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PerÐlhyh

Ja anaferjoÔme se probl mata pou aforoÔn th sqedÐash grafhm�twn se epÐpeda, ta opoÐa
sun jwc brÐskoun efarmogèc sta VLSI kukl¸mata kai thn apeikìnish twn grafhm�twn. Parousi�-
zoume mia enallaktik  ¸jhsh gia th melèth thc sqedÐashc grafhm�twn apì to pedÐo thc di-
aqeÐrhshc thc enaèriac kukloforÐac kai eidikìtera ta prìtupa pou prokÔptoun apì (  faÐnontai
wc) pt seic se eujeÐa metaxÔ aerodromÐwn   shmeÐwn dièleushc. Eis�goume to p�qoc sqedÐashc
(ϑ) thc sqedÐashc D enìc graf matoc wc ton el�qisto arijmì epipèdwn sta opoÐa mporoÔme na
diaqwrÐsoume tic akmèc miac (analloÐwthc) sqedÐashc graf matoc, ètsi ¸ste mèsa se èna epÐpedo
oi akmèc na mh diastaur¸nontai, kai suzht�me gia tic kal� melethmènec ènnoiec tou p�qouc
graf matoc (θ), tou gewmetrikoÔ p�qouc (θ̄) kai tou p�qouc emfÔteushc se biblÐo (bt). Ex-
ereunoÔme thn istorÐa kai shmantik� apotelèsmata gia to p�qoc graf matoc kai to gewmetrikì
p�qoc graf matoc, sumperilambanomènwn twn idiot twn tou p�qouc tou Kn kai tou Km,n. Ba-
sizìmenoi ston orismì tou p�qouc emfÔteushc se biblÐo pou qrhsimopoieÐ mia kurt  emfÔteush
twn koruf¸n tou graf matoc sto epÐpedo, epikentron¸maste stic kurtèc sqedi�seic Dconv enìc
graf matoc kai parousi�zoume merikèc idiìthtec, metaxÔ �llwn kai gia na apodeÐxoume ek nèou
ìti bt(Kn) = ϑ(Dconv(Kn)) = dn2 e. Proqwr¸ntac stic aujaÐretec sqedi�seic tou graf matoc
G, isqurizìmaste pwc ϑ(Kn) ≤ dn2 e gia k�je sqedÐash. Sto teleutaÐo kef�laio pou afor� sthn
poluplokìthta, orÐzoume mia oikogèneia problhm�twn pou aforoÔn to p�qoc graf matoc, dÐnontac
idiaÐterh prosoq  sto antÐstoiqo wc proc th doulei� mac prìblhma qrwmatismoÔ: <<Dosmènhc miac
sqedÐashc enìc graf matoc, mporoÔn oi akmèc tou na diaqwristoÔn se k epÐpeda>>? QrhsimopoioÔme
ta SEG graf mata, ta graf mata tom c enìc sunìlou eujugr�mmwn tmhm�twn sto epÐpedo, kai
thn kl�sh-uposÔnolo twn circle grafhm�twn gia na deÐxoume ìti to prìblhma eÐnai NP -complete
tìso gia mia tuqaÐa k ≥ 3, ìso kai gia mia kurt  sqedÐash k = 3, apodeiknÔontac sthn poreÐa
ìti ta CROSS graf mata, ta graf mata diastaÔrwshc eujugr�mmwn tmhm�twn, sumpÐptoun me ta
SEG graf mata. Tèloc, anaferìmaste se 3 probl mata Ôparxhc trigwnopoÐhshc gia mia sqedÐash
graf matoc, TRI, poly-TRI kai convex TRI , pou aforoÔn kat' antistoiqÐa sthn trigwnopoÐhsh
sunìlou shmeÐwn, thn trigwnopoÐhsh polug¸nou kai thn trigwnopoÐhsh kurtoÔ polug¸nou ( 
kurtoÔ sunìlou shmeÐwn). Parousi�zoume mia parallag  thc kl�shc twn SEG grafhm�twn, thn
SEGh, gia na anapar�goume ìti to prìblhma TRI eÐnai NP -complete, en¸ diamèsou twn circle
grafhm�twn, to prìblhma convex TRI eÐnai sto P .



Abstract

In this thesis, we discuss problems of layered graph drawing which usually apply to VLSI cir-
cuits and graph visualizations. We present an alternate motivation to study graph drawing
from the area of air traffic management and especially the patterns occurring from (or appear-
ing as) direct-to flights between airports or waypoints. We introduce drawing thickness (ϑ) of a
graph drawing D as the minimum number of layers to which the edges of a (fixed) drawing of a
graph are partitioned to, so that within any layer edges do not cross, and discuss the well studied
graph-theoretical thickness (θ), geometric thickness (θ̄) and book thickness (bt). We explore the
history and significant results on thickness and geometrical thickness, including the thickness
properties of Kn and Km,n. Based on the definition of book thickness using a convex place-
ment of the vertices of the graph, we focus in graph’s convex drawings Dconv and present some
properties to -among others- independently show that bt(Kn) = ϑ(Dconv(Kn)) = dn2 e. Moving
on to arbitrary drawings of graph G, we claim that ϑ(Kn) ≤ dn2 e for any drawing, bound being
tight. In the final chapter concerning complexity, we introduce a family of thickness-related
problems, paying particular attention on the respective to our work COLOR problem: “Given
a drawing of a graph, can its edges be decomposed into k planar layers”? We use SEG graphs,
the intersection graphs of line segments on the plane, and their subclass of circle graphs to show
the problem is NP -complete both for an arbitrary k ≥ 3 and a convex drawing k > 3, proving
alongside that CROSS graphs, the crossing graphs of line segments, coincide with class SEG.
Last, we mention 3 triangulation existence problems for a graph drawing, TRI, poly-TRI and
convex TRI, dealing with point set triangulation, polygon triangulation and convex polygon (or
convex point set) triangulation respectively. We introduce a variation of the SEG class, SEGh,
to reproduce that TRI is NP -complete, while through circle graphs we get convex TRI is in P .

Keywords

graph thickness, drawing thickness, book thickness, geometrical thickness, convex graph draw-
ing, complexity, SEG graphs, circle graphs, polygon triangulation, point set triangulation
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Chapter 1

Introduction and motivation

The graph is a mathematical structure. Its uniqueness lies on its abstractness: given a set of
objects xi and a pairwise relation R of them, the (undirected) graph G(V,E) is the structure
that contains the information on the object set (vertex set) V and the relations it includes: edge
set E ⊆

(
V
2

)
, (xi, xj) ∈ E ⇔ R(xi, xj). Despite being abstract, graph theory way born partially

because mathematicians (and later on a wide number of scientists) wanted to actually draw and
visualize these relations as it should provide insight in problem solving. So it is natural that a
graph’s abstractness conflicts with it being drawn.

The question of planarity of graphs indicates this, and it is in the core of all problems
presented in this thesis: A graph is planar if it can be drawn in the plane without its edges to
cross. More on, if a graph is not planar, what is the minimum number of planar layers it can
be decomposed to?

It is evident that the applications of what we call “layered graph drawing” include, first
of all, graph visualization, in order to help the one to study graphs to interpret the drawing.
The second major application is VLSI design. Within a PCB, it is unlikely that all electronic
components (vertices) along with the short-circuits between them (edges) can be printed in a
single layer, i.e. the corresponding graph is non-planar. So, the decomposition of a graph is of
high importance, and indicates the number of layers within a PCB.

From our part, we are going to consider a different motivation to study layered graph
drawing: air traffic management (ATM). We believe that both existing and new results may be
important for the design of air flows and the analysis of its complexity. We study the case of
direct-to flights between airports or waypoints, and define a graph model to work on.

1.1 Motivation

Based on a number of works regarding air flows (we will indicatively cite a few: [4], [42], [27],
[46]), we present some terms to fully understand what follows.

Air traffic control (ATC) is a service provided by ground-based controllers who direct
aircraft on the ground and in the air. The primary purpose of ATC systems worldwide is to
separate aircraft (to avoid collisions), to organize and expedite the flow of traffic, and to provide
information and other support for pilots when able.

Separation is a term that describes the actions taken to prevent aircraft from coming too
close to each other (in conflict) by use of lateral, vertical and longitudinal separation minima.

13



Airway is a designated route in the air. Airways are laid out between navigational aids
such as VORs, NDBs (radio beacons) and Intersections (virtual radio beacons). Airways are
of certain width of a few miles (8-10nm), but of no specific altitude. Thus, they are initially
defined as 3-dimensional objects. Airways are divided into low-altitude and hi-altitude, and
by assigning an aircraft to fly them at a certain flight level they obtain their 2-dimensional
substance (w.r.t. the earth’s surface, i.e. a spherical coordinate system).

Flight Level (FL) is the standard nominal altitude of an aircraft in hundreds of feet. It
is calculated using the International Standard Atmosphere (ISA) model. We write FLxxx where
xxx is the altitude divided by 100.

When airplanes travel, they most commonly use airways to get to their destination. An
alternative way to fly is the so called direct-to flight: fly the shortest route between any 2 points.
When chosen, direct-to flight is probably just a part of the route, and it is mostly used in long
transcontinental routes. However, attempts and studies are made to maximize direct-to routes,
in order to minimize the cost of the flight (minimization of fuel needed). The drawback of this
choice is the increased complexity of air traffic patterns. Let us explain:

The safest way to separate planes is vertical separation. That’s easily understood: If the
altitude of 2 or more airplanes is different, then they will not collide no matter their route or
speed, or time reaching an airway intersection. Therefore vertical separation becomes the AT
controller’s priority. Only if vertical separation is impossible the controller resorts to lateral
(horizontal) and then longitudinal (time) separation. With this in mind, let’s give an example
to understand what we mean by claiming that direct-to flight increases the complexity of air
traffic patterns.

Y

c d

e

fX

a b

i0

c d

e

f

a b

i1

i2
i3

i4

i5

Figure 1.1: 6 airports, 5 routes. Using airway XY vs. using direct-to flight

Above is shown a set of 6 airports (a through f). Let us assume that the following routes
need to be flown: ac, ad, bc, bd and ef . Using the airway XY , the routes from the bottom to
the top airports become a bit more expensive but they all intersect route ef at the same point
i0. On the contrary, direct-to flights result in optimum traveling distance for every route, but
there are 5 points of intersection with i2, i4 and i5 being particularly important. Now assume
that we cannot foreknow when aircraft will approach the intersections in their routes1. As a
result, vertical separation of intersecting routes would be the ultimate trouble-solver.

1This is not at all unlikely to occur: The departure of flights depends on the traffic in the airport, not in the
air. Initial horizontal separation may be lost due to winds or other parameters affecting a flight. Some routes
may be heavily loaded barely keeping up with time separation minima.
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In the case where airway XY exists, seeing that aircraft using it will reach X or Y at
different or (in general) appropriate times, we only need to assign the same altitude to routes
using XY (blue color), and another one to route ef (red color). Thus 2 flight levels (FL) are
needed, whereas in the second case 3 FLs (colors) are needed, as a result of ad, bc and ef all
intersecting with each other (triangle i2i4i5).

1.2 Setting the problem and suggesting a model

Given a set of airports and a set of routes, the minimum number of FLs that can be statically
assigned to the routes so that intersecting routes are flown at different FLs can be used as a
measure of how complex an air traffic pattern can get. And it seems that extinction of airways
will indeed increase complexity in air routes.

In this work, we will only examine patterns occurring from direct-to flights between airports.
So it is quite clear that we need a geometric graph model, where nodes (vertices) represent
airports, and use only straight lines as (undirected) edges between nodes to represent the direct-
to/minimum distance routes. Intersections of edges have a major role in our model, as our goal
will be to determine an optimum edge coloring where every pair of intersecting edges have
different colors.

Explaining the nodes. Aircraft need airspace to gain their flying altitude after take-off and
airspace to lose altitude before landing. We assume that a node not only represents the airport,
but also the airspace around it used for departure and arrival procedures, which we will simply
call Airport Area. While over this area, it is pointless for aircraft flying from or to the airport
to maintain direct-to flight2. Over Airport Area, controllers are responsible to keep aircraft
separated (Property 1), guide them through departure and arrival patterns, and make sure that
departing flights exit this circular area at the desired altitude and at the point closest to their
destination.

AirP
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to
airport b

from airport c

to
ai

rp
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t d

fr
om
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from airport f

to airport g
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Figure 1.2: “inside” a node. Departure and arrival routes are colored blue and red respectively.

Using Property 1 from above, we can assume that any aircraft passing through an Airport

2Aircraft take-off and land using runways defined by the wind direction and need space to line-up with them
while landing, some minimum altitude to gain after take-off, not to mention the horizontal separation needed in
order for the traffic to flow regularly
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Area (neither departing or landing at the airport) will be kept separated from traffic arriving
or departing the airport without altering its altitude (or course or speed). Thus, for this work,
the 2-dimensional Airport Area can be transformed in a single point (node), along with the
generation of another property of our model: If the intersection point of 2 edges is an endpoint
of either of the segments (i.e. a node), then coloring these 2 edges with the same color is allowed.

Let us also note that in case where 2 or more Airport Areas intersect, a simple approach is
to create a larger united Airport Area for all these airports and treat them as a single node.
This raises questions of how to determine which airports will be grouped together and which
not, setting exact or approximate radii of airport areas etc. However, this is not an objective
of this work.

3 or more collinear nodes. When 3 or more airports lie on the same line, all flights between
them can share the same flight level. This occurs using Property 1 from above. Consider
3 collinear airports x,z,h. Flight A : x → h passes over z, and there is a departing flight
B : z → h. So, the segment zh is common for the 2 flights. All the controller has to do is make
sure that when flight B reaches its exiting point, the horizontal separation minima w.r.t. flight
A are preserved.

We must note that this is a non-generic case, which we briefly analyze for the model’s
consistency, but it will not be studied theoretically in this work. Moreover, the possibility of
sharing a flight level within a line actually lessens the flight levels needed, so the generic case is
enough to give us the upper bounds we seek.
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fro
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airp
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B
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airp
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h

fro
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airp
ort

x

B

Figure 1.3: Guiding flight B to exiting point behind flight A.

Explaining the edges. Up to this point, we have not mentioned anything about the direction
of a flight. But this hides indeed a crucial error: if two airplanes travel the same direct-to route,
at the same altitude but in different directions, they will be in conflict as long as they travel
around the same time of day. We have two options: either we assign different FLs in opposite
direction’s flights and consequently need double the colors to properly color the graph (bad!),
or we use an idea of horizontal separation and create 2 deviations of a direct-to route.

As we mentioned before, an airway has a few miles’ width w. A simple idea is to double the
width and add some extra width for safety, thus having 2w + ws as the width of the direct-to
route. Half (okay, a bit less!) of it is to be assigned to the departing flights of an airport, and
the other half to the arriving ones. It is easy for the on-board aircraft systems (and generally)
to determine these 2 deviated routes to follow. It is also simple for the controllers to direct the
airplanes from or to the altered entering or exiting points of the airport area.

The advantage of this idea is that our model remains the same, as we either way transform
the 2-dimensional routes in simple lines. The collinear-node case raises no problems either, so
in a few words, as of the needs of this work, a simple edge between 2 nodes is enough.
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(c) Flights from and to airport
h.

Figure 1.4: Creating deviated routes linking two airports. Notice the altered entering and
exiting points regarding airport h of the Figure 1.2.

Areas of direct-to flight. Having a set of routes between airports all flown direct-to may
practically be found only in areas with few airports and probably low traffic congestion. How-
ever, within specified areas, air traffic may seem as a set of direct-to route legs if there is a local
absence of navaids. Such an area may well be congested, and assigned to a certain controller.
It is an advantage to theoretically study a conflict-free assignation of Flight Levels to involved
legs in order to estimate both the complexity of the local traffic pattern and the controller’s
work load.

In Figure 1.7 it is illustrated how “zooming-in” a congested area yields a study case similar
to what we have previously presented. All entering and exiting points of flights over the area
are nodes of our model, as well as all airports within the area3.

1.3 Our model

Definition 1.1. A drawing D of an undirected graph G(V,E) is an embedding of G into R2.
We will write D(G) to denote a drawing of graph G.

