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Abstract 

Multi-beam satellite systems offer higher throughput due to frequency reuse and 
multiple levels of flexibility and allow the use of smaller earth terminals due to their 
higher directivity. At a high-level multi-beam satellite operation resembles to that of 
cellular mobile communications.  

As the lifetime of a satellite is about 15 years efficient communication satellites must 
take into account current as well as future demands. To improve satellite efficiency 
and reduce operational risk, design flexibility is imperative. Among others, multi-
beam satellites, offer significant flexibility both with regard to coverage area and 
resources allocation. Coverage area flexibility is achieved by adjusting the position of 
the spots adaptively to communications traffic. Resource allocation flexibility is made 
possible by adaptively adjusting the power and bandwidth to the various beams 
according to traffic.  

In the present thesis, we focus on resource allocation flexibility offered by multi-beam 
satellites. In particular, for a specific satellite payload (number of beams, available 
power, bandwidth etc.,) the first part of the thesis deals with the problem of allocating 
power to different beams to satisfy the demand as closely as possible. Based on a 
model relating the power allocated to the data rate offered, we explore the suitability 
of using/ modifying existing optimization algorithms. Among exact methods as well 
as approximate methods that are initially considered, a scheme is selected based on 
complexity, convergence, scalability and other issues. The selected algorithm is then 
used to optimize the resource allocation. The advantages obtained over other existing 
methods are presented.  

Next, an attempt is made to minimize the DC power consumption of a multi-beam 
satellite. In this course, the optimized resource allocation obtained in the first part of 
the thesis is further enhanced, with the aim to minimize the system power 
consumption. This task is deal with employing a multi-objective optimization 
algorithm that aims at meeting the traffic demand as closely as possible while 
minimizing the system power consumption. The benefits from using such multiple 
objective optimizations in payload design are demonstrated via appropriate simulation 
results. 

 

KEY WORDS: Multi-beam Satellites, Payload Flexibility, Resource Allocation, 
Resource Optimization, Metaheuristics, Multi-objective Optimization 
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Chapter 1 
Introduction to Satellite Communications 
 

1.1 Introduction 

The remarkable advancement of telecommunications over the last decades has its 
roots in the ever increasing demand for a plethora of services and throughput. In this 
course the development of Satellite Communication (SatCom) Systems plays a key 
role, its contribution being increasing over the years. Current satellite systems provide 
TV, video and sound broadcasting applications as well as fixed and mobile 
multimedia interactive Internet and data services.  

The primary concept in satellite communications is the use of satellite carrying 
transponders providing coverage over areas where traditional terrestrial 
communications may be ineffective. This makes satellite communications ideal for 
remote and/or low density areas where penetration of terrestrial technologies is low. 
The necessity for satellite communications depending on the geography and the 
landscape of the area as well as their specialized role in current telecommunication 
systems have led to important advances in satellite technology. Over the years the cost 
and size of the necessary equipment for both the ground and the space segment have 
been significantly reduced, improving the competitiveness of satellite systems in the 
markets. This development along with the inherent advantages of satellite 
communications enabled the evolution of a healthy satellite services sector. 

The primary advantages of the satellite communications are: 

• Cost Effectiveness – The cost of satellite capacity does not increase with the 
number of users or their distance provided they are located within the 
coverage (footprint) of the satellite. 

• Ubiquity – Rural and remote geographical regions having no access to 
terrestrial infrastructure can rely on satellite communications. 

• Wide Coverage – Satellites cover wide geographical areas. Three 
geostationary satellites suffice to cover the Earth’s surface (excluding polar 
areas). 

• Resource Efficiency – Broadcast and multicast satellites are able to deliver 
information to an unlimited number of end-users optimizing the use of system 
resources. 

• Reliability – Satellite communications operate regardless of man-made or 
physical problems that may render terrestrial systems non-operational. 

• Scalability – Existing satellite systems are easy to up-scale using the ground-
based equipment. 

