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Abstract

Abstract

We study problems where we have access to the input piece-by-piece in a serial fash-
ion, i.e., in the order that the input is fed to the algorithm, without having the entire input
available from the start. We focus to metric spaces problems, where the triangle inequal-
ity holds. We take a glimpse at the k-server problem and present some classical, as well
as some new results for it. The k-server problem is the most fundamental problem in the
field of online algorithms, and has been studied for decades. The previous year, the work of
Bansal et al. was breakthrough as it proposed the first (randomized) polylogarithmic algo-
rithm in decades. Moreover, we also present the design and analysis of efficient fractional
algorithms for online problems as mentioned before, based on two techniques: the one is
puerly combinatorial ,whereas the second one is based on a primal-dual approach and a solu-
tion of a system of differential equations to establish the competitive ratio. Last but not least,
we study incremental sum-radii clustering and an extension of mobile facility location to an
online setting, and present some results about the structures of the problems, algorithms for
the general case and more competitive algorithms for some specialised,but not trivial, cases.



Contents

1 Introduction 3
1.1 Study of Online Algorithms and Competitive Analysis . . . . . . . . . . . 4
1.2 Adversary Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
1.3 Preliminaries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
1.4 Examples of Online Algorithms . . . . . . . . . . . . . . . . . . . . . . . 7

2 The k-server Problem 9
2.1 Problem Definition and Conjectures . . . . . . . . . . . . . . . . . . . . . 9
2.2 Brief History . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
2.3 Deterministic Algorithms . . . . . . . . . . . . . . . . . . . . . . . . . . 11

2.3.1 A Lower Bound on the Competitive Ratio of any Deterministic Al-
gorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

2.3.2 Determistic Algorithms for Tree Metrics . . . . . . . . . . . . . . 12
2.3.3 The Work-Function Algorithm . . . . . . . . . . . . . . . . . . . 14
2.3.4 Open Problems . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

2.4 Randomized Algorithms . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
2.4.1 Fractional Analysis . . . . . . . . . . . . . . . . . . . . . . . . . 17

2.5 A Polylogarithmic Competitive Algorithm for the k-server Problem . . . . . 18
2.5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
2.5.2 The allocation problem . . . . . . . . . . . . . . . . . . . . . . . 19
2.5.3 Approaching k-server on HSTs . . . . . . . . . . . . . . . . . . . 21
2.5.4 Fractional Algorithm for the k-server Problem on HSTs . . . . . . 22
2.5.5 Rounding the solution online . . . . . . . . . . . . . . . . . . . . 25

3 Design of efficient fractional algorithms for online problems 32
3.1 Purely combinatorial methods . . . . . . . . . . . . . . . . . . . . . . . . 32

3.1.1 Parking Permit . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

1



3.1.2 Sum-radii-Clustering . . . . . . . . . . . . . . . . . . . . . . . . 33
3.1.3 Generalized Connectivity . . . . . . . . . . . . . . . . . . . . . . 35
3.1.4 Generalized Cuts . . . . . . . . . . . . . . . . . . . . . . . . . . 37

3.2 A primal-dual approach . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
3.2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
3.2.2 The Ski-Rental problem . . . . . . . . . . . . . . . . . . . . . . 39
3.2.3 Weighted Caching Problem . . . . . . . . . . . . . . . . . . . . . 40
3.2.4 The online Packing-Covering Framework . . . . . . . . . . . . . . 42
3.2.5 Indicating the basic idea . . . . . . . . . . . . . . . . . . . . . . . 46

4 Incremental Clustering 48
4.1 Problem Definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
4.2 The case of the line . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
4.3 Algorithms on Hierarchically Separated Trees . . . . . . . . . . . . . . . . 50
4.4 General metric spaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

5 Online Mobile Facility Location 53
5.1 Problem formulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
5.2 Problem simplification . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
5.3 Warm-up:The offline mobile facility location on the line . . . . . . . . . . 55
5.4 Deterministic algorithms on OMFL . . . . . . . . . . . . . . . . . . . . . 55
5.5 OMFL in special metric spaces . . . . . . . . . . . . . . . . . . . . . . . 59
5.6 Another variant of the online mobile facility location problem . . . . . . . 61

2



Chapter 1

Introduction

In computer science, an online algorithm is one that can process its input piece-by-piece
in a serial fashion, i.e., in the order that the input is fed to the algorithm, without having
the entire input available from the start. In contrast, an offline algorithm is given the whole
problem data from the beginning and is required to output an answer which solves the prob-
lem at hand. (For example, selection sort requires that the entire list be given before it can
sort it, while insertion sort doesn’t.)
Because it does not know the whole input, an online algorithm is forced to make decisions
that may later turn out not to be optimal, and the study of online algorithms has focused
on the quality of decision-making that is possible in this setting. Competitive analysis for-
malizes this idea by comparing the relative performance of an online and offline algorithm
for the same problem instance. For other points of view on online inputs to algorithms,
see streaming algorithm (focusing on the amount of memory needed to accurately represent
past inputs), dynamic algorithm (focusing on the time complexity of maintaining solutions
to problems with online inputs) and online machine learning.
Many problems may be studied from an online perspective. Some of these are the job
scheduling problem,the k-server problem,the metrical task systems problem,the list update
problem,the paging problem or the facility location problem. A metrical task system -first
introduced and studied by Borodin,Linial and Saks- consists of a metric space and a transi-
tion table, in order to represent the set of possible configurations and the distance between
each two of them. Metrical task systems are a generalisation of many problems, such as
paging,list accessing and k-server.Some of the most influential papers are [50],[51],[52].
The paging problem is one of the most fundamental problems in competitive analysis. It
was studied in [44],[45],[46],[47],[48].
Another relevant problem is the page migration problem, where only one copy of each page
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exists in the network. A great deal of research has been done on page migration problems in
[21],[22],[23],[24],[25],[26] . Also,in [27] the authors assume a potential usage pattern of
the databases. If we focus on work with no such assumptions, this work started by the work
of Black and Sleator in [28], and were continued in [29],[30],[31],[32],[33],[34],[35],[36].

1.1 Study ofOnlineAlgorithms andCompetitiveAnal-
ysis

Competitive analysis is a method invented for analyzing online algorithms, in which
the performance of an online algorithm (which must satisfy an unpredictable sequence of
requests, completing each request without being able to see the future) is compared to the
performance of an optimal offline algorithm that can view the sequence of requests in ad-
vance. An algorithm is competitive if its competitive ratio—the ratio between its perfor-
mance and the offline algorithm’s performance—is bounded. Unlike traditional worst-case
analysis, where the performance of an algorithm is measured only for ”hard” inputs, com-
petitive analysis requires that an algorithm perform well both on hard and easy inputs, where
”hard” and ”easy” are defined by the performance of the optimal offline algorithm.
For many algorithms, performance is dependent not only on the size of the inputs, but also
on their values. One such example is the quicksort algorithm, which sorts an array of ele-
ments. Such data-dependent algorithms are analysed for average-case and worst-case data.
Competitive analysis is a way of doing worst case analysis for on-line and randomized algo-
rithms, which are typically data dependent.

In competitive analysis, one imagines an ”adversary” that deliberately chooses difficult
data, to maximize the ratio of the cost of the algorithm being studied and some optimal al-
gorithm. Adversaries range in power from the oblivious adversary, which has no knowledge
of the random choices made by the algorithm pitted against it, to the adaptive adversary that
has full knowledge of how an algorithm works and its internal state at any point during its
execution. Note that this distinction is only meaningful for randomized algorithms. For a
deterministic algorithm, either adversary can simply compute what state that algorithm must
have at any time in the future, and choose difficult data accordingly.
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1.2 Adversary Model

In computer science, an online algorithm measures its competitiveness against differ-
ent adversary models. For deterministic algorithms, the adversary is the same, the adaptive
offline adversary. For randomized online algorithms competitiveness can depend upon the
adversary model used.
The three common adversaries are the oblivious adversary, the adaptive online adversary,
and the adaptive offline adversary.

• The oblivious adversary is sometimes referred to as the weak adversary. This adver-
sary knows the algorithm’s code, but does not get to know the randomized results of
the algorithm.

• The adaptive online adversary is sometimes called the medium adversary. This ad-
versary must make its own decision before it is allowed to know the decision of the
algorithm.

• The adaptive offline adversary is sometimes called the strong adversary. This ad-
versary knows everything, even the random number generator. This adversary is so
strong that randomization does not help against him.

1.3 Preliminaries

A metric space is an ordered pair (M, d) where M is a set and d is a metric on M,i.e. a
function M×M→ R such that ∀x, y, z ∈ M holds:

• d(x, y) ≥ 0

• d(x, y) = 0 if and only if x = y

• d(x, y) = d(y, x)

• d(x, z) ≤ d(x, y) + d(y, z)

The function d is also called distance function or simply distance. Often, d is omitted and
one just writes M for a metric space if it is clear from the context what metric is used.
As mentioned before,The idea of competitiveness is to compare the output generated by an
online algorithm to the output produced by an online algorithm. An offline algorithm is an
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omniscient algorithm that knows the entire input data and can compute an optimal output.
The better an online algorithm approximates the optimal solution, the more competitive this
algorithm is. More formally,we can describe an online problem as follows :
An online algorithm is presented with a request sequence σ = σ(1), σ(2), .., σ(m). The
requests σ(t) , 1 ≤ t ≤ m must be served in the order they appear. More specifically,
when serving request σ(t) ,algorithm A does not know any request σ(t′) with t′ > t. Serv-
ing requests incurs a cost and the goal is to minimize the total cost paid on the entire re-
quest sequence. Given a request sequence σ,let CA(σ) denote the cost incurred by A and
let COPT(σ) denote the cost incurred by an optimal offline algorithm OPT.The algorithm is
called c-competitive if there exists a constant a such that
CA(σ) ≤ c ∗ COPT(σ) + a.

We note a useful theorem,that will be useful later on:
A tree metric is closely related to graph decomposition. The randomized rounding pro-

cedure of Calinescu, Karloff, and Rabani [37] for the 0-extension problem de composes a
graph into pieces with bounded diameter, cut- ting each edge with probability proportional
to its length and a ratio between the numbers of nodes at certain distances. Fakcharoenphol,
Rao, and Talwar [38] used the CKR rounding procedure to decompose the graph recur-
sively and obtained the following theorem.

Metric Embeddings,Theorem 1: Given an n-point metric (V, d), there exists a randomized
algorithm, which runs in time O(n2), that samples a tree metric from the distribution D over
tree metrics that O(logn)-probabilistically approximates (V, d). The tree is also a 2-HST.

Metric Embeddings,Theorem 2: Given an n-point metric (V, d), there exists a polynomial-
time deterministic algorithm that finds a dis- tribution D over O(nlogn) tree metrics that
O(logn)- probabilistically approximates (V, d).

Metric approximation by random trees has applications in on-line and distributed compu-
tation, since randomiza- tion works well against oblivious adversaries, and trees are easy to
work with and maintain. Alon et al. [41] first used tree embedding to give a competitive
algorithm for the k- server problem. Bartal [40] noted a few problems in his pa- per: met-
rical task system, distributed paging, distributed k-server problem, distributed queuing, and
mobile user. After the paper by Bartal in 1996, numerous applica- tions in approximation
algorithms have been found. Many approximation algorithms work for problems on tree
met- rics or HST metrics. By approximating general metrics with these metrics, one can
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turn them into algorithms for general metrics, while, usually, losing only a factor of O(log n)
in the approximation factors. Sample prob- lems are metric labeling, buy-at-bulk network
design, and group Steiner trees. Recent applications include an ap- proximation algorithm
to the Unique Games [42], infor- mation network design [43], and oblivious network de-
sign [39].

1.4 Examples of Online Algorithms

In this section we will focus on some well-known and elementary problems that appear
in online algorithms.
The ski-rental problem: The ski-rental problem was introduced in [ ]. Another relevant
problems is the file replication [ ] and the network leasing problem[ ] In this problem, a skier
travels to his favourite mountain and wants to skii every day. However, he does not how
many days he will stay there( let us forget the reason about that) and so he cannot decide if
it is better to buy or rent skis. Denote by B the cost for buying skiis and r the cost of renting
them per day, and assume that the rent of the skis holds for one day. If the number of days
was known in advance, call it n, then the minimum cost would be min{B, r ∗ n}, because
he either would buy all a ski on the first day, either he would rent skis for all the days. But
when the number of days in unknown,as mentioned before, how must the skier act in order
to pay as less as he can? The goal is to minimize the cost of the worst-case scenario, a notion
which is captured by the competitive ratio, as mentioned before. We will assume that at the
morning of each day the skier learns if he departs from the mountain or stays there. What is
now a ”good” strategy for him to achieve a small competitive ratio? Consider an index(day)
i0 such that r · i0 ≤ B < r(i0 + 1). If the skier wakes up and it is his (i + 1)-th day at the
mountain and he will not depart that day, then he buys skiis, otherwise if that day is before
the (i0+1)− th day, he rents the skis. We will prove that the algorithm achieves a competi-
tive ratio of 2. Clearly, observe that if n ≤ i0 then the algorithm pays what the optimal pays,
specifically i0 ∗ r. Otherwise the optimal pays B and the algorithm pays i0 ∗ r + B ≤ 2B,
2 times what the optimal pays. Hence, the algorithm is 2-competitive. One can achieve a
(1− 1

e )-competitive randomized algorithm for that problem. Details are in a next section.

We view another one simple problem that must be treated in an online fashion.

