semantics of the produced representation. Another challenge
was storing the produced data sufficiently fast and minimize the overhead caused; accord-
ing to the evaluation, by using a custom binary encoding, it was reduced to the point of
being insignificant. Last, we examined the overhead caused by using erlang:trace/3 con-
cluding that further improvements should be made to improve the scalability and reduce
the overall overhead.

Keywords

multi-core architectures, parallel, concurrency, Erlang, profiler, scalability, bottleneck, vi-
sualization

7

Acknowledgements

I would like to express my gratitude to my parents for their love and support as well as
their dedication and focus on my education; for teaching me how to learn; for introducing
me to the crystal clarity of mathematics and logic; for inspiring me to seek reason and
proof behind everything and, finally, for, no matter the physical distance, being always
there for me.

I thank my advisor, Kostis Sagonas, for his advice and insights which, even though not
always by following them, taught me important lessons about software engineering. But
I would be forever grateful for introducing me, since my first undergraduate years, to the
mind-boggling world of functional and logical programming and inspiring me to pursue
this vastly rewarding path.

I would also like to thank the professors and students in NTUA’s Software Engineering
Lab for all their support and input.

A big thanks to my friend and mentor Lefteris for his pure enthusiasm and support all
these years and particularly for all his help with Haskell.

Last, I am forever indebted to all cosmic rays that powered M-x butterfly, enabling me to
write this thesis.

Thanos Tintinidis

9

http://imgs.xkcd.com/comics/real_programmers.png

Contents

Περίηψη 5

Abstract 7

Acknowledgements 9

Contents 12

List of Figures 13

List of Listings 15

1 Introduction 17
1.1 Outline of the thesis . 18

2 Background 19
2.1 Concurrency vs Parallelism . 19
2.2 Performance Metrics of Parallel Programs 19
2.3 Reasons for non-linear speedup . 20
2.4 Support for SMP in the Erlang VM . 21

3 Using Schedplot 25
3.1 Profile . 25

3.1.1 Using schedplot:print/1 . 27
3.2 Analyze . 27
3.3 View . 28

4 Implementation Details 31
4.1 Profiler . 31
4.2 Analyzer . 35

4.2.1 First phase: decoding . 36
4.2.2 Second Phase: Generating the Zoom Levels 36
4.2.3 Zooming-Out Algorithm . 39

4.3 Plotter . 41

5 Evaluation 43
5.1 Overhead . 43

5.1.1 Overhead due to erlang:trace/3 45
5.1.2 Overhead during profiling . 47
5.1.3 Additional overhead cause by storing the trace 48

11

12 Contents

5.1.4 Message queue length . 48
5.2 Design choices . 51
5.3 Alternative representations . 51

6 Related Work 53
6.1 Related Erlang Tools . 53
6.2 Related Tools for Other Languages . 55

6.2.1 A few words about Haskell’s concurrency model 55

7 Future Work 59
7.1 Reducing and controlling overhead . 59
7.2 Automatic Data Processing . 59

7.2.1 Combination of multiple runs . 60
7.2.2 Pattern Detection . 62

Bibliography 63

List of Figures

2.1 Erlang VM without SMP support . 22
2.2 Erlang VM with SMP support . 22
2.3 Improved Erlang VM with SMP support . 23

4.1 * . 33
4.2 Decoding process . 37
4.3 Zoom level generation process . 38
4.4 Current algorithm: each value is written and then read again 39
4.5 Optimization: the datablocks are read only once 39
4.6 zoom 1:1 . 40
4.7 round, zoom 1:2 . 40
4.8 round, zoom 1:4 . 40
4.9 schedplot method, zoom 1:2 . 41
4.10 schedplot method, zoom 1:4 . 41

5.1 Difference of overhead(%): sleeping - saving 45
5.2 Difference of overhead(%): ignoring - saving 46
5.3 Overhead (%) of profiling . 47
5.4 Overhead (%) of profiling (3D) . 47
5.5 Addictional overhead (%) . 48
5.6 Message Queue Length: Master Tracer . 49
5.7 Message Queue Length: Tracers . 49
5.8 Active processes vs master tracer’s message queue length 50
5.9 Active processes vs master tracer’s message queue length (detail) 50

6.1 percept execution overview . 54
6.2 Thread Scheduling Visualizer graph (java) 55
6.3 Threadscope display . 56
6.4 Code mapping in Threadscope . 57

7.1 Ideal representation . 60
7.2 Combined representations . 60
7.3 Individual representations . 61

13

List of Listings

3.1 Wrong way of profiling a program . 26
3.2 Correct way of profiling a program . 26
4.1 trace message record . 31
4.2 GC trace message record . 32
4.3 format of encoded pack . 35
5.1 worst case scenario program . 44
5.2 alternative master tracers . 44

15

Chapter 1

Introduction

For years, most applications have enjoyed free and regular performance gain with minimal
to no alterations, since CPU manufacturers have created faster and faster systems, eager
to fulfill Moore’s Law. However, all good things come to an end; exponential growth
cannot continue for long before approaching physical barriers and hence slow down and
eventually stop. There is already an observable trend: most processor manufacturers turn
from improving clock speed and optimizing execution flow to multicore architectures[19].
Unfortunately, for programs written in most programming languages, having 16 cores of
1GHz is not equivalent to 1 core of 16GHz without major changes to their structure; at
least not until an algorithm for automatic parallelization is found - which is not some-
thing expected in the foreseeable future. This naturally leads, in order to get the much
desired performance improvement due to advances in new architectures, to the adoption
of paradigms with emphasis on – or at least awareness of – concurrency and to focus on
writing concurrent applications with good scalability.

Alas, this is easier said than done, especially for problems with not inherent parallelizable
nature and the complications that may arise due to locks and race conditions in some
programming paradigms. Various tools have been developed to aid the programmer in
debugging and optimizing a parallelized application, both for Erlang and other program-
ming languages. However, the is a lack of tools for Erlang that focus on visualizing the
scheduler workload over time.

This thesis focus on the building of such a tool, Schedplot, which, hopefully, sheds light
to the exact execution pattern of a Erlang program by depicting the schedulers’ and the
garbage collector’s activity over time. For our work we use Erlang’s tracing mechanism,
erlang:trace/3 and we studied ways to minimize the overhead caused as well as parallelizing
the profiling and the data analysis in order to make the tool as scalable as possible. Special
consideration was given to the design of the plotting part not only to provide a intuitive
graph but also to enable a fast, real-time environment. Last, a message printing mechanism
was created that allows the user to orchestrate the code and print messages directly on
the graph to better understand the execution flow.

17

18 Chapter 1. Introduction

1.1 Outline of the thesis

The rest of the thesis is organized as follows:

• Chapter 2 gives an introduction of the basic concepts regarding concurrency, paral-
lelism, related metrics and limitations as well as an overview of the support of SMP
in the Erlang VM.

• Chapter 3 presents a detailed guide for using Schedplot

• Chapter 4 provides an in-depth description of the Schedplot implementation includ-
ing design choices

• Chapter 5 focuses on the overhead of Schedplot and other aspects related to the
evaluation of the current implementation

• Chapter 6 gives an overview of related tools in Erlang and in other programing
languages

• Chapter 7 describes improvements that can be made to increase the functionality as
well as the performance of Schedplot in the future

Chapter 2

Background

2.1 Concurrency vs Parallelism

The concept of concurrency may be easily mistaken with parallelism; however they are
vastly different. Concurrency is a property of a system: multiple computations may be
performed simultaneously (with the possibility of interactions between them); parallelism
on the other hand is a run-time behavior of executing some tasks at the same time.