• Versatility – Satellite systems support various services and applications, from 
TV to multimedia interactive services. 
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Furthermore, due to their reliability and ease of deployment, satellites are used either 
for last mile1 operation or for trunking2. At the same time, the offered bitrate (and the 
associated cost) can change upon demand.  

However, several limitations still have to be overcome in satellite communications. 
These limitations are: 

• The high capital expenditure (CAPEX) required for a satellite system, due to 
the high cost of the satellite and the supporting ground segment. 

• The limited lifetime of the spacecraft and the implicit replacement cost. 
• The propagation delay due to the long propagation path of the signal, 

especially for geostationary satellites. 
• The extreme free space loss that renders satellite systems power limited. 

 

1.2 Satellite Orbits 

Satellite systems are classified according to their orbit. The 
most common type of orbit is the geosynchronous orbit 
(GSO), where the satellite has an orbital period equal to the 
rotational period of earth (i.e. 23 hours, 56 minutes, 4.091 
seconds). The altitude of the orbit is determined at 35786km 
above mean sea level whereas the velocity of the satellite is 
3075m/s. The ground-track3 of such a satellite is a roughly 
elliptical or more accurately a figure-eight shape and is 
formed during one rotational period. The ground track of a 
geosynchronous orbit is depicted in Fig. 1.1. 

 A geosynchronous orbit with of zero eccentricity and 
inclination, namely a circular orbit directly above the Earth’s 
equator, following the direction of the Earth’s rotation from 
West to East is called a geostationary orbit (GEO) and a 
satellite in this orbit geostationary satellite. As the orbital period of such a satellite is 
again that of the Earth’s rotational period, its ground track is a fixed point on the 
equator. As a result a geostationary satellite looks still at a fixed position in the sky to 
the ground terminals located in the coverage area. Thus, tracking of the satellite is not 
necessary whereas relative immobility of the satellite nullifies the Doppler effect and 
simplifies the interference prediction. 

                                                             
1 The term “last mile” refers to the segment of the telecommunication network connecting the retail 
customers to the network. 
2 Trunk is a line or link designed to handle data streams connecting major nodes of a communication 
network. The use and management of trunks is known as trunking and aims at the minimization of the 
client connections.  
3 Ground track is the projection of the satellite’s orbit onto the Earth’s surface. 
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Moreover, geostationary satellites provide a wide coverage. In particular, a GEO 
satellite can provide coverage encompassing one or two continents whereas a 
constellation of three equidistant geostationary satellites can cover the whole Earth’s 
surface (latitudes between φ = ±75°), excluding the poles. Furthermore, GEO satellite 
systems are described as fast deployment systems since short time is needed after their 
launch for the systems to become fully operational. For all the above reasons, most 
commercial communication and broadcast satellites have been installed on the 
geostationary orbit.  

However geostationary orbits have also a number of disadvantages. Due to their high 
altitude, propagation delay to earth from such GEO satellites is extremely long 
(approx. 0.125s) to support real time services or mobile satellite communications. 
Moreover, GEO satellites are placed in orbit over the equator and as a result the sun 
(an intense source of noise) is often within the beamwidth of the ground terminal. 
Thus, geostationary systems are subjected to severe solar interference4. 

GEO satellites have a high deployment cost and specific lifetime. Also, due to their 
low inclination and the resulting inability to cover the poles, GEO satellite coverage is 
not truly global. Furthermore, a major disadvantage is the complexity of the ground 
terminal, imposed by the necessity to constantly select the GEO satellite to receive the 
highest possible signal power. This complexity comes also in the routing process. 
Finally, covering a wide area between the poles leads to the waste of the satellite 
resources over the oceans and other uninhabited areas. On the other hand this wide 
coverage is exploited by international transportation (e.g. planes and boats) that 
constitute a major market of SatComs.  