The paging problem: In the paging problem,mentioned before, we have to maintain a
two-level memory system consisting of a small fast memory and a large slow memory. The
memory is partitioned into pages of equal size. The system receives a sequence of requests,
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where each request specifies a page in the memory system. A request can be served imme-
diately if the referenced page is available in fast memory. If the requested page is not in
fast memory, a page fault occurs. The missing page is then loaded from slow memory into
fast memory so that the request can be served. At the same time a page is evicted from fast
memory to make room for the missing one. A paging algorithm decides which page to evict
on a fault. This decision must usually be made online, i.e. without knowledge of any future
requests. The cost to be minimized is the number of page faults.
Suppose that the cache can hold up to k pages and let the algorithm LRU be the one that at
each time step evicts-if needed- the page that has been requested least recently. It suffices
to prove that every k misses of the LRU algorithm, the optimal algorithm must also miss at
least one page. This establishes the result. Observe that if LRU misses the succesive pages
p1, p2, .., pk then pi 6= pj, ∀1 leqi, j ≤ k, i 6= j, because at time j > i if pj = pi ,that page
would not be absent from the cache, as there is another page that was least recently used, by
the LRU rule. So, it easy to see that the optimal must incur at least one miss during these
pages, if we take into account the page that was in the cache and evicted for the sake of p1.
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Chapter 2

The k-server Problem

2.1 Problem Definition and Conjectures

The k-server problem in a metric space(or weighted graph) corresponds to the problem
of moving around in an efficient manner k servers to service requests that appear at the points
of the metric space. The k servers start at a fixed set of k points of the metric, called initial
configuration. At each time step, a request appears at some point of the metric and one at
least server has to move to that point to serve that request. The goal is to minimize the total
distance travelled by the servers, when the requests arrive online,one after the other. We
assume that the next request appears only after the current one has been serviced.
We study the online k-server on metric spaces as they were defined in previous sections.
Some interesting metric spaces include the uniform metric,the line and trees.
We define a configuration to be a k-tuple of points of the metric ,which corresponds to where
the k-servers lie. If C1, C2 are two configurations, we extend the distance function d() such
that d(C1, C2) is the minimum weight perfect matching between the points of C1, C2. The
distance between two configurations corresponds to the minimum distance that must be trav-
elled by the servers in order to move from configuration C1 to configuration C2. It is easy to
observe that d(C1, C2) = d(C1 − C2, C2 − C1) due to the triangle inequality.
So,the k-server problem is defined by an initial configuration C0 and a sequence of re-
quests r = (r1, .., rn) of points of M. A feasible solution is a sequence of configurations
C0, C1, .., Cn such that ri ∈ Ci,∀i ∈ {1, .., n}. The cost of the solution is the total distance
travelled by the servers,namely

n−1∑
i=0

d(Ci, Ci+1)
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.
Rather unexpectedly, it is very likely that the competitive ratio is independent of the metric
space (provided that it has more than k distinct points). This is supported by all results on
the problem in the last two decades and it is exactly what the k-server conjecture states:

The k-server Conjecture. For every metric space with more than k distinct points, the
competitive ratio of the k-server problem is exactly k.

The k-server conjecture is open,however it is proved to be true for some special metric
spaces and for k = 2. An almost tight result holds : there exists a (2k − 1)-competitive
algorithm on any metric.
As far as randomization is allowed,the following conjecture holds:
Randomized k-server Conjecture: For every metric space, there is a randomized online
algorithm for the k-server problem with competitive ratio O(logk).

2.2 Brief History

The problem was first defined by Manasse, McGeogh, and Sleator in [1]. A few years
before, Tarjan and Sleator begun the study of online algorithms using the idea of competitive
analysis, studing problems for the list update problem and the paging problem. A great step
forward to study these questions in a more general setting was made by Borodin, Linial, and
Saks who introduced the online problem of metrical task systems in [2], a generalization
of the k-server problem, and were able to determine exactly the competitive ratio: 2n − 1
for a metrical task system on n states. This was the time when the 3 researchers mentioned
above introduced the k-server problem as a special case of metrical task system, but also as
a generalization of the paging problem. Manasse, McGeogh, and Sleator proved that the
competitive ratio of any online deterministic algorithm cannot be smaller than k on metrics
with at least k+ 1 points and they also invented an algorithm with competitive ratio of 2 for
the special case of k = 2. They also generalized this result by proving that the competitive
ratio is exactly k for all metric spaces with k+ 1 points.
There are 2 special cases of the k-server problem that have been studied and are of particular
interest: the 3-server problem and the k-server problem on a cycle .Any progress on these
problems has the potential to open new paths to attack the general k-server conjecture. For
both of these special cases, we know nothing better than the 2k − 1 bound.
The Harmonic Algorithm is a very natural memoryless algorithm but it is not the best one
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for metrics of k+1 points. For this important special case of metric spaces, it was shown by
Coppersmith, Doyle, Raghavan, and Snir that there is a memoryless randomized algorithm
for k + 1 points which has competitive ratio k, by exploiting the connection of the theory
of electrical networks with random walks. This is the best possible competitive ratio for
memoryless algorithms.

2.3 Deterministic Algorithms

The simplest algorithm that one could invent is the following greedy algorithm: When-
ever a demand arrives,move the closest server to that point(breaking ties arbitrarily) . One
can easily observe that is algorithm is not competitive. Consider the 2-server point on the
real line, where the first server lies on 0, the second on 2 and the demand sequence is
1 − ε, 0, 1 − ε, 0, 1 − ε, 0.... After n demands have arrived the greedy algorithm would
pay n ∗ (1− ε), whereas the optimal algorithm would pay 1+ ε,as it would move the server
at 2 to the point 1− ε.
In this section we propose a lower bound for the k-server problem and two additional al-
gorithms of great significance: the Double Coverage Algorithm and the Work Function
algorithm.
The lower bound states that there no deterministic algorithm in a metric space with at least
k + 1 points can achieve a competitive ratio better than k. The Double Coverage algorithm
is one an optimal k-server algorithm on the line, proposed by Chrobak,Karloff,Payne and
Vishwanathan. The work-function algorithm is the best deterministic algorithm we know
till now and was analysed by Koutsoupias and Papadimitriou. Its competitive ratio is 2k− 1
and the conjecture is that it is k. These results are presented in the next three subsections.

2.3.1 A Lower Bound on the Competitive Ratio of any Deter-
ministic Algorithm

The following lower bound is due to Manasse, McGeogh, and Sleator.

K-server lower bound: In any metric space with at least k + 1 points,no online algorithm
for the k-server problem can have competitive ratio less than k.
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Proof: Let A be any online algorithm. In order to establish the lower bound, we need
to indicate a request sequence for which A pays k times what the optimal algorithm pays.
Clearly,such a request sequencemust be dependent ofA and the choices it makes. However,in
order to efficiently bound the optimal solution from above, we consider a set of k distinct
offline algorithms such that the cost of the online algorithm is equal to the total cost of all
k offline algorithms. This would proven immediatetly the desired result,because that would
mean that there exists an offline algorithm with at most 1k of the cost of the online algorithm.
Initially, let S be a set of k+ 1 points that include the original configuration. All requests are
going to be in this set S. What we are going to use is that at any time, we know precisely
what an optimal adversary does: at any point in time there is only one point of the metric
space that is not covered by the online algorithm and the optimal adverser should bring
the next point there. There are exactly k + 1 configurations of the set S. We consider k
offline algorithms A1, A2, .., Ak such that the configurations of algorithm A and all Ai are
different at each time step.Firstly,before any request arrives,in order for the above invariant
to hold,we move the servers of the offline algorithm from the initial configuration to all other
configurations,incurring a fixed cost. Suppose now that the online algorithms moves a server
from some point a to the current request rt, which means that the current configuration of
the online algorithm is identical to a configuration of one of the offline algorithms, say Aj for
some j. Now, Aj must change its configuration in order to hold the invariant true. So, it now
moves a server from rt to a so that its new configuration matches the previous configuration
of A. The other algorithms do not change their configuration. It is easy to observe that the
invariant is maintained. The cost of A is d(a, rt) which is equal to the total cost of the offline
algorithm Aj. Summing over all time steps we get that the cost of the online algorithm equals
the total cost of the offline algorithms minus some fixed cost, the cost incurred at the very
first stage of the algorithm,before any request sequence arrived yet. By the discussion before,
we get that there exists an algorithm which incurs 1

k times the cost of the online algorithm,
fact that establishes the lower bound.

2.3.2 Determistic Algorithms for Tree Metrics

Why did the obvious greedy algorithm proposed before failed to be competitive? Be-
cause it did not take into account that whenever there exists a region where too many de-
mands arrive, it must start moving the servers there. The Double Coverage algorithm tries
to imitate that behaviour in tree metrics.

An important special case of the k-server problem is the case of the 1-dimensional Eu-
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clidean space, in other words the line. An elegant algorithm for the line is the Double Cov-
erage Algorithm presented in [3], which is an invariant of the greedy approach which moves
the closest server each time to the request. More specifically, when the request is between
two servers, the algorithm moves both servers towards the request equal to the distance of
the request to the closest server. If the request is outside the interval of the k servers,only
the closest server moves to it.
Altough Double Coverage is not a lazy algorithm, it actually can be turned to a greedy algo-
rithm by remembering moves and postponing them until it is necessary to do them, just like
any lazy algorithm does. However, here it has some intuitive meaning not to act in a lazy
way.
The competitive ratio is established by a potential function argument. Denote COSTt, OPTt
the cost of the online and the optimal algorithm respectively at time t. Let Ct be the configu-
ration at time t of the online algorithm,while C′

t the configuration of the optimal offline algo-
rithm. Suppose there exists a function Φ such that COSTt − ρOPTt ≤ Φ(Ct−1, C′t− 1)−
Φ(Ct, C′t). Then by adding over all time steps we get that

n∑
t=1

COSTt − ρ
n∑

t=1
OPTt ≤ Φ(C0, C′

0)

,which implies that the competitive ratio is at most ρ.
Now, how the potential function Φ should be chosen? Although in general it can be very
tricky to devise a good potential function, here it is somehow intuitive. We can view Φ as the
sum of two terms. The first one is kd(Ct, C′t), and the reasoning behind this choice is that
when the adversary moves an offline server some distance x the distance d(Ct, C′t) increases
by at most x and the online algorithm will pay back k times more this cost. The second term
(which is clearly less intuitive) equals the sum of all pairwise distances between the servers
of the online configuration. More formally, the potential function is defined as follows:

Φ(Ct, C′
t) = kd(Ct, C′

t) +
∑

a1,a2∈Ct

d(a1, a2)

The proof that the Double Coverage Algorithm is k-competitive is based on the observation
that when an offline server is already at the request, the double move of the online algorithm
guarantees that the first term of the potential function does not increase, because one of the
two moving servers moves towards the request point; although the other online server may
move away from its matching offline server an equal distance, their total contribution does
not increase the matching. As far as the other termis concerned, we note that it decreases by
the total distance travelled by the two servers. More specifically, if rt is the current request
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and si, sj the servers which the online algorithm moves at that time with d(si, rt) ≤ d(sj, rt),
the potential function decreases by 2d(si, rt).
Let Ct, C′

t be the online an offline configurations after serving request rt. The above obser-
vation implies
Φ(Ct, C′

t) ≤ Φ(Ct−1, C′
t) − 2d(si, rt) = Φ(Ct−1, C′t) − d(Ct−1, Ct). It is easy to observe

that the same inequality holds also when the current request is outside the interval of the k
servers and hence only one server moves toward the request.
Till now, we have proven the above inequality when an offline server is at the request rt. But
what about the movement and the cost incurred by the offline algorithm? It holds that
Φ(Ct, C′

t) ≤ Φ(Ct−1, C′
t) + kd(Ct, C′

t). Combining this inequality with the previous one we
get
d(Ct−1, Ct)− kd(C′

t−1, C′
t) ≤ Φ(Ct, C′

t−1)−Φ(Ct, C′
t), which by the discussion above im-

plies that the Double Coverage algorithm is k-competitive.

In tree metrics the Double Coverage algorithm can easily be extended: First of all, we say
a server z is free with respece to request rt if there is no other server in the path from rt
to z. So,to service request rt we move all free servers towards rt at equal speed. Observe
that there might exist sometime when a server who was free is not anymore. Then we stop
moving that server and we leave it where it is. From this point, until the request is serverd,
a server that is not free cannot become free.

2.3.3 The Work-Function Algorithm

To design a more efficient algorithm, one must not decide the next move based only on
the current situtation. So,it must take into account all the request points from the past, each
time it determines which server to move. In other words, if we view each placement of the
servers as a configuration, a highly competitive algorithm on any metric space should try to
move as close as it can to the optimal configuration till then,while not moving that much;
this means that it must also take account the distance from the current configuration.
The following algorithm’s competitive ratiowas analysed in [4] byKoutsoupias,Papadimitriou
and that was a breakthrough at that time.Definewσ(C) be the optimal cost for serving request
sequence σ and ending in configuration C. Our online algorithm acts as follows: Assume
now that after serving request sequence σ is at configurations C, and then demand r arrives.
Then the algorithm moves a server to the point that minimizes wσr(C−{c}∪{r})+d(c, r).
The above algorithm is (2k− 1)-competitive,as proved by Koutsoupias and Papadimitriou.
We omit the proof here, but we state some interesting properties and facts aboutWFA(work-
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function algorithm):

Define Cf to be the configuration that the online algorithm stops. We can also assume
that it is the same as the one that the optimal offline algorithm ends to. In order to to derive
the (2k − 1) competitive ratio for general metric spaces, one can define a function μσ such
that

• μ ≤ OPT,∀x ∈ Cf

• μ0(x) ≥ −constant, ∀x ∈ C0

• μ′(x) ≥ μ(x), ∀x that belong to the metric space.

• μ(x)− μ(y) ≤ k · d(x, y), for all points x, y of the metric space.

• μ′(r)−μ(r) = maxX{w′(X)−w(X)}(the extened cost), where r is the current request.

Suppose that you have such a function μ and define a potential function Φ such that

Φ =
∑
u∈U

μ(u)

For the potential function one can immediatetly derive the following:

• Φf ≤ k · OPT, from the first bullet one gets and that |U| = k

• Φ0 ≥ − constant, because the algorithm starts at the initial configuaration and by the
second bullet we can bound the initial value of the potential function from below.

• Whenever no server is moved clearly nothing changes to the potential function be-
cause of that server. When a server moves from u to v it holds that ΔΦ ≥ −k ·d(u, v),
because of the fourth bullet above.

• When a request

• Whenever a request arrives, ΔΦ ≥ maxX{w′(X) − w(X)}, because the optimal al-
gorithm will have a server at r and this changes only because of the change in μ; the
property holds as a consequence of the third and the fifth bullet above.

Summing up all the changes in Φ one gets the desired result, by the typical use of po-
tential function in the design and analysis of online algorithms. One needs to construct such
a function μ. This is not trivial and we will not present the proof here. However,we note
some nice properties about the work-function algorithm:
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• ∀C,wσr ≥ wσ

• If r ∈ C, then wσr = wσ

• wσr = minc∈C{w(C− {c} ∪ {r}) + d(c, r)}

• w(C) ≤ w(C′) + d(C,C′)

• For all configurations X, Y and for all x ∈ X, there exists a y such that w(X − {x} ∪
{y}) + w(Y− {y} ∪ {x}) ≤ w(X) + w(Y) (Quasiconvexity Lemma)

2.3.4 Open Problems

The above results may help shed light to the nature of the k-server problem,however
many practical and theoretical questions still remain. Some of those:

• Does the deterministic k-server conjecture holds?

• Can the results of the work-function algorithm be extended in other simple met-
rics(trees or cycles) in order to prove that the algorithm is k-competitive?

• Can a counterexample be found? In particular,does there exist a metric where the
work-function algorithm is not k-competitive?

• Implementing the work-function algorithm is of course inefficient, because of the
combinatorial explosion of the states that one might need to hold. Do there exist
simpler algorithms that achieve some a competitive ratio that is a linear function(or
even polynomial) of k that are easy to implement ?

• Can the proof of the 2-competiviness of the work-function for the 2-server instance
be simplified?