Any drawing (mapping) actually comprises of a “1-1” function DV : V → R2, and a function
DE which maps each e = vu ∈ E to some curve joining DV (v) and DV (u). However, as we
have already stated, in this work we only discuss straight-line embeddings, and unless noted
otherwise, a drawing D will assume all edges are drawn as straight lines.

This means edge function becomes DE : E →
(
DV (V )

2

)
and D is well defined as soon as DV

is defined. So, we are allowed to use notation D : V → R2 to express DV and completely define
D by determining D(V ). An extra fact is that DV being “1-1”, is enough to make DE “1-1”,
too.

We will not be using any directed graphs in this thesis; from this point on, declaration of a
graph G will imply G is undirected.

Definition 1.2. Let D be a drawing of G(V,E). We define the drawing thickness, ϑ(D(G))4,
to be the smallest value of k such that we can assign each edge to one of k planar layers so
that no two edges on the same layer cross5 (while keeping all vertices fixed to the points that
D obligates).

3The ellipse shape to zoom-in to is arbitrary and does not reflect any real air traffic pattern.
4ϑ appears in [43] as notation for graph (theoretical) thickness; recent bibliography instead, consistently uses

θ or t, making ϑ a non-confusing choice.
5We will say that two edges cross if they interiorly intersect at exactly one point.
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1.3.1 Discussing the model

Let us draw some graphs and comment on them:

v1 v2

v3

v4

(a) D1(K4)

v1 v2

v3 v4

i1

(b) D2(K4)

Figure 1.5: 2 different drawings of the K4. ϑ(D1(K4)) = 1, ϑ(D2(K4)) = 2.

Figure 1.5a, K4 is drawn in a way (D1) it shows it is a planar graph. In this case there are
no crossing edges, thus ϑ(D1(K4)) = 1.

Figure 1.5b is an alternative drawing D2 of K4 as a square with its 2 diagonals. There is 1
point of intersection that leads to a 2-coloring of this graph. Let us see one more example:

Consider the family of the graphs G(V,E) that have deg(v) = 1 for all v ∈ V . This is
obviously a “perfect matching” graph of n = 2k elements (vertices). Let Dadj : V → R2 be a
mapping of V to a (regular) convex n-gon, such that all adjacent pairs of vertices of G are also
adjacent vertices of the n-gon. In this case, we easily get ϑ(Dadj(G)) = 1 (Figure 1.6a).

But we may choose to draw the graph like this: If the edge set is expressed as E =

{vkvk+n/2, k = 0, ..., n − 1}, define Dopp(vk) = e−
kπ
n
i, k = 0, ..., 2n − 1. Now all edges join

diametrically opposite points (of the unit circle) and every 2 edges cross each other, dictating
drawing thickness to now be ϑ(Dopp(G)) = n

2 = |E| (Figure 1.6b).

v0

v1

v2

v3

v4

v5

v6

v7

(a) Dadj(G), |V | = 8

v0

v1

v2

v3

v4

v5

v6

v7

(b) Dopp(G), |V | = 8

Figure 1.6: ϑ(Dadj(G)) = 1 but ϑ(Dopp(G)) = 4, with n = 8.

We make some first observations at this point, in order to give an idea of how we are going
to move on in the next chapters.

1. Defining drawing thickness as above, the studied variants of thickness come to mind;
(graph-theoretical) thickness (θ), geometric thickness (θ̄), and book thickness (bt) are all to be
examined and give some (mostly lower) bounds for the drawing thickness (ϑ).
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2. We can understand from the examples given, that two isomorphic graphs may be easily
drawn to have different drawing thickness. In fact, the very same graph G may be drawn to
have different ϑ. This is in contrast with most of the properties of isomorphic graphs remaining
invariant for their respective class (all the above thicknesses included).

3. This difference is attributed to the fact that θ(G), θ̄(G) and bt(G) are minimizations
over all allowed (by the respective definitions) drawings of G and thus characterize G itself,
while ϑ characterizes individually each and every drawing D of the graph. Remember, we write
ϑ(D(G)), and not ϑ(G), which is not well defined6.

Definition 1.3. Two drawings D1, D2 of graph G(V,E) are said to be equivalent if and only
if any 2 edges that cross when drawn via D1 are drawn to cross via D2 and vice versa.

As in this thesis, we are never concerned for drawn edges’ endpoints, we will use the ∩
symbol to indicate an edge crossing question: for 2 drawn edges sasb, scsd ∈ D(G), sasb ∩ scsd
will be regarded as a first-order logic formula, assigned TRUE if and only if the edges cross.

Also, throughout this work, equivalence will be denoted by ∼, and isomorphism with ∼=. So,
the 3rd observation from the above may be symbolically expressed as:

Lemma 1.1. For any graphs G ∼= H, there is a D : V → R2 such that ϑ(D(G)) 6= ϑ(D(H)).

Definition 1.3 becomes:

Definition 1.4. Let G(V,E) and D1, D2 : V → R2 drawings of G. D1(G) ∼ D2(G) if and only
if for any va, vb, vc, vd with D1(vi) = s1

i , D2(vi) = s2
i it is s1

as
1
b ∩ s1

cs
1
d ⇔ s2

as
2
b ∩ s2

cs
2
d.

Finally, let us expand the operand sets of θ,θ̄ and bt, for completeness, just in case it is needed.

Definition 1.5. Let G be a graph and D be a drawing of G. Then θ(D(G)) = θ(G), θ̄(D(G)) =
θ̄(G) and bt(D(G)) = bt(G).

6We may use the notation ϑ(G) only in cases where a general conclusion is reached, for all drawings D of G.
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Direct-to route legs within yellow area

Figure 1.7: An area zoom-in. Nodes on the area boundary are entering and exiting flights’
points, and black nodes are airports. Assigning layers to route legs is the same as described
before.
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Chapter 2

Graph thickness and geometrical
thickness

2.1 Graph Thickness

Graph thickness is a term introduced by W.T. Tutte in 1963 ([56]), following the proof of a
conjecture: for any graph G with |V | = 9 either G or its complementary graph Ḡ is not planar,
or, speaking with terms of the time K9 is not biplanar. This was shown by exhaustion, and K9

is the smallest complete graph having this property. Graph thickness came to expand the idea
of biplanar graphs, measuring the number of planar subgraphs a graph may be partitioned to:

Definition 2.1 (Thickness). Graph (theoretical) thickness, θ(G), is the minimum number of
planar graphs into which a graph G can be decomposed.

Equivalently, the graph-theoretical thickness can be defined as the minimum number of
planar layers required to embed a graph such that the vertex placements agree on all layers and
the edges can be arbitrary curves.

Planar graphs: one of the most significant graph classes, contains all graphs that can be
embedded (drawn) in the plane with no edge crossings. By definition we have θ(Gplanar) = 1.
Characterizing (and recognizing) planar graphs is of particular importance for Graph Theory,
and the following theorem is well known to anyone introduced to the field:

Theorem 2.1 (Kuratowski, 1930). A graph is planar if and only if it has no subgraph homeo-
morphic to K5 or K3,3.

Also, according to a corollary of the famous Euler’s polyhedron-formula, a planar graph
G(V,E), |V | = n has at most 3n− 6 edges (see also Section 5.3); such a graph is called maximal

= +

Figure 2.1: Planar decomposition of the K5: θ(K5) = 2.
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planar graph. This may be used to get a first bound regarding the thickness of a graph: using
the pigeonhole principle, we have

θ(G) ≥
⌈
|E|

3n− 6|

⌉
(2.1)

Note that in the same time, characterizing planar graphs led to efficiently recognizing them
(Hopcroft, Tarjan, [31]).

Figure 2.2: The Goldner-Harary graph, with 11 vertices and 27 edges is a maximum planar
graph. We will refer to it in Section 3.2.2 as it is the smallest planar graph which is not
Hamiltonian (source: http://en.wikipedia.org/wiki/Goldner-Harary graph).

The thickness of Kn

Starting from the early 1960’s, it was believed that the thickness of Kn could be expressed with
a “nice”, simple formula. Applying |E| = n(n− 1)/2 in 2.1, it is easy to get that

θ(Kn) ≥
⌊
n+ 7

6

⌋
Number

⌊
n+7

6

⌋
appears in the work of L. W. Beineke and F. Harary ([5]) to be the thickness of

Kn for n 6= 3, 4 mod 6. Later on, Harary ([30]) conjectures θ(Kn) =
⌊
n+7

6

⌋
except possibly for

n = 4 mod 6. At the time, whether θ(K16) equals 3 or 4, was still an open question (Harary
conjectures it is 4), while for every other n up to 45, thickness of Kn was known. The answer
came from Jean Mayer, a french literature professor, who showed ([44]) that θ(K16) = 3; Mayer
had also given the constructions to show θ(K34) = 6 and θ(K40) = 7. In 1976, Alekseev and
Gončakov ([1]) finally gave the desired proof, overcoming Harary’s possible exceptions, so in
total we have:

θ(Kn) =


1, 1 ≤ n ≤ 4

2, 5 ≤ n ≤ 8

3, 9 ≤ n ≤ 10⌊
n+7

6

⌋
, n > 10

The thickness of Km,n

Beineke and Harary, this time together with J. W. Moon, gave probably the first result on the
thickness of bipartite graphs, a result which has not been improved to date ([6]).
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Theorem 2.2 (Beineke, Harary, Moon, 1964). The thickness or the complete bipartite graph is

θ(Km,n) =

⌈
mn

2(m+ n− 2)

⌉

except possibly when m < n, mn is odd, and there exists an integer k such that n =
⌊

2k(m−2)
m−2k

⌋
.

It is also

θ(Kn,n) =

⌈
n+ 5

4

⌉
The quantity

⌈
mn

2(m+n−2)

⌉
for bipartite graphs is actually the analogous quantity to

⌈
|E|

3n−6|

⌉
for complete graphs: Euler’s polyhedron formula dictates that no bipartite graphs with more
than 2(m + n − 2) edges can be embedded in the plane. It is an interesting fact that the
inequality is proved to be an equality.

Determining the thickness of a graph is NP-complete

The natural complexity problem one would consider regarding thickness was solved indepen-
dently by A. Mansfield ([43]) and V. Chvátal in the most convincing way:

Theorem 2.3 (Mansfield, 1983, Chvátal). Given a graph G, the decision problem whether G
can be decomposed into 2 planar layers is NP-complete.

We will refer to the problem above as 2-THICK (see Definition 5.1). Mansfield reduces
planar 3-SAT to 2-THICK after explaining why planar 3-SAT with exactly 3 literals in each
clause remains NP -complete.

Theorem 2.4 (Lichtenstein, 1982). Planar 3-SAT is NP-complete ([38]).

For completeness, we quote the definition of the problem as presented in [43].

Planar 3-SAT is the satisfiability problem of ξ = c1 ∧ c2 ∧ ... in conjunctive normal form,
with literals in U , and the following properties:

• The (bipartite) graph G(V,E) with V = C ∪ U and E = (u, c) for which either u or ū is
a literal of c.

• Each clause c ∈ C has 3 literals at most.

2.2 Geometrical Thickness

Geometrical thickness is the last of the three variants of thickness to be defined ([15]) by M. B.
Dillencourt, D. Eppstein and D. S. Hirschberg. Graph visualization is stated as a motivation
in this work, as it seems natural to draw graphs using straight lines.

Definition 2.2 (Geometrical thickness). We define θ̄(G), the geometrical thickness of a graph
G, to be the smallest value of k such that we can assign planar point locations to the vertices
of G, represent each edge of G as a line segment, and assign each edge to one of k layers so that
no two edges on the same layer cross.

Remark 2.1. As geometrical thickness is a restriction over graph-theoretical thickness (straight
line segments over fixed points on R2), it is clear that for any graph G stands θ(G) ≤ θ̄(G).
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To commence our discussion, comparing geometrical thickness with thickness, we note on
one hand, that by Fáry’s theorem ([22]), any planar graph G can be drawn in such a way that
all edges are straight line segments, therefore θ̄(Gplanar) = 1; on the other hand, we know that
K6,8 has graph-theoretical thickness 2, but geometric thickness 3 ([15]) . So let us begin stating
results on the thickness, to reach a result on relation between thicknesses in the last paragraph
of the chapter.

Geometrical thickness of Kn

Theorem 2.5 (Dillencourt, Eppstein, Hirschberg, 2000). For the complete Kn, n ≥ 12 it is⌈
n

5.646
+ 0.342

⌉
≤ θ̄(Kn) ≤

⌈n
4

⌉
We will note give the rather long proof of the theorem, but through Figure 2.3 we will

illustrate the idea to get the upper bound of
⌈
n
4

⌉
: we consider n = 4r and the key is to draw

K2r ⊂ K4r as a small regular 2r-gon (inner ring in) and place the remaining 2r vertices to form
a large convex 2r-gon (outer ring). Now we can draw zigzag paths1 for the inner and the outer
2r-gons (they give n/4 layers/colors) in such way that all remaining edges require no new layer
to be assigned to.

Figure 2.3: Drawing of K12 where θ̄(K12) = 3.

In their work, Dillencourt et al. deal also with the special case of K15, and in total they
give:

θ̄(Kn) =


1, 1 ≤ n ≤ 4

2, 5 ≤ n ≤ 8

3, 9 ≤ n ≤ 12

4, 15 ≤ n ≤ 16

For the cases of K13 and K14, there is no proof for their exact geometric thickness, which
lies obviously between 3 and 4.

1see also the proof of Theorem 3.11.

24



Geometrical thickness of Km,n

Still in their very same publication, Dillencourt et al. prove some bounds on θ̄(Km,n). We
present the result and its proof, as it is easy to follow.

Theorem 2.6 (Dillencourt, Eppstein, Hirschberg, 2000). For the complete bipartite graph Km,n

it is ⌈
mn

2m+ 2n− 4

⌉
≤ θ(Km,n) ≤ θ̄(Km,n) ≤

⌈
min(m,n)

2

⌉
(2.2)

Proof. The first inequality is discussed in the previous section. To establish the final inequality,
assume that m ≤ n and m is even. Draw n blue vertices in a horizontal line, with m/2 red
vertices above the line and a/2 red vertices below. Each layer consists of all edges connecting
the blue vertices with one red vertex from above the line and one red vertex from below.

Note that when m << n the rightmost and leftmost quantities of 2.2 coincide and θ(Km,n) =
θ̄(Km,n) = m/2. Also, the bounds are not tight (theorem only implies θ̄(K6,6) ≤ 3 when it is
θ̄(K6,6) = 2. We conclude by presenting some figures of D. Eppstein on his webpage, along with
some of his additional notes.

(a) 2 layer straight-line drawing of K6,6. (b) K5,8 may be the larger complete bipartite graph
having θ̄ = 2.

Figure 2.4: Complete bipartite graphs of particular interest (source:
http://www.ics.uci.edu/ eppstein/junkyard/thickness/).

Geometrical thickness vs. thickness. We see that geometrical thickness is close to the
thickness of a graph. This rises the question of whether there is some particular asymptotic

behavior of θ̄(G)
θ(G) . D. Eppstein answers this question in the negative ([20]) by constructing graphs

with thickness 3 and arbitrarily large geometrical thickness, therefore θ̄(G)
θ(G) = ω(1). Eppstein

approaches the problem using Ramsey Theory ([29]), but his proof is very long and technical
to present here. In the meantime, the question of how large θ̄ can be when θ = 2 remains open.
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Geometrical thickness of bounded degree graphs. A similar result to the above is given
in the work of J. Barát, J. Matoušek and D. R. Wood ([3]), which is actually the reply to a
question posed by Eppstein in [20]:

Theorem 2.7. For all ∆ ≥ 9 and ε > 0, for all large n > n(ε) and n ≥ c∆ there exists a
∆-regular n-vertex graph with geometric thickness at least

c
√

∆n1/2−4/∆−ε

for some absolute constant c.

Geometrical thickness proved to be significantly different and separated from thickness, and
in the next chapter where book thickness is introduced, we will find an analogous separation
theorem (another work of Eppstein) regarding book thickness and geometrical thickness. This
time we will outline the proof, which is based again on Ramsey Theory (see Section 3.5).

