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Abstract

Virtual Environments have been used over the years in entertainment, educational and re-
habilitation contexts. User immersion within such environments can be improved not only
by optimizing the graphics and design of the environment per se, but also by allowing users
to navigate them in a natural fashion. Hence, the purpose of this thesis is twofold: first, to
develop a virtual environment that can explored via multiple Human-Computer Interaction

methods and, second, to implement a navigation method using eye movements.

To that end, a realistic 3d labyrinth was constructed using state of the art graphics algo-
rithms. The visual motif was inspired by Greek mythology, while the geometry of the envi-
ronment was based on a pseudo-random labyrinth generator, providing a unique, but re-
peatable, experience to users. Simulation of light and shadows, water movement, light
bloom, refraction and reflection were implemented to increase user immersion. All effects
were rendered in real time and presented using stereographic projection on the Immersive
Power Wall (CAVE) of the Virtual Reality Laboratory in the Institute of Communication and

Computer System.

User navigation within the environment was achieved through a network communication
protocol that can transfer input signals from diverse input sources. In the context of this
thesis, the environment was tested with a computer keyboard, mouse and electrooculog-
raphy (EOG). Ultimately, users were able to navigate the labyrinth solely through eye
movements. This was achieved by recording and decoding EOG signals in real time using

signal processing techniques.

Overall, this project represents a generic platform that is suitable for developing, testing and

comparing different ways of navigation.

Keywords: virtual reality, human-computer interaction, eye movements, electrooculography



NepiAnyn

[Tep1BaAAovTa €1KOVIKNG TPAYUATIKOTNTAS €Xouv Xpnolpormomnbel ta TeAevtaia ypovia yia
OKOJTOUG PUXAYWYIKOVG, ekmaidevTikolg kal amokataotaong. H mepulynon tov ypnot oe
TeTol mepifarovia propel va PeAtiwbel Ot HOVO e TEALIOMOIOVTAG TA YPAPIKA KAl TO
YEVIKOTEPO OXeG1AOUO TOU TEPIPAAOVTOG, OAAA ETTIOTG ETTPENOVTIAG OTOUG XPNOTEG va
JTAOTYOUVTAL IE PUOIKO TPOTI0. G €K TOVTOV, 1) TAPOLOA SUTAWUATIKN gpyaocia £xel S0 Kupiwg
OTOXOVG: TPWTOV, TNV AVAIITLEN EVOG EIKOVIKOU TEPIBAAOVTOG Ttov ptopel va e€epevvndel peow
TOMATA®V neBodwv alnAentidpaong avOpwmov-vIToAoY10TH Kal, SEVTEPOV, TNV VAOTOINOT) Hlag

OoLYKeKPIUEVTG ueBOSOL TAOTYNONG PACIOUEVT OE KIVIOELG TOV UATIOV.

lNa Tto0 0KOMO aUTO KATAOKELAOTNKE &vag PEAAOTIKOG Tplodidotatog Aafupivbog,
XPNOUOTOIVTAS aAyopiBuovg ypagikov ayung. To ommikd potifo touv AaPupivBou eivar
EUTTVELOUEVO ATIO TNV eAANVIKN pvBoloyia, eve 1 yewuetpia tov smepifailovtog Paciotnke oe
pa wpevdo-tuxaia yevviTpla AaPupvBwv, mpoo@epoviag pia Hovadikr, aAAAd eAeyyouevn,
eumepla oe kabe ypnom. Ipokeevov va avinbet n aiobnon euPfvBuvong twv xpnotwv oTo
mep1PAAov autd, vhomomOnkav aAyopifuol TpocoUoiwong PMTOS KAl OKI®MV, KIVONG VEPOU,
aMa kat S1aBAaong kot mepiBhaong tov ewtog. To mepipdlov oxedadetal oe TPAYUATIKO
XPOVO KAl TAPOVOIAETAL OTOVG XPTOTES OE OTEPEOYPAPIKT) TPooATN, oto Immersive Power Wall
(CAVE) tov Epyaompiov Ewkovikrg ITpaypatikotntag, oto Epevvimko Ilavemotnuiako

Ivotitovto vomuatwv Emkovoviov & Yroloylotov.

H morynon tov xprotn oto mepifarov emtedyOnke peoa amd eva TPOTOKOAAO ETKOIV@VIOC
S1KTOOVL OV PITOPEL VA PETAPEPEL OTjHATA 10000V A0 SlaPOPETIKEG MNYES. XTO MAAIOI0 NG
apovoag epyaoiag, 1o meplBAAov eAeyxOnke e TANKTPOAOYI0 UTOAOYIOTH), TOVTIKL KAl
niektpo-opOaipoypapnua (HOT). O xprioteg eixav teAkd tn duvatotnta va mepunynfovv oto
AafOpvBo pEow KVNOoE®V TV HATI®OV TOUG. AUTO emTevXOnke pe TNV Kataypagrn Kot
amokwdikomoinon onuatwv HOI' og  7paypatikd ypovo, YPNOUOTOIOVTAS TEXVIKEG

eneepyaoiag onuaToC.

SUVOMTIKA, 1 7apovod OUTAWUATIKY amoTeAel A YeEVIKN TAAT@POpUA IOV piopel va

XPNo1poson el yia avamtugn, Sokiur kat oUyKplomn S1apopeTIK®V TPOTOWYV TTAOTYNOTC.

AEELIG-KALIOA: E1KOVIKT|] TTPAYUATIKOTNTA, OAANAemiSpacn avOpmmov-umoloyloTr|, KIVIOelg

HATI®V, NAEOKTPO-0POAALOYPAPTILAL.
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Chapter 1: Introduction

Virtual Reality (VR) is the attempt to simulate physical presence in a computer-generated
environment. These environments, commonly referred to as “Virtual Environments” (VEs),
are typically composed of visual, aural and haptic elements that represent existing (e.g. the

cockpit of an airplane) or novel settings (e.g. the view of a mars rover).

1.1 History

Even though VR is nowadays tied to computer simulations, its roots predate computers by
far. The first appearances can be traced back to the 15th century, with the arrival of 360-
degree panoramic art. On notable such example is the “Sala Delle Prospettive” by Baldassere

Peruzzi, an Italian architect born in 1481 (figure 1.1).

Figure 1.1 - Sala Delle Prospettive, Baldassere Peruzzi, 1518-1519

12



The walls of this room are painted using mathematically-accurate perspective to create the
illusion of depth. Standing on the left side of the room, the projection lines of the painted
walls align with the floor tiles to give the illusion of an open-air terrace. The real elements of
the room, i.e. the doors and fireplace, blend in with the painted walls to enhance the illu-

sion.

As time passed, novel uses appeared for VR. In 1920, the first vehicle simulators were in-
vented. In 1962, Morton Heilig built Sensorama, a mechanical device that could display five
short films, engaging multiple senses (sight, sound, smell, and touch). In 1968, Ivan Suther-
land and Bob Sproull constructed the computer-based VR system, known as the “Sword of
Damocles”, which consisted of a stereoscopic head-mounted display (HMD) capable of
tracking the head motions of its user. A more compact HMD device was created by Thomas
Furness in 1982 for the U.S. Air Force, which augmented the pilots’ view with flight path

and targeting information.

The first commercially available VR devices, “DataGlove” and “EyePhone HMD” was devel-
oped by VPL Research Inc. in 1985 and 1989, respectively. The next important milestone
would be achieved three years later, in 1992, when the University of Illinois introduced the
first system to use stereoscopic video projection and shutter glasses, rather than static or
head-mounted displays. This approach freed the user from wearing bulky equipment and
allowed a wider range of movements, while maintaining the illusion of immersion in the
virtual world. In fact, modern versions of this system, called CAVE (CAVE Automatic Virtual

Environment, figure 1.2), are still used today in scientific and commercial visualizations.

Advancements in computing and display technology gradually helped reduce the cost and
size of VR systems and created new markets for the technology. In 1995, Nintendo released
the Virtual Boy, a portable VR system designed solely for video games. Despite its aspira-
tions, the system was a commercial and critical failure. Criticism focused on its peculiar de-
sign, resembling a head-mounted display that had to be set on a desk, its uninspiring red-
and-black monochrome LCD screens, and the eye and neck strain it caused after short peri-

ods of use.

13



Figure 1.2 - Cave Automatic Virtual Environment at EVL, University of Illinois, 2001

While the first attempt to bring VR technology into the mainstream failed, a different ap-
proach was met with more success: the first online 3d virtual world, Meridian 59, was re-
leased in 1996. Unlike previous 2d virtual worlds, Meridian 59 allowed its players to explore
its environments through the eyes of their Avatars, i.e. their virtual representations inside
the game world. Following this breakthrough, the number of free and commercial 3d virtual
worlds exploded. Notable examples, such as Second Life, World of Warcraft and RuneScape,

average 80K - 140K concurrent users and 2M - 10M active players (data as of August 2012).

The success of these virtual worlds partly stems from their low barrier to entry for casual
users, (i.e. users outside the research or professional communities). Unlike previous VR sys-
tems, virtual worlds such as Second Life can be accessed through a typical personal comput-

er (PC) either for free or for a small monthly fee. No specialized equipment is required to

14



enter and interact with the virtual environment - a user can explore it from the comfort of

her home.

However, this very fact that drove the popularity of online virtual worlds also placed limits
on the immersion of the user inside the virtual environment. The lack of specialized input
devices confines human-computer interactions to indirect control interfaces based on PC
mice and keyboards, where the mouse rotates the user avatar inside the world and the key-
board controls his movement. The lack of specialized output devices both limits the view of
the world to a flat monoscopic projection with low field of vision and reduces the ability to

provide haptic feedback to user actions (more details on chapters 2 and 3).

In response to the proliferation of virtual worlds, hardware manufacturers have developed
new technologies that bridge the gap between high-cost, industrial / research VR systems,
such as CAVE, and low-cost, commoditized computer hardware. Multi-display systems, ste-
reoscopic monitors that rely on shutter glasses and, more recently, autostereoscopic dis-
plays dramatically improve user immersion; infrared and optical motion-tracking systems
allow direct control of the avatar inside the environment; finally, haptic devices with motion
sensing and force-feedback technology provide instant feedback to user actions (e.g. by sim-

ulating the effects of acceleration on a flight stick or car wheel).