2.4 Randomized Algorithms

As mentioned before, the randomized k-server conjecture states that there exists a loga-
rithmic in k competitive algorithm for the problem in arbitrary metric spaces.The best known
lower bound is Ω( logk

loglogk) due to Bartal.One of the first online randomized algorithms is the
Harmonic Algorithm, proposed by Raghavan and Snir in [5],with a competitive ratio of
O(2klogk). The algorithm simply states that whenever an uncovered request arrives ,serve
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the request to some server with a probability that is inversely proportional to the distance of
these two. More formally, server si serves the request with probability

1
d(si,rt)∑
j

1
d(sj,rt)

. The Harmonic algorithm isO(logk)-competitive on a uniformmetric. Some special results
have been achieved for other special metrics also. Bartal,Chrobak,Larmore give a (2 − ε)-
competitive algorithm on the line.
A general result of Ben-David et al. gives a non-constructive proof that the existence of any
randomized on-line algorithm, which uses randomization of the form used by the Harmonic
algorithm, implies the existence of a deterministic on-line algorithm, at the cost of squaring
the competitive ratio. Fiat et al., McGeoch and Sleator , and Karlin et al. propose the
scenario of randomized algorithms that use randomization to hide the on-line configuration
from the adversary.

2.4.1 Fractional Analysis

As in many online algorithms, the design of efficient randomized algorithms may re-
quire using techniques from the continuous world, where the problems seem to be easier (
remember that Linear Programming is in P, whereas Integer Programming is NP-complete).
For the case of the k-server problem, one can think the servers as fractional entities, which
means that in the new (fractional) setting we can break a server to many points of different
perhaps weight ( which they should however add up to 1) and serving a request would im-
ply that we have moved one unit of servers there in total. In fact, this can be viewed as a
probability distribution of configurations, each of which is a set of locations with at most k
elements ( the number of distinct positions of the metric space that are occupied by servers
each time). In fact, any randomized algorithm can be viewed as a probability distribution
over the configurations, assigning a probablity to each configuration, which corresponds to
the probability that the algorithm is at that configuration at the current time.

For a randomized algorithm ALG, let Pt
ALG(C) the probability that at time t, the algorithm

has placed the servers at configuration C. We will show that the randomized algortithm
corresponds to a fractional one, called ALG’. Let

Wt
ALG′(x) =

∑
C,x∈C

Pt
ALG(C)

be the total weight at location x at time t for the algorithm ALG’. It is easy to see that
Wt

ALG′(rt) for all t, otherwise the randomized algorithm would be infeasible. Also, in order
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to move between two configurations, let ALG′ move servers according to the minimum cost
shift between those two distributions. The above intuitive algorithm’s correctness holds by
the above inequality : costALG′(ρ) ≤ E[costALG(ρ)] ,where ρ is a demand sequence. For
the proof observe that if ALG has assigned at time t probabilities p1, p2, ..., pm to configura-
tions C1, C2, .., Cm, then we can simulate this shift with paying less than the expected cost of
ALG. For all i and x ∈ C move psi fraction from x to yi, where the yi is the point to which
the server at x moves while satisfying the shift from C to Ci. The equalities for the weight
functions W hold and that these moves pay the same cost for ALG and ALG’. Since ALG’
moves servers according to the minimum cost shift as mentioned before,it may atain a lower
value, and so the inequality holds.

The above reduction shows that any randomized algorithm gives birth to a fractional al-
gorithm with the same or lower cost. Does the opposite hold? Does some variant of the
opposite hold? It would be nice if any fractional algorithm would give birth to a randomized
algorithm with a cost within O(1) of the fractional cost. This is true on some metric spaces
such as the line and the circle and when k = 2 or k = n− 1.

2.5 A Polylogarithmic Competitive Algorithm for the
k-server Problem

2.5.1 Introduction

Recently after work done in [6] by Cote et al., new ideas emerged in the randomized
setting of the k-server problem. So, Nikhil Bansal, Niv Buchbinder, Aleksander Madry abd
Joseph Naor managed to devise and present in [7] a polylogarithmic competitive randomized
algorithm(depending on the both the algorithms of n and k) for the k-server problem. Clearly,
the above algorithm depends also on the number of demands and improves the result of
Koutsoupias and Papadimitriou(the work-function algorithm) only when n is subexponential
in k. All the results that follow are presnted in the foremen

Theorem 1. There is a randomized algorithm for the k-server problem that achieves a com-
petitive ratio of O(log2klog3nlogn) on any metric space on n points.

It is well known that since any metric space can be embedded into a probability distri-
bution over HSTs with relatively low distortion, it suffices to solve the problem on an HST,
which seems easier. The algorithm proposed is inspired by the Cote’s approach , which
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includes the definition of a new problem on uniform metrics, called the allocation prob-
lem. More specifically, they managed to show that an online randomized algorithm for
the allocation problem can lead to a randomized algorithm for the k-server problem on an
HST, provided that some certain properties hold. For each node u, they run an instance of
the allocation problem on a weighted star which has u as a root and its children as leaves.
Combining information from the answers obtained by the algorithm, they determine induc-
tively, over all levels and all time steps, the number of servers at each leaf of the HST,
taking care of the feasibility of the solution. However, the properties mentioned above hold
on a restricted number of metric spaces and moreover the competitive ratio is polynomial
in logk, logn, logΔ(Δ denotes the diameter of the metric space). Building on ideas of that
paper Buchbinder et al. manage to give the first polylogarithmic algorithm for the k-server
problem, which depends only on logk, logn and not on the diameter of the underlying metric
space. It is interesting that they do not design a randomized algorithm that has the properties
that are missing from the previous approach, but they use different techniques. Firstly, the
embed the metric space to an HST and then they transform this tree to a weighted σ −HST
, an HST in which the lengths of the edge across a path from the root to the leaf,decrease
exponentially but they might be non-uniform. Using these low-dstortion embeddings and
transformations they give an online fractional algorithm on this HST based on a suitable
fractional algorithm for the allocation problem, which they also design. Last, they propose
a low-cost randomized rounding procedure with rounds the fractional algorithm in an online
fashion,incurring only a cost of O(1) from the fractional solution. This concludes the design
of their algorithm.

2.5.2 The allocation problem

The allocation problem: Suppose that a metric on d points is defined by a weighted
star where the edge connecting each leaf i to the root equals wi. At each time step t, the
number of available servers k(t) ≤ k is defined. We refer to the vector (k(1), k(2), .., ) as
the quota pattern. A request arrives at a point i and it is specified by a (k+ 1)-dimensional
vector ht = (ht(0), ht(1), .., ht(k), where ht(l) equals the cost paid by the algorithm if it
places exactly l servers there at time t(equivalently,if it serves request i using l servers). It is
natural to demand that the cost vectors satisfy the monotonicity property ht(l) ≥ ht(l+ 1),
which means that serving the request with more servers cannot be worse; a rather natural
assumption. So,each demand incurs a hit cost according to the previous vector. Moreover,
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at each time step the movement of the servers incurs an additional movement cost: moving
a server across an edge of weight w incurs a cost of w. The goal is to minimize the total hit
cost plus the total movement cost.
As mentioned before, the goal is to use a fractional algorithm for the allocation problem
as a building block in order to solve the k-server problem on HST. Clearly, passing from a
fractional algorithm to a randomized one, involves the rounding of the fractional solution.
We claim that the integrality gap,meaning the gap between the optimal fractional and the
optimal integral solution, of the allocation problem can be as high as Θ(k). This might at
first glance seem restrictive for our algorithm, since the during the rounding procedure a
factor of k might emerge, but the approach proposed overcomed this difficulty balancing the
”need” between the cost of the hit and the move cost.
CLaim: The integrality gap of the allocation problem is Ω(k).
Proof: Consider a uniform metric over two points(namely an edge) and an instance where
k(t) = k for all t. At each odd time step the cost vector h = (1, 1, 1, .., 0) arrives at location
1,whereas the cost vector h′ = (1, 0, .., 0) arrives at location 2(the leaf). Now,observe that
any integral algorithm must incur a cost of O(1) during two consecutive steps. This holds
because if someone wants to avoid the hit cost, he would pay at least 1 for moving the servers
from location 1 to location 2. In any case, the cost for a time horizon Tmust be at leastO(T).
For the fractional algorithm ,one can write a linear programming formulation of the problem
and find an assignment of the variables that gives rise to a solution with O(Tk ) cost. Let
xt1,j, xt2,j be the indicator variables that equals 1 if there exist exatcly j servers at location 1,2
at time t. The constraint for the servers allowed then can be written as∑

j
j(xt1,j + xt2,j) ≤ k(t) = k, ∀t

. The total cost of the algorithm then be written as∑
t,j

(h(j)xt1,j + h′(j)xt2,j) +MV

, where MV denotes the movement cost, which expression we will not write in an explicit
form, as the assignment of the variables is static,in a sense that the servers never move. De-
fine xt1,0 = 1

k , x
t
1,k = 1 − 1

k , x
t
2,1 = 1. Observe that MV = 0 as mentioned before, the

constraints holds as 1
k ×0+(1− 1

k )×k+1×1 = (k−1)+1 = 1, and the algorithm incurs
a cost of 1k at each odd time step. Hence the integrality gap of the allocation problem isO(k).

For the allocation problem we say an algorithm is (θ, γ)-competitive if it incurs a hit cost of
θ(Optcost+ Δg(k) and a move cost of γ(Optcost+ Δg(k)) ,where Optcost is the optimal
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cost, Δ is the diameter of the metric space and g(k) =
∑

t |k(t)− k(t− 1)|.

2.5.3 Approaching k-server on HSTs
As mentioned in a previous section, we can view the randomized algorithm as a proba-

bility distribution over the configurations at each time step of the algorithm. In the k-server
problem, the fractional view corresponds to specifying the probability pi of having a server
at leaf i at the current time step.

We move with the following theorems:

Theorem 2. For any ε > 0 ,there exists a fractional (1+ ε, O(log( kε ))-competitive algorithm
for the allocation problem on a weighted star metric.

Theorem 3. Let T be a weighted σ-HST of depth l. If,for any 0 ≤ ε1,there exists a (1 +

ε, log( kε ))-competitive algorithm for the fractional allocation problem on a weighted star,then
there is a O(l× log(kl))) -competitive algorithm for the fractional k-server problem on T, as
long as σ = Ω(l× log(kl)).

Theorem 4. Let T be a σ-HST with σ > 5. Then any online fractional k-server algorithm on
T can be converted into a randomized k-server algorithm on T with an O(1) factor loss in the
competitive ratio.

The combination of the above theorems gives a solution to HSTs, and not weighted
HSTs. So,we use the following additional theorem:

Theorem 5. Let T be a σ-HST with n leaves, but possibly arbitrary length. Then T can
be transformed into a weighted σ-HST T’, such that T′ has logarithmic depth( O(logn)), the
leaves of T and T′ are the same, and any leaf to leaf distance is distorted by a factor of at most
2σ
σ−1 .

The main result is that there is a polylogarithmic competitive algorithm for the k-server.
At first, we use the tecnhique of Faclak to embed the metric space into a distribution μ over
σ-HSTs with stretch σ = Θ(logn(log(klogn))). The height of the HST is logσΔ and the dis-
tortion of any distance is multiplied by an asymptotic factor of O(σlogσn). We pick an HST
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T at random from the distribution created and transform T to T′. Because T’ has a height of
O(logn) then σ = Θ(l × log(kl)) and the fractional algorithm gives a O(lognlog(klogn))-
competitive fractiona algorithm on T. By rounding the solution in an online manner, we
get a O(logn(log(klogn))-competitive randomized k-server algorithm on T′ and hence on
T. Now, we will use the fact that the embedding of the metric space to T does increase
every distance, but the expected value of these distances does not increase much . Let
OPTM/ALGM, OPTT/ALGT be the optimal cost(the algorithm’s cost) on M and T respec-
tively. Observe that ALGM ≤ ALGT due to the embedding properties, and as ALGT is
O(lognlog(klogn))-competitive,it follows that ALGM ≤ O(lognlog(klogn))cT, where cT
denote the cost of our algorithm’s solution on T. By taking expected values,

E[ALGM] = O(lognlog(klogn))E[cT] = O(σlogσn·O(logn· log(klogn))OPT∗M

. Hence,the competitive ratio of the algorithm is

O(σ
logn
logσ

)O(logn· log(klogn)) = O(log2k· log3n· loglogn)

.

2.5.4 Fractional Algorithm for the k-server Problem on HSTs

For a node p,integer j and time t let Optcost(p, j · ~1, t) be the optimum cost for serving
the k-server instance {ρ(1), ρ(2), .., ρ(t)} ∩ T(p), with the additional constraint that exactly
j servers are available.

In our algorithm, each internal node of T, let it be p, will run a number of instances of
the allocation problem which are different with respect to their quota patterns( the number
of servers they have available), but have the same hit-cost vectors. Each node p also will
hold a convex combination of these instances. At every time step, the fractional solutions to
the different instance for each node determine how the servers are distributed to each of its
children.

We have to specify at each time step which are the allocation problems that run for each
node p, and how do they evolve. Denote the convex combination over allocation instances
on node p at time t by Λt

p, which is specified by the collection

Λt
p = {(λtp,s, κtp,s, Ht

p,s)}, ∀t, p
∑
p

λtp,s = 1
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Here:

• κtp,s is the quota pattern of node p until time t

• λtp,s is the fraction at time t given to the instance with quota pattern κtp,s

• Ht
p = {h1p, h2p, .., htp} is the sequence of hit cost vectors that have appeared until time

t.

The description of the algorithm evolves the evolution( or better, definition) of Λt
p for

each node p at time t and show how the fractional number of servers at the leaves of T are
computed.

Hit Costs: Let p be any internal node with children p1, pd. For the allocation problem
running at p,at time t we give the hist cost vector

hpi(j) = Optcost(p, j ·~1, t)− Optcost(p, j ·~1, t− 1)

As Cote et al. prove,for the cost vectors hpi(t) the monotonicity property holds: hpi(1) ≥
.. ≥ hpi(t). We move with two observations:

• htp(i, 0) =∞, because any 0-server solution is infeasible for any instance with at least
one request.

• htp(i′, j) = 0 for all i′ 6= i and for all j. This holds because the request is not in the
sub-tree of pi′ for i′ 6= i.

Quota patterns: The quoata patterns are determined recursively in a top down manner
over the tree T(and inductively over time t) by solutions of the fractional algorithm of the
allocation problem that runs on each node. The procedure below specifies how the quota
patterns update κtp,s and the convex combination λtp,s.

• At the root r of the tree T there is a single allocation instance running with a quota of
k at all times, which means that Λt

r consists of a single allocation instance,hit costs as
described above and κ = k ·~1.

• For any internal node p ∈ T and time t = 0,Λ0
p consists of a single allocation instance.

