NATIONAL TECHNICAL UNIVERSITY OF ATHENS
SCHOOL OF ELECTRICAL AND COMPUTER ENGINEERING
DivisioN oF COMPUTER SCIENCE

Design and Implementation of a Versatile
Hardware Crypto IP for Symmetric and
Asymmetric Algorithms

DIPLOMA THESIS

NIKOLAOS A. EFTAXIOPOULOS - SARRIS

GEORGIOS D. ZERVAKIS

Supervisor: Kiamal Z. Pekmestzi

Professor

Athens, October 2012

%
z
o

y EONIKO METzOBIO INOAYTEXNEIO

2XOAH HAEKTPOAOTQN MHXANIKQN
KAl MIHXANIKQN YNOAOTIZTON

TOMEA: TEXNOAOTIAZ [TAHPO®OPIKHE KAI YIIOAOTIZTQN

4
D
%

5“"-.;04
>
WG

B3

&
Ry

‘,&_Tiog Py

@e P;\F\ E
A

£y
] 25

’ g’

APOMHBEVS .
Al

H

-ljru!rq»oro

|

2xebdiaon kat YAonoinon KukAwpatoc eni
Wnoidag yia AAyopLOpouc Kpuntoypadioc
ZUMMUETPLKOU Katl AcUppeTpou KAeldLou

AIMAQMATIKH EPTAZIA

NIKOAAOZ A. EYTAZIONOYAOZ - ZAPPHZ

FTEQPI102 A. ZEPBAKH2

EruBAénwv: KlapdA Z. Nekpeotln

KaBnyntng

EykpiBnke armd tnv tpLuelr) e€etaotikn enttpornty tnv 30" OktwpBpiov 2012.

Klopd Mekpeotln AnUATPLOC Z0UVTPNG lewpyLog OLKOVOUAKOG
KaBnyntnig Enikoupog Kabnyntng Néktopag

ABnva, Oktwpplog 2012

NIKOAAOZ A. EYTAZIONOYAOZ — 2APPHZ
FEQPTIOZ A. ZEPBAKH2

AutAwpatovyol HAektpoAdyol Mnxavikot kat Mnxavikot YroAoylotwv E.M.M.

Copyright © NIKOAAOZX EYTAZIONOYAOZX — 2APPHZ, 2012
Copyright © TEQPTIOXZ ZEPBAKHZ, 2012

Me emipUAaén mavtog dikawwpatoc. All rights reserved.

AnayopeUetal n avtiypadn, anobrikeuon Kot Stavoun Tng mapoloag epyaociag, €€ oAokAnpou n
TUAUOTOG QUTAG, Yla EUMOPLKO OKOTO. EmuTpEmetal n avatunworn, anobrkeuon kat Slavoun yla
OKOTIO HNn KEPOSOOKOTIKO, EKMALSEUTIKAG N E€PELVNTIKAG ¢UONG, umo Tnv mpolmobeon va
avadEpETal n Ny MPoEAELONG Kal va SLaTnpeital To mapov uivupa. Epwtipata mou adopolv
N XpNon tg epyoociog yio KEpSOOKOTILKO OKOTIO TIPEMEL VA areuBUvovTal pog Tov cuyypadea.

OL amoYelg Kol T CUUTEPACMOTO TIOU TIEPLEXOVIAL OE AUTO TO €yypado ekdpdlouv Tov
ouyypadEa Kal dev mpéneL va epunveuBel OTL avTmpoowneouV TI¢ emionpeg B€oelg Tou EBvikol
MetooBlou MoAuteyveiou.

Table of Contents

Y« 2 o 9
LG VAT T ¢ N 10
[=Y 10,V 11 T [P 11
NEEELG - KAELOLAL.....ceieereeeniiiiiiiiiernenseiesiieteennessseessneeennnsssssessnseennnsssssssssneeennnsssssssssnsssnnnns 12
1 Cryptographyccccccciiiiiiiiiiiiiiiiiiiieiinesienaesienssiestessssessenssssssensssssssnsssssssnsssssanns 13
1.1 INEFOAUCTION ..ttt sttt e sbe e et e sare e 13
1.1.1 Symmetric-key Cryptographyccccueeeeeciieeiccieee ettt e ree e 14
1.1.2 Public-key Cryptographyueeeeciiieeciee et 15
1.1.3 (01 RY o =T YA LSRR 17
1.14 Y=Y I L TSR 19

1.2 TeChNICAl TOIMS ..ttt ettt st st st b e sbeesnees 19
13 Symmetric-key Cryptography ... cieei ittt et e e e sraee e 20
1.3.1 Data Encryption Standard (DES)ccceeeviveercieeeiie et 20
1.3.2 Advanced Encryption Standard (AES)........coeeeciiiiieiiiee e 27
1.3.3 International Data Encryption Algorithm (IDEA)ccceveeeciieeeccieeeeiee e 35
134 Block Cipher Operation MOdEScc.ueeeeiiieeiiiiiieeccieee e 39
1.3.5 F AN oY o] [ToF= 1 d o] o 13RS 48

1.4 Public-key Cryptographyeoccceeeieeceee et et ee e e 51
14.1) A NP PP UPPPPPPPPPR 52
1.4.2 F Y oY o] [ToF= 1 d o] o 13 PSR 56

2 Crypto ArChiteCtUreccue it e s eeee s s s en e s s e s e s e s senasssssenassssnenanes 59
2.1 INEFOAUCTION ... e snee e s ne e e snneeeas 59
2.2 Crypto COMPONENTS....cceiiiiiieieeeeeeeeeeeeeeereeeeeeeeeeeeeeeeeeereeereeerereerereerererareaarararararsrsennnnes 60
221 AMBA AHB INTEITACEeeiieeiieiieee et 60
222 MaiN CONETIOIIET ..ot s 66
2.2.3 RS o 1 =T ol o 1 USSR 69

2.2.4 Cryptography ENGINES......ciiiiciiiie ettt et e e s e e s s veeeeeeans 74

DES & AES ENGINE ..c.uiiniiiieiiiiniiieiiietiiiieireeersasiiinssisasssrasssresssrssssssnssssasssssssssanssssnss 75
3.1 INEFOAUCTION ..ttt sttt e sbe e saee e e 75
3.2 Configuration PArameEterscoccueiiieiiee ettt ettt e e e ste e e e s ebe e e e 75
33 IMPIEMENTATION ...eiiiiiie e e s b ee e e e ares 76

3.3.1 GeNEral DeSCriPLiON . .ciii it rre e e eaes 76

3.3.2 Pin DeSCriPLION. ..ottt 77

3.3.3 Process of Key Generation and Encryption / Decryption........ccceeeveeeveeenen.. 79

334 Algorithmic DELailsceeieuiiieiciiiie e 79

3.35 Implementation Details........coovciiiiiiiiie e 82

3.3.6 2] [T N DI T={ - 11 0 [SR 84
3.4 IMPlEMENTAtioN RESUILSuviieiiiee et e e et e e e 87

IDEA ENGINE...cuiieiiieiiiniieniiieieetniieeteenteestossrnsssascsnsesnssesssasesaserasessssssssasssasssasssnsssnssen 91
4.1 [Ao o [8 ot 1 o] o FO TSP P PSP PRPO PP 91
4.2 Configuration PArameEterscoccueeiieiiie ettt e et e e ree e e et e e e e eabae e e enreas 91
4.3 IMPIEMENTATION .. .eiiiiiiie e e e et e e e e are e e e e abe e e e e nreeeeennes 92

43.1 GeNneral DeSCriPtioNicciiie et 92

4.3.2 (T oI DT ol 4T o] o] o FH OO PP PPPPPPPPPN 93

433 Process of Key Generation and Encryption / Decryption........cccceeeeeeeveeennen.. 94

434 Algorithmic DTScoeeeviieeeeieee e e 94

435 Implementation Details.........coucuiiieiiiiiie e 97

4.3.6 211 [DI T={ - 11 1 [PPSR 97
4.4 IMplementation RESUILScccoociiiieiee e e e e e e e e e 99

RSA ENGINE ..ccuiiieiiiiiiiiiiiiieeiiitaiiteeteasistnsestnssssensssensessassssnssssnsssssnsssensessnssssnsssensssnnn 101
5.1 INEFOAUCTION ..ttt sttt e e ere e 101
5.2 Configuration PArameterscoccveeeiiciieee ettt et e s rae e e e ebae e e e eaes 101
53 [[aaY o] (=T 0 aT=Y o} =1 o o SRR 102

5.3.1 General DeSCIIPIONciii it e e e e e e e e e e naraaae e s 102

5.3.2 T ol D= ol T o] o] o FH OO TP PP UPPPPPPPPPR 103

5.3.3 Process of Key Generation and Encryption / Decryption........cccccveveveeiveeienns 104
5.3.4 Algorithmic DELailSceeieviiieeeieeeecee e e e e 104
5.3.5 Implementation Details........cccccveeiicciee i 110
5.3.6 BIOCK DIGBIrams ...uueiieiieieieiieeeeritee e settee sttt e e stee s s e e s sbee e e ssnbee e e snbeee s snnres 111

5.4 IMplementation RESUILSciiiiiiie it 113

6 IP Verification......cccoviiiiiiiiiiiiiiiiii 117
6.1 INEFOAUCTION ..ttt et b e bt e bt st e st eee e 117
6.2 FPGA PIatfOrm .ottt ettt e e s 117
6.2.1 KeY FEAtUIES ..o 117
6.2.2 T aTo] s T=T -] USSP 118
6.2.3 BOAId OVEIVIEW ...ttt ettt sttt sbe e saeesaeeeneens 119
6.2.4 21 Te [DI T={ - 1 ' I PRSP 120

6.3 EXTErNal CONTrONIEN ..o 121
0o 3T 17T T 123
1Y o 7= e | GRS 125
Basic Tables Used in DES AIZOItRMcocviiiiiiiee et 125
Basic Tables Used in AES AlZOTIthmcccuviiiiiiiiee e 130
LISt Of FIgUI@S....iieeeeiiieieciiieieeetieeeeereeaneeseennseeseeassessesnssessennsseseennssesssnnssasesnnsssssnnnnnns 139
List Of Tables......ccciii e 141
REFEIENCES.....ueeiiiii s 143

Abstract

This diploma thesis was developed in the Microprocessors and Digital Systems Lab of
National Technical University of Athens. As we attended the courses of this lab like
Microprocessors Systems, Microprocessors Laboratory and Digital VLSI Systems a great
interest was developed in the area of hardware description languages and specifically in the
implementation of hardware circuits since in this area, theory and practice converge. That
interest became more intense under the observation that the implementation of these
circuits is the core of the semiconductor and embedded systems industry with a vast
amount of applications in the daily life. An intriguing category of applications is the one
related to cryptography. This is the reason why this diploma thesis focuses in the
implementation of certain symmetric-key and public-key cryptographic algorithms like DES
(Data Encryption Standard), AES (Advanced Encryption Standard), IDEA (International Data
Encryption Algorithm) and RSA. As a result a cryptographic IP was designed, implemented

and evaluated, called Crypto IP.

This thesis includes six chapters. Chapter 1 contains a brief introduction in cryptography, a
detailed description of the implemented symmetric-key and public-key algorithms, as well as
references in each one’s applications in the daily life. In the second chapter the overall
architecture of the Crypto IP is described: the main circuits implementing the cryptographic
algorithms and a communication interface with the widely used AMBA bus so that the IP can
be connected to a System on Chip. In chapters 3, 4 and 5 there is a detailed description of
the implementation of each cryptographic circuit as well as a reference to the parameters
which can be configured by the user. In chapter 6 there is a brief reference in the way that
the functionality of these circuits was verified on an FPGA board using an external controller
which feeds the circuits with the proper test cases. This thesis ends with an Appendix where

the basic tables used by DES and AES algorithm are mentioned.

Finally we would like to thank the professor and laboratory supervisor Mr. K. Pekmestzi, the
lecturer Mr. N. Moshopoulos whose experience led as in the production of a completed
project according to the industry standards and guided us during the entire period of the
thesis development, as well as the PhD students K. Tsoumanis and D. Bekiaris for the

continuous technical support provided and their valuable advices.

Key Words

e Integrated circuits
e Cryptography

e CryptoIP

e Symmetric key

e Asymmetric key

e Public key

e Private key

e DES

e AES

e |DEA

e RSA

e AMBA AHB
e FPGA

e ASIC

10

NepiAnyn

H OSutAwpatiky auth epyaocio ekmoviBnke oto epyaoctiplo MikpoUToAoyloTwy Kot
Wndlakwv Tuotnuatwy tou EBvikou Metooflou MoAutexveiou. Exovrag mapakoloubnoet
TO LOOAUATO TOU CUYKEKPLUEVOU gpyacTtnpiou OnMwe Ta Zuothuata MikpoUmoloylotwy, To
Epyaotiplo MikpoUmoloylotwv Kal ta Wnolaka uotiuota VLSl avamtoxbnke éva
dLaitepo evdladEpov oTov TOPEN TWV YAWOOoWV TEPLlypadng UALKOU Kal CUYKEKPLUEVA OTNY
vlormoinon KukAwuatwy o eninedo hardware kaBwg amoteAel évav topéa o6mou n Bewpia
pe tnv mpaén sivatl aAAnAévoeTeg. To evBLadEPOV £YLVe OKOUA TILO £VTOVO TTAPATNPWVTAS OTL
n ulomoinon KUKAWMATWY amoteAel Tov TuprAva tTng Blopnyxaviag nUIoywywv Kot
EVOWHOTWHEVWY OUOTNUATWY HE TAnBwpa sdappoywv otnv kabnuepwn Iwn. Mua
Wlaitepa evbladépouvoa katnyopla edappoywv sival autr g kpumrtoypadiog. Mo tov
AOyo auUTO amodacioTNKE N CUYKEKPLUEVN SUTAWUATIKY va EMIKEVTPWOEL atnv uAomoinon
KATmolwv Baokwv oAyoplBuwyv kpuntoypadiag CULUETPIKOU Kol acUUPETpou (dnudactou)
kAeldlou onwg o DES (Data Encryption Standard), o AES (Advanced Encryption Standard), o
IDEA (International Data Encryption Algorithm) kaL o RSA. AnotéAeopa ftav n oxedioon,

vlormoinon kat afloAoynon evog IP kpunttoypadiag pe tnv ovopaoia Crypto IP.

H epyaoia avth mepthappavet €€L kedalata. To kedpahalo 1 mepléxel pia cuvtoun elcaywyn
otnv kpumnrtoypadia, avaAutiky meplypadn Twv aAyopiBuwv CUUHUETPKOU Kol SnUOCLOU
KAelSlou mou ulomouwBnkayv, Kabwg kat pa avadopd ot epappoyEC Tou KaBevog otny
KaBOnuepwn Lwn. Zto deltepo keddhalo meplypAdeTal N CUVOALKH apXLITEKTOVLIKN Tou Crypto
IP: Ta KUpLOL KUKAWLOTO TTOU UAOTIOLOUV TOU 0AyOpLlOpoug Kal pia Stemadn yla emikowwvio
LE TOV EUPEWG XpnOotpomoLloUpevo dtadpopo AMBA wote to Crypto IP va €xeL Tn Suvatotnta
Slaouvdeong oe éva uotnua ent Wnoidag. Zta kepdlawa 3, 4 kat 5 yivetal avaAuTikn
nieplypadn tnGg uAomoinong tou kdBe kpumtoypadlkol KUKAWUATOC HE avodopd OTLg
SUVOTOTNTEG MAPAUETPOTOLNONG TOU amd Tov XpHoth. XTo kedpdaAalo 6 yivetal pia chvroun
oavadopad otov Tpomo enaAnBeuong Tng opOn¢ Asttoupyiag TwV KUKAWHUATWY QUTWV OE [La
mAakeTa FPGA pe t) xprAon evog e€wteptlkol eAeykTh mou Ta TpodoSOoTEL Pe TIG KATAAANAEC
TEPUMTWOEL, eAéyxou. H epyacio oAokKAnpwvetal He £va TapdpTtnpa OTo oOmoio
napadtovral kamolol Bactkol miVoKeG ou xpnoLlomnolouvtal otoug aiyopiBuoucg DES kat

AES.

Télog Ba BéAape va euyaplotooupse tov emiPA€movta kabnyntr) kot umeuBuvo Tou
gepyootnpiou kUplo K. MNekpeotlr, tov Aéktopa kUplo N. MooxOmouAo TOU HECW TNG

gunelplag Tou pag odnynoe otnv mapoywyr VoG OAOKANPWUEVOU €PYOU OTO TIPOTUTIO TNG

11

Blopnxaviag kat pog kabodnyouoe og OAN TN SLAPKELD EKTTOVNONG TNG Epyaciag, Kabwg Kal
Toug O8aktoplkoug doutntég K. Tooupdvn kot A. MTekLdpn yla TNV OCUVEXH TEXVIKA

UTIOOTAPLEN TTOU HaG Ttapelxav Kal TG TIOAUTLUEG OUPBOUAEG TOUC.

NE€eLg - KAewdua

o OAOKANPWUEVA KUKAWHOTO
e Kpumrtoypadia

e CryptoIP

® JUPUETPLKO KAeLSL

e AcUppetpo kAeldi

o AnuooLo KAELSL

o |SLWTIKO KAELSL

e DES

e AES

e |IDEA

e RSA

e AMBA AHB
e FPGA

e ASIC

12

1 Cryptography

1.1 Introduction

Cryptography comes from the Greek words kpUmntog (hidden, secret) and ypadelv (writing)
and is the practice and study of techniques for secure communication in the presence of
third parties (called adversaries). More generally, it is about constructing and analyzing
protocols that overcome the influence of adversaries and which are related to various
aspects in information security such as data confidentiality, data integrity, authentication,

and non-repudiation.

Cryptography, prior to the modern age, was effectively synonymous with encryption, the
conversion of information from a readable state to apparent nonsense. The originator of an
encrypted message shared the decoding technique needed to recover the original
information only with intended recipients, thereby precluding unwanted persons to do the
same. Since World War | and the advent of the computer, the methods used to carry out
cryptology have become increasingly complex and its application more widespread.
Encryption was used to (attempt to) ensure secrecy in communications, such as those of
spies, military leaders, and diplomats. In recent decades, the field has expanded beyond
confidentiality concerns to include techniques for message integrity checking,
sender/receiver identity authentication, digital signatures, interactive proofs and secure

computation, among others.

Modern cryptography is heavily based on mathematical theory and computer science
practice. Cryptographic algorithms are designed around computational hardness
assumptions, making such algorithms hard to break in practice by any adversary. It is
theoretically possible to break such a system but it is infeasible to do so by any known
practical means. These schemes are therefore termed computationally secure. Theoretical
advances (e.g. improvements in integer factorization algorithms) and faster computing
technology require these solutions to be continually adapted. There exist information-
theoretically secure schemes that provably cannot be broken even with unlimited
computing power (an example is the one-time pad) but these schemes are more difficult to

implement than the best theoretically breakable but computationally secure mechanisms.

13

The modern field of cryptography can be divided into several areas of study. The chief ones

are the symmetric-key cryptography and the public-key cryptography.

1.1.1 Symmetric-key Cryptography

Symmetric-key cryptography refers to encryption methods in which both the sender and
receiver share the same key (or, less commonly, in which their keys are different, but related
in an easily computable way). This was the only kind of encryption publicly known until June
1976. Symmetric key ciphers are implemented as either block ciphers or stream ciphers. A
block cipher enciphers input in blocks of plaintext as opposed to individual characters, the

input form used by a stream cipher.

The Data Encryption Standard (DES) and the Advanced Encryption Standard (AES) are block
cipher designs which have been designated cryptography standards by the US government
(though DES's designation was finally withdrawn after the AES was adopted). Despite its
deprecation as an official standard, DES (especially its still-approved and much more secure

triple-DES variant) remains quite popular and it is used across a wide range of applications.

Stream ciphers, in contrast to the 'block' type, create an arbitrarily long stream of key
material, which is combined with the plaintext bit-by-bit or character-by-character,
somewhat like the one-time pad. In a stream cipher, the output stream is created based on a
hidden internal state which changes as the cipher operates. That internal state is initially set
up using the secret key material. Block ciphers can be used as stream ciphers using certain

modes of operation.

Cryptographic hash functions are a third type of cryptographic algorithm. They take a
message of any length as input, and output a short, fixed length hash which can be used in
(for example) a digital signature. For good hash functions, an attacker cannot find two
messages that produce the same hash. MD4 is a long-used hash function which is now
broken. MD5, a strengthened variant of MD4, is also widely used but broken in practice. The

U.S. National Security Agency (NSA') developed the Secure Hash Algorithm series of MD5-

! The National Security Agency (NSA) is a cryptologic intelligence agency of the United States
Department of Defense. (http://www.nsa.gov)

14

like hash functions. SHA-O was a flawed algorithm that the agency withdrew. SHA-1 is widely
deployed and more secure than MD5, but cryptanalysts have identified attacks against it.
The SHA-2 family improves on SHA-1, but it isn't yet widely deployed, and the U.S. standards
authority thought it "prudent" from a security perspective to develop a new standard to
significantly improve the robustness of NIST's® overall hash algorithm toolkit. Message
authentication codes (MACs) are much like cryptographic hash functions, except that a

secret key can be used to authenticate the hash value upon receipt.

1.1.2 Public-key Cryptography

Symmetric-key cryptosystems use the same key for encryption and decryption of a message,
though a message or group of messages may have a different key than others. A significant
disadvantage of symmetric ciphers is the key management necessary to use them securely.
Each distinct pair of communicating parties must, ideally, share a different key, and perhaps
each ciphertext exchanged as well. The number of keys required increases as the square of
the number of network members, which very quickly requires complex key management
schemes to keep them all straight and secret. The difficulty of securely establishing a secret
key between two communicating parties, when a secure channel does not already exist
between them, also presents a chicken-and-egg problem which is a considerable practical

obstacle for cryptography users in the real world.

In a groundbreaking 1976 paper, Whitfield Diffie and Martin Hellman proposed the notion of
public-key (also, more generally, called asymmetric key) cryptography in which two different
but mathematically related keys are used—a public key and a private key. A public key
system is so constructed that calculation of one key (the 'private key') is computationally
infeasible from the other (the 'public key'), even though they are necessarily related.
Instead, both keys are generated secretly, as an interrelated pair. The historian David Kahn
described public-key cryptography as "the most revolutionary new concept in the field since

polyalphabetic substitution emerged in the Renaissance".

? The National Institute of Standards and Technology (NIST) is a measurement standards laboratory
which is a non-regulatory agency of the United States Department of Commerce.
(http://www.nist.gov)

15

In public-key cryptosystems, the public key may be freely distributed, while its paired private
key must remain secret. In a public-key encryption system, the public key is used for
encryption, while the private or secret key is used for decryption. While Diffie and Hellman
could not find such a system, they showed that public-key cryptography was indeed possible
by presenting the Diffie—Hellman key exchange protocol, a solution that is now widely used

in secure communications to allow two parties to secretly agree on a shared encryption key.

Diffie and Hellman's publication sparked widespread academic efforts in finding a practical
public-key encryption system. This race was finally won in 1978 by Ronald Rivest, Adi Shamir,
and Len Adleman, whose solution has since become known as the RSA algorithm. The Diffie—
Hellman and RSA algorithms, in addition to being the first publicly known examples of high
quality public-key algorithms, have been among the most widely used. Others include the
Cramer—Shoup cryptosystem, ElGamal encryption, and various elliptic curve techniques.
Around 1970, James H. Ellis had conceived the principles of asymmetric key cryptography. In
1973, Clifford Cocks invented a solution that essentially resembles the RSA algorithm. And in

1974, Malcolm J. Williamson is claimed to have developed the Diffie-Hellman key exchange.

Public-key cryptography can also be used for implementing digital signature schemes. A
digital signature is reminiscent of an ordinary signature. They both have the characteristic of
being easy for a user to produce, but difficult for anyone else to forge. Digital signatures can
also be permanently tied to the content of the message being signed. They cannot then be
'moved' from one document to another, for any attempt will be detectable. In digital
signature schemes, there are two algorithms; one for signing, in which a secret key is used to
process the message (or a hash of the message, or both), and one for verification, in which
the matching public key is used with the message to check the validity of the signature. RSA
and DSA are two of the most popular digital signature schemes. Digital signatures are central
to the operation of public key infrastructures and many network security schemes (e.g.

SSL/TLS, many VPNs etc.).

Public-key algorithms are most often based on the computational complexity of "hard"
problems, often from number theory. For example, the hardness of RSA is related to the
integer factorization problem, while Diffie—Hellman and DSA are related to the discrete
logarithm problem. More recently, elliptic curve cryptography has developed in which
security is based on number theoretic problems involving elliptic curves. Because of the
difficulty of the underlying problems, most public-key algorithms involve operations such as

modular multiplication and exponentiation, which are much more computationally

16

expensive than the techniques used in most block ciphers, especially with typical key sizes.
As a result, public-key cryptosystems are commonly hybrid cryptosystems, in which a fast
high-quality symmetric-key encryption algorithm is used for the message itself, while the
relevant symmetric key is sent with the message, but encrypted using a public-key
algorithm. Similarly, hybrid signature schemes are often used, in which a cryptographic hash

function is computed, and only the resulting hash is digitally signed.

1.1.3 Cryptanalysis

The goal of cryptanalysis is to find some weakness or insecurity in a cryptographic scheme,

thus permitting its subversion or evasion.

It is a common misconception that every encryption method can be broken. In connection
with his WWII work at Bell Labs, Claude Shannon proved that the one-time pad cipher is
unbreakable, provided the key material is truly random, never reused, kept secret from all
possible attackers, and of equal or greater length than the message. Most ciphers, apart
from the one-time pad, can be broken with enough computational effort by brute force
attack, but the amount of effort needed may be exponentially dependent on the key size, as
compared to the effort needed to make use of the cipher. In such cases, effective security
could be achieved if it is proven that the effort required is beyond the ability of any
adversary. This means it must be shown that no efficient method (as opposed to the time-
consuming brute force method) can be found to break the cipher. Since no such proof has

been found to date, the one-time-pad remains the only theoretically unbreakable cipher.

There are a wide variety of cryptanalytic attacks, and they can be classified in any of several
ways. A common distinction turns on what an attacker knows and what capabilities are
available. In a ciphertext-only attack, the cryptanalyst has access only to the ciphertext
(good modern cryptosystems are usually effectively immune to ciphertext-only attacks). In a
known-plaintext attack, the cryptanalyst has access to a ciphertext and its corresponding
plaintext (or to many such pairs). In a chosen-plaintext attack, the cryptanalyst may choose a
plaintext and learn its corresponding ciphertext (perhaps many times). Finally, in a chosen-
ciphertext attack, the cryptanalyst may be able to choose ciphertexts and learn their

corresponding plaintexts.

17

Cryptanalysis of symmetric-key ciphers typically involves looking for attacks against the block
ciphers or stream ciphers that are more efficient than any attack that could be against a
perfect cipher. For example, a simple brute force attack against DES requires one known
plaintext and 255 decryptions, trying approximately half of the possible keys, to reach a
point at which chances are better than even that the key sought will have been found. But
this may not be enough assurance; a linear cryptanalysis attack against DES requires 243
known plaintexts and approximately 243 DES operations. This is a considerable

improvement on brute force attacks.

Public-key algorithms are based on the computational difficulty of various problems. The
most famous of these is integer factorization (e.g., the RSA algorithm is based on a problem
related to integer factoring), but the discrete logarithm problem is also important. Much
public-key cryptanalysis concerns numerical algorithms for solving these computational
problems, or some of them, efficiently (i.e., in a practical time). For instance, the best known
algorithms for solving the elliptic curve-based version of discrete logarithm are much more
time-consuming than the best known algorithms for factoring, at least for problems of more
or less equivalent size. Thus, other things being equal, to achieve an equivalent strength of
attack resistance, factoring-based encryption techniques must use larger keys than elliptic
curve techniques. For this reason, public-key cryptosystems based on elliptic curves have

become popular since their invention in the mid-1990s.