Some of these drawbacks of GEO satellites are overcome employing different satellite 
orbits. The most common classification used to classify the orbits is by their altitude. 
These orbits are the Low Earth orbit (LEO), Medium Earth orbit (MEO) and Highly 
Elliptical orbit (HEO). The various satellite orbits are depicted in Fig.1.2.  Satellite 
systems operating on these orbits share a number of characteristics due to their 
varying position in the sky. These satellites are visible to a ground terminal during 
only small time intervals. Thus, a constellation of satellites must be launched in order 
to accomplish hand over of the satellite connections. The handover process must be 
completed without any deterioration or interruption of the offered services. The lower 
the mean altitude of the orbit the more satellites are needed for the same coverage 
area. 

Both the handover process that requires the use of high complexity systems and the 
high number of satellites required to achieve successive coverage increase the 
deployment cost of such systems. Furthermore, the relative motion of the satellite 
with respect to the ground terminals cause Doppler shift and jitter.  

                                                             
4 The consequences of the sun to satellite alignment become fully apparent twice a year, when the 
sun aligns directly with satellites and the receiving ground terminals raising the noise floor above the 
satellite signal power causing temporary interruptions. 
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A Low Earth orbit (LEO) is positioned at altitudes varying between 160km-2000km 
above mean sea level. The velocity of satellites placed on LEO orbits is 7800m/s 
whereas their orbital period is 90min, significantly smaller than the period of GEO 
satellites. Because of their small orbital period LEO satellites revisit the same area 
multiple times per day which allows them to perform high sampling measurements of 
the area within a day. This is an important feature both in weather forecast and in 
military applications, making the Low Earth orbit ideal for meteorological and 
military satellites. Finally, another interesting advantage of LEO satellites is the 
relevant small propagation delay. On the other hand, a major disadvantage of LEO 
satellites is the limited lifetime of the spacecraft since the lowest the orbit the shorter 
the satellite lifetime. 

 

A Medium Earth orbit (MEO) is generally positioned at altitudes between 5000km – 
20000km. The velocity of MEO satellites ranges between the velocities of GEO and 
LEO satellites. MEO satellites are used in constellations for telecommunication 
applications, the most common examples being the radio location systems: GPS 
(USA), Glonass (Russia) and Galileo (Europe). 

A Highly Elliptical orbit (HEO) is an elliptic orbit with a low-altitude perigee 
(1000km) and a high-altitude apogee exceeding the geostationary orbit. HEO satellites 
appear motionless for a long time when in the apogee, whereas their velocity seems to 
increase rapidly when in the perigee. In particular, the ratio of velocity at apogee to 
velocity at perigee is equal to ratio of orbit radius at perigee to orbit radius at apogee. 
Thus, depending on the orbital location of a HEO satellite the satellite velocity 
changes and the signal is subjected to varying propagation delay. Therefore the 
accurate tracking of the satellite by a functional tracking system is essential for the 
seamless operation of the system. The Sirius Satellite Radio service operating in 
North America and the Ondas Media project in Europe employ HEO satellites to 
provide radio services.  
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1.3 The family of DVB standards for satellite communications 

A benchmark in the evolution of satellite technology was the development of the 
family of DVB-S standards [1.1] (Digital Video Broadcasting via Satellite) in 1993. 
This development responded to the need for compatibility between the commercial 
standards of terrestrial communications and the duplex broadband satellite services. 
The DVB network architecture comprises a geostationary satellite, a number of 
Return Channel Satellite Terminals (RCST) and the Network Control Center (NCC), 
responsible for monitoring and controlling the network (Fig 1.3). The DVB-S or the 
DVB-S2 standards are then employed in the forward link, namely the link from the 
NCC hub to the users, providing unicast or multicast data to the users. On the other 
hand the return link, namely the link from the users to the hub, employs the DVB-
RCS standard, where users initiate their connection, send their capacity requests as 
well as their data.  