The quota pattern κp,s for this single instance s,until t = 0, is the number of servers
present initially at the leaves of subtree T(p) and no hit cost thus far.
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Establishing the inductive step: Consider time t. We describe the procedure to obtain
Λt
p from Λt−1

p in a top down manner on the HST as follows. Λt
r has already been determined

for all t. Assume that Λt
p has already been determined. Then,for the children p1, ..., pd of

p,we determine Λt
pi : Consider the allocation instances that are executed at node p. Let

{xti,j,s}i,j,s be the fractional solutions generated at time t. The following consistency property
between the quota for servers available at pi and the fractional solution from the allocation
problem at node p, is maintained:∑

s∈Λt
pi |κ

t
s(t)=j

λts =
∑
s∈Λt

p

λtsxi,j,s = xti,j

, and for each child pi ∑
s∈Λt

pi

λts = 1

Suppose now that xt−1i,j changes to xti,j due to the allocation instaces s ∈ Λt
p at time t. One

needs to update Λt
pi−1

to Λt
pi ,in order to satisfy the previous two equalities, and of course

this update can be done in an efficient way. The cost paid by the convex combination of the
allocation instances running at some node p equals

∑
s

∑
i
w(p, i)λts

k∑
j=1
|
∑
l<j

(xti,l,s − xt−1i,l,s | ≥
∑
i
w(p, i)

k∑
j=1
|
∑
s

λts
∑
l<j

(xti,l,s − xt−1i,l,s )|

Observe that the change from xti,j to xt−1i,j can be decomposed into a sequence of elemen-
tary moves, in which±δi,j units of mass are removed from xi,j and are moved to xi,j±1, such
that the total movement cost remains the same. This leads to the conclusion that one can
assume that xti,j and xt−1i,j differ only an elementary move. Consider now such an elementary
move where xti,j = xt−1i,j −δ, xti,j−1 = xti,j+δ and in order to implement this move,let δ be an
arbitrary measure of allocation problems ∈ Λt−1

pi with κs(t − 1) = j and just set κs(t) = j;
in other words move them an additional server. For all other κs, κs(t) = κs(t− 1). Observe
that hte consistency equation ∑

s∈Λt
pi |κ

t
s(t)=j

λts =
∑
s∈Λt

p

λtsxi,j,s = xti,j

and the fact the λts add to 1 for each child pi, meaning∑
s∈Λt

pi

λts = 1

hold.
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But how does the fractional k-server solution is obtained? As mentioned before, hte k-
server solution is established by the fractional number of servers at each leaf q. Consider a
leaf q and its parent p. Then we define

z(q, t) =
∑
s∈Λt

p

λts
∑
j
j · xtq,j,s

to be the number of servers at q at time t, where xq,j,s equals the probability of having exactly
j servers at q at time t,when the fractional allocation algorithm is applied to the allocation
instance s ∈ Λt

p.

Feasibility: One needs to prove that whenever at some time t there exists a server a q then
zq,t ≥ 1. We will prove this statement, provided the total cost incurred by the allocation
problems is finite. Suppose now that leaf q is requested at time t and q is the i-th child of
its parent p. Then the hit cost entry ht(i, 0) for every allocation instance running at p is∞,
which leads to the conclusion that if the total cost of the allocation problem is finite, for each
s ∈ Λt

p, it must hold that xtq,0,s = 0. Since
∑

j xtq,j,s = 1 and
∑

s∈Λt
p
λs = 1, it follows that

z(q, t) =
∑
s∈Λt

p

λts
∑
j
j · xtq,j,s ≥ 1

2.5.5 Rounding the solution online

First of all, we have to prove Theorem 8, about the transformation of T to T’. We restate
Theorem 8:

Theorem 6. : Let T be a σ-HST with n leaves, but possibly arbitrary length. Then T can
be transformed into a weighted σ-HST T’, such that T′ has logarithmic depth( O(logn)), the
leaves of T and T′ are the same, and any leaf to leaf distance is distorted by a factor of at most
2σ
σ−1 .

Proof. : We call an HST with a root r balanced balanced if for each node u none of the
subtrees rooted at the children of u has more than half of the nodes the tree rooted at u has.
Observe that if a balanced tree has n nodes then its height should be O(logn), for if you take
any path from the root to a leaf and try to walk across it beginning at r, at each time you
”discard” half of the nodes of the subtree on which root you were(in other words,at least half
of the nodes are in the other subtrees). Hence, after O(logn) levels, you must have reached
the leaf, because by the beforehand geometric decrease, you will have reached a tree with

25



exactly one node.
We will now describe a procedure that makes a tree balanced. Do a postorder traversal (
a botoom-up approach would also work) and assume for a nude u that all its subtrees are
balanced, after the routine has returned from them. Then if there exists in the transformed
instance a tree with more than the half nodes than the subtree rooted at u. If yes, then unite
u with the root of that subtree into one new node, by ”forgetting” ( the authors use the word
”contract” ) the edge between them.
It is obvious that the tree is indeed balanced ,for we have guaranteed that the property de-
scribed in the first paragraph indeed holds. But what about the change of the distances?
Clearly, since some edges may contract, there is a possibility that the distance between some
two nodes is infinite times smaller than what it was. But this is no problem, since we are really
interested in the distances between any two leaves, for the embedding procedure guarrantes
that all points of the metric space are mapped into the leaves of the tree. Pick two arbitrary
leaves u and v let l be their lowest common anchestor. Define lu be the child of l that is next
in the path from l to u. Same for v. Observe that the procedure described above cannot
contract both (l, lu) and (l, lv) because that would mean that the respective subtrees would
have more than half of the nodes of the subtree rooted at u each,a contradiction. Hence, the
worst-case scenario is that all edges except lu(or lv,but that’s symmetric) are contracted. So
the distance from u to v can be distorted only by a factor of

2
∑l

i=0 σi

σl
≤ 2

l∑
i=0

1
σi
≤ 2σ

σ − 1

, and the proof is complete.

We are now ready to describe a randomized rounding procedure that rounds the frac-
tional solution in an online manner to a feasible solution,while losing only O(1) from the
competitive ratio, as long as σ > 5. The rounding uses ideas from 11, which emerged during
the development of a randomized algorithm for the finely competitive paging problem; there
the underlying metric space is the uniform metric, so it is necessary to extend them to HSTs,
and so does the following theorems.
Let 1, .., n be the leaves of the σ-HST T. At each times t,the fractional algorithm defines the
numbers xti,which correspond to the probability that there exists a server at time t in leaf i.
Clearly, ∀t

∑
i xti = k.Observe that using the obvious and naive rounding procedure( create

the next configuration of the servers by choosing if there exists a server at i with probability
xt+1i and move the servers as imposed by the minimumweight matching between this and the
previous configuration) might lead to an infeasibilty: there is a probability that the algorithm
places more than k servers on the leaves of the tree. So, one needs to follow more a more
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sophisticated approach, being careful in maintaing feasibility. In order to do this(observe
that the main problem at this time seems to be possible infeasibility), we view ( as men-
tioned in previous section ) the randomized algorithm as a probability distribution on the
configurations. The state St at some time t defines a probability distribution μSt() over the
configurations( k-tuples of leaves), where μSt(C) is the probability mass of configuration C
in state S.
We say that a state S is consistent with a fractional state x( i.e. values of xi such that∑

i xi = k), when
∀i ∈ {1, .., n},

∑
C:i∈C

μS(C) = xi

. Observe now that in order to devise an efficient randomized rounding procedure, we need
to maintain a sequence of states S0, S1, S2, .. such that each state St is consistent with the
fractional state xt induced by the fractional algorithm and the total movement cost between
the configurations is within O(1) of the movement cost of the fractional algorithm.

In order to establish the above, one needs to strengthen the conditions of the induction he
uses. More specifically, at each time step t, St is not only consistent with xt, but also each
configuration C does not deviate much from the fractional state xt. We use the following
notation:

• xp =
∑

i∈T(p) xi, for a node p of T; this corresponds to the total fractional amount of
servers allocated at the on the leaves of T(p).

• np(C) = |C ∩ T(p)| , is the number of servers in configuration C on leaves of T(p).

• C is balanced with respect to x iff np(C) ∈ {bxpc, dxpe}.∀p.

• State S is balanced with respect to x if every configuration with non-zero probability
mass ( μS(C) > 0) is balanced with respect to x.

• W(p) is the length of the edge connecting node p with its parent.

• The balance gap G(S, x) of S with respect to a fractional state x is

G(S, x) =
∑
p

W(p)
∑
C∈S

μS(C)min(|np(C)− bxpc|, |dxpe − np(C)|)

. In a sense, this corresponds to how unbalanced the state S (with respect to x) is. The
term min(|np(C) − bxpc|, |dxpe − np(C)|) corresponds to the minimum fractional
value that needs to be added or substracted from node p in oder to become balanced.
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Before proceeding, we note the following lemma, which appears to be useful in proving
the main theorem that follows below.

Theorem 7. : Let x be a fractional state and let S be a k-server state on the leaves of a σ-HST
T,with σ > 5, which is consistent with respect to x, but not necessarily balanced with respect
to it. Then S can be converted to another state S′ which is both consistent and balanced with
respect to x, while incurring a cost of G(S, x).

Proof. : If no node is imbalanced, thenG(S, x) = 0 and we have nothing to prove, as S′ = S.
Consider now the case that G(S, x) > 0. The high level idea is that if some subtrees in a
configuration have more (or less) nodes than what is allowed, there exists a configuration
and a set of other subtrees with less( respectively more) nodes than what is allowed, so we
will adjust the probability mass of these configurations, by moving probability mass from the
missing leaf to the abundant one. So, for all unbalanced subtrees we will have μS(C) = 0,
meaning that we ignore them in our distribution. We move with the technical details: Pick a
node p that is imbalanced and which is at the highest level of T. Observe that this cannot be
the root r since xr = k at each time step, so it has some parent. Let C be a configuration such
that μS(C) > 0 and np(C) /∈ {bxpc, dxpe} and assume that np(C) < bxpc(the other case can
be treated similarly). As S is consistent with x ,

∑
C′′ μS(C′′)np(C′′) = xp and so there must

exist a configuration C′ with μS(C′) such that np(C′) ≥ bxpc + 1 (due to the fact that the
μS(C′′) add up to a value smaller or equal to 1), which leads to np(C′)− np(C) ≥ 2.
Let P be the parent of p and observe that,since as mentioned before p is not the root and p
was the imbalanced node at the highest level, Pmust be balanced,whichmeans that |nP(C′)−
nP(C)| ≤ 2. However, since np(C′)−np(C) ≥ 2, there must exist some other child of P-call
it p′- for which np′(C′) < np′(C). This holds by explotiing the fact∑

i
npi(C

′′) = nP(C′′), ∀C′′

, where the summation runs over all children of P; just substract the two equations, group
terms by nodes and claim the argument.
This means that there exists a leaf i in T(p) which is contained in C′ but not in C. In
a similar fashion, there exists a leaf i′ in T(p′) which is not contained in C′. Let δ =

min(μS(C), μS(C′)) > 0 and do the following modifications:

• μS(C)← μS(C)− δ

• μS(C′)← μS(C′)− δ
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• μS(C ∪ {i} − {i′})← μS(C ∪ {i} − {i′}) + δ

• μS(C′ ∪ {i′} − {i})← μS(C′ ∪ {i′} − {i}) + δ

One can observe that the only nodes that are affected by these modifications -and hence
can become unbalanced- belong to the paths i− p and i′ − p′. By doing the calculations on
the imbalance gap one can observe that it always decreases. The imbalance gap decreases at
least by

W(p)δ− 4δw(p)(1+ 1
σ
+

1
σ2

+ ..) = W(p)
σ − 5
σ − 1 = Ω(W(p)δ)

. Observe also that the movement cost is at most 4δw(P) σ
σ−1 , because both i and i′ lie at

T(P). So the movement cost for the modification incurred is within a factor ofO(1) from the
imbalance gap reduction. Applying this procedure while the imbalance gaps becomes zero(
this procedure must end because we proved that it always reduces by this modification), we
get a proof of the lemma.

we now prove the next theorem:
Let T be an σ-HST with n leaves, σ > 5, and let x0, x1, .. be a sequence of states of

a fractional k-server algorithm. There is an online procedure that maintains a sequence of
randomized k-server states S0, S1.. with the following properties:

• At any time t,the state St is consistent with the fractional state xt.

• If the fractional state changes from xt−1 to xt at time t,incurring a movement cost of
ct,then the state St−1 can be modifies to a state St while incurring a cost of O(ct).

Proof. Let x be a fractional state that changes to some other fractional state x′. Also let S
be a state that is both consistent and balanced with respect to x0. As S0 is also consistent
with x0, it is obvious that it suffices to prove the existence of a k-server state S′ such that S′
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is balanced and consistent with respece to x′ and that the cost to move between state S and
S′ is within a constant factor of the cost of changing from x to x′.
We will consider only the case where x′ is obtained by x by applying only an elementary
move, which means that xi is increased by δ and xi′ is decreased by δ, for some leaves i, i′.
Also δ can be infinitely small. It is easy to see that this case proves the general case, because
we can decompose each change from one state to another to a sequence of finite elementary
moves of the above form.
So,consider the two leaves i, i′ mentioned before and let p be their lowest common anchestor.
The fractional cost of changing x to x′ equals at least 2δW(p)

σ .
The transformation of S to S′ is the following: We chose a mass of δ arbitrary configurations
that do not contain i already and add the leaf i to these configurations. In the same fashion,
we remove i′ from a mass of δ arbitrary configurations that do contain i′, and define S′ the
new state. The existence of such configurations follows from the fact that S is consistent with
x. Also, since δ can be as small as we want, we can assume that i is added to the mass of a
particular configuration C and i′ is removed from a mass of another particular configuration
C′.
Now, we must prove that S′ is consistent with x′. Observe that the configurations now in S′

may not be legal anymore, for they do not have exactly k leaves, and moreover the balance
property does not necessarily hold.
Observe that since C contains i and it satisfied the balance property with respece to x,it must
hold now that np(C) ≥ bxpc+ 1. Similaryl,for C′,it must hold that np(C′) ≤ bxpc < np(C).
So, there must exist a leaf j in T(p) such that j is contained in C,but not in C′. In the new
state(the modified S’ state) it holds that C ← C − {j} and C ← C ∪ {j}.This modification
makes all the configurations in the new state legal and keeps the new state consistent with
x′. The total movement cost is at most 4δW(p)

σ−1 = O(δW(p)
σ ), for σ > 5, which is within a

constant factor of the cost of changing x to x′.
Now, we have to guarantee that S′ satisfies the balance property with respect to x′. We will
consider two different occasions:

• For all nodes bxqc = bx′qc, dxqe = dx′qe : Observe each configuration other than
C,C′ is balanced with respect to x. Observe also that xq 6= xq′ only for nodes that
belong to the path from i and the child of p and to the path from i′ and the child
of p. Also, nq(C), nq(C′) can change only for nodes q belonging to the foremen-
tioned paths. However,C,C′ were balanced with respect to x. Observe then that the
imbalance gap,as defined before, G(S′, x′) equals

3 · 2δW(p)
σ

(1+ 1
σ
+

1
σ2

+ ..) = O(δ
W(p)
σ

)
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Remeber now the previous theorem and make use of it to obtain a state that is com-
sistent and balanced with respect to x′ with a cost of O(δW(p)

σ ), and finish this part of
the proof.