It is worth noting that support for multiprocessing in Erlang was added in 2006[13], 20
years after the appearance of the language, further illustrating the difference between
concurrency and parallelism. Of course, one might point out that most concurrent Erlang
programs demonstrated good parallel behaviour, without any further modifications, when
the support for multiprocessing was added but that would rather indicate the suitability
of the model for multi-core architectures.

2.2 Performance Metrics of Parallel Programs

There are various performance metrics used in evaluating a parallel algorithm such as
speedup, efficiency and the Karp-Flatt metric[17].

1. Speedup expresses how faster a parallel algorithm runs when more processors are
added; it is defined by the following formula:

Sp = Tp/T1

where

p is the number of processors
T1 is the execution time of the sequential algorithm
Tp is the execution time of the parallel algorithm with p processors

Alternatively, T1 may be the execution time of the parallel algorithm when only 1
processor is being used; that value may be more representative of the performance
improvement since it factors in some overhead due to the parallelization of the algo-
rithm.

19

20 Chapter 2. Background

The values of the speedup usually range from 0 to p; values less than 1 imply that
the overhead of parallelization outweighs the improvement. Ideally, speedup would
be equal to p (linear or ideal speedup).
It is interesting to note that there are cases of super-linear speedup[3] (when the
speedup is greater than p). This is often due to the cache effect: in a multi-core
architecture, the addition of one core is accompanied with the addition of extra cache
that could increase the execution speed.

2. Efficiency measures how well the processors are utilized; it is defined by the formula:

Ep = Sp/p

where

p is the number of processors
Sp is the speedup

Naturally, the values range from 0 to 1; the efficiency of algorithms with linear
speedup is 1 while sequential algorithms’ efficiency is 1/ log(p).
Efficiency is often used for graphs instead of speedup since:

(a) all of the area in the graph is useful (while in a speedup curve half of the space
is wasted)

(b) it is easy to see how well parallelization is working
(c) there is no need to plot a ”perfect speedup” line

3. The Karp-Flatt metric is a measure of parallelization of the algorithm that indicates
the extend of which the algorithm is parallelized[11]. It is defined by the formula:

e =

1
Sp

− 1
p

1− 1
p

=

p
Sp

− 1

p− 1

where

p is the number of processors
Sp is the speedup

2.3 Reasons for non-linear speedup

As mentioned above, the speedup of a parallel program is not always ideal; there are many
reasons for that[12]:

1. overhead caused by the parallelization and the addition of safety mechanisms such
as locks

2. overhead caused by the need for communication between processes

2.4 Support for SMP in the Erlang VM 21

3. there is a number of operations in the program that must be performed sequentially
(for example we have to open a file before we read it and write to it before we close
it). This is known as Amdahl’s law: the speedup of a parallel program is limited by
its sequential part. Assuming that:

T1 = Tseq + Tpar

Tp = Tseq + Tpar/p

where

p is the number of processors
Tseq is the execution time of the sequential part of the program
Tpar is the execution time of the parallelized part of the program

The speedup would be:
Sp =

T1

Tp
=

Tseq + Tpar

Tseq + Tpar/p

As a result, the speedup is limited to:

lim
p→∞

S = lim
p→∞

Tseq + Tpar

Tseq + Tpar/p
=

Tseq + Tpar

Tseq
= 1 +

Tpar

Tseq

Note that this is just an upper limit since the speedup may be further reduced due
to overhead and thus fall bellow 1.

4. the size of the program’s input: while a program may have a high speedup with
a large input, it may not be so efficient with a smaller input even if it is an em-
barrassingly parallel problem. This is known as Gustafson’s Law which states that
computations involving arbitrarily large data sets can be efficiently parallelized. For
example, a program that generates a list of random numbers may little to no speedup
when only a few random numbers are requested while its speedup could be very close
to ideal when a large number (in comparison to the number of cores) of random num-
bers is requested instead.

2.4 Support for SMP in the Erlang VM

Researching ways to provide support for symmetrical multi processor (SMP) in Erlang
started as early as 1997-1998[8] yet it was not continued until 2005 when it was restarted
as part of the ordinary development; the first release of a stable runtime system with
support for SMP came in OTP R11B in May 2006.

The Erlang VM without SMP support has 1 scheduler running in the main process thread
(note that there may be more threads, for example, for asynchronous IO). The sched-
uler picks runnable processes and IO-jobs from the run-queue – there is no need to lock
datastructures as only one thread access them (Figure 2.1).

In order to support SMP, multiple schedulers were introduced; usually, the number of
schedulers used is equal to the number of physical cores of the machine as there is no
point of introducing more. It should be noted, however, that it is possible that more

22 Chapter 2. Background

Figure 2.1: Erlang VM without SMP support

Figure 2.2: Erlang VM with SMP support

2.4 Support for SMP in the Erlang VM 23

schedulers would sometimes slow down a program. Due to the sharing by the multiple
schedulers, it is required to protect datastructures, such as the run queue, with locks; the
run queue is one of those (Figure 2.2).

As the number of schedulers increases, the single common queue becomes a major bot-
tleneck; to fix this, separate run queues, one per scheduler, were introduced, decreasing
the number of lock conflicts dramatically for systems with many cores. In order to avoid
imbalance in the schedulers’ load, a migration strategy was adopted (Figure 2.3).

Figure 2.3: Improved Erlang VM with SMP support

It is important to note that the number of the schedulers may not correspond to the
number of physical cores available to the Erlang VM since on some operating systems, the
number of cores used by an application can be restricted. Moreover, the schedulers run on
one OS-thread each and therefore, whether or not each scheduler runs in a different core
is up to the operating system, as well as whether the thread will remain on the same core
during the execution[13].

Chapter 3

Using Schedplot

Schedplot is normally used in three sequential steps: profile, analyze, view.

3.1 Profile

In this step, Schedplot profiles the desired program using erlang:trace/3. The simplest
way to start the profiling is by using schedplot:start/[1-3]

start(Fun) → ’ok’.
Same as start(Fun, “schedplot_trace”, [])

start(Fun, Dir) → ’ok’
Same as start(Fun, Dir, [])

start(Fun, Dir, Flags) → ’ok’

Types:

Fun = fun()

Dir = file:filename() | atom() | integer()

Flags = [start_flag()]

start_flag = ’gc’ | ’no_auto_stop’ | ’trace_all’ | ’trace_mfa’.

Dir should be an (existing or not) directory name. If the directory does not exist it will be
(attempted to be) created. Missing parent directories will not be created. In this directory
all the trace files will be stored – if there are any files with the names used by schedplot
to store the trace files, they will be overwritten.
After the initalizations, schedplot:start/3 will use erlang:apply/2 to run Fun in a
separate process. The process that applied Fun as well as its children will be the only
ones traced (unless the trace_all flag is used). Once Fun returns, the profiling will stop
(unless the no_auto_stop flag is given) and the trace will be saved. It is therefore of
utmost importance to make certain that Fun will not return before we want to end the
tracing. Consider for example the following code:

25

26 Chapter 3. Using Schedplot

� �
1 fib(N, M) ->
2 _ = [spawn(fun() -> fib(N) end) || _ <- L],
3 ok.� �

Listing 3.1: Wrong way of profiling a program

which spawns M processes that will calculate the nth fibonacci number. One might ex-
pect to trace it by calling schedplot(module,fib,[N,M]) but that would only trace the
spawning part (a few micro-seconds).