 

Fig 1.3 DVB network architecture 

 

1.3.1 The DVB-S standard 
The DVB-S standard was originally designed to provide Direct to Home (DTH) 
Television broadcast with enhanced flexibility with regard to the supported services 
due to the adaptation of Time Division Multiplexing (TDM) - adopted also by the 
MPEG-2 standard - which allows simultaneous transmission of multiple channels per 
carrier. Moreover DVB-S uses QPSK modulation and adaptive coding (Forward Error 
Correction) with code rates: 1/2, 2/3, 3/4, 5/6, and 7/8. The Time Division Multiple 
Access (TDMA) is used for satellite access protocol. 
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1.3.2 The DVB-S2 standard 
The DVB-S2 standard introduced in 2003 as the successor of DVB-S, deals with a 
wide variety of broadband services and applications, such as standard Television, 
High Definition TeleVision (HDTV) and various interactive services (Internet). The 
main novelty of the DVB-S2 compared to the DVB-S standard is the use of Adaptive 
Coding and Modulation (ACM) to mitigate propagation impairments along satellite 
link. Depending on the modulation scheme selected (QPSK, 8PSK, 16APSK, 
32APSK), the code rates used are the following: 1/4, 1/3, 2/5, 1/2, 3/5, 2/3, 3/4, 4/5, 
5/6, 8/9, 9/10. 

1.3.3 The DVB-RCS standard 
The DVB-RCS standard (Digital Video Broadcasting- Return Channel via Satellite) 
was introduced in 2001 by the DVB consortium. This standard is a specification for 
interactive on-demand multimedia satellite communication systems. It allows for 
efficient bandwidth utilization, by setting the general framework for resource 
allocation to users. Even though the same modulation and coding schemes as in DVB-
S is adopted, the DVB-RCS allows the use of robust Turbo coding with the following 
code rates: 1/3, 2/5, 1/2, 2/3, 3/4, 4/5, 6/7. The uplink of DVB-RCS uses Multi-
Frequency Time Division Multiple Access, (MF-TDMA) whereas the downlink uses 
the DVB-S2 standard.  

1.4 Satellite Radio Spectrum 

The allocation of the radio spectrum is coordinated on a global basis by the 
International Telecommunications Union (ITU) [1.2]. ITU allocates designated 
frequency bands to specific services aiming at efficiently exploiting the limited 
spectrum. In this course the frequency allocation of standardized wireless systems is 
dedicated to specific segments of the spectrum and the available spectrum for 
SatComs is limited to the respective segments. However, the advent of multimedia 
interactive services over the last decades caused congestion with regard both to 
satellite spectrum utilization and to GEO positions. Furthermore, the ever increasing 
demand for broadband access and new broadband applications aggravated the 
congestion problem. To mitigate the severe spectrum congestion the use of higher 
frequency bands is imperative.  In this course the Ku and Ka bands were adopted in 
the satellite communications as shown in Table 1.1. Also the V band is also 
considered for future use. 

Table 1.1 [1.4] tabulates the frequency bands assigned to satellite communications for 
both the downlink (connecting the satellite to the ground terminal) and the uplink 
(connecting the ground terminal to the satellite) along with the corresponding services 
of each band. As shown in Table 1.1 the spectral distance between the uplink and the 
downlink is large enough to facilitate seamless operation of the satellite receiver and 
transmitter. Moreover, the frequencies used in the uplink are generally higher than 
those used in the downlink. The use of lower frequencies in the downlink reduces the 
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relevant free space losses; hence, the available DC power of the satellite is more 
efficiently used. Moreover, the operation of the ground terminals (uplink) at higher 
frequencies reduces the interference with the terrestrial systems that generally operate 
at lower frequencies and given the high power of the ground terminal transmitted 
signals the mitigation of their interference is imperative.  