As of 2012, new technologies and decreasing costs have led to a VR renaissance, with VR
systems appearing in entertainment, training, research, industrial design and medical appli-

cations.

1.2 Applications of VR technology
With the evolution and on-going commoditization of VR technology, new applications con-

tinuously appear. Even so, several major segments can be identified historically:

1.2.1 Entertainment

The film industry and the computer game industry have enjoyed significant success in their

adoption and use of VR technology.
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Films employ VR in two respects: (a) an ever-increasing number of films is being recorded
and released in stereoscopic 3d format, which can increase viewer immersion; (b) several
major films have employed virtual actors and virtual environments either in part (to repli-
cate stunts and sets that would be expensive or even impossible to create using physical
methods) or in whole (as a stylistic choice), to various degrees of success. As of 2012, the
most expensive and highest-grossing film of all time, Avatar, utilizes both techniques in its
entirety (the actors and sets are completely computer-generated - actors were only used for

motion capture and voice acting).

Computer games, and especially so-called AAA computer games, use techniques directly
inspired by the film industry, in an effort to increase realism and player immersion. Stereo-
scopic rendering, motion tracking and haptic feedback are employed by an increasing
amount of games, while efforts to achieve visual photorealism play a significant role in the

advancement of computer hardware and software used in VR systems.

1.2.2 Training

Vehicle and flight simulation has historically been one of the most active research topics in
the field of VR technology. The goal of vehicle simulation is to provide pilots and drivers
with hands-on training on vehicle instruments and behavior, under both normal and ab-
normal conditions that could otherwise be expensive or even dangerous to recreate (electri-
cal and hydraulic system failures, engine damage or extreme weather conditions). Modern
flight training schools employ generic “Flight and Navigation Procedures Trainers” (FNPT)
for initial training and more advanced “Full Flight Simulators” (FFS) for aircraft-specific

training, to complement in-aircraft flight exercises.

More recently, VR has been used to enhance of industrial safety procedures. VR technolo-
gies have been used: (a) to create realistic training conditions and help trainees develop
skills that can be transferred from the virtual world to the real world; (b) to assist in risk
assessment through the identification of risk sources and improve the familiarity of the per-
sonnel with the layout of an industrial plant and its equipment; and (c) to allow the evalua-
tion of “what-if” scenarios and the performance of emergency procedures under different
conditions. Commercial VR products for industrial safety are now available (Loupos et al.,

2008).
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1.2.3 Research and medicine

VR systems have been developed to simulate and research human behavior under different
conditions. One notable example of such a system is the virtual agent “Jack” that was devel-
oped at the Center for Computer Graphics Research at the University of Pennsylvania. Jack
uses advanced kinematics and behavioral models to react to his environment, and can be

used to evaluate the effect of human factors on potential building designs.

Other interesting applications of VR technology in research include Computational Neuro-
science and Molecular Chemistry, for the visualization of neural network and molecular
simulations, respectively. Significant efforts are also being made to introduce VR systems in
the field of medicine, and particularly in surgeries, ultrasound examinations and patient

rehabilitation.

1.2.4 Industrial design

The architectural design of buildings and vehicles are areas with significant investment in
VR technologies. Notable examples include Vicker’s Shipbuilding and Engineering Ltd., a
U.S. company that has designed a VR system that simulates the behavior of underwater ve-
hicles; BMW, which uses VR to investigate the results of vehicle collision testing; Fraunho-
fer IGD and Wismut GmbH, which have co-developed a VR system to visualize the results of

a mining operation.

1.3 Categories of VR systems

A complete categorization of VR systems is difficult, due to the sheer number of different
implementations available. However, modern VR configurations can be ranked according to
the degree of immersion the can provide. Immersion or presence is the ability of a VR sys-
tem to provide a user with a feeling of being “inside” the virtual environment or, in other

words, the ability to suspend disbelief on the part of the user.

Three distinct categories of VR systems can be identified:
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1.3.1 Non-immersive systems

Non-immersive or desktop systems offer the least amount of immersion. In such systems,
the virtual environment is presented to the user via a standard computer monitor, offering a
so-called “Window on World”. Users usually interact with the environment through stand-
ard input devices, such as keyboards and mice, sometimes enhanced with low-cost head- or

motion-tracking equipment.

Such systems use commoditized computer hardware, available in typical computer systems.
The lack of specialized hardware lowers the cost of implementation, but also limits user
immersion to the minimum amount that can be achieved through standard 2d monoscopic

monitors.

1.3.2 Semi-immersive systems

Semi-immersive systems are the intermediate step between non-immersive and fully im-
mersive VR systems. They use technology that was initially developed for flight simulators,
and usually comprise high-performance graphic cards and multiple monitors or projection

systems, often with stereoscopic capabilities.

The higher field-of-view increases user immersion and improves the sense of scale com-
pared to non-immersive systems. The cost is higher than desktop systems but still consider-

ably lower than specialized fully-immersive technology, covered below.

1.3.3 Fully-immersive systems

Fully-immersive systems provide the highest-quality experience and sense of immersion.
They use specialized equipment for both interaction and visual / aural representation, thus

increasing the total cost of implementation.

Typical technologies include head-mounted displays (figure 1.3) or 6-wall CAVEs with ste-
reoscopic capabilities; surround sound systems with head-related transfer functions to im-
prove sound localization; motion tracking sensors and force feedback to achieve tactile real-
ism. Depending on the application, such systems may be combined with physical equip-

ment, such as airplane cockpits, to provide a highly realistic experience.
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Figure 1.3 - Head-mounted display with stereoscopic capabilties

(Image courtesy of VISERG, Loughborough University)
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Chapter 2: Computer Graphics

Computer graphics, in their most abstract sense, refer to images created, or rendered, using
computers. Interactive computer graphics refer to computer graphics that are react to user
input in real-time, typically in 15 milliseconds or less. This is in contrast to non-interactive
or offline computer graphics that can often take hours to render (Akenine-Moller et al.,

2002).

The history of computer graphics is intertwined with the history and evolution of computing
technology itself. The first known example of computer-generated graphics is the vector-
scope display of the Whirlwind computer in 1951. As computer hardware and software
evolved, more complex algorithms could be developed to improve the simulation of reality
and, in fact, such algorithms have often driven the development of more powerful hardware.
In that sense, the maximum quality or realism that can be achieved at any point time is lim-
ited by two main factors: first, the computing power available at that time; and, second, by
the sophistication of the graphics algorithms that will take advantage of this computing

power (Kent and Smith, 1980).

In the following pages, I will describe the main computer graphics concepts first from a
software, then from a hardware perspective. Finally, I will present the main components of a

modern graphics pipeline.

2.1 Software

The rendering of computer graphics is an area of active scientific research. New algorithms
are continuously being invented, each with different performance characteristics and quality
tradeoffs. Most graphics algorithms can be categorized in one of three distinct categories:
ray casting, ray tracing and rasterization. Hybrid algorithms that combine the advantages of

more than one categories also exist.

The main categories and their key characteristics are presented below:
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2.1.1 Ray casting

Ray casting is an image order algorithm that can be used to render three dimensional scenes
on computer monitors. It works by tracing one ray of light per screen pixel, from the eye of
the viewer towards a light source, until it intersects with a solid surface. The main assump-
tion behind this algorithm is that if a surface faces a light, the light will reach that surface

and not be blocked or in shadow.

The advantage of this method is that it can be implemented using simple calculations and
has therefore been used in early real-time 3d computer graphics. However, the simplicity of
this algorithm precludes the accurate rendering of reflections, refractions and shadows.

These visual effects must be faked using texture maps or other methods.

The first ray casting algorithm used for rendering was presented by Arthur Appel in 1968
(Macey, University of Bournemouth lecture notes). Ray casting for producing computer
graphics was first used by scientists at Mathematical Applications Group, Inc., (MAGI) of
Elmsford, New York (Goldstein and Nagel, 1971).

2.1.2 Ray tracing

Ray tracing is an evolved version of ray casting. Whereas ray casting traces light rays from
the eye into the scene until they hit an object, ray tracing continues this process by generat-
ing additional rays after they hit an object. In the initial incarnation of this algorithm, in-
vented by Turner Whitted in 1979, three types of secondary rays were defined: reflection,
refraction and shadow (Whitted, 1979; Nikodym, 2010). More recent implementations in-
corporate additional types to account for scattering and dispersion phenomena, such as

chromatic aberration.

In ray tracing, primary rays are traced either from the eye towards each light or from each
light towards the eye. In either case, a reflection ray appears when a primary ray hits a mir-
ror-like object and is traced in the direction of the mirror-reflection. If an object is translu-
cent, a refraction ray is also spawned to travel through its mass, in a direction defined by its
refraction index using Snell's law (see also figure 2.1). In order to reduce the computational
load, shadow rays are used to test whether an object is visible to a light source, and avoid

tracing additional rays if it is not.
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Figure 2.1 - (a) Reflected ray. (b) Refracted ray

Ray tracing offers the most realistic simulation of lighting, compared to ray casting and ras-
terization (see figure 2.2). Effects such as reflections and shadows are a natural result of the
ray tracing algorithm. Even so, ray tracing is surprisingly simple to implement and is very
suitable to parallel computations, due to the independence of the light rays (Chalmers et al.,

2002).

Despite the simplicity of its implementation, ray tracing has a high computational cost and
is best suited for non-real-time applications. Where other algorithms use data coherence to
share computations between pixels, ray traces restarts the tracing process for every single
light ray. Specialized data structures, such as k-trees, have been developed to accelerate the
ray tracing process, even though they can only be applied to the initial rays and for static
scenes. For these reasons, ray tracing is mainly in the film industry, where high quality is

essential and rendering time is not a key consideration.