While pure cryptanalysis uses weaknesses in the algorithms themselves, other attacks on
cryptosystems are based on actual use of the algorithms in real devices, and are called side-
channel attacks. If a cryptanalyst has access to, for example, the amount of time the device
took to encrypt a number of plaintexts or report an error in a password or PIN character, he
may be able to use a timing attack to break a cipher that is otherwise resistant to analysis.
An attacker might also study the pattern and length of messages to derive valuable
information; this is known as traffic analysis, and can be quite useful to an alert adversary.
Poor administration of a cryptosystem, such as permitting too short keys, will make any
system vulnerable, regardless of other virtues. And, of course, social engineering, and other
attacks against the personnel who work with cryptosystems or the messages they handle

may be the most productive attacks of all.

18

1.1.4 Legal Issues

Cryptology-related technology has raised a number of legal issues. In the United Kingdom,
additions to the Regulation of Investigatory Powers Act 2000 require a suspected criminal to
hand over their encryption key if asked by law enforcement. Otherwise the user will face a
criminal charge. The Electronic Frontier Foundation (EFF®) is involved in a case in the
Supreme Court of the United States, which may determine whether requiring suspected
criminals to provide their encryption keys to law enforcement is unconstitutional. The EFF is
arguing that this is a violation of the right of not being forced to incriminate oneself, as given

in the Fifth Amendment.

1.2 Technical Terms

In this section basic terms used in the following chapters are explained.

Plaintext: Plaintext is information a sender wishes to transmit to a receiver. Cleartext is
often used as a synonym. Before the computer era, plaintext most commonly meant
message text in the language of the communicating parties. Plaintext has reference to the
operation of cryptographic algorithms, usually encryption algorithms, and is the input upon
which they operate. Cleartext, by contrast, refers to data that is transmitted or stored

unencrypted.

Ciphertext: Ciphertext is the result of encryption performed on plaintext using an algorithm.
Ciphertext is also known as encrypted or encoded information because it contains a form of
the original plaintext that is unreadable by a human or computer without the proper

algorithm to decrypt it.

Key: Key is a piece of information that determines the functional output of a cryptographic
algorithm. Without a key, the algorithm would produce no useful result. In encryption, a key

specifies the particular transformation of plaintext into ciphertext, or vice versa during

* The Electronic Frontier Foundation (EFF) is an international non-profit digital rights advocacy and
legal organization based in the United States (www.eff.org)

19

decryption. Keys are also used in other cryptographic algorithms, such as digital signature

schemes and message authentication codes.

Encryption — Decryption: Encryption is the process of transforming information (referred to
as plaintext) using an algorithm to make it unreadable to anyone except those possessing
special knowledge, usually referred to as a key. The result of the process is information (in
cryptography, referred to as ciphertext). The reverse process, i.e., to make the encrypted

information readable again, is referred to as decryption.

Data Integrity: Data integrity is a term used to refer to the accuracy and reliability of data.
Data must be complete, with no variations or compromises from the original, to be

considered reliable and accurate.

Authentication: Authentication is the act of confirming the truth of an attribute of a datum
or entity. This might involve confirming the identity of a person or software program, tracing
the origins of an artifact, or ensuring that a product is what its packaging and labeling claims

to be.

1.3 Symmetric-key Cryptography

1.3.1 Data Encryption Standard (DES)

1.3.1.1 Overview

In 1972, the National Institute of Standards and Technology (called the National Bureau of
Standards at the time) decided that a strong cryptographic algorithm was needed to protect
non-classified information. The algorithm was required to be cheap, widely available, and
very secure. NIST envisioned something that would be available to the general public and
could be used in a wide variety of applications. So they asked for public proposals for such
an algorithm. In 1974 IBM submitted the Lucifer algorithm, which appeared to meet most of

NIST's design requirements.

20

NIST enlisted the help of the National Security Agency to evaluate the security of Lucifer. At
the time many people distrusted the NSA due to their extremely secretive activities, so there
was initially a certain degree of skepticism regarding the analysis of Lucifer. One of the
greatest worries was that the key length, originally 128 bits, was reduced to just 56 bits,

weakening it significantly.

The modified Lucifer algorithm was adopted by NIST as a federal standard on November 23,
1976. Its name was changed to the Data Encryption Standard (DES). The algorithm
specification was published in January 1977, and with the official backing of the government

it became a very widely employed algorithm in a short amount of time.

Unfortunately, over time various shortcut attacks were found that could significantly reduce
the amount of time needed to find a DES key by brute force. And as computers became
progressively faster and more powerful, it was recognized that a 56-bit key was simply not
large enough for high security applications. As a result of these serious flaws, NIST

abandoned their official endorsement of DES in 1997.

1.3.1.2 Algorithm Description

DES encrypts and decrypts data in 64-bit blocks, using a 64-bit key (although the effective
key strength is only 56 bits). It takes a 64-bit block of plaintext as input and outputs a 64-bit
block of ciphertext. Since it always operates on blocks of equal size and it uses both
permutations and substitutions in the algorithm, DES is both a block cipher and a product

cipher.

DES has 16 rounds, meaning the main algorithm is repeated 16 times to produce the
ciphertext. It has been found that the number of rounds is exponentially proportional to the
amount of time required to find a key using a brute-force attack. So as the number of rounds

increases, the security of the algorithm increases exponentially.

21

1.3.1.3 Key Scheduling

Although the input key for DES is 64 bits long, the actual key used by DES is only 56 bits in
length. The least significant (right-most) bit in each byte is a parity bit, and should be set so
that there are always an odd number of 1s in every byte. These parity bits are ignored, so

only the seven most significant bits of each byte are used, resulting in a key length of 56 bits.

The first step is to pass the 64-bit key through a permutation (see Table 31: Permuted Choice
1) to produce the 56-bit key.

Now that the 56-bit key is ready, the next step is to use this key to generate 16
48-bit subkeys, called K[1]-K[16], which are used in the 16 rounds of DES for encryption and
decryption. The procedure for generating subkeys - known as key scheduling - is the

following:

1. Setthe round numberRto 1.

2. Split the current 56-bit key, K, up into two 28-bit blocks, L (the left-hand half) and R
(the right-hand half).

3. Rotate L left by the number of bits specified in the Table 33: Subkey Rotation, and
rotate R left by the same number of bits as well.

4. Join Land R together to get the new K.

5. Apply a permutation (see Table 32: Permuted Choice 2) to K to get the final K[R],
where R is the number of the current round.

6. Increment R by 1 and repeat the procedure until all 16 subkeys K[1]-K[16] are ready.

22

chy (64 bits)

PCL
| (56 bits)

' J/ (28 bits) (28 bigs)], ‘
Subkey 1 PC2
(48 bits)
Subkey 2 PC2
(48 bits)

A A
Subkey 15 PC2
(48 bits)

] (28bits) (28 bits) [

L J |
Subkey 16 <— PC2
(48 bits)

Figure 1: DES Key Schedule

1.3.1.4 Plaintext Preparation

Once the key scheduling has been performed, the next step is to prepare the plaintext for
the actual encryption. This is done by passing the plaintext through a permutation called the
Initial Permutation (see Table 34: Initial Permutation). This table also has an inverse, called
the Inverse Initial Permutation (see Table 35: Inverse Initial Permutation). If you run a block
of plaintext through the initial permutation and then pass the resulting block through the

inverse initial permutation, you'll end up with the original block.

1.3.1.5 DES Core Function

DES core function is also known as the “Feistel function” (see Figure 2). Once the key
scheduling and plaintext preparation have been completed, the actual encryption or
decryption is performed by the main DES algorithm. The 64-bit block of input data is first

split into two halves, L and R. L is the left-most 32 bits, and R is the right-most 32 bits. The

23

following process is repeated 16 times, making up the 16 rounds of standard DES. The 16

sets of halves are called L[0]-L[15] and R[0]-R[15]. Each DES round has the following steps:

24

R[i-1] - where i is the round number, starting at 1 - is taken and fed into the E-Bit
Selection Table (see Table 36: E-Bit Selection), which is like a permutation, except
that some of the bits are used more than once. This expands the number R[i-1] from
32 to 48 bits to prepare for the next step.

The 48-bit R[i-1] is XORed with K[i] and stored in a temporary buffer so that R[i-1] is
not modified.

The result from the previous step is now split into 8 segments of 6 bits each. The
left-most 6 bits are B[1], and the right-most 6 bits are B[8]. These blocks form the
index into the S-boxes (see Table 38 to Table 45), which are used in the next step.
The Substitution boxes, known as S-boxes, are a set of 8 two-dimensional arrays,
each with 4 rows and 16 columns. The numbers in the boxes are always 4 bits in
length, so their values range from 0-15. The S-boxes are numbered S[1] to S[8].
Starting with B[1], the first and last bits of the 6-bit block are taken and used as an
index into the row number of S[1], which can range from 0 to 3, and the middle four
bits are used as an index into the column number, which can range from 0 to 15. The
number from this position in the S-box is retrieved and stored away. This is repeated
with B[2] and S[2], B[3] and S[3], and the others up to B[8] and S[8]. At this point,
you now have 8 4-bit numbers, which when strung together one after the other in
the order of retrieval, give a 32-bit result.

The result from the previous stage is now passed into the P Permutation (see Table
37: P Permutation).

This number is now XORed with L[i-1], and moved into R[i]. R[i-1] is moved into L[i].
At this point the new L[i] and R[i] are ready. Here, i is incremented and the core
function is repeated until i = 17, which means that 16 rounds have been executed

and keys K[1]-K[16] have all been used.

When L[16] and R[16] have been obtained, they are joined back together in the same
fashion they were split apart (L[16] is the left-hand half, R[16] is the right-hand half), then
the two halves are swapped, R[16] becomes the left-most 32 bits and L[16] becomes the
right-most 32 bits of the pre-output block and the resultant 64-bit number is called the pre-

output.

Half Block (32 bits) Subkey (48 bits)
E
(48 bits)
Wl W
LA
(48 bits)
A
S1 Si2 S8 S4 S5 S6 Si S8

(32 bits)

E

l (32 bits)

Figure 2: Feistel Function

25

Plaintext (64 bits)

IP
(32 bits) (32 bits)
D— F
‘.
< F

for 16 rounds

 Jm— F <
(32 bits) (32 bits)

FP

Ciphertext (64 bits)

Figure 3: Main Process of DES

1.3.1.6 Ciphertext Preparation

The final step is to apply the inverse initial permutation at the pre-output. The result is the

completely encrypted ciphertext.

1.3.1.7 Decryption

The same algorithm can be used for encryption or decryption. The method described above
will encrypt a block of plaintext and return a block of ciphertext. In order to decrypt the
ciphertext and get the original plaintext again, the procedure is simply repeated but the
subkeys are applied in reverse order, i.e. K[16] to K[1]. Other than that, decryption is

performed exactly in the same way as encryption.

26

1.3.2 Advanced Encryption Standard (AES)

1.3.2.1 Overview

The Advanced Encryption Standard (AES) is a specification for the encryption of electronic
data established by the U.S. National Institute of Standards and Technology (NIST) in 2002.
Originally called Rijndael, the algorithm was developed by two Belgian cryptographers, Joan
Daemen and Vincent Rijmen, who submitted to the AES selection process. Strictly speaking,

the AES standard is a variant of Rijndael where the block size is restricted to 128 bits.

AES has been adopted by the U.S. government and is now used worldwide. It supersedes the
Data Encryption Standard (DES). The algorithm described by AES is a symmetric-key

algorithm, meaning the same key is used for both encrypting and decrypting the data.

In the United States, AES was announced by the NIST as U.S. FIPS PUB 197 (FIPS* 197) on
November 26, 2001. This announcement followed a five-year standardization process in
which fifteen competing designs were presented and evaluated, before the Rijndael
algorithm was selected as the most suitable. It became effective as a federal government
standard on May 26, 2002 after approval by the Secretary of Commerce. AES is included in
the ISO/IEC 18033-3 standard. AES is available in many different encryption packages, and is
the first publicly accessible and open algorithm approved by the National Security Agency

(NSA) for top secret information when used in an NSA approved cryptographic module.

* A Federal Information Processing Standard (FIPS) is a publicly announced standardization developed
by the United States federal government for use in computer systems by all non-military government
agencies and by government contractors, when properly invoked and tailored on a contract.

27

The main process of AES is depicted in Figure 4.

PLAINTEXT PLAINTEXT

AddRoundKey = AddRoundKey
4
... H
K o
o InvSubBytes
.
3 = | InvShiftRows
1
8 E
% 2 ' > % ..
= = MixColumns = =
'3 AddRoundKe
s & i .
Z il | AddRoundKey i 3
O o iZ -
R L io =
. = z
; :
A SubBytes 5
2]|
8 =] InvShiftRows
o "
- BT R
(7]
<
= | AddRoundKey AddRoundKey
v CIPHERTEXT CIPHERTEXT

Figure 4: AES Main Process

1.3.2.2 Rijndael Key Schedule

AES (Rijndael) uses a key schedule to expand a short key into a number of separate round
keys. This is known as the Rijndael key schedule. Rijndael's key schedule utilizes a number of

operations, which will be described before describing the key schedule.

e Rotate: The rotate operation takes a 32-bit word and rotates it eight bits to the left
such that the high eight bits "wrap around" and become the low eight bits of the
result.

e Rcon: Rcon is what the Rijndael documentation calls the exponentiation of 2 to a
user-specified value. Note that, this operation is not performed with regular
integers, but in Rijndael's finite field. The Rcon can be computed using a specific
vector (see Table 46: Rcon[256]).

e S-box: The Rijndael S-box is a matrix (square array of numbers) used in the Rijndael
cipher. The S-box (substitution box) serves as a lookup table (see Table 47: Rijndael

S-Box).

28

1.3.2.3 Key Schedule Core
This operation is used as an inner loop in the key schedule, and is done thus:

e Theinputis a 32-bit word and at an iteration number i. The output is a 32-bit word.

e Copy the input over to the output.

e Use the above described rotate operation to rotate the output eight bits to the left.

e Apply Rijndael's S-box on all four individual bytes in the output word.

e On just the first (leftmost) byte of the output word, exclusive or the byte with 2 to
the power of (i-1). In other words, perform the Rcon operation with i as the input,

and exclusive or the Rcon output with the first byte of the output word.

Since the key schedule for 128-bit, 192-bit, and 256-bit encryption are very similar, with only

some constants changed, the following key size constants are defined here:

e n has avalue of 16 for 128-bit keys, 24 for 192-bit keys, and 32 for 256-bit keys
e b has avalue of 176 for 128-bit keys, 208 for 192-bit keys, and 240 for 256-bit keys

Rijndael's key schedule is done as follows:

1. The first n bytes of the expanded key are the encryption key.
2. The Rcon iteration value i, is set to 1.
3. Until b bytes of expanded key are produced, the following procedure is executed to
generate n more bytes of expanded key:
o The following steps are performed to create 4 bytes of expanded key:
i. Create a 4-byte temporary variable, t.
ii. Assign the value of the previous four bytes in the expanded key to t.
iii. Perform the key schedule core (see Key Schedule Core) on t, with i
as the Rcon iteration value.
iv. Increment i by 1.
V. Exclusive-or t with the four-byte block n bytes before the new
expanded key. This becomes the next 4 bytes in the expanded key.
o Then, the following steps are performed three times to create the next
twelve bytes of expanded key:
i Assign the value of the previous 4 bytes in the expanded key to t.
ii. Exclusive-or t with the four-byte block n bytes before the new

expanded key. This becomes the next 4 bytes in the expanded key.

29

o If a 256-bit key is generated, the following steps are performed to generate
the next 4 bytes of expanded key:
i Assign the value of the previous 4 bytes in the expanded key to t.
ii. Run each of the 4 bytes in t through Rijndael's S-box.
iii. Exclusive-or t with the 4-byte block n bytes before the new
expanded key. This becomes the next 4 bytes in the expanded key.

o If a 128-bit key is generated, the following steps are not performed. If a 192-
bit key is generated, the following steps are performed twice. If a 256-bit
key is generated, the following steps are performed three times:

i. Assign the value of the previous 4 bytes in the expanded key to t.
ii. Exclusive-or t with the four-byte block n bytes before the new

expanded key. This becomes the next 4 bytes in the expanded key.

1.3.2.4 Description of the Algorithm

AES is based on a design principle known as a substitution-permutation network, and is fast
in both software and hardware. Unlike its predecessor DES, AES does not use a Feistel
network. AES is a variant of Rijndael which has a fixed block size of 128 bits, and a key size of
128, 192, or 256 bits. By contrast, the Rijndael specification per se is specified with block and
key sizes that may be any multiple of 32 bits, both with a minimum of 128 and a maximum

of 256 bits.

AES operates on a 4x4 column-major order matrix of bytes, termed the state, although some
versions of Rijndael have a larger block size and have additional columns in the state. Most

AES calculations are done in a special finite field.

The key size used for an AES algorithm specifies the number of repetitions of transformation
rounds that convert the input, called the plaintext, into the final output, called the

ciphertext. The number of cycles of repetition is as follows:

o 10 cycles of repetition for 128 bit keys
e 12 cycles of repetition for 192 bit keys

e 14 cycles of repetition for 256 bit keys

Each round consists of several processing steps, including one that depends on the

encryption key itself.

30

Key Expansion: round keys are derived from the cipher key using Rijndael's key
schedule
Initial Round:
i AddRoundKey: each byte of the state is combined with the round key using
bitwise xor
Rounds:
i. SubBytes: a non-linear substitution step where each byte is replaced with
another according to a lookup table
ii. ShiftRows: a transposition step where each row of the state is shifted
cyclically a certain number of steps
iii. MixColumns: a mixing operation which operates on the columns of the
state, combining the four bytes in each column
iv. AddRoundKey
Final Round (no MixColumns)
i SubBytes
ii. ShiftRows
iii. AddRoundKey

31

1.3.2.5 The SubBytes Step

In the SubBytes step, each byte in the state matrix is replaced with a SubByte using an 8-bit
substitution box, the Rijndael S-box (see Table 47: Rijndael S-Box). This operation provides
the non-linearity in the algorithm. The S-box used is derived from the multiplicative inverse
over GF(2%), known to have good non-linearity properties. To avoid attacks based on simple
algebraic properties, the S-box is constructed by combining the inverse function with an
invertible affine transformation. The S-box is also chosen to avoid any fixed points (and so is

a derangement), and also any opposite fixed points.

SubBytes
b | b, o] b
b

Figure 5: AES SubBytes

1.3.2.6 The ShiftRows Step

The ShiftRows step operates on the rows of the state; it cyclically shifts the bytes in each
row by a certain offset. For AES, the first row is left unchanged. Each byte of the second row
is shifted one to the left. Similarly, the third and fourth rows are shifted by offsets of two
and three respectively. For blocks of sizes 128 bits and 192 bits, the shifting pattern is the
same. Row n is shifted left circular by n-1 bytes. In this way, each column of the output state
of the ShiftRows step is composed of bytes from each column of the input state. (Rijndael
variants with a larger block size have slightly different offsets). For a 256-bit block, the first
row is unchanged and the shifting for the second, third and fourth row is 1 byte, 3 bytes and
4 bytes respectively—this change only applies for the Rijndael algorithm when used with a

256-bit block, as AES does not use 256-bit blocks.

32

No
change a0,0 a0,1 a0,2 a0,3 aOO aOl a02 a03

Shift 1| & o[@ a a a a a a

ift _1&&&/1,3 > 1,1| ©1,2| “1,3| %10

Shift 2 0| % /a2,2 }32,3 Lo 20| D1
o — a—

Shift 3| 830|351 S5 ?3,3 933 0| 31| B3

Figure 6: AES ShiftRows

1.3.2.7 The MixColumns Step

In the MixColumns step, the four bytes of each column of the state are combined using an
invertible linear transformation. The MixColumns function takes four bytes as input and
outputs four bytes, where each input byte affects all four output bytes. Together with

ShiftRows, MixColumns provides diffusion in the algorithm.
During this operation, each column is multiplied by a known matrix (see Table 1).

Table 1: MixColumns Multiplication Matrix

3
2
1
1

RIN|W|kF

2 1
1 1
1 3
3 2

The multiplication operation is defined as multiplication by 1 means no change,
multiplication by 2 means shifting to the left, and multiplication by 3 means shifting to the
left and then performing xor with the initial unshifted value. After shifting, a conditional xor

with 0x11B should be performed if the shifted value is larger than OxFF.

In more general sense, each column is treated as a polynomial over GF(2®) and is then
multiplied modulo x*+1 with a fixed polynomial c(x) = 0x03-x* + x> + x + 0x02. The coefficients
are displayed in their hexadecimal equivalent of the binary representation of bit polynomials
from GF(2)[x]. The MixColumns step can also be viewed as a multiplication by a particular

MDS matrix in a finite field.

33

MixColumns
- b

ol

Figure 7: AES MixColumns

1.3.2.8 The AddRoundKey step

In the AddRoundKey step, the subkey is combined with the state. For each round, a subkey is
derived from the main key using Rijndael's key schedule; each subkey is the same size as the
state. The subkey is added by combining each byte of the state with the corresponding byte

of the subkey using bitwise XOR.

L
[=]
Q
=]
[
Q
o
8]
2
w
oy
o
oy

1

hddRoundKe

>

Figure 8: AES AddRoundKey

34

1.3.2.9 Decryption

The above process describes the way encryption is performed. Decryption is almost the
same process but the steps (SubBytes, ShiftRows, MixColumns, and AddRoundKey) are
executed in a different order using different tables. Details of the way that decryption

process is implemented can be found in section 3.3.4).

1.3.3 International Data Encryption Algorithm (IDEA)

1.3.3.1 Overview

The block cipher IDEA was first presented by Xuejia Lai and James Massey of the Swiss
Federal Institute of Technology in 1990 and was then called PES (Proposed Encryption
Standard). In 1991 after Biham and Shamir presented their results regarding differential
cryptanalysis, the authors developed an improved version of the PES algorithm to increase
the security against this attack and the new algorithm was called IPES (Improved Proposed

Encryption Standard) while finally in 1992 its name was changed officially to IDEA.

The IDEA is a symmetric, block oriented encryption algorithm, which operates on a 64-bit
plaintext and uses a 128 bit length key. The substitution boxes and the associated “lookup
tables” used in the rest block ciphers available to-date (and among them DES) have been
completely dispensed with. The required confusion in this algorithm is achieved by
successively using three different and incompatible group operations on pairs of 16-bit sub
blocks and mixing them (in such a way that at no point in the encryption process the same
algebraic operation is used contiguously) while the structure of the cipher was carefully
chosen to provide the necessary diffusion requirement. These three algebraic operations are

the following:

e Bitwise XOR (denoted with @)

e Addition of integers modulo (2*°) with inputs and outputs treated as unsigned 16-bit
integers (denoted with H)

e Multiplication of integers modulo (2'°+1) with inputs and outputs treated as
unsigned 16-bit integers (This operation can be also viewed as IDEA’s equivalent S-

box) (denoted with ©)

35

All these operations operate on 16-bit sub-blocks. Their use in combination provides for a
complex transformation of the input making cryptanalysis much more difficult than with an

algorithm such as e.g. DES, which relies solely on the XOR function.

IDEA uses a 128 bit key which is double the key size of DES, making it highly immune to
attacks. IDEA uses algebraic operations completely and it entirely avoids the use of any
lookup tables or S-boxes. The strength of IDEA lies in its modulo multiplication operations.
The working of IDEA can be visualized as—the 64-bit plain text block is divided into 4
portions of plain text (each of size 16 bits), say P1 to P4. Thus, P1 to P4 are the inputs for the
first round of the algorithm. There are 8 such rounds. In each round, 6 subkeys (each of size
16 bits) are generated from the original 128 bit key. These subkeys are applied to the 4 input
blocks P1 to P4. Thus, for the 1st round there are 6 subkeys K1 to K6. For the 2nd round,
there are keys K7 to K12. Finally, keys K43 to K48 will be used. The final step consists of an
Output Transformation, which uses just 4 subkeys. The final output produced is the output

produced by the Output Transformation round.

The main process of IDEA is depicted in Figure 9.

1 Py ¢

| I

! | — i

:g ,,,,,,,,, _1_7:: —= ,.1, 3§
! @) Hlw s @

i P |

Figure 9: IDEA Main Process

36

The designers analyzed IDEA to measure its strength against differential cryptanalysis and
concluded that it is immune under certain assumptions. No successful linear or algebraic
weaknesses have been reported. As of 2007, the best attack which applies to all keys can
break IDEA reduced to 6 rounds (the full IDEA cipher uses 8.5 rounds). Note that a "break" is
any attack which requires less than 2128 operations; the 6-round attack requires 264 known

plaintexts and 2126.8 operations.

The very simple key schedule makes IDEA subject to a class of weak keys; some keys
containing a large number of 0 bits produce weak encryption. These are of little concern in
practice, being sufficiently rare that they are unnecessary to avoid explicitly when
generating keys randomly. A simple fix was proposed; exclusive-ORing each subkey with a

16-bit constant, such as OxODAE. Larger classes of weak keys were found in 2002.

1.3.3.2 Key Generation

The initial 6 subkeys K1 to K6 are generated from the original 128 bit key. Since the sub -keys
consist of 16 bits each, out of the original 128 bits, the first 96 bits are used for the first
round. Thus, at the end of the first round, bits 97-128 of the original key are unused. In the
second round, the unused 32 bits of the first round are used. To generate the rest of the sub
-keys for the second round, 64 more bits are required. This is obtained by shifting the
original key left circularly by 25 bits. Then, the modified key is now used to generate the rest
of the 4 subkeys in the same way as the first round keys are generated. The same is done for

the subkey generation for the rest of the rounds.

1.3.3.3 Encryption Round
In each round of the 8 rounds of algorithm, the following sequence of events is performed:

Multiply P1 and K1

Add P2 and K2

Add P3 and K3

Multiply P4 and K4

XOR the results of step 1 and step 3

AR L A

XOR the results of step 2 and step 4

37

7. Multiply the results of step 5 with K5
8. Add the results of step 6 and step 7
9. Multiply the results of step 8 with K6
10. Add the results of step 7 and step 9
11. XOR the results of step 1 and step 9
12. XOR the results of step 3 and step 9
13. XOR the results of step 2 and step 10
14. XOR the results of step 4 and step 10

K1 ® K2 K3 —¥ ®)4+—K4

A4

5
ry

Ks ——>» @

i

— K6

<

4
(N

\ 4

M

Figure 10: IDEA Round

Sequence of events followed in the output transformation round:

Multiply R1 and K1
Add R2 and K2
Add R3 and K3

Ll S

Multiply R4 and K4

The outputs of the round are given in the same order to the next round. After the 8" round,
the inner 2 blocks are swapped and given as input to the final transformation round. Finally,

the four sub -blocks are attached to get the final encrypted result.

38

1.3.3.4 Decryption

Decryption uses exactly the same sequence of operations of successive 64-bit blocks of the
ciphertext, but with a different set of subkeys. The same 52 key sub-blocks generated for
encryption are rearranged and inverted accordingly to produce the decryption key schedule.
Those that are added are replaced by their two's complement. Those that are multiplied in
are replaced by their multiplicative inverse, modulo 2**+1, but those used to calculate the
cross-footed F-functions are not changed. Keys XORed in would not need to be changed, but

there aren't any such keys in IDEA.

The decryption sub -keys (relative to the encryption subkeys s1 to s52) are generated as

shown in Table 2.

Table 2: Decryption Subkeys Generation Table

1st round s49* | s50# | s51# | s52* s47 s48
2nd round s43* | sAS5# | s44# | s46* s41 s42
3rd round s37*% | s39# | s38# | s39* s35 s36
4th round s31* | s33# | s32# | s34* s29 s30
5th round s25% | s27# | s26# | s28* s23 s24
6th round s19*% | s21# | s20# | s22* s17 s18
7th round s13* | s15# | sl4# | sle* s11 s12
8th round s7* so# s8# s10* s5 s6
Final transformation - - s1* s2# s3# s4*

e sXX* = multiplicative inverse of sXX modulus 2*°+1

e sXX# = additive inverse of sXX modulus 2

1.3.4 Block Cipher Operation Modes

1.3.4.1 Introduction

In cryptography, a mode of operation is the procedure of enabling the repeated and secure
use of a block cipher under a single key. A block cipher by itself allows encryption only of a
single data block of the cipher's block length. When targeting a variable-length message, the

data must first be partitioned into separate cipher blocks. Typically, the last block must also

39

be extended to match the cipher's block length using a suitable padding scheme. A mode of
operation describes the process of encrypting each of these blocks, and generally uses
randomization based on an additional input value, often called an initialization vector, to

allow doing so safely.