26



Chapter 3

Convex graph drawing and book
thickness

3.1 Book embeddings and convex graph drawing

Book embeddings were first studied by L. T. Ollman in 1973. The idea is to embed a graph
G(V,E) in a rather common 3-D object. So, let L be a line in R3 (most commonly when
drawn it is the z-axis), and P = {P1, ..., Pk} be a set of (open) half-planes all having L as their
boundary. Then a “book” is the union B = L ∪ P , L representing the spine, and P the pages.
We can define:

Definition 3.1. A k-book embedding β of G(V,E) is a placing of all v ∈ V along the spine L
of a book B, and a drawing of all edges e ∈ E as arbitrary open (Jordan) arcs joining respective
vertices, either in L or onto one exactly of k book pages {P1, ..., Pk}, such that arcs on the same
page do not cross.

Naturally, the first question to pose is to minimize the pages (layers) needed for a book
embedding of G; or the equivalent decision problem “Does G have a k-book embedding?”

Definition 3.2 (Book thickness). We define bt(G), the book thickness of a graph G, to be the
smallest value of k such that G has a k-book embedding.

Figure 3.1 shows Gex(V,E) with |V | = 6, |E| = 10. It can be embedded in a book with 3
pages (3.1a), but there is an optimum book embedding in 2 pages. Thus bt(G) = 2. Notice also
that book thickness could not be 1 (to be explained later on).

The book thickness of a graph, in opposition to graph theoretical and geometric thickness
can be 0, because according to the definition, if we can place all arcs along the spine L of the
book, then there is no need for any page to exist. This occurs if and only if G is a path1. There
is another definition of book thickness, drawing a convex planar embedding of the graph:

Definition 3.3 (Book thickness alternate definition). Let G be a connected graph which is not
a path. Then the bt(G) is the minimum number k of layers in a drawing of G onto R2, where
the vertices of G are placed in convex position and all edges are drawn as straight line segments
such that each edge belongs to a single layer and no two edges in the same layer cross.

Each of these layers may be referred to with the addition of the word planar, just to clarify
its property of including pairwise non-crossing edges. We have excluded the trivial case of G
being a path, because while a path’s book thickness is proved to be 0, as soon as we draw an

1or a family of pairwise disconnected paths, but as we have stated, there is no need to study disconnected
graphs for any of the thicknesses.
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(a) A book embedding β of Gex with 3 pages
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v4
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(b) A book embedding βopt of Gex with the op-
timum of 2 pages

Figure 3.1: For Gex(V,E) it is bt(Gex)=2.

edge on the plane, we have already created a layer to assign the edge to. Also, we can state the
following:

Remark 3.1. If G is connected and not a path, Definition 3.3 allows us to see that book
thickness is a restriction over geometrical thickness (points in convex position); so it is θ̄(G) ≤
bt(G), and in total we have:

θ(G) ≤ θ̄(G) ≤ bt(G)

The equivalence between the 2 definitions was first introduced in [7]. Though it is not
hard to understand, we will present a complete proof of it. But first, we will discuss some
properties of convex graph drawings, as we will use them frequently when wondering around
drawing thickness, but also to sketch variations of some proofs of [7], [8], in order to have a
more consistent notation when trying to link together the presented ideas and propositions.

3.1.1 Convex graph drawing

First, we present a group of definitions regarding convexity.

Definition 3.4.

A set X is said to be convex if for any a, b ∈ X, it is a + λb ∈ X,∀λ ∈ [0, 1]. In other
words, segment ab lies entirely within X.

The convex hull of a set X (we write CH(X)) is the intersection of all convex sets that
cover (include) X.

In the special case of (finite) point sets, the definitions imply that:

For a point set P , its convex hull P is the minimum polygon which covers all points in P .

A point set S is said to be convex if all its points lie on the boundary of CH(S).

We will maintain marking convex point sets with letter S, while usually marking arbitrary
points sets by P .
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Convex graph drawing. Let S = {s0, s1, ..., sn−1} be a convex point set on the plane and
consider it as the convex n-gon s0s1...sn−1s0, drawn in a clockwise direction; also let Dconv

map V of graph G(V,E) to S. For our own convenience, we use the obvious isomorphisms

S
f(si)=i∼= {0, ..., n− 1}, V

g(si)=i∼= {0, ..., n− 1} as it is |S| = |V | = n to handle easily the mapping
function. Dconv : V → S ∼= Dconv : {0, ..., n−1} → {0, ...n−1}. Dconv is “1-1” so it is invertible,
and as |V | = |S|, it is one of the functions to reveal the isomorphism V ∼= S. Therefore it is
D−1
conv : S → V ∼= D−1

conv : {0, ..., n− 1} → {0, ...n− 1}.
We may well denote any of S, V as {0, ..., n− 1}, write Dconv(i) = k ⇔ D−1

conv(k) = i. When
the graph is drawn, we will usually refer to a vertex placing only as “i” rather than “point
si” and if Dconv(vi) = a,Dconv(vj) = b with a, b ∈ {0, ..., n − 1}, the edge vivj will be simply
referred to as (a, b). If an operation regarding the enumeration of these vertices gives a result
a ≥ n, then we actually refer to vertex a mod n. Using this enumeration, and having in mind
definition 1.3 we will list a few properties:

Proposition 3.1. Properties of convex graph drawings:

i) Of course, it is (a, b) ≡ (b, a) for all a, b ∈ {0, ..., n− 1}.

ii) All possible boundary edges (or edges of the n-gon) Ebnd of Dconv(E) are expressed as
(k, k+ 1) for some k ∈ {0, ..., n− 1} and do not cross any other edge of the drawing of G.
It is |Ebnd| ≤ n.

iii) Interior edges (Ein) of the drawing are all drawn edges that are not boundary, i.e. they

are diagonals of the convex polygon. It is |Ein| ≤ n(n−3)
2 .

iv) For any edge (a, b), a 6= b we define its span |(a, b)| = min((a− b) mod n, (b− a) mod n)
and it is the minimum path length from a to b around the polygon’s boundary. It is
|(a, b)| ≤ bn2 c.

v) For all edges of the drawing we can assign each edge in a span class: (a, b) ∈ E|(a,b)|.
All edges belong to exactly one span class Ek, k = 1, ..., bn2 c, creating a partition of set
Dconv(E). It is |Ek| ≤ n except if n = 2r and k = r. In that case |Ek| ≤ n

2 = r. Also
|E1| is the set of all drawn boundary edges, while Ebn

2
c is the set of all drawn maximal

diagonals of the polygon2,3.

vi) A diagonal sasb of a convex polygon crosses diagonal scsd if and only if sc and sd lie on
either of the 2 smaller polygons defined when drawing sasb. For a drawing Dconv(G) this
is translated to the formula for a < b, c < d:

(a, b) ∩ (c, d)⇔
(c < a) ∧ (a < d < b) ∨ (a < c < b) ∧ (b < d) (crossing-check formula)

(3.1)

The crossing-check formula applies even if we generalize (a, b), (c, d) to be arbitrary drawn
edges, but also if some of a, b, c, d are ≥ n.

vii) Let D
(n)
conv the set of all convex mappings V → S, |V | = |S| = n, and Π(n) the set of all

permutations of {0, ..., n−1}. It is D
(n)
conv
∼= Π(n). This allows us to define Dconv : V → S as

a permutation: Dconv(V ) ↔ ΠDconv = {l0, ..., ln−1} ⇔ Dconv(vlk) = k, ∀k ∈ {0, ..., n − 1}.
The permutation gives us the clockwise order of the vertices places on S.

2Ek is a subset of the edges of the star polygon (or star figure) Sn/k, the drawings one gets when joining with
a straight line every k-th vertex of a convex n-gon (see Appendix A).

3The classification of an edge as boundary, exterior, or belonging to a certain span class Ek depends on the
very drawing of the graph, and it is meaningless without some D. Therefore, if we write Ebnd, Ein or Ek we
indicate the existence of a drawing D, and refer to the obvious one of the context.
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viii) Let a second mapping with D′conv(V ) = S correspond to Π′ = ΠD′conv = {l′0, l′1, ..., l′n−1}.
If we can get Π′ from ΠDconv using only reflection: fref (Π) = {ln−1, ..., l0}, rotation:
frott(Π) = {ln−t, ln−t+1, ..., ln−1, l0, l1, ..., ln−t−1}, or any combination of these two trans-
forms, then the graph drawings Dconv(G), D′conv(G) are equivalent. A pair of such per-
mutations are said to be equivalent and we will write Π ∼ Π′.

ix) Let S′ be another set with all properties of S. A convex drawingDS′
conv(G), withDS′

conv(V ) =
S′, is equivalent to Dconv : V → S if ΠDconv ∼ ΠDS′conv

.
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v3

v4

v5

v6

v7

G(V,E)

D
con
v

s0

s1

s2

s3

s4

s5

s6
s7

S

(a) Graph G to be embedded to convex point
set S

Dconv(G(V,E))

s0 ← v
2

s1 ← v
5

v
3
→ s2

v
0
→ s3

v
1
→ s4

v
6
→ s5

s6 ← v
4

s7 ← v
7

(b) Assignation of each vertex to a point. It is ΠDconv =
{2, 5, 3, 0, 1, 6, 4, 7}

Figure 3.2: A convex drawing. v3v4 ∈ E4, v3v6 ∈ E3, v2v4 ∈ E2 and v0v1 is drawn to be
boundary.

s
0
← v2

s
1
← v5

v3 → s
2

v0 → s
3

v1 → s
4

v6 → s
5

s
6
← v4

s
7
← v7

(a) Crossing checking and color assignments. v0v2 crosses
v1v5 under Dconv as crossing-check formula for (3, 0) ∩
(4, 1) evaluates “TRUE”.

s0 ← v1

s1 ← v0

s2 ← v3

s3 ← v5

v2 → s4

v7 → s5

v4 → s6

v6 → s7

(b) New S′, with new Π′. The draw-
ing is equivalent to Dconv because Π′ =
fref (frot3)(Π).

Figure 3.3: Crossings and an equivalent drawing of G.
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Proof.

i) Trivial, the graph is undirected.

ii) Because of the labeling of S, the n possible edges of the polygon are (k, k+ 1), 0 ≤ k < n.
They do not cross each other, and no any other edges, because if they did that would
imply a point in the exterior of the n-gon, which is false.

iii) Possible diagonals join non-consecutive vertices, i.e. edges (a, b), b 6= a ± 1, which are at

most
(
n
2

)
− n = n(n−3)

2 .

iv) Let WLOG b > a and b − a = l. Then a − b = −l but −l = n − l mod n. Therefore
it is b − a = l and a − b = n − l mod n, 0 ≤ l < n, so min((a − b) mod n, (b − a)
mod n) = min(l, n− l) ≤ bn2 c.

v) All edges go to exactly one layer because of the span function above. Thus sets Ek are
a partition of Dconv(E). Consider an edge E1 = (a, a + k), 0 ≤ a < n ∈ Ek, and let
E2 = (a+ i, a+ i+ k), 1 ≤ i < n ∈ Ek. We will show that all edges of Ek are distinctive
except for the case n = 2r, k = r. As a 6= a+ i and a+ k 6= a+ i+ k we have:

E1 ≡ E2 ⇔

{
a = a+ i+ k mod n

a+ i = a+ k mod n
⇔

{
2i = 0 mod n

i = k mod n
⇔

{
2i = n

i = k

As the solution of the system indicates (with i ≡ r) that if n = 2r, k = r the expression
(a, a + k) yields identical edge (a + k, a + 2k) ≡ (a + k, a), ∀a ∈ {0, ..., k − 1}. So this is
the case where |Ek| ≤ n

2 . In any other case |Ek| ≤ n.

vi) Let us express our convex point set as S = {s0, ..., sa, sa+1, ..., sb, sb+1, ..., sn−1}. Diagonal
(a, b) defines convex polygons S1 = {s0, ..., sa, sb, sb+1, ..., sn, s0} and S2 = {sa, sa+1, ..., sb, sa}.
pcpd crosses papb if and only if pc ∈ S1 and pd ∈ S2 or pc ∈ S2 and pd ∈ S1, with a, b 6= c, d.
This means (c < a ∨ c > b) ∧ (a < d < b) or (d < a ∨ d > b) ∧ (a < c < b). As
(a, b) ≡ (b, a), (c, d) ≡ (d, c) we convert any edge so that a < b, c < d, and get the shorter
crossing-check formula:

(a, b) ∩ (c, d)⇔ (c < a) ∧ (a < d < b) ∨ (d > b) ∧ (a < c < b)

If (a, b) is not a diagonal, then it is a boundary edge and should not cross any other
edge. Indeed, if b = a + 1, then neither of a < c < b, a < d < b can be true, and the
crossing-check formula is always false.

vii) Define ΠDconv = {D−1
conv(0), ..., D−1

conv(n − 1)} for any Dconv ∈ D(n)
conv. For Dconv 6= D′conv

we have: ∃k : Dconv(k) = i 6= j = D′conv(k) ⇒ ΠDconv(i) = ΠD′conv(j) and therefore it
cannot be ΠDconv 6= ΠD′conv .

For any Π = {l0, ..., ln−1} ∈ Π(n) define DconvΠ(vlk) = k, ∀k ∈ {0, ..., n − 1}. Since lk is
term of a permutation, running through all k ∈ {0, ..., n − 1} means DconvΠ as defined
gives V ∼= S. If Π 6= Π′ ⇒ ∃i, j 6= i : li = l′j = y ⇒ Dconv,Π(vy) = i 6= j = Dconv,Π′(vy).

viii) Let e1, e2 = (a, b), (c, d) under Dconv, so e1 = vD−1
conv(a)vD−1

conv(b), e2 = vD−1
conv(c)vD−1

conv(d) We
will use the crossing-check formula, so we assume a < b, c < d.

• Reflection. If D−1
conv(i) = li ∈ ΠDconv then li ∈ fref (ΠDconv), but li = l′n−1−i, so under

D′conv we have to check edges (n− 1− a, n− 1− b), (n− 1− c, n− 1− d). Now it is
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n− 1− lb < n− 1− la, n− 1− ld < n− 1− lc and:

(n− 1− b, n− 1− a) ∩ (n− 1− d, n− 1− c)
⇔

((n− 1− b < n− 1− c < n− 1− a) ∧ (n− 1− d < n− 1− b))∨
((n− 1− b < n− 1− d < n− 1− a) ∧ (n− 1− a < n− 1− c))

⇔
((a < c < b) ∧ (b < d))∨
((a < d < b) ∧ (c < a))

⇔
(a, b) ∩ (c, d)

So two edges cross under D′conv if and only if they cross under Dconv.

• Rotation. If D−1
conv(i) = li then as l′i = li−t for a rotation Π′ = frott(Π) the two

edges under D′conv are (a + t, b + t), (c + t, d + t). Of course this is equivalent to
the crossing-check formula for (a, b), (c, d) and we get to the same conclusion for the
rotation function.

So, if ΠD′conv = f1 ◦ f2 ◦ ... ◦ fk(ΠDconv), where k is finite and ∀k, fk ∈ {fref , frott}, then
the 2 drawings of the graph are equivalent. In fact, for any Π ∼ Π′ we can get from one
the other with at most 1 reflection and 1 rotation.

ix) Let S′ ∼= S ∼= {0, ..., n − 1}. So ΠDS′conv
also defines an equivalent drawing D′conv ∼ DS′

conv

onto S, as S and S′ are also isomorphic as polygons. If ΠDconv ∼ ΠDS′conv
then Dconv ∼

D′conv and therefore Dconv ∼ DS′
conv.

Notes on the above:

• The gist of all the above expressed in a less formal language, is that the exact points S
selected to fix the vertices of G in a convex position does not matter, as long as the order
of vertex placings is given, and this order appears around the polygon defined by S, in a
clockwise or counterclockwise direction.

• As the set of all permutations Π(n) includes the reflection fref (Π), ∀Π ∈ Π(n), we will
usually assume a clockwise ordering of the vertices.