Figure 2.2 - Photorealistic scene traced with POV-Ray. (Image courtesy of Gilles Tran)
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2.1.3 Rasterization

Rasterization is the most popular rendering algorithm for real-time 3d applications. On an
abstract level, it represents the process of computing the projection of 3d geometry to a 2d
plane for display. The 3d geometry consists of polygons, typically triangles, which are repre-
sented by their vertices. The rasterization algorithm receives a stream of vertices and pro-

jects them onto a 2d plane, usually a computer monitor, for display.

In that sense, rasterization merely defines the mapping of 3d geometry to a 2d plane; the
color of the final display must be specified by additional algorithms, such as texture and
shadow mapping, physical or non-physical light transport functions (e.g. gouraud or phong
shading) and more. These algorithms are usually picked depending on artistic intent and

available computing power.

Rasterization offers several advantages over other rendering techniques. Not only is it com-
putationally efficient, but it is also amenable to implementation in dedicated computing
hardware. Modern GPUs are highly tuned to the requirements of rasterization and can pro-
cess massive amounts of data, in the order of hundreds of gigaflops (i.e. billion floating-

point operations per second, see figure 2.3).

However, effects that are produced naturally in ray tracing, such as shadows and reflections,
are harder to implement in a rasterization pipeline. Several algorithms have been developed
to implement these effects, with different tradeoffs between quality and performance. Re-
cently, hybrid algorithms have appeared to combine the performance of rasterization with

the superior quality of ray tracing (Cabeleira J).
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Figure 2.3 - Samaritan demo showing next-generation rasterization effects.

(Image courtesy of Epic Games.)

2.2 Hardware

As graphics algorithms became more sophisticated, their computational requirements soon
surpassed the capabilities of early general-purpose Central Processing Units (CPUs). Spe-
cialized processors, called Graphics Processing Units (GPUs), were designed to fill this gap.
GPUs work by implementing specific graphics algorithms in hardware, thus relieving the
CPU from the relevant computations. This process is called acceleration, due to the signifi-

cant performance gain that it brings.

The first GPU, iSBX 275, was released by Intel in 1983 and contained hardware that could
accelerate the drawing of 2d lines, rectangles, arcs and text. Two years later, the Commo-
dore Amiga GPU incorporated a blitter, a new piece of hardware that could accelerate the
movement and manipulation of arbitrary memory bitmaps (Swaine, 1983). By 1995, every

GPU could accelerate 2d drawing and the first 3d accelerators were starting to appear.
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Like 2d GPUs, 3d GPUs contain dedicated hardware to accelerate parts of graphics compu-
tations. All commercial 3d accelerators rely on the rasterization technique!, where the main
graphic elements, known as primitives, are points, lines or triangles. Early 3d accelerators,
such as Matrox Mystique, 3dfx Voodoo and Rendition Verite, could typically accelerate the
projection of vertices from 3d space to a 2d plane and apply texture maps to polygons. As
time passed, accelerators would gain additional capabilities for texture filtering, polygon
transformation and lighting (these techniques will be analyzed in more detail in the next

section).

The next evolutionary step came in 2000, when Nvidia introduced the Geforce 3 processor.
Unlike previous processors, this GPU offered a limited form of programmability, i.e. appli-
cations could alter specific parts of the rasterization process. In 2002, the Radeon 9700
GPU by Ati followed this process to its logical conclusion, by replacing the core parts of the
rasterization process parts by programmable vertex and fragment processors. This was a
significant development, not only because it marked the birth of the modern general-
purpose GPU (GPGPU), but also because it allowed programmers unprecedented amounts

of flexibility in implementing new graphics algorithms (Rege, 2008).

As of 2012, modern GPUs have continued this trend of increased programmability. A mod-
ern GPU consists of hundreds of programmable stream processors that can execute either
graphics programs, called shaders, or general-purpose computations. Tim Sweeney, found-
er of Epic Games, predicts that GPUs will gradually be integrated back into CPUs, as the
programmability of the former and the performance of the latter increases. He also expects
that “life-like” graphics would require a 2000x increase in performance over current hard-
ware?, and the invention of new physically-accurate graphics algorithms. His first prediction
has for the most part been validated: both AMD and Intel now integrate fully-functional
GPUs inside their CPUs. His second prediction remains to be seen (Arstechnica.com; Ven-

turebeats.com).

1 Prototypes for ray tracing accelerators exist, but are not available in the mass market. The most
famous one is Intel’s “Larabee” project, which was ultimately cancelled after a long - and costly -
period of development.

2 This is roughly the increase in performance requirements between Unreal 1 (1998) and Unreal
4 (expected in 2013). Unreal 1 required around 1 gigaflop of GPU power, while the “Samaritan
demo” of Unreal 4 requires around 2.5 teraflops.
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2.3 Graphics pipeline

This section will present the key components of a modern graphics pipeline. A graphics
pipeline defines the process by which a 3d scene is transformed into the 2d raster image that

is displayed to the user.

The concepts below are not tied to a specific graphics programming interface (graphics API)
or programming language. However, to avoid confusion, the terminology follows the con-

ventions of the Open Graphics Library (OpenGL, which is covered in the next chapter).

2.3.1 The 3d scene

A 3d scene, also known as world or virtual environment, forms the input of the graphics
pipeline. In the most abstract level, a scene is composed by its geometry, materials and light
sources. (Additional information is commonly included for the audio pipeline and for the

world simulation - this falls outside the scope of this discussion.)

The scene geometry is usually defined in terms of a graph, with graph vertices representing
the vertices of the geometry and edges connecting these vertices to form primitives (points,
lines or triangles). Aside from its position in world coordinates, each vertex may also con-
tain additional attributes, such as a normal (defining the perpendicular direction of the
graphics primitive), a set of texture coordinates (used to map materials onto complex sur-
faces) and more. Rarely, mathematical equations, voxels or distance fields are also used to
define geometry, to take advantage of domain-specific advantages (e.g. a sphere can be rep-
resented in a very compact fashion by its center and its radius. A scene comprising thou-
sands of spheres can be described very efficiently using this representation, compared to the
millions of triangle vertices that would be required.) However, such representations are not
directly usable by modern GPUs and have to be converted to triangle vertices before rasteri-

zation, either on the CPU or using a GPU shader.

Materials influence the appearance of the scene geometry. Imagine two identical spheres,
one made of wood the other made of silver. The underlying geometry may be identical, but
the appearance of the spheres is completely different, due to their materials. Materials in
modern computer graphics are described using multiple parameters: a texture map that

defines the color (texture) at each point of the geometry; a translucency map, often com-
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bined with the texture map, that defines the translucency of the material; a specular map,
that defines its glossiness; a normal map, sometimes accompanied by a height map, that

describes its bumpiness, in the case of uneven surfaces.

Light sources provide the illumination sources for the scene. Real-time computer graphics,
as examined here, model lights using significant simplifications compared to reality. Unlike
reality, lights in computer graphics have a type, that define their behavior. Common types
include directional lights, which are thought of as being infinitely far away from the scene
and thus their rayss3 are parallel and in a single direction (e.g. the sun or moon); point lights,
which cast rays towards all directions equally; spotlights, which are similar to point lights,
but cast rays in a coned direction; area lights that are similar to directional but originate
from a cutoff plane inside the scene; volumetric lights that cast rays inwards their enclosed

space, instead of outwards.

2.3.2 The graphics pipeline

The graphics pipeline defines how the 3d scene is presented to the user. It consists of a set
of GPU programs, called shaders, which are executed one after the other, in order to pro-
duce a visible image from the abstract 3d scene representation. Each shader belongs to a
specific shader type, or stage, and process a specific portion of the data that comprise the 3d
scene. A complete execution of all shader stages is called a pass; modern scenes often re-
quire multiple passes, each using different shaders, to be fully processed. A complete pass

consists of the following stages:

1. The first stage executes a vertex shader for each vertex in the scene. The vertex
shader controls the transformation of the scene geometry from its world coordinates
into window coordinates plus a depth value (also known as z-value), where the win-
dow coordinates correspond to what the user sees on her screen and the depth value

defines how far away that vertex is from the user.

3 Ray tracing and rasterization use the same terminology for light sources. However, please note
that rasterization algorithms, unlike ray tracing algorithms, do not actually trace the rays origi-
nating from the light source. Rather, the influence of a light source on the scene is calculated
through closed mathematical equations (approximations).
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2. The second stage executes the geometry shader. This is an optional stage, whose

purpose is to generate new graphics primitives or suppress existing ones. It can be
used to simplify or improve their performance of specific graphics algorithms that
would otherwise require multiple passes to implement. If this stage is missing, the

results of the previous stage remain unmodified.

The third stage executes the fragment shader for each fragment (pixel) visible on the
application window. It controls the final color of that fragment, by sampling the var-

ious parameters of the corresponding material, as well as the nearby light sources.

If the complexity of the scene is high, it may not be possible to calculate the final color of

each fragment in a single pass. In that case, intermediate results are stored and used as in-

put to later passes. In the case of this project, up to 16 consecutive passes were required to

determine the final image that is displayed to the user!

Apart from these programmable stages, modern graphics pipelines include additional non-

programmable stages that are required for rasterization (see figure 2.4). Epigrammatically,

the most notable stages include:

Primitive clipping, wherein primitives are clipped to the boundaries of the defined

window viewport. This stage occurs right after geometry shading.

Polygon culling, wherein the back faces of polygons are removed from the graphics
pipeline. Back faces are normally invisible in continuous, convex shapes, and their
removal improves performance without impact on visual quality. However, this op-
timization must be disabled for scenes that contain concave or non-continuous

shapes. This stage runs after primitive clipping.

Rasterization, wherein polygon faces are finally rasterized. This is the last stage be-

fore fragment shading.

Scissor, alpha and stencil testing, wherein the result of a fragment shader is poten-
tially discarded, depending on specific conditions. The scissor test checks whether
the fragment falls within a specified rectangular region (if not, it discards the frag-

ment). The alpha test compares the alpha (i.e. translucency) value of the fragment to
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a threshold and discards the fragment if the comparison fails. The stencil test per-
forms the same test using a stencil buffer. If a fragment passes all three conditions,

then it is accepted.