Modes of operation have primarily been defined for encryption and authentication.
Historically, encryption modes have been studied extensively in regard to their error
propagation properties under various scenarios of data modification. Later development
regarded integrity protection as an entirely separate cryptographic goal from encryption.
Some modern modes of operation combine encryption and authentication in an efficient

way, and are known as authenticated encryption modes.

An initialization vector (IV) is a block of bits that is used by several modes to randomize the
encryption and hence to produce distinct ciphertexts even if the same plaintext is encrypted

multiple times, without the need for a slower re-keying process.

An initialization vector has different security requirements than a key, so the IV usually does
not need to be secret. However, in most cases, it is important that an initialization vector is
never reused under the same key. For CBC and CFB, reusing an IV leaks some information
about the first block of plaintext, and about any common prefix shared by the two messages.
For OFB and CTR, reusing an IV completely destroys security. In CBC mode, the IV must, in
addition, be unpredictable at encryption time; in particular, the (previously) common
practice of re-using the last ciphertext block of a message as the IV for the next message is
insecure (for example, this method was used by SSL 2.0). If an attacker knows the IV (or the
previous block of ciphertext) before he specifies the next plaintext, he can check his guess
about plaintext of some block that was encrypted with the same key before (this is known as

the TLS CBC IV attack).

As a special case, if the plaintexts are always small enough to fit into a single block (with no
padding), then with some modes (ECB, CBC, PCBC), re-using an IV will leak only whether two
plaintexts are equal. This can be useful in cases where one wishes to be able to test for

equality without decrypting or separately storing a hash.

40

1.3.4.2 Electronic Codebook (ECB mode)

The simplest of the encryption modes is the electronic codebook (ECB) mode. The message

is divided into blocks and each block is encrypted separately.

Plaintext Plaintext Plaintext

[TTTTTI [TTTT [TTTTTI
T L T

Bleck Cipher Block Cipher Bleck Cipher

Key —= Encryption Key = | Encryption Key » Encryption
T L T

[TTTT1 [[

Ciphertext Ciphertext Ciphertext

Figure 11: Electronic Codebook (ECB) Encryption

Ciphertext Ciphertext Ciphertext

[TTTTTT [TTTTTT] [TTTTTT]
T T T

Block Cipher Block Cipher Block Cipher

Key —=| Decryption Key ——= ' Decryption Key —=| Decryption
v T 1

CCITTTTT T TTT 717 TTTTTTT]

Flaintext Plaintext Plaintext

Figure 12: Electronic Codebook (ECB) Decryption

The disadvantage of this method is that identical plaintext blocks are encrypted into
identical ciphertext blocks; thus, it does not hide data patterns well. In some senses, it
doesn't provide serious message confidentiality, and it is not recommended for use in

cryptographic protocols at all.

A striking example of the degree to which ECB can leave plaintext data patterns in the
ciphertext can be seen when ECB mode is used to encrypt a bitmap image which uses large
areas of uniform color. While the color of each individual pixel is encrypted, the overall
image may still be discerned as the pattern of identically colored pixels in the original

remains in the encrypted version (see Figure 13).

41

Original Image Encrypted using ECB mode Encrypted using modes

other than ECB
Figure 13: Difference of ECB Mode from the Others

1.3.4.3 Cipher-block Chaining (CBC mode)

IBM invented the cipher-block chaining (CBC) mode of operation in 1976. In CBC mode, each
block of plaintext is XORed with the previous ciphertext block before being encrypted. This
way, each ciphertext block depends on all plaintext blocks processed up to that point. To

make each message unique, an initialization vector must be used in the first block.
Encryption and decryption algorithms are as follows:

o C=E(PDC)C=IV
o Pi=Dk(C) D Ciy, Co=IV

Plaintext Plaintext Plaintext
ITTT1TTT] OTTTTTT] TTTTTT]
Initialization Vector (IV)
OTTTTT111 & . i
L v ¥ _
Block Cipher Block Cipher Block Cipher
Key —= Encryption Key —= Encryption Key —=| Encryption
L L L
2 I I Lo
Ciphertext Ciphertext Ciphertext

Figure 14: Cipher-block Chaining Encryption

42

Initialization Vectar (1V) Ciphertext Ciphertext Ciphertext
[TTTTTT

i v v
Block Cipher Block Cipher Block Cipher
Key *=| Decryption Key = Decryption Key = Decryption
' v '
[TTTT] [TTTTTT] [TTTTTT
Plaintext Flaintext Plaintext

Figure 15: Cipher-block Chaining Decryption

CBC has been the most commonly used mode of operation. Its main drawbacks are that
encryption is sequential (i.e., it cannot be parallelized), and that the message must be
padded to a multiple of the cipher block size. One way to handle this last issue is through the
method known as ciphertext stealing. Note that a one-bit change in a plaintext or IV affects

all following ciphertext blocks.

Decrypting with the incorrect IV causes the first block of plaintext to be corrupt but
subsequent plaintext blocks will be correct. This is because a plaintext block can be
recovered from two adjacent blocks of ciphertext. As a consequence, decryption can be
parallelized. Note that a one-bit change at the ciphertext causes complete corruption of the
corresponding block of plaintext and inverts the corresponding bit in the following block of

plaintext, but the rest of the blocks remain intact.

1.3.4.4 Propagating Cipher-block Chaining (PCBC mode)

The propagating cipher-block chaining or plaintext cipher-block chaining mode was designed
to cause small changes in the ciphertext to propagate indefinitely when decrypting, as well

as when encrypting.

Encryption and decryption algorithms are as follows:

o C=E((Pi®DP.DC,),PDC=IV
e Pi=D(C) D P D Ciy, Po D Co=IV

43

Plaintext Plaintext Plaintext
[TTTTTI [TTTTT] [TTTTTI
Initialization Vector {1V}

A | L | L

LI - B - b -
r 4 L] ']

Block Cipher Block Cipher Block Cipher

Key —| Encryption Key —=| Encryption Key —| Encryption
L L '

[TTTTTT] [TTTTT] [TTTTTT]

Ciphertext Ciphertext Ciphertext

Figure 16: Propagating Cipher-block Chaining (PCBC) Encryption

Initialization Vectar (IV) Ciphertext Ciphertext Ciphertext
[TTTTTTT LITTTTTT [TTTTTT] [TTTTT1

' 4 v
Block Cipher Block Cipher Block Cipher

Key —=| Decryption Key —=| Decryption Key —= Decryption
))

v . v ' '
I I I A [TTTTT]
Plaintext Plaintex Plaintesxt

Figure 17: Propagating Cipher-block Chaining (PCBC) Decryption

1.3.4.5 Cipher Feedback (CFB mode)

The cipher feedback (CFB) mode, a close relative of CBC, makes a block cipher into a self-
synchronizing stream cipher. Operation is very similar; in particular, CFB decryption is almost

identical to CBC encryption performed in reverse:

o C=E(Ca) DP
o P=E(C1) DG
o Co=IV

44

Initialization Vector (IV)

v v v
Block Cipher Bleck Cipher Block Cipher
Key *=| Encryption Key = Encryption Key *= | Encryption
Plaintext | Plaintext |
LITTTTIT] —»&p [TTTTTTT] —»=&p Plaintext
[TT 11111 —=&
L v v
Ciphertext Ciphertext Ciphertext
Figure 18: Cipher Feedback (CFB) Encryption
Initialization Vector (V)
I
T T r
Block Cipher Block Cipher Block Cipher

Key —=| Encryption Key =| Encryption Key —= ' Encryption

b= [TTTTTT] D - [TTTTTT = [TTTTT1
v Ciphertext T Ciphertext ' Ciphertext
[T [TTTTTT] [TTTTTT

Plaintext Plaintext Plaintext

Figure 19: Cipher Feedback (CFB) Decryption

This simplest way of using CFB described above is not any more self-synchronizing than
other cipher modes like CBC. If a whole block size of ciphertext is lost both CBC and CFB will
synchronize, but losing only a single byte or bit will permanently throw off decryption. To be
able to synchronize after the loss of only a single byte or bit, a single byte or bit must be
encrypted at a time. CFB can be used this way when combined with a shift register as the

input for the block cipher.

Like CBC mode, changes in the plaintext propagate forever in the ciphertext, and encryption
cannot be parallelized. Also like CBC, decryption can be parallelized. When decrypting, a
one-bit change in the ciphertext affects two plaintext blocks; a one-bit change in the
corresponding plaintext block, and complete corruption of the following plaintext block.

Later plaintext blocks are decrypted normally.

45

CFB shares two advantages over CBC mode with the stream cipher modes OFB and CTR; the
block cipher is only ever used in the encrypting direction, and the message does not need to
be padded to a multiple of the cipher block size (though ciphertext stealing can also be used

to make padding unnecessary).

1.3.4.6 Output Feedback (OFB mode)

The output feedback (OFB) mode makes a block cipher into a synchronous stream cipher. It
generates key stream blocks, which are then XORed with the plaintext blocks to get the
ciphertext. Just as with other stream ciphers, flipping a bit in the ciphertext produces a
flipped bit in the plaintext at the same location. This property allows many error correcting

codes to function normally even when applied before encryption.

Because of the symmetry of the XOR operation, encryption and decryption are exactly the

same:
e G=PDO
e P=GDO
o O;=E(l)
e =0,
o Ip=IV

Initialization Vector (IV)

1 ' v
Block Cipher Block Cipher Block Cipher
Key = Encryption Key = Encryption Key = Encryption
Plaintext [Plaintext | Plaintext |
[TTTTTT - i ITTTTTT] —== [TTTTT 11—
1 ' '
Ciphertext Ciphertext Ciphertext

Figure 20: Output Feedback (OFB) Encryption

46

Initialization Vector (IV)
CCTTTTTT]

L v v

Block Cipher Block Cipher Block Cipher
Key ——=| Encryption Key =| Encryption Key —= Encryption

Ciphertext Ciphertext Ciphertext
L] L\ L)
[TTTII [TTTTTI [1 [1
Plaintext Plaintext Plaintext

Figure 21: Output Feedback (OFB) Decryption

Each output feedback block cipher operation depends on all previous ones, and so cannot be
performed in parallel. However, because the plaintext or ciphertext is only used for the final
XOR, the block cipher operations may be performed in advance, allowing the final step to be

performed in parallel once the plaintext or ciphertext is available.

It is possible to obtain an OFB mode key stream by using CBC mode with a constant string of
zeroes as input. This can be useful, because it allows the usage of fast hardware

implementations of CBC mode for OFB mode encryption.

1.3.4.7 Counter (CTR mode)

Like OFB, counter mode turns a block cipher into a stream cipher. It generates the next key
stream block by encrypting successive values of a "counter". The counter can be any
function which produces a sequence which is guaranteed not to repeat for a long time,
although an actual increment-by-one counter is the simplest and most popular. By now, CTR
mode is widely accepted, and problems resulting from the input function are recognized as a
weakness of the underlying block cipher instead of the CTR mode. Nevertheless, there are
specialized attacks like a Hardware Fault Attack that is based on the usage of a simple

counter function as input.

CTR mode has similar characteristics to OFB, but also allows a random access property

during decryption. CTR mode is well suited to operation on a multi-processor machine

47

where blocks can be encrypted in parallel. Furthermore, it does not suffer from the short-

cycle problem that can affect OFB.

Monce Counter Monce Counter Mence Counter
c58bcf35... 00000000 c59bcf35... 00000001 c59bcf35... 00000002
[I [TT1 [TT [11
L] L L]
Key = | Block Cipher Key = | Block Cipher Key =| Block Cipher
Encryption Encryption Encryption
Plaintext - Plaintext - Plaintext -
[TTTTTITITITTTT] ' [TTITTITIIT0TTd ' [TTTITTTITITT1T] I
[INNENN ARRRNERNEE [TTTITIITTITTIT] [TTITTITTTTITTd
Ciphertext Ciphertext Ciphertext

Figure 22: Counter (CTR) Encryption

Nonce Caounter Monce Counter Nonce Counter
c59bcf35... Qoo0o000 c59bcf35... 00000001 c59bcf35... 00000002
T TTITITTdT INNENANRRRNNEN AN [TTTTITTITITTIT
v v v
Key ~| Block Cipher Key = Block Cipher Key =| Block Cipher
Encryption Encryption Encryption
Ciphertext = Ciphertext = i Ciphertext -
[TITITTIITITTT] ' JI' TTTTTTTTTTT '
TTTTTITTITTT0TT [MITTTITT I [TITTTTITTTTTTT
Plaintext Plaintext Plaintext

Figure 23: Counter (CTR) Decryption

1.3.5 Applications

1.3.5.1 DES Applications

The DES devices are used by the federal department and other government agencies for
cryptographic protection of classified information. The federal government standardizes DES
and specifies interoperability and security-related requirements for using encryption at the
Physical Layer of the ISO Open Systems Interconnection (OSl) Reference Model in

telecommunications systems conveying digital information.

48

Data encryption (and particularly DES) is primarily applied in:

e Electronic financial transactions: Automatic Teller Machines (devices limited to the
issuance of cash or travelers checks, acceptance of deposits, or account balance
reporting)

e Secure data communications, paving the road for e-commerce

e Secure video surveillance systems

e Encrypted data storage and proprietary software protection

e Access control: Software or hardware which protects passwords or Personal

Identification Numbers (PINs) against unauthorized access.

DES is used in gateways to ensure privacy of user data. Also provides secure digital voice
encryption in hand-held communication devices such as land mobile radio and dispatch
control consoles. Data encryption through DES and is prevalent in fax machines. This allows
secure data transfer over phone lines and prevents active interception of one’s faxes at the
receiver end, which is prevented by password entry by the user for fax retrieval. Networking
applications use DES to provide network protection through data privacy, data integrity,
access control and authentication. Message and file security, user authentication, secure
remote system logon, and multilevel system access require data encryption, and DES

algorithm is the most prevalent.

There is a need for control and access between different entities in a company’s business
environment, to provide secure communication between remote offices, business partners,
customers, and travelling and telecommuting employees. Transmitting messages over the
existing Internet backbone poses risks. VPNs were introduced to tackle exactly these issues
to provide a company owned and managed network architecture. These networks provide
scalable and comprehensive solutions by utilizing existing Internet backbone with additional
hardware and software solutions. Strong data encryption is necessary to extend security and
control features for which DES is the most commonly used. This provides secure network
traffic through data privacy, data integrity, access control and authenticating entities by

providing a gateway to each point of access into the business.

DES algorithm has been used for cell payload encryption in ATMs. The cryptographic units
heighten security interfaces between a secure LAN and a public network. As data crosses
this interface, the system encrypts each ATM cell’s payload without affecting the header.

Encrypted cells pass through the public network infrastructure and are decrypted upon

49

arriving at the destination LAN. The benefit is that the user can conduct business as usual
within the LAN and can encrypt the data as it enters the non-secure public network or non-
secure area of a LAN. The system provides privacy and access control guarantees when using

public ATM networks.

Data security in e-Commerce applications is required to have secure website, conduct
financial transactions over the Internet, authentication of users to Intranets and Extranets,
secure messaging, and secure storage of digital signature keys for signature generation and

verification for digital documents.

Smartcard solutions are used in wireless communication, loyalty systems, banking Pay TV
and government ID. These are used to provide strong authentication in e-business. These
solutions are used with standard non-secured PCs. Consumers, vendors and financial
institutions need to know that the transactions, documents and identities are authentic. DES

algorithm is the most used encryption method in data security for the Smartcard solutions.

1.3.5.2 AES Applications

AES can be used in any application that requires protection of data during transmission
through the communication network, including applications such as electronic commerce
transactions, ATM machines, wireless communication, Virtual Private Networks (VPN), and
many others. Also it can be used as a part of the hardware or hybrid implementation of all
major security protocols, including IPsec, SSL, IEEE 802.11a, and the ATM Forum Security

Specification.

AES is now the industry standard for encryption. The National Security Agency (NSA)
employs it for protecting secret information and industry uses the algorithm for creating

commercially available encryption products.

File encryption and email encryption are two common applications for AES. File encryption
protects the information on your hard disk or thumb drive. With encryption, your data will
be secure even if your computer is hacked or your USB drive stolen. Email encryption
protects your messages as they journey through the cloud and keeps them from being read

by unintended recipients.

50

Thanks in large part to extensive input from the cryptographic community and the open
review process, it can be trusted and is available to anyone who wishes to protect sensitive

information.

1.3.5.3 IDEA Applications

Today, there are hundreds of IDEA-based security solutions available in many market areas,
ranging from Financial Services, and Broadcasting to Government. IDEA is the name of a
proven, secure, and universally applicable block encryption algorithm, which permits
effective protection of transmitted and stored data against unauthorized access by third
parties. The fundamental criteria for the development of IDEA were highest security

requirements along with easy hardware and software implementation for fast execution.

The IDEA algorithm can easily be embedded in any encryption software. Data encryption can

be used to protect data transmission and storage. Typical fields are:

e Audio and video data for cable TV, pay TV, video conferencing, distance learning,
business TV, VolP

e Sensitive financial and commercial data

e Email via public networks

e Transmission links via modem, router or ATM link, GSM technology

e Smart cards

1.4 Public-key Cryptography

The possibility of public key cryptography was first published in 1976 by Whitfield Diffie and
Martin Hellman, who at the time were researchers at Stanford University. Ralph Merkle, a
graduate student at the University of California, Berkeley, was studying the concept at the
same time, but his ideas were not published until public key cryptography was well known.
In their classic paper, Diffie and Hellman proposed the idea of public key cryptography and
its use for exchanging keys, but not a public key cryptosystem. Several public key
cryptosystems were subsequently proposed, but many were deemed insecure. Some
systems are secure but are not practical for routine use either because the key is too large or

because the ciphertext is significantly larger than the plaintext.

51

1.4.1 RSA

1.4.1.1 Overview

The RSA algorithm for public key cryptography, based on the idea that factorization of
integers into their prime factors is hard to do, was proposed by (then) MIT professors Ronald
Rivest, Adi Shamir, and Leonard Adleman in 1977. RSA has become one of the most
successful algorithms for public key encryption and digital signatures. Many people had
suspected that a government cryptographic agency such as the U.S. National Security
Agency (NSA) had studied the possibility of public key encryption years earlier, but any
evidence to this effect was classified. However, in 1997 CESG, a British cryptographic agency,
released previously classified documents which revealed that James Ellis had discovered
public key cryptography in 1970 and Clifford Cocks had internally published a version of the
RSA algorithm in 1973. Nonetheless, Rivest, Shamir and Adleman are credited with the
invention of RSA, and a patent for the algorithm was issued to MIT in 1983. The RSA patent

will be discussed in more detail below.

A public key cryptosystem is made up of several components. There is a set of all possible
plaintext messages, called M. There is also a set of keys, K. For each key k € K, there is an
encryption function encrypt, and a decryption function decrypt,. These components must

satisfy the following requirements:

1. encrypt(decrypt(M)) = M and decrypt,(encrypt,(M)) = M for every m € M and every
k € K.

2. For every M and every k, the values of encrypt, (M) and decrypt (M) are easy to
compute.

3. For almost every k € K, if someone knows only the function encrypt,, it is not
computationally feasible to find an algorithm to compute decrypt,.

4. Givenk €K, it is easy to find the functions encrypt, and decrypt,.

52

1.4.1.2 Algorithm

As mentioned earlier, RSA is based on the idea that it is difficult to factor large numbers. This
is what makes RSA secure, provided that the public key is sufficiently large. The following is a
description of the mathematics of sending an encrypted message from Alice to Bob using

the RSA algorithm:

1. Alice will choose two large (e.g. 512 or 1024-bit) prime numbers, P and Q.

2. Alice will choose an encryption key E such that E is less than the product
N = P-Q and such that E and (P-1) - (Q-1) are relatively prime; in other words,
gcd(E,(P-1) - (Q-1)) = 1. (P-1) - (Q-1) is referred to as ¢(N), commonly called Euler’s f
function or Euler’s Totient function. Also, gcd stands for greatest common divisor,
which is defined as the largest factor that two numbers have in common.

3. Using the extended Euclidean algorithm, Alice will compute the decryption key D
which has the property that D-E = 1 mod ¢(N). This can also be written D = E* mod
®(N). Mod is short for modulo; the modulo function over two variables, a and b,
written a mod b is defined to be the remainder when a is divided by b.

4. The numbers P and Q are no longer needed and should be kept secret or discarded.

5. The numbers N and E are the public key and can be freely distributed. The numbers
D and N are the private key and should be kept secret. Alice sends her public key to
Bob.

6. Bob writes his message as a number M, which must be smaller than N. If M is larger
than N, Bob breaks the message into blocks, each of which is less than N.

7. Bob calculates the ciphertext C = encrypt(M) = M mod N and sends C to Alice.

8. Alice receives the ciphertext C and decrypts it to find the original plaintext message
using the function M = decrypt(C) = C° mod N.

9. Note that the encryption and decryption functions can be “reversed” i.e., Alice could
have encrypted a message M using her private key D. She could then send the

encrypted message C to Bob, who would use Alice’s public key E to decrypt C.

53

Table 3 summarizes this method.

Table 3: RSA Algorithm Summary

N = P-Q (where P and Q are
Public Key prime numbers that are kept secret
E where gcd(E,d(N)) =1
Private Key D = E™" mod $(N)
Encryption Function encrypt(M) =M mod N=C
Decryption Function decrypt(M) = C° mod N =M

1.4.1.3 Breaking RSA

The strength and security of the RSA algorithm rely on the difficulty of factoring large
numbers. It should be noted, however, that it has not been mathematically proven that the
only way to determine the plaintext message M from the ciphertext and the public key is by
factoring N. It is theoretically possible that some entirely new method will be devised to find
M. If such a method were discovered, it could also be used as a factoring method, and since
this mathematical problem has been studied for hundreds of years, the mathematical
community is confident that the RSA algorithm is quite secure. In fact, RSA has withstood

years of extensive cryptanalysis.

Factoring N is possible if the key length is small enough and if enough computing resources
can be devoted to the task. There are a number of different factoring methods than can be
employed, such as the Universal Exponent Factorization Method, the Exponent Factorization
Method, Pollard’s p — 1 Factoring Algorithm, the Quadratic Sieve, and the Number Field
Sieve. The Number Field Sieve was successfully used in 1999 to factor both a 140- and a 512-

bit RSA key and, at present, is the most powerful factoring method known.

RSA Laboratories publishes a series of cryptographic challenges to the public. The goals of
the RSA Factoring Challenges are to help to encourage research into computational number
theory and factoring techniques and to assure the public of RSA’s security. Cash prizes are
awarded to successful participants, and the results of these challenges are available to the
public and are used to help RSA users determine suitable key lengths for various levels of
security. When referring to RSA key lengths, one is actually referring to the size of N, the
product of the primes P and Q. Thus if P and Q are both 256-bit numbers, then N is a 512-bit
RSA key. In fact, a 515-bit N is a 155-digit number. Factoring the 155-digit RSA Challenge

number was accomplished on August 22, 1999, by an international group of researchers

54

using computers located in 11 different sites around the world. The team required 5.2
months, plus an additional nine weeks for preliminary computations, to factor RSA-155. This
translated to about 35.7 CPU years. In contrast, it took only 8.9 CPU years and 9 weeks of
calendar time to factor RSA-140, the 140-bit RSA Challenge number. Increasing the key size
dramatically increases the difficulty of the resulting factoring problem. As a result of the RSA
Factoring Challenges, as well as other research, the current minimum recommended key size
for RSA is 768 bits. Key sizes of 1024 bits or even 2048 bits are not uncommon. When
choosing a key size one needs to consider a number of factors, including the importance of
the data, how long the data will need to remain secure, and the resources available to an
adversary. For example, a much larger RSA key would be used to protect nuclear secrets
than would be used to protect routine email messages. Computing power will continue to
improve, and factoring methods have made great strides and presumably will continue to do
so, but these methods are still very slow. The RSA algorithm, with a sufficiently large key

length, remains highly secure.

A method of attacking RSA is through the use of timing attacks. This method was discovered
in 1995 by Paul Kocher while he was an undergraduate student at Stanford University. Using
the fact that many implementations of cryptography do things at different speeds for
different keys, he demonstrated that it is possible to determine the private key being used
by taking careful measurements of the length of time it takes to accomplish a series of

decryptions.

In 1998, Daniel Bleichenbacher described the first practical adaptive chosen ciphertext
attack, against RSA-encrypted messages using the PKCS® #1 v1 padding scheme (a padding
scheme randomizes and adds structure to an RSA-encrypted message, so it is possible to
determine whether a decrypted message is valid). Due to flaws with the PKCS #1 scheme,
Bleichenbacher was able to mount a practical attack against RSA implementations of the
Secure Socket Layer protocol, and to recover session keys. As a result of this work,
cryptographers now recommend the use of provably secure padding schemes such as
Optimal Asymmetric Encryption Padding, and RSA Laboratories has released new versions of

PKCS #1 that are not vulnerable to these attacks.

>In cryptography, PKCS is a group of public-key cryptography standards devised and published by RSA
Security Inc, starting in the early 1990s

55

1.4.2 Applications

1.4.2.1 RSA Applications

The RSA system is currently used in a wide variety of products, platforms, and industries
around the world. It is found in many commercial software products and is planned to be in
many more. The RSA algorithm is built into current operating systems by Microsoft, Apple,
Sun, and Novell. In hardware, the RSA algorithm can be found in secure telephones, on
Ethernet network cards, and on smart cards. In addition, the algorithm is incorporated into
all of the major protocols for secure Internet communications, including S/MIME, SSL, and
S/WAN. It is also used internally in many institutions, including branches of the U.S.

government, major corporations, national laboratories, and universities.

The RSA public-key cryptosystem can be used to authenticate or identify another person or
entity. The reason it works well is because each entity has an associated private key which

(theoretically) no one else has access to. This allows for positive and unique identification.

RSA can be used to construct signature schemes. The signature function corresponds to the
decryption function parameterized by the user’s secret key and the verification function is
derived from the encryption function. Thus in the RSA signature scheme for example, a user
signs a message m by applying the RSA decryption function to his secret key d. To verify the
signature, it suffices to apply the RSA encryption function (parameterized by the associated
public key (e, n)) and to verify that the result of this calculation does indeed correspond to

the clear text sent.

When one wants to ensure the confidentiality of exchanged messages, one does not in
general have access to a single type of cipher system. In effect, the complexity of the
operations involved in public-key systems renders the cipher system extremely slow
compared to a secret-key system. On the other hand, only a public-key scheme allows a
secure exchange of a secret without preliminary exchange of a shared secret. Thus one
would prefer to use a public-key algorithm to exchange a secret key. This key will serve to
encrypt the exchange of information with the aid of a symmetric algorithm. This
combination of the two techniques permits both the speed of secret-key encryption and the

resolution of the problem of exchanging secret keys between the two interlocutors. This is

56

notably the encryption solution used in the PGP program. More generally, public-key

systems are used in practice to encrypt very short messages.

Finally, RSA is used on bank cards. When one uses a bank card to pay for a small purchase,
the operation is done off-line, without exchanging any information with the bank (bank
information is assembled and communicated at the end of the day). The unique control at
the moment of payment (besides the confidential code), consists in verifying that the card
being used is valid and this procedure is done using an RSA signature. Each card has an
identifier which has been signed by the bank. It is this signature, written on the chip, which
is verified at each transaction by the business terminal. Each card bearing a valid signature is
therefore considered authentic since the bank is the only authority which has the RSA secret

key allowing the signing.

57

58

2 Crypto Architecture

2.1 Introduction

Every IP consists of components combined using a certain architecture. The main
functionality of the IP is implemented by the main engines (described in section 2.2.4), but
except of these engines an interface should exist in order to communicate with a main CPU.
One of the most popular communication interfaces is the AMBA AHB interface (described in
section 2.2.1). The module which is responsible to implement this interface is commonly
called Main Controller (described in section 2.2.2). The communication between the user
and the IP is carried out using certain memory mapped registers accessible by the user with
their unique address. All these registers are placed in a module called Register File

(described in section 2.2.3).

The aforementioned components are combined together as depicted in Figure 24.