• We will mostly draw convex graphs to form regular n-gons. This is not to be regarded as
a special convex drawing, but as a convenient drawing, which is, as we proved, equivalent
to any non-regular convex drawing.

3.1.2 Book thickness

Theorem 3.1. If G is connected and not a path, then the two Definitions 3.2, 3.3 of book
thickness are equivalent.

Proof. Let G(V,E) be a graph with |V | = n, let book B = L ∪ {P1, ..., Pk}, n ≥ 1 and let
S = {s0, ..., sn−1} be a set of points on the plane that form the convex n-gon s0...sn−1s0

clockwise. Choose a placing of vertices of G along spine L and enumerate them according to

their order of appearance along L, so it is V
fL∼= {0, ..., n − 1}, where (using the same approach
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0← v0

1← v2

2← v3

3← v1

4← v4

5← v5

(a) The book embedding βopt of Gex

v0

v2v3

v1

v4 v5

→ 0

→ 12←

3←

4← → 5

(b) Equivalent convex drawing of βopt

Figure 3.4: Adding edges to βopt(G) of Figure 3.1b.

as with convex mappings) fL(vk) = li ⇔ f−1
L (li) = k and Πβ = {f−1

L (0), ..., f−1
L (n − 1)} is a

permutation of {0, ..., n−1}. Defining Dconv,β = Πβ we have the corresponding convex mapping.
As we did for the convex drawing, we will refer to vf−1

L (i) of L as i and to vf−1
L (a)vf−1

L (b) of B as

(a, b).

Any edge drawn on the spine of the book, which does not affect book thickness, is equivalent
to a boundary edge of the polygon, which does not affect the number of layers either, because
it does not cross any other edge. And vice versa: any boundary edge of the polygon is either
an edge of the spine of the book, or it is (n− 1, 1), an edge that can be assigned to any of the
existing layers, as it may be drawn on the “outside” of all edge drawings of an arbitrary page
without crossing them.

It now remains to show that adding an edge (a, b), a < b + 1 to one of the pages Pi of the
book is equivalent to adding the diagonal of the polygon (a, b) to the ith layer of the planar
drawing.

For edge (a, b) to be placed in Pi there must be no edge (c, d) ∈ Pi, c < d with c < a < d, b >
d, or c < b < d, a < c. Existence of edge (c, d) leads to the drawing of an arc cd

_
on half-plane

Pi. If WLOG a ∈ (c, d), i.e. c < a < d, then the arc to be drawn ab
_

on same half-plane Pi, will
cross cd

_
as long as it needs to have a point outside curve (c, d, dc

_
). This is true if b lies outside

(c, d), or b > d as we assumed b > a+ 1. Likewise, if c < b < d and a < c we have arcs crossing.
To sum up, we must evaluate the formula (c < a)∧ (a < d < b)∨ (a < c < b)∧ (b < d) which is
the crossing-check formula for the convex drawing.

Illustrating the proof with an example. Given the βopt of Figure 3.1b, we have Πβ =
{0, 2, 3, 1, 4, 5} and draw the corresponding convex polygon as described. We may add edge v0v4

to the green page/layer, but not to the red one because v4 is a point of the line segment of curve
(v3, v5, v5v3

_ ), trying to be “reached” by an arc v0v4
_ lying on the same half-plane as (v3, v5, v5v3

_ )
and needing to have a point outside of it (v0); v0v5 on the other hand, can be added to either
page/layer. But edge v2v4 cannot be added to the existing layers.

Important note: Adding v2v4 does not mean that G′ex = Gex(V,E) ∪ {v2v4} has now
bt(G′ex) = 3. In fact, reorganizing our layers we get again bt(G′ex) = 2 (Figure 3.5).
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v2

v0

v3

v1

v4

v5

(a) The new book embedding β′opt of G′ex

v2

v0v3

v1

v4 v5

(b) Equivalent convex drawing of β′opt

Figure 3.5: bt(G′ex) = 2. Edge v2v5 of the book embedding is drawn black, to show it could be
assigned to the green page, too.

Printing cycle and σ-thickness. To prove equivalence of the two definitions, we mapped
vertices of the spine of the book to a convex point set on the plane in a certain order, called
printing cycle ([7]). Two properties of the printing cycle found in [7], state the following:

Lemma 3.2. If G has a k-book embedding β, n ≥ 1, with printing cycle v1, ..., vn then it has a
n-book embedding with printing cycle v2, ..., vn, v1 and printing cycle vn, ..., v1.

This is actually our Proposition 3.1 (viii) applied on the convex embedding created from β.
In the very same work, the term σ-thickness briefly appears:

Definition 3.5. Let G be a graph and σ a listing of its vertices. The σ-thickness bt(G, σ) is
the smallest k such that G has a k-book embedding with σ as a printed cycle. Then it is simply
bt(G) = min bt(G, σ) overall σ.

Let us transform this, using our terminology.

Definition 3.6. Let G be a graph |V | = n and Dconv ∈ D(n) a mapping of its vertices to a
convex point set. Then bt(G) = min

Dconv
ϑ(Dconv(G)). Also bt(G) = min

Π∈Πn
ϑ(DconvΠ(G)).

Point-line covering number for a graph. Denoted by α(G), the point-line covering number
is the smallest number of vertices of G that are incident with every edge of G.

Lemma 3.3. For any convex drawing Dconv, it is ϑ(Dconv(G)) ≤ α(G).

Proof. Let Sα = {v1, v2, ..., vα(G)} cover the edges. We can construct α(G) layers, so that we
can assign any edge incident to vk to layer k. As edges with common endpoint do not cross,
and all edges are incident to some vk ∈ Sα, we get our lemma.

3.2 Graphs with small book thickness

Theorem 3.4. Let G be a connected graph. Then:

i) bt(G) = 0 if and only if G is a path.

ii) bt(G) ≤ 1 if G is outerplanar, and vice versa.
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iii) bt(G) ≤ 2 is true if and only if G is a subgraph of a Hamiltonian (subhamiltonian) planar
graph.

3.4 (i) is trivial to prove. For 3.4 (ii) and 3.4 (iii), we must discuss the terms outerplanar
graph and Hamiltonian planar graph. Also let us state an easy-to-get lemma:

Lemma 3.5. A graph with bt(G) ≤ 2 is planar. ⇔ If G is not planar, then bt(G) ≥ 3.

Proof. Just consider the 2 at most pages as the two half-planes spine L divides the plane to.

3.2.1 Outerplanar graphs

Definition 3.7. A graph G is outerplanar if it can be drawn on the plane without crossing
edges, and in a way so that all vertices lie on the boundary of the exterior (unbounded) region
of the drawing; equivalently, no vertex is totally surrounded by edges.

The condition is equivalent with having all vertices on the boundary of the interior region.
Chartrand and Harary showed in [10] that a graph G is outerplanar if and only if it contains no
minor H = K4 or K2,3, two “forbidden” graphs, analogous to the critical graphs of Wagner’s
theorem for planarity. Another interesting result is the following:

Theorem 3.6. Graph G is outerplanar if and only if G+K1 is planar.

Proof. If G(V,E) is outerplanar, suppose its vertices lie on the boundary of G’s exterior. Adding
a new vertex w allows us to draw all edges wv, v ∈ E without crossings. Now, let G + K1 be
planar, and w the vertex adjacent to all vertices of G. By deleting w we get that G has its
vertices lying on the boundary of the same region, as they were reached from w without edges
to cross.

Theorem 3.6 gives us an easy-to-execute drawing condition to check if G is outerplanar.
Now, back to 3.4 (ii).

Proof of 3.4 (ii). If bt(G) = 1, G can be drawn with its vertices placed in convex position and
with no crossings of edges. Thus, all vertices belong to the boundary of the drawing, and G is
outerplanar.

For the converse, let G be outerplanar. As it can be drawn with straight edges ([22]),
the isomorphism defined by mapping vertices along the boundary to vertices around a convex
polygon, guarantees straight line edges with no crossings. So bt(G) = 1.

Maximal outerplanar graphs and polygon triangulation

Definition 3.8. An outeplanar graph is maximal if no edge can be added to the drawing
without losing outerplanarity.

It is quite clear that a maximal outerplanar graph G(V,E), |V | = n may be embedded as a
polygon triangulation (see also [30], [14]). That gives us |E| = 2n− 3, the sum of the boundary
edges (n) plus the number of diagonals in a triangulation (n − 3). This leads to a very useful
bound for the book thickness, which we state here and use again later on:

Proposition 3.2. Let G(V,E) with |V | = n. It is bt(G) ≥
⌈
|E|−n
n−3

⌉
.

Proof. Consider the graph embedded via Dconv. The boundary edges do not affect graph’s
thickness, so to get a lower bound let all these edges exist (|E1| = n). But it is bt(G) ≥ |E|−nn−3
because if we assume the contrary, it would imply (pigeonhole principle) that we can assign
n−2 interior edges (diagonals) to the same layer (page). This is false, as the maximum number
of pairwise non-crossing diagonals of a polygon is exactly n− 3 (triangulation).
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(b) As |E| = 12 = 2n− 4 we may add one
more edge and keep outerplanarity.

Figure 3.6: Outerplanar graph G.

3.2.2 Hamiltonian graphs

Definition 3.9. A graph is called Hamiltonian if it contains a cycle with all vertices of G
(Hamiltonian cycle4).

The root of this problem lies in 1855. Reverend Thomas Penyngton Kirkman studied
whether it is possible to visit all vertices of a polyhedron exactly once by moving along edges
and returning to the starting vertex. He observed that this could be done for some polyhedra
but not all. But as Sir William Rowan Hamilton introduced a new game, the Icosian Game,
one year later, and posed a number of deeper and more varied questions related to what we call
now “Hamiltonian cycle”, it seems that along with his fame, it was the catalyst to name such
cycles after him. At this time, the game was motivated by non-commutative algebras, which
Hamilton had developed, but it turned out to evolve to one of graph theory’s most significant
problems([11]).

It was not until the 1950’s that results on sufficient conditions for Hamiltonian graphs
appeared, but never has a necessary condition been found. Karp showed in 1972 ([33]) that
the problem of finding whether a graph has a Hamiltonian cycle (HC ) is NP -complete. Garey,
Johnson and Tarjan showed in 1976 that HC for planar graphs is also NP -complete ([25]).

Let us now discuss the proposition left to prove:

Proof of 3.4 (iii). Let G have bt(G) ≤ 2. The graph is planar, and consider the cycle going
through the vertices of the spine in order of appearance {vl0 , ..., vln−1}, adding all missing edges
vlivli+1

, including edge vln−1vl0 , which we proved not to affect book thickness. The graph with
the added edges G′ is Hamiltonian, and G ⊆ G′.

Now assume planar G′ has a Hamiltonian cycle. Fix the vertices on the spine in order of
appearance in the cycle. All edges drawn in the interior of the cycle may be assigned to a single
page because along with the cycle the form an outerplanar graph; so do the edges of the exterior
of the cycle. Therefore a Hamiltonian planar graph has bt(G′) = 2, and so does any G ⊆ G′.

4or Hamiltonian circuit. Whichever the choice, the meaning of initials HC is identical.
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(a) Creating G′ of proof of 3.4 (iii).

v0

v2v3
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v4 v5

(b) Subgraphs black-red and
black-green are outerplanar.

Figure 3.7: Illustrating the proof of Proposition 3.4 (iii).

3.2.3 Non-subhamiltonian planar graphs.

In 1975, A. Golder and F. Harary showed that a maximal planar graph with 11 vertices and 27
edges is the smallest in the class which does not have a Hamiltonian cycle (Figure 2.2); its book
thickness is actually 3. Of course, there are arbitrarily large maximal planar graphs that are
not Hamiltonian; Wigderson ([57]) and Chvátal independently showed that the maximal planar
HC problem is NP -complete. In particular, Widgerson used the result of Garey et. al ([25]) as
his known NP -complete problem. This transforms to the following:

Lemma 3.7. Given a graph G, the problem of determining whether it is bt(G) = 2 is NP -
complete.

Proof. The instances of maximal planar graphs are enough to give us the NP -completeness as
an immediate reduction from maximal planar HC. See also table 5.1.

The fact that Bernhart and Kainen ([7]) could construct infinitely large planar graphs with-
out Hamiltonian cycles led them to make the conjecture that planar graphs’ book thickness
could be also arbitrarily large. This was soon proved false, and finally M. Yannakakis ([58])
gave the following result:

Theorem 3.8. For any planar graph G, it is bt(G) ≤ 4.

In Yannakakis’s publication, along with a very technical proof of the above, a planar graph
with book thickness 4 is constructed, making the bound to be tight, and settling once and
for all the open to this date problem. Yannakakis’s complex example seems to be the only
published instance of its kind, leading most to believe that 3 pages are enough to accommodate
any relatively small planar graph.

There are many more related results and extensive bibliography on planar graphs and spe-
cial instances of them, but we shall now retract our limitation for planarity and small book
thicknesses, and examine the complete and complete bipartite graphs.

3.3 Book thickness of the complete graph Kn

Let us begin this section by stating the rather obvious observation that all convex embeddings
of the complete graph are equivalent. So, the special note on this case is that the book thickness
of Kn equals the drawing thickness of any convex drawing of Kn. More formally:
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Lemma 3.9. For G = Kn, bt(G) = ϑ(Dconv(G)),∀Dconv ∈ D(n)
conv.

As a consequence, we may well draw the convex Kn mapping each vi ∈ V to point si
(using our standard notation for convex drawings) without loss of generality, and now i actually
denotes vertex vi. Using the Proposition 3.2 we directly get the following lemma:

Lemma 3.10. If G = Kn then bt(G) ≥ dn2 e.

Proof. The total of the edges of the complete graph are |E| =
(
n
2

)
= n(n−1)

2 . Replacing |E| in

the mentioned proposition we get bt(G) ≥
⌈ n(n−1)

2
−n

n−3

⌉
=
⌈ n(n−3)

2
n−3

⌉
= dn2 e.

Theorem 3.11. For n ≥ 4, bt(Kn) = dn2 e.
As equally, ϑ(Dconv(Kn)) = dn2 e, ∀Dconv ∈ D(n)

conv.

Proof. First we will prove that for n = 2r, bt(Kn) = n
2 . Consider the convex embedding of

the graph on the plane. We have repeatedly stated that edges that are drawn to be boundary
do not affect the layering of the rest of the edges. As the graph is complete we know all
possible boundary edges are drawn (|E1| = n), so are all interior edges (|Ein| = n(n−3)

2 ). We
will now assign all interior edges into exactly n

2 edge sets (layers). Construct the sets Li =
{(i, i+ n

2 )}∪{(i, i+2), (i, i+3), ..., (i, i+ n
2−1)}∪{(i+ n

2 , i+
n
2 +2), (i+ n

2 , i+
n
2 +3), ..., (i+ n

2 , i−1)}
for all i = 0, ..., n2 − 1. The sets have the following properties:

1. No Li includes any boundary edges.

This follows from our construction.

2. Within each set Li, edges do not cross.

Edge (i, i + n
2 ) is a maximal diagonal of the polygon and does not cross any of {(i, i +

2), (i, i+ 3), ..., (i, i+ n
2 − 1)}, which in turn do not cross each other (common endpoint i).

Same stands for the maximal diagonal and {(i+n
2 , i+

n
2 +2), (i+n

2 , i+
n
2 +3), ..., (i+n

2 , n−1)}
(common endpoint i+ n

2 ). The two large sets also do not induce crossing edges in between
them, because their edges lie on either of the smaller polygons defined by (i, i+ n

2 ).

3. For i 6= j, it is Li ∩ Lj = ∅.

We will compare edges with the same span. If i 6= j < n
2 then (i, i+ n

2 ) 6= (j, j+ n
2 ) because

j 6= i+ n
2 . For the rest of the edges that belong in pairs in each of Ek, k = 2, ..., n2 − 1 we

have {(i, i+k), (i+ n
2 , i+

n
2 +k)}∩{(j, j+k), (j+ n

2 , j+ n
2 +k)} = ∅ for the same reason.