Depth testing, wherein the depth-value of a fragment is compared to the contents of
the depth buffer. By default, if an incoming fragment at coordinates (x, y) has a high-
er depth-value than the contents of the depth buffer at coordinates (x, y), then the in-
coming fragment is discarded (because, conceptually, it belongs to an object that is
obscured by an object that was rendered previously). Conversely, if the depth-value
of the incoming fragment is lower than the depth buffer, then it is accepted and the
depth buffer is updated with the new value.
As an optimization, some GPUs perform depth testing before actually running a (po-
tentially computationally complex) fragment shader, if they can conclusively deter-

mine that this fragment will fail depth testing.

Blending, which controls how an accepted fragment affects the color of the previous
fragment at the same coordinates. By default, no blending is performed and the ac-
cepted fragment fully replaces the previous fragment. By enabling blending, the new
fragment can be mixed with the old fragment in order to approximate the effects of
lights, shadows and translucent materials (e.g. a thin curtain or a colored glass; Por-
ter and Duff, 1984).

SRGB conversion. This stage, if enabled, will transform the fragment from a linear
color-space to the sRGB color-space. Applications that require high degrees of color
accuracy, for instance photorealistic Computer-Aided Design (CAD) applications,
must perform careful color management on each part of the graphics pipeline. sSRGB
is a standardized non-linear color-space designed for use on monitors, printers and
the internet. By default, GPUs operate in a linear color-space, which is easier to work
with (operations such as color addition are not defined in non-linear color-spaces) -
by converting to SRGB as a final step, applications can ensure their images look cor-

rect regardless of the output device (Stokes et al., 1996).

Render operations (ROPs). The final stage stores the results of a complete pass to

video memory (VRAM) for display or for use in later passes.
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Figure 2.4 - The complete OpenGL pipeline. (Image courtesy of OpenTK)
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Modern rendering techniques have been developed to improve the performance of the
graphics pipeline on complex scenes. The classical approach, called forward rendering, or-
ders scene elements by their materials and influencing lights, and feeds each batch of ob-
jects in the pipeline. The pipeline is re-configured between each batch to execute different
shaders - a costly operation that adversely impacts the performance of complex scenes with

many different materials.

In contrast to forward rendering, deferred rendering splits the rendering process into two
parts: first, it visits every scene object using specific shaders to build the so-called g-buffers,
intermediate buffers that store information for each object in screen space (i.e. after the
perspective projection). The pipeline is then reconfigured and these g-buffers are used as

input sources to calculate the final result.

Deferred rendering is higher overhead than forward rendering for simple scenes. However,
as the light and material count increase, forward rendering takes the advantage. Almost all

modern 3d games use a deferred approach.

2.3.3 Image output

The final step in the graphics pipeline is the presentation of the calculated image to the user.
The image that is visible on the display device of the user is stored in a specific region of
VRAM that is called the front buffer. In order to avoid displaying a half-finished image to
the user, the results of the graphics pipeline are written to a different, invisible VRAM re-
gion that is called the back buffer. Once a new frame has been completely rendered, the
front buffer and the back buffer are flipped, and the new frame is presented to the user. The

old frame is then cleared and the process starts anew.

The key parameters of the displayed image are its resolution, its color depth, its refresh rate
and its latency. Depending on the choice of output device, the user may see a monoscopic or

stereoscopic image, and a different field of view.

The resolution of the image defines how many distinct pixels (fragments) it comprises. It is
typically defined as width x height, where width and height are specified in pixels. Higher

resolutions allow for higher levels of detail and fewer aliasing artifacts in computer graphics.
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The color depth of the image defines how many distinct colors each pixel can display (Keith,
2007). It is usually specified in bits-per-pixel (bpp), where for a given n bpp, 2: distinct col-
ors can be displayed. Modern computer graphics typically use 24 or 30 bpp for 16.7 million
or 1 billion colors, respectively. Images that are meant for post-processing (for instance, the
results of intermediate passes in the graphics pipeline, as described above) can sometimes
use higher such as 48, 64 or even 128 bpp. The human eye can discern at least 10 million

colors (Judd and Wyszecki, 1975).

The refresh rate of the image refers to the number of times the image is updated in a single
second (Marsh, 2001; msdn.microsoft.com). The most common refresh rate for computer
equipment is 60 Hz, or 60 updates per second. Modern stereoscopic monitors are typically
rated for 120 Hz (60 Hz per eye). Real-time computer graphics in the context of VR must
maintain a constant or nearly constant refresh rate in order to maintain user immersion and

avoid inducing motion sickness.

The latency of the image, sometimes referred to as input lag, describes the length of time
between a user action and its reflection on screen. Depending on the application, latencies
higher than 100 milliseconds (around 6 updates at 60 Hz) can adversely affect user immer-
sion and her ability to perform tasks within the virtual environment (MacKenzie and Ware,

1993; Ware and Balakrishnan, 1994).

The field of view (FOV) defines the extent of the visible virtual world that can be displayed
onto a display device (Jeng-Weei Lin et al., 2002). It is measured in degrees and depends on
the size of the display device and the distance between the display device and the user.
HMDs have FOVs that range between 30° - 150°. Computer monitors lie in the range be-

tween 30° - 75° and CAVE systems can reach up to 360° (fully immersive FOV).

Stereoscopy is a technique that mimics binocular vision in order to provide depth percep-
tion. It works by presenting two different 2d images to the viewer, one for each eye. The
brain combines these two images and to gain the perception of 3d depth. This can be
achieved in several different ways. Common ones include the use of shutter glasses that
shutter each consecutively, accompanied by a computer monitor that alternates between the
two images in sync with the glasses (this is also known as active stereoscopy); the use of two

distinct monitors or projectors, each with different polarization, and a pair of polarized
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glasses to distinguish between the images (this is also known as passive stereoscopy); or the
use of an autostereoscopic monitor that can direct each image to a different eye without ad-

ditional equipment.

A stereoscopic display requires two distinct front buffers and two back buffers (usually
called front-left, front-right, back-left and back-right).
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Chapter 3: Human - Computer Interaction

Optimizing the communication between humans and machines is the main goal in the field
of Human - Computer Interaction (HCI). HCI is a highly interdisciplinary field as it takes
into account human factors, like psychology or linguistics in order to design machines or
interfaces that can be used by an optimal way. Various aspects of HCI involve the design of
computer programs and interfaces, the development and optimization of new techniques
and devices for interacting with users and aim in general to allow humans to use computers
or machines in general in the most ‘natural’ way, without having to adapt their cognitive

functions to them.

In order to design such an optimal device one needs to take into account the way this device
will be used. Factors about the environment of use, or the type and limitations of the ma-
chine are combined with information about the number and particular needs of users. For
example, it should be examined whether an application is designed for clinical populations

with specific impairments or requirements or for the general public.

A particular field of HCI that is mostly relevant to the present thesis involves virtual and
augmented reality environments (see also chapter 1). HCI research in this context aims at
allowing humans to optimally navigate within such environments and interact with them for
achieving pre-defined goals. Recent advances that aim at a more natural interaction with
augmented reality environments allow users to provide directly mental commands for inter-
action (Brain - Computer Interfaces). Such interfaces were examined in the context of this

thesis and will be presented in the following.

3.1 Brain - Computer Interfaces

Brain - Computer Interfaces (BCI) mainly aims at providing an alternative pathway to men-
tal commands and/or movement intentions and to use brain activity for controlling, instead
of body muscles, external devices (Wolpaw et al., 2002). Such devices span from small ro-

bots and wheelchairs with some degrees of artificial intelligence (Allison et al., 2012; Fried-
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man et al., 2010) to computer applications, specifically designed for this type of control. Re-
search in the field of BCI started already since 1970, but the first BCI that worked in real
time with humans only appeared in 1990. Ever since there has been a tremendous increase

in research on this domain (figure 3.1).
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Figure 3.1 - Number of publications in the field of BCL.

One major aim of BCIs in general is to assist people with severe disabilities who have lim-
ited or no control over their body muscles, by providing alternative ways of movement or
communication. For example, it is now possible to use brain activity, as measured with elec-
troencephalography (EEG) for controlling wheelchairs (Galan et al., 2008; Pires et al.,
2008; Long et al., 2012) or small robots (Perrin et al., 2010; Anderson et al., 2012; Ron-
Angevin et al., 2012). Other applications of BCIs emphasize more on communication and
therefore use brain signals for composing text (Belitski et al., 2011; Ortner et al., 2011; Jin et
al., 2012; Hwang et al., 2012) or browsing the internet (Yu et al., 2012). Finally, a large field
of BCI research focuses on controlling virtual reality environments (Leeb et al., 2007; Re-
naud et al., 2011; Zhu et al., 2011; Cheron et al., 2012; Ortner et al., 2012). The use of BCI in

virtual environments has several applications, spanning from pure entertainment to reha-
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bilitation of patients with motor deficiencies (Leeb et al., 2007; Hashimoto et al., 2011;

Cheron et al., 2012) or psychiatric patients (Renaud et al., 2011; Zhu et al., 2011).

3.1.1 The composing parts of a BCI

Like any communication system, a BCI roughly consists of an input, an output and
parts/protocols allowing to transform the received input to the desired output (figure 3.2).
The typical input in a BCI system in neural activity, as it can be recorded by means of EEG,
functional Magnetic Resonance Imaging (Renaud et al., 2011; Sorger et al., 2012; Weiskopf
2012) or intracranial recordings (Schalk and Leuthardt, 2011; Thongpang et al., 2011). Al-
ternatively, physiological signals of non-neural origin, such as eye movement activity can
also be used as or assist BCI input (Usakli et al., 2009; Usakli et al., 2010). The use of such

signals will be presented in more details in the following.
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Figure 3.2 - Schematic representation of a typical BCI system (Wolpaw et al., 2002).
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The recorded input signals from the user are amplified and digitized and then processed by
signal-processing algorithms that are specially developed and allow online communication
(Wolpaw et al., 2002 for a review). This signal processing aims at decoding the user’s inten-
tions from his/hers neurophysiological activity and usually consists of two-steps: first, a

feature extraction step and second a classification algorithm.