I AMBA AHB |

i Cryptography Engines

DES&AES
Main Controller
IDEA
Register File
RSA

Figure 24: Crypto IP Architecture Overview

59

2.2 Crypto Components

2.2.1 AMBA AHB Interface

2.2.1.1 Introduction

In this section an on-chip communication standard is described, called Advanced
Microcontroller Bus Architecture (AMBA). AMBA specification defines three distinct bus

architectures:

e The advanced high-performance bus (AHB) for high clock frequency modules
e The advanced-system bus (ASB) also for high clock frequency modules
e The advanced peripheral bus (APB), which is mainly used for low-power peripheral

modules

The AHB bus is used as the backbone bus for high-performance systems and supports
connection between embedded processor, on-chip memories and off-chip memory
interfaces or bridges to low-performance system where most of the peripheral devices
located. AHB bus is more complex and has more high-performance features than ASB bus,
which is the alternative choice for system bus. APB is optimized for minimal power
consumption and reduces complexity to peripheral device integration. APB is usually used

for interfacing peripheral devices with low bandwidth.
Features of each bus architecture are mentioned in Table 4.

Table 4: Features of different AMBA Buses

AMBA AHB AMBA ASB AMBA APB
High performance High performance Low Power
Pipelined operation Pipelined operation Latched address and control
Multiple bus masters Multiple bus masters Simple interface
Burst transfers Suitable for many peripherals
Split transactions

An AMBA-based microcontroller (see Figure 25: Typical AMBA System) typically consists of a
high-performance system backbone bus (AMBA AHB or AMBA ASB), able to sustain the

60

external memory bandwidth, on which the CPU, on-chip memory and other Direct Memory
Access (DMA) devices reside. This bus provides a high-bandwidth interface between the
elements that are involved in the majority of transfers. Also located on the high
performance bus is a bridge to the lower bandwidth APB, where most of the peripheral
devices in the system are placed. While transferring data from the system’s processor to
peripheral devices like UART, timer, peripheral I/O and keyboard, the bridge converts the
transferred signals from one type to another, to satisfy different performance and protocol

requirements.

High-performance High-bandwidth
ARM processor on-chip RAM

B UART Timer
i . R
High-bandwidth AHE or ASE | APB
External Memory D
Interface G
E Keypad PIO
DMA bus
master AHB b APB Bridge
ar
ASE to APB Bridge

Figure 25: Typical AMBA System

2.2.1.2 AMBA AHB Overview

AHB is a flavor of AMBA bus which is intended to address the requirements of high-
performance synthesizable embedded designs. It is a high-performance system bus that
supports multiple bus masters and provides high-bandwidth operation. AMBA AHB
implements the features required for high-performance, high clock frequency systems

including:

e burst transfers

e split transactions

e single-cycle bus master handover
e single-clock edge operation

e non-tristate implementation

e wider data bus configurations (64/128 bits)

61

Bridging between this higher level of bus and the current ASB/APB can be done efficiently to

ensure that any existing designs can be easily integrated. An AMBA AHB design may contain

one or more bus masters, typically a system would contain at least the processor and test

interface. However, it would also be common for a Direct Memory Access (DMA) or Digital

Signal Processor (DSP) to be included as bus masters.

The external memory interface, APB bridge and any internal memory are the most common

AHB slaves. Any other peripheral in the system could also be included as an AHB slave.

However, low-bandwidth peripherals typically reside on the APB. A typical AMBA AHB

system design contains the following components:

AHB master: A bus master is able to initiate read and write operations by providing
an address and control information. Only one bus master is allowed to actively use
the bus at any one time.

AHB slave: A bus slave responds to a read or write operation within a given address-
space range. The bus slave signals back to the active master the success, failure or
waiting of the data transfer.

AHB arbiter: The bus arbiter ensures that only one bus master at a time is allowed to
initiate data transfers. Even though the arbitration protocol is fixed, any arbitration
algorithm, such as highest priority or fair access can be implemented depending on
the application requirements. An AHB would include only one arbiter, although this
would be trivial in single bus master systems.

AHB decoder: The AHB decoder is used to decode the address of each transfer and
provide a select signal for the slave that is involved in the transfer. A single

centralized decoder is required in all AHB implementations.

2.2.1.3 AMBA AHB Signal List

This section contains an overview of the AMBA AHB signals (see Table 5: AMBA AHB Signals).

All signals are prefixed with the letter H, ensuring that the AHB signals are differentiated

from other similarly named signals in a system design.

62

Table 5: AMBA AHB Signals
Name Source Description
HCLK Clock source This clock times all bus transfers. All signal timings
Bus clock are related to the rising edge of HCLK.

HRESETn Reset controller | The bus reset signal is active LOW and is used to
Reset reset the system and the bus. This is the only active
LOW signal.

HADDR[31:0] Master The 32-bit system address bus.

Address bus

HTRANS[1:0] Master Indicates the type of the current transfer, which can

Transfer type be NONSEQUENTIAL, SEQUENTIAL, IDLE or BUSY.

HWRITE Master When HIGH this signal indicates a write transfer

Transfer direction and when LOW a read transfer.

HSIZE[2:0] Master Indicates the size of the transfer, which is typically

Transfer size byte (8-bit), halfword (16-bit) or word (32-bit). The
protocol allows for larger transfer sizes up to a
maximum of 1024 bits.

HBURST[2:0] Master Indicates if the transfer forms part of a burst. Four,

Burst type eight and sixteen beat bursts are supported and the
burst may be either incrementing or wrapping.

HPROT[3:0] Master The protection control signals provide additional

Protection control information about a bus access and are primarily
intended for use by any module that wishes to
implement some level of protection. The signals
indicate if the transfer is an opcode fetch or data
access, as well as if the transfer is a privileged mode
access or user mode access. For bus masters with a
memory management unit these signals also
indicate whether the current access is cacheable or
bufferable.

HWDATA[31:0] Master The write data bus is used to transfer data from the

Write data bus master to the bus slaves during write operations. A
minimum data bus width of 32 bits is
recommended. However, this may easily be
extended to allow for higher bandwidth operation.

HSELx Decoder Each AHB slave has its own slave select signal and

Slave select this signal indicates that the current transfer is
intended for the selected slave. This signal is simply
a combinatorial decode of the address bus.

HRDATA[31:0] Slave The read data bus is used to transfer data from bus

Read data bus slaves to the bus master during read operations. A
minimum data bus width of 32 bits is
recommended. However, this may easily be
extended to allow for higher bandwidth operation.

63

HREADY Slave When HIGH the HREADY signal indicates that a
Transfer done transfer has finished on the bus. This signal may be
driven LOW to extend a transfer.
Note: Slaves on the bus require HREADY as both an
input and an output signal.
HRESP Slave The transfer response provides additional
Transfer response information on the status of a transfer. Two
different responses are provided, OKAY and ERROR.

2.2.1.4 Bus Interconnection

The AMBA AHB bus protocol is designed to be used with a central multiplexor

interconnection scheme. Using this scheme all bus masters drive out the address and control

signals indicating the transfer they wish to perform and the arbiter determines which master

has its address and control signals routed to all of the slaves. A central decoder is also

required to control the read data and response signal multiplexor, which selects the

appropriate signals from the slave that is involved in the transfer. Figure 26 illustrates the

structure required to implement an AMBA AHB design with three masters and four slaves.

HADDR

HWDATA Slave
#1

HRDATA

HADDR

HWDATA Slave
#2

Address and HRDATA

HADDR

HWDATA Slave

#3

‘Write data mux HRDATA

Arbiter
HADDR
Master HWDATA
#1
HRDATA
HADDR
Master HWDATA
#2 control mux
HRDATA
HADDR
Master HWDATA
#3
HRDATA

64

Read data mux

— HADDR

HWDATA Slave

| #4
HRDATA

Decoder

Figure 26: AMBA AHB Interconnection

2.2.1.5 AMBA AHB Operation

Before an AMBA AHB transfer can commence the bus master must be granted access to the
bus. This process is started by the master asserting a request signal to the arbiter. Then the
arbiter indicates when the master will be granted use of the bus. A granted bus master starts
an AMBA AHB transfer by driving the address and control signals. These signals provide
information on the address, direction and width of the transfer, as well as an indication if

the transfer forms part of a burst.

A write data bus is used to move data from the master to a slave, while a read data bus is
used to move data from a slave to the master. An AHB transfer consists of two distinct

sections:

e The address phase, which lasts only a single cycle.

o The data phase, which may require several cycles.

2.2.1.6 AHB Bus Slave

An AHB bus slave responds to transfers initiated by bus masters within the system. The slave
uses a HSELx select signal from the decoder to determine when it should respond to a bus
transfer. All other signals required for the transfer, such as the address and control

information, will be generated by the bus master. The interface of a bus slave is depicted in

Figure 27.
Select HSE Lx
I/
|
| HADDR[31:0]
Address | HWRITE
and < HREADY

1 HTRANS|1:0
control AHB HRESP[1:0] Transfer
HSIZE[2:0] response
slave po

‘. HBURST[2:0

Data HWDATA[31:0] HRDATA[31:0] > Data

Resat HRESETn
Clock ~ HCLK

Figure 27: AMBA AHB Slave

65

2.2.1.7 Implementation

The Crypto IP is in fact an AMBA AHB slave and in order to implement the signals of an
AMBA AHB interface (as shown in Figure 27) a module called “Main Controller” described in

section 2.2.2 has been created.

2.2.2 Main Controller

2.2.2.1 Implementation

The main controller is the module which implements the AMBA AHB interface,
communicates with the register file (described in section 2.2.3) and feeds the cryptographic

engines of the IP (described in section 2.2.4) in order to perform certain operations.

In order to meet the conditions of the AMBA AHB there is an FSM (see Figure 28) which
separates the address phase from the data phase, checks the AMBA AHB inputs, and exports
the proper AMBA AHB outputs.

7 .
\
ADDRESS DATA
_)
\\
\-\ y Y
ERROR BUSY

Figure 28: Main Controller FSM

The user gives the proper values to the main controller through the AMBA AHB interface and
the controller promotes them to the register file. All registers in the register file are 32-bit

long, but some engines have inputs of bigger size (multiple of 32). As a result, inside the

66

main controller, there are some big registers which combine the 32-bit fragments from the

register file (by shifting the existing value 32 times and place each new fragment in the least

significant bits) in order to create the input passed to the cryptographic engines.

Using these big registers as well as other signals from the register file, the main controller

feeds the cryptographic engines with the proper inputs and collects the results in order to be

placed in the register file so that the user can read them using the AMBA AHB interface.

Figure 29 illustrates the block diagram of the main controller. In this block diagram the input

processor, the register file and the cryptographic engines are illustrated. The input processor

module implements the AMBA AHB interface and the register file module contains the

registers mentioned in section 2.2.3.

Main Controller

first_packet————»
start_enc_dec———
|—————start_key_gen——— >
operation mode———————
enc_or_dec——————p»
algorithm——————————p|

S
- (rsa-bit >

[— size)
| size K
N ey
— |
fﬂ [./ (aes-bit >
L size)
| size
<< n 3
-~ - (rsa-bit
size)
| size

P f

‘iﬁ——[ji (rsa-bit

size)

—\“LTL T (rsa-bit
ize)

Cryptography Engines

HRDATA

|-read_address—
write_adderss
data_in
write
Input Processor
clk read
—rst— |—save_cipher—]
Register File
—HSEL—] |——read_size——
—HADDR— |—write_size—}
——HSIZE— ——crypto_busy
—HBURST key_busy
—HTRANS- —cipher_in—
~HWDATA
| Lsize |
Pa TN |
— <<J‘= {b<<size, a[size-1:0]}:
! S i
3 b

—HREADY—

—HRESP—

HRDATA

Figure 29: Main Controller Block Diagram

The main controller is the module which interacts with the user in order to perform the

process of key generation and encryption/decryption.

67

2.2.2.2 Process of Key Generation and Encryption / Decryption
The following sequence of steps has to be executed to perform a key generation:

1) Write the key in 32-bit fragments (as many as needed) in the crypto_key reg
starting from the most significant word

2) Wait until key_busy and crypto_busy (in the crypto_status_reg) are LOW

3) Set the proper bits of crypto_ctrl_reg (start_key_gen, cipher_sel)

The following sequence of steps has to be executed to perform an encryption/decryption:

1) Write the plain text in 32-bit fragments (as many as needed) in the crypto_in_reg
starting from the most significant word

2) Wait until key_busy and crypto_busy (in the crypto_status_reg) are LOW

3) Set the proper bits of crypto_ctrl_reg (start_enc_dec, enc_dec, cipher_sel etc.)

4) Wait until crypto_busy (in the crypto_status_reg) is LOW to read the output.

Note that no step can be executed before the previous one is finished and that in order to
read the output you have to read as many 32-bit fragments needed from the crypto_out_reg
(least significant words come first).

In Figure 30 and Figure 31 there is a waveform where a key generation and an encryption

process are performed.

| | ' V | | | i V | | i | |
T, 2 | 3 |, 4 | 5 |\ & | 7 |\ 8 | 98 | 10 |, M | 12 | 13 | 14 | 15 |
fcontroller_tbyclk [|] |] | E []
|

| 1 H H 1 1 | i H
Jcontroller_tb/rst [] | |]

Jeontroller_tb/hsel | ! !] ! ! ! 1 3

I
i
i
|
i
d I
| status_add
T T
|
I

Jeontroller_tb/haddr (Kev_adde i E E i““ﬂ_ﬂdﬂ"i Crrl_addr i'"P"l_ﬂ"d‘: 1 1 I 1
T T T i i ; T]

jcontroller_tb/hwrite " i i v i i i ; l : : ! |

Jcontroller_th/hsize (i i i i i E E 3 3 E i i
Jcontroller_tb/hburst (! H H H] H
Jcontroller_tb/htrans (: I I : E |] | i | | :
fcontroller_tb/hwdata —I{ Key partl III(EyiparlE lIKeLparli i Key_partd i i Ctrl_data II Input_1 i Input_2 i Input_3 II Input_4 3 ‘:
|) i | i | | T]

| | T eusvi=0 1
!
T

Jcontroller_tb/hrdata {

|
1 | 1 Busy (=01 1 i Busy (=0) |
1 H : 1 |

h
1
!
Jcontroller_tb/hready 1 i H i i |
i]] i]
|]] | 1
]

4t --H{-4- -1

fcontroller_tb/hresp |

Figure 30: Waveform Part 1

68

| 1% |, 17 | 18 | 19 | 20 | 1 | 2 | 23 |, ¥ | ¥ | 6 , 2 | 28 | 29 | 3BW

1 1 1 1
1 1 1]]
]]]]]
1 1 I] 1 1 1] 1 1
D R — R | B —
| I I 1 I I I 1 I I ! I ! |
[curl_addr | ! Status_addr | ! ! ! | | Joutput_addt ! ! ! !
] [] 1 [T T 1]] 1 T T T T 1
1 1 1 1] 1 1 1 1 1 1 1
| | | | 1 | | | 1 | | 1 1 1 |
1 1 1 | 1 1 1 | 1 | | 1 | | | |
r T T T T T T T T T T T T T]
1 | | | 1 | | | 1 | | | | | | |
T T T T T T T T T T T T T 1
1 1 1 1 1 1 1 1 1 1] 1 1
L . 1 H . . . H f I I |
1 | | 1 | | 1 1 1 1 1 1 1
r T T T T T T - T T T |
1 1 1 1 1 1 1 1 1 1 1 1 1
\ H H H H I L L L)
1 1 1 1
L 1 1 1
] T T T
Busy [=1) 1 cutpur_a |
! !
T T
I I
1 1
]]
1 1
1 1
1 1

1
|
I
h
l Ctrl_data
|
|
I
]
I
I
I
I
]

|
|
|
H H
I I I
1 L Il
| | [
] Busy (=0}]Clumut_:l lcu(put_z lOulpul_!
| ! |
] T 1
| i
I]
] I
] I
I]
] I

Figure 31: Waveform Part 2

The sub-processes executed in the waveform are described below:

e (Cycles 1-5: key transfer

e Cycle5: check if busy (read key_busy, crypto_busy)
e Cycles 6-7: set control_reg to start key generation

e Cycles 7-11: plain transfer

e Cycles 11-15: check if busy (read key_busy, crypto_busy)
e (Cycles 16-17: set control_reg to start encryption

e Cycles 19-25: check if busy (read crypto_busy)

e (Cycles 26-29: read the cipher

2.2.3 Register File

The register file is an array of the input and output registers of an IP and is part of the
architecture visible to the programmer. Read and write operations can be performed to

these registers as each one of them has a specific address.

69

The register file implemented for the Crypto IP consists of the following registers:

e Control Register (Name: crypto_ctrl_reg, Address: 0x0000)

Table 6: Control Register Specification

Bit Symbol Description

Mode

Reset
Value

31-12 - RESERVED

If this packet is the first one of the stream
0: Not the first packet

1: The first packet

This bit is autocleared after one cycle

11 FIRST PACKET

R/W

Start encryption/decryption of plain
message

10 START_ENC_DEC | 0: Keep idle

1: Start the encryption/decryption
This bit is autocleared after one cycle

R/W

Start key generation if such configuration
exists.

9 START_KEY_GEN | O: Keep idle

1: Start the key generation

This bit is autocleared after one cycle

R/W

Mode of operation for DES&AES
0: ECB

1: CBC

2: PCBC

3: CFB

4: OFB

5:CTR

6-31: Reserved

8-4 BC_MODE

R/W

Selects whether encryption or decryption is
to be performed

3 ENC_DEC .
- 0: Encryption

1: Decryption

R/W

Selection of the algorithm to be used.
Enables the respective engine in the IP.
0: RSA

2-0 CIPHER_SEL 1: AES

2: DES

3: IDEA

4-7: Reserved

R/W

70

e Status Register (Name: crypto_status_reg, Address: 0x0004)

Table 7: Status Register Specification

; A Reset
Bit Symbol Description Mode
Value
31-2 - RESERVED - 0
Notifies that the system is busy with key
generation tasks
1 KEY_BUSY R 0
0: Idle
1: Busy
Notifies that the system is busy with
encryption/decryption tasks
0 CRYPTO_BUSY vP / vP R 0
0: Idle
1: Busy
e Input Register (Name: crypto_in_reg, Address: 0x0008)
Table 8: Input Register Specification
X L. Reset
Bit Symbol Description Mode
Value
Contains a plain text word if encryption is to
31-0 INPUT be performed or a cipher’s word if R/W 0
decryption is selected
e Key Register (Name: crypto_key reg, Address: 0x000C)
Table 9: Key Register Specification
: A Reset
Bit Symbol Description Mode
Value
31-0 KEY Contains a Key word R/W 0
e RSA N Register (Name: crypto_rsa_n_reg, Address: 0x0010)
Table 10: RSA_N Register Specification
. L. Reset
Bit Symbol Description Mode
Value
Contains a word of the product p-q used for
31-0 RSA_N RSA R/W 0

71

e RSA _F Register (Name: crypto_rsa_f reg, Address: 0x0014)

Table 11: RSA_F Register Specification

. L. Reset
Bit Symbol Description Mode
Value
Contains a word of the product (p-1)-(g-1
31-0 RSA_F P (p-1)(a-1) RRW | 0
used for RSA
e RSA _E Register (Name: crypto _rsa_e_reg, Address: 0x0018)
Table 12: RSA_E Register Specification
X L. Reset
Bit Symbol Description Mode
Value
Contains a word of the public key exponent
31-0 RSA_E R/W 0
used for RSA
e Qutput Register (Name: crypto_out _reg, Address: 0x001C)
Table 13: Output Register Specification
i L. Reset
Bit Symbol Description Mode
Value
Contains a word of the resulting cipher/plain
31-0 OUTPUT text if encryption/decryption has been R 0

performed respectively

72

In Figure 32, the block diagram of the register file is depicted, where all the registers

mentioned above are included.

Register File auto clear (9-11) 3
write & address ———first_packet (11) -
start_enc_dec (10) -
(;:(lp:zg [start_key_gen (9) -
§ N |—————————operation mode (4-8) L/ -
Input Processor — enc_or_dec (3)}————9 Cryptography Engines
algorithm (0-2)——————— /=
write & address
input 32 -
Jﬁ crypto_ M
in_reg
clk
rst: write & al dressl
—read_address- I
. — key_32———— |
~write_adderss- /,} crypto_ Y
ey_reg
——data_in— §
it
e HWDATA
read
—save_cipher—| write & a dresi
—read_size— —~ crypto,
write_size: ,] rsa_n_ rsa_n 32—}
—crypto_busy—} reg
—key_busy—
—cipher_in—
write & address
] crypto_
rsa_f_ sa_f 32—
reg
write & a dressl

B] crypto_
rsa_e_ >

sa_e_32 >
reg
working key_gen from engines (1) crypto
€n rom engines {. 2] _
working enc_dec from engines(0) status_
ectromenginesit)
reg
save_cipher
cipher from engines
output_reg
size] (rsa-bit size)
>cr‘vp€f .
P — out_reg I T
(32-bit size} b -

read & address

Figure 32: Register File Block Diagram

73

As shown in the block diagram, there is one register called “output” in the register file and
its least significant 32 bits are called crypto_out reg. This register operates as a shift register
for the encryption/decryption result. After an encryption/decryption process, the result is
stored in this output register and each time that the user reads x bits from the

crypto_out _reg, the output register shifts x times right.

2.2.4 Cryptography Engines

The main function of the Crypto IP is to perform encryption/decryption processes using

certain algorithms. Four encryption algorithms are implemented:

e Data Encryption Standard (DES)

e Advanced Encryption Standard (AES)

e International Data Encryption Algorithm (IDEA)
e RSA

DES and AES are implemented in a single engine called DES&AES engine, which also
implements the block cipher operation modes. IDEA and RSA have their own engines called
IDEA engine and RSA engine respectively. These three engines are described in the following

chapters.

Main Controller (described in section 2.2.2) receives user’s input, selects which engine will

be used, feeds it with the proper inputs and collects its outputs.

74

3 DES & AES Engine

3.1 Introduction

In this chapter, one of the hardware accelerators used in this IP is presented, which
implements the DES and AES algorithms (mentioned in sections 1.3.1 and 1.3.2) as well as
the block cipher operation modes (mentioned in section 1.3.4). In section 3.2 the compile
time parameters of the DES&AES engine which can be configured by the user to modify the
engine according to the specifications and requirements are displayed. In section 3.3 the
details of the algorithms’ implementation are given. The main parameters considered during
the implementation were the area and the frequency of the engine. In section 3.4 the

implementation’s results in ASIC technologies are illustrated.

3.2 Configuration Parameters

There are five compile time configuration parameters in the DES&AES engine which are

explained below:

e des_version: this parameter defines which version of the DES module will be used,
the speed optimized or the area optimized.

e aes_version: this parameter defines which version of the AES module will be used,
the speed optimized or the area optimized.

e use_des_key generator: this parameters defines whether the DES key generator
module will be used or not.

e use_aes_key_generator: this parameters defines whether the AES key generator
module will be used or not.

e aes_key_size: this parameter defines the bit size of the key used in AES module. The

valid values of this parameter are 128/192/256.

75

3.3 Implementation

3.3.1 General Description

There are two versions implementing the DES algorithm, the speed optimized (SO) and the
area optimized (AO). The same two versions exist for the AES algorithm. The basic features

of the DES&AES engine are the following:

e AES & DES engine implements hardware data encryption and decryption using AES
and DES encryption modules
e DES processes 64-bit data blocks with 64-bit key
e AES processes 128-bit data blocks with 128/192/256-bit key
e Fully synchronous design
e Encryption and decryption unit in single core
e For both AES and DES, two versions are available for the user to select:
o Area Optimized version (small area/resources utilization)
o Speed Optimized version (fully pipelined)
e Key generator modules included for both AES and DES
o Key generator can be ignored using ready keys inserted from the user
e External memory not required
e All basic modes of operation available (EBC, CBC, PCBC, CFB, OFB, CTR)
e Available signals to indicate when input data can be inserted an when the output is

ready

76

3.3.2 Pin Description

clk

rst:

des_or_aes_i

nc_or_dec_i

start_key_gen_i

start_enc_dec_i

ready_keys_des_i—~|
—ready_keys_aes_enc_i><]

—ready_keys_aes_dec_i—]

ready_iv_aes_i——

ready_iv_des_i——

mode_i

first_packet_i

aes_key i

des_key i

plain_i

DES&AES

——ready_output_o——
—working_enc_dec_o—
——working_keys o——

——~<—cipher_o

Figure 33: DES&AES Engine Symbol Diagram

Table 14 contains the description of each input/output pin existing in the DES&AES engine.

Table 14: DES&AES Engine Pin Description

Name Type Width (bits) Description
clk input - clock signal
rst input 1 reset signal (resets when LOW)
. i select engine (LOW for DES /
des_or_aes_i input 1
HIGH for AES)
mode_i input 4 select mode of operation
. i LOW for encryption / HIGH for
enc_or_dec_i input 1)
decryption
)) HIGH to start a new key
start_key_gen_i input 1 .
generation
))) HIGH for the first packet of the
first_packet_i input 1
stream
plain_i input 128 @ input data
aes_key i input 128/192/256 AES encryption key

des_key i input 64 DES encryption key
. . HIGH to start a new encryption /
start_enc_dec_i input 1 :
decryption
ready DES keys if key generator
ready_keys_des_i input 768 y y Ve
not used
ready AES encryption keys if ke
ready keys aes_enc_i | input 1408/1664/1920 y vP y y
generator not used
ready AES decryption keys if ke
ready keys aes dec_i | input 1408/1664/1920 y vP y y
generator not used
ready DES block cipher modes
ready iv_des i input 64 initialization vector if key
generator not used
ready AES block cipher modes
ready iv_aes_i input 128 initialization vector if key
generator not used
cipher_o output 128 @ output data
ready _output_o output 1 HIGH when output is ready
. LOW when encryption /
working_enc_dec_o | output 1 . .
decryption finished
. LOW when key generation
working_keys_o output 1 .
finished
Notes
1) Operation modes
bits mode of operation
0000 ECB
0001 CBC
0010 PCBC
0011 CFB
0100 OFB
0101 CTR

2) The 64 least significant bits are used when DES is selected

78

3.3.3 Process of Key Generation and Encryption / Decryption

The following sequence of steps has to be executed to perform a key generation:

1) Wait until working_enc_dec_o and working_keys_o are LOW
2) Setdes or_aes ito select the encryption algorithm used and aes_key i or des_key i
(depends on the selected algorithm) to provide the key

3) Setstart_key gen_i (pulse) to start the key generation process
The following sequence of steps has to be executed to perform an encryption/decryption:

1) Wait until working_enc_dec_o and working_keys o are LOW

2) Setdes or_aes_ito select the encryption algorithm used, mode_i to select the mode
of operation, enc_or_dec i to select between encryption and decryption and plain_i

3) Set start_enc_dec i (pulse) to start the encryption/decryption process

4) Wait until ready_output_o is HIGH to read the result of the process

Note that no step can be executed before the previous one is finished. Also, if the key
generator is not used, there are no signals aes_key i, des_key i, working_keys o and the
initialization vector must be declared by setting the signals ready_iv_des_i, ready_iv_aes_i
(depends on the selected algorithm). The key update is performed by setting the signals
ready_keys_des_i, ready_keys_aes_enc_i, ready_keys_aes_dec_i, des_or_aes_i (depends on
the selected algorithm) and then setting the signal start key gen i (pulse) when

working_enc_dec o is LOW.