To trace the whole program something like the following should be done:

� �
1 fib(N, M) ->
2 L = lists:seq(1, M),
3 _ = [spawn(fun() -> fib_w(self(), N) end) || _ <- L],
4 _ = [receive ok -> ok end || _ <- L],
5 ok.� �

Listing 3.2: Correct way of profiling a program

where fib_w/2 is a function wrapper that would send ok after calculating fib(N).

Of course, there could be different approaches but the gist is that the first Fun termination
will signal the end of the tracing.

If the no_auto_stop flag is used however, the tracing will continue until stop/0 is called.
It is up to the user to either call it in the program under whatever conditions he wishes
or by hand during execution.

The profiling will produce N files, one per scheduler trace plus one if the gc flag was
used, named “raw_trace”++N where N is an integer denoting the scheduler ID. It will also
produce a header file named raw_trace_header

Note that schedplot:start/[1-3] may be called from within a program multiple times;
however, if the directory name is the same only the last trace will remain It is also impos-
sible at the moment to combine multiple traces in one.

Flags

gc: enables the tracing of the garbage collector.

trace_all: will trace all processes in the node (including the tracer)

3.2 Analyze 27

trace_mfa: the tracer will store the PID and MFArgs when a traced process enters or
leaves a scheduler (of course the PID will be the same both times). Currently there
is no use for those data from schedplot’s viewer but they could be used later or by
the user

no_auto_stop: the tracing will not stop when Fun returns

3.1.1 Using schedplot:print/1

print(Label) → ’ok’
Label = string() | atom() | integer()

There is no need to use any flags in start/[1-3] or start other tracing processes; just call
schedplot:print/1 from the desired points of the profiled program. Note however that
it is not recommended to make too many calls (over 100 thousand)

3.2 Analyze

Analyzing is a straight-forward procedure; simply use the following functions to produce
the files that will be used by the viewer.

analyze() → ’ok’
same with analyze(“schedplot_trace”)

analyze(Dir) → ’ok’
same with analyze(Dir, [])

analyze(Dir, Flags)

Dir is the name of the directory where the raw trace files are stored and where the analyzed
trace files will be stored (therefore it is required to have both read and write privileges in
that folder).

Analyzing the traces usually is almost instantaneous and can be done in a different machine
than the one used to do the profiling; generally it will be faster when the number of
schedulers increases up to the point that we reach the number of schedulers used in the
profiled program. It is also interesting to note that the speedup will be similar to the
speedup of the profiled program meaning that analyzing the trace of a sequential program
that ran in N schedulers where N>1 will yield little to no speedup when run in M>1
schedulers. Typically the analyzed files would be larger (yet not a lot larger) than the raw
trace files, so, considering the speed of the analyzer, it might be better to store them for
future use instead of the analyzed files if memory is an issue.

The analyzer will produce N files, one per scheduler trace plus one if the gc flag was used,
named “analyzed_trace”++N where N is an integer denoting the scheduler ID. Afterwards
the raw trace files are no longer required so it is safe to remove them.

28 Chapter 3. Using Schedplot

3.3 View

To start the viewer use one of the following functions:

view() → ’ok’ same with view(“schedplot_trace”)

view(Dir) → ’ok’ same with view(Dir, 1000,700)

view(Dir, Max_Width, Max_Height) starts the viewer displaying the trace stored
in Dir directory; the window’s max width will be Max_Width and max height will be
Max_Height.

Note that the final width and height will depend on the size of the graph: the viewer will
start with a size that fits the graph at the maximum zoom possible without exceeding the
max size given. It is not possible at the moment to detect the maximum screen size in a
trivial way due to wxErlang limitations; however, it is possible to change the macro values
to fit the screen resolution used in the schedplot.hrl file (macros WIDTH and HEIGHT).
It is suggested to run the viewer in a local machine to avoid any network latency
Once the viewer started, the following keys are used for navigation:

• Move right/left:
use the arrow keys (right/left) or 4/6 numpad keys to move (50px)
if the alt key is pressed the movement will be smaller (10px)
if the control key is pressed the movement will be larger (200px)

• Move up/down:
use the arrow keys (up/down) or 8/2 numpad keys to move 1 scheduler up or down
if the alt key is pressed then it will move 10 schedulers up or down

• Zoom in/out:
use the numpad +/- or the regular +/- or =/_ to zoom in or out
zooming in will result in 2x while zooming out in 0.5x
the zoom will preserve the same starting position; that is, if the graph started at
12.4 sec and ended at 22.4 sec the zoomed-in graph will start in 12.4sec and end at
17.4sec and the zoomed-out graph will start in 12.4sec and end at 32.4sec

• Select an area:
Click the right mouse button and drag the mouse. Release the right button at the
desired point. A cyan box will appear around the selected area (it does not matter if
the dragging is from left to right or otherwise or if it constantly to the same direction;
all that matters is the first and last point). It does not matter if an area was selected
previously

• Cancel a selection:
Press escape

• Zoom in to selection:
While having selected an area press a zoom in key. The viewer will display an area
starting at the start of the selection and using the maximum zoom (from the valid
zoom levels) that would display the whole selection. It is therefore possible to have
some extra data displayed at the end of the graph.

3.3 View 29

• Reset:
Press the Home key to return to the first state of the viewer.

Note it is not possible to zoom in or out more than a certain number while displaying
times before zero is possible although it has little practical meaning.

Chapter 4

Implementation Details

4.1 Profiler

The profiler is the most crucial part of the tool; careful consideration was given to make
it as lightweight as possible and minimize overhead.

For extracting the required information from the Erlang VM, erlang:trace/3 was used
with the following flags:

running to record when a process enters or exits a scheduler

scheduler_id to get the ID of the scheduler the process entered or exited

timestamp (or cpu_timestamp) to get the time the process entered or exited

set_on_spawn to trace the children of the process (redundant if all the processes are
being traced)

trace, MasterTracerPID to send the trace messages to the MasterTracer process

gc (optionally) to monitor garbage collection activity

The above flags result in messages of the following format:

� �
1 {trace_ts,PID,IO,SID,MFA,Time}� �

Listing 4.1: trace message record

where

PID: the PID of the process that entered/exited the schedulers

IO: ’in’ or ’out’ depending on whether the process entered or exited

SID: the scheduler ID

MFA: the MFA the process was executing at that moment

31

32 Chapter 4. Implementation Details

Time: a timestamp (MS,S,US)

The messages are delivered to a process named master tracer which in turn forwards them
to tracers depending on the SID. An alternative structure would be using only one process
in order to minimize the influence of the tracing - this would be improved if we could also
bind the process in a scheduler. However, this structure is not scallable as one process
has to encode all the messages. The master trace forwards a message with the form IO,
PID,MFA,Time if the user requested to store the MFA and PID information otherwise the
message is just IO, Time.

In case garbage collection tracing has been enabled the master tracer also receives messages
with the format:� �

1 {trace_ts,PID,SE,GC_Info,Time}� �
Listing 4.2: GC trace message record

where

SE: gc_start or gc_end

GC_Info: garbage collection information that are ignored

In that case the forwarded message has the following format:

� �
1 {SE, {PID, {gc, gc, 0}, Time}} or {SE, {Time}}� �
As it can be easily seen, the master tracer has a severe bottleneck; however, it cannot be
avoided since the current implementation of erlang:trace/3 cannot send the messages
in different tracers, let alone sending messages in tracers depending on the scheduler_id
field of the trace message record.