Table 1.1: Satellite Frequency Bands and corresponding Satellite Services 
Frequency Band Down-link 

Frequency 
 

Up-link 
Frequency 

 

Telecommunication 
Services 

 
 

L 

 
 

1 GHz 

 
 

2 GHz 

Mobile Satellite Service 
(MSS) 

 
Land Mobile Satellite Service 

(LMSS) 
 
 

S 

 
 

2 GHz 

 
 

4 GHz 

 
Mobile Satellite Service 

(MSS) 
 

Space Research Service  
 

C 
 

 
4 GHz 

 
8 GHz 

 
Fixed Satellite Service (FSS) 

for commercial communications 
 
 

X 
 

 
 

8 GHz 

 
 

12 GHz 

 
Fixed Satellite Service  

for military communications 

 
 

Ku 

 
 

12 GHz 

 
 

18 GHz 

  Fixed Satellite Service (FSS) 
for commercial communications 

 
Broadcast Satellite Service 

(BSS) 
 
 

K 

 
 

18 GHz 

 
 

27 GHz 

Fixed Satellite Service (FSS) 
for commercial communications 

 
Broadcast Satellite Service 

(BSS) 
 
 

Ka 

 
 

27 GHz 

 
 

40 GHz 

Fixed Satellite Service (FSS) 
for commercial communications 

 
Broadcast Satellite Service 

(BSS) 
 

Apart from the frequency bands and the corresponding satellite services tabulated in 
Table 1.1, ITU has also assigned frequency slots to certain ad hoc services, such as 
the Inter-Satellite Service (ISS), the Radio Determination Satellite Service (RDSS), 
the Radio Navigation Satellite Service (RDSS) and the Maritime Mobile Satellite 
Service. 
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1.5 Multibeam Satellite 

The inherent advantages of the satellite communications described above as well as 
the development of the DVB-S/DVB-RCS pair of standards allowed SatCom systems 
to provide reliable and efficient Broadcast, Fixed and Mobile satellite services. 
However, to remain competitive in the continuously evolving markets, current 
satellite systems are facing additional challenges. In particular, due to the advances of 
the ever expanding terrestrial technology, the preference for satellite services is 
drastically dependent on the users cost for subscription, usage and terminal purchase. 
Moreover, current satellite systems have to keep pace with the advent of multimedia 
interactive services, primarily by adopting appropriate adaptive and flexible systems. 

Satellite services have to move towards saving client-side cost by using low-cost 
terminals. At the same time, enhanced satellite bandwidth utilization and system 
flexibility are also warranted. In this course [1.3], multibeam satellites can play a key 
role. Multibeam satellites employ large on-board multibeam antennas. The resulting 
high gain offered by these antennas compensates for the performance degradation 
exhibited by low-cost user terminals, at the same time minimizing the satellite 
transmit power. Moreover, multibeam antennas can provide the necessary flexibility 
by offering frequency reuse and beam traffic reconfiguration responding to the 
varying traffic demand over the coverage area of the satellite. This is due to the 
capability of multibeam antennas to implement multispot coverage similar to 
terrestrial cellular application as depicted in Fig. 1.4. 

The key requirements of multibeam antennas deal with [1.3]: operation frequencies 
and bandwidths, Rx/Tx operation, polarization characteristics (e.g. linear or circular, 
single or dual), frequency reuse, number of beams, size and shape of beam and the 
respective coverage region. The appropriate setting of the above enables multibeam 
antennas to play a key role with regard to all four aspects of payload flexibility: 

• Power Flexibility: Total RF power allocation based on real traffic demands. 
• Flexibility in Reconfiguring the Frequency Plan: Totally independent and 

flexible management of uplink and downlink frequencies. 
• Coverage Flexibility: The ability to in-orbit modify the number of beams, the 

beams shapes and the beam footprint on the Earth. 
• Connectivity & Routing Flexibility: Selection among multiple downlink 

channels connected to the receive antenna output. 