3.3.4 Algorithmic Details

3.3.4.1 AES Encryption Process
As mentioned in section 1.3.2.4 in each encryption round the following steps are executed:

SubBytes
ShiftRows

MixColumns

Eal S

AddRoundKey

79

For the MixColumns step the aforementioned Table 1: MixColumns Multiplication Matrix is

used. Each word (a) is multiplied with the matrix and the result’s form (r) is the following:
o r=xa @D ya Dza, P wa; (wherea; arethe bytes of a)

To compute the above multiplications, Table 48: Rijndael N-Box and Table 49: Rijndael E-Box

are used as shown below:
e a;,' b=E-Box{ (N-Box(a) + N-Box(b)) (mod OxFF) }

However, the MixColumns matrix’s elements have only 3 different values. So N-Box(b) is a

constant with 3 different values and the relation becomes the following:
e a-b=E-Box{(N-Box(a) + cnst) (mod OxFF) }

The SubBytes step is performed using Table 47: Rijndael S-Box and it is obvious that it can be
reordered with the Shift Rows step. Hence, after shifting the initial word and before the final

XOR, each byte follows the procedure depicted in Figure 34.

sk

a —] _,7_7@ ENScout

S-box N-box cnst E-box

Figure 34: ENS Operation

The above operations can be combined to a single box called ENS-Box, but as the ENS-Box
depends on the constant, there are three different ENS-Boxes called ENS-Box where c is the

constant (see Table 52: ENS,-Box and Table 53: ENS;-Box). It is obvious that:

e ENS;-Box = S-Box

80

So by combining those three boxes to a single one the encryption procedure becomes quite

easier. The final procedure is depicted in Figure 35.

input wordl

shift

ENS operation ENS operation ENS operation ENS operation

ENS;- ENS;- ENS,- ENS,-
Box Box Box Box

ENS;- ENS;- ENS;- ENS;-
Box Box Box Box

ENS,- ENS;- ENS,- ENS;-
Box Box Box Box

xor

add round key

l output word

Figure 35: Modified AES Main Process

3.3.4.2 AES Decryption Process

A similar procedure takes place in each decryption round but the order of the steps and the

tables used are different. The decryption steps are the following:

1. InvShiftRows
2. InvSubBytes

3. AddRoundKey
4

InvMixColumns

The InvShiftRows step is the same as the ShiftRows step but instead of performing a left
rotation, a right one is performed. The InvSubBytes step is the same as the SubBytes step
using a different box (see Table 50: Rijndael Inverse S-Box) and the InvMixColumns step is
the same as the MixColumns step using a different matrix (see Table 51: InvMixColumns

Multiplication Matrix).
If the output of step 2 is called state then the output of all four steps is the following:

e InvMixColumns (state @ key)

81

But as these operations are linear, the above relation can be transformed as shown below:
e InvMixColumns (state) @ InvMixColumns(key)

So the InvMixColumns step can be executed in step 3 and the AddRoundKey in step 4, to

follow the order of the encryption.

The only difference in the AddRoundKey step is that instead of using the decryption keys
e dec_key,=enc_keyy; (where N isthe number of AES rounds)

the InvMixColumns(dec_key;) is used.

As a result, the decryption is performed exactly as the encryption using the above
decryption keys and the four new inverse ENSc-Boxes generated (see Table 54: Inverse ENSg -
Box, Table 55: Inverse ENSg-Box, Table 56: Inverse ENSp-Box and Table 57: Inverse ENSqs-Box),
as the InvMixColumns matrix has different constants from the MixColumns matrix and the
InvSubBytes uses a different S-Box. Also in order to perform the InvMixColumns operation in
the decryption keys, four new tables are generated. Each one of them combines the E-Box
and N-Box for a different constant of the InvMixColumns matrix in the same way as
described above (see Table 58: EN:-Box, Table 59: ENg-Box, Table 60: ENp-Box and Table 61:
ENg-Box).

3.3.5 Implementation Details

There are two different implementations of the DES and AES algorithms, as mentioned in
section 3.3.1, the speed optimized (SO) and the area optimized (AO). The way these versions
are implemented is the same in both algorithms. Each algorithm has a main encryption
round which is executed more than one times depending on the algorithm. In the SO
versions the sub-module of the encryption round is generated as many times required and
these sub-modules are wired and operate in one cycle. In the AO versions there is only one

instance of the encryption round which is reused.

82

Another worth mentioning implementation detail is the one of the operation modes
described in section 1.3.4. All modes have in common that in each step the same values

have to be computed:

e The input of the encryption/decryption block (core_in)
e The value send to the next step (to_next)

e The output of that mode-step (mode_out)

which depend on the following variables:

e The input of that mode-step (mode_in)
e The value received from the previous step (from_previous)

e The output of the encryption/decryption block (core_out)

The above process is depicted in Figure 36.

mode_in ‘ ‘from_previous
—mode—]
—enc/dec

core_in

from_previous

encryption / -
decryption mode_in | | to_next>
block
mode enc/dec
\
[
core_out
mode_in‘ ‘ | from_previous
—mode—]
—enc/dec
mode_out

N3

Figure 36: Operation Mode Procedure

So three functions are generated (core_in, to_next, mode_out) having as inputs the running

mode and the aforementioned variables (mode_in, from_previous, core_out).

83

3.3.6 Block Diagrams

In this section the block diagrams of the DES&AES engine are presented. The block diagram
of the entire engine is depicted in Figure 37. In this block diagram the optional key
generators for each algorithm as well as the module implementing the operation modes
which contains the two cryptographic engines are illustrated. Furthermore, the ready
generator module is depicted which counts the operation cycles and generates certain

control signals.

DES&AES P m e fmmmmmmmmmm———m s
I I
I 1
I I
| |
<l ; des_key_generator : aes_key_generator
I I
rat: I 1
I I
des_or_aes_| | 1 | I
| r] i (M
enc_or_dec i— "o Toooooomoooo——-—od moooo s e e ot e e
—start_key_gen_i
start_enc_dec_i
modes
teady_keys_des i— |——ready_output_o——
‘—keys—
—ready_keys_aes_enc_i--{ mode i des working_enc_dec_o
—ready_keys_aes_dec_i~] mode_i —plain_i \L\ 1 mode_i |—warking_keys_o——
. | v .
ready_iv_aes i~ —plain_] e | cisher o
v - 1 .
ready_iv_des_i——<] ~ 2 previous P lain | cioher .
[» e
/ de_i
mode_i—=] mode_i ctr
first_packet_i 0 aes -
-1 -
aes_key_i——— enc_or dec i{_— — yoys |
des_key_i———~]
plain_i——<—]
round
ready
working_enc_dec
ready generator
working_keys

Figure 37: DES&AES Engine Block Diagram

84

The block diagram of the DES SO module is depicted in Figure 38. In this block diagram the
two permutation modules, as well as the sixteen instances of the encryption round module

are illustrated.

DES_SO

——enc_or_dec_i—

plain_i—— Ip enc_round ~ | enc_round |pl > —“—cipher_o
#1 #16

keys_i——+—4

Figure 38: DES SO Block Diagram

The block diagram of the DES AO module is depicted in Figure 39. In this block diagram the
two permutation modules, as well as the encryption round module are illustrated. In this
case there is only one instance of the encryption round module reused in each round (16

rounds in total).

DES_AO

clk
round

P ‘ enc_round Pt -

Tst:

enc_or_dec_j

|~ —cipher_o

estart_i

keys_i————

plain_i——= ? round

round_counter |

Figure 39: DES AO Block Diagram

85

The block diagram of the AES SO module is depicted in Figure 40. In this block diagram the

initial round and final round modules, as well as the m (m depends on the size of the key)

instances of the encryption round module are illustrated.

——enc_or_dec_i—

plain_i———
keys_i——<—

AES_SO

initial_round

enc_round
#1

enc_round
#m

final_round

-

—“—cipher_o

Figure 40: AES SO Block Diagram

The block diagram of the AES AO module is depicted in Figure 41. In this block diagram the

initial round and final round modules, as well as the encryption round module are

illustrated. In this case there is only one instance of the encryption round module reused in

each round (m rounds in total).

clk

Tst:

enc_or_dec_j

AES_AO

initial_round

round

estart_i

keys_i————

plain_i———]

enc_round

? round

round_counter

final_round

|~ —cipher_o

86

Figure 41: AES AO Block Diagram

3.4 Implementation Results

After implementing and synthesizing both DES and AES versions in various ASIC technologies
in order to measure its performance, its main characteristics are presented. The most
important parameters which have to be mentioned are the area and the frequency of the
module, which are results of the synthesis, as well as the cycles required for each core to

operate.
The parameters used in the synthesizer tool of Synopsys are the following:

e compile ultra
® no auto ungroup
e timing high effort script

e typical operating conditions

The implementation results of all the main cores which can be used in the DES&AES engine
are summarized in Table 15 and Table 16 and illustrated in Figure 42, Figure 43, Figure 44

and Figure 45.

Table 15: Results of DES Main Cores Implementation

Area Frequency Total Time
Core Technology a Cycles
(mm?) (MHz) (ns)
DES AO tsmc (90nm) 0.024 1000.00 16 16.00
DES SO tsmc (90nm) 0.124 166.67 1 6.00
DES SO faraday (65nm) | 0.087k 238.10 1 4.20

B DESAO M DESSO

16

1000.00

area (mm?) frequency (MHz) cycles # total time (ns)

Figure 42: Results of DES Main Cores Implementation (tsmc 90nm)

87

As expected the speed optimized version operates in less total time and the area optimized
occupies significantly less area. The fact that the area optimized version reuses only one
instance of the encryption round module explains the higher frequency and the more

operation cycles.

Table 16: Results of AES Main Cores Implementation

Area Frequency Total Time
Core Technology o Cycles
(mm?) (MHz) (ns)
AES AO | 128 tsmc (90nm) 0.393 476.19 9 18.90
AES SO | 128 tsmc (90nm) 1.907 71.43 1 14.00
AES SO | 128 faraday (65nm) | 0.991 125.00 1 8.00
AES AO | 192 tsmc (90nm) 0.434 476.19 11 23.10
AES SO | 192 tsmc (90nm) 2.339 58.82 1 17.00
AES SO | 192 faraday (65nm) | 1.212 100.00 1 10.00
AES AO | 256 tsmc (90nm) 0.399 476.19 13 27.30
AES SO | 256 tsmc (90nm) 2.604 47.62 1 21.00
AES SO | 256 faraday (65nm) | 1.409 83.33 1 12.00
B AESAO | 128 M AES SO | 128
9
476.19
1.907
0.393 71.43 1 18.90 1400
area (mm?) frequency (MHz) cycles # total time (ns)

Figure 43: Results of AES (128-bit key) Main Cores Implementation (tsmc 90nm)

88

W AES AO | 192 W AES SO | 192

area (mm?) frequency (MHz) cycles # total time (ns)

Figure 44: Results of AES (192-bit key) Main Cores Implementation (tsmc 90nm)

B AESAO | 256 m AES SO | 256

area (mm?) frequency (MHz) cycles # total time (ns)

Figure 45: Results of AES (256-bit key) Main Cores Implementation (tsmc 90nm)

As mentioned above the speed optimized versions operate in less total time and the area
optimized occupy significantly less area. The fact that the area optimized versions reuse only
one instance of the encryption round module explains the higher frequency and the more

operation cycles.

89

Finally the implementation results of the key generator cores which can be used in the

DES&AES engine are summarized in Table 17.

Table 17: Results of DES and AES Key Generator Cores Implementation

Area Frequency Total Time
Core Technology . Cycles
(mm?) (MHz) (ns)
DES Key Generator tsmc (90nm) 0.014 1000.00 1 1.00
AES Key Generator | 128 tsmc (90nm) 0.114 476.19 10 21.00
AES Key Generator | 192 tsmc (90nm) 0.171 476.19 8 16.80
AES Key Generator | 256 tsmc (90nm) 0.171 476.19 13 27.30

In order to synthesize the key generator modules, the frequency was set to the highest value

used in the main cores and it is not the highest one possible. The reason for this is that the

key generator module is rarely used and its only requirement is to operate in the same

frequency as the main core occupying the less possible area.

90

4 |IDEA Engine

4.1 Introduction

In this chapter, one of the hardware accelerators used in this IP is presented, which
implements the IDEA algorithm (mentioned in section 1.3.3). In section 4.2 the compile time
parameters of the engine which can be configured by the user to modify the engine
according to the specifications and requirements are displayed. In section 4.3 the details of
the algorithm’s implementation are given. The main parameters considered during the
implementation were the area and the frequency of the engine. In section 4.4 the

implementation’s results in ASIC technologies are illustrated.

4.2 Configuration Parameters

There are two compile time configuration parameters in the IDEA engine which are

explained below:

e idea_version: this parameter defines which version of the module will be used, the
speed optimized or the area optimized.
e use_key generator: this parameters defines whether the key generator module will

be used or not.

91

4.3 Implementation

4.3.1 General Description

There are two versions implementing the IDEA algorithm, the speed optimized (SO) and the

area optimized (AO). The basic features of the IDEA engine are the following:

e Processes 64-bit data blocks with 128-bit key.
e Fully synchronous design
e Encryption and decryption unit in single core
e Two versions are available for the user to select:
o Area Optimized version (small area/resources utilization)
o Speed Optimized version (fully pipelined)
o Key generator modules included
e Key generator can be ignored using ready keys inserted from the user
e External memory not required
e Available signals to indicate when input data can be inserted an when the output is

ready

92

4.3.2 Pin Description

——enc_or_dec_i—
——start_key_gen_i—
——start_enc_dec_i—
—ready_keys_enc_i—4

—ready_keys_dec_i-~

rst

IDEA

plain_i

key_i

——ready_output_o——

—working_enc_dec_o—

working_keys_o

——<—cipher_o

Figure 46: IDEA Engine Symbol Diagram

Table 18 contains the description of each input/output pin existing in the IDEA engine.

Table 18: IDEA Engine Pin Description

Name Type | Width (bits) Description
clk input - clock signal
rst input 1 reset signal (resets when LOW)
enc_or_dec_i input 1 LOW for encryption / HIGH for decryption
start_key_gen_i input 1 HIGH to start a new key generation
. . HIGH to start a new encryption /
start_enc_dec_i input 1)
decryption
ready encryption keys if key generator
ready keys_enc_i input 832 y vP Y Ve
not used
ready decryption keys if key generator
ready_keys_dec_i input 832 y vp y Ve
not used
plain_i input 64 input data
key i input 128 encryption key
cipher_o output 64 output data
ready_output_o output 1 HIGH when output is ready
. LOW when encryption / decryption
working_enc_dec_o | output 1 L
finished
working_keys_o output 1 LOW when key generation finished

93

4.3.3 Process of Key Generation and Encryption / Decryption

The following sequence of steps has to be executed to perform a key generation:

1) Wait until working_enc_dec_o and working_keys_o are LOW
2) Setkey i

3) Setstart_key gen_i (pulse) to start the key generation process

The following sequence of steps has to be executed to perform an encryption/decryption:

1) Wait until working_enc_dec_o and working_keys o are LOW

2) Setenc or _dec i to select between encryption and decryption, plain_i
3) Set start_enc_dec i (pulse) to start the encryption/decryption process
4) Wait until ready_output o is HIGH to read the result of the process

Note that no step can be executed before the previous one is finished. Also, if the key
generator is not used, there are no signals key i, working_keys o, and the key update is
performed by setting the signals ready_keys enc i, ready _keys dec i and then setting the

signal start_key gen_i (pulse) when working_enc_dec o is LOW.

4.3.4 Algorithmic Details

As mentioned in section 1.3.3.1 two of the main algebraic operations used in IDEA algorithm

are the following:

e Addition of integers modulo (2*°) with inputs and outputs treated as unsigned 16-bit
integers
e Multiplication of integers modulo (2'°+1) with inputs and outputs treated as

unsigned 16-bit integers

The addition modulo 2 can be easily implemented as it is equal to the normal addition
ignoring the output carry. In contrast, the multiplication modulo 2'°+1 is very hard to be
implemented. There are many solutions to this problem and one of the most efficient is the
dedicated modulo multiplier implemented in the Microprocessors and Digital Systems Lab of

NTUA called “fast_16bits_mult_mod”.

94

Another implementation difficulty can be found in the production of the decryption keys. As
mentioned in Table 2: Decryption Subkeys Generation Table in order to produce the

decryption keys, one of the following operations is applied in the encryption keys:

e multiplicative inverse modulo 2'**+1 (encryption_key * modulus 2'%+1)

e additive inverse modulo 2*° (-encryption_key modulus 2'°)

“n

The additive inverse modulo 2 can be easily implemented by just applying the operator
in the encryption key and keep the last 16 bits of the result. But in order to implement the

highly demanding multiplicative inverse modulo 2'°+1 an efficient method had to be used.

The design of inverse modulo (2'°+1) multiplier is done using a novel realization of the
power algorithm for Euler’s theorem, which results in the fast inverse modulo multiplier.

Euler's Totient function is written as ¢(m).
According to Euler's theorem, if a is coprime to m, that is, gcd(a, m) = 1, then
e a®™=1(modm)

This follows from the fact that a belongs to the multiplicative group (Z/mZz)* if and only if a is

coprime to m. Therefore the modular multiplicative inverse can be found directly:
o a®™=3" (modm)
In the special case when m is a prime then:
e ¢d(m)=m-1.
So, the modular inverse is given by the above equation as:
-1

e a'za™ (modm)

So in order to produce the decryption keys which require the multiplicative inverse

operation, the above algorithm can be used because 2'°+1 is a prime number and as a result:
e decryption_key = encryption_key **** (mod 2'°+1)

In order to compute the above relation efficiently the algorithm Square and Multiply,

described in Table 19 is used.

95

Table 19: Square and Multiply Algorithm

Operation C = A% (mod N)
No of steps k-1
Z:= A;
if (B[0]1=0) then
C:= 1;
else
C:= A;
end
Algorithm for (i:= 1 to k-1) do
Z:= 7% (mod N);
if (B[i]1=1) then
C:= C-Z(mod N);
end
end
return C;

However in this particular case, variable B is a known number (2'°-1) which has all its bits set
to 1. Also the multiplications modulo 2'°+1 in the block of the for-loop are computed using
the aforementioned modulo multiplier “fast_16bits_mult_ mod”. So the algorithm is

modified as shown in Table 20.

Table 20: Modified Square and Multiply

Operation C = A®(mod N)

No of steps 15
Z:= A;
C:= A;

, for (i:= 1 to 15) do
Algorithm Z:= fast 16bits mult mod(Z,Z);
C:= fast lébits mult mod(C,7Z);

end
return C;

96

4.3.5 Implementation Details

There are two different implementations of the IDEA algorithm, as mentioned in section
4.3.1, the speed optimized (SO) and the area optimized (AO). The first one (SO) generates
eight instances of the main encryption round and one instance of the output transformation
round. These sub-modules are wired and operate in one cycle. The second version (AO)
reuses a single cell which implements the main encryption round. To implement the output
transformation round there are multiplexers that ignore steps 5 to 14 when the current

round is the last one.

4.3.6 Block Diagrams

In this section the block diagrams of the IDEA engine are presented. The block diagrams of
the two versions (speed optimized and area optimized) are depicted in Figure 47 and Figure

48 respectively.

In both figures the optional key generator, as well as the main module implementing the
encryption/decryption operation are illustrated. In Figure 47 the main module contains eight
instances of the encryption round module and one instance of the output transformation
round. In Figure 48 the main module contains one instance of the encryption round module

which is reused in each round (9 rounds in total).

97

clk-

rst
——enc_or_dec_i—
start_key_gen_i
——start_enc_dec_i—
ready_keys_enc_i
—ready_keys_dec_i—4
plain_i——
key_i——~]

IDEA_SO

key_generator

main

enc_round_so enc_round_so

m | 48 output_round

—

ready_output_o
—working_enc_dec_o—

|——working_keys_o——

——<—cipher_o-

Figure 47: IDEA SO Block Diagram

cllc

rst-

——enc_or_dec_i—
——start_key_gen_i—
——start_enc_dec_i—
—ready_keys_enc_i—4
—ready_keys_dec_i—
plain_j——-

key_i——

IDEA_AO

key_generator

main

round
enc_round_ao

b o
ready
round_counter |—>

|——ready_output_o——

F—working_enc_dec_o—

——working_keys_o

——<—cipher_o

98

Figure 48: IDEA AO Block Diagram

4.4 Implementation Results

After implementing and synthesizing both IDEA versions in various ASIC technologies in

order to measure its performance, its main characteristics are presented. The most

important parameters which have to be mentioned are the area and the frequency of the

module, which are results of the synthesis, as well as the cycles required for each core to

operate.

The parameters used in the synthesizer tool of Synopsys are the following:

compile ultra
no auto ungroup
timing high effort script

typical operating conditions

The implementation results of all the main cores which can be used in the IDEA engine are

summarized in Table 21 and illustrated in Figure 49.

Table 21: Results of IDEA Main Cores Implementation

Area Frequency Total Time
Core Technology a Cycles

(mm?) (MHz) (ns)
IDEA AO tsmc (90nm) 0.053 163.93 9 54.90
IDEA SO tsmc (90nm) 0.286 23.26 1 42.99
IDEA AO faraday (65nm) | 0.037 357.14 9 25.20
IDEA SO faraday (65nm) | 0.198 49.75 1 20.10

B IDEAAO MIDEASO
9
163.93
0.286
0.053 23.26 1 54.90 4599

area (mm?) frequency (MHz) cycles # total time (ns)

Figure 49: Results of IDEA Main Cores Implementation (tsmc 90nm)

99

As expected the speed optimized version operates in less total time and the area optimized
occupies significantly less area. The fact that the area optimized version reuses only one
instance of the encryption round module explains the higher frequency and the more

operation cycles.

The implementation results of the key generator core which can be used in the IDEA engine

are summarized in Table 22.

Table 22: Results of IDEA Key Generator Core Implementation

Area Frequency Total Time
Core Technology . Cycles
(mm?) (MHz) (ns)
IDEA Key Generator tsmc (90nm) 0.193 163.93 15 91.50
IDEA Key Generator faraday (65nm) | 0.091 357.14 15 42.00

In order to synthesize the key generator module, the frequency was set to the highest value
used in the main cores and it is not the highest one possible. The reason for this is that the
key generator module is rarely used and its only requirement is to operate in the same

frequency as the main core occupying the less possible area.

100

5 RSA Engine

5.1 Introduction

In this chapter, one of the hardware accelerators used in this IP is presented, which
implements the RSA algorithm (mentioned in section 1.4.1). In section 5.2 the compile time
parameters of the engine which can be configured by the user to modify the engine
according to the specifications and requirements are displayed. In section 5.3 the details of
the algorithm’s implementation are given. The main parameters considered during the
implementation were the area and the frequency of the engine. In section 5.4 the

implementation’s results in ASIC technologies are illustrated.

5.2 Configuration Parameters

There are three compile time configuration parameters in the RSA engine which are

explained below:

e rsa_bit_size: this parameter defines the size of the RSA key and as a result some
other variables which are the plaintext and the ciphertext. The valid values of this
parameter are: 512/1024/2048/4096

e mult_unit_size: this parameter modifies the operation cycles of the algorithm and as
a result its area. The higher the value of this parameter, the lower the operation
cycles of the engine. However, as the cycles are reduced, the area is increased. The
valid values of this parameter are all the powers of 2 less or equal to the
rsa_bit_size.

e use_key generator: this parameters defines whether the key generator module will

be used or not.

101

5.3 Implementation

5.3.1 General Description

The basic features of the RSA engine are the following:

e Parameterized operation cycles / area

e Key generator module included (for the private key)

e Key generator can be ignored using ready private key inserted from the user

e External memory not required

e Available signals to indicate when input data can be inserted an when the output is
ready

e Key size supported : 512 /1024 / 2048 / 4096

e Encryption and decryption unit in single core

e Fully synchronous design

102

5.3.2 Pin Description

clk

rst
——enc_or_dec_i—
—start_key_gen_i—]
——start_enc_dec_i—]

—ready_dec_key_i—4

plain_i

RSA

|——ready_output_o

—working_enc_dec_o—

——working_keys_o

cipher_o

Figure 50: RSA Engine Symbol Diagram

Table 23 contains the description of each input/output pin existing in the RSA engine.

Table 23: RSA Engine Pin Description

Name Type Width (bits) Description
clk input - clock signal
rst input 1 reset signal (resets when LOW)
.) LOW for encryption / HIGH for
enc_or_dec_i input 1]
decryption
.) HIGH to start a new key
start_key_gen_i input 1)
generation
. . HIGH to start a new encryption
start_enc_dec_i input 1)
/ decryption
plain_i input 512/1024/2048/4096 input data
n_i input 512/1024/2048/4096 productp - q
phi_i input 512/1024/2048/4096 product (p-1) - (g-1)
e i input 512/1024/2048/4096 public key exponent
ready private key exponent if
ready_dec_key_i input 512/1024/2048/4096 yP v exp
key generator not used
cipher_o output | 512/1024/2048/4096 output data
ready_output_o output 1 HIGH when output is ready

103

. LOW when encryption /
working_enc_dec_o | output 1 .
decryption finished
. LOW when key generation
working_keys_o output 1 .
finished

5.3.3 Process of Key Generation and Encryption / Decryption

The following sequence of steps has to be executed to perform a key generation:

1) Wait until working_enc_dec_o and working_keys o are LOW
2) Sete i,phi_i,n_i (no specific order required)

3) Setstart key gen_i (pulse) to start the key generation process
The following sequence of steps has to be executed to perform an encryption/decryption:

1) Wait until working_enc_dec_o and working_keys o are LOW

2) Setenc or dec i to select between encryption and decryption, plain_i, n_i (only for
encryption), e_i (only for encryption)

3) Set start_enc_dec i (pulse) to start the encryption/decryption process

4) Wait until ready_output o is HIGH to read the result of the process

Note that no step can be executed before the previous one is finished. Also, if the key
generator is not used, there are no signals phi_i, working_keys o, and the key update is
performed by setting the signal ready _dec_key_i and then setting the signal start_key gen i

(pulse) when working_enc_dec_o is LOW.

5.3.4 Algorithmic Details

In the RSA algorithm there are some parts that their implementation is worth to be

mentioned. The main part of the RSA encryption/decryption is the computation of the

following:
e C=Mf(modN) (encryption)
e M=C?(modN) (decryption)

104

So it is important to find an efficient way to implement this computation. One of the most
known and effective algorithms for this, is the one called “Square and Multiply” which is

described in Table 19: Square and Multiply Algorithm.

However, the implementation of this algorithm has its own difficulties as it requires the

computation of the following:
e C=CZ(modN)

So an effective algorithm for the above computation has to be used. The algorithm the most
industries use for this purpose is the one called “Montgomery Multiplication” which is

described in Table 24.

Table 24: Montgomery Multiplication Algorithm

Operation R = A'B-27"(mod N)
p (k 1is the rsa bit size)
No of steps k+1
R:= 0;
Q:= 0;
for (i:= 0 to k) do
Q:= R[O0];
R:= (R + QN + A[i] -B) div 2;
Algorithm end
if (R 2 N) then
R:= R-N;
end
return R;

As it is obvious the output of this algorithm is not the one needed for the “Square and

Multiply” because of the presence of the factor 2™ in it.

To solve this problem the initial values in the “Square and Multiply” algorithm have to be
transformed in the Montgomery field. For example, the number a transformed in the
Montgomery field is the number A, = A-2“(mod N). The transformation of any number in the
field of natural number to the Montgomery field can be performed by executing the

Montgomery multiplication of 22 (mod N) and this number:

e Montgomery (2% (mod N), A) = (A-2* (mod N) -2”) (mod N) = A-2* (mod N)

105

The reason why this is the solution of the problem, is because an operation with operands in

the Montgomery field has an output in the same field as shown below.

o A,=A2" (mod N) (A is the transformation of a in the Montgomery field)

e B, =B-2"(modN) (B, is the transformation of b in the Montgomery field)

e C, =Montgomery (Am Bm) = AnBm2™ (mod N) = A-25B-2%2™ (mod N) = A-B-2* (mod
N) = (A‘B) m

So, in the “Square and Multiply” algorithm, instead of initializing Z and C to the value M, they
are initialized to M-2" (mod N). The initialization of C to the value 1 never occurs in the RSA

so C is always initialized to M-2* (mod N).

By doing this, the output C of the “Square and Multiply” is in the Montgomery field so at the
end of the algorithm the output has to be transformed in the field of natural numbers. This

can be done by executing a Montgomery multiplication of the output C with the number 1:
e Montgomery (C,,,1) = Cn1-2" (mod N) = c-2k2* (mod N) =C (mod N)

As mentioned, the transformation of any natural number to the Montgomery field requires
the computation of the value: 2% (mod N). To perform this operation efficiently a 2-stage

algorithm can be executed.
In the first stage the value t is computed, where t satisfies the following relations:

e 2'<Nand

° 2t+1 >N
The algorithm for the above process is described in Table 25.

Table 25: 1° Stage of 2 (mod N) Computation

Operation max t: 2° < N
No of steps <k

t:= k;

while (N[k] != 0) do
Algorithm t:= k-1;

end

return t;

106

In the second stage the value 2% (mod N) is computed by doubling in each step the initial
value (2%) and if the result is equal or greater than N, it is reduced by N. The algorithm for the

above process is described in Table 26.