4. Ein =
⋃
Li.

Of course, all edges of Li are distinct, thus |Li| = n− 3,∀i ∈ {0, ..., n2 − 1}. The fact that
|
⋃
Li| = n

2 |Li| =
n
2 (n− 3) = |Ein| together with the 1st and 3rd property are enough to

verify Ein =
⋃
Li.

Since we have assigned all interior edges to one of n
2 layers, we have completed our proof

for n = 2r. Now let n = 2r − 1. K2r−1 ⊂ K2r ⇒ bt(K2r−1) ≤ bt(K2r) = r. For the sake of
contradiction assume bt(G) = r − 1 = dn2 e − 1. The maximum number of edges that may form

such layers is (n−3)(r−1) = (2r−4)(r−1), while we have a total of (2r−1)(2r−4)
2 = (2r−4)(r−

1
2) = (2r − 4)(r − 1) + r − 2 edges, which disproves our assumption and bt(K2r−1) = r = dn2 e.

Some notes:
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(a) L0, L1, L2, L3 for K8.
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(b) Complete picture of the edge-colored K8.

Figure 3.8: Showing that bt(K8) = 4.

• K2 is a path so bt(K2) = 0, and bt(K3) = 1. K4 includes edge of form (i, i + 2), so it is
the smallest complete graph supporting a construction of Li sets.

• We may assign a pair of boundary edges to each Li for consistency (see Figure 2.3).

• The sets we constructed are not the only sets that have these properties mentioned in the
proof. In fact, there are 2

n
2
−2 different set constructions (mirror-symmetrical sets being

distinct) that may be used for the very same approach to prove Theorem 3.11.

Recipe (only for n even):

1. Choose a vertex i to be your starting point for constructing set Li.

2. Place edge (i, i+ 2) in the set and assign a← i, b← i+ 2.

3. Choose a sign (+) or (−). For (+) place edge (a, b+ 1) in Li and b← b+ 1; for (−)
place (a− 1, b) in Li instead and a← a− 1.

4. Repeat for n
2 − 2 times. In the end of this procedure an edge of maximal span is

placed in Li.

5. For every edge (a, b) in Li (except for the maximal span one), place (a+ n
2 , b+ n

2 ) in
Li.

Each set construction now can be defined by a sequence of n
2 − 2 pluses or minuses. For

instance, the set we constructed in our proof corresponds to the all-plus set {+,+, ...,+}
of size n

2 −2. It is easy to see that within any Li edges to not cross; the proof that for any
construction it is Li ∩ Lj = ∅ is analogous to the one we presented, and the proof that
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all 2
n
2
−2 set constructions yield different Li is equally technical5, but better understood if

one starts building Li from a maximal span edge.
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(d) {−,−}

Figure 3.9: The 4 different L0 sets (v0v2 as initial edge) we can construct for K8.

3.4 Book thickness of complete bipartite graphs

Within this section, the bipartite Km,n will have m ≥ n, following the main work presented
([17]).

Coming to the class of complete bipartite graphs, publications are rather scarce. First results
are given in by Bernhart and Kainen ([7]). The use of Lemma 3.3 gives an easy first bound
bt(Km,n) ≤ α(Km,n) = min(m,n), and the use of Proposition 3.2 applied for the m+n vertices
and m · n edges of Km,n gives bt(Km,n) ≥ (mn − m − n)/(m + n − 3). For Kn,n the latter

inequality becomes bt(Kn,n) ≥ n(n−2)
2n−3 ≥

n
2 . This left a large gap [n2 , n] to place bt(Kn,n) in,

and the only improvement presented in [7] is that Kn,n ≤ n − 1. Finally, we get the following
Ramsey-type theorem :

Theorem 3.12. For m ≥ n2 − n+ 1 it is bt(Km,n) = n.

Proof. Consider a circle to place n black vertices and m red ones. Using the pigeonhole principle
we get that at least one of the n arcs defined by two consecutive black vertices contains n red
vertices. Enumerate the black vertices clockwise 1, ..., n such that the arc containing the n red
ones is the n, 1

_
, and enumerate these red vertices clockwise again, with n + 1, ..., 2n. As there

are all n2 edges between black and red vertices, we consider the subset N = {(1, n+ 1), (2, n+
2), ..., (n, 2n)} and observe that for any e1, e2 ∈ N it is e1∩e2 =TRUE (crossing-check formula).
Thus n layers are necessary to accommodate the edges of N and since we know bt(Km,n) ≤ n
we have our theorem.

Those bounds were improved by the work of Muder, Weaver and West (see [47]). For m ≥ n
it was now bt(Km,n) ≤ min(d(2n + m)/4e, n). Their proof was based on 2-bucket orderings,
that is placing black and red vertices around the circle forming 2 groups (blocks) of consecutive
vertices for each color.

In 1997, H. Enomoto, T. Nakamigawa and K. Ota from Keio University in Yokohama,
published an excellent work on the pagenumber of complete bipartite graphs ([17]). They adopted
a more natural approach to the problem, which improved all existing results on bt(Km,n), while
leading to a one-of-a-kind technique (comparing to relevant publications): the definition of a
function f such as the bound occurs from a minimization overall r ∈ N and not directly:

5If we account for symmetrical sets, i.e. turn all (+) to (−) and all (−) to (+) in the sequence, we may say
the distinct sets are a little less, 2

n
2
−3.
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Theorem 3.13. Let f(m,n, r) = d(nr2 + r+m)/(r2 + r+ 1)e. For m ≥ n ≥ 3 it is bt(Km,n) ≤
min
r∈N

f(m,n, r).

As a lemma we may easily get:

Lemma 3.14. bt(Kn,n) ≤ b2n
3 c+ 1, bt(Kbn2/4c,n) ≤ n− 1.

As with the geometrical thickness, we see that if m >> n the book thickness remains O(n).
The long -yet more elegant compared to [47]- proof (of Proposition 3.3) features an ordering
of n black and m red vertices around a circle in t blocks for each color. Each ordering can
be regarded as the set A = {b1, r1; b2, r2; ...; bt, rt},

∑
bi = n,

∑
ri = m, which actually means:

“place in clockwise order around the circle b1 consecutive black vertices, then r1 consecutive red
vertices, and so on”. It can be bi, ri = 0, so a set A can describe any placing of vertices around
the circle. For instance, in Figure 3.10 the ordering applied to K9,6 is {4, 3; 1, 3; 1, 3}.

This particular ordering we mentioned, actually derives from the ordering used to prove the
critical proposition, from which Theorem 3.13 is then established. We state and consider true
that:

Proposition 3.3. If n, r, s are all positive integers with n ≥ (r + 1)s + 1, then for m =
(r + 1)(n− s)− r2s− r we have bt(Km,n) ≤ n− s.

For ordering A = {n− rs, n− (r + 1)s; ((1, 1)s−1; 1, n− (r + 1)s)r}, where the power s− 1
indicates a repetition of the pattern of the base for s− 1 times, it is easy to see that A covers
all vertices of the graph. With the appropriate assignment of edges to layers, the proposition is
verified. For the example of Figure 3.10 we must set n = 6, s = 1 and r = 2.

b1 = 4

r1 = 3

b2 = 1

r2 = 3

b3 = 1

r3 = 3

Figure 3.10: Ordering A = {4, 3; 1, 3; 1, 3} for the bipartite K9,6 shows its thickness is at most
5.

Proof of Theorem 3.13. Let m ≥ n ≥ 3 and r positive, and t = f(m,n, r). We will show that
bt(Km,n) ≤ t,∀r ∈ N. If n ≤ t then bt(Km,n) ≤ n ⇒ Km,n ≤ t. Now if t ≤ n − 1, from
t = d(nr2 + r +m)/(r2 + r + 1)e ≥ (nr2 + r +m)/(r2 + r + 1) we obtain:

1. m ≤ (r2 + r+ 1)t−nr2− r and substituting t = n− s we get m ≤ (r+ 1)(n− s)− r2s− r.

2. t ≥ (nr2 + r + m)/(r2 + r + 1) > (nr + 1)/(r + 1), and using the same substitution we
obtain n > (r + 1)s+ 1.
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But for n > (r+1)s+1 and m = (r+1)(n−s)−r2s−r it is bt(Km,n) ≤ n−s from Proposition
3.3. So for m ≤ (r + 1)(n− s)− r2s− r it is also true that bt(Km,n) ≤ n− s = t. All stand for
any r ∈ N.

We suspect that no other published to this date work gives any better bounds on the book
thickness of Km,n.

3.5 Book thickness vs. geometrical thickness

As we promised, we will now present the work of D. Eppstein ([19]) on the asymptotic behavior of
bt(G)

θ̄(G)
to show that book thickness and geometrical thickness are not asymptotically equivalent

(
bt(G)

θ̄(G)
= ω(1)). First we will show that a family of graphs Gn has bounded geometrical

thickness θ̄(Gn) = 2. The construction is based upon a complete graph Kn and the graph
denoted Gn, which is the graph we get if we replace all edges of Kn with a path of length 2.
Figure 3.11 shows this transformation, and how it leads to a placing of all n+

(
n
2

)
vertices of Gn

so we can easily see that θ̄(Gn) = 2. For large n (≥ 5) it cannot be θ̄(Gn) = 1 as the non-planar
K5 is a minor of Gn.

v0

v1

v2

v3

v4

v5
•

•

•

→

(a) Splitting every edge into a 2-edge path

v0

v1

v2

v3

v4

v5

•
•
•

(b) Drawing to show θ̄(G) = 2.

Figure 3.11: Towards showing
bt(G)

θ̄(G)
= ω(1).

Lemma 3.15. For any integers c,l there is an integer Rc(l) such that if we create a partition
of the edge set of the complete KRc(l) into c sets, then at least one of the corresponding c
subgraphs contains the complete Kl as subgraph.

The lemma comes from Ramsey theory ([29]) and will be the key to prove the following
theorem which verifies our claim.

Theorem 3.16. For any k there is a graph Gn that has bt(Gn) ≥ k.

Proof. We choose c =
(
k−1

2

)
, l = 5 and let n = Rc(5). Consider the complete Kn, and the Gn

formed from Kn. Now suppose, for the sake of contradiction, that there is a book embedding
β that gives bt(Gn) = k − 1. We use this particular β to create a partition of the edges of Kn

into c sets.
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Let the 2 edges that connect vi with vj in Gn be assigned to different layers x and y under
embedding β. As an unordered pair, {x, y}, 1 ≤ x, y ≤ k − 1 corresponds to one of the wished
c =

(
k−1

2

)
edge sets, so we can assign vivj of Kn to the particular subgraph. If the 2 edges

belong to the same layer z under β, then we may arbitrarily choose to put vivj into one of the
k − 2 subgraphs involving layer z.

Using the lemma, we know that at least one of the c subgraphs we created has K5 as a
subgraph, the edges of which correspond to all edges of a G5 embedded under β onto just 2
pages. This is impossible as K5 is a minor of G5 making G5 non-planar, thus bt(G5) ≥ 3.

Let us now state our claim as a lemma, deriving directly from Theorem 3.16.

Lemma 3.17. Book thickness and geometrical thickness are not asymptotically equivalent: for
any given k we may construct a graph Gn such that bt(Gn) = k while θ̄(Gn) = 2.
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Chapter 4

Drawing thickness of arbitrary graph
drawings

4.1 The drawing thickness of sparse graphs

In the first chapter, Figure 1.6 gave an example of how we can draw a graph G(V,E) with only
|E| = O(n) edges such as its drawing thickness is exactly |E|. In fact, we can generalize to a
simple observation:

Lemma 4.1. For every n there is a graph Gsp(V,E) with |V | = n, |E| ∈ {1, ..., bn2 c}, and a
drawing D that yields ϑ(D(Gsp)) = |E|.

Proof. Create a perfect matching of |E| vertices, and label them so it is vk adjacent to vk+bn/2c,

for all k ∈ {0, ..., |E| − 1}. Using the convex mapping function Dopp(vk) = e−
kπ
n
i we get the

desired result as the drawn edges build set O = {(0, bn/2c), (1, 1 + bn/2c), ..., (|E| − 1, |E| − 1 +
bn/2c)}, a set of |E| diagonals of maximal span, thus a set of pairwise intersecting edges. The
floor function appears just because n can be odd and define at most bn2 c pairs of vertices.

Drawing thickness vs. book, geometrical and graph-theoretical thickness. The
previous observation leads directly to the following statement, analogous to the ones of previous
chapters:

Proposition 4.1. Ratio between drawing thickness and book, geometric or graph-theoretic
thickness is not bounded by any constant factor.

Proof. (For θ̄, θ): Use the previous perfect matching graph Gsp(V,E) with n = 2r, |E| = r with
deg(v) = 2,∀v ∈ V . We showed it is ϑ(Dopp(Gsp)) = n

2 , while it is easy to see that all edges can
be mapped without crossings, for instance as boundary edges of a convex polygon (see Dadj of
Figure 1.6) and so θ̄(Gsp), θ(Gsp) = 1.

(For bt): Gsp is a family of mutually disconnected paths, so we must expand its edge set to
make it at least outerplanar for the fraction ϑ

bt to be defined. NowG′sp(V,E) has |V | = n = 4r+2,
E = {vkvk+n/2, k = 0, ..., 2r} ∪ {vkvk+1, k = 0, 2, ..., n − 2}. Dopp now maps G′sp to a convex
n-gon with half its boundary edges plus all maximal span diagonals. It is still ϑ(Dopp(G

′
sp)) = n

2
as no boundary edge intersects any other edge. Meanwhile, G′sp is a cycle and its book thickness
is 1 (see Figure 4.1). Of course it is also θ̄(G′sp), θ(G

′
sp) = 1.

We observe that sparse graphs (|E| = O(n)) may be drawn to have ϑ = O(|E|), which is
not be true for dense graphs as we have shown in the previous chapter. We will proceed with
lifting the limitation to convex drawings, and show that any drawing of any graph needs at
most d|V |/2e layers to properly assign its edges to.
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Figure 4.1: Instance of G of order n and drawing Dopp where ϑDopp = n
2 bt

4.2 Drawing thickness of the complete graph

We have shown (Theorem 3.11) that for a convex drawing of Kn it is exactly ϑ(Dconv(Kn)) =
dn2 e. We will now generalize for any drawing on R2 with points in general position, i.e. no
3 points are co-linear (we will assume any point set to be in general position unless noted
otherwise).

Theorem 4.2. Let Kn be drawn onto R2. Then θ̄(Kn) ≤ ϑ(Kn) ≤ dn2 e.

Lemma 4.3. Let G(V,E) be drawn onto R2. It is θ̄(G) ≤ ϑ(G) ≤ min
(
|E|,

⌈
|V |
2

⌉)
.

The first part of the inequalities is trivial to show, due to the definition of geometrical
thickness and our straight-line embeddings. We can get the Lemma 4.3 from Theorem 4.2 by

observing that G(V,E) ⊆ K|V | ⇒ ϑ(D(G)) ≤ ϑ(D(K|V |)) ≤
⌈
|V |
2

⌉
and combining with Lemma

4.1.

Let us now focus on the proof of Theorem 4.2.

4.2.1 Plane spanning double stars

Definition 4.1. A double star is a tree with at most 2 non-leaf vertices. The edge joining these
2 vertices is called root of the star.

Consequently, a plane spanning double star is a connected acyclic graph drawn on the plane
without edge crossings and with at most 2 vertices with degree greater than 1. In [8], P. Bose
et al. use this precise object to partition a set of n = 2r points on the plane in n/2 mutually
edge disjoint sets, thus proposing (w.r.t. our terminology) that any complete graph of order
n = 2r can be drawn having drawing thickness at most n/2. In order to do so, they construct
plane double stars on existing point sets using a few parameters:

Proposition 4.2. Let P be a set of points, L a line dividing plane in H1 and H2 half-planes
such that L ∩ P = ∅, and v ∈ P ∩H1,w ∈ P ∩H2. T (P,L, v, w) is the graph with vertex set P
and edge set E = vw∪{vx : x ∈ (P\{v})∩H1}∪ {wy : y ∈ (P\{w})∩H2}. Then T (P,L, v, w)
is a plane spanning double star with root uw.