The flexibility provided by multibeam SatCom systems allows dynamic allocation of 
system resources, namely the available bandwidth and the transmit power of the 
satellite, accomplishing their efficient exploitation. Given the scarcity of the available 
system resources in SatComs as well as their extremely high cost due to physical, 
technological and regulatory constraints, the flexibility offered by multibeam satellites 
is essential. However, to fully exploit the benefits offered, the system resources have 
to be optimally allocated based on the real traffic demands taking into account the 
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inter-beam interference caused due to frequency reuse. In this course, an optimization 
module must be employed to perform the allocation tasks, satisfying the Quality of 
Service objectives (i.e. throughput maximization) as well as achieving efficient 
resource utilization. The use of such a module however, requires proper elaboration of 
the optimization process based on the system characteristics and available degrees of 
freedom. This necessitates the use of efficient optimization techniques for resource 
allocation of fixed satellite systems employing multiple spot beams. 

 

Fig. 1.4 Cellular–like Multibeam Antenna Coverage 

An overview of the available optimization methods is performed with emphasis out 
on their suitability for the particular optimization problem; the theoretical analysis 
suggests the use of metaheuristics; consequently a systematic performance study of 
various well known metaheuristics is conducted. 

Though several metahueristics have been considered for resource optimization, a 
systematic study leading to the selection of an appropriate metaheuristic technique 
was not available in the literature. Thus, the study carried out provides hints regarding 
which technique should be used in different occasions of the problem, for the first 
time in literature. The results of this study were published in the framework of the 2nd 
ESA Workshop on Advanced Flexible Telecom Payloads, 17-19 April 2012, 
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Noordwijk, The Netherlands (Appendix 1). Having conducted a thorough 
metaheuristics study, the best performing technique is selected and enhanced with the 
benefits of a different technique to improve the optimization results providing better 
results than the standalone original method. Thus, the system performance is 
increased in terms of data throughput. This hybrid approach was also presented in the 
2nd ESA Workshop on Advanced Flexible Telecom Payloads, 17-19 April 2012, 
Noordwijk, The Netherlands (Appendix 1), and was employed for the “Operational 
Optimization of a Ku Multibeam Flexible Payload” by Astrium Satellites, European 
Space and Technology Centre (ESTEC) of the European Space Agency (ESA), SES-
ASTRA and University of Luxembourg (Appendix 3). 

Finally, the optimization problem solved is viewed as a multi-objective optimization 
problem with respect to two objectives, namely throughput maximization and 
minimization of the system power consumption. The best power allocation 
determined via single-objective optimization is input to the multi-objective algorithm 
to be further enhanced with regard to the power consumption, i.e. the power 
consumed by the determined allocation will be minimized. As a result the power 
consumption of the best allocation is significantly reduced without deteriorating the 
throughput performance of the system. Furthermore, the multi-objective approach 
offers the trade-off curve between throughput and power consumption, which is a 
valuable tool for the system operator.  

The multi-objective approach aiming at efficiently utilizing the available DC power is 
also new to the literature and constitutes an enhancement to existing payload 
optimizers. This approach was presented in the 30th AIAA International 
Communications Satellite Conference (ICSSC), 24-27 September, 2012, Ottawa, 
Canada (Appendix 2). 

1.6 Outline 

The rest of this thesis is structured as follows. Chapter 2 provides the general 
framework of resource allocation, details the four aspects of payload flexibility and 
formulates the multibeam fixed satellite optimization problem. Chapter 3 provides an 
overview of the available optimization techniques along with the rationale for the 
selection of the most appropriate for the solution to the optimization problem in hand. 
Chapter 4 describes the simulator used for the multibeam satellite link budget and 
presents the simulation results confirming the theoretical assumptions of chapter 3 and 
the benefits offered by the optimized allocation of the satellite resources. Chapter 5 
presents the new hybrid optimization technique appropriate for data throughput 
maximization along with the simulation results demonstrating the improvement 
provided by the hybrid approach over the standard techniques. Chapter 6 presents an 
outlook of multi-objective optimization. Then a state of the art multi-objective 
technique is proposed and subsequently adopted for the optimization of the problem 
with respect to two objectives, namely throughput maximization and power 
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consumption minimization. The results of this approach are also presented in chapter 
6 verifying the performance improvement provided by the multi-objective approach. 
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Chapter 2 
Resource Allocation 
 