Each tracer receives messages regarding the activity of one scheduler. The tracer com-
bines every ’in’ message with its equivalent ’out’ message (or gc_start with gc_end).
The messages are delivered in chronological order therefore the task of matching them is
reduced to simply waiting the next message.

It has been observed that sometimes it appears that some procedures only enter the sched-
uler and never exit; it was found that all them was executing the MFA io,wait_io_mon_reply,2.
Therefore, master tracer was altered so that it will not forward such messages.

The main issue regarding the profiler is the volume of the messages: it is too large to
store, even in a compressed format, in the RAM; we have tried lists, ETS tables and other
datastructures but the results indicated that, even for small programs, it is not possible
to avoid storing them on the disk.

At first we tried to use a DETS table and io:write/2 but that was way too slow; after some
experimentation we decided to use the flag raw when opening the file (with file:open/2)
which allowed faster access. Further benchmarks were used to compare the flags used

4.1 Profiler 33

to open the file; it was decided to use the flag compressed since it was slightly faster
and the file size was reduced. We did not use the flag delayed_write, which buffers the
calls to file:write/2 and performs the call when a time or size limit is reached, despite
the fact that it improved the speed by almost 50% (since amount of system calls are
decreased). Instead we implemented manually a buffering system which accumulates N
messages which, to our surprise, was faster than the build-in delayed write by around
50%. We suspect that the reason for that may be calls to erlang:now/0 or similar timer
functions that could require locking.

Figure 4.1: *

Time spent for I/O

• DETS/ETS stores the tuples in a dets/ets table

• Regular opens the file with no extra flags and uses io:write/2

• The rest open the file with the raw flag (and compressed/delayed) and use
term_to_binary/1 each time they write a tuple with file:write/2

• Custom delayed stores the trace messages after encoding them as binaries in a list
and writes them when the list has 1000 elements.

34 Chapter 4. Implementation Details

The “drawback” of using the raw flag is not being able to use the io module; instead, we
have to write the data using file:write/2; the data should also be binaries. First, we
used term_to_binary/1 to convert the messages, however tests showed that the conversion
was inefficient when dealing with a specific format such as the format of the messages. For
example, a single pid, lets say <0.42.0> would be encoded as a binary of 27 bytes:

� �
1 <<131,103,100,0,13,110,111,110,111,100,101,64,
2 110,111,104,111,115,116,0,0,0,42,0,0,0,0,0>>� �
The structure of a PID in Erlang on the other hand is <A.B.C>[1] where:

A: node id

B: process index which refers to the internal index in the proctab (15 bits)

C: Serial which increases every time MAXPROCS has been reached (2 bits)

Since we are tracing only processes in the local node, A would be always 0 and therefore
3 bytes would be more than enough; that’s 9 times less than used by term_to_binary/1

Motivated by this it was decided to implement a binary encoding, reducing the size of the
average message from 80 bytes to 5. The encoding is described bellow:

1. Instead of storing the times the process entered and exited a scheduler, we store the
time difference between the time the process entered the scheduler and the time the
previous process exited it as well as the duration the process was in the scheduler
(in us). This not only reduces the bits used in the average case but also encodes the
desired information with less bits in the case of heavy load (since then the duration
of the processes as well as the time spend between one process exiting and the next
entering will be smaller) and with more bits when the load is less resulting in less
overhead due to encoding and writing the traces when the VM is busy and more
when the schedulers are not so active. To strengthen this property we decided to
use 6 bits to encode duration and 8 bits for time; in each case, if time is not lower
than 2n−1 (n=6,8) then we set those bits to 1 and add another 8 bits to encode the
rest T–2n−1. While this could lead in an inefficient encoding for large numbers it
was observed that in the average case, the encoding would be larger if we dedicated
1 or more bits as flags on every packet. A possible improvement could be done
using duration as a flag: Duration should always be non-zero (while time between
processes may be zero); therefore, we may encode larger times by setting duration
(the 6 bits) to zero and add extra bits.

2. We observed that, in most cases, the MFA executed when the process enters and
leaves the scheduler is the same so we can encode it just once. Therefore we use a
flag that is set to 0 if the MFAs are the same and store it only once and 1 if there
are different and we store both. Another optimization is done by not storing the
actual names but storing the names in a dictionary and then storing just the key
each time. The dictionary is created the following way:
Each function (by function we mean the function name and arity) is inserted to the
dictionary and assigned a 8-bit key. This key is returned each time we encounter

4.2 Analyzer 35

this function. We also store the module name. Naturally, there will be a conflict if
another function (same name and arity) is called from a different module; in that
case we return the 8-bit key along with a 4-bit key that denotes the module. Of
course, to avoid using the 4-bit key all the time, the absence of 4-bit key indicates
the module of the first function that was added to the table. This way we can encode
functions of 17 different modules. This encoding achieves maximum efficiency when
there are no close calls of functions with the same name and arity from different
modules; something that is often true. When the dictionary is filled, we store it and
start a new one.

3. The PID is, normally, stored in 16 bits: 15 bits for the PID and 1 bit for the flag. if
the PID is larger then the flag is set to 1 and we add 8 more bits for the PID.

In the end, a regular pack would take 5 bytes have the following structure:

� �
1 <<0:1, 0:1, Duration:6, TimeIn:8, MFA:8, 0:1, PID:15>>� �

Listing 4.3: format of encoded pack

If the first flag is 1 (MFAin is not the same with MFAout) then instead of MFA:8 we would
have MFAin:8, MFAout:8. If the second flag is 1 (we need to encode the module) then 8
bits would be added: the first 4 to encode the module of MFA or MFAin and the last 4 to
encode the MFAout (they are 0 if the MFAs are the same) If flag before the PID is 1 then
8 bits are added to the encoding of the PID Last, Duration and TimeIn can require more
bits as described.

Note: if the user does not use the flag to save MFA and PID information, those will not
be encoded neither stored (resulting in much smaller trace files and less overhead).

4.2 Analyzer

The encoded files have to be decoded and the information organized before it is possible
to present the graph; at least if we want real-time interaction. The analyzer converts the
encoded trace into a more useful format and also does additional calculations to avoid
doing them -repeatedly- in real time.

The representation of the scheduler activity is a list of integers (timeline), each one corre-
sponding to 1us; 0 when the scheduler is inactive and 1 when it is active. However, storing
information this way consumes not only a lot of time during decoding but also disk space
while providing little to no use, as, in most of the cases, we do no need to examine the
schedulers’ activity in such detail. Therefore we decided to limit the initial resolution by
grouping a number of values; the parameter that defines the number of values is called
grouping unit (gu) and the default value is 8, meaning that each integer of the list cor-
responds to 8us. A further optimization to reduce the disk size is using a variation of
run-length encoding:

If we encounter the same value two or more times we encode it as V* N where V*
= 1:1, V:7 where V is the value encountered and N is the number of repetitions

36 Chapter 4. Implementation Details

(this dictates that the value range is 0-127 so it can be stored in 7 bits resulting in
1 byte per value; this range is actually sufficient).

Otherwise we simply keep the values as it is: 0:1,V:7)

N is kept in 1 byte and hence varies from 2 to 255; if there is a larger sequence of same
numbers it is encoded in multiple packets.

This results in significant compression, mainly due to large sections of total activity (127)
or inactivity (0).

Storing this information in one list is inefficient since we would have to read the whole list
to use just a section so we split it in blocks of 4096 values and store it in a DETS table
with appropriate keys.