Proof. Edges adjacent to v are all leaves, do not cross and lie entirely on H1. Same stands
for edges adjacent to w and H2, so none of the vx edges crosses none of the wy, leaving only
d(v), d(w) > 1 (see Figure 4.2b).
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(a) A spanning double star with
root vw.
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(b) A plane spanning double star
T (P,L, v, w).

As a spanning tree, a plane spanning double star on n vertices has size of n − 1 and, of
course, it can define one of the planar layers a graph drawing may be decomposed to. Now our
goal is to find n/2 such double stars that are pairwise edge disjoint and cover all edges of a
complete graph. Let us define two plane double stars with the help of two non-parallel lines:

Proposition 4.3. Let L1, L2 ∩ P = ∅, L1 ∦ L2, and 4 points v, w, x, y that each lie on distinct
quarter-planes, with pairs (v, w),(x, y) in opposite quarter-planes. Then, for the double stars
T1(P,L1, v, w) and T2(P,L2, x, y) it is E(T1) ∩ E(T2) = ∅.

Proof. Consider, for the sake of contradiction, that T1 and T2 have a common edge e. As all
points are distinct, e cannot be one of the roots vw, xy and it should be e ∈ {vx, vy, wx,wy} as
e is adjacent to (v or w) and (x or y). Edge e crosses one of L1,L2 because all v, w, x, y lie on
different quarter-planes defined by L1 and L2. Without loss of generality let e cross L1. But
the only edge of T1 which crosses L1 is e = vw and that is a contradiction.

Pairs of points like (v, w) and (x, y) of the proposition above will be referred to as opposite
points: a pair of points lying on the 2 opposite open unbounded regions defined by a pair of
intersecting lines.

L1

L2

w

v

x

y

Figure 4.2: T1(P,L1, v, w), T2(P,L2, x, y) are edge-disjoint.

In order to complete the proof of Theorem 4.2, we would like to partition the 2r-point set
in a way that Proposition 4.3 guarantees the desired result. Formally our demand is described
as follows:

Definition 4.2 (Λ family). Let P be a set of 2r points in general position on the plane. Let Λ
be a family {L0, L1, ..., Lr−1} of r lines with the following properties:
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1. all r lines are bisecting lines

2. exactly one point lies in each open unbounded region formed by the Λ family

A Bisecting line of a 2r-point set P is a line that divides the plane into two half-planes each
containing r points of P (see Appendix B).

The Λ family guarantees that

• all lines create distinct partitions of the set and therefore have distinct slopes

• lines create r pairs of opposite points

• for any 2 pairs of opposite points, there are 2 lines of the family w.r.t. which the 2 pairs
lie on distinct quarter-planes (a prerequisite for applying Proposition 4.3)

Then, the proof of Theorem 4.2 has as follows:

Proof. Let P be the arbitrary 2r-point set of the mapping of V (G) through D. Consider the r
lines of the Λ family on P : Λ = {L0, L1, ..., Lr−1} labeled in ascending order of their angles (with
an x axis), and the 2r points with {0, ..., 2r−1} labeled in a way that the pair of opposite points
pi, pi+r lie in the opposite open regions formed by Li and Li+1. Consider also the plane spanning
double stars Ti(P,Li, pi, pi+r) (indexes are modulo n). For every i 6= j it is E(Ti) ∩ E(Tj) = ∅
(Proposition 4.3), and all double stars cover n(n − 1)/2 edges, which are all the edges of the
complete Kn.

In [8], P. Bose et al. appear confident that such a Λ family always exists, and relate it with
halving lines ([41],[18],[52]). In fact, we will see that all lines of the Λ family relate to halving
lines of P (see Appendix B), however, even though we, too, suspect that such family always
exists (Claim B.1), the proof seems far from being trivial. In Appendix B we deal also with the
relation of the halving lines with the desired Λ family, and we are led to believe that there is
no quick greedy algorithm to prove the family’s existence by constructing it.

Figure 4.3: Two Λ families of a 10 point set. Dotted lines are halving lines, and shaded lines
are more bisecting lines corresponding to halving lines (see Appendix B).

Proposition 4.4. A complete graph G = Kn=2r−1, has ϑ(D(G)) ≤ dn2 e, for every drawing D.
The bound is once again tight.

Proof. G = Kn=2r−1 is a subgraph of K2r and the convex case is enough to make bound
tight.
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A note on halving lines and perfect cross-matchings: Borrowing the title of work of J.
Pach and J. Solymosi ([52]), we explain the application of their results to our work.

Definition 4.3. A 2r-point set P in general position on the plane is said to admit a perfect
cross-matching if there are exactly r pairwise crossing segments that cover all 2r points. We
will denote the class of such point sets by Ppcm.

Pach and Solymosi proved that such a point set P admits a perfect cross-matching if and only
if h(P ) = r (in general it is h(P ) ≥ n), and as a consequence they constructed an O(n log n)-
time (O(n)-space) algorithm that decides if P has this particular property, and if so, computes
the perfect cross-matching.

Lemma 4.4. Let D be an arbitrary drawing of the complete graph Kn=2r. If DV (Kn) ∈ Ppcm
then it is ϑ(D(K2r)) = r. The recognition problem whether P ∈ Ppcm is polynomial-time.

Proof. Simply observe that r pairwise crossing edges force that ϑ(D(K2r)) ≥ r while it is
ϑ(D(K2r)) ≤ r.

What we gain from this lemma will be better appreciated after we present the complexity
of the problems regarding drawing thickness which are generally NP -hard. Yet we have a quick
algorithm whose “YES”-instance is a definite answer to the decision problem whether K2r is
drawn to have drawing thickness r.
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Chapter 5

Complexity

In this final chapter, we will present a number of results on the computational complexity of
problems regarding the drawing thickness of a graph, and mention the not so widely studied
“side” problem which we will call “triangulation existence problem”. As we have already dis-
cussed the complexity of determining the graph thickness and book thickness of graphs, once
again we will adjust some of the terminology in favor of uniformity within this thesis:

Definition 5.1. We will denote by k-(variant)-THICK the decision problem whether an em-
bedded on the plane graph G allows for a partition of its edges to k sets, edges within the same
set pairwise not crossing, for each of the variants of thickness:

- Graph-theoretical thickness: k-THICK, Input: Graph G
- Geometrical thickness: k-G-THICK, Input: Graph G
- Book thickness: k-B-THICK, Input: Graph G
- Drawing thickness: k-D-THICK, Input: Graph G, drawing D

In the following table we have gathered all the existing results on complexity problems
mentioned in previous chapters and examined throughout this very chapter.

Problem Class Reduction
2-THICK NP -complete ≥p planar 3-SAT (2.3, [43])

2-B-THICK NP -complete ≥p max. planar HC (Lemma 3.7, [57])
2-D-THICK P ≤p 2-COLOR (Lemma 5.2)
3-D-THICK NP -complete ≥p planar 3-COLOR (Lemma 5.2, [16], [21])

convex D-THICK NP -complete ≥p circle COLOR (Lemma 5.5, [24])
3-convex D-THICK P ≤p circle 3-COLOR (Section 5.2.1, [54])

TRI NP -complete ≥p 3-SAT, SEG IND. SET (Theorems 5.7, 5.9, 5.10, [39], [37])
convex TRI P ≤p circle IND. SET (Theorem 5.11,[26],[49])

Table 5.1: Complexity of thickness problems

A first observation is the absence of results regarding the geometrical thickness of graphs.
We would expect that in general G-THICK is NP -complete, but in this case we do not have
any clue for some k that places k-D-THICK in the class of NP -complete problems.

5.1 The class of SEG graphs and the k-D-THICK problem

Definition 5.2. Let S = {A1, ..., An} be a family of n geometrical objects. An intersection
graph of the family is a graph G(V,E) with V = {v1, ..., vn} and vivj ∈ E ⇔ Ai ∩Aj 6= ∅.

49



Definition 5.3 (SEG graphs). SEG graphs are are the intersection graphs of line segments on
the plane.

We will write IS to denote the intersection graph of a set S of line segments. Graphs in
the SEG class and its subclasses are easy to construct from the given S (O(V + |E|2)-time)
and will prove particularly useful to us, as it is convenient to transform a geometric object (a
graph drawing D(G)) to an abstract graph (intersection graph) and study this graph instead.
But, there is a minor problem: we are concerned for what we would call a “crossing graph”, as
our drawing thickness is only based on the crossing line segments’ structure and in a general
positioning of vertices which yields no parallel intersecting segments (see also definition 1.2).

Definition 5.4. Let S = {S1, ..., Sn} be a family of line segments on the plane. The crossing
graph of S is the graph G(V,E) with V = {v1, ..., vn} and vivj ∈ E ⇔ Ai crosses Aj .

So, we will write respectively CS to denote a crossing graph, and suppose all such graphs
form the class CROSS. Of course, for a set S it is IS 6∼= CS , but we will eventually show
that SEG=CROSS. The proof has two points to focus our attention on: the endpoints of the
segments, and the case of intersecting parallel segments. We assume always ε > 0. See Figure
5.1 for an illustration of the proof.

Proof.

G ∈ CROSS ⇒ G ∈ SEG: Let S be the set of segments vivj of which G is the crossing
graph. Replace every vivj with the shrunk vi + λvj , λ ∈ [εij , 1 − εji], and then separate
all pairs of parallel segments that intersect by some gap εk to form set S′. No matter the
density of the edge set, there will be always be a family of sufficiently small ε so that the
crossing graph of S′ is still G. But now G is also the intersection graph of S′, so G ∈ SEG.

G ∈ SEG ⇒ G ∈ CROSS: If S is now the set wiwj of which G is the intersection graph,
first replace every wiwj with the extended wi +λwj , λ ∈ [−εij , 1+εji]. Now, to transform
all intersections of parallel segments to crossings, there is some more tweaking needed:

Consider each family of segments which are lying on the same line Li and form a connected
subgraph of G, GLi . If Li is treated as the real line we have arrange the segments:
{[a1, b1], ..., [an, bn]}, a1 < a2 < ... < an and of course GLi is an interval graph. Its
maximum clique ω(GLi) can be computed in polynomial time ([53]) and so is the problem
of finding and ordering every distinct maximal clique, which can easily be solved in O(n)
time using a sweep line algorithm (see Appendix C.1). If the set of maximal cliques in
GLi is {C1, C2, ..., Ck}, we can associate some common point ci of intervals of maximal
clique Ci to the clique itself, and have c1 < c2 < ... < ck. The adjustment procedure of
the segments is the following:

For all maximal cliques Ci from C1 to Ck, leave their leftmost segment intact, rotate all
other segments in Ci that are not already rotated as members of another maximal clique
by distinct angles εi,r around ci, and rotate all segments to the right of Ci along with the
rightmost segment of the clique, around ci. In the end of the procedure, the segments
that intersected are now crossing (see Figure 5.2). Again, there is a family of sufficiently
small ε, such that any intersection of segments on Li with segments out of the Li is not
affected, and thus we have completed the proof.

We suspect that some works involving intersection graphs consider the above to be rather
trivial, but it seems important to clearly show that the core of the properties and the complexity
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S
G = CS

S ′, IS
′
= G

(a) G ∈ CROSS ⇒ G ∈ SEG

S
G = IS S ′, CS′ = G

(b) G ∈ SEG ⇒ G ∈ CROSS

Figure 5.1: Transforming S to S′ to prove CROSS=SEG

of the problems regarding SEG graphs lies neither on whether intersection occurs at an endpoint
of the segments, nor on the non-generic case of parallel intersecting segments.

From now on, we shall not distinguish a CROSS class, a term which is in fact is absent from
bibliography, and refer only to SEG graphs. But, we will keep using both terms “crossing graph”
and “intersection graph” of a set of segments, to be specific on the procedure constructing the
desired graph. The following lemma summarizes the essence of the proof above.

Lemma 5.1. For any graph H ∈ SEG there is some graph GH and a drawing DH such that
H is the crossing graph of DH(GH). As explained in the proof above, given some H(V,E) it is
polynomial-time to construct DH(GH) (O(V + |E|2)).

Recognizing SEG graphs is NP-hard. J. Kratochv́ıl showed in [35] that recognizing SEG
graphs is NP -hard and so is the problem of recognizing string graphs, the intersection graphs of
curves on the plane. The class of string graphs is obviously a superset of SEG graphs. A little
later, along with J. Matoušek ([36]), they showed that SEG recognition is in PSPACE. We note
also that M. Schaefer et al. ([55]) proved the recognition of string graphs to be in NP, so it is
also an NP -complete problem.

5.1.1 Determining the drawing thickness of a graph drawing

Remark 5.1. For any graph drawn on the plane as D(G), determining its drawing thickness
is equivalent to determining the chromatic number of the drawing’s crossing graph CD(G). Of
course, CD(G) is a SEG graph.

There are two results that cover the D-THICK decision problem.
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(e)

Figure 5.2: Steps of tweaking segments within a line to show SEG⇒CROSS. Segments of yellow
maximal cliques are processed in each step, while all segments within green cliques are in their
final position.
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Figure 5.3: A drawing of G and its CD(G). ϑ(D) ∼ χ(CD)

Lemma 5.2. For any graph G and drawing D, determining whether it is ϑ(D(G)) = 2 is
polynomial time, while determining if ϑ(D(G)) = 3 is NP -complete.

Proof. Checking if any graph is bipartite is polynomial time, so apply for CD(G). The NP -
completeness of the 3-D-THICK problem derives immediately from the following theorem to-
gether with Lemma 5.1:

Theorem 5.3 (G. Ehrlich et al., 1976). Given a set of line segments on the plane, it is NP-
complete to determine if the intersection graph of its edges is 3-colorable. In other words,
3-COLOR is NP-complete in SEG graphs.

Proof. For completeness, we mention that of course the problem is in NP : standard certificate
of coloring all edges with k colors, our certifier is to check for every pair of edges (O(|E|2)) that
they intersect (O(1)) if and only if they are assigned different color.

Ehrlich et al. ([16]) but also Eppstein ([21]) more recently, reduce the problem of 3-
colorability of planar graphs to what we call 3-D-THICK, using a rather simple transformation
(we present Eppstein’s construction): taking a specific (planar) embedding of G, transform ev-
ery vertex v to a small segment sv centered on the point v is mapped to, and every embedded
edge vw into 3 smaller line segments pvw, qvw, rvw that all share the midpoint of vw as one
endpoint, having their other on either of sv, sw, but not all three on the same one. With a little
attention, selecting a slope for sv such that it does not lie on any incident edge to v, choosing
sufficiently small sv and placing the endpoints on sv and sw in a way that is consistent with
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the cyclic order of the edges around v and w in the embedding, our construction of the set S of
line segments has no intersections except for the ones involving pvw, qvw, rvw and the recpective
edges sv, sw. It is not hard to see that G is 3-colorable if and only if S is 3-colorable.

Figure 5.4: (D. Eppstein, [21]) Illustrating the construction to prove Theorem 5.3.

5.2 The class of circle graphs and the convex D-THICK prob-
lem

Definition 5.5 (Circle graphs). A graph is a circle graph if it is the intersection graph of chords
in a circle. CIRCLE ⊂ SEG.

Again, if instead of the intersection graph of chords we construct their crossing graph, an
element of a supposed CROSS-CIRCLE class, it is even easier that before to slightly adjust the
chord’s endpoints (slightly extend of shrink the chord) to prove CROSS-CIRCLE = CIRCLE.

Lemma 5.4. It is polynomial-time (O(|V |)), given any circle graph H to construct a family of
chords SH = DH,circ(GH) such that H = CS .

Recognizing circle graphs is polynomial time. The first proofs were published by W.
Naji, [50],1985 and later on by C.P. Gabor et al., [23], 1989, to reach the very recent work
of E. Gioan, C. Paul, M. Tedder, D. Corneil ([28]) who produce an O(n + m)α(n + m)-time
recognition algorithm (α stands for the inverse Ackermann function).

5.2.1 Determining the drawing thickness of a convex graph drawing

A flashback to Chapter 3 and Property 3.1 (ix) of convex drawings allows us to refresh that
every convex drawing of a graph can be transformed to a (convex) drawing with all vertices
on a circle, all edges becoming chords of the circle. In fact, it would be equivalent to say that
circle graphs are intersection graphs of segments on the plane with their endpoints in convex
position.