Often neurophysiological signals are embedded in noise or contain multiple dimensions,
which might not be fully relevant to the task. The feature extraction step aims at eliminating
such noise which can be generated by the user (for example movement artifacts or muscular
noise in the case of EEG) or can be emitted by other sources in the environment (for exam-
ple electric noise). After this pre-processing and before classification the most relevant fea-
tures of the signal are extracted, often by dimensionality reduction methods, like Independ-
ent Component Analysis or Principal Component Analysis which aim at reducing complexi-
ty in the data while keeping a maximum of relevant information. In general, signal pro-
cessing can be done in the temporal (which is typically the case for evoked potentials, as
recorded by EEG) or the spatial domain (for example electrodes’ location as in Yang et al.,

2012), or even a combination of the two (Dias et al., 2010; Higashi and Tanaka, 2011).

The next step in a typical BCI consists of translating the extracted features to plain machine
commands (figure 3.2) and can be easily done by applying various classification techniques
(Tomioka and Miiller 2010; Manyakov et al., 2011; Trad et al., 2011; Saa and Cetin 2012).
These classification techniques can be linear or non-linear, but in any case emphasize on
speed of computations, for being able to communicate on real-time. The output of the clas-
sification algorithm provides an indication about the user’s intentions and can be immedi-

ately executed as a command.

Neurophysiological signals naturally share some common features across subjects but have
also a certain degree of variability in the population, which depends on the type of signal
and/or task. In general, neural responses to high-level cognitive tasks, such as decision-
making represent high degrees of variability across subjects (Tzovara et al., 2012). This is
the reason that more and more signal-processing approaches take into account this variabil-
ity and aim at optimizing and adapting the classification and feature extraction algorithms

for each user separately.
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Another important factor that needs to be taken into account by signal-processing algo-
rithms is that of re-usability. When a subject attempts to use a BCI system for the first time
various parameters of the system are adapted to his/her responses through a training phase
that extracts individualized features from neurophysiological signals, which can then be
used in a testing phase for actually controlling a device (Iturrate et al., 2011). However, if the
subject aims at re-using this device, it is very possible that its neural signals will be different.
In fact, it is well known that they change depending on the time of the day, hormonal levels,
fatigue etc (Wolpaw et al., 2002). Moreover, effects of neural plasticity might induce a
change in neurophysiological responses, either at short-term (from the beginning to the end
of a session) or at short-term (across different sessions/days). To address this issue, the
stability and reliability of any BCI algorithm should be tested over prolonged sessions and

many days.

3.1.2 Hybrid BClIs

Typically, BCI research is performed in scientific environments, where variability in sensory
inputs is limited to the necessary minimum and well-controlled. The reason for this is that
neural signals, as they are recorded for instance with EEG are very subtle and volatile. Even
a minor experimental manipulation might therefore change these neural signals and dimin-
ish BCI performance. For example, when a BCI is controlled by neural responses to visual
stimuli, such as in the case of flashing letter pallets (Belitski et al., 2011; Ortner et al., 2011),
even a minor change of attention or visual fixation might result to a distortion of the neural
response and therefore to an erroneous output of the BCI. This issue is particularly promi-

nent in the case of BCIs that aim at controlling VR environments.

The aim of VR environments is to simulate, as realistically as possible a real-world setup, in
which we constantly receive visual and auditory inputs from a variety of external sources. Of
course the experimenter can set strict rules to their subjects, but attention or gaze can be
easily diverted from the main focus and thus EEG signals are prone to distortions. One way
to address this issue is through the use of hybrid systems, which rely on a combination of
physiological signals for communication and not just brain activity alone (Usakli et al.,
2009; Punsawad et al., 2010; Usakli et al., 2010; Ianez et al., 2011). Such signals may in-
volve electromyogram, which records voltage potentials of various muscles, which can be

used to detect preparation for a movement, measures of conductance of the skin, in order to

38



detect sweating which signals stressful situations, heart activity via electrocardiogram or eye
movements. Among all these different signals and techniques, eye movements are of partic-
ular interest for the present thesis and the principles of various methods for recording them

will be presented in detail in the following.

3.2 Saccadic eye movements

Humans and most animals constantly move their eyes in their surrounding space in order to
detect and focus on points of interest. The reason for this constant movement is to bring
such points or objects of interest in the fovea (figure 3.3), which is located in the central part
of the retina and has a very high spatial resolution. Such eye movements thus allow stabilize

a visual input in the retina even in the case of moving objects.
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Figure 3.3 - Anatomy of the eye (Figure from freedomscientific.com).
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One particular type of eye movements that is of interest for the present thesis are the so-
called saccadic eye movements or saccades. Saccades were first observed in 1880 by a french
Ophthalmologist, Emile Javal. Javal studied eye movements during silent reading by plac-
ing a mirror at the edge of a text page. This simple technique revealed that eyes do not con-

tinuously move but rather execute a series of single movements (Javal, 1878).

Saccades can be divided in two general categories, voluntary and reflexive saccades (Pierrot-
Deseilligny et al., 2003). On the one hand, voluntary saccades are a response to a specific
command and are initiated after a conscious decision of the subject to move his/her eyes.
They are executed either towards a target that exists in the surrounding space, towards a
target that subjects expect to see, or towards a target that was in space but is not there any-
more (memory saccades). This type of saccades involve, prior to their execution, a conscious
decision, which is why they are relatively slow. In this same category of voluntary saccades
also belong the anti-saccades, which are eye movements that are executed on the opposite
direction of a certain visual stimulus. When such a stimulus - target appears subjects tend to
automatically move their eyes towards it, which is why antisaccades require high levels of

attention in order to inhibit this automatic response towards the target.

On the other hand, reflexive saccades are caused by the sudden appearance of an external
stimulus; subjects are not specifically instructed to execute them. Such a stimulus could be a
visual target that appears unexpectedly in the surrounding environment. Reflexive saccades
are much faster than voluntary ones since they do not require a conscious decision to be

made prior to their execution.

In order to study saccades, researchers typically measure their amplitude and latency. The
amplitude of a saccade is in fact the angle along which the center of eye moves for executing
the saccade. The saccade latency is the temporal interval between the appearance of an ex-
ternal stimulus that triggers a saccade and the saccade’s onset. Such behavioral measures
can be easily assessed when recording saccadic eye movements with various methods that

will be described in the following.
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3.3 Recording saccades

Ever since 1880 and the observation of the first saccades through their reflection on a mir-
ror (Javal, 1878), a series of more sensitive recording methods have been developed and are
now easy to use. Such methods include the Electrooculogram (EOG), Infrared Reflection
Devices and video oculography. The advantages and limitations of each of these methods

will be presented in the following.

3.3.1 Electrooculogram

EOG takes advantage of the fact that the human eye acts like a dipole parallel to its optical
axon. Neurons and light receptors in the retina result in its being more negative that the
cornea (figure 3.3), by approximately 6mV (corneo-fundal potential; Marmor et al.,
2011). This results in a dipole which follows the rotation of the eye, as the eye moves. This
movement thus creates small voltage differences (in the order of magnitude of few decades
of uVs) on the surface of the skin. In this sense, an eye movement towards the left will in-
crease the potential on the external corner of the left eye (left canthus) and will decrease the
potential on the right canthus. This voltage difference can be measured by simply placing

two electrodes bilaterally, on the two canthi (Figure 4).

EOG consists of measuring exactly this difference in voltage potentials through a pair of
electrodes (Marmor et al., 1993; Malmivuo and Plonsey, 1995; Marmor et al., 2011). By only
using these two electrodes one can record horizontal eye movements, but it is also possible
to place additional electrodes below and above of one or the two eyes and to also record ver-
tical movements. This type of recording is however more susceptible to be contaminated by

artifacts (muscle activity) during eye blinks.
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Figure 3.4 - Schematic example of EOG recording.
(Figure from Malmivuo and Plonsey, 1995).

Before placing the electrodes, the skin needs to be locally cleaned so that any dead cells are
removed. This reduces the impedance between an electrode and the skin, which according
to instructions for EOG in the clinics, should not exceed 5kQ (Marmor et al., 2011). A refer-
ence electrode is also placed on the subject’s forehead or earlobes. The signal recorded from
the electrodes is then amplified (figure 3.4). A typical sensitivity of EOG measurements can

be around +2°, with a maximum recorded angle of +70° (Malmivuo and Plonsey, 1995).

Overall, the EOG represents an inexpensive, easy to setup and portable way to record eye
movements that is not affected by lighting conditions and has low requirements in compu-

ting power.
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3.3.2 Infrared Reflection Devices

An alternative way to record eye movements is through Infrared Reflection Devices (IRD).
Such devices employ light-sensitive receptors with high spatial resolution and measure the
intensity of infrared light that is reflected by the eye. IRDs rely on the fact that the iris and
pupil of the eye (figure 3.3) reflect less light than the sclera (the white part of the eye). It is
therefore possible to measure this difference in reflection by placing the light-sensitive re-
ceptors of the IRD close to the eye (few cm apart). Usually an IRD system is wearable and
can be attached on the user’s head. This also makes it less sensitive to head movements and
gives a first advantage compared to EOG, where the head needs to be well stabilized during
the whole recording. Moreover, IRD recordings allow a better resolution than EOG but are

more susceptible to eye blinks (Eggert, 2007).

3.3.3 Video Oculography

Video Oculography (VOG) detects the pupil of the eye (figure 3.3) through a digital video
camera (Gans 2001). In order to achieve a high precision with VOG it is important for the
camera to be stable relatively to the head and to not be influenced by head movements. For
this reason VOGs are often mounted on goggles that subjects can wear and still freely move
their heads. In the first VOG devices, the camera was mounted on one goggle and allowed
subjects to only see through the other eye. This approach was limited as it did not allow rec-
ord eye movements in realistic situations. More modern devices use dichotic filters on both
eyes, which allow the subject to see normally but also reflect infrared light, allowing the
camera to record the position of their eyes (Gans, 2001). In summary, VOG allows a high
spatial resolution (~0.05°) with minimal requirements for subjects’ preparation. However,
the cost of such a camera is significantly higher than the cost for an EOG and eye tracking

algorithms tend to be more complex.
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Part B: Experimental Part
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Chapter 4: Experimental Part A - Virtual Environment

This chapter discusses the design and development of the OpenBCI Labyrinth. It focuses on

the virtual environment from a simulation and rendering standpoint.