Last, multiple DETS tables are used, not only because each DETS table has an upper limit
of 2GB size which would become small in the case of a highly scalable program running in
a machine with many cores, but also to improve the scalability of the analyzer since each
process will read and write to different tables and would not have to wait to gain access
to the table (DETS tables, since they are a shared resource, have locking mechanisms).
A drawback to this is being limited by the maximum allowed number of simultaneously
open files which depends on the maximum number of Erlang ports (size of one word as
in R15) but as it is -for the current standards- large enough (and it can also be changed)
this is not a significant drawback.

4.2.1 First phase: decoding

At the heart of the decoding process (Figure 4.2) there is a function that reads one encoded
packet; this is achieved by reading bytes (to avoid multiple system calls to read bytes from
the file, an input buffer is used) until we finish reading all the packet’s values: Duration,
TimeIn, MFA (in/out) and PID in case of a full packet or just Duration and TimeIn in
case the user did not save information about the MFAs and PIDs.

After successfully reading a packet (in case of a malformed packet we ignore it and stop
decoding while storing the already decoded packets; a malformed packet could only occur
due to termination of the profiler before the packet storing was complete so there is no
reason to continue decoding since the end of file is reached) we create the timeline that
corresponds to the packet (time between this and the previous packet and duration) the
length of which depends on the grouping unit and then the process continues to the next
packet. When the produced list reaches the maximum size, it is compressed and then
stored to the dets table. Using an output buffer for writing to the dets table provided
minimal preformance improvement (bellow 1%) since the writes are already sparse. A
possible optimization could be done by creating the timeline directly in the compressed
format.

4.2.2 Second Phase: Generating the Zoom Levels

To ensure that the reaction time of plotting the graph will be small we decided to calculate
the values that result from a zoom-out. The trade-off is limiting the scale to quantized
values, to powers of two. After the creation of the initial timeline we create the rest of

4.2 Analyzer 37

Figure 4.2: Decoding process

38 Chapter 4. Implementation Details

zoom-levels (1:2, 1:4,...) until the whole duration of the program’s execution is represented
in one value. The resulting structure is displayed in Figure 4.3 (assuming that we separated
the timeline in blocks of size 4).

Figure 4.3: Zoom level generation process

Naturally this results in more disk space consumption; however, the overhead is never over
100%: assuming N initial values, the total number of values would be:

N +N/2 +N/4 +…+N/2n = (2–2−n) ∗N < 2 ∗N

This does not take into consideration the extra space consumed by the keys for the last
zoom levels when the number of values are less than 4096.

For example, the base values of the diagram above are 16 and the total number of values
is 31; however, the number of keys required for storing the data as DETS table entries
is 9 > 8 = 2 ∗ 4. The number of extra keys is log2(size_of_block) and since the size of
block is 4096 the extra keys are 12.

Each key consists of a tupple of 2 integers, one denoting the zoom level and the other the
x position of the block so this overhead is insignificant.

The process of generating the zoom levels is simple: We read two blocks of data, con-
catenate them, combine the values in pairs of two and then write the block in the DETS
table. When the compression scheme was introduced there was a significant overhead due
to having to decode and re-encode the data before combining the values; however this was
resolved by combining the encoded data without decoding them which not only eliminated
the overhead of the compression but also sped up the process of generating the zoom levels
since, instead of, for example, combining the elements of a list with 2 ∗ N zeros in pairs

4.2 Analyzer 39

to create a list with N zeros, we simply replace 2 ∗N with N. This is one more reason for
choosing a run-length based compression algorithm.

However, there could be a further optimization that is currently impossible due to using a
DETS table. One might have noticed the redundancy of reading two blocks, creating the
zoom-outed block and then writing it back to the disk only to read it in a later iteration;
instead we could read one block and generate all the data that could be created as displayed
in figures 4.4 and 4.5.

Figure 4.4: Current algorithm: each value is written and then read again

Figure 4.5: Optimization: the datablocks are read only once

The reason that this algorithm cannot be used with a DETS table is, as the diagram
shows, that we would need to be able to write a not completed DETS entry and later fill
it without reading the data already stored.

Note that besides the overhead of the disk operations there could be additional overhead
avoided in case a more complex compression algorithm was used in the future that would
not allow combining the data without decompressing them.

4.2.3 Zooming-Out Algorithm

The way data are zoomed-out in Schedplot differs from a lot of similar projects. Lets
examine the following example:

Assume that we store the information in a list with zeros and ones, one denoting that
there was a traced process in the scheduler that time interval (1us for erlang) and zero

40 Chapter 4. Implementation Details

that there was not. The raw data would be a list, [0, 0, 11, 11, 0, 0, 0, 11, 0, 11, 0, 11] for
example.

Figure 4.6: zoom 1:1

For longer traces it is mandatory to compress this information by presenting the plot
zoomed-out. A simple approach would be to combine the data in sets, calculate the
average and round up. The resulting list (for combining in sets of 2) would be: [0, 11, 0,
11, 11, 11]. For higher zoom-out it would be [11, 0, 11] and eventually [11].

Figure 4.7: round, zoom 1:2

Figure 4.8: round, zoom 1:4

The problem is obvious: an activity that should be displayed as 58% was displayed as
100%. This is of course erroneous since it displays a program with 58% speedup as having
ideal speedup. Even worse than that would be an approach where we use trunc (or ceiling)
instead of rounding.

On the other hand however we cannot use floats; the graph is displayed in a pixelated
screen and furthermore, if we desire to give the user the bigger picture we cannot have
a lot of pixels to provide big accuracy, especially considering that, for a program that
lasts just 1 second, the zoom-out to fit the screen would be 1:1000 for a moderately-sized
screen. The approach we used to digitize the signal is a variation of rounding; there are
three different values that we should make sure that are displayed at any scale at all costs:
(1) the activity is maximum (2) the activity is 0 (3) the activity is somewhere in-between.
Therefore, the minimum height for the display of one scheduler is 2 pixels: 11 for the first
case, 00 for the second and 01 for the third. More available pixels would simply provide
further information about how active is the core. So, assuming a display with 2 pixels
length the original list would become: [00, 00, 11, 11, 00, 00, 00, 11, 11, 11, 11, 11] and
the zoomed-out list would be [00, 11, 00, 01, 10, 10] then [11, 01, 10] and finally [01].

As it was mentioned earlier, the values are encoded in 7 bits (0-127): that way the produced
graph will be accurate even if each core is displayed in 127 pixels. Considering that we
aim to study the program’s behavior in multi- and many-core architectures and the usual

4.3 Plotter 41

Figure 4.9: schedplot method, zoom 1:2

Figure 4.10: schedplot method, zoom 1:4

screen sizes, it is a sufficient resolution (or even too big). Of course, one more reason
for using 7 bits instead of 8 is to improving the run-length compression by avoiding the
overhead caused by having to encode single values as 1 c and therefore doubling the size
of the worst case scenario.

4.3 Plotter

To create the graphical representation of the scheduler activity we used wxErlang, the
Erlang port of the wxWidgets, a widget toolkit for creating graphical user interfaces.
By using wxWidgets, the program’s GUI code can compile and run smoothly on several
computer platforms such as GNU/Linux, Microsoft Windows and OS X. It is free and
open source with a license compatible to GNU GPL[18].

The plotter consists of 3 main parts:

1. viewer: a module responsible for the creation of the windows, handling of events and
general coordination

2. wxplot: a module that provides functions for drawing the actual graph

3. bets: a module that provides support for buffered dets tables

In the early stages of development the data were fetched upon request from the disk (where
they were stored in the dets tables structure described previously). While the impact of
the delay due to reading from the disk and, later, decoding the data, have been small,
it was still noticeable, especially while scrolling left or right. To counter that, we used
buffers which solved the problem.