Remark 5.2. For any Dconv of G, CDconv(G) is a circle graph and determining the drawing
thickness of Dconv(G) is equivalent to determining the chromatic number of the circle graph
CDconv(G).
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Figure 5.5: A convex drawing of G and its IDconv(G).

Lemma 5.5. For any graph G and convex drawing Dconv(G), k-convex D-THICK is NP -
complete for k > 3.

We get this lemma, combining Lemma 5.4 with:

Theorem 5.6 (Garey, Johnson, Miller and Papadimitriou, 1980, ([24])). COLOR in circle
graphs is NP-complete.

Garey et al. show the above using reduction from the circular arc COLOR problem, proved
to be NP -complete in the same work. In fact, the full chain of reductions in this very work is
the following:

Directed Disjoint Connecting Paths ≤p Word Problem for Products of Symmetric Groups

≤p circular arc COLOR ≤p circle COLOR.

Let us mention the definitions of each of the problems above:

DDCS : Given a directed acyclic graph G(V,A), s1, ..., sn having in-degree 0, t1, ..., tn
having out-degree 0, does there exist a set of n mutually disjoint paths s1− t1, ..., sn− tn?

WPPSG : Given K, X1, ..., Xm ⊆ {1, ...,K} and a permutation Π ∈ Π(K). Defining
Π(Xi) ⊂ Π(n) as the set of permutations of {1, ...,K} that leave all elements outside Xi

fixed, does Π = Π1 ·Π2 · ... ·Πm,∀Πi ∈ Π(Xi)?

circular arc COLOR: Given a family of arcs of a circle and integer k, can they be colored
using k colors such that intersecting arcs are colored differently?

3-colorability of circle graphs. This particular problem is stated as polynomially solvable
in [54], and we characterize 3-convex D-THICK accordingly.

At this point, we need to note the work of F. R. K. Chung et al., [12], where this exact result
(Lemma 5.5) is also presented. Again, there is a description of our Dconv mappings of a graph
as a book embedding with specific vertex ordering on the spine of the book (also equivalent to
the σ-thickness presented on [7]).

Finally, it is simple to see that there is an alternate route to prove k-D-THICK is NP -
complete for k > 3, constructing a reduction from k-convex D-THICK (Figure 5.6). The idea
is to plant an extra triangle on the outside of the existing convex n-gon, which does not add
any new edge layer, but makes the new (n+ 2)-gon concave. Formally:
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Reduction: k-D-THICK ∈ NP. For any convex instance Dconv(G), create G′(V ′, E′), V ′ =
V ∪ {w}, E′ = E ∪ {wvlk , wvlk+1

} with lk, lk+1 ∈ V being the two neighbors of w, D(G ⊂
G′) = Dconv(G) and CH(D(G)) 6= CH(D(G’)). Triangle D(w)D(vlk)D(vlk+1

) is therefore outside
D(G) and D(w) can be placed to make D concave. It is easy to see that ϑ(D(G′)) = k ⇔
ϑ(Dconv(G)) = k.

convex drawing of G with ϑ = k

kk + 1

convex drawing of G ⊂ G′

with ϑ = k

kk + 1

← the 2 additional edges do not affect ϑ.

w

Figure 5.6: D-THICK reduction from convex D-THICK.

5.3 Triangulation existence: a “side” problem

We have mentioned the term “triangulation” in Chapter 3, while discussing maximal outerplanar
graphs and associated them to polygon triangulation. However, there is also the concept of point
set triangulation. To sum up:

Polygon triangulation is a decomposition of a polygon into a set of area-disjoint triangles
that cover all polygonal area. Equivalently, a triangulation is a decomposition of the polygon
into triangles by a maximal set of non-crossing diagonals. Every triangulation of a n-gon on
the plane requires exactly n − 3 diagonals, and creates exactly n − 2 triangles that cover the
polygonal area ([14]).

Point set triangulation is a triangulation of the convex hull of the point set P with
exactly all points of P being vertices of the triangulation. If we consider the point set as the
embedded vertices V of a graph G, a triangulation is a set of edges E ⊂

(
V
2

)
such that G(V,E)

is planar, the outer face of the drawing is bounded by the boundary of CH(P) and all other
faces of the graph are bounded by 3 edges.

The two definitions coincide when the polygon or the point set are convex. If, though, a point
set P is not convex, we may want to distinguish a triangulation of P from a triangulation of
a polygon defined on P and define 2 different triangulation existence problems. Note that by
“polygon defined on P” we will mean that all points of P are vertices of the polygon.
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Definition 5.6.

TRI : Given a graph G(V,E) and a drawing D of G onto R2, does there exist some E′ ⊆ E
so that D(G(V,E′)) is a triangulation of point set D(V )?

poly-TRI : Given a graph G(V,E) and a drawing D of G onto R2, does there exist some
E′ ⊆ E so that D(G(V,E′)) is a triangulated polygon on point set D(V )?

convex TRI : Given a graph G(V,E) and a convex drawing Dconv of G onto R2, does
there exist some E′ ⊆ E so that Dconv(G(V,E′)) is a triangulation of point set Dconv(V )
(of the convex n-gon on Dconv(V ))?

In this last part of our thesis, we will explore TRI and convex TRI, leaving poly-TRI for
future research.

5.3.1 TRI is NP-complete: a new approach

Theorem 5.7 (Lloyd, 1977). For an arbitrary drawing D of G, TRI is NP-complete.

In his work ([39]), Lloyd uses a direct reduction from 3-SAT, producing a hard-to-follow
proof of the above. From our part, we will try to take advantage of the crossing graph of the
drawing, to approach TRI in a more elegant way. In order to do so, we must define the following
number:

h(P ): We will denote by h(P ) the number of the points of P that lie on the boundary of the
convex hull CH(P). It is 3 ≤ h(P ) ≤ |P | and h(P ) = |P | if and only if point set P is convex
(see also Definition 3.4).

Theorem 5.8. Let D(G(V,E)) be a triangulation of point set D(V ), with |V | = n, |E| = e and
h(P ) points on the boundary of its convex hull. Then e = 3n− h(P )− 3.

Proof. We compare the triangulation to a maximal planar graph on n vertices, which has
exactly 3n − 6 edges and all its faces, including the outer face, are bounded by 3 edges. But
in a triangulation, the outer face is bounded by h(P ) edges, and h(P )− 3 edges are “missing”
from what would be a maximal planar graph. This is because any n-gon requires n−3 diagonal
to be triangulated (or every face of a graph bounded by n edges requires an additional n − 3
edges to be decomposed in triangular faces). So e = 3n− 6− (h(P )− 3) = 3n− h(P )− 3.

We note that a maximal planar graph may also be referred to as a (plane) triangulation.
We shall now present a partitioning of a point set P in mutually disjoint convex layers and the
occurring term onion depth (see [2]), in order to give an alternate proof of Theorem 5.8 and
indicate similarities and possible links between different ideas.

Onion depth: Let P be our point set and CH(P) its convex hull. Let P1 be the set of all
h(P ) points on the boundary of CH(P): P1 is a convex point set. Using induction, we define
Pi+1 to be the points on the boundary of the convex hull of the non-empty set P \ (P1∪ ...∪Pi);
if the set becomes empty, the procedure stops. It is Pi ∩ Pj = ∅ and Pi, Pj 6= ∅,∀i 6= j. If
P = P1 ∪ ... ∪ Pk, we define k to be the onion depth of P .

Following the partitioning in convex sets, we may express the number of points in P as
|P | = n = p1 + ... + pk, where pi = |Pi| = h(Pi). It is true that pi ≥ 3,∀i ∈ {1, ..., k − 1}, but
pk ≥ 1.
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Alternate proof of Theorem 5.8. To build up our theorem, we will start from the center of the
“onion” to create a triangulation of P (every other triangulation of P uses exactly the same
number of edges): For pk ≥ 2, convex Pk needs 2pk−3 edges to be triangulated (we can include
the degenerate case of pk = 2 as Pk needs 2 · 2 − 3 = 1 edges to be “triangulated”). Now, for
every new Pi, adding its points to the drawing, we can consider a new polygon (non-convex)
on the vertices of Pi and Pi+1. For its triangulation it demands 2(pi + pi+1)− 3 edges, however
pi+1 − 1 of them are already existing, plus, we need to add 2 more edges to triangulate the
quadrilateral whose interior is not part of the (pi + pi+1)-gon (see Figure 5.7). This means an
addition of 2pi+pi+1 new edges to keep Pk∪Pk−1...∪Pi triangulated. In the end, there is a total
of 2pk−3+2pk−1+pk+...+2p1+p2 edges, or e = 3(pk+...+p2)+2p1−3 = 3(pk+...+p1)−p1−3.
But p1 = h(P1) = h(P ) and e = 3n− h(P )− 3.

Finally, note that in the case of pk = 1, we can start the procedure considering Pk and Pk−1

at once. A triangulation of a pk−1-gon with one point in its interior requires 2pk−1 edges which
is equal to 2pk − 3 + 2pk−1 + pk for pk = 1. Therefore, our result needs no modification.

(a) Adding the new layer (7 green
points) outside the previous layer (6 yel-
low points) and forming the thick dotted
13-gon.

(b) New edges are the edges of the 13-
gon minus the existing red ones (this is
the blue set), plus the 2 green edges that
triangulate the quadrilateral.

Figure 5.7: Building a triangulation for point set P with onion depth 3.

Now we are ready to transform the triangulation problem via the crossing graph of a drawing,
having also in mind that a point set triangulation features the largest possible set of pairwise
non-crossing edges.

Definition 5.7 (TRI alternative definition). Given a graph G(V,E), |V | = n and a drawing
D of G onto R2 which maps h vertices to the boundary of the convex hull of D(V ), does the
maximum independent set of the crossing graph CD(G) have size of 3n− h− 3?

As our crossing graphs are SEG graphs, let us note that the maximum independent set
(IND. SET ) problem is NP -complete in SEG graphs, as it is NP -complete in subclasses of
SEG:

Theorem 5.9 (J. Kratochv́ıl, J. Nešetřil, 1990, [37]). IND. SET is polynomially solvable for
1-DIR and PURE-2-DIR, but it is NP-complete when restricted to 2-DIR and PURE-3-DIR.

k-DIR is the class of intersection graphs of segments lying in at most k directions in the plane
and PURE-k-DIR is the subset of k-DIR which complies with the additional condition that any
two parallel segments are disjoint. In all, we are getting closer to the desired alternative proof
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for TRI, however, there are still some important details missing, because adding a property for
the convex hull of a drawing of a SEG graph does not a priori guarantee that the IND. SET of
such a graph is NP -complete as well (although it seems natural).

Computing the convex hull. The convex hull of a point set can be computed in polynomial-
time; there are numerous publications and algorithms regarding the problem, from the “Jarvis’
march” ([32], O(nh)-time) to the most recent output-sensitive algorithm of Chan ([9]) running
in O(n log h) time (again, h is the number of points on the boundary of the convex hull). So,
we have an efficient way to get the h number of our point set D(V ) of a graph drawing. In fact,
in the meanwhile we can check if all h edges defining the convex hull polygon all belong to the
drawing; one edge missing means no triangulation of the point set.

Defining SEGh graphs. It is evident that the convex hull plays no big role in the complexity
of TRI and we will choose to omit these h edges when constructing the crossing graph. Now we
ask for a maximum independent set of size 3n− 2h− 3 for the crossing graph CD(G)\CH(D(G)).
We have (accidentally) created another class of graphs at this point, let us call it SEGh ⊆
SEG, including all graphs of SEG that are the crossing (intersection) graphs of segments whose
convex hull is a h-gon, but none of the h-gon’s edges are drawn. In may be SEGh=SEG, for
any h ≥ 3, but for our work we will just prove IND. SET in SEGh graphs to be NP -complete,
and complete the proof.

The reduction. We will use the IND. SET of SEG graphs as our know NP -complete problem.
We let CD(G) ∈ SEG, with maximum independent set of size k. For any h ≥ 3 we will alter the
drawing D(G) adding h more edges, pairwise non-crossing and outside D(G) as follows:

Find an equilateral triangle so it entirely contains D(G); consider also its circumscribed
circle1. Draw 3 of the h new edges to be line segments between each of the vertices of the
triangle and appropriate points on the boundary of CH(D(G) so they do not cross. Placing
the remaining h− 3 edges can be done in several ways, but the simplest valid placement would
be to create h− 3 segments between a point pi on the circle and the point on the boundary of
CH(D(G)) linked to the triangle vertex closer to pi. This way it is easy to see that the h new
points on the circle define the new convex hull.

We have created some D′(G′) with CD
′(G′) ∈ SEGh, and it is clear that the maximum

independent set of CD(G) is k if and only if the maximum independent set of CD
′(G′) is k + h,

because we did not invoke any new crossings. IND. SET of SEGh graphs is NP -complete,
indeed. To conclude:

Theorem 5.10. SEG IND. SET ≤p TRI. TRI is NP-complete.

5.3.2 Convex TRI and IND. SET in circle graphs

Restricting our triangulation existence problem in convex graph drawings, the analysis becomes
simpler: triangulation always requires the maximal of 2n − 3 mutually disjoint edges on n
vertices. Meanwhile, the crossing graph of a convex drawing is shown to be a circle graph. We
immediately get the following:

Definition 5.8 (Convex TRI alternative definition). Given a graph G(V,E), |V | = n and a
convex drawing Dconv of G onto R2, does the circle graph CDconv(G) have independent set of
size 2n− 3?

1this can be computed in linear time, for instance finding xmin, xmax, ymin, ymax coordinates of all points in
D(G) is enough to determine the triangle and circle center and radius.
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(a) Arbitrary SEG graph drawn,
with its convex hull marked.

(b) Creating a SEGh graph (h = 8). The 3
first edges to be placed, following the reduc-
tion, are colored blue.

Figure 5.8: Illustrating the reduction SEG IND. SET ≤p SEGh IND. SET. No new segment
crossings (intersections) appear.

IND. SET of circle graphs can be computed in polynomial time. F. Gavril ([26])
described a first polynomial algorithm (O(n3)), while recently, N. Nash and D. Gregg ([49])
presented an O(nmin(d, α))-time output sensitive algorithm, d being the density of the graph
and α being its independence number (see Appendix C.2 for a simpler Θ(n2) algorithm).

Theorem 5.11. Convex TRI can be solved in polynomial time.
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Figure 5.9: Maximal set of 9 = 2 · 6 − 3 pairwise non-crossing edges for a convex drawing and
the corresponding crossing graph with max. ind. set of size 9.

59



5.4 Open problems

Ratio between θ̄ and θ if θ = 2. This derives directly from the approach of D. Eppstein

([20]) in showing that θ̄(G)
θ(G) = ω(1) using graphs with thickness 3, unlike the work showing

bt(G)

θ̄(G)
= ω(1), which is based on graphs with geometrical thickness 2.

K13,K14. What is the geometrical thickness of these two complete graphs? We suspect that
there is no given result to date.

Efficient algorithm to check if a convex drawing of G, |V | = n has ϑ < dn/2e. This is
a problem proposed by us, based on our discussion of sparse graphs and the fact that a graph
with |E| = n/2 can have equal drawing thickness to a graph with |E| =

(
n
2

)
. Star polygons

(Appendix A) give some information on structures (spanning subgraphs of some convex Kn)
that demand a specific number of planar layers to be decomposed. Does this information lead
to efficient recognition of convexly drawn graphs with ϑ < dn/2e?

Efficient algorithm to check if a non-convex drawing of Kn has ϑ < dn/2e. We saw
that if a complete graph is drawn so its vertex set admits a perfect cross-matching, then its
drawing thickness is exactly dn/2e (Section 4.2.1). The opposite is not true, but it would be
very interesting if there is a polynomial-time “recognition” algorithm of point sets that imply
that Kn on that point set has ϑ < dn/2e. In that case, the algorithm’s relation with halving
lines again would be intriguing, although it will be of no surprise if no such algorithm exists.