4.1 Concept

This project had two goals: first, to realize a virtual environment that would be suitable for
navigation through eye movements and, second, to implement at navigation using elec-
trooculography. As we saw in chapter 3, several methods to track eye movements exist, each
with different advantages and disadvantages. Therefore, the virtual environment should
take a form that is suitable not only for a particular method, but that can be meaningfully

navigated using different eye tracking methods.

One environment that fulfills these requirements is a labyrinth. Labyrinths offer several ad-
vantages over other environments: they are relatively simple to construct and visualize us-
ing a computer; their concept is both timeless and easy to explain (i.e. “find the exit!”);
while they still allow for meaningful user interactions, by exercising user memory, naviga-
tion and situational awareness skills. These advantages explain their popularity not only in

research, but also in games and media.

For the purposes of this project, labyrinths present an additional advantage: an input meth-
od can be devised to allow navigation using a single axis of freedom. Additional axes can
provide additional capabilities for navigation, but only a single axis is required to solve a
planar labyrinth (i.e. turn left, turn right or maintain current direction), making this envi-
ronment especially suitable for electrooculography-based navigation (more on this in chap-

ter 5).

In order to increase user immersion, special attention has been paid to the visual appear-
ance of the environment. The visual motif is inspired by the Theseus and the Minotaur my-
thos of greek mythology, where the courageous hero, Theseus, navigated a labyrinth to de-

feat the Minotaur at its heart (see figure 4.1). The walls of the labyrinth are decorated with
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frescoes depicting running men and meanders, interspersed with golden marble pillars in
the Doric order. The floor is made of worked red sandstone, while the ceiling is open to re-
veal a view of a clear night sky and the moon. The labyrinth is placed in the middle of a calm
lake, which makes for an interesting interplay of reflections and light. The scene is illumi-
nated by the moonlight and by a “fairy” that helps the user navigate the labyrinth. The

viewpoint is that of a 180 cm tall human.

Figure 4.1 - The realized concept of the labyrinth.
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4.2 Technologies

This project was built from the ground up using the C# programming language and
OpenGL. The Open Toolkit library (OpenTK) provided the binding between C# and
OpenGL.

OpenGL (Open Graphics Library) is a cross-platform programming interface for computer
graphics. The first versioned was developed by Silicon Graphics in 1992. As of August 2012,
it has reached version 4.3 and is being managed by the Khronos Group, a non-profit consor-
tium comprising major computer graphics companies. OpenGL is commonly used in virtual
reality, scientific visualization, CAD software and cross-platform computer games. A lighter
version, OpenGL for Embedded Systems (OpenGL ES) can also be found in modern mobile

phones.

C# is a modern, general-purpose programming language that provides a good balance of
performance, safety and ease of use. It was designed by Anders Hejlsberg for Microsoft and,
as of 2006, is an ECMA and ISO standard (ECMA-334; ISO/IEC 23270:2006).

The Open Toolkit library is an open-source project that allows C# applications to access the
OpenGL and OpenAL (Open Audio Library) APIs. It also provides a platform abstraction
layer that allows applications to construct OpenGL windows and read input from the key-
board, mouse or other input devices in a cross-platform manner. It was designed by Stefa-
nos Apostolopoulos in 2006 and is, as of 2012, available for Windows, Linux and Mac OS X,

as well as for Android and iPhone smartphones (Opentk.com).

4.3 Design of the environment

The first step towards the realization of this project is the construction of the geometry of
the 3d virtual environment. This is usually achieved through specialized 3d modeling pack-
ages, such as 3d Studio Max, Maya or Blender3d. More rarely, virtual environments are
constructed from mathematical functions, simulations or other data sources (e.g. from the

results of computer-assisted tomography).
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4.3.1 Geometry

Labyrinths lend themselves well to generation through computer algorithms. Different algo-
rithms result in different labyrinth texture, which is defined in terms of the following factors

(Foltin 2011):

e Bias, which refers to the labyrinth being easier to navigate in one direction versus
another. For instance, a labyrinth with long, uninterrupted horizontal passages but

short, interrupted vertical passages would indicate the existence of horizontal bias.

e Run, which indicates the average length of straight passages. A labyrinth with a low
run factor would require frequent turns to navigate, while a labyrinth with a high run

factor would consist of lengthy straight passages broken by infrequent turns.

e Elitism, which compares the length of the solution to the size of the labyrinth. An
elitist labyrinth will have a short and direct solution, compared to its size, and may
be harder to solve than a non-elitist labyrinth (i.e. it is more difficult to come across
the short “correct path”).

e Symmetry, which represents the existence of horizontal, vertical or rotational sym-

metry between the passages of the labyrinth.

e River, which defines the average length of passages leading to a dead end. A low river
factor indicates many short dead ends. Conversely, a high river factor indicates few,

but long, dead ends.

In this project, the “recursive backtracker” algorithm was chosen for the generation of the
labyrinth. This is a perfect algorithm, meaning that every point of the labyrinth is reachable
from any other point (i.e. the labyrinth forms a connected graph - there are no cut off re-
gions), which offers a texture with a high river factor, low elitism and no bias. The solution
of a recursive backtracker labyrinth is usually quite long and has a good proportion of
straight passages and turns. It is also very fast to compute, making it ideal for real-time

evaluation.

The recursive backtracker algorithm works as follows:
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2.

It divides the area of the labyrinth into square cells. One cell is marked as the starting
point and one cell is marked as the ending point. The algorithm begins from the
starting cell, with all labyrinth cells “walled off” (i.e. no pathways exist between cells
in the beginning).

At each step, it randomly selects one of the four cells that are adjacent to the current
cell. If that cell is walled off, it “carves” the wall between the current and the selected
cells, creating a new pathway, and moves repeats step 2 using the selected cell as a
starting point. If the selected cell is not walled off, it randomly tries a different adja-
cent cell. If no adjacent cell is walled off, it “backtracks” to the previous cell and tries

step 2 again.

The algorithm ends when it backtracks back to the starting position and no walled off

cells exist.

Given a random number generator (necessary for step 2 of the algorithm), any recur-
sive backtracker labyrinth can be represented using exactly three numbers: its width
and height, in number of cells, and the seed of the random number generator. Given
these three numbers, the layout of a labyrinth can be reconstructed fully. This en-
sures the repeatability of experiments on specific labyrinth layouts, but also allows

for a very simple way to generate new layouts.
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Figure 4.2 - Overhead view of an 8x8 recursive backtracker labyrinth, as implemented in this project.

Once the layout of a labyrinth is constructed, it must be turned into a proper 3d geometric
representation made of graphics primitives (triangles). This is a simple matter of visiting
each cell in the labyrinth and placing two orthogonal triangles, connected at their hypote-
nuse and placed vertically in respect to the floor plane, at the location of each remaining
wall. The floor of each cell is filled by another two orthogonal, connected triangles, placed

along the floor plane.

In order to make the labyrinth more visually appealing, the floor extends one cell outside
the area of the labyrinth, and columns are placed at each point where two or more intersect.
The columns are constructed of thin, vertical triangles, forming a cylinder around the inter-

secting line of the walls.
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The sky over the labyrinth is represented by a skydome, a hemisphere made of hundreds of
connected triangles. The lake is represented by a large plain, made of dozens of connected
triangles. These elements, as well as the labyrinth columns, are constructed by solving
mathematical equations; the whole world is generated by the computer as soon as the

OpenBCI Labyrinth starts up.

4.3.2 Materials

The virtual environment is composed of seven different materials: the floor, the walls, the

columns, the sky, the water, the moon and the fairy (see figure 4.3).

Each material is composed of up to 5 different parameters that control its appearance: a
texture map, a specular map, a gloss map, a normal map and a height map. In order to con-
serve memory and improve performance, these parameters are packed into three maps and

compressed using DirectX Texture Compression (DXT).

e Texture maps are stored standalone and compressed using the DXT1 format, achiev-
ing a 6:1 compression rate. Sizes range from 256x256 pixels (the fairy texture) up to

8192x4096 pixels (the sky texture). Most materials are 2048x2048 pixels.

e Specular maps and gloss maps are packed together and compressed using the DXT5

format for a 4:1 compression rate. Sizes are 1024x1024 and 2048x2048.

e Normal maps and height maps are packed together in a manner identical to specular

and gloss maps.

The packing is achieved by storing specular and normal maps into the color (red, green,
blue) channels of the compressed images, and the gloss and height maps into the alpha

(translucency) channels, respectively.

Textures maps, normal maps and height maps were generated procedurally through Geneti-
ca Viewer™ for the wall, floor and column textures. The moon and the sky were based on
high-resolution stock photos were used instead, and the water and fairy textures were creat-
ed manually in the GNU Image Manipulation Program (GIMP). GIMP was also used to
post-process all textures for color balance, contrast improvement and noise reduction.

Specular and gloss maps were also created through GIMP, using the texture maps as a base.
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Figure 4.3 - Texture maps used in the virtual environment. (“Death Valley Night Sky” image courtesy of

Dan Duriscoe.)

4.3.3 Lights

The environment is lit by two lights: the moon and a small light-emitting fairy that accom-

panies the user inside the labyrinth.

The moon provides low-level illumination which is mostly visible in dark areas outside the
influence of the fairy, on shiny spots on the walls, as well as in far-away parts of the lake. It

is represented by a directional light with a silvery color and moderate intensity.

The fairy is the main source of illumination in the scene. It is represented by a point light
that follows the user’s intention (more details on chapter 5), and has a bright warm cream

color and high intensity.

Additionally, a low-intensity ambient factor is added to the scene, to avoid pitch black colors
in shadowed areas. This approximates global illumination by starlight and indirect light

bouncing off walls and the floor (see figure 4.4).
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Figure 4.4 - The result of the lighting model used on the labyrinth. Moonlight is visible on the front side

of the columns, while the fairy is the main source of illumination in the scene.