Table 26: 2" Stage of 2° (mod N) Computation

Operation t 2 2k = 2°"(mod N)
No of steps 2k-t
t 2 2n:= 2%; //t is the output from stage 1

for (i:= t to 2k-1) do
t 22n =1t 2 2n - 2;
_ if (t 2 2n 2 N) then
Algorithm t 2 2n =1t 2 2n - N;
end
end

return t 2 2n;

Another important part of the RSA algorithm is the computation of the decryption key D:
e D=E"mod ¢(N)

Hence, the modified Penk’s algorithm [5] is used, because it performs the computation

efficiently. Penk’s algorithm is described in Table 27.

Table 27: Penk Algorithm

Operation = a ' (mod p)

No of steps k,4k]

= p;
= a;
= 0;
1;

R 9 c|l—RB

while (v > 0) do
if (u is even) then
if (r is even) then

u:= u/2;
, r:=r/2;
Al h
gorithm clse
u:= u/2;

r:= (r + p)/2;

else if (v 1s even) then
if (s is even) then

vi= v/2;

s:= s/2;
else

vi= v/2;

107

else
X:=u - v;
if (x > 0) then
u:= x;
r:=r — S;
if (r < 0) then
r:=r + p;
end
else
v -X;
sS:= s - r;
if (s < 0) then
sS:= s + p;
end
end
end

end

if (r > p) then
r:=r - p;
end

if (r < 0) then
r:=r + p;
end

return r;

Penk’s algorithm requires the modulus to be odd. At first, this appears to make the

operation useless in the case of RSA key generation where the private key exponent D is:
e D =Penk(E, d(N)) = E* mod d(N)

Note that d(N) = (p-1) - (g-1) and p and g both prime, so d(N) is even.

However, since E must be odd (otherwise no inverse exists), D can be calculated as:
e D=(1+(d(N)-(E—Penk(d(N), E))/E

The above relation is very demanding in hardware, so an efficient way of computing this

must be found.

108

The algorithm used to solve the problem is described in Table 28.

Table 28: (1+ab)/c Algorithm

Operation

p = (l+a-b)/c, b<c

No of steps

k

Algorithm

//Find min x: b:2* 2 c
x:= 0;

prev_u:= 0;
prev p:= 0;
p:= 0;
u:= 0;
d:= b;
while (¢ 2 d) do
if (a[x] = 1) then
u:= u + d;
end
if (u 2 c¢) then
u:=u — C;
=p + 1;
end
prev_u:= d;
d:= d-2;
x:=x + 1;

end

//Now d = ¢

for (i:= x to k-1) do
temp:= prev u-2;
if (temp = c) then

prev p:= prev p-2 + 1;
prev_u:= temp - d;

else
prev _p:= prev p-2;
prev_u:= temp;

end

if (a[i] = 1) then
p:= p + prev _p;
u:= u + prev_u;

end

if (u 2 c¢) then
u:r=u - c;
p:=p + 1;

end

d:= d-2;

e
p:= + 1;
end

return p;

109

So concerning that:

E — Penk(¢p(N), E) < E

the above algorithm can be used with:

a=o¢(N)
b = E - Penk(dp(N), E)
c=E

5.3.5 Implementation Details

The instructions inside the for-loop of the Montgomery algorithm:

Q:= R[O0];
R:= (R + O°'N + A[i] *B) div 2;

realize the main cell of the Montgomery multiplication, called “Montgomery cell”. In order
to reduce the operation cycles of the Montgomery multiplication, more than one
Montgomery cells can be combined in a new sub-module called “mult_unit”. The number of
the combined Montgomery cells in the “mult_unit” sub-module is defined by the parameter
mult_unit_size mentioned in section 5.2. As a result the operation cycles required for a

Montgomery multiplication are divided by mult_unit_size.

110

5.3.6 Block Diagrams

In this section the block diagrams of the RSA engine are presented. The block diagram of the

entire engine is depicted in Figure 51. In this block diagram the optional key generator

included as well as the module implementing the main operation of RSA are illustrated. In

the key generator the inverse_mod module (implementing Penk’s algorithm) and the

mult_div module (calculating the (1+ab)/c operation) are included. The rsa_main contains

the module generating the value 22k(mod N) and the module implementing the “Square and

Multiply” algorithm.

clk

rst

——enc_or_dec_i—
—start_key_gen_i—
—start_enc_dec_i—]
—ready_dec_key_i—+]

plain_i

n_i———"
phi_i———
) —

RSA

key_generator

inverse_mod
(Modlnv(phi,e))

Y

mult_div
((1+phi- (e-Mnd\nv(ph'\,e)))/e)

rsa_main

2" mod n generator

A,

square_multiply

|——ready_output_o
working_enc_dec_o

F—working_keys_ o——

|———cipher_o

Figure 51: RSA Engine Block Diagram

The block diagram of the Square and Multiply sub-module is depicted in Figure 52. In this

block diagram there is an instance of the Montgomery algorithm as well as a round counter.

111

e i |n_i |plain_i

square_multiply

1

montgomery
2% modn

\

Wround

T round
ready
round_counter |—>

Figure 52: Square and Multiply Block Diagram

The block diagram of the Montgomery multiplication sub-module is depicted in Figure 53. In
this block diagram the mult_unit module (implementing the main computation of the
Montgomery algorithm) as also a round counter are illustrated. In the mult_unit module
there are m instances of the Montgomery cell (where m is a configurable parameter as

mentioned in section 5.3.5).

montgomery e i |n_i |plain_i

mult_unit

montgomery | montgomery f_\—p
o cell #1 cell #m \W/

n_l

round

[]

T round
ready
round_counter I—»

Figure 53: Montgomery Multiplication Block Diagram

112

5.4 Implementation Results

After implementing and synthesizing the RSA engine in various ASIC technologies in order to
measure its performance, its main characteristics are presented. The most important
parameters which have to be mentioned are the area and the frequency of the module,

which are results of the synthesis, as well as the cycles required for each core to operate.
The parameters used in the synthesizer tool of Synopsys are the following:

e compile ultra

® no auto ungroup

timing high effort script

typical operating conditions

The implementation results of the main cores which can be used in the RSA engine are

summarized in Table 29 and illustrated in Figure 54 and Figure 55.

Table 29: Results of RSA Main Cores Implementation

Area Frequency Max Total Time
Core Technology a

(mm?) (MHz) Cycles (ns)
RSA | 1024 | 1 tsmc (90nm) 0.416 322.58 2099206 6507551
RSA | 1024 | 2 tsmc (90nm) 0.461 250.00 1050118 4200472
RSA | 1024 | 8 tsmc (90nm) 0.949 111.11 263302 2369741
RSA | 2048 | 1 tsmc (90nm) 0.819 277.78 8392710 30213514
RSA | 2048 | 2 tsmc (90nm) 0.833 222.22 4197382 18888407
RSA | 2048 | 8 tsmc (90nm) 1.612 83.33 1050886 12611136

Notes:

e In Core field, “RSA | x | y” corresponds to rsa_bit_size x and mult_unit_size y.
e The maximum operation cycles required for the RSA | x | y are computed from the
equation below:

o Cycles = x+6+(2x+1)-(x/y)

113

BRSA|1024|1 MRSA|1024|2 WRSA|1024|8

2099206

6507552

0.416 0.461 263302 2369742

area (mm?) frequency (MHz) cycles # total time (ns)

Figure 54: Results of RSA (1024-bit key) Main Cores Implementation (tsmc 90nm)

BRSA | 2048 |1 MRSA|2048|2 WRSA|2048]8

8392710

30213514

18888408
12611136

0.819 0.833 1050886

area (mm?) frequency (MHz) max cycles # total time (ns)

Figure 55: Results of RSA (2048-bit key) Main Cores Implementation (tsmc 90nm)

As expected when the parameter mult_unit_size is increased the area is also increased and
the frequency is decreased, but the operation cycles as well as the total time are significantly

decreased.

114

The implementation results of the key generator cores which can be used in the RSA engine

are summarized in Table 30.

Table 30: Results of RSA Key Generator Cores Implementation

Area Frequency Max Total Time
Core Technology .
(mm?) (MHz) Cycles (ns)
RSA Key Generator | 1024 | tsmc (90nm) | 1.046 322.58 3072 9523
RSA Key Generator | 2048 | tsmc (90nm) | 2.057 277.78 6144 22118

In order to synthesize the key generator modules, the frequency was set to the highest value
used in the main cores and it is not the highest one possible. The reason for this is that the
key generator module is rarely used and its only requirement is to operate in the same

frequency as the main core occupying the less possible area.
Notes:

e In Core field, “RSA Key Generator | x” corresponds to rsa_bit_size x.
e The maximum operation cycles required for the RSA Key Generator |x are computed
from the equation below:
o Cycles=4x+3x=7x (the (1+ab)/c algorithm requires normally x cycles,
but in this implementation its cycle is split into three cycles so that the key

generator can operate in the frequency of the fastest main core)

115

116

6 IP Verification

6.1 Introduction

The three engines described in Chapters 3, 4 and 5 are implemented in Verilog, simulated
and tested using Modelsim, and synthesized using Synopsys software tools. However, it is
necessary to test the functionality of these engines in real time. The platform used to run
these tests is the DE4 Board of Altera with the Stratix IV FPGA (mentioned in section 6.2). In
order to control and feed the cryptographic engines an external controller (mentioned in
section 6.3) is implemented. This controller is connected with a UART so that the user can

monitor the procedure from a terminal.

6.2 FPGA Platform

6.2.1 Key Features

The following hardware is implemented on the DE4 board:

e Featured device
o Altera Stratix® IV GX FPGA (EP45GX230C2)
e Configuration status and set-up elements
o Built-in USB Blaster circuit for programming
o Fast passive parallel (FPP) configuration via MAX Il CPLD and flash memory
o Three External Programmable PLL timing chip
e Component and interfaces
o Four Gigabit Ethernet (GigE) with RJ-45 connector
o Two host and two device Serial ATA (SATA Il) ports

o Two HSMC connectors

o

Two 40-pin expansion headers

PCI Express 2.0 (x8 lane) connector

o

117

e Memory
o DDR2 SO-DIMM socket
o FLASH
o SSRAM
o SD Card socket
o [2CEEPROM
e General user input/output:
o 8LEDs
o 4 push-buttons and 4 slide switches
o 8-position DIP switch
o 2 seven-segment displays
e Clock system
o On-board clock oscillators: 50MHz and 100MHz
o SMA connectors for external clock input
o SMA connectors for clock output
e Otherinterfaces
o USB 2.0 high-speed host/device OTG
o Current sensor for FPGA current measurement

o Temperature sensor

6.2.2 Peripherals

In order to connect the FPGA with a terminal to monitor the process of the demo a UART
was implemented. The UART core implements RS-232 asynchronous transmit and receive
logic. The UART core sends and receives serial data via the TXD and RXD ports. The 1/0
buffers on the Altera FPGA do not comply with RS-232 voltage levels, and may be damaged if
driven directly by signals from an RS-232 connector. To comply with RS-232 voltage signhaling
specifications, an external level-shifting buffer is required between the FPGA 1/0O pins and

the external RS-232 connector. Hence, the level shifter MAX232 was used.

118

6.2.3 Board Overview

In Figure 56 and Figure 57 the top and bottom view of the DE4 board are depicted
respectively. The layout of the board is described and the location of the connectors and key

components is indicated.

USB Blaster 2USB Host Stratix IV GX
Port Type A Ports DOR2 SO-DIMM EPASGX230KF40C2
(support up t0 4GB) or EPASGXS30KHA0C2
7-segment 8 User 8-Position US8 Type B 4 Serial 12V and 3.3V Power
Displays LEDs DIP Switch oy Mini-AB Port s - . ATA Ports Supply Connector

pr—— i L
ma=2 25 W 2 FPowerSw-uh

: Rl : | g8
4 Slide . ; . CRitonye s en

Switches sy o

CPU Reset

Rl e e
Push-button ” Ie

4 Push-buttons.

Clock
Input/Output
SMA Connectors

4 Gigabit - 3 100MHz
Ethernet Ports B ! % [il 0 R Oscillator

External PLL

+12V Fan
Connector

ITAG 3-Position
DIP Switch

2MB SSRAM 64MB FLASH SOMHz HSMC MAX 11 Re-Configuration Two 40-pin

PCl Express x8 Edge

Connector i ‘ Oscillator Port8 CPLD EPM2210 Push-button GPIO Connectors
PCle DIP HsMC | System Controller
Switch portA DDR2 SO-DIMM
(support up to 4GB)

Figure 56: Top View of the DE4 Board

External Battery Socket
(Volatile security key storage) SD CARD Slot

External Clock 12C EEPROM

Figure 57: Bottom View of the DE4 Board

119

6.2.4 Block Diagram

The block diagram of the DE4 board is depicted in Figure 58. All key components are
connected with the Stratix IV GX FPGA device. Thus, users can configure the FPGA to

implement any system design.

Transceiver link

K
A

SSRAM
(ZBT)

\36

Ixsz wa y
HSMC « x02 » < X82 » HSMC
S X8 X4 il
R Q——’

PRI

‘—x-h

SATA PRINN .7,

PRIEN 1,

X _

Switch™8

4GB Slide Sw"4
DDR2 SODIMM Button*4
LED"8

18]
CARD

Figure 58: DE4 Board Block Diagram

120

6.3 External Controller

The main operations of the external controller are described below:

e Read the user’s input to select the cryptographic algorithm used

e lLoad the proper tests (stored in the memory of the DE4 board) according to the
selected algorithm.

e Feed the selected engine with the proper inputs and collect the results.

e Send monitoring messages in a terminal during the whole procedure using the

UART.

The block diagram of the external controller is depicted in Figure 59.

Altera DE4

External Controller

Test Cases

!

—np sw_0

<m» SW_1

ame 2

ey SW_ External Controller ‘

] Core UART P ‘maxl?)z‘
RS232
[\—V
DES&AES IDEA RSA '

Figure 59: External Controller Block Diagram

121

The use of the External Controller is quite simple. Each slide switch of the DE4 board

corresponds to an algorithm as shown below:

e Switch 0: DES
e Switch 1: AES
e Switch 2: IDEA
e Switch 3: RSA

When one of these switches is set to HIGH, the testbench of the corresponding algorithm is
executed. If two or more switches are set to HIGH the selected algorithm is the one of the

lowest switch.

122

Conclusion

In this diploma thesis a complete study of certain symmetric-key and public-key
cryptographic algorithms was attempted and a presentation of the way these algorithms are
integrated in a single cryptographic IP. During the development of this thesis we got familiar
with the principals of cryptography and IP architecture while we developed this IP from
scratch. We analyzed the basic operations of each algorithm in order to implement them in
the most efficient way. In this implementation we had in mind that the circuit should be
small, fast and configurable by the user in compile time. The fact that we implemented the
entire IP and not only its cryptographic engines gave us the opportunity to learn how a bus
interface, a controller and a register file are implemented. Furthermore, the simulation, the
synthesis and the testing of the cryptographic engines using a real industrial FPGA board
helped us get familiar with a variety of software tools which are highly used in the industry.
However the development of this project will continue as the Crypto IP will be integrated
into a System on Chip (SoC). For this purpose the drivers for a specific processor used in the

SoC will be implemented as well as a DMA.

123

124

Appendix

Basic Tables Used in DES Algorithm

Table 31: Permuted Choice 1

Bit

1

2

3

4

57

49

41

33

25

17

58

50

42

34

26

18

15

10

2

59

51

43

35

27

22

19

11

3

60

52

44

36

29

63

55

47

39

31

23

15

36

62

54

46

38

30

22

43

14

6

61

53

45

37

29

50

21

13

5

28

20

12

Table 32: Permuted Choice 2

Bit

0

1

2

3

4

14

17

11

24

1

3

28

15

6

21

10

13

23

19

12

4

26

19

16

7

27

20

13

25

41

52

31

37

47

55

31

30

40

51

45

33

48

37

44

49

39

56

34

53

43

46

42

50

36

29

32

Table 33: Subkey Rotation

Round Number

10

11

12

13

14

15

Number of bits to rotate

125

126

Table 34: Initial Permutation

Bit | 0 1 2 3 4 5 6 7
1 58 | 50 | 42 | 34 | 26 | 18 | 10 2
9 60 | 52 | 44 | 36 | 28 | 20 | 12 4
17 62 54 46 38 30 22 14 6

25 | 64 | 56 | 48 | 40 | 32 | 24 | 16 8

33 57 49 41 33 25 17 9 1

41 59 51 43 35 27 19 11 3

49 | 61 | 53 | 45 | 37 | 29 | 21 | 13 5
57 | 63 | 55 | 47 | 39 | 31 | 23 | 15 7

Table 35: Inverse Initial Permutation

Bit | O 1 2 3 4 5 6 7
1 40 8 48 | 16 | 56 | 24 | 64 | 32
9 39 7 47 | 15 | 55 | 23 | 63 | 31
17 | 38 6 46 | 14 | 54 | 22 | 62 | 30
25 | 37 5 45 | 13 | 53 | 21 | 61 | 29
33 | 36 4 44 | 12 | 52 | 20 | 60 | 28
41 | 35 3 43 | 11 | 51 | 19 | 59 | 27
49 | 34 2 42 | 10 | 50 | 18 | 58 | 26
57 | 33 1 41 9 49 | 17 | 57 | 25

Table 36: E-Bit Selection

Bit | O 1 4

1 32 1 4

7 4 5 8

13 8 9 10 11 12 13
19 12 13 14 15 16 17
25 | 16 | 17 | 18 | 19 | 20 | 21
31 | 20 | 21 | 22 | 23 | 24 | 25
37 | 24 | 25 | 26 | 27 | 28 | 29
43 | 28 | 29 | 30 | 31 | 32 1

Table 37: P Permutation

Bit | 0 2 3

16 20 21

29 | 12 | 28 | 17

15 | 23 | 26

13 18 | 31 | 10

17 8 24 14

21 32 27 3 9

25 | 19 | 13 | 30 6

29 22 11 4 25
Table 38: S-Box 1

Row/

Column 0 1 2 3 4 5 6 7 8 9 10 | 11 12 13 14 | 15
0 14 | 4 13 1 2 15 | 11 | 8 3 10 | 6 12 0
1 0 15 7 4 14 13 1 10 6 12 11 3
2 4 1 14 | 8 13 2 11 | 15 | 12 7 10 | 5
3 15 12 8 2 4 1 7 5 11 14 10 0 6 13

Table 39: S-Box 2

Row/

T 0 1 2 3 4 5 6 7 8 9 10 | 11 | 12 | 13 | 14 | 15
0 15 1 8 14 | 6 11 3 4 9 7 13 |12 | O 5 10
1 3 13 4 7 15 2 8 14 12 0 10 6 9 11 5
2 0 14 7 11 10 4 13 5 8 12 6 9 3 2 15
3 13 8 10 1 3 15 | 4 11 | 6 7 12 | 0O 5 14 | 9

Table 40: S-Box 3

Row/

Column 0 1 2 3 4 5 6 7 8 9 10 | 11 | 12 | 13 | 14 | 15
0 10| O 9 14 | 6 3 15 5 1 13 | 12 7 1 | 4 2
1 13 7 0 9 3 4 10 2 8 14 12 11 15
2 13 6 4 9 8 15 0 11 1 12 5 10 | 14
3 1 10 13 0 6 9 7 4 15 14 3 11 5 2 12

127

Table 41: S-Box 4

Row/
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
Column
0 7 13 14 3 0 6 9 10 1 2 8 5 11 12 4 15
1 13 8 11 5 6 15 0 3 4 7 2 12 1 10 14 9
2 10 6 9 0 12 11 7 13 15 1 3 14 5 2 8 4
3 3 15 0 6 10 1 13 8 9 4 5 11 12 7 2 14
Table 42: S-Box 5
Row/
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
Column
0 2 12 1 7 10 11 5 3 15 13 0 14 9
1 14 11 12 4 7 13 0 15 10 3 9 8 6
2 4 2 11 10 13 7 15 9 12 6 3 0 14
3 11 8 12 7 1 14 2 13 6 15 0 10 4 5 3
Table 43: S-Box 6
Row/
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
Column
0 12 1 10 15 9 2 0 13 3 4 14 7 11
1 10 15 4 7 12 9 6 1 13 14 0 11 8
2 9 14 15 2 12 3 7 0 4 10 1 13 11 6
3 4 3 2 12 9 5 15 10 11 14 1 7 6 0 8 13
Table 44: S-Box 7
Row/
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
Column
0 4 11 2 14 15 0 13 3 12 9 7 10 6
1 13 0 11 7 4 9 10 14 3 5 12 15 8
2 1 4 11 13 12 3 14 10 15 6 8 5 9
3 6 11 13 8 1 4 10 7 9 5 0 15 14 2 3 12

128

Table 45: S-Box 8

Row/
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
Column
0 13 2 8 4 6 15 | 11 1 10 14 5 0 12 7
1 1 15 13 8 10 3 7 4 12 11 0 14 2
2 7 11 4 1 9 12 | 14 2 0 10 | 13 | 15 8
3 2 1 14 7 4 10 8 13 | 15 | 12 9 0 3 11

129

Basic Tables Used in AES Algorithm

Table 46: Rcon[256]

Rcon[256] =

{0x8d, 0x01, 0x02, 0x04, 0x08, 0x10, 0x20, 0x40, 0x80, Ox1b, 0x36, 0x6¢, 0xd8, Oxab, Ox4d,
0x9a,0x2f, 0x5e, Oxbc, 0x63, Oxc6, 0x97, 0x35, Oxb6a, 0xd4, Oxb3, 0x7d, Oxfa, Oxef, Oxc5, 0x91,
0x39,0x72, Oxe4, 0xd3, Oxbd, 0x61, Oxc2, Ox9f, 0x25, Ox4a, 0x94, 0x33, 0x66, Oxcc, 0x83,
0x1d, 0x3a,0x74, Oxe8, Oxcb, 0x8d, 0x01, 0x02, 0x04, 0x08, 0x10, 0x20, 0x40, 0x80, Ox1b,
0x36, Ox6c, 0xd8,0xab, 0x4d, 0x9a, 0x2f, Ox5e, Oxbc, 0x63, Oxc6, 0x97, 0x35, Ox6a, 0xd4,
0xb3, 0x7d, Oxfa, Oxef,0xc5, 0x91, 0x39, 0x72, Oxe4, 0xd3, Oxbd, 0x61, Oxc2, Ox9f, 0x25, Ox4a,
0x94, 0x33, 0x66, Oxcc,0x83, O0x1d, 0x3a, 0x74, Oxe8, Oxcb, 0x8d, 0x01, 0x02, 0x04, 0x08,
0x10, 0x20, 0x40, 0x80, 0x1b,0x36, Ox6c, 0xd8, Oxab, 0x4d, 0x9a, 0x2f, Ox5e, Oxbc, 0x63,
0Oxc6, 0x97, 0x35, Ox6a, 0xd4, 0xb3,0x7d, Oxfa, Oxef, Oxc5, 0x91, 0x39, 0x72, Oxe4d, Oxd3,
Oxbd, 0x61, Oxc2, 0x9f, 0x25, Ox4a, 0x94,0x33, 0x66, Oxcc, 0x83, Ox1d, Ox3a, 0x74, Oxe$,
Oxcb, 0x8d, 0x01, 0x02, 0x04, 0x08, 0x10, 0x20,0x40, 0x80, Ox1b, 0x36, Ox6¢c, 0xd8, Oxab,
0x4d, 0x9a, 0x2f, Ox5e, Oxbc, 0x63, 0xc6, 0x97, 0x35,0x6a, 0xd4, 0xb3, Ox7d, Oxfa, Oxef, Oxc5,
0x91, 0x39, 0x72, Oxe4d, 0xd3, Oxbd, 0x61, Oxc2, 0x9f,0x25, Ox4a, 0x94, 0x33, 0x66, Oxcc,
0x83, 0x1d, Ox3a, 0x74, Oxe8, Oxcb, 0x8d, 0x01, 0x02, 0x04,0x08, 0x10, 0x20, 0x40, 0x80,
Ox1b, 0x36, Ox6c, 0xd8, Oxab, Ox4d, O0x9a, 0x2f, Ox5e, Oxbc, 0x63,0xc6, 0x97, 0x35, Ox6a,
0xd4, Oxb3, 0x7d, Oxfa, Oxef, 0xc5, 0x91, 0x39, 0x72, Oxe4, 0xd3, Oxbd,0x61, Oxc2, Ox9f, 0x25,
Ox4a, 0x94, 0x33, 0x66, Oxcc, 0x83, Ox1d, 0x3a, 0x74, Oxe8, Oxcb, 0x8d}

Table 47: Rijndael S-Box

0 1 2 3 4 5 6 7 8 9 a b c d e f

00 | 63 | 7c |77 | 7b | f2 | 6b | 6f | ¢5 | 30|01 |67 |2b| fe | d7 | ab | 76

10 | ca | 82 | c9 | 7d | fa |59 |47 | fO | ad | d4 | a2 | af | 9c | a4 | 72 | cO

20 | b7 | fd | 93 | 26 | 36 | 3f | f7 | cc |34 | a5 | e5 | f1l | 71| d8 | 31| 15

30 |04 | c7 |23 |c3 |18 |96 |05 |9a |07 |12 |80 |e2|eb |27 |b2]|75

40 | 09 | 83 | 2c | la | 1b | 6e | 5a | a0 | 52 | 3b | d6 | b3 |29 | e3 | 2f | 84

50 {53 | dl1 |00 |ed |20 | fc | b1 |5b | 6a | cb | be |39 | 4a | 4c | 58 | cf

60 | dO | ef | aa | fb | 43 | 4d |33 |85 |45 | f9 | 02 | 7f | 50 | 3c | Of | a8

70 | 51 | a3 | 40 | 8f | 92 | 9d | 38 | f5 | bc | b6 | da | 21 | 10 | ff | f3 | d2

80 | cd | Oc |13 | ec | 5f | 97 |44 | 17 | c4 | a7 | 7e | 3d | 64 | 5d | 19 | 73

90 | 60 | 81 | 4f | dc |22 | 2a |90 | 88 |46 | ee | b8 | 14 | de | 5e | Ob | db

a0 | e0 | 32| 3a|0a |49 |06 |24 | 5c | c2 |d3 | ac |62 |91 |95 | ed | 79

bO [e7 | c8 |37 | 6d |8 | d5 | 4e | a9 | 6¢c | 56 | f4 | ea | 65 | 7a | ae | 08

cO | ba |78 | 25| 2e | 1c | a6 | b4 | c6 | e8| dd | 74 | 1f | 4b | bd | 8b | 8a

do | 70 | 3e | b5 | 66 | 48 | 03 | f6 | Oe | 61 | 35 | 57 | b9 | 86 | c1 | 1d | 9e

e0 (el | f8 | 98 |11 |69 | d9 | 8 |94 |9 | 1e | 87 | e9 | ce | 55 | 28 | df

fO | 8c | al | 89 | Od | bf | e6 | 42 | 68 | 41 | 99 | 2d | Of | bO | 54 | bb | 16

130

Table 48: Rijndael N-Box

Y

7 8 9 a b C d e f

19 |01 |32|02|1a|c6|4b | c7 | 1b | 68|33 |ee | df | 03

B
8lr
N
w
I
U
(<)}

64 | 04 | e0 | Oe |34 |8d |81 | ef |[4c |71 |08 |c8 | f8 |69 | 1c | cl

7d | c2 | 1d | b5 | f9 | b9 | 27 | 6a | 4d | ed | a6 | 72 | 9a | c9 | 09 | 78

65 | 2f | 8a | 05|21 | Of | el |24 |12 | fO | 82 | 45|35 |93 | da | 8e

96 | 8f | db | bd |36 | dO | ce |94 |13 | 5¢c | d2 | fl |40 | 46 | 83 | 38

66 | dd | fd | 30 | bf | 06 | 8b | 62 | b3 | 25 | e2 | 98 | 22 | 88 | 91 | 10

7e | 6e | 48 | c3 | a3 | b6 | 1e |42 | 3a | 6b | 28 | 54| fa | 8 | 3d | ba

2b | 79 | 0a | 15 | 9b | 9f | 5e | ca |4d4e |d4 | ac | e5 | f3 | 73 | a7 | 57

af | 58 | a8 | 50 | f4 | ea | d6 | 74 | 4f | ae | e9 | d5 | e7 | e6 | ad | e8

2c | d7 |75 | 7a | eb |16 | Ob | f5 | 59 | cb | 5f | bO | 9c | @9 | 51 | a0

7f | Oc | f6 | 6f | 17 | c4 | 49 | ec | d8 | 43 | 1f | 2d | a4 | 76 | 7b | b7

cc |bb|3e|5a|fb|60|bl|8|3b|52]|al|6c|aal|55]|29 |9

97 | b2 | 87 |90 | 61 | be | dc | fc | bc | 95 | cf | c¢d | 37 | 3f | 5b | d1

531398 |3c|41|a2|6d|47 |14 | 2a |9 |5d |56 | f2 |d3|ab

44 |11 | 92 | d9 | 23| 20| 2e |89 | b4 | 7c | b8 |26 |77 |99 |e3| a5

=0 (|0 (T O NGOOUVA_WINIFLR| O

67 | 4a |ed|de | c5|31 | fe |18 | 0d |63 |8 |80 | cO| f7 | 70| 07

The Rijndael N-Box contains the N values, such that {xy} = {03}" for an element {xy}.