• ∃q : bxqc 6= bx′qc or dxqe 6= dx′qe. Consider Q = {q, bxqc 6= bx′qc ∨ dxqe 6= dx′qe }.
For each q ∈ Q either xq or x′q is an integer. For the first case observe that nq(C′′) =

xq = bxqc = dxqe which establishes the balance property. For the second case, since
|xq− x′q| ≤ δ and ∀C′′ ∈ S, such that nq(C′′) = bxqc, bxqc or nq(C′′) = bxqc > dx′qe
it holds that the probability mass of C′′ can be at most δ.

After these modifications, the total probability mass of configurations in S′ that are not
balanced with respect to x′ is at most 3δ. We calculate the imbalance gap and proceed as
before. This leads to the end of our randomized rounding procedure.
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Chapter 3

Design of efficient fractional
algorithms for online problems

3.1 Purely combinatorial methods

3.1.1 Parking Permit

The parking problem was proposed in [8] by Meyerson and is the simplest infrastructure
leasing problem, a setting introduced by Antony and Gupta at [10]. In the parking permit
problem, we are given K different types of permits which we can purchase. Permit k has
cost Ck dollars and duration Dk days. We are given a schedule on which certain days are
marked as driving days, and asked to select a set of permits such that the cost is minimized
and every driving day is covered. Our goal is to minimize the competitive ratio α(K) of
the cost paid by our algorithm to cover all driving days versus the cost paid by the optimum
(offline) algorithm which sees the schedule in advance.
Before proceeding, we assume that we can purchase lease k only at times t multiple of lk,
meaning t ∼= 0modlk. Thus, we may only lose a factor of 2 from the optimal solution, as if
the optimal solution would purchase a permit of type k at some moment not a multiple of lk,
we can purchase instead two permits of type k at the greatest multiple of lk that not exceed t
and at the lowest multiple of lk that exceeds t.

We present a simple fractional algorithm for the parking permit problem. At the start of
the algorithm, we set all permits to fraction zero. At any time twe need to drive and the total
fraction of permits covering that time is less than one, we use increase xtk in the following
fashion:
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• ∀1 ≤ i ≤ K, xti ← xti(1+ 1
Ci
)

• ∀1 ≤ i ≤ K, xti ← xti +
1

KCi
.

We will now prove that this simple fractional algorithm has a cost of O(logK) times the
optimal integral solution. First of all observe that during each operation the total cost of the
algorithm cannot increase by more than 2 during an operation: Before the operation

K∑
i=1

Fi(t) < 1

and after that
K∑
i=1

(Fi(t)(1+
1
Ci

) +
1

KCi
) ≤

K∑
i=1

2Fi(t) +
K∑
i=1

1
Ci
≤

K∑
i=1

2Fi(t) + 1

,and so the change in the sum of the Fi(t) increases by
∑K

i=1 Fi(t) + 1 < 2.
Now consider an optimal solution and consider one by one the lease the algorithm purchases.
Suppose that it purchases the permit (i, k). We prove that after at most O(logK) operations
we will have covered that permit , meaning that the fractional value assigned to it is greater
or equal to 1. The first Ci operations increase the fractional value for this permit by at least
1
K of the permit. After this happens, each operation multiplies the value by a factor of 1+ 1

Ci
.

Let T be the number of the next operations. It holds that 1
K(1 + 1

Ci
)T ≤ 1. This leads to

T ≤ logK 1
log(Ci+1)−logCi

= ξklogK,for some ξk ∈ [Ci, Ci+1] by the mean value theorem.
So,after roughly T = O(CilogK) operations, we have purchased the whole permit, and after
that no more operation will occur while permit is active. So, since each operation costsO(1)
we conclude that for each permit in the optimal solution the algorithm paysO(logK)what the
optimal pays. Hence, the competitive ratio is O(logK) with respect to the integral solution.

3.1.2 Sum-radii-Clustering

Clustering problems are typical in computer science and especially approximation algo-
rithms. These type of problems are studied in [11] and also in [12],[13], where they are
treated from a Facility-Location point of view(they follow a Facility-Location relaxation).

In the offline version of Sum-Radii Clustering, the input consists of ametric space (M, d),
a cluster opening cost f, and a set D = u1, ..., un of demand points in M, which appear one
by one to the algorithm. Also n is not necesarilly known in advance. The goal is to find a
collection of clusters C(p1, r1), ..., C(pk, rk) that cover all demand points in D and minimize
the total cost, which equals

k∑
i=1

(f+ ri)
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.
We may assume that we can open clusters at the demands points by losing only a factor of 2
from the optimal solution. This is clear since each optimal cluster includes a demand point
inside it. Opening a cluster at that point with radius two times bigger than the optimal, we
cover the optimal cluster and the claim is proved. We also assume,for simplicity, that we can
open clusters with radius of the form 2kf, ∀k, losing another factor of 2 from the competitive
ratio. That holds because if the optimal algorithm opens the cluster C(u, r) we may open
instead the cluster C(u, 2kf) where 2k−1f < r + f ≤ 2kf, so in the worst case we only pay
double what the optimal pays for that cluster.

We now show a deterministicO(loglogn)-competitive fractional algorithm(with respect
to an integer solution) for the problem on general metric spaces, where the triangle inequality
does not necessarily hold. The algorithm is a generalisation of the algorithm proposed for
the Parking Permit problem in the previous section. Let xik be the extend to which we have
opened the cluster centerd at i with radius rk. Clearly, for the feasibility of a solution one
needs to have that for each demand uj, ∑

(i,k):(d(i,uj)≤rk

xik ≥ 1

. The cost of the solution is ∑
(i,k)

xikrk

. In the fractional setting xik can take also fractional values.
We assume that n is a power of 2 and known in advanced and we also consider the demand
locations only as potential cluster centers. So xuk = 0 demand a point in u arrives. With
these assumptions only lose O(1) from the competitive ratio of our algorithm.
The fractional algorithm acts as follows: Whenever a demand uj arrives,if

∑
(i,k):d(i,uj)≤rk xik ≥

1, then do nothing. Else,as before,while the previous sum is lower than 1, do the following
operation:

• ∀i ∈ {1, .., K+ 1}, xjk ← xjk + 1
K+1

• ∀i ∈ {1, .., K+ 1}, ui ∈ C(uj, rk), xik ← xik(1+ 1
ck )

The analysis is very similar to the analysis of the fractional algorithm of the previous
section. We first prove that each operation operation increases the cost by at most 1. Indeed,
the increase in the cost from the second part of the operation equals∑

(i,k):d(i,uj)≤rk

(xik(1+
1
ck
)− xik) =

∑
(i,k):d(i,uj)≤rk

xik < 1
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. The increase in the cost from the first part of the operation equals

K+1∑
k=1

ck ∗
1

ck(K+ 1) =

K+1∑
k=1

1
K+ 1 = 1

.
To bound the number of such operations, observe that after the first ck+1 operations caused
by demands in C(p, rk),

∑
(i,k):d(i,uj)≤rk+1

xi(k+1) becomes at least 1
K+1 due to the first step

of these operations. For each subsequent operation caused by a demand in C(p, rk) , all
fractions xj(k+1) with uj ∈ C(p, rk) increase by a factor of 1+ 1

ck+1
. Therefore increases by

a factor of 1 + 1
ck+1

. After O(ck+1logK) such increases ,
∑

(i,k):d(i,uj)≤rk+1
xi(k+1) becomes

at least 1 and so there will be no additional operations for the demands arriving inside that
cluster.
So, the total fractional cost of the algorithm for the demands in an optimal cluster of cost ck
is O(ck+1logK). Exploting the fact that ck+1 ≤ 2ck ( by rounding all radius to the highest
power of 2 that does not exceed this radius) and K = O(logn) we get the desired result.

3.1.3 Generalized Connectivity

The Generalized Connectivity problem is treated in [14], where the authors give a log-
arithmic competitive algorithm for the problem. The requirement function f is a set of
demands of the form D = (S, T), where S and T are subsets of vertices in the graph such that
S ∩ T = ∅. A feasible solution is a set of edges, such that for each demand D = (S, T) there
is a path from a vertex in S to a vertex in T.

Let OPTFRAC be the value of the optimal fractional solution. We claim that OPTFRAC is
known up to a factor of two. We skip the proof here,as our goal is only the design of the
fractional algorithm.

We describe an online algorithm with competitive factor O(logm). Initially the algorithm
assigns to each edge a fractional weight of 1

2|E|3 . Whenever a demand (S, T) arrives check
if the maximum flow from S to T is at least 1. If it is greater than 1, then do nothing. Else,
while the flow between S and T is less than 1, then compute a minimum cut C between S
and T and for each edge e ∈ C, xe ← xe(1 + 1

ce ). It is easy to notice the feasibility of the
fractional solution. We bound the number of weight augmentation steps performed during
the run of the algorithm.
Claim: The number of weight augmentation stops is at most O(OPTFRAClog(|E|)).
Let’s start with the following observation that for each edge e ∈ E always holds xe ≤ 1+ 1

ce ,
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because no edge of weight > 1 can be a part of a minimum cut with total weight less than 1.
Let

Φ =
∑
e∈E

cex∗e log(xe)

, where xe is the weight edge in the optimal solution. Now observe that :

• The initial value of the potential function is −6alog(|E|)− 2OPTFRAC.

• The potential function never exceeds OPTFRAC.

• In each step that xe increases(augmentation step), Φ increases by at least 1.

The first property holds because

Φ =
∑
e∈E

cex∗e log(
1

2|E|3 ) = −
∑
e∈E

cex∗e(3log2+ 3log|E|) = −6alog(|E|)− 2OPTFRAC

.
The second propery holds because

Φ ≤
∑
e∈E

cex∗e log2 ≤ 2OPTFRAC

.
For the third property observe that the increase in the potential function is∑

e∈E
cex∗e log(1+

1
ce
) ≥

∑
e∈E

x∗e ≥ 1

,because the optimal solution guarrantes that the flow between S and T is greater than 1
and also xlog(1 + 1

x ) ≥ 1, which can be proved by studying the monotonicity of f(x) =

xlog(x+ 1
x ) in [1,∞].

In order to prove the theorem,it suffices to prove that

sume∈Ecexe ≥ 6OPTFRAClog(|E|) + 4OPTFRAC + 1 = O(OPTFRAClog(|E|)

. At each augmentation step observe that -if we denote by C the current minimum (S, T) cut
then ∑

e∈C

xe
ce
ce =

∑
e∈C

xe < 1

. At the first step ∑
e∈E

xece ≤ |E|
1

2|E|3 2|E|
2 = 1

and since the number of augmentations is at most O(OPTFRAClog(|E|)) the cost of the frac-
tional solution is O(OPTFRAClog(|E|) , which proves the desired competitive ratio.
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3.1.4 Generalized Cuts

The generalized cuts problem is almost identical to the generalized connectivity. The
next approach is used in the same paper as the forementioned problem. We present a
O(log(|E|)-competitive algorithm for the generalized cuts problem. As previously, the algo-
rithm assigns each edge a length of 1

2|E|3 . The main body of the algorithm is almost identical
with the algorithm presented in the previous section. Again,whenever a demand (S, T) ar-
rives, if the length of the shortest path from S to T is already at least 1 , then do nothing. Else,
while the length of the shortest path from S to T is less than 1 perform a length augmentation:

• Compute the shortest path P from S to T.

• ∀e ∈ P, xe ← xe(1+ 1
ce ).

Claim: The number of weight augmentation stops is at most O(OPTFRAClog(|E|). For
each edge xe ≤ 1+ 1

ce , for an analogous reason as before. Define the potential function

Φ =
∑
e∈E

x∗ecelog(xe)

. Then it holds that:

• The initial value of the potential function is −6alog(|E|)− 2OPTFRAC.

• The potential function never exceeds OPTFRAC.

• In each step that xe increases(augmentation step), Φ increases by at least 1.

The first property holds because

Φ =
∑
e∈E

cex∗e log(
1

2|E|3 ) = −
∑
e∈E

cex∗e(3log2+ 3log|E|) = −6alog(|E|)− 2OPTFRAC

.
The second propery holds because

Φ ≤
∑
e∈E

cex∗e log2 ≤ 2OPTFRAC

.
For the third property observe that the increase in the potential function is∑

e∈E
cex∗e log(1+

1
ce
) ≥

∑
e∈E

x∗e ≤ 1
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,because the optimal solution guarrantes that the flow between S and T is greater than 1 and
also xlog(1+ 1

x ) ≥ 1, which can be proved by the inequality logx+ 1 ≤ x.
In order to prove the theorem,it suffices to prove that

sume∈Ecexe ≥ 6OPTFRAClog(|E|) + 4OPTFRAC + 1 = O(OPTFRAClog(|E|)

. At each augmentation step observe that -if we denote by C the current minimum (S, T) cut
then ∑

e∈C

xe
ce
ce =

∑
e∈C

xe < 1

. At the first step ∑
e∈E

xece ≤ |E|
1

2|E|3 2|E|
2 = 1

and since the number of augmentations is at most O(OPTFRAClog(|E|)) the cost of the frac-
tional solution is O(OPTFRAClog(|E|) , which proves the desired competitive ratio.

3.2 A primal-dual approach

3.2.1 Introduction

The primal-dual tecnhique is a very strong technique that has proved to be very helpful
for many NP-hard problems, in the area of the design and analysis of approximation algo-
rithms, although it first started as a tecnhique for designing exact algorithms to problems
such as matching. In the area of approximation algorithms, the tecnhique was firstly intro-
duced by Williamson and Goemans in [15].
When a facing a problem with a linear programming formulation, we can also write its dual
problem, which general form is presented below. The solution of the dual problem provides
a lower bound to the solution of the primal problem.[1] However in general the optimal
values of the primal and dual problems need not be equal. Their difference is called the
duality gap. For convex optimization problems, the duality gap is zero under a constraint
qualification condition. Thus, a solution to the dual problem provides a bound on the value
of the solution to the primal problem; when the problem is convex and satisfies a constraint
qualification, then the value of an optimal solution of the primal problem is given by the dual
problem.

In this section, we present competitive fractional algorithms for online problems, by
exploiting the relation between the primal and the dual problems that occur from the linear
programming formulation of each of these problems. These techniques have been established
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Primal program

min
∑n

i=1 cixi
s.t.:

∑n
i=1 aijxi ≥ bj,∀j : 1 ≤ j ≤ m

xi ≥ 0,∀i : 1 ≤ i ≤ n

Dual program

max
∑m

j=1 bjyj
s.t.:

∑m
j=1 aijyj ≤ ci,∀i, 1 ≤ i ≤ n

yj ≥ 0,∀j, 1 ≤ j ≤ m

Ski-rental primal program

B · x+
∑

j zj
s.t.:
x+ zk ≥ 1
x ≥ 0,∀j, zj ≥ 0

Ski-rental dual program∑
j yj s.t.:∑
yj ≤ B

∀j, 0 ≤ yj ≤ 1

and extended mainly by Niv Buchbinder, and they were a breakthrough as they indicate an
easier way to obtain fractional algorithms that are highly competitive. So, they appear useful
in designing efficient randomized algorithms, followed by the essential randomized rounding
tecnhiques. The main idea of these algorithms is that whenever a new constraint arrives,
if this constraint is not satisfied then the algorithm raises the variables of the primal and
dual variables in a certain way, such that some properties hold. This is non-trivial and at first
sight someone cannot understand why the variables are updated in such a way. However, this
occurs from a solution of a system of differential equations. Examples are presented below
and which system is this is indicated in the last subsection. These examples are taken from
[21], by the work of Niv Buchbinder and Joseph(Seffi) Naor, who established the method.