4.4 Implementation of the labyrinth

The OpenBCI Labyrinth is modular and consists of a VR engine and the actual VR applica-

tion that utilizes the engine.

The VR engine was built from scratch using OpenGL and C#, through the Open Toolkit li-
brary. It provides a modern, high-level system to manage the world geometry, materials and
lights, record user input and communicate with display devices, and is capable of stereo-
scopic rendering using shutter glasses or dual projections. A thin abstraction layer was de-
veloped to improve portability to different APIs, such as Microsoft’s DirectX, should that be

desirable in the future. The engine weighs at roughly 6000 lines of code.

The actual VR application sits on top of the VR engine. It provides the code that creates the
labyrinth, interprets user input and simulates the virtual environment (i.e. water movement,

walking, etc). It weights at roughly 4000 lines of code.
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For each frame, OpenBCI Labyrinth performs three distinct steps:
1. User input processing
2. World updates (world simulation)
3. Rendering

Rendering occurs in the rendering subsystem, at a rate that is synced with the refresh rate of
the display (typically 60 or 120 updates per second), using a “best effort” approach: if the
GPU cannot keep up with the workload, the rendering rate will be reduced at an integer
subdivision of the refresh rate (60, 30, 20, ...) World updates occur in the simulation sub-
system, at a fixed rate of 60 updates per second regardless of the refresh rate, to ensure a
constant simulation speed. In other words, an item moving at 1 m/s will cover a distance of
60 meters at exactly 60 second, regardless of the computing power of the underlying hard-
ware4. A more powerful GPU will be able to render this movement more “smoothly” than a

less powerful GPU - but the simulation time will be the same in either case.

User input is processed in the input processing subsystem, which runs in parallel to the
simulation and rendering subsystems. This has two advantages: first, it minimizes the laten-
cy between the recording and the processing of user input; second, it improves the perfor-
mance on modern multi-core CPUs. User input processing will be covered in more detail on

chapter 5.

On a system with 2.6 GHz dual-core processor (Intel Core 2) and an Ati 4850 GPU, roughly
15% of the available computing power is spent in the input processing subsystem, 5% in

world simulation and 80% in rendering.

4 This assumes the availability of some minimum amount of CPU power (usually called “mini-
mum requirements”) that is capable of running 60 world updates per second. For the purposes
of this project, a 1.2 GHz or faster CPU is enough.
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4.5 World simulation subsystem

World simulation takes place in the UpdateFrame event of an OpenTK.GameWindow. Dur-

ing a single UpdateFrame, the following actions take place:
1. The latest user action is retrieved from the input processing subsystem.

2. The desired world position of the user and the fairy are calculated according to the
action from step 1. The new positions will either be identical to the current positions,

or lie at a new cross-roads in the labyrinth.

3. Using the current and the new positions, a trajectory value is calculated for each

movable entity in the world.

4. A Verlet numerical integrator is executed to calculate the correct position on this tra-
jectory for the next simulation step (Press et al., 2007). Each item is advanced to its

new position.

5. The simulation moves forward to the next time step (1/60th of a second, or 16.6 ms).
If it is time to render a frame, the rendering subsystem is invoked; otherwise, we re-

sume simulation from step 1.

This simulation is not physically accurate, as it does not model the effects of friction, mass
or movement forces. However, by tweaking the trajectory generation algorithm in step 3, an
aesthetically pleasing result can be achieved with significantly lower computing require-

ments. A physically accurate movement model is outside the goals of this project.

4.6 Rendering subsystem

The rendering subsystem is driven through the RenderFrame event of
OpenTK.GameWindow. It implements a classical forward rendering pipeline with multiple

passes.

The first step is to clear the back buffer. Afterwards, the following passes are executed:
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Depth-only pass. The purpose of this pass is to prefill the depth buffer with the ge-
ometry of the labyrinth, in order to improve the performance of later passes. Color
output is disabled and the labyrinth is rendered using a very simple depth-only

fragment shader.

. Moon shadow rendering pass. The labyrinth is rendered in depth-only mode from
the viewpoint of the moon. This pass uses an orthographic project (since the moon is

infinitely far away) and the results are stored for later use.

. Fairy shadow rendering passes. The labyrinth is rendered in depth-only mode from
the viewpoint of the fairy. This is identical to the 2nd pass, with the exception that it
uses a perspective projection and is executed six times, once for each Cartesian direc-

tion around the fairy. The results are stored for later use.

. Main rendering pass. This pass uses complex shaders to draw the labyrinth geometry
(floor and walls). The fragment shader samples the scene materials and the results of

the first three passes to implement the following effects:
o Phong lighting model with normal mapping (Phong, 1975; Ernst et al., 1995).

o Variance shadow mapping for shadows with soft penumbras (Donnelly and Lau-

ritzen, 2006).

o Steep parallax mapping with self-shadows via localized ray tracing to implement

the unevenness of the floor stonework (Tatarchuk, 2006).

o Specular mapping to control the shininess and specular intensity of light reflec-

tions on the different materials comprising the wall frescos and floor.

. Secondary rendering pass. This pass renders the sky, moon and fairy using very sim-

ple shaders (plain texture material, not affected by lights).

. Reflection pass. The main and secondary rendering passes are repeated using a mir-

rored, planar perspective projection. The results are saved for the next pass.

. Water pass. This pass uses the results of the reflection pass, in order to render water

reflections. It uses a moderately complex shader to implement the reflection and re-
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fraction effects of light on water. The water surface is animated using moving low
and high frequency sine waves, for a more realistic effect (Greene, 1986; Tessendorf,

2001).

8. Post-processing passes. The results so far are post-processed using the image pro-

cessing filters, to improve visual quality:

o Light bloom approximation, by applying a threshold filter to isolate bright spots
on the original picture, and using a separable gaussian filter to turn these bright

spots into soft halos.

o Screen-space ambient occlusion (SSAO), by applying an edge detection filter to

the depth buffer of the scene and overlaying its results on the original image.

9. Overlay pass (optional). The final pass overlays debugging information on the pic-
ture, such as the tracked eye location, the current and average frame rate, as well as

the elapsed time.
If stereoscopic rendering is enabled, these passes are repeated twice, each for each eye.

Once rendering is complete, the back buffer (or back buffers, in the case of stereoscopic
rendering) is flipped and the result is displayed to the user. Optionally, the rendered frames

can be saved as uncompressed bitmap files on disk for further processing (video capture).
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Chapter 5: Experimental Part B - Eye Movements

This chapter discusses the design and implementation of the input subsystem of the
OpenBCI Labyrinth.

5.1 Concept

In order to achieve independence of the VR platform from the HCI system driving the simu-
lation, an abstraction layer was designed based on network communication protocols. This
approach improves reusability, because different HCI systems can use a common interface

to communicate with the simulation.

The abstraction layer defines what user actions are available in the simulation and the net-
work protocol that can be used to trigger them. In the case of the OpenBCI Labyrinth, the

following actions are available:
e Turn 90° left
e Turn 90° right
e Move forward
This is the minimums set of actions that are required to solve a 2d labyrinth.

The network protocol defines how user input is delivered from the input device to the VR
simulation. The most important advantage of this solution is the ability to dissociate the
actual input device from the computer running the simulation. This is quite useful for spe-
cialized input devices, such as EEG devices, which require specialized software and con-

nectors that might not be available on a VR system.

5 This is not strictly true, as the labyrinth can be solved using only “turn right” and “move for-
ward” or “turn left” and “move forward”. However, a HCI where the user can turn only right or
left (but not both) would be rather uncomfortable - not to mention illogical - hence this set of
three movements is the minimum useful set for solving a labyrinth.
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OpenBCI Labyrinth defines a network protocol based on UDP multicast. UDP (user data-
gram protocol) multicast is a network communication technique for one-to-many data
transmission. It is part of Internet Protocol, version 4 (IPv4), and its defining characteristic
is that the sender does not need require prior knowledge about the existence and number of
data receivers. UDP is a connectionless unreliable protocol, meaning that data packets that
are lost during transmission are not re-transmitted; on the upside, transmission latency is
minimal, due to the lack of connection (re-)establishment and data acknowledgment pro-

cesses.

The use of UDP in this project confers the ability to connect the HCI device either to the VR
simulation system directly or to a different system in the local network. In the first case, the
input data is broadcast using the loopback device (i.e. a virtual network interface that
broadcasts only to the system it belongs to, meaning that the data never enter the real net-
work), but only devices compatible with the VR system can be used. In the second case, the
input data is broadcast and can be captured by any listening device on the local network.
The latency difference between the two approaches was measured to less than 1 ms, which

did not cause any degradation in user experience.

Three different HCI methods were developed for use in this project. Different systems can

be implemented using the same network protocol and basic approach described below.

5.2 Keyboard implementation

The first, and simplest, interaction method utilizes a typical computer keyboard. The raw
input in this case, i.e. the unprocessed user input recorded by the device, is formed by key
presses. A computer keyboard generates key press events whenever a key is first depressed

by the user, and key release events once that key is released.

The input module works by directly mapping key press events to user actions: the left arrow
key triggers the turn left event; the right arrow key triggers the turn right event; and the up

arrow key triggers the move forward event.
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5.3 Mouse implementation

The second interaction method relies on a typical computer mouse. The raw input in this
case is formed by the position of the mouse cursor in the application window. The position
of the mouse cursor is denoted by two numbers, representing the x and y coordinates of the
cursor in Cartesian coordinates. The origin of the coordinate system is defined as the center
of the application window, with (1, 1) defining the top-right corner of the window and (-1, -1)

the bottom-left corner.

In this case, the coordinates of the mouse cursor simulate the offset of the eye from its rest-
ing position. This input interface receives a continuous stream of mouse movement events
and feeds them to a decoding module that maps them to user actions. User actions are trig-

gered when the mouse pointer is fixated at specific locations for more than a time threshold.

It is worth noting that the mouse interaction method is quite close to the electrooculog-
raphy, described below, in terms of implementation. More details on the implementation of

fixation will be covered below.

5.4 Electrooculography (EOG)

The final, and most interesting, interaction method implemented for this thesis was based
on real-time EOG. This method provides some unique implementation challenges, as well as

benefits, compared to other HCI approaches.