The buffering strategy is not complicated: upon the first request, the dets tables are
first queried only for the desired data and the fetched data are decoded and returned.
Meanwhile, a process is spawned that fetches the data around to the current position,
both in the x-axis and the zoom-axis. The data are then decoded, stored in a proper list
and returned to the main process. Thus, in subsequent requests, the buffering module will
first check the buffer resulting in a much smaller respond time if it’s not a miss. Naturally,

42 Chapter 4. Implementation Details

in case of a miss, the dets table will be queried and a new buffer will be created around
the new position; however this would rarely happen (mostly in very fast zoom-in/out or
zoom to selection) since it is easy to predict the range of the data that will be requested
and pre-fetch them (by spawning a process to query the dets table and decode them) if
they are outside the current buffered range.

Chapter 5

Evaluation

5.1 Overhead

In this section we discuss the overhead introduced by the profiling a program; this may
be caused by the following reasons:

1. the tracing itself (erlang:trace/3)

2. forwarding messages from the master tracer to tracers

3. encoding of messages

4. writing the messages to the disk

The total time spent for profiling a program can be separated in two parts:

1. the time the profiler and the program were executed in parallel

2. the time after the program ended during which the profiler encodes and saves the
produced trace that was not saved during the program’s execution

Our main interest is how the overhead affects the profiling of the program; so, while
measuring the total time is important, our main concern is the time it takes for the
program to execute when it is being profiled.

The worst case scenario, regarding overhead, is a program that achieves ideal speedup
keeping all the schedulers busy and thus bombarding the tracers with messages which
have to be encoded and stored. To study this case we used the following program:

which spawns N processes that recurse M million times. During the testing M was set to
10 and N varied from 1 to 64 in steps of 3 plus three extra tests where N was 128, 256
and 512. The schedulers used by the VM varied from 1 to 64 also in steps of 3. the time
the profiler and the program were executed in parallel We run six tests measuring ten
variables (all times are wall-clock):

1. run the program and measure its execution time (T0)

43

44 Chapter 5. Evaluation

� �
1 seq(N, M) ->
2 MM = M*1000000,
3 Self = self(),
4 L = lists:seq(1,N),
5 _ = [spawn(fun() -> seq_(Self, MM) end || _ <- L],
6 _ = [receive ok->ok end || _ <- L],
7 ok.
8
9 seq_(PID, 0) -> PID ! ok;
10 seq_(PID, M) -> seq_(PID, M-1).� �

Listing 5.1: worst case scenario program

2. profile the program and measure

• the time the profiler and the program were executed in parallel (Tp)
• the full time (Tfp)
• the average size of the trace files (Srt)

3. analyze the raw trace files and measure:

• time required to decode (Td)
• time required to generate the zoom levels (Tz)
• the average size of the analyzed trace files (Sat)

4. monitor the message queues of the tracers:

• maximum length of the message queue of the master tracer (MQLmt)
• maximum length of the message queue of the tracers (MQLt)

Finally, at tests 5&6 we profile the program but use modified master tracers with the
following code:

� �
1 master_tracer6() ->
2 timer:sleep(infinity).
3
4 master_tracer7() ->
5 receive _ → master_tracer7() end.� �

Listing 5.2: alternative master tracers

and measure the time the profiler and the program were executed in parallel (T6, T7) in
order to measure the overhead caused by simply using erlang:trace/3.

Each test is repeated three times; when time is being measured we keep the minimum
value while for the rest we keep the maximum value.

5.1 Overhead 45

5.1.1 Overhead due to erlang:trace/3

Table 5.1 displays the min, max, average and median values of the overhead(%) introduced
during tests 2a, 6, 7.

Overhead (%) storing sleeping ignoring
min 24 12 17
max 2747 2786 2775
average 809 805 813
median 752 727 750

Table 5.1:

The differences between the three methods are small; moreover, in some cases, the values
of 6, 7 are greater than the values of 2a. This is further illustrated in figures 5.1, 5.2 which
display the difference between the overhead for 2a and 6,7: the overhead of Schedplot’s
profiler is slightly greater (not even 1% at the worst case) than the overhead of a profiler
that sleeps or ignores the messages most of the times (especially when the number of
schedulers is small) while, in some cases it is smaller. This came as a suprise since one
would expect that storing the messages will have greater overhead than simply ignoring
them or doing nothing at all. From that we may conclude that the overhead is introduced
by the use of erlang:trace/3 and not from the way the traces are encoded or stored, meaning
that further improvements would require to make changes in the way the processes are
being traced internally.

Figure 5.1: Difference of overhead(%): sleeping - saving

46 Chapter 5. Evaluation

Figure 5.2: Difference of overhead(%): ignoring - saving

5.1 Overhead 47

5.1.2 Overhead during profiling

Figure 5.3: Overhead (%) of profiling

Figure 5.4: Overhead (%) of profiling (3D)

As we observe in the figures 5.3, 5.4 the overhead increases linearly as the number of cores
increases and maximizes when the number of active processes is equal with the number
of schedulers used; then it remains almost the same. We can observe a noticeable peak
when the number of active processes is equal with the number of schedulers used; this is
expectable since at this point the program achieves its maximum speedup and therefore,
the overhead due to profiling is most noticeable.

48 Chapter 5. Evaluation

5.1.3 Additional overhead cause by storing the trace

Figure 5.5 displays the extra time required to finish storing the trace as a percentage of
the time the profiled program was running.

Figure 5.5: Addictional overhead (%)

The average overhead is 67% and has a maximum of 220% when a low number of processes
are spawned and significant more schedulers are used; this is due to overhead caused by
parallelizing the message encoding and storage. If we exclude these cases, the average
overhead falls to 58% and the standard deviation reduces from 41% to 24%

5.1.4 Message queue length

Figure 5.6 displays the maximum length (in thousand of messages) of master tracer’s mes-
sage queue; the data were gathered by polling at regular intervals in order to avoid causing
significant overhead, with erlang:process_info/2 using the flag message_queue_len. A
similar method was used to measure the length of the message queues of the tracers which
are displayed in Figure 5.7; for simplicity, we only displayed the maximum message queue
length of all the tracers and not for each tracer:

As expected, we observe from Figure 5.6 that the maximum length of master tracer’s mes-
sage queue increases as the number of schedulers increases until the number of schedulers
reaches the number of active processes. We also observe a linear relationship between the
number of active processes and the length of master tracer’s message queue; this is partic-
ularly notable at the last 4 series with 64, 128, 256 and 512 processes. This relationship
is better observed in Figures 5.8, 5.9 which display the average queue length correlated
to the number of active processes.

5.1 Overhead 49

Figure 5.6: Message Queue Length: Master Tracer

Figure 5.7: Message Queue Length: Tracers

50 Chapter 5. Evaluation

Figure 5.8: Active processes vs master tracer’s message queue length

Figure 5.9: Active processes vs master tracer’s message queue length (detail)

5.2 Design choices 51

As we can see in Figure 5.9, when the number of processes is not above 10, master tracer
is able to forward the trace messages to the traces; however, after this threshold, the rate
of incoming messages increases resulting in larger message queue as the master tracer is
forwarding them in a slower rate. This eventually limits the scalability of the profiling
since the messages are not stored in the disk and therefore consume memory.