3.2.2 The Ski-Rental problem

The ski-rental problem is reffered again in chapter 1. We begin by indicating a fractional
competitive algorithm for the problem via a primal-dual approach. The online algorithm
follows:

• Set x← 0.

• Each new day, if x < 1
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– zj ← 1− x

– x← x(1+ 1
B) +

1
cB ,where c a constant to be determined later.

– yj ← 1

We now break the analysis into two parts:

• The primal and dual solutions are feasible.

• In each day, the ratio between the change in the optimal and the dual objective function
is bounded by 1+ 1

c .

The above would imply that the algorithm is (1 + 1
c )-competitive, by the weak duality

theorem.
In order to prove the feasibilty of the primal observe that at each day at the beggining of which
x < 1 it holds that at the end of it that x′+ zj ≥ x+(1− x) = 1,hence the constraints of the
primal program hold true. Here, x′ equals the new value of x, namely x′ = x(1+ 1

B) +
1
cB .

For the feasibility of the dual observe that since x only increases and each time this happens
one yj becomes 1, we need to prove that the update of x does not happen more than B times.
At the k-th time x is updated, we have that

x =
1
cB

k−1∑
i=0

(1+ 1
B
)i

Setting k = B and exploting the geometric series we get that the expression equals x =
(1+ 1

B )
B−1

c . Thus setting c = (1+ 1
B)

B − 1, we get the feasibility of the dual solution.
We proceed with the second part of the analysis. If x ≥ 1 then there is nothing to prove. Else
, the change in the primal objective function equals B[x(1+ 1

B)+
1
cB−x]+1−x = 1

c +1 and
the change in the dual cost is exactly 1,hence the algorithm is indeed (1 + 1

c ) competitive,
and in particular e

e−1 -competitive, because c ≤ limB→+∞[(1+ 1
B)

B − 1] = e− 1

3.2.3 Weighted Caching Problem

In the weighted caching problem there is a size of size k, and pages {1, .., n}, associated
with weights w1, w2, .., wn. The weights denote the cost of fetching the pages into the cache.
Pages are requested online and the goal is to minimize the total weight of the pages we fetch
into the cache. The following fractional O(logk)-algorithm is presented in .

The variables yp,t denote the fraction of page p missing from the cache at time t. Let pt
denote the page p missing from the cache at time t. Let pt denote the page requested at time
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Weighted Caching primal program

min
∑n

p=1
∑T

t=1 wpzp,t +
∑T

t=1∞yp,t
s.t.:
∀t, S ⊂ [n], |S| > k :

∑
p∈S yp,t ≥ |S| − k

∀t, pzp, t ≥ yp,t−1 − yp,t
∀t, pzp,t, yp,t ≥ 0

Weighted Caching Dual Program

max
∑T

t=1
∑

S(|S| − k)as,t
∀t, p 6= pt :

∑
S:p∈S aS,t − bp,t+1 + bp,t ≤ 0

∀t, p : bp,t ≤ wp

∀t, p, |S| > k : at,S, bp,t ≥ 0

t. The primal LP constraints states that at any time t,for any set S of pages with |S| > k,then
the total number of pages outside the cache greater or equal to |S| − k. The variables Zp,t
denote the fraction of page p that is fetched at time t. The first term in the objective function
is the fetching cost and the second term enforces the requirement that page ptmust be in
the cache at time t. The dual of the LP consists of variables for each set S and time t, and
variables for each page p and time t.

The algorithm follows:

For each page p and time t,we maintain the following relation between primal and dual
variables:

yp,t =
1
k
(exp(

bp,t+1
wp

ln(1+ k))− 1)

Consider now a request for page pt at time t. Initially we set yp,t = yp,t−1 for all p and
hence bp,t+1 = bp,t, because yp,t if seen as a one-variable function of bp,t+1 is one to one.
Also, ypt,t = bpt,t+1 = 0. Let S = {p : ypt < 1}, namely the set of the pages that at time t
have a fraction of them present in the cache. We start increasing aS,t, bp,t+1 at the same rate
for all pages p ∈ S−{pt} uniformly. By the relation between dual and primal variables one
can observe that yp,t increases, thus meaning that pages start being evicted from the cache(
more specifically, a fraction of their). The following procedure continues until the primal
constraints are satisfied. If yp,t = 1 for some page p during this procedure, we redefine S by
forgetting that page: S← S− {p}.

The analysis follows:

• Feasibility: We first note the feasibility of the above algorithm. Observe that bp,t+1
never exceed wp for some page p, and also yp,t = 1 leads to bp,t+1 ≤ wp, because the
function described above is increasing in bp,t+1. The dual constraint is also satisified
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as aS,t and bp,t+1 increase at the same rate for any page p ∈ S − {pt} and hence the
contribution of the variable aS,t to constraint is cancelled by the contribution of bp,t+1
( they have opposite signs).

• Cost Analysis: Let P,D be the values of the primal and dual solutions procuded
by the algorithm. In order to obtain an O(logn)-competitive algorith, it suffices to
show that the derivative of P is at most O(logn) times the derivative of D. Due to
the increase of the variable aS,t one gets at some time when the algorithm decides to
increase that dual variable that ∂D

∂aS,t = |S| − k.

Observe now that ∂yp,t
∂bp,t+1

= ln(1+k)
wp

(yp,t + 1
k ). Also , as bp,t+1, aS,t are raised at the

same rate then the derivative of the primal cost at that time equals∑
p∈S−{pt}

wp
∂yp,t

∂bp,t+1
=

∑
p∈{pt}

ln(1+ k)(yp,t +
1
k
) ≤

≤ ln(1+ k)(|S| − k+
|S| − 1

k
) ≤ 2ln(1+ k)(|S| − k) = 2ln(1+ k)

∂D
∂aS,t

,since
∑

p∈S yp,t < (|S| − k) and x−1
k ≤ x− k, ∀x ≥ k+ 1, as it reduces to k2 − 1 ≤

x(k− 1) or k+ 1 ≤ x.

By the above, we conclude that the above algorithm is O(logn)-competitive.

3.2.4 The online Packing-Covering Framework

The online packing-covering problem is a special case of linear programming and a
generalisation of many important problems, like the well-known NP-complete Set Cover
problem. In the covering problem the goal is to minimize an objective function of the form∑

i cixi, and at the same time all the coefficients of the indicator variables in the constraints
are either 0 or 1.

We present three algorithms for the covering/packing problem. All three algorithms
achieve a competitive ratio of O(logd) and hence their performance is the same. However,
their properties vary and some algorithms are more suitable than other algorithms for certain
applications.

Whenever a new primal constraint
∑

i∈S(j) xi ≥ 1 arrives do:
While

∑
i∈S(j) xi < 1
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Packing-covering primal program

min
∑

i cixi
s.t.:
∀1 ≤ j ≤ m,

∑
i∈S(j) xi ≥ 1

∀1 ≤ i ≤ n, xi ≤ 0

Packing-Covering dual program

max
∑

j yj
s.t.:
∀1 ≤ i ≤ n,

∑
j|i∈S(j) yj ≤ ci

∀1 ≤ j ≤ m, yj ≤ 0

• ∀e ∈ S(j) : xi ← xi(1+ 1
ci ) +

1
|S(j)|ci

• yj ← yj + 1

We may assume that ci ≥ 1. Let d = maxj|S(j)| be the maximum size of a covering
constraint. As before we move with the following:

• The algorithm produces a feasible solution

• In each iteration ΔP ≤ 2ΔD

• Each packing constraint is violated by O(logd).

The proof of the first bullet is obvious, as it is the condition for the while loop to termi-
nate. For the second bulltet ,observe that ΔD = 1 for an execution of the while loop, and
also:

ΔP =
∑
i∈S(j)

ci(xi(1+
1
ci
) +

1
|S(j)|ci

− xi) =
∑
i∈S(j)

(xi +
1
|S(j)|

) = 1+
∑
i∈S(j)

xi < 2

For the third bullet observe that whenever we increase a variable yj by one unit,we also
increase the variable xi and one can observe that

xi ≥
1
d
((1+ 1

ci
)
∑

j|i∈S(j) yj − 1)

We prove the above relation by induction. At the start, xi = 0 and all yj equal zero so
the claim follows. Whenever some yk increases by 1 then the new value of x equals

x(1+ 1
ci
) +

1
|S(j)|ci

≥ x(1+ 1
ci
) +

1
dci
≥ 1

d
((1+ 1

ci
)
∑

j|i∈S(j)−{k} yj − 1)(1+ 1
ci
)yk +

1
dci
−

=
1
d
((1+ 1

ci
)
∑

j|i∈S(j) yj − 1)
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Now,It is easy to see that the algorithm never updates a variable greater than 1 as it
would not need to,for the condition of the while loop would be false. So, the last time a xi
was updated, its value is xi(1+ 1

ci )+
1

|S(j)|ci ≤ 1(1+ 1)+ 1 = 3 ,as ci ≥ 1. So it holds that

3 ≥ xi ≥
1
d
((1+ 1

ci
)
∑

j|i∈S(j) yj − 1)

and hence ∑
j|i∈S(j)

yj ≤ O(cilogd)

We move with the second algorithm: Whenever a new primal constriant
∑

i∈S(j) xi ≥ 1
do:
While

∑
i∈S(j) xi < 1:

• Increase variable yj in a continuous fashion.

• For each variable xi that appears in the primal constraint increase xi as below:

xi ←
1
d
[exp(

ln(1+ d)
ci

∑
j|i∈S(j)

yj)− 1)

Clearly, there are variables in the function presented above thatmay refer to future,unknown
constraints. We ignore these variables, as we do not know them and set them to zero. We
follow the typical approach presented above:

• The algorithm produces a primal feasible solution

• In each iteration j: ∂P
∂yj
≤ 2ln(1+ d)∂D∂yj

• Each constraint in the dual program is feasible.

The first claim is obvious by the while-loop condition. Let us now prove thse second
claim.Observe that ∂D

∂yj
= 1. The derivative of the primal cost is

∂P
∂yj

=
∑
i∈S(j)

ci
∂xi
∂yj

=

=
∑
i∈S(j)

ci
ln(1+ d)

ci
1
d
exp(

ln(1+ d)
ci

∑
j|i∈S(j)

yj) =
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= ln(1+ d)
∑
i∈S(j)

1
d
(exp(

ln(1+ d)
ci

∑
j|i∈S(j)

yj)− 1) + 1
d
) =

ln(1+ d)
∑
i∈S(j)

(xi +
1
d
) ≤ 2ln(1+ d)

, where the last inequality follows from the infeasibility of the constraint.
To prove the third bullet, we observe that xi ≤ 1 since it would not belong to some unsatisfied
constraint. So, by the update rule one gets that

xi ←
1
d
[exp(

ln(1+ d)
ci

∑
j|i∈S(j)

yj)− 1) ≤ 1

, which simplifies to ∑
j|i∈S(j)

yj ≤ ci

, hence the feasibility olf the dual constraint.

We move with the third algorithm:
Whenever a new primal constraint sumi∈S(j)xi ≥ 1 arrives do: While sumi∈S(j)xi < 1 do:

• Increase variable yj continuously.

• If xi = 0 and
∑

j|i∈S(j) yj = ci then set xi ← 1
d

• For each variable xi, 1d ≤ xi ≤ 1 such that xi ∈ S(j) increase xi according to the rule:

xi ←
1
d
exp(

∑
j|i∈S(j) yj
ci

− 1)

We move with the above claims:

• The algortihm produces a primal solution.

• Each packing constraint is violated by a factor of at most O(logd).

• P ≤ 2D.

For the proof of the first claim, observe that the condition of the while-loop guarantees
the feasibility of the solution. For any dual constraint

∑
j|i∈S(j) ≤ ci, as before, the variable
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xi which corresponds to that constraint cannot exceed 1, otherwise it would not belong to an
unsatisfied constraint. This means that

xi ≤
1
d
exp(

∑
j|i∈S(j) yj
ci

− 1) ≤ 1

After the calculations one get that∑
j|i∈S(j)

≤ ci(1+ lnd) = O(cilnd)

We now need to prove the third bullet. We can partition the contribution ot the primal
cost into Cost1, Cost2, where the first denotes the contribution to the primal cost from the
first step of the algorithm( the increase of the variables to 1

d , and the second one denotes the
contribution from the uniform increase of the variables xi. Let xi = min(xi, 1d). Clearly,
Cost1 =

∑
i cixi. This means that if xi is positive, then

∑
j|i∈S(j) yj ≥ ci. and if yj > 0 then

∑
i∈S(j)

xi ≤
∑
i∈S(j)

1
d
≤ 1

Using the complementary slackness conditions one gets that∑
i
cixi ≤

∑
i
(
∑

j|i∈S(j)

yj)xi =

=
∑
j

∑
i∈S(j)

yj ≤
∑
j
yj

The above inequality is translated intoCost1 ≤
∑

j yj. We now boundCost2: Whenever
the algorithm updates the primal and dual solutions, observe that it must hold ∂D

∂yj
= 1 , and

also notice that
∂P
∂yj

=
∑
i∈S(j)

ci
∂xi
∂yj

=
∑
i∈S(j)

ci
xi
ci
≤ 1

, because when updating the covering constraint is infeasible. By the above one gets that
Cost1 + Cost2 ≤ 2D.