For a graph G, find some k for which k-G-THICK is NP-complete. Geometrical
thickness problems are absent from our Table 5.1, as well as from bibliography; it is very
natural to expect that 2-G-THICK is NP -complete, as both 2-THICK and 2-B-THICK are
NP -complete.

Complexity of poly-TRI. This is an unexplored triangulation problem. Within a point set
with several edges, the probability that a triangulated n-gon appears is strictly higher than the
probability that a n-point set triangulation exists. Can this increased probability put poly-TRI
in P? A certain fact is that poly-TRI ∈ NP.
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Appendix A

Drawing thickness of star polygons
and star figures

A star polygon {n/k}, with n, k positive integers, is a figure formed by connecting with straight
lines every kth point out of n regularly spaced points lying on a circumference ([13]). The
number k is called the density of the star polygon. Without loss of generality, take k ≤ bn/2c.
Originally, for a star polygon we have gcd(n, k) = 1, and we can draw it without lifting our pen.
If gcd(n, k) > 1 we often come across the term “star figure”, but as in this work we deal with
both cases, we will definitely not distinguish our notation; we adjust the definition once again,
to comply with our terminology and focus on drawing thickness:

Definition A.1 (Star polygon drawing). A graph G(V,E) with |V | = n is drawn as a star
polygon (star figure) Sn/k if there is some Dconv such that all edges e ∈ E are drawn so they
belong to span class Ek and the span class is full (see also Property 3.1 (v)). We may write
D(G) = Sn/k (and imply that D is a convex mapping).

Note that the case of n = 2r and |Er| = n/2, the only span class including no n edges, S2r/r

is regarded as a degenerate star polygon; however, it does not require special attention in what
follows.

(a) S6/2

(b) S12/5 (c) S14/4

Figure A.1: Star polygons and their edge layering.

Proposition A.1. For the drawn star polygon (star figure) Sn/k, no more than bn/kc edges
may be assigned to the same layer. We will call this quotient bn/kc = q, and if a layer is
assigned some bn/kc non-crossing edges, we will call it full.
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Proof. We can assume, without loss of generality (Property 3.1 (ix)), that the n vertices form a
regular n-gon. Every edge (chord) in Ek can be associated with the respective arc, measuring
a = 360 · kn degrees. q edges of Ek can be assigned to the same layer if and only if q · a ≤ 360o.
Therefore q ≤ 360

360 k
n

and as we seek for a maximum integer satisfying the inequality we get

q = bn/kc = qn/k.

Theorem A.1. The drawing thickness of Sn/k is ϑ(Sn/k) =
⌈

n
bn
k
c

⌉
= k +

⌈
r
q

⌉
, the integers

satisfying the Euclidean division: n = k · q + r, 0 ≤ r < k. In addition, for k1 > k2 it is
ϑ(Sn/k1

) ≥ ϑ(Sn/k2
).

Note that if n = k · q + r, 0 ≤ r < k we have
⌈

n
bn
k
c

⌉
=
⌈
k·q+r
q

⌉
=
⌈
k + r

q

⌉
= k +

⌈
r
q

⌉
. In

addition it is true that:

min l : l · k = 0 mod n⇔ l = n/ gcd(n, k) (A.1)

Proof. We will refer to consecutive edge drawings, drawings without lifting our pen, i.e. paths
of the form i→ i+ k → i+ 2k → ....

Star polygon: gcd(n, k) = 1. In this case it is always |Ek|max = n (Property 3.1 (v)), and
as A.1 suggests, starting from some vertex i we get back to i only after drawing all n edges.
Edge set is expressed as ej = (jk, (j + 1)k) mod n, for j = 0, ..., n − 1. A layer is created per

q = bn/kc drawn edges (see Figure A.1b), and we are easily led to ϑ(Sn/k) =
⌈

n
bn
k
c

⌉
.

Star figure: gcd(n, k) = d > 1. We express n = d · nd, k = d · kd. Now, starting from
vertex i we are brought back to i after drawing n/d edges (A.1), creating a minor star polygon
isomorphic to Snd/kd , with edge set eij = (jk + i, (j + 1)k + i) mod n for j = 0, ..., n/d − 1.
To complete the star figure draw another d− 1 similar star polygons. We observe that for the
minimum vertex i+ x, x ∈ [0, n− 1] an edge of eij reaches we have:

jk + i = i+ x+ cn⇒ x = jk − cn = d(jkd − cnd)

which indicates there is a “gap” of size at least d between each of the vertices we reach drawing
the star polygon1. So we can take all other d− 1 stars with mutually disjoint edge sets elj , 0 ≤
j < d, j 6= i and we denote by Sind/kd the star polygon drawn starting from i with edge span k,

for i = 0, ..., d− 1. Sn/k =
d−1⋃
i=0

Sind/kd .

The key difference now is that when completing the drawing of a minor star polygon we must
lift our pen, and, in the case the last created layer is not full, complete it in order to minimize
the total layers. For 0 < r′ < q, the last drawn edges of S0 are: (−r′ ·k, (−r′+1) ·k), ..., (−k, 0).
“Lifting the pen”, we can add the first q− r′ edges (1, k+ 1), ..., ((q− r′d)k+ 1, (q− r′d + 1)k+ 1)
of S1 to place along with remainder edges of S0: this can be done because the total span of the
edges of a full layer k · q is not greater that n− d (or else the gap would not have been d).

We can repeat the procedure after drawing the last edges of each Si (ending at i), as the
gap between vertices i+ 1 and d− 1 permits it. See also Figure A.2.

So once again our drawing, even with d− 1 “pen lifts”, dictates a full layer every q = bn/kc
edges and ϑ(Sn/k) =

⌈
n
bn
k
c

⌉
. For the degenerate case where n = 2r, k = r, the proof is straight-

forward.
1In fact, the gap is exactly d, something it can either be proven using Béjout’s identity (jkd − cnd = 1) and

selecting a solution where 0 ≤ j < n/d, or by noticing that when d minor stars (all n edges with span k) are
drawn, there is no vertex without edge.
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ϑ(Sn/k) is an increasing function of k: k1 > k2 ⇒ bn/k1c ≤ bn/k2c ⇒
⌈

n
b n
k1
c

⌉
≥
⌈

n
b n
k2
c

⌉
.

We conclude with a simple lemma:

Lemma A.2. Let D(G) ⊆ Sn/k, it is ϑ(D(G)) ≥
⌈
|Ek|
bn
k
c

⌉
.

Figure A.2: S33/9. Focusing on the remainder edges of each of the minor S11/3, and following

the algorithmic procedure described in the proof. Of course ϑ(S33/9) =
⌈

33
b 33

9
c

⌉
= 11.
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Appendix B

Bisecting lines and Λ family

We refresh that we seek for the following:

Definition B.1 (Λ family). Let P be a set of 2r points in general position on the plane. Let
Λ be a family {L0, L1, ..., Lr−1} of r lines with the following properties:

1. all r lines are bisecting lines

2. exactly one point lies in each open unbounded region formed by the Λ family

Remember also that by the term opposite points we refer to a pair of points lying on the 2
opposite open unbounded regions defined by a pair of intersecting lines.

B.1 Halving lines and partitioning lines of point sets

Definition B.2 (Halving line). Let P be a 2r-point set onto R2, in general position. A line L
through 2 points of P is a halving line if exactly r − 1 points lie on either of the half-planes L
defines. The set of all halving lines of P is denoted by H(P ) and the number of halving lines
by h(P ) = |H(P )|.

Halving lines are well studied ([41],[18],[52] and many more), and prove a useful tool for
computational geometry. It is easy to observe that there is a halving line through any point of
P , and consequently for a 2r-point set it is h(P ) ≥ r.

Partitioning line is a general term used for a line that, unlike a halving line, includes no
point of the point set P and separates it into half-planes that both contain points of P . We will
use the term “slope of line” (λ) to indicate the convex angle of the line with the Ox axis of a
Cartesian coordinate system; consequently, it is 0 ≤ λ < 180◦ for any line. For a set of lines or
line segments, the corresponding set of slopes has a minimum (λmin) and a maximum element
(λmaw), for which we will define:

• The minimum slope greater than λmax is λmin

• The maximum slope smaller than λmin is λmax

Definition B.3 (Bisecting line). A (partitioning) line L is a bisecting line of a set of points if
at most half of the points lie on either side of L. If the number of points of the set is odd, then
one point must lie on the bisecting line L.

The Ham-sandwich theorem ([45], [34], [40]) guarantees the existence of a bisecting line, but
in this special case (only 1 grouped set of points) any sweeping line can be stopped at a position
where it is bisecting1.

1To be exact, if a sweeping line has slope equal to one of the slopes of the line segments defined on set P , it
may not become a bisecting line.
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Definition B.4. Let L1, L2 be 2 bisecting lines of some point set P . If both lines partition the
points of P into identical pair of sets, then we will say they belong to the same bisecting class
A. We will write B(P ) to indicate the set of all bisecting classes of P and b(P ) = |B(P )| to
indicate their number.

Obviously, every bisecting line belongs to exactly one bisecting class, so A1 6= A2 ⇔ A1 ∩
A2 = ∅.

Proposition B.1. Let P be a 2r-point set. There is an isomorphism between the set of halving
lines {l0, ..., lh(P )−1} and the set of bisecting classes {A0, ..., Ab(P )−1} of P .

Proof. Let l0 be a halving line through points p0, p1 ∈ P , with slope λ0. “Tweak” this halv-
ing line by rotating it counterclockwise around any of the interior points of p0p1 (around the
midpoint, for instance) to generate line L0 with slope λ0 + ε, ε > 0. It is easy to understand
that there is a sufficiently small ε such that L0 is a bisecting line, and this ε depends on the
minimum slope greater than λ0 which the line segments intersecting l0 define.

Now consider L0 to be in bisecting class A0, and let l1 6≡ l0 be a halving line through
p2, p3 ∈ P with slope λ1 which yields bisecting line L1 ∈ A1 when tweaked as before. We will
show that A0 6= A1:

Without loss of generality, let p3 6≡ p1, λ1 > λ0. If p0 ≡ p2, then line L0 leaves p2, p3 on
the same half-plane, while L1 splits them apart. If p0 6≡ p2 then L1 leaves p1, p3 on the same
half-plane, while L0 splits them.

l0, λ0

Area of A0

L0 ∈ A0, λ0 + ε

(a) Set P with its halving lines and area of bi-
secting class A0 defined by l0.

li, λ1

Area of Ai

Li ∈ Ai, λi + ε

(b) Set P with a bisecting line Li and corre-
sponding area of Ai and halving line li−1.

Figure B.1: Illustrating that H(P ) ∼= B(P ).

For the opposite, we can claim that for every bisecting line Li ∈ Ai with slope λi we search
for the line segment p2i−2p2i−1 with the maximum slope smaller than li that also intersects
Li. As there are no 3 co-linear points in P , this segment is unique, and defines a halving
line of P . Of course, if Li ∈ Ai, Lj ∈ Aj 6= Ai then for the 2 corresponding segments it is
p2i−2p2i−1 6≡ p2j−2p2j−1.

Thus said, the proof is complete and h(P ) = b(P ).
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(a) Bisecting lines defining all bisecting classes Ai.

(b) Valid Λ family.

Figure B.2: Bisecting lines of P .
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Notice that we need intersecting segments to get our ε when moving from a halving to a
bisecting line, as two halving lines may share one point (see Figure B.1a below). But, as a
bisecting line does not contain any points of P , when searching for intersecting line segments to
get to the corresponding halving line (Figure B.1b), we are sure to get a segment that crosses
(interiorly intersects) our bisecting line.

Claim B.1. Let P be a set of 2r points in general position on the plane. Then there is a set
{A0, A1, ..., Ar−1},∈ 2B(P ) so that Λ = {L0, L1, ..., Lr−1} with ∀Li ∈ Ai.

(a) More valid Λ families.

(b) Invalid Λ families.

Figure B.3: Selecting families of bisecting lines

Additional observations for Λ. As we already stated in Chapter 4, greedy algorithms seem
not to be the tool for an algorithmic proof of our claim, or at least not unless we are able to
find a certificate that one of the b(P ) bisecting classes has necessarily a line in the Λ family.

Another interesting property is that for every point p not in the boundary of CH(P), the
bisecting lines in Λ must associate with halving segments2 which include p that may all belong
to the same half-plane (w.r.t. a line through p). It is clear to see (invalid families of Figure B.3b)
that if this is not true, point p is totally surrounded by lines and therefore lies in a bounded
region.

2We consider as halving segment the segment of a halving line between the 2 points of P it includes.
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Appendix C

Algorithms

C.1 Maximal cliques of interval graphs

This is a simple greedy algorithm that computes a point of every maximal clique of an interval
graph. It may be regarded as a sweep line algorithm: a line parallel to the y-axis running along
x-axis. Having a point in a maximal clique, it is easy to find all members of it. Procedure
“mergeflag” is the standard merging of two sorted lists with the added task of labeling (flag:
start or finish) members of merged list according to whether they are start points or end points
of the intervals. The algorithm is easily understood (we added a counter to get the maximum
clique size simultaneously).

Algorithm 1: Θ(n) algorithm for maximal cliques of interval graphs

input : A set of n intervals [ai, bi] sorted ai < ai+1

output: A point in each of the maximal cliques and maximum clique size
C[1..2n][2] ← mergeflag([ai],[bi]);
counter,max.clique ← 0;
for i = 1 to 2n do

if C[i, 2] = start then
counter ← counter+1;

else
selectpointin(C[i− 1,1],C[i,1]);
if counter > max.clique then

max.clique ← counter;

counter ← counter-1;

C.2 Independent set of circle graphs

To construct the desired algorithm, given a set of n chords, we need to them to an interval
representation where the endpoints of the intervals are the pairs (l2k−1, l2k), for 1 ≤ k ≤ n.
All li may be chosen to be a permutation of {1, ..., 2n}, and this can be done in polynomial
time, so we form the set of intervals I with distinct endpoints. Now chords cross if and only if
their respective intervals ovrelap, i.e. do not properly contain one another. Introducing some
notation:

• Iq,m ⊆ I: the set of intervals contained in [q,m].
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• MISq,m= the set of maximum independent sets of Iq,m and |MISq,m| its cardinality.

• CMISi=[a,b] = MISa+1,b−1.

The recursion on which the algorithm will be based is the following properties:

• If q is the right endpoint of an interval, then |MISq,m| = |MISq+1,m|.

• If q is the left endpoint of an interval i = [q, r] then

|MISq,m| =

{
|MISq+1,m| ,if r > m

max(|MISq+1,m|, 1 + |CMISi|+ |MISr+1,m|) ,if r ≤ m

Proof. The first property is trivial to prove. For the second property, the case where r > m
implies that i = [q, r] 6∈ Iq,m so |MISq,m| = |MISq+1,m|. Focusing on the case where r ≤ m,
notice that Iq,m\i = Iq+1,m and in the case where i does not belong to the maximum independent
set V of Iq,m it is again |MISq,m| = |MISq+1,m|. If now i ∈ V , for any other j ∈ Iq,m that
does not overlap i it is j ∈ Iq+1,r−1 or j ∈ Ir+1,m and |V | = |MISq,m| = 1 + |CMISi| +
|MISr+1,m|.

The algorithm now has as follows (quoted from [49]):

Algorithm 2: Θ(n2) algorithm for IND. SET of circle graphs

input : A set of n intervals [ai, bi] sorted ai < ai+1 representing a circle graph
output: The size of the maximum independent set of the circle graph
M[1..2n] ← 0;
C[1..n] ← 0;
for m = 1 to 2n do

if m is the right endpoint of an interval i = [l,m] then
C[i] ← M[l+1];

for q = m− 1 downto 1 do
M[q] ← M[q+1];
if q is the left endpoint of an interval j[q, r] and r ≤ m then

M[q] ← max(M[q+1], 1 + C[j] + M[r+1]);
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[40] Chi-Yuan Lo, J. Matoušek, W. Steiger. Algorithms for Ham-Sandwich Cuts, Discrete Com-
put. Geom. 11, pp. 433-452, 1994.

[41] L. Lovász. On the number of halving lines, Ann. Univ. Sci. Budapest. Eőtvős Sect. Math.
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