As mentioned in chapter 3, EOG consists of measuring the difference in voltage poten-
tial between the left and right canthus. In this thesis, this voltage differential was rec-
orded using 2 EEG electrodes, placed bilaterally on the two canthi. A third electrode

placed on the left earlobe to provide a ground voltage reading.

The EEG device in use was a BioSemi™ “ActiveTwo”, equipped with 16 passive and 8 active
electrodes. Samples can be captured at a rate of up to 16 KHz per channel. The analogue-to-
digital converter (DAC) of this device quantizes signals using 24 bits per sample, which cor-

responds to a maximum digital resolution of 31 nV. This is called the least-significant bit
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(LSB) resolution, which denotes the minimum voltage difference that can be captured di-
rectly by the DAC®.

5.5 Communication with EEG

ActiveTwo communicates with a personal computer over a USB (universal serial bus) cable.
The communication and data capture is mediated through ActiveView, an open-source data
acquisition program written in LabVIEW, a programming environment designed for scien-

tists and engineers.

ActiveView was configured to capture and broadcast samples at a 8 KHz sample rate. The
minimum number of 8 electrodes was used: electrodes 1 and 2 carried the signal from the
left and right canthus, respectively; electrode 3 carried the ground signal; electrodes 5-8

were ignored. At 24 bits per sample, the total data rate was 192 kilobytes per second.

5.6 Data analysis

The purpose of data analysis is the mapping to the acquired raw data into the three user

actions defined by the virtual environment.

The first step was the calculation of voltage differences between each electrode and the
ground electrode. The signal of the ground electrode (electrode 3) was subtracted from the

signal electrodes 1 and 2, and further calculations were based on these new signals.

Several approaches were tested for the interpretation of the EOG signals. The most promis-
ing results were provided by the last, and simplest, approach tested: the voltage difference
was mapped directly to a horizontal offset on the screen. An offset of -1 would correspond to

the left edge of the screen; an offset of +1 to the right; and an offset of 0 to the center. A cali-

® Due to the repeatability of signals evoked by a stimulus, a higher signal-to-noise can be achieved by
sweeping an evoked signal multiple times and summing the results.
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bration step was added to the beginning of the simulation to determine the voltages corre-

sponding to the each offset.

The screen was then divided into three regions, left, center and right. By default, an offset
ranging between -1.0 and -0.3 corresponds to the left region; an offset between -0.3 and
+0.3 corresponds to the center region; and tan offset from +0.3 to +1.0 corresponds to the
right region. The thresholds corresponding to each region are configurable and should be

modified to fit the size of the screen (a small screen would require a larger center region).

The three actions in the environment were mapped one to one with the three regions: turn
left was mapped to the left region, turn right to the right region and move forward to the
center region. The actions were triggered if the user was fixated on one region for longer

than a specified dwell time (by default set to 1 second).

5.7 Problems encountered

During the development of the eye movement HCI, a number of issues were encountered
that merited solutions. These issues are inherent in all HCIs based on pure eye tracking and
can be partly alleviated using multimodal approaches that combine the benefits of each

method.
In order of importance, the following four issues were encountered:

e The Midas Touch problem, which refers to the difficulty of distinguishing between
intentional and unintentional actions from the user. If eye tracking is the sole input
modality in use, every single eye movement can potentially trigger an action inside
the virtual environment, resulting in an endless stream of actions that may not be
desired by the user. The typical solution to this issue is the use of longer dwell times
for command triggering. However, longer dwell times require higher effort on the
part of the user, which can lead to unnatural, fatiguing interactions (Ware and Mi-

kaelian, 1986; Ashmore et al., 2005).

In this project, the problem is mitigated in three ways:

62



1. first, there is a clear distinction between the triggers of the three actions (turn left

/ right, move forward), requiring deliberate action by the user;

2. second, the user will typically wish to keep moving forward until an obstacle is
encountered (i.e. move forward is the most common action and it requires mini-
mal effort on the part of the user. Effort is only required when this action is no

longer an option, which minimizes the chance of unintentional activation);

3. third, a dwell time of 1 second is used, which is long enough to avoid uninten-

tional activation, but short enough to feel natural.

Calibration loss, which occurs when the user moves his head significantly from the
calibrated position. Head movements overwhelm the voltage potentials of eye
movements and throw off the calibration of the system. Given enough deviation, a
head movement can alter the calculated offsets to the point where a fixation on the
center of the screen triggers a turn left or turn right actions, leading to an endless

spinning state or death spiral.
Two methods were implemented to mitigate this issue:

1. An automatic sliding window recalibration, which monitors incoming voltages
and tries to compensate for deviations from the original calibration. If a voltage
outside the calibrated limits is encountered, the limits are adjusted to maintain

offset symmetry (from -1.0 to +1.0).

2. If a death spiral is detected, movement is halted and a new calibration is required

before resuming.

Input latency, which represents the time difference between an eye movement being
performed by the user and the result of that movement being reflected in the virtual
environment (MacKenzie and Ware, 1993; Ware and Balakrishnan, 1994).
Input latency is contributed by the flow of data from the EEG device to ActiView for
initial processing, the transmission from ActiView to the input interface for further
processing, the final transmission over the network (loopback or local), and the ren-

dering of virtual environment.
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The total amount of latency was measured to lie in the region” of 300-500 ms. The
rendering of the virtual environment on the 1-wall CAVE required 8.3 ms for each
frame (120 Hz), while the network transfer of the processed input from the input in-
terface to the VR platform required less than 1 ms (measured using high-resolution
timestamps). This leaves the transfer from the EEG to ActiView and the processing

in ActiView as the largest contributing factors

In either case, the impact of this latency on the implemented HCI was far from debil-
itating. Indeed, the difference between mouse input (which did not suffer from this
latency) and EOG was visible as a slight increase in the dwell time required for the
triggering of an action (1.0 seconds for mouse input, 1.3-1.5 seconds for EOG).
Things would have been very different if eye movements were used to control the
orientation of the user directly, where input latency would create a noticeable and
uncomfortable disconnection between user intent and environment reaction. The
fact that an indirect mapping was used (i.e. look right for 1 second to turn 90° right)

all but eliminated this issue.

e Fixation jitter. Unlike a mouse or a keyboard, eyes do not stop moving during fixa-
tion. Small involuntary movements, called microsaccades, still occur, with ampli-
tudes between 2 and 120 arc minutes (Zuber et al., 1964). Microsaccades cause meas-
urable jitter on the recorded voltage potential and may hinder user input based on a

dwell time approach (Ashmore et al., 2005).

Jitter was mitigated by avoiding small active elements in the user interface: eye
movements were directed to three large regions on the screen (left, center and right),
which were significantly larger than the amplitude of fixation jitter. The application

of a smoothing filter, as suggested by Ashmore, was not deemed necessary.

7 An exact measurement would require knowledge first of the exact start of the eye movement,
then of the exact display of that movement on the screen. This is typically achieved either by
using an additional trigger signal that records the exact timestamp of the eye movement event,
or using one or more synchronized cameras that record both the user and the monitor.
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Chapter 6: Conclusions and Future Directions

In the context of the present thesis a 3d virtual environment was constructed using state of
the art graphics algorithms. Three HCI modalities, keyboard, mouse and eye movements
were implemented for navigation, with the ability for expansion to implement additional

methods in the future.

A labyrinth was chosen as the layout of the environment. The reason for that is that laby-
rinths are easy to explain, allow for meaningful user interactions and, equally importantly,
can be navigated using a single axis of freedom, making them particularly suitable for EOG-
based navigation. Moreover, such a layout can be used to test memory and spatial orienta-

tion in clinical populations with deficiencies.

The virtual environment utilizes the power of modern GPU hardware to create an attractive
visual appearance, which includes dynamic light and shadow calculations, water reflections
and refractions and ambient occlusion effects. The image is displayed in stereographic 3d on
compatible hardware (3d monitors with shutter glasses, or video projection / CAVE with
polarized glasses). Recent improvements in graphics algorithms, such as dynamic indirect
lighting, can be incorporated to further improve the visual appearance of the environment
(Crassin et al., 2011). Moreover, a fully color-managed graphics pipeline, based on the sSRGB

model, should be used, in order to ensure correct visual appearance on different monitors.

Even though the developed platform has only been tested with conventional input methods,
like the keyboard and EOG, it is readily expandable. In fact, a major future direction of re-
search would be to examine optimal ways to navigate this environment via mental com-
mands. For this, we could profit from recent advances in the field of BCI: signal acquisition
and processing techniques allow thoughts and mental commands to be translated to ma-
chine commands (Wolpaw et al., 2002). For example, one could imagine input coming from
an EEG machine to be translated to actions in the VR environment. Eventually, more ad-
vanced scenarios with increasing degrees of complexity and interest for the user could be
implemented. For this purpose, the current input methods (i.e. EOG) could be used for nav-
igation and mental commands, recorded with EEG could be used for interaction (for exam-

ple for grasping or exploring objects).
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This type of hybrid platform, currently inspired by greek mythology, could be used for edu-
cational purposes, for example for rendering history lessons to young pupils more interac-
tive. It could also be used by children with learning disabilities, as an alternative to more
classical teaching methods. Other applications involve clinical populations, such as patients
with psychiatric disorders, who could for example profit from a virtual environment for
overcoming phobias in the real world. Finally, patients with motor disabilities, who have
limited control over their body muscles (for example after a stroke, or patients with ALS),
could use this platform for rehabilitation purposes. Such applications should of course be
implemented with the collaboration of psychologists and clinicians who are aware of pa-

tients’ special needs.

From a more technical point of view, the correlation between labyrinth size and user per-
formance should be studied, in order to determine an optimal labyrinth size. It should be
studied whether the requirement for continuous calibration and an immobile head could be
lifted through improved head motion tracking and compensation, potentially using addi-
tional input signals alongside EOG. For EOG itself, vertical motions of the eye could also be
added in order to allow additional axes of freedom and enrich the user experience. Finally,
an optimal dwell time should be identified, which would both avoid the Midas Touch issue

and increase user immersion.
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