3.2.5 Indicating the basic idea

Observe for example the second algorithm for the online packing-covering problem. It
is clear not obvious why these update rules where chosen, why someone would use this
function between primal and dual variables. The idea behind this to bound the derivative of
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the primal cost(let it be P) as a function of the derivative of the dual cost. So, one needs to
prove that

∂P
∂yj

=
∑
i∈S(j)

ci
∂xi
∂yj
≤ a

∂D
∂yj

,where a is the desired competitive ratio. Now,suppose that the derivative of the primal
cost equals ∑

i∈S(j)

ci
∂xo
∂yj

= A
∑
i∈S(j)

(xi +
1
d
)

,for some A, depending on a(their relation will be found later). Then since∑
i∈S(j)

xi ≤ 1,
∑
i∈S(j)

1
d
≤ 1, ∂D

∂y
= 1

one gets that
A

∑
i∈S(j)

(xi +
1
d
) ≤ 2A∂D

∂yj

Clearly, a = 2A and in order to satisfy the previous equality one needs to solve the
following system of differential equations:

∂xi
∂yj

=
A
ci
(xi +

1
d
)

By solving the previous system one gets that xi are:

xi = B · exp(A
ci

∑
l|i∈S(j)

yl −
1
d
)

, where B is an arbitrary constant, that is derived from the boundary conditions. The first
boundary conditions corresponds to the beginning of the algorithm when xi = 0 and athis
happens when 1

ci
∑

j|i∈S(j) = 0. The second boundary condition corresponds to the tightness
of the dual constraint, where xi = 1 and 1

ci
∑

j|i∈S(j) yj = 1. By the previous boundary
conditions one gets B = 1

d and A = ln(d + 1). So, the function used in the algorithm for
connecting the primal with the dual variables is

xi =
1
d
· exp( ln(d+ 1)

ci

∑
l|i∈S(j)

yl −
1
d
)
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Chapter 4

Incremental Clustering

4.1 Problem Definition

Given a metric d defined on a set P of n points, we define the ball B(v, r) centered at
v ∈ P and having radius r ≥ 0 to be the set {q ∈ P|d(v, q) ≤ r}. For k > 0, a k-cover
for subset Q of P is a set of at most k balls, each centered at a point in P , whose union
covers (contains) Q. The cost of a set D of balls, denoted cost(D), is the sum of the radii of
those balls. In this chpater, we consider the (metric) minimum cost k-cover problem: Given
a metric d on a set P of n points as above, and an integer k > 0, compute a minimum cost
k-cover for P. We follow the approach of [16],[17] and [18] and study the incremental sum-
radii-clustering problem (ISRC) is the next one: Find a permutation of the request sequence
such that for each k ∈ {1, .., n} the optimal solution for the k-sum-radii-clustering with
the clusters opening at the first k centers in the permutation is within a factor of c from the
optimal solution for the k-sum-radii-clustering problem. Then,the approximation ratio of the
algorithm is c.

4.2 The case of the line

Consider n points on the line sorted in increasing order,hence r1 < r2 < .. < rn. If
the optimal algorithm would answer the k-sum-raddii clustering question how will it react?
Observe that all interval(clusters) that the optimal algorithm chooses must have their end-
points at two points of the request sequence and the center of it would be the midpoint
of these. Instead of choosing the k clusters,the optimal algorithm would choose the k − 1
”spaces”,meaning the intervals of the form [ri, ri+1] that it would not cover with some clus-

48



ter. Hence it would sort all intervals of the form [ri, ri+1] for i ∈ {1, .., n− 1} in decreasing
length and discard the first k of them.

Theorem 8. There is a 2-approximation algorithm for ISRC on the line.

Proof. The incremental algorithm works as follows: For i = 1 to n the next point in the
permutation is the left endpoint of the interval of the optimal solution that is has not been put
yet in the permutation. Observe that due to the nature of the optimal solution,the transition
from k to k+1 means that the optimal algorithm discards one additional interval of the above
form and hence there is exactly one interval,call it I, of the optimal solution with k points
that is partitioned into two new intervals in the new solution. Clearly,the left interval that I
breaks to has its left endpoint in the permutation,while the right one does not have it. Hence
we put it next in the permutation and observe that now all intervals in the new solution have
their left endpoint in the permutation so far. At each time step, the optimal for all intervals it
creates,puts the optimal center at their midpoint,while the proposed algorithm has opened a
center at the left endpoint of the interval,hence it pays at most 2 times what the optimal pays
for each interval(exactly 2 for intervals of non zero length and exactly the same cost-zero-
for single point clusters). Hence in overall it pays 2 times what the optimal pays and the
theorem is proved.

Theorem 9. There is a 2-approximation algorithm for ISRC on the circle.

Proof. We reduct this problem to the instance on the line. Let ri be named in clock-
wise order and let xi be the distance of point i in this order from point r1 .Also,let δ =

maxi∈{1,..,n}|xi+1 − xi|, where the indices are taken modulo n. We say an interval with end-
points ri, ri+1 in the clockwise order a primitive interval. We prove that no optimal algorithm
would cover a primitive interval of length δwith a cluster if there was an uncovered primitive
interval with length l such that l < δ. Consider all clusters that cover a primitive interval of
length δ. Consider any cluster C with endpoints ri, rj that covers a primitive interval ri′ , ri′+1
of length δ. Then observer that rj+1 must be covered by a cluster C′. We extend C′ from
ri′+1 to rj+1 and restrict C from ri to ri′( obviously the centers of the clusters also move).
Observe that the cost is increased by |xj+1−xj|

2 and it is decreased by δ
2 , which is non-negative.

If it strictly negative we are done. Else we repeat the same procedure with the cluster C′ and
so on,until the change in the cost is negative(cluster C′ must now have a primitive inter-
val of length δ). Clearly, this procedure must end sometime because there is an uncovered
primitive interval of length l < δ,proving the desired result. For the algorithm we can safely
”forget” any primitive interval of length δ and thus transform the circle into the line,applying
the previous algorithm and yielding the desired approximation ratio.
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4.3 Algorithms on Hierarchically Separated Trees

A Hierarchically Separated Tree(or HST from now on) is a rooted tree for which there
is a number σ such that σ ∗ d(p(u), u) = d(u, c(u)) for any node u (nor a leaf,neither the
root) of the tree, where p(u), c(u) denotes the parent and child of u respectively. We focus
on HSTs with σ ≤ 1

2 and all leaves have equal length from the root. We denote by Tu the
tree rooted at node u and by hu the length of the longest path from u to some leaf of Tu.
We also assume that the demands lie at all the leaves of the HST, as we can discard any leaf
u which does not have a request at it(and similarly any node u such that no member of the
request sequence lies in Tu). We prove the following:

Claim: For the the k-sum-raddi clustering problem on HSTs, if we decide to open a cluster
at a node u then there is no point in opening a cluster with radius greater than hu.

Proof. Suppose that we open a cluster C at node u with radius greater than hu,say R. Let
the leaf l served in C with the highest common ancestor with u, say l. Clearly, l must also
belong to C. Opening however a cluster at l with radius hl covers C and its radius is smaller,
by exploiting the geometric decrease of the lengths of the edges and that σ ≤ 1

2 .

Theorem 10. Let an HST T with σ ≤ 1
2 . Then there exists a 2-approximation algorithm for

ISRC on T.

Proof. Let r be the root of the tree and u1, u2 be its children. We prove that the optimal
algorithm for the (k+ 1)-cluster instance would choose the cluster C centered at a non-lead
node u of the k-cluster instance with the smallest fu = hu − 2 ∗ d(c1(u), u) value and open
two clusters at each two children, forgetting the cluster at u. We then say that cluster C is
split.We prove the claim by induction on k. For k = 1 the statement is trivial. Assume that
the algorithm holds for k and we now prove it for k+ 1. Let l′1, l′2 be the number of clusters
the optimal algorithm for the (k + 1)-instance opens at subtrees Tu1 , Tu2 respectively. Let
l1, l2 be the same for the k-instance. Clearly, 0 < l′1, l′2, l1, l2 < k + 1. Observe that ,due
to the induction hypothesis, the algorithm is valid on subtrees Tu1 , Tu2 with l′1, l′2 clusters
respectively. Assume now,without loss of generality, that the center-call it w- of the cluster
with the largest f value in the optimal k instance solution, lies in Tu2 . We show that each
optimal solution for which l′2 > l2+ 1,can be transformed to an optimal solution with l2+ 1
clusters in Tu2 . Running the algorithm for the k instance at r, let Tx be the last cluster that
was split at Tu1 . If l′2 > l2 + 1 then the optimal algorithm for the k + 1 instance does not
open Tx, while it opens two clusters at w1, w2, the children of w. Observe however that since
Tw has not been split in the k instance by our algorithm, either there is another subtree Ty
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of Tu2 such that fy ≤ fw (Tw might be a subtree of Ty, but the inequality still holds) and the
algorithm split Ty after Tx leading to fx ≤ fy, either Tx was the last cluster that was split for
the k instance. Whatever holds, fx ≤ fw and opening two clusters at the children of x instead
of the children of w cannot increase the cost. The transformed instance has one less cluster in
Tu2 . Applying this procedure we can make the numbers of clusters in Tu2 equal to l2 + 1. A
similar transformation holds when l′2 ≤ l2 , which means that we can assume that l′2 = l2+1.
The optimality of the algorithm now holds by induction hypothesis on each subtree.
Our algorithm now proceeds in a divide and conquer approach. For T, solve recursively the
problem on Tu1 and Tu2 and let π1, π2 be the permutations that are returned by the algorithm
for these two subtrees. The algorithm returns a permutation π of the nodes of T. The first
two clusters open at the first node that π1 indicates and at the first node that π2 indicates, ,
meaning that the first two elements in π are the first elements of π1, π2. Then the optimal
algorithm at each time adds one additional cluster at exactly one of these two subtrees. If
it adds it at Tu1 then next in the permutation is the next node in π1,else the next node in
π2. Inductively over the number of available clusters and over all subtrees assume that the
algorithm is 2-competitive. The induction basis is trivial. Then at each time step if the
optimal has l1 clusters at Tu1 and l2 clusters at Tu2 , so our algorithm does. So it pays the
double for each subtree and hence the double in total.

We extend the above algorithm to arbitraty HSTs:

Theorem 11. : There is a 2-approximation algorithm for ISRC on an HST where σ ≤ 1
Δ+1 ,

where Δ is the maximum number of children one node has. There is also a 2-approximation
algorithm for ISRC on an HST where all children,except for the leaves,have the same number
of children Δ and σ ≤ 1

Δ .

Proof. Define as before for any node u the function fu = du(hu − Du) − hu, which corre-
sponds to the change in the cost if we substitute a cluster rooted at u with clusters rooted at
the children of u. Here Du = d(u, c1(u))(for ease of notation below we drop the notation
for u and say Dmeaning Du) and du equals the number of children of u. The analysis is very
similar to the previous one but instead of applying the greedy procedure at each time step,
it applies it only when the optimal solution is strictly better.It is also based on the following
observations(which are trivial in the case of the binary tree):

• fu < 0, ∀u : It suffices to show that hu(du − 1) < duD. However hu(du − 1) <
D

1−σ (du− 1). Then D
1−σ (du− 1) ≤ duD because it reduces to 1 ≥ duσ , which holds

by the definition of σ.
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• fu ≤ fx, for each child x of u: The above expression reduces to
du(hu − D) ≤ dx(hu − D− Dσ) + D. Clearly,the worst-case scenario occurs when
du equals Δ and dx equals 2. After that observe that the inequality, after bringing
all terms at the left-hand side, is a linear function of hu with non-negative slope.
Hence it suffices to prove that the statement holds for the maximum hu, meaning
hu = D

1−σ . Because (Δ+ 1)σ ≤ 1, one can observe that ΔσD1−σ ≤ D, which establishes
the inequality.

The above inequalities in the case of an HST with the same number of nodes and σ ≤ 1
Δ can

easily be derived again.

4.4 General metric spaces

Theorem 12. Given an a-approximation algorithm for the k-sum-radii-clustering problem,we
can consruct a 8a-approximation deterministic algorithm and a 2ea-approximation random-
ized algorithm for the ISRC problem.

Proof. We follow the approach of Huolong Lin et.al. at [19]. For a solution S define CS the
set of centers of the clusters that they are open. Define S1 � S2 to be CS2 ⊆ CS1 . ben(S)
equals n minus the number of clusters S uses. cost(S) is defined in the obvious way. To
establish the result, one needs to show that given a state S and a number k there exists a state
S′ ⊆ S with at most k clusters such that cost(S′) ≤ 2cost(S) + cost(opt(k)). Define also
cS(x) the cluster in which x is included in in S and also rs(cS(x)) the radius of that cluster.
Let’s proceed with the algorithm.If |CS| ≤ k, there is nothing to prove. Else let S′′ be a
state which uses k clusters. Set A = CS, B = CS′′ , CS′ = ∅. We will say that x ∈ CS

dominates y if and only if y belongs to the cluster in S centered at x.Now, apply the following
procedure until A = ∅. Choose a y ∈ B and choose a x ∈ A such that the cluster of x in S
and the cluster of y in S′′ have a non-empty intersection. .Then let m be the largest radius(in
S′′) among the clusters with centers in B such that the cluster of x in S has a non-empty
interesection with these clusters. Set CS′ = CS′ ∪ {x} and open a cluster at x with radius
2m+ rS(cS(x)). Observe that all clusters mentioned above and belonging to S′′ are covered
from the one opened, due to triangle inequality. Delete all these centers from B. At the
end,observe that there is no uncovered point(as all clusters in S′′ are completely covered)
and we have a feasible solution using at most k clusters. It is easy to observe that the cost of
the new clusters is at most 2cost(S)+cost(S′′), as each cluster’s radius in S and S′′ is charged
at most one time. Since S � S′, the theorem is proved.
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Chapter 5

Online Mobile Facility Location

5.1 Problem formulation

In the online mobile facility location, we are given a finite metric space M(V, d) and
an initial configuration of facilities C on points of the metric with a certain weight each.
We assume that no two facilities initially lie at the same point.Each time a request arrives
and we must serve it with one of the facilities. However, the request can move also, so we
have 3 choices:move the facility onto the request,move the request onto the facility, or move
both of them to an intermediate point. After each requested is served,the facility’s weight it
is attached to increases by the weight of the demand. The cost for moving a unit of mass
D for x equals D ∗ x. The objective is to minimize the total movement cost. This is one
online variant of the problem that was introduced in [20] by Friggstad and Salavatipour.
There they tried the offline variant of the problem and proposed a constant approximation
algorithm rounding of a linear relaxation of the problem.

5.2 Problem simplification

Proof. : We prove the two-facility occasion which can easily be generalized. Consider a
triangle with vertices a, S, b where ab is of weight 1 and the other two of weight Δ for some
Δ sufficiently larger than n. The two facilities of weight 1 are placed at a and b. Consider
n = 2k + 1 and bring the first k demands to a and the next k to b,each with a weight
of Δ. Clearly,an online algorithm that moves during these first 2k moves any facility or
demand(in order to put all the weight in one of the two facilities) cannot achiece a finite
competitive ratio,because the adverser can bring the last demand to a and pay nothing. Now,
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the adverser brings a demand of weight Δ2 to S.The online algorithm either will move the
demand to one of the facilities paying a cost of Δ3 or move one facility to it,paying a cost of
Δ2 ∗ k. However,the optimal algorithm would move the facility from a to S at the beginning
and serve all demands arriving in a to b paying a total cost of Δ+Δ∗k.Hence the competitive
ratio is O(Δ) which is unbounded.

However,if we focus on the more realistic ocassion that all facilites and all demands ar-
riving during the algorithm have weights that do not differ much for each other, e.g. there is
a constant c such thatwi ≤ cwj, ∀i, j, wherewi, wj are drawn from the setW that contains the
weights of all facilities and demands,then we can achieve a much better competitive ratio. So
we may concetrate in the case just mention.We also do one more observation to simplify the
problem: We can treat all demands and facilities like having equal weight with losing O(1)
from the competitive ratio. We can view each demand apart from the facility it is attached to
and its contribution to the total cost as its weight times the distance it travelled. Rounding to
the greatest weight appeared we see that this contribution is multiplied by at most c. Hence
we lose only O(c) = O(1) of the optimal solution.