Table 49: Rijndael E-Box

Yy

0 1 2 3|4 5 6 | 7 | 8 9 a b c d e f

01|03 |05|0f | 11|33 |55]| ff |1la|2e|72|9 |al| f8 |13]| 35

5f | el |38 |48 | d8 |73 |95 | a4 | f7 | 02|06 |0a|le| 22|66 | aa

e5 |34 | 5c|ed4 | 37|59 |eb | 26| 6a|be|do| 70|90 | ab | e6 | 31

53 | f5 |04 | 0c |14 |3c |44 | cc | 4f | d1 | 68 | b8 | d3 | 6e | b2 | cd

4c | d4 | 67 | a9 | e0 | 3b |4d | d7 |62 | a6 | f1 | 08 | 18 | 28 | 78 | 88

83 | 9% b9 | dO | 6b | bd|dc| 7f | 81 |98 | b3 | ce | 49 | db | 76 | 9a

b5 | c4 |57 | f9 |10 |30 | 50 | fO | Ob | 1d | 27 | 69 | bb | d6 | 61 | a3

fe |19 | 2b | 7d | 87 |92 | ad | ec | 2f | 71 |93 | ae | e9 | 20 | 60 | a0

fo | 16 | 3a | 4e | d2 | 6d | b7 | c2|5d|e7 |32 |56 fa|15]| 3f | 41

c3|5e|e2 |3d|47 | c9 |40 | cO |5b|ed|2c |74 |9 | bf | da | 75

9f | ba|d5 |64 | ac | ef | 2a | 7e |82 |9d | bc | df | 7a | 8e | 89 | 80

9b | b6 | c1 |58 | e8| 23 | 65| af | ea | 25| 6f | bl | c8 |43 | c5 | 54

fc | 1f |21 {63 | a5 | f4 |07 |09 | 1b | 2d | 77 | 99 | bO | cb | 46 | ca

45 | cf |d4a | de | 79 | 8 | 86 |91 | a8 | e3 | 3e |42 | c6 | 51| f3 | Oe

12 |36 [5a | ee |29 [7b | 8d [8c | 8f [8a |85 |94 a7 | f2]0d |17
39 [4b [dd | 7c [84 [97 [a2 [fd | 1c [24 [6c | ba | c7 [52 | f6 OB

= |0 (|0 T OVRINGOOUVA_AWIN KR O

The Rijndael E-Box contains the field element {E}, such that {E} = {03}(Xy)given (xy)

131

For the field used in Rijndael, {03} is a generator that produces Table 48 and Table 49. Table
48 shows that {57} = {03} and {83} = {03}*” , where the brackets on the exponent values
identify them as hexadecimal numbers. This gives the product as {57} - {83} = {03}'*¥ * % and
since (62) + (50) = (b2) in hexadecimal, Table 49 gives the resulting product as {c1}. These
tables can also be used to find the inverse of a field element since the g has an inverse
represented by g(ff)’(x) . Hence the element {af} = {03}(b7) has the inverse g(ff)’(w) = g(48) = {62}.

All elements except {00} have inverses.

Table 50: Rijndael Inverse S-Box

0 1 2 3 4 5 6 7 8 9 a b [d e f

00 | 52 | 09 | 6a |d5 |30 |36 | a5 |38 | bf |40 | a3 |9 |81 | f3 |d7 | fb

10 | 7c | e3 |39 |82 | 9b | 2f | ff | 87 |34 | 8e |43 |44 | c4 | de | e9 | cb

20 (54 | 7Tb | 94 | 32 | a6 | c2 |23 | 3d|ee | 4c |95 | 0b |42 | fa | c3 | 4e

30 |08 | 2e | al |66 |28 |d9 |24 | b2 |76 |5b|a2 |49 | 6d|8b|dl| 25

40 | 72 | f8 | f6 | 64 | 86 | 68 | 98 | 16 | d4 | a4 | 5¢ | cc | 5d | 65 | b6 | 92

50 | 6c | 70 | 48 | 50 | fd | ed | b9 | da | 5e | 15 | 46 | 57 | a7 | 8d | 9d | 84

60 | 90 | d8 | ab [00 | 8c | bc | d3 | Oa | f7 | e4 | 58 | 05 | b8 | b3 | 45 | 06

70 | dO | 2c | 1le | 8f | ca | 3f | Of | 02 | c1 | af | bd | 03 | 01 | 13 | 8a | 6b

80 | 3a |91 |11 |41 | 4f | 67 | dc | ea | 97 | f2 cf | ce| fO | b4 | e6 | 73

90 | 96 | ac | 74 | 22 | e7 | ad |35 |85 | e2 | f9 |37 | e8| 1c | 75| df | 6e

a0 [47 | f1 | 1a |71 | 1d |29 | c5 |8 | 6f | b7 | 62 | Oe | aa | 18 | be | 1b

bO | fc | 56 | 3e |4b | c6 | d2 |79 | 20| 9a | db | cO | fe | 78 | cd | 5a | f4

c0O | 1f | dd | a8 | 33 | 88 | 07 | c7 |31 |bl| 12| 10|59 |27 |80 | ec | 5f

do | 60 | 51 | 7f | a9 | 19 | b5 | 4a | 0d | 2d [e5 | 7a | 9f | 93 | c9 | 9c | ef

e0 (a0 | e0O | 3b | 4d | ae | 2a | f5 | bO | c8 | eb | bb | 3c | 8 | 53|99 | 61

fo | 17 | 2b | 04 | 7e | ba | 77 | d6 | 26 | el | 69 | 14 | 63 | 55 | 21 | Oc | 7d

Table 51: InvMixColumns Multiplication Matrix

o|la|lwo| o
||| T
O|lo|T|Qa
o |||

132

Table 52: ENS,-Box

y

0 1 2 3 4 | 5 6 | 7| 8|9 a b c | d| e f
0| co | f8 |ee | f6 | ff | d6 | de | 91 | 60 | 02 | ce | 56 | €7 | b5 | 4d | ec
1| 8f | 1f | 8 | fa | ef | b2 | 8¢ | fb | 41 | b3 | 5f | 45 | 23 | 53 | e4 | 9b
2| 75| el |3d|4c |6¢c|7e|f5 |83 |68 |51 |dl|f9|e2|ab| 62| 2a
3|08|95|46|9d |30 (|37 |0a|2f | 0e|24|1b| df | cd | 4de | 7f | ea
4|12 | 1d |58 |34 |36 |dc | b4 |5b|a4 |76 |b7|7d|52]|dd]| 5e | 13
5| a6 | b9 g cl |40 | e3 |79 |b6|d4d | 8|67 | 72|94 |98 | b0 | 85
6 | bb | c5| 4 |ed |8 |9a | 66|11 |8 |e9 | 04| fe | a0 | 78 | 25 | 4b
7| a2 |5d|8 |05 |3 |21 |70 | f1 |63 |77 | af | 42|20 | e5 | fd | bf
8|81 |18 |26 | c3 |be |35|8 |2 |93 |55 fc|7a|c8|ba|32]|ce€b
9| cO|19|9% | a3 |44 |54 | 3b |0Ob |8 |c7 |6b|28|a7|bc| 16 | ad
a|db | 64| 74|14 |92 | Oc |48 | b8 | 9f | bd | 43 | c4 |39 |31 |d3 | f2
b|d5 |8 | 6e|da |01 |bl |9 |49 | d8 | ac | f3 | cf |ca | f4 | 47 | 10
c|6f | fO | 4a | 5c|38|57|73|97 |cb|al|e8|3e |96 |61]|0d]| Of
d|e0| 7c |71 | cc |90 |06 | f7 | 1c|c2 | 6a|ae |69 |17 |99 | 3a | 27
e | d9 |eb |2b|22|d2|a9 |07 |33 |2d|3c|15|c9 |87 |aa | 50| a5
f | 03|59|09|1a|65|d7 |84 |d0| 82|29 |5a|le|7b| a8 |6d| 2c

Table 53: ENS;-Box
y

0 1 2 3 4 | 5 6 | 7| 8|9 a b c | d| e f
0|a5|8 |99 |8 |0d|bd|bl|54|50|03|a9|7d| 19|62 | eb6 | 9a
1|45 |9d |40 | 87 |15 | eb | c9 |Ob | ec | 67 | fd | ea | bf | f7 | 96 | 5b
2| c2|1c|ae | 6a |5a |41 |02 | 4 | 5¢c | f4 |34 |08 |93 |73 |53 | 3f
3| 0c|52|65|5e |28 |al|Of | b5|09 |36 |9 |3d|26 |69 |cd]| of
4 | 1b | 9% |74 | 2e | 2d | b2 |ee|fb | f6 |4d |61 | ce | 7Tb | 3e | 71 | 97
5| f5 | 68 -I 2c | 60 | 1f | c8 | ed | be | 46 | d9 | 4b | de | d4 | e8 | 4a
6 | 6b|2a|e5|16 | c5|d7 |55 |94 | cf |10 | 06 | 81| fO | 44 | ba | e3
7| f3 | fe|cO|8 |ad | bc |48 |04 | df | c1 |75|63 |30 | 1a | Oe | 6d
8| 4c |14 |35 | 2f | el | a2 | cc |39 |57 | f2 |82 |47 | ac | e7 | 2b | 95
9 | a0 |98 | dl1 | 7f |66 | 7e | ab | 83 | ca |29 | d3 | 3c |79 |e2|1d | 76
a|3b |56 |4e | 1e|db | Oa | 6c|ed4 |5d|6e|ef | a6 | a8 | ad |37 | 8b
b|32 (43|59 | b7 |8 |64 |d2|e0|bd| fa|07|25]| af | 8¢ | e9 | 18
c|d5 |88 | 6f | 72|24 | fl | c7 |51 |23 | 7c |9 |21 |dd| dc | 8 | 85
d|90 |42 | c4 |aa |d8 | 05|01 |12 | a3 | 5f | f9|do |91 |58 |27 |h9
e | 38|13 | b3 |33 |bb|70|89 | a7 |b6|22|92 |20 |49 | ff | 78 | 7a
f|8 | f8 | 80|17 | da |31 | c6 | b8 |c3 | b0 |77 |11 |cb | fc | d6 | 3a

133

Table 54: Inverse ENSg-Box

y

0 1 2 3 4 | 5 6 | 7| 8|9 a b c | d| e f
O0|51|7e|1a|3a|3b| 1f | ac |4b | 20| ad | 88 | f5 | 4f | ¢c5 | 26 | b5
1|(de |25 |45 |5d| c3 |81 |8 |6b |03 |15 | bf | 95 | d4 | 58 | 49 | 8
2| 75| f4 199 |27 |be | fO |c9|7d|63|e5|97 |62 |bl|bb| fe|f9
3|70 | 8 |94 |52 |ab |72 |e3|66|b2| 2f |8 |d3|30|23|02]|ed
4 | 8| a7 | f3 |4e | 65|06 |dl|cd4 |34 |a2|05|ad|0b| 40| 5e | hbd
5 3¢ |9 |dd|4d |91 |71 |04 |60 |19 | d6 |89 | 67 | bO |07 | e7 | 79
6| a1 | 7c| f8 [0932 1e|6c| fd [Of [3d|36]0a|68]09b]24
7| 0c|93|b4|1b |8 |61 |5a|1c|e2|cO|3c|12|0e| f2|2d]| 14
8|57 | af |ee | a3 | f7 | 5¢c |44 | 5b | 8b | cb | b6 | b8 |d7 |42 | 13 | 84
9|8 |d2|ae | c7 |1d|dc|0d |77 |2b| a9 |11 | 47 | a8 | a0 | 56 | 22
a |87 |d9 |8 |98 | a6 | a5 |da| 3f | 2c |50 |6a |54]| f6 |90 | 2| 82
b| of |69 | 6f | cf | c8 |10 | e8| db | cd | 6e | ec |83 |e6 | aa |21 | ef
c | ba|d4a|ea |29 |31 |2a|c6|35|74 | fc |e0 |33 | f1 |41 | 7f | 17
d| 76 |43 | cc |ed | 9e |4c |cl |46 |9d |01 | fa | fb |b3|92]|e9 | 6d
e| 9 |37 |59 |eb|ce |b7|el|7a|9 |55|18 | 73 |53 | 5f | df | 78
f|lca|b9 |38 |c2|16|bc |28 | ff |39 |08 |d8 |64 |7b|d5 | 48 | dO

Table 55: Inverse ENSg-Box
y

0 1 2 3 4 | 5 6 | 7| 8|9 a b c | d| e f
0|50 |53 |c3 |9 |[cb|fl|ab|93|55]|f6 |91 |25 | fc | d7 | 80 | 8f
1(49 |67 |98 | el | 02|12 | a3 |c6|e7 |95 |eb|da|2d|d3 |29 | 44
2 | 6a| 78 |6b|dd |b6 |17 |66 | b4 | 18 | 82 | 60 | 45 | e0O | 84 | 1c | 94
3|58|19 |87 | b7 |23 |e2|57|2a|07|03|9|a5| f2 |b2| ba| 5c
4 | 2b |92 | f0o |al|cd|d5| 1f | 8a |9d | a0 | 32| 75|39 | aa |06 |51
5 f9 | 3d|ae |46 | b5 | 05| 6f | ff | 24 | 97 | cc | 77 | bd | 88 | 38 | db
6|47 | €9 | c9 -I 83|48 | ac |4e | fb |56 | 1le | 27 | 64 | 21 | d1 | 3a
7 | bl | Of |d2 |9 | 4f | a2 |69 |16 | 0Oa | e5 |43 | 1d | Ob | ad | b9 | c8
8|8 | 4c |bb | fd | 9f | bc | c5 |34 |76 | dc |68 | 63 | ca | 10 | 40 | 20
9|7d | f8 |11 | 6d|4b | f3 | ec | dO | 6c |99 | fa |22 | c4 | 1a | d8 | ef
a|c7|cl|fe |36]| cf |28|26| a4 |ed |0d |9 |62|c2|e8|5e]|f5
b|be|7c|a9 | b3 |3b|a7|6e|7b| 09| fd |01|a8|65|7e| 08| eb
c|d9 | ce |dd |d6| af | 31| 30| cO |37 | a6 | b0 |15 | 4a | f7 | Oe | 2f
d|8 | 4d |54 | df | e3 | 1b | b8 | 7f | 04 | 5d | 73 | 2e | 5a | 52 | 33 | 13
e| 8 |72 |8 | 8 |ee |35|ed |3 |59 3f |79 | bf | ea | 5b | 14 | 86
f |8 |3e|2c|5f|72|0c |8 |41 |71 |de |9 |90 |61 |70 |74 | 42

134

Table 56: Inverse ENSp-Box

y

0 1 2 3 4 | 5 6 | 7| 8|9 a b c | d| e f
O|a7 | 65| a4 |5e|6b |45 |58 |03 | fa|6d| 76| 4c|d7 |cb |44 | a3
1(5a|1b | 0e | cO| 75| f0 |97 | f9 | 5f|9c | 7a |59 |83|21 |69 | c8
2|18 |79 (3e| 71| 4 |ad | ac |3a|4a |31 (33| 7/f |77 |ae | a0 | 2b
3| 68| fd|6c | f8 |d3 |02 | 8 |ab |28 | c2 | 7b | 08|87 | a5 | 6a | 82
4 | 1c | b4 | f2 | e2 | f4 | be |62 | fe | 53 |55 | el |eb | ec| ef | Of | 10
5 8 |06 |05|bd |8 |5d|d4d |15 | fb | e9 |43 |9 | 42 | 8b | 5b | ee
6| 0a | of [1e I 86 [ed [70 | 72 [ff [38 | d5 |39 [d9 | a6 |54 [2e
7|67 | e7 |9 | 91| c5|20|4b | 1la|ba|2a|e0 |17 |0d | c7 | a8 | a9
8| 19|07 |dd |60 |26 | f5 |3b|7e|29|c6| fc | fl |dc| 8 |22 11
9|24 |3d|32|al|2f |30 |52 |e3| 16| b9 |48 |64 | 8c | 3f | 2c | 90
a|4d4e |dl | a2 |0Ob |81 |de |8 | bf |9d |92 | cc |46 |13 | b8 | f7 | af
b | 8 |93 |2d |12 |99 |7d |63 |bb| 78|18 | b7 |9a | 6e | eb6 | cf | e8
c|9 |36 |09 | 7c | b2|23|94 |66 | bc|ca|d0O|d8 |98 | da| 50| f6
d|d6 | b0 |4d | 04 | b5 | 88 | 1f | 51 | ea | 35|74 |41 | 1d | d2 | 56 | 47
e | 61 | 0c |14 |3c|27|c9|e5|bl|df|73|ce |37 |cd]|aa| 6f |db
f|f3|cd |34 |40 |c3 25|49 95|01 |b3|ed4|cl|84|b6| 5|57

Table 57: Inverse ENSo-Box
y

0 1 2 3 4 | 5 6 | 7| 8|9 a b c | d| e f
0| f4 |41 |17 |27 | ab |9d | fa | e3 |30| 76| cc |02 |e5]|2a|35]|62
1 bl |ba|ea|fe | 2f| 4c |46 | d3 | 8 [92 | 6d |52 | be | 74 | el | c9
2| c2 |8 |58 |b9|el |8 |20 |ce|df |1a |51 |53 |64 |6b| 81|08
3|48 |45 | de | 7b |73 |4b | 1f | 55 | eb | b5 | c5 | 37 |28 | bf | 03 | 16
4 | cf |79 |07 |69 |da |05 |34 |ab6|2e|f3 |8 | fe |8 |60|71|6e
521 | dd|3e|e6 |54 |cd | 06|50|98 |bd|40|d9 | e8| 89| 19 | c8
6| 7c | 42 | 84 -I 80| 2b |11 | 5a | 0e |8 |ae |2d | Of | 5¢c | 5b | 36
7| 0a |57 |ee |9 | cO|dc |77 12|93 | a0 |22 |1b |09 | 8b | b6 | 1le
8| f1|75]|99 | 7f |01 |72 |66 |fb |43 |23 |ed|ed |31 |63 |97 | cb
9 | 4a|bb|f9 |29 |9 | b2 |8 |cl|b3|70|94|e9 | fc | fO | 7d | 33
a|49 (38 | ca|d4 | f5 | 7a|b7|ad|3a |78 | 5f | 7e|8d|d8 |39 | c3
b|5d|d0|d5 |25 | ac |18 | 9c | 3b |26 |59 | 9a | 4f |95 | ff | bc | 15
c|e7 | 6f | 9f | bO|ad4 | 3f |a5 | a2 | 4e |82 |90 | a7 |04 | ec | cd |91
d|4d | ef | aa | 96 | dl | 6a | 2c | 65 | 5e | 8 | 87 | 0Ob | 67 | db | 10 | d6
e|d7 |al | f8 |13 | a9 |61 |1c |47 |d2 | f2 |14 | c7 | f7 | fd | 3d | 44
f|af | 68 |24 | a3 |1d|e2 | 3c|0d|a8 | Oc |bd |56 |cb|32]|6c| b8

135

Table 58: EN-Box

y

0 1 2 3 4 | 5 6 | 7| 8|9 a b c | d| e f
0 H Oe | 1c |12 |38 |36 |24 | 2a| 70| 7e | 6c | 62 | 48 | 46 | 54 | 5a
1 e0|ee| fc | f2 |d8 | d6 | c4 | ca |90 |9 | 8 |82 | a8 | a6 | b4 | ba
2|db | d5|c7 | c9|e3|ed| ff | fl |ab|a5|b7 | b9 |93 |9d| 8 | 81
3|3|35|27 (29|03 |0d| 1f |11 |4b |45 |57 |59 |73 |7d| 6f |61
4 |ad | a3 | bl | bf |95|[9 |8 |87 |dd |d3 |cl | cf |e5]|eb | f9 | {7
5 4d |43 |51 | 5f | 75| 7b | 69|67 | 3d |33 |21 | 2f | 05 |O0b | 19 | 17
6|76 | 78 | 6a |64 |4 |40 |52 | 5c | 06|08 | 1a|14|3e |30 | 22| 2c
7|96 | 98 | 8a | 84 | ae | a0 | b2 | bc |e6 | e8| fa | f4 |de|dO | c2 | cc
8|41 | 4f | 5d |53 |79 |77 |65 |6b|31|3f|2d|23|09 |07 |15 | 1b
9|al| af [bd | b3 |99 |97 |8 |8b |dl | df [cd | c3 |e9|e7 | f5 | fb
a|9a |94 |8 | 88 | a2 | ac | be | b0 |ea|ed | f6 | f8 | d2 | dc | ce | cO
b | 7a |74 |66 | 68|42 | 4c | 5e |50 | 0a |04 |16 | 18 |32 | 3c | 2e | 20
clec|e2 | f0o|fe|dd|da|c8 | c6 |9 |92|80 |8 | a4 | aa| b8 | b6
d|Oc|02|10|1e |34 |3a |28 |26 | 7c| 72|60 | 6e |44 | 4a | 58 | 56
e | 37|39 |2b |25 | Of |01 |13 |1d |47 |49 |5b |55 | 7f |71 |63 | 6d
f|d7 | d9 |cb | c5 | ef |el| f3 | fd |a7 | a9 |bb|b5| 9 | 91| 83| 8d

Table 59: ENg-Box
y

0 1 2 3 4 |5 6 |7 |8 |9 a b |c d |e |f
0 H Ob {16 |1d |2c |27 |3a |31 |58 |53 |4e |45 |74 |7f |62 |69
1 b0 |bb |a6 [ad [9c |97 |8a |81 |e8 |e3 |fe |5 |c4 |cf |d2 |d9
2 | 7b |70 |6d |66 |57 |5c |41 |4a |23 |28 |35 [3e |[Of |04 |19 | 12
3 |cb [cO |dd |d6 |e7 |ec |fl |[fa |93 |98 |85 | 8e |bf b4 | a9 | a2
4 |[f6 |fd |[e0 |eb |da |dl |cc |c7 |ae |a5 [b8 | b3 |82 |89 |94 | of
546 |4d |50 |5b |6a |61 |7c |77 |1le |15 |08 |03 |32 |39 |24 | 2f
6 |8 (86 |9b |90 [al |aa | b7 |bc |d5 |de |c3 | c8 |f9 |f2 |ef |e4d
7 |3d |36 |{2b |20 |11 |1a |07 |Oc |65 |6e |73 |78 |49 |42 |5f |54
8 |f7 |fc |el |ea |db |dO |cd |c6 |af |a4 | b9 | b2 |83 |88 | 95 | 9e
9 |47 |4c |51 |5a |[6b |60 |7d |76 | 1f |14 |09 |02 |33 |38 |25 | 2e
a |8 (87 |9a |91 |a0 |ab | b6 |bd |d4 |df |[c2 |c9 |f8 |f3 |ee |e5
b |3c |37 |2a |21 |10 |1b |06 |Od |64 [6f |72 |79 |48 |43 | 5e |55
c |01 |0a |17 |1c |2d |26 |3b |30 |59 |52 |4f |44 |75 |7e |63 | 68
d|bl [ba |a7 |ac |9d |96 [8b |80 |e9 |e2 |ff |f4 |c5 |ce |d3 | d8
e |7a |71 |6¢c |67 |56 |5d |40 |4b |22 |29 |34 |3f |0Oe |05 | 18 | 13
f |ca |cl [dc |d7 |e6 |ed |fO |fb |92 |99 |84 | 8f |be | b5 |a8 |a3

136

Table 60: ENp-Box

y

0 1 2 3 4 | 5 6 | 7| 8|9 a b c | d| e f
0 H Od | 1la |17 |34 |39 | 2e |23 | 68| 65| 72| 7f | 5c |51 |46 | 4b
1| do|dd|ca|c7 |ed|e9|fe | f3 | b8 |b5|a2| af |8 |81 |96 | 9b
2 | bb|b6|al|ac| 8 [82 |95|98|d3|de|c9 | cd4 |e7|ea| fd | fO
3| 6b|66 |71 | 7c | 5f |52 |45 |48 |03 |0e |19 |14 |37 |3a|2d| 20
4 | 6d| 60|77 |7a|59|54|43 |4e | 05|08 | 1f |12 |31 | 3c | 2b | 26
5| bd|b0O|a7|a |8 |8 [93 |9 |d5 | d8 | cf | c2 | el |ec | fb | f6
6| d6 | db | cc | cl |e2 | ef | f8 | f5 |be| b3 |ad| a9 |8 |87 |90 | 9d
7|06 |0b|1c |11 (32| 3f |28 |25|6e |63 |74 |79 | 5a |57 |40 | 4d
8|da|d7 | cO|cd|ee|e3 | f4 | f9 |b2| bf |a8|a5|86|8b| 9 |91
9 | 0a|07 |10 |1d|3e (33|24 |29 |62 | 6f| 78| 75|56 |5b|4c |41
a| 61| 6c|7b| 76|55 |58)| 4 |42 |09 |04 |13 | 1e |3d |30 27| 2a
b|bl|bc|ab| a6 |8 |88 | 9 |92 |d9 |d4d | c3 |ce|ed|e0| f7 | fa
c | b7 | ba|ad|a0 |83 |8 |99 |94 | df [d2 | c5|c8 |eb|eb6| fl | fc
d| 67| 6a|7d |70 |53 |5e |49 |44 | 0of |02|15| 18 |3b |36 |21 | 2c
e | Oc|01|16|1b |38 |35 |22 | 2f | 64|69 | 7e| 73|50 | 5d | 4a | 47
f|ldc |dl |c6|cb|e8|e5 | f2 | ff |[bd| b9 |ae| a3 |80 |8 | 9a | 97

Table 61: ENy-Box
y

0 1 2 3 4 | 5 6 | 7| 8|9 a b c | d| e f
0 H 09 |12 | 1b |24 | 2d |36 | 3f | 48 | 41 | 5a | 53 | 6¢c | 65| 7e | 77
1 /90|99 |82 |8b|bd|bd|ab| af | d8 |dl|ca|c3 | fc | f5 | ee | e7
2|3 |32|29|20| 1f |16 | 0d |04 | 73| 7a| 61| 68 | 57 | 5e | 45 | 4c
3|ab | a2 |b9|b0O| 8 |8 |9d |94 |e3 |ea|fl | f8 |c7 | ce|d5|dc
4 |76 | 7f | 64 | 6d |52 |5b |40 |49 |3e |37 | 2c|25|1a|13 |08 |01
5| e6 | ef |fd | fd|c2|cb|[d0O|d9|ae | a7 | bc|b5|8a|83|98 |91
6 |4d | 44 | 5f | 56 |69 |60 | 7b | 72 | 05| Oc | 17 | 1e | 21 | 28 | 33 | 3a
7 |dd | d4d | cf | c6| f9 | fO|eb|e2|95| 9 |87 | 8e | bl |b8| a3 | aa
8|e|e5|fe | f7 | c8|cl|da|d3 |ad | ad |b6 | bf | 80|89 |92 | 9b
9| 7c | 75| 6e | 67 |58 |51 |4a |43 |34 |3d| 26| 2f |10 | 19 | 02 | Ob
a|d7 |de|c5|cc|f3 | fa|el|e8| 9 |96 |8d |8 |bb|b2|a9 | a0
b|47 | 4e | 55| 5c |63 | 6a | 71|78 | 0f |06 |1d | 14 | 2b |22 |39 | 30
C| 92|93 |8 |81 |be|b7|a |a5|d2|db|cO|c9|fe | ff | ed | ed
d|0a|03|18 |11 |2e |27 |3c|35|42|4b |50 |59 |66 | 6f |74 | 7d
e|al| a8 | b3 |ba |8 |8 |97 |9 [e9|e0|fb | f2 |cd|c4 | df | d6
f|31|38|23|2a|15|1c |07 |0e| 79|70 | 6b |62 |5d]| 54| 4f | 46