From Figure 5.7 we see that the length message queues of the tracers are a lot lower
(1000 times lower) than the length of master tracer. We observe a general increase as the
number of schedulers and processes increases but it is not as noticeable as the increase
in master tracer. Indeed, the necessary forwarding of messages through the master tracer
limits the rate of incoming messages and the fact that the tracers can encode and store the
messages concurrently further reduces the problem. It is clear that the major bottleneck
is caused by the restriction imposed by erlang:trace/3 which sends the messages to only
one process resulting in an unscalable architecture. One might wonder if there is any real
issue with having a large message queue of unread messages besides the memory cost;
our main concern is that large message queues may significantly increase the overhead of
sending messages due to reorganizations in the message queue’s datastructure

5.2 Design choices

Special consideration was given in the way the data would be presented in a way that
would convey the efficiency of the parallelization of the program; the information gathered
was vast yet it should be presented in such a way that the human mind would be able not
only to understand by also process it. Although we first considered displaying information
about which process was running at any time, such as the PID or the MFA when the
process entered or exited the scheduler, this thought was soon abandoned when we realized
that in the highly concurrent programs, in which we are mainly interested in profiling,
the processes’ duration was very small (100us) and so, having a label for each time a
process entered or left a scheduler or using different colours would be impossible even
when profiling a program that lasts for less than one second. For the same reason it would
also be impossible to have labels pop up when the user hovered over a part of the graph
when a single pixel could be equivalent of a few milliseconds. It was decided to implement
a functionality similar to printing messages during debuging: a function called by the user
that would print messages on the graph, on the time of the call and on the scheduler in
which the process run when the call was made. To find on which scheduler the process
ran, erlang:system_info/2 was used with the flag scheduler_id. The call was designed
to have small overhead but it should be used sparingly; it is advised not to exceed 100,000
calls.

5.3 Alternative representations

While deciding the type of the graph that would display the data, besides the classic,
implemented graph, a few other options were considered such as a radar or spider chart
but it was dismissed as counter-intuitive.

Another interesting possibility for the display of the data is the fisheye view visualization.
Fisheye views magnify the objects in a focal point while reducing the size of objects farther

52 Chapter 5. Evaluation

away, thus achieving views that show local detail and global context together in a single
view. It is also possible to support multiple focal points[16]. The reason it was rejected,
at least for now, is the unfamiliarity it might cause to the user as well as the debatable
usability when the level of detail that should be provided is taken into consideration.

Chapter 6

Related Work

6.1 Related Erlang Tools

Erlang has truly powerful trace primitives: erlang:trace/3, erlang:trace_pattern/2
and erlang:system_profile/2, which enable the programmer to extract information
about almost everything, as well as a variety of modules that help the programmer examine
various aspects of the program’s performance. However, it was surprising to find the
absence of tools focusing on visualizing the parallel performance besides percept; one would
expect a plethora of such tools in a language pioneering concurrency and scalability.

Percept (Percept - Erlang Concurrency Profiling Tool) is a tool that utilizes trace in-
formations and profiler events to form a picture of the processes’ and ports’ runnabil-
ity, showing the potential speedup of a program[5]. It uses erlang:trace/3 and er-
lang:system_profile/2 to monitor events from process states such as waiting, running,
runnable, free and exiting; a process in running or runnable state is considered active
while it is inactive in any of the other states. Then percept produces a time-graph, where
the value of the y-axis is the number of active processes; this allows an overview of the
concurrency of the erlang system, with peaks representing high concurrency and dips low
concurrency (Figure 6.1). The user may also choose and inspect the activity of a process
or a set of processes as well as more detailed statistical information about them such as
spawn and exit times, entry points and start arguments etc.

53

54 Chapter 6. Related Work

Figure 6.1: percept execution overview

6.2 Related Tools for Other Languages 55

6.2 Related Tools for Other Languages

An intuitive way to inspect a program’s parallel activity is to create a graph of the activity
of the schedulers/cores during its execution. Indeed, there are implementations of this
tool for several languages but not for Erlang; while percept provides a similar view of the
program’s performance, which is useful, it does not quite visualize the actual execution of
the program. The aforementioned tools are:

• Threadscope – Haskell

• Eden Trace Viewer – Eden (a Haskell extension focusing on parallelism)

• Thread Scheduling Visualizer – Java

• Threads View – C++AMP

The above programs have similar functionality, adjusted, of course, to fit the language’s
structure; we will focus on Threadscope since Haskell is the language that is closest to
Erlang.

Figure 6.2: Thread Scheduling Visualizer graph (java)

6.2.1 A few words about Haskell’s concurrency model

Haskell provides a mechanism to allow the user to indicate calculations that may be useful
to executed in parallel by using functions from the Control.Parallel module[10]:

par :: a → b → b

pseq :: a → b → b

The function par indicates to the Haskell run-time system that it may be beneficial to
evaluate the first argument in parallel with the second argument. The par function returns
as its result the value of the second argument; the semantics of the program remain
unaltered if we replace par a b with b.

56 Chapter 6. Related Work

It is important to note that the Haskell runtime system does not necessarily create a
thread to compute the value of the expression a; instead, it creates a spark which has the
potential to be executed on a different thread from the parent thread. It could be said
therefore that the equivalent in Erlang would be spawning a process to evaluate a. Haskell
uses Haskell Execution Contexts (HEC) which roughly corresponds to an operating system
thread (and would be the equivalent of Erlang schedulers)[4].

Figure 6.3: Threadscope display

Threadscope displays the activity on each HEC; for each thread the user can see whether
it is running a Haskell thread or performing garbage collection; a green vertical line of
standard length indicates that the HEC was running a Haskell thread on that timeframe
while an orange line that it was performing garbage collection[9]. There is also informa-
tion about when Haskell threads are ready to run and information about why a Haskell
thread was suspended as well as a summarizing activity graph which resembles Percept’s
functionality. There is also information about function calls and spark generation and
usage and recently there was implemented a source code mapping feature that allows the
user to inspect the code that was executed at a certain moment (Figure 6.4)[21].

All in all, Threadscope is an exceptional tool that would be really useful to have imple-
mented for Erlang; while this thesis aspires to create a profiling tool implementing a subset
of its functionality there are still much to be done.

6.2 Related Tools for Other Languages 57

Figure 6.4: Code mapping in Threadscope

Chapter 7

Future Work

There are several ways to improve Schedplot, either functionality- or performance-wise.

7.1 Reducing and controlling overhead

Alas, there is only so much one can do to reduce the overhead inside the virtual machine; on
the other hand, deciding to alter it may massively reduce the overhead. One of the major
issues currently is the bottleneck imposed by having to use a master tracer to redirect
the messages sent by erlang:trace/3. If instead we could just send the messages to the
correct scheduler this bottleneck would be resolved. Furthermore, we would not need to
forward the messages for a second time. Another improvement could be done by encoding
and storing the messages directly to the disk instead of sending them to process first

Another possible improvement is to control the overhead; if we know when and where the
profiler runs we can simply ignore it. The optimal way to do that is to pin the profiler
processes to one (or more) scheduler (and make sure that no traced process uses it) and
ignore that scheduler later. This could be done either just for the profiling process that runs
inside the VM or for even the VM processes that generate the trace messages. Currently
though it is not possible to pin a process to a scheduler and this unlikely to change since
it is intentional. Note however that if the number of schedulers devoded to profiling is
smaller than the number of schedulers that are used by the program, a scalability issue is
created since the messages of multiple schedulers will have to be encoded and sorted by
processes running in one scheduler.