Here we prove that in metric spaces where the triangle inequality holds, in any optimal
solution for a request sequence ρ(t) all the facilities would firstly move to a configuration and
then serve all the demands without further moving the facilities. Consider a request sequence
ρ(t) on a metric spaceM(V, d) and an optimal solution where there exists some facility,let’s
say f, such that the above does not hold. Let u be the final position of f and v be the position
where it was before it moved to u. Then at v this facility must have served some requests,let
them be r1, r2, .., rl. The total cost incurred by the movement of these requests is

l∑
i=1

(d(v, u) + d(ri, v)).

Consider the instance where f does not serve any requests to v, but it moves instantly at v.
Then for each one of the requests mentioned above the cost incurred is

l∑
i=1

d(ri, u)

, whereas for all the other requests the cost does not change. By triangle inequality, the
new solution costs at least as much as the previous solution.Repeating this argument for all
facilities proves our claim.
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5.3 Warm-up:The offline mobile facility location on
the line

Let us consider the offline facility location on the line and let {r1, .., rn} be the demand
sequence in increasing order,.eg:r1 ≤ r2 ≤ .. ≤ rn. Consider two facilities l and k and let
sl, sk be their starting positions and tl, tl be their final positions. It is easy to observe that if
sl < sk then tk < tl and vice versa. This holds because if there exists an optimal solution
that does not satisfy this property,we can change tk to tl and tl to tk and decrease the cost.
Moreover, if Si be the set of demands attached to facility i in the optimal solution, then imust
move to the median of the elements in Si ∪ {si}. This holds because we want to minimize

|ti − si|+
∑
j∈Si

|rj − ti|

and a simple exchanging argument shows that we must choose ti as the median mentioned
above. Moreover,if for some i, j with i < j ri and rj are served at the same facility,then
all intermideate demands ( rk : i < k < j) will also be served to the same facility. This
can be proved by an exchanging argument. So the indexes of the demands attached to a
facility form a sequence of consecutive indices. This lead to the following natural dynamic
programming formulation: Denote dp[i][j] be the optimal cost of serving the first i demands
with the first j facilities(everything is assumed to be sorted in increasing order). Then :

• dp[0][j] = 0 ,

• dp[i][0] = +∞, i > 0

• dp[i][j] = min0≤k≤i{dp[i− k][j− 1] + opt(i− k+ 1, i, j)}, i > 0, j > 0

,where opt(i− k+ 1, i, j) is the optimal cost to serve the demands {ri−k+1, .., ri} to facility
j. We do not need to compute this function each time,but we can compute opt(i− k+1, i, j)
from opt(i− k+2, i, j) efficiently(notice that the median moves one position left and we can
compute the new value in constant time). The total running time is O(n2k).

5.4 Deterministic algorithms on OMFL

Theorem 13. No deterministic algorithm can obtain better than Ω(n) competitive ratio,when
k ≥ 2.
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Proof. Define the following metric on k + 1 points: There are 3 points a, b, S and k − 2
points ui. a, b, S form a triangle with weights d(a, S) = d(b, S) = n and d(a, b) = 1. Also
, S is connected to all k − 2 points ui with an edge of weight n2. Each facility initially lies
on a, b, ui.Then the adverser,brings the first n

4 demands on point a. If the online algorithm
decides not to serve one of these demands with a,then it would incur at least 1 cost. So,the
adverser bringing all the remaining points on awould force the competitive ratio to be infinity.
Hence,all first n4 demands are served to point a.Then the adverser brings the next n4 demands
to point b and by the same reasoning,they are served there. At last,he brings the last n

2
demands to point S. If the online algorithm moves no facility,it would pay a cost of n

2n. If it
moves one of the ui it would pay at least n2. If it moves one of a and b, it would pay n

4n. In
any ocassion,the online algorithm incurs a cost of O(n2). The offline algorithm would move
facility from b to S and serve all demands arriving in b to its neighbour a,paying a total cost
of n

4 + n, which is Ω(n) times better than what the online algorithm pays.

Next,we prove that the ”stay-where-you-are” algorithm,where the facilities don’t move,but
the requests attach to the nearest one is O(n)-competitive.

Theorem 14. The ”stay-where-you-are” algorithm is O(n)-competitive.

Proof. Denote the initial facilites’ locations by f1, f2, .., f|C|. For the j-th facility let Fj be the
set of requests that are attached to that facility in the optimal solution and f∗j the final position
where it moves. Then the optimal cost equals

OPT =

|C|∑
j=1

(
∑
i∈Fj

d(ri, f∗i ) + d(fj, f∗j ))

The algorithm’s cost equals

n∑
i=1

minj(d(ri, fj)) ≤
|C|∑
j=1

∑
i∈Fj

d(ri, fj) ≤
|C|∑
j=1

∑
i∈Fj

(d(ri, f∗j ) + d(fj, f∗j )) =

|C|∑
j=1

(
∑
i∈Fj

d(ri, f∗j ) + |Fj|d(fj, f∗j )) ≤
|C|∑
j=1
|Fj|(

∑
i∈Fj

d(ri, f∗j ) + d(fj, f∗j )) ≤ n ∗ OPT
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Let’s look at the one-facility occasion where the bound mentioned above does not hold
anymore.
For convenience of analysis of Theorem 3(mentioned below), we state the following lemma.
Lemma: In any metric space M({r1, .., r|M|}, d()) and any multiset C containing nodes of
the metric space,we can assume that the node that minimizes the sum of distances from all
nodes of C is contained in C,losing a factor of 2.

Proof. Let u any node not in C. Then,

2(|C|−1)
∑
i∈C

d(u, ri) =
∑
i∈C

∑
j∈C−{i}

(d(ri, u)+d(u, rj)) ≥
∑
i∈C

∑
j∈C

d(ri, rj) ≥ |C|
∑
j∈C

d(r∗, rj)

,where r∗ is the node of C with the minimum total distance from the others.

Note: The lemma above is essentialy tight. Consider a metric with n nodes,n − 1 of
which have distance 1 from each other and the other 1

2 from all the others.
The above lemma will be used in the next theorem when bounding the costs without explic-
itly mentioning it.

Theorem 15. :There is a simple O(
√
n)-competitive algorithm for theOMFLwith one facility.

Proof. : The online algorithm acts as follows: For the first√n demands the facility stays at
its initial position and serves them there. Then,the algorithm moves to the optimal position
for these demands and serves each other demand there. DefineOPT be the cost of the optimal
algorithm and OPT0 the optimal position to move the facility if we restrict to the first

√
n

demands. We can assume that OPT0 is one of the first
√
n demands,losing a factor of 2.

Let also u be the optimal position for the facility to move and define r0 the facility’s initial
position.
The cost of the online algorithm is

√
n∑

i=1
d(ri, r0) + (

√
n+ 1)d(r0, OPT0) +

n∑
i=

√
n+1

d(ri, OPT0)

As in the ”stay-where-you-are” algorithm it easy to see that
√
n∑

i=1
d(ri, r0) + (

√
n+ 1)d(r0, OPT0) ≤ OPT+ (2

√
n+ 1)d(r0, OPT0) ≤ (2

√
n+ 2)OPT
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To bound the second term observe that :
n∑

i=
√
n+1

d(ri, OPT0) ≤
n∑

i=
√
n+1

(d(ri, u) + d(u, OPT0)) ≤

n∑
i=

√
n+1

d(ri, u) + (n−
√
n)d(u, OPT0) ≤

OPT+ (n−
√
n)d(u, OPT0)

In order to establish the competitive ratio it suffices to prove that

d(u, OPT0) ≤
2OPT√

n

. To do so observe that

d(u, OPT0) ≤
1√
n

√
n∑

i=1
(d(u, ri) + d(ri, OPT0)) =

1√
n
(

√
n∑

i=1
(d(u, ri) +

√
n∑

i=1
d(ri, OPT0)) ≤

OPT√
n

+
OPT√

n
=

2OPT√
n

Consider now the algorithm when the 2i-th demand arrives moves the facility to the op-
timal position at that time. Call it COFL.

Theorem 16. The COFL is O(logn)-competitive for the OMFL with one facility.

Proof. : Let cl be the optimal position to move the facility when the 2l-th demand arrives.We
say that the l-th phase starts when the 2l + 1-th demand arrives and ends when the facility
moves from cl to cl+1. Also define c0 = r0 to be the facility’s initial position.The algorithm
starts at phase 0.The cost incurred during phase l equals

2l+1d(cl, cl+1) +
2l+1∑

i=2l+1

d(ri, cl) ≤ 2l+1d(cl, cl+1) +
2l+1∑

i=2l+1

(d(ri, cl+1) + d(cl, cl+1))
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≤ (2l + 2l+1)d(cl, cl+1) +
2l+1∑

i=2l+1

d(ri, cl+1)

Observe that

d(cl, cl+1) ≤
1
2l
(

2l∑
i=1

d(ri, cl) +
2l∑
i=1

d(ri, cl+1))

≤ 1
2l
(OPT2l + OPT2l+1) ≤

2
2l
OPT

Moreover

2l+1∑
i=2l+1

d(ri, cl+1) ≤
2l+1∑
i=0

d(ri, cl+1) ≤ OPT

Combining the above and summing over all l = O(logn) stages,we get the desired result.

5.5 OMFL in special metric spaces

Because OMFL in a general metric space seems inatractable,we try some special cases
to obtain better bounds. The next two theorems imply that COFL in the metric spaces de-
scribed achieves a constant competitive ratio,however we give another more intuitive analy-
sis,discriminating them from the COFL algorithm.

Theorem 17. There is an algorithm with constant competitive ratio for the OMFL with one
facility in a uniform metric space.

Algorithm for Theorem 15: Whenever the 2i-th demand arrives,check if there exists a
point of the metric space where more demands have arrived than in the current position of
the facility. If so,move there and serve the demand there. In any other occasion,stay where
you are and serve the demand there.

Proof. : We can suppose that the optimal algorithm incurs some cost, otherwise also the
online will incur zero cost. So, let u the node where the facility moves in the optimal solution
and observe that umust be the node where themost demands have arrived to. LetOPT be the
optimal cost and observe that eitherOPT orOPT−1 demands have been served in u. If there
is no integer j such that after the 2j-th demand, the facility stays in u forever,the optimal would
pay at least n2 and the online algorithmO(n). Else,suppose that j ≥ 2 otherwise the statement
is trivial.The cost of the online algorithm for the demands not arriving in u after the 2j-th
demand is what the optimal also pays for these demands. The algorithm pays a cost ofO(2j)
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for the first 2j demands.Observe that the optimal algorithm must pay at least 2j−2, because
there are at least 2j−2 demands not arriving at u through the first 2j−1 demands,otherwise u
would be the nodewith themaximum number of demands at 2j−1 and so the online algorithm
would have moved the facility to u by j− 1,contradiction.

Theorem 18. There is an algorithm with constant competitive ratio for the OMFL with one
facility in a weighted star.

We assume that the facility starts from the root of the star and the demands arrive only
at leaves of the star.These assumptions can be removed with standard tricks.Denote by ni
the number of demands at the i-th leaf and wi the weight of the edge connecting it with the
root. Observe now that if the optimal offline algorithm leaves the facility at the root, it will
pay ∑

j
wjrj

, while if it moves it to leaf i it will pay

wi +
∑
j 6=i

(wi + wj)nj = (n+ 1− 2ni)wi +
∑
j
wjnj

So it is better to move to a leaf i if and only if there are more than n+1
2 demands that have

arrived there, and there can be only one such point.The following algorithm tries to imitate
the above behaviour:

Algorithm for Theorem 6: Whenever the 2i-th demand arrives,check if there exists a
leaf with more than half of the demands arrived so far to have arrived there.If yes then move
to that leaf,else move to the root.

Proof. : We may assume for ease of analysis that n is a power of 2. At first,suppose that
in the optimal solution the facility moves to some leaf ,say m. Then,let 2j be the last time
when the online algorithm moves the facility to m. Observe for the demands arriving after
that time, the algorithm pays what the optimal pays. For the previous demands we focus
on a leaf i different from m and the weight incurred through that edge. If the facility leaves
this leaf at some time t then it pays 2twi for movement through this edge at that time. It is
easy to see that if 2li is the last time where the facility departs from i,the online algorithm
pays O(2liwi) for the demands passing through that edge till then and the optimal must pay
at least 2li−1wi for the demands till then,because there are at least 2li−1 demands arriving to
that point till then. After this step,the optimal pays the same as the online algorithm for the
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demands passing through that edge. So, summing over all leaves i different from m we get
that the online algorithm pays constant times what the optimal pays for each edge connecting
a leaf with the root. If the best is to stay at the root, observe that if 2l is the last time that the
facility is at leaf i the online algorithm pays O(2lwi) for cost till then passing through that
edge and it must also hold ni ≥ 2l−2. For all subsequent demands or demands arriving in
leaves that the facility never moves to , the algorithm pays what the optimal does for crossing
the edge connecting the respective leaf to the root.

5.6 Another variant of the online mobile facility loca-
tion problem

Consider the previous scenario,but from each facility’s initial position,we can draw as
much facilities as we want(like a hole that gives birth to facilities at zero cost). In partic-
ular,imagine that these points are like factories from which we can take a facility at cost 0
and move it where we want to. We note that there is an O( logn

loglogn) algorithm for this vari-
ant of OMFL, by doing a reduction to non-uniform facility location. Like in the classical
OMFL model,it is easy to observe that in any optimal solution each facility created moves
to a certain point and serves all demands there. For the reduction,denote by Finit the set of
facilities’ initial positions and associate each point u in the metric space with a value f(u)
such that f(u) = minv∈Finitd(u, v). Observe that any optimal solution to this variant of on-
line mobile facility location can be transformed to a feasible solution of non-uniform facility
location with equal cost. Clearly,moving a facility from a point u ∈ Finit to a point p is like
opening a facility in point u with cost d(p, u), but since in no optimal solution there exists a
facility that moves from p to v if d(p, u) > minv∈Finitd(u, v) = f(u), we can asssume that the
opening cost is exactly f(u). In a similar fashion each instance of the non-uniform facility
location with the costs described above can be mapped to a solution of this variant of on-
line mobile facility location:When the algorithm opens a facility at v we move a facility to
v from u = argmaxi∈Finitd(i, v).Each demand will now be served to the closest facility and
the reduction is complete.
Notice that this solves the even more general problem where each facility must move within
a distance D ( the above problem is a special case where D equals the diameter of the metric
space, or even simpler D = +∞). We can set f(u) = min{v∈Finit:d(u,v)≤D}d(u, v) and obtain
again the same competitive ratio as before. Clearly,the above reduction still holds even if D
is not the same for all facilities in Finit but may vary among them. [?]
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