137

138

List of Figures

Figure 1: DES KeY SCREAUIEcc..uuveeeeieeeeeceee ettt e et e st e e et e e et e e e e eaaae e e e naeee s 23
=V Y R 1= K o =d Y a1V o ot o [IR U 25
FIUIe 3: MQiN PrOCESS Of DEScc.uveeeeeeeeeeeceeeeectte e e ectee e e e eaee e e st e e e s ssae e e ssaaaeesennsaeeesnanaeeean 26
FIBUIE 4: AES MQIN PrOCESS.ceieieieeeieieeeieceesiseeeseeessss s s sss s s s s s s nan 28
FIGUIE 5: AES SUBDBYLESooeeeeeeeeeeieeee ettt e ettt e e et e e e e tae e e ettt e e e sataeeesnasaeeeensaeesennsaeeesannsneean 32
FIGUIE 6: AES SHIfROWSoeeeetieee et e ettt e ettt e ettt e e e et e e e et e e e e ataee e s asaeeeensaeeeensaeeesannaneean 33
FIUIE 7: AES MIXCOIUMNS ...t eecteee et e e e ctae e e et e e e ettt e e e s eabae e e ennsaeeeensaeeeennnseeean 34
Figure 8: AES AAAROUNIKEYcooecuueiiieciiiieeiiieeeecttte e scteee et e s st e e e s stae e e s saaaee e ssnsaeeesnanaeeen 34
FISUIE O: IDEA IMQIN PrOCESS «...uvvveeiiiiieeiiiiteeeeeeeeittte e e e e sssiaateee e e s s s ssisaaeeeesssssssnesaeeeesssnnnnns 36
FIUIE 10: IDEA ROUNGueeeeiieee ettt ettt ee ettt e e tte e st e e st e e e s satae e e sntaeesenssaaesnnnneeen 38
Figure 11: Electronic Codebook (ECB) ENCIYpPLtioN..........c..eccueeecueeeiveesireeecreeesreesiseesssseesseesnens 41
Figure 12: Electronic Codebook (ECB) DECIYPLiONc..cccueeecueeeieeeiieeeireeesreesiseeessaeesvee e 41
Figure 13: Difference of ECB Mode from the OtRErSccccveiieciieeieiiieeeesieeeesveeeesiaeeean 42
Figure 14: Cipher-block Ch@ining ENCIYPLIONceeeecuueeeeciieeeeictieeeeeiteeeeesiaaeeeesisseeesesnseeeas 42
Figure 15: Cipher-block Ch@ining DECIYPLIONeeeeecuueeeecirieeeecitieeeeeiteeeeesiraeeeesisaeeesesaeeeas 43
Figure 16: Propagating Cipher-block Chaining (PCBC) ENCryptionccccccvuveeeecveeeeecunnnn. 44
Figure 17: Propagating Cipher-block Chaining (PCBC) Decryption.............ccccceeeeeecveeesecunnnn 44
Figure 18: Cipher Feedback (CFB) ENCIYPLioNcccccuueeeeciuieeeeiitiieeeciieeeeesieeeeesitaeeesesnneeen 45
Figure 19: Cipher Feedback (CFB) DECIYPLION.............cceccuueeeecrieeeecitieeeeeiteeeeesiaaeeeesraeeeeenaeeeas 45
Figure 20: Output Feedback (OFB) ENCIYPLIONcceeccueeeeecirieeeeeitiieeecireeeeesisseeeesisseeesssnveeens 46
Figure 21: Output Feedback (OFB) DECrYpLioNcccveecueeeeiieeeiieeiieeecteeeeveescieessrveessee e 47
Figure 22: Counter (CTR) ENCIYPLIONueecueeeeereeeiieeeieeeeteeeeiteeeitaeestveesteeessaeesseesssaeesaseesnnes 48
Figure 23: Counter (CTR) DECIYPLIONocccueeeereeeeieeeieeecieeeeiteesiteeestveesereeessaeesseesssaeesareeennes 48
Figure 24: Crypto IP Archit@Cture OVEIVIEW............ccuueeeecuveeeeiiieeesiiieeeesiiveeessaseessssseesssnnseees 59
Figure 25: TYPICAl AMBA SYSEEMoeeeeeieeeeecieeeeecteeeectee et e e s stae e e s seae e e ssaae e e snnsseeesnnaeeean 61
Figure 26: AMBA AHB INtEICONNECEION. ... s 64
Figure 27: AMBA AHB SIQVE........ccoccuuuieiecieee ettt ectaee et e e st e e e s saae e s s saaae s esasaeeessaaeee s 65
Figure 28: Main CONIONEI FSM............uuuueeeeeeeeeeeeceeeeee e e eeecctte e e e e e e s staaae e e e e e e e s snbaaaeeaeesennnnnes 66
Figure 29: Main Controller BIOCK DiQQIramuuueeeeiecccciiieieee e ecccciteee e e e e e e cveeaee e e e e e ennnns 67
FIZUre 30: WAVEFOIM POIt 1uueeeeeeeeeeiieee ettt e e e e e e setttte e e e e e e e s baaae e e e e e s e s sanssaaeeaaaeesnnnnes 68
FIZUIE 31: WAVEFOIM POIt 2uuveeeeeeeeeeeeeeee ettt e e e e ettt e e e e e e e s sbaaae e e e e e e e s nssaaeeaaeeennnnnes 69

139

Figure 32:
Figure 33:
Figure 34:
Figure 35:
Figure 36:
Figure 37:
Figure 38:
Figure 39:
Figure 40:
Figure 41:
Figure 42:
Figure 43:
Figure 44:
Figure 45:
Figure 46:
Figure 47:
Figure 48:
Figure 49:
Figure 50:
Figure 51:
Figure 52:
Figure 53:
Figure 54:
Figure 55:
Figure 56:
Figure 57:
Figure 58:
Figure 59:

140

Register File BIOCK DiQQramccocuiiecieiiieiiieieeiies e eeciee e esieee s esee e s esveee s 73

DES&AES Engine Symbol Diagram............ccceeeeecueeieeieeseencieeessiieeessieessssveessssnves 77
ENS OPEIALION ..ccovvieeiiiiiiieee ettt ettt ettt e e e e et ree e e e e e s e saasesaeees 80
MOdified AES MQIN PrOCESScccuuiiieeiieeieciiieeeecieeesesieeessstteeesssseeeesssseeeesssseeesanns 81
Operation Mode ProCeAUIEccuueeeccueeeeciieeeeccee e eeeee e e ciee e e erae e e eaae e e 83
DES&AES Engine BIOCK DiGGIramM...........cccoccuveeeeeiieeeeeiieeeeeiiee e eete e esveee e svaea e e 84
DES SO BIOCK DiQGQIAM c....vveeeeieee ettt ettt et e e e tae e e evte e e vae e s e saaae e s enres 85
DES AO BIOCK DiQQIQmcccoeueeeeeeiee et eeee ettt et e e vae e e svae e e 85
AES SO BIOCK DiGGIAMoooceeeeeeeieeeeceee e ettt e e tae e s abae e e 86
AES AO BIOCK DiQGIAM........oooeeeiieeeeciieeeecee e e ceeees it e e e e ctee e e e aaee e s e ataeesennsaeeeenres 86
Results of DES Main Cores Implementation (tsmc 90Nm)ccccccvueeeveeecreennnnen. 87
Results of AES (128-bit key) Main Cores Implementation (tsmc 90nm) 88
Results of AES (192-bit key) Main Cores Implementation (tsmc 90nm).................. 89
Results of AES (256-bit key) Main Cores Implementation (tsmc 90nm).................. 89
IDEA Engine Symbol DiQGramcccueieccieiieeciieeeeeiieeeeectee e ssieee s esveeesssveeesssases 93
IDEA SO BIOCK DiQQIAmccoocueeeiieiieee et eetee e eetee e vte e s svtee s sree e e svae e s e naves 98
IDEA AO BIOCK DiGQQIQM c.....veeeeiieeeeeiee ettt eetee et e e s tte e e svte e s vae e e sabae e s e nnes 98
Results of IDEA Main Cores Implementation (tsmc 90nm)..............cccoceeeeecveeeennen. 99

RSA Engine Symbol DiQGramcccueeeeecuueeeeeciieeeecieeeeecieeeeecteeeeecvaneeeseranee e 103
RSA ENngine BIOCK DiQGIQIMuoeeeecuveeeeeciieeeeeeieeeeectieeeeectteeeeectteeeeseraeeeesveeeaeeans 111
Square and Multiply BIOCK DiQGramcccoeeeeecueeeeeiieeeecieeeeecieeeeeeveee e e 112
Montgomery Multiplication BIOCk Diagram..............ccceeeecveeeeeciieeeeeiieeeeecieeeeens 112
Results of RSA (1024-bit key) Main Cores Implementation (tsmc 90nm)............ 114
Results of RSA (2048-bit key) Main Cores Implementation (tsmc 90nm)............. 114
Top View Of the DE4 BOGId...........ccuuueeeecuveieeiieeeeccieeeecciee e setee e iee e s eavae e e 119
Bottom View Of the DE4 BOGId.............ooeoecueieiciiieeeecieee e ccieee e ectee e esvaeee s ssvanee e 119
DE4 Board BIOCK DiGQIQmc.uueeieeiiieiccieeeeecieeeeecttee e eesitee e e eitee e e esvteee s svaneeeenns 120

External Controller BIOCK DiGgramccoueeeeeiuieeiecieeeeecieeeeecieeeeecieeeesssvaeeee s 121

List of Tables

Table 1: MixColumns MultiplicAtion MOTIiXccueeeeciueeeeiiieeeeciieeeecreeeesve e e e saeeeeeareee s 33
Table 2: Decryption Subkeys Generation TADIE.............cccueeeeciveeeeciiieeeeciieee e e eaeee s 39
Table 3: RSA AIGOrithim SUMIMQAIYccuueeeeiiiee e et eceee e ae e e e sve e e e saae e e s eaae e e snsaaee s 54
Table 4: Features of different AMBA BUSESc.uueeeccueeeeeiiieeeeiiieeeeicaeessscveessssveesssssenees 60
Table 5: AMBA AHB SiGNQIScoooecueeeeeecieee et eectee ettt e ettt e e stae e e e saaa e e e ssaaae e e eenraeeesnnsaaeen 63
Table 6: Control Register SPeCIfiCatioNc.uueeeccueeeecciieeeeciteeeeccee e este e e esae e e e aae e e e eaaeee s 70
Table 7: Status Register SPECIfICATION...........cccuueieeccuieeeccieeeecctee e e e e e eee e e rae e e e saaeee s 71
Table 8: Input Register SPECIfICALtIONcoccuveiieciiie ettt e e saree s 71
Table 9: Key Register SPECIfiCALtIONc.uuuiecuiiiieciiiee ettt sree e e e e s sareee s 71
Table 10: RSA_N Register SPeCifiCatioNnccuuiiecuieiiiciiieeeiiieeeectee e esveeessaae e e saeeessareee s 71
Table 11: RSA_F Register SPeCifiCatioN...........ccuuiieccuueeiiciiieeeiiieeeecvee e esvee e s sae e esaeeesnaree s 72
Table 12: RSA_E Register SPeCifiCationccuuiieccuueiiiciiieeeiiieeeecvee e ssveeessae e e saeeessareee s 72
Table 13: Output Register SPECIfiCALtIONc..uiiecuuiiiiciieeeiiie et e e saaee s 72
Table 14: DES&AES Engine Pin DESCIIPLIONcccccuueeeeeiieeeeiieeeeeciteeeeestteeeesteeeeeeraeeessnreee s 77
Table 15: Results of DES Main Cores Implementation.............ccc.ccccueeeecceeeeeicieeeeeciieeesecaveeen 87
Table 16: Results of AES Main Cores Implementation................ccccccueeeeccuieeeeccieeeeciieeeeeciveenn 88
Table 17: Results of DES and AES Key Generator Cores Implementation...................cccuu..... 90
Table 18: IDEA Engine Pin DEeSCIIPLION..........ccccuueeeecieeeeccieeeeeciteeeeeitaeeeesaaeeeesaaeeeessaeeeensaeeean 93
Table 19: Square and Multiply AIGOIitAM...............c.uueieciieeeeceiee e e e 96
Table 20: Modified Square and MUILIPIYoccueeeeeciieeeecieieeeccee e e e 96
Table 21: Results of IDEA Main Cores Implementationccccveeeeccveeeeiiieeesciveeesiineeens 99
Table 22: Results of IDEA Key Generator Cores Implementationccccceeeeeeeeecciveeennnnne. 100
Table 23: RSA Engine Pin DESCIIPLIONccoccuveieeiiieeeeciiieeeeiiee e estee e e setee e e e svae e s eavae e s e v 103
Table 24: Montgomery Multiplication AlGorithm...............cccoccveeeiiiiiieeeiiee e 105
Table 25: 1° Stage of 2% (MOd N) COMPULATION..........oeeveeereeeeeeeeeeeeeeeeseeeeeeeree e 106
Table 26: 2™ Stage of 2% (MOd N) COMPULALIONceveeereeeeeeeeeeeeeeseeeee e 107
Table 27: PNk AIGOItAMooieeeieee ettt ettt e e aee e e e e e e e et ae e e e sanees 107
Table 28: (14AD)/C AIGOIEAMoooceeeeeeeeeeeeeeee ettt e e e e e e etee e eaeeeeaesenaeeeens 109
Table 29: Results of RSA Main Cores Implementationcccccoveeeecieeeeecceeeeeeiriee e 113
Table 30: Results of RSA Key Generator Cores Implementation..............ccccceeeeeeecccnveveenennnn. 115
Table 31: Permuted CROICE 1c..eoeiueeiiiieeiieeeee ettt e e 125

141

Table 32: Permuted CROICE 2..........coocuueeiieieiiii ettt ettt e e e 125
Table 33: SUDKEY ROLALIONc...vveeeeeiieieeeiiee ettt ee et e e et e s abee e s s e e e s abee e s s anes 125
Table 34: INitial PErMULALIONccocueiiiieeiie ettt ettt ettt et e e s e e saee e 126
Table 35: Inverse INitial PErMULALIONccoovueiiiiieiieeeiieeeiee ettt 126
Table 362 E-Bit SEIECLIONeeeueeeeiieiieieeeeeestee sttt s nee e 126
Table 37: P PErmMULALIONcc..eeiueeeeieieeeeeeteete ettt sttt ettt nee e 127
TADIE 38 5-BOX I ..ottt st st st sttt be e saee e e e e reen 127
TADIE 39 5-BOX 2 ..ttt s st st st be e s eeeereen 127
TADIE 402 S-BOX 3 ..ttt sttt et h e st s b e st b e b s b st eaneereen 127
TADIE AL S-BOX 4 ..ttt sttt st sttt st b e s be e saeeeaneereen 128
TADIE 42: S-BOX 5 ..ottt ettt e e e e e e e ae e e e abae e e e abaeeeenares 128
TADIE 432 5-BOX 6 ...ttt ettt ettt ettt e e e e e e e e e et ae e e e abaeeeearaeeeenraes 128
TADIE A4: S-BOX 7 .ottt ettt ettt et e ettt e e et e e e e e e e et e e e e e abaeeeeabaeeeearees 128
TADIE 45: S5-BOX 8 ...ttt ettt ettt ettt e e e e e e e s e e e e b ae e e eabeeeeenarees 129
B o) (T oo 1 Y PR PR 130
TabIE 47: RINAGEI S-BOXcoocueevieieiiie ettt ertte e ee e et e e e sbee e e s sbee e s s snbae e e snbeeeeenanees 130
Table 48: RIJNAGEI N-BOX......ccccuueiieiiiieeeiiieeeeciee e sctee e e svee e e s aee s s sbbee e e s saaesssnnbaeeessbeeessnasens 131
TablE 49: RIJNAGEI E-BOXccccuveeeeeeieeeeeeee ettt e et itee e e e ttee e e e satee e e eaee e s e abaeeeennbaeasentaeasenanes 131
Table 50: RiJNAGEI INVEISE S-BOX.........oeeecuueeeeeiieeeeiiieeeeeitee e e e itee e e saee e e esteeesesabaeeseenbaeaseearens 132
Table 51: InvMixColumns Multiplication MQriXccceeeeecieeeeeciiieeeecieeeeeeeeeeeeveee e 132
R o1 ISR A Y =03 SN 133
BIE] LR T A AT = o) R 133
TaADIE 54: INVEISE ENSE-BOX ..ottt e e naan 134
TabIE 55: INVEISE ENSG-BOX ... nnan 134
TabIE 56: INVEISE ENSD-BOX....oeeeeeeeeeeeeeeeeeeeeeeeeeeeeeee s anan 135
TaADIE 57: INVEISE ENSG-BOX ..ot nsnanas 135
TADIE 58: ENE-BOX et s snsnnnnnnn 136
TADIE 592 ENB-BOX et s ssnsnsnsnnnnnnn 136
TADIE BO: END-BOX et s ssssssnnnsnsnnnnnnn 137
RIE] o1 TSR N R 1 A P 1o N 137

142

References

(1]

(2]

(3]

(4]

(5]

(6]

(7]

(8]

(9]

(10]

(11]

Asic World. "Verilog Synthesis Tutorial", asic-world.com. [Online]. Available:
http://www.asic-world.com/verilog/synthesis.html [Accessed: Mar. 23, 2012].

COSIC. "Test Vectors", cosic.esat.kuleuven.be. [Online]. Available:
https://www.cosic.esat.kuleuven.be/nessie/testvectors [Accessed: Apr. 5, 2012].

M. Lucky (2008, Dec.). "AES Encryption and CAST’s AES IP Cores". Cast [Online].
Available: http://www.cast-inc.com/ip-cores/encryption/cast-AES-IP-overview.pdf.
[Accessed: Apr. 10, 2012].

D. Harris (2000, Sep. 9). "Structural Design with Verilog". Massachusetts Institute of
Technology [Online]. Available:
http://www.mit.bme.hu/system/files/oktatas/targyak/8136/verilog.pdf. [Accessed:
Mar. 24, 2012].

R. Lorencz. "New Algorithm for Classical Modular Inverse". Czech Technical University
in Prague [Online]. Available:
http://users.fit.cvut.cz/~lorencz/clanky/1_New_Alg_Class_Inv.pdf. [Accessed: Jul. 2,
2012].

Chia-Long WU, Der-Chyuan LOU and Te-Jen CHANG (2005, Apr.). "An Efficient
Montgomery Exponentiation Algorithm for Cryptographic Applications". VU
Matematikos ir Informatikos Institutas [Online]. Available:
http://www.mii.lt/Informatica/pdf/INFO600.pdf. [Accessed: Jul. 24, 2012].

EECS. "AMBA 3 AHB-Lite Protocol", eecs.umich.edu. [Online]. Available:
http://www.eecs.umich.edu/eecs/courses/eecs373/readings/ARM_IHIO033A_AMBA _
AHB-Lite_SPEC.pdf [Accessed: Apr. 1, 2012].

Tropical Software. "DES Encryption", tropsoft.com. [Online]. Available:
http://www.tropsoft.com/strongenc/des.htm [Accessed: Mar. 28, 2012].

Dr. B. Gladman (2001, Mar. 3). "A Specification for Rijndael, the AES Algorithm".
University of Sussex [Online]. Available:
http://www.comms.engg.susx.ac.uk/fft/crypto/aesspec.pdf. [Accessed: Apr. 2, 2012].
R. Ranjan and I. Poonguzhali. "VLSI Implementation of IDEA Encryption Algorithm".
Technology Information Forecasting and Assessment Council [Online]. Available:
http://tifac.velammal.org/CoMPC/articles/20.pdf. [Accessed: Jun. 5, 2012].

C. Koc and T. Acar (1998, Apr.). "Montgomery Multiplication in GF(2¥)". University of
Western Ontario [Online]. Available: http://www.csd.uwo.ca/~eschost/Exam/Koc.pdf.

[Accessed: Aug. 4, 2012].

143

(12]

(13]

(14]

(15]

(16]

(17]

(18]

(19]

(20]

(21]

(22]

(23]

144

A. Daly and W. Marnane (2002, Feb.). "Efficient Architectures for implementing
Montgomery Modular Multiplication and RSA Modular Exponentiation on
Reconfigurable Logic". University of York [Online]. Available:
http://www.cs.york.ac.uk/rts/docs/SIGDA-Compendium-1994-
2004/papers/2002/fpga02/pdffiles/2_2.pdf. [Accessed: Aug. 4, 2012].

A. Dhir (2000, Mar. 9). "Data Encryption using DES/Triple-DES Functionality in Spartan-
Il FPGAs". Xilinx [Online]. Available:
http://www.xilinx.com/support/documentation/white_papers/wp115.pdf. [Accessed:
Mar. 3, 2012].

B. Schneier, Applied Cryptography. [E-book] Available:
http://www.cse.iitk.ac.in/users/anuag/crypto.pdf. [Accessed Apr. 15, 2012]

A. Canteaut, F. Levy-dit-Vehel and G. Norton. "Modern cryptology". Inria [Online].
Available: https://www.rocg.inria.fr/secret/Anne.Canteaut/modern-crypto.pdf.
[Accessed: Sep. 14, 2012].

University of York. "IEEE referencing style", york.ac.uk. [Online]. Available:
http://www.york.ac.uk/integrity/ieee.html [Accessed: Oct. 2, 2012].

Wikipedia. "Cryptography", Wikipedia.org. [Online]. Available:
http://en.wikipedia.org/wiki/Cryptography [Last Modified: 12 October 2012, 01:01]
Wikipedia. "Advanced Encryption Standard process", Wikipedia.org. [Online].
Available: http://en.wikipedia.org/wiki/Advanced_Encryption_Standard_process [Last
Modified: 3 October 2012, 13:44]

Wikipedia. "Data Encryption Standard", Wikipedia.org. [Online]. Available:
http://en.wikipedia.org/wiki/Data_Encryption_Standard [Last Modified: 10 October
2012, 14:57]

Wikipedia. "International Data Encryption Algorithm", Wikipedia.org. [Online].
Available: http://en.wikipedia.org/wiki/International_Data_Encryption_Algorithm
[Last Modified: 12 October 2012, 20:15]

Wikipedia. "RSA (algorithm)", Wikipedia.org. [Online]. Available:
http://en.wikipedia.org/wiki/RSA_(algorithm) [Last Modified: 13 October 2012, 21:21]
R. Zimmermann, "Efficient VLSI Implementation of Modulo (2" + 1) Addition and
Multiplication", presented at the 14th IEEE Symposium on Computer Arithmetic
(ARITH 14), Adelaide, Australia, April, 1999

AMBA™ Specification (Rev 2.0), ARM, 1999

[24] N. Moshopoulos, "Kpumttoypadia Anpédctou kat I5twtikou KAeLS100. AtodoTikni
YAomoinon AAyopiBuwv o VLSI", Ph.D. dissertation, School of Electrical and Computer
Engineering, National Technical University of Athens, 2001

[25] T.Padmanabhan and B. Bala Tripura Sundari, Design Through Verilog HDL. Piscataway:
IEEE Press, 2004.

[26] DE4 User Manual, Terasic Technologies Inc., 2010.

145

	Abstract
	Key Words
	Περίληψη
	Λέξεις - Κλειδιά
	1 Cryptography
	1.1 Introduction
	1.1.1 Symmetric-key Cryptography
	1.1.2 Public-key Cryptography
	1.1.3 Cryptanalysis
	1.1.4 Legal Issues

	1.2 Technical Terms
	1.3 Symmetric-key Cryptography
	1.3.1 Data Encryption Standard (DES)
	1.3.1.1 Overview
	1.3.1.2 Algorithm Description
	1.3.1.3 Key Scheduling
	1.3.1.4 Plaintext Preparation
	1.3.1.5 DES Core Function
	1.3.1.6 Ciphertext Preparation
	1.3.1.7 Decryption

	1.3.2 Advanced Encryption Standard (AES)
	1.3.2.1 Overview
	1.3.2.2 Rijndael Key Schedule
	1.3.2.3 Key Schedule Core
	1.3.2.4 Description of the Algorithm
	1.3.2.5 The SubBytes Step
	1.3.2.6 The ShiftRows Step
	1.3.2.7 The MixColumns Step
	1.3.2.8 The AddRoundKey step
	1.3.2.9 Decryption

	1.3.3 International Data Encryption Algorithm (IDEA)
	1.3.3.1 Overview
	1.3.3.2 Key Generation
	1.3.3.3 Encryption Round
	1.3.3.4 Decryption

	1.3.4 Block Cipher Operation Modes
	1.3.4.1 Introduction
	1.3.4.2 Electronic Codebook (ECB mode)
	1.3.4.3 Cipher-block Chaining (CBC mode)
	1.3.4.4 Propagating Cipher-block Chaining (PCBC mode)
	1.3.4.5 Cipher Feedback (CFB mode)
	1.3.4.6 Output Feedback (OFB mode)
	1.3.4.7 Counter (CTR mode)

	1.3.5 Applications
	1.3.5.1 DES Applications
	1.3.5.2 AES Applications
	1.3.5.3 IDEA Applications

	1.4 Public-key Cryptography
	1.4.1 RSA
	1.4.1.1 Overview
	1.4.1.2 Algorithm
	1.4.1.3 Breaking RSA

	1.4.2 Applications
	1.4.2.1 RSA Applications

	2 Crypto Architecture
	2.1 Introduction
	2.2 Crypto Components
	2.2.1 AMBA AHB Interface
	2.2.1.1 Introduction
	2.2.1.2 AMBA AHB Overview
	2.2.1.3 AMBA AHB Signal List
	2.2.1.4 Bus Interconnection
	2.2.1.5 AMBA AHB Operation
	2.2.1.6 AHB Bus Slave
	2.2.1.7 Implementation

	2.2.2 Main Controller
	2.2.2.1 Implementation
	2.2.2.2 Process of Key Generation and Encryption / Decryption

	2.2.3 Register File
	2.2.4 Cryptography Engines

	3 DES & AES Engine
	3.1 Introduction
	3.2 Configuration Parameters
	3.3 Implementation
	3.3.1 General Description
	3.3.2 Pin Description
	3.3.3 Process of Key Generation and Encryption / Decryption
	3.3.4 Algorithmic Details
	3.3.4.1 AES Encryption Process
	3.3.4.2 AES Decryption Process

	3.3.5 Implementation Details
	3.3.6 Block Diagrams

	3.4 Implementation Results

	4 IDEA Engine
	4.1 Introduction
	4.2 Configuration Parameters
	4.3 Implementation
	4.3.1 General Description
	4.3.2 Pin Description
	4.3.3 Process of Key Generation and Encryption / Decryption
	4.3.4 Algorithmic Details
	4.3.5 Implementation Details
	4.3.6 Block Diagrams

	4.4 Implementation Results

	5 RSA Engine
	5.1 Introduction
	5.2 Configuration Parameters
	5.3 Implementation
	5.3.1 General Description
	5.3.2 Pin Description
	5.3.3 Process of Key Generation and Encryption / Decryption
	5.3.4 Algorithmic Details
	5.3.5 Implementation Details
	5.3.6 Block Diagrams

	5.4 Implementation Results

	6 IP Verification
	6.1 Introduction
	6.2 FPGA Platform
	6.2.1 Key Features
	6.2.2 Peripherals
	6.2.3 Board Overview
	6.2.4 Block Diagram

	6.3 External Controller

	Conclusion
	Appendix
	Basic Tables Used in DES Algorithm
	Basic Tables Used in AES Algorithm

	List of Figures
	List of Tables
	References