7.2 Automatic Data Processing

At the moment the produced graph relies on the data collected only from one run of the
profiled test. However, especially since wall clock time is used, single runs of the program
may result in misleading graphs. Furthermore, it could be of great use to suitably combine
results from runs with different input sizes of the programs or number of schedulers.

59

60 Chapter 7. Future Work

7.2.1 Combination of multiple runs

The first improvement is simple: profile the program multiple times and then display the
average activity of the schedulers over time. By doing this we hope to eliminate or at least
reduce the impact of the profiler: it will be indeed unlikely that in every execution the
profiler worked at the exact same moment causing the user to believe that that moment
the scheduler was inactive. Consider the following example:

Lets assume that in a program’s activity in a scheduler is:

[4, 4, 4, 4, 0, 0, 0, 4]

Figure 7.1: Ideal representation

With 100% overhead, there will be added 8 more zeros since the scheduler is running the
profiler at those moments. This could be done in several ways (the following combinations
were created by randomly inserting 4 zeros in the list).

� �
1 [4, 4, 0, 4, 4, 0, 0, 0, 0, 0, 0, 0, 0, 0, 4, 0]
2 [4, 0, 0, 0, 4, 4, 4, 0, 0, 0, 0, 0, 0, 0, 0, 4]
3 [4, 4, 4, 0, 4, 0, 0, 0, 0, 0, 0, 0, 0, 4, 0, 0]
4 [4, 0, 4, 4, 0, 0, 0, 4, 0, 0, 0, 0, 0, 0, 4, 0]
5 [4, 4, 4, 0, 0, 0, 4, 0, 0, 0, 0, 0, 0, 0, 4, 0]� �
By calculating the average and zoom-out the values will be:

[4, 3, 2, 2, 0, 0, 1, 2]

Figure 7.2: Combined representations

which resembles the actual execution of the program more than most individual runs
(displayed in Figure 7.3)

7.2 Automatic Data Processing 61

Figure 7.3: Individual representations

62 Chapter 7. Future Work

7.2.2 Pattern Detection

The second improvement might require more complex techniques; a few ideas that come to
mind is analyzing the execution trace to detect similar patterns (such as a set of functions
that are always called together, followed by another set of functions that are called later)
and thus generating a mapping function between different executions of the same program.
For example:

Assume that we want to trace foo/1. Lets assume that the execution of foo(X) is the
following (2 schedulers; 000 denotes innactivity):

� �
1 [foo, bar, foo, 000, 000, baz, baz, foo]
2 [000, 000, bar, bar, bar, foo, 000, 000]
3
4 [foo, foo, bar, bar, foo, 000, 000, 000, baz, baz, baz, foo]
5 [000, 000, 000, bar, bar, bar, bar, bar, foo, 000, 000, 000]� �
The pattern we would like to be noticed is that first foo is called, then we have subsequent,
parallelized calls of bar and then a serial part of baz calls that starts only after every core
has finished the bar calls. We would like to have pointed out that not all schedulers finish
the bar calls at the same time and also that the gap increases when the input increases. Of
course this could be a coincidence; a metric of the chance that this assumption is correct
should be calculated based on factors such as the times this pattern occurs. With this
information we could colour the graph; areas where there is a high chance of bottleneck
existence should be highlighted while areas with a low chance should be faded.

Bibliography

[1] J. Armstrong. Programming Erlang: Software for a Concurrent World. Pragmatic
Bookshelf, 2007.

[2] J. Armstrong, R. Virding, C. Wikstrom, and M. Williams. Concurrent Programming
in Erlang. Prentice-Hall, 1996.

[3] N. Butler. Superlinear: an investigation into concurrent speedup, Octomber 2009.

[4] D. Coutts. Spark Visualization in ThreadScope. 2011.

[5] B. E. Dahlberg. Profiling applications in Erlang Symmetrical MultiProcessing system.
Master’s thesis, Uppsala University, 2007.

[6] S. Few. Practical Rules for Using Color in Charts. Visual Business Intelligence
Newsletter, 2008.

[7] M. Heath and J. Etheridge. Visualizing the performance of parallel programs. IEEE
Software, 8(5), September 1991.

[8] P. Hedqvist. A parallel and multithreaded ERLANG implementation. Master’s thesis.

[9] D. Jones, S. Marlow, and S. Singh. Parallel Performance Tuning for Haskell. ACM,
September 2009.

[10] S. P. Jones and S. Singh. A tutorial on Parallel and Concurrent Programming in
Haskell. Lecture Notes in Computer Science, May 2008.

[11] A. Karp and H. Flatt. Measuring parallel processor performance. Communications
of the ACM, 33(5), May 1990.

[12] S. W. Kim and R. Eigenmann. Where Does the Speedup Go: Quantitative Model-
ing of Performance Losses in Shared-Memory Programs. Parallel Processing Letters,
10(2,3), 2000.

[13] K. Lundin. Inside the Erlang VM, focusing on SMP. November 2008. http://www.
erlang.se/euc/08/euc_smp.pdf.

[14] K. Nevelsteen. Analyzing Performance of Multicore Applications in Erlang. Master’s
thesis, Uppsala University, 2011.

[15] M. O. Persson. wxErlang - a GUI library for Erlang. Master’s thesis, University of
Gothenburg, November 2005.

63

http://www.erlang.se/euc/08/euc_smp.pdf
http://www.erlang.se/euc/08/euc_smp.pdf

64 Bibliography

[16] T. Reinhard, S. Meier, and M. Glinz. An Improved Fisheye Zoom Algorithm for
Visualizing and Editing Hierarchical Models. REV ’07 Proceedings of the Second
International Workshop on Requirements Engineering Visualization, 2007.

[17] T. Saad. Paralllel Computing with MPI: Part VII: Measuring Par-
allel Performance. http://pleasemakeanote.blogspot.gr/2008/07/
parallel-computing-with-mpi-part-vii.html.

[18] J. Smart, K. Hock, and S. Csomor. Cross-Platform GUI Programming with wxWid-
gets. Prentice-Hall, 2005.

[19] H. Sutter. The Free Lunch Is Over: A Fundamental Turn Toward Concurrency in
Software.

[20] Y. Tsavliri. Parallelizing Dialyzer: a Static Analyzer that Detects Bugs in Erlang
Programs. Master’s thesis, National Technical University of Athens, 2010.

[21] P. Wortman. Weaving Source Code into ThreadScope. 2011.

http://pleasemakeanote.blogspot.gr/2008/07/parallel-computing-with-mpi-part-vii.html
http://pleasemakeanote.blogspot.gr/2008/07/parallel-computing-with-mpi-part-vii.html

	Περίληψη
	Abstract
	Acknowledgements
	Contents
	List of Figures
	List of Listings
	Introduction
	Outline of the thesis

	Background
	Concurrency vs Parallelism
	Performance Metrics of Parallel Programs
	Reasons for non-linear speedup
	Support for SMP in the Erlang VM

	Using Schedplot
	Profile
	Using schedplot:print/1

	Analyze
	View

	Implementation Details
	Profiler
	Analyzer
	First phase: decoding
	Second Phase: Generating the Zoom Levels
	Zooming-Out Algorithm

	Plotter

	Evaluation
	Overhead
	Overhead due to erlang:trace/3
	Overhead during profiling
	Additional overhead cause by storing the trace
	Message queue length

	Design choices
	Alternative representations

	Related Work
	Related Erlang Tools
	Related Tools for Other Languages
	A few words about Haskell's concurrency model

	Future Work
	Reducing and controlling overhead
	Automatic Data Processing
	Combination of multiple runs
	Pattern Detection

	Bibliography