2.1 Introduction 

Wireless networks must appropriately exploit the system resources available to meet 
the network QoS objectives. By resources we refer to the available power and 
bandwidth. The latter can be equivalently expressed in the form of either time, 
polarization or code resources whereas the possibility of considering the spatial 
dimension as an extra resource has also been considered over the last years. Optimal 
allocation of the available bandwidth and power is of utmost importance especially in 
satellite communications because of the scarcity and the extremely high cost related to 
physical, technological and regulatory constraints (e.g. uncongested spectrum and 
orbital slots). In this course, the chapter two presents the latest trends concerning 
resource allocation in satellite communication systems. 

The most typical system paradigm in satellite communications is the broadcasting 
service (mostly of TV programs), for which a static resource allocation approach has 
been followed. Since system changes are not frequent, the system is dimensioned to 
accommodate the worst-case user based on a fixed protection margin. However, the 
advent of demanding multimedia based interactive services (like the Internet) pushed 
satellite communication systems to become adaptive, which potentially offers 
substantial capacity gains [2.8]. The characteristic indication of this adaptability is the 
introduction of adaptive coding and modulation (ACM) in the DVB pair of standards 
for the forward (DVB-S2) and the return link (DVB-RCS), respectively. Therefore, a 
new era in the field of dynamic resource allocation, where a network entity allocates 
resources based on the varying channel and traffic conditions has become a new trend 
in satellite communications [2.9]. In modern multibeam systems supporting a large 
number of beams, the spatial domain provides an extra degree-of-freedom, on the 
other hand, the resources must be allocated taking into account the effect each beam 
has on the rest (interbeam interference). The module in charge of carrying out the 
allocation tasks is embedded either in the gateway station (GW), in case of transparent 
repeaters, or on-board the satellite, in case of regenerative repeaters. 

2.2 Frequency and Polarization Resources 

Following the example of cellular systems, multi-beam satellites have achieved a 
tremendous increase in capacity by reusing spectrum in non adjacent beams. Intercell 
interference is the main factor constraining cellular systems; the same constraint 
applies to multi-beam satellites, where cells are substituted by beams. According to 
the well-known four color theorem: ’the regions of any simple planar map can be 
colored with only four colors in such a way that any two adjacent regions have 
different colors’ [2.2]. Thus, considering an analogy between the planar map and the 
coverage area of multi-beam satellite systems, as to the terms adjacent regions and 
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beams as well as colors and frequency sub-bands, the application of the four-color 
theorem in communication terms is interpreted as: segmenting the total available 
system bandwidth into four bands is sufficient to prevent adjacent cells from utilizing 
the same frequencies. In multibeam satellite systems, a frequency reuse factor of four 
over the coverage area ensures high spatial isolation between beams sharing the same 
sub-bands, although more aggressive reuse policies might be adopted if the 
polarization domain is also employed, e.g. a frequency reuse factor of two and a 
polarization reuse factor of two. Another reason encouraging higher reuse schemes in 
modern satellite systems is the adoption of advanced waveforms techniques, allowing 
for the reduction of the required signal to interference-plus-noise ratio (SINR) at the 
receiver, leading to a more efficient frequency reuse. 

2.3 Flexible Satellite Payload Resource Allocation 

In the last years there has been an increased interest in designing and manufacturing 
payload equipment supporting different degrees of flexibility. This flexible satellite 
payload and its degrees-of-freedom will be briefly described in the following, 
highlighting the evolution from a conventional fixed payload to an advanced fully 
flexible one. In addition to optimally allocating system resources in real time to best 
serve interactive multimedia services, equipment flexibility on board the satellite is 
also intended for a number of reasons related to the ability of efficient communication 
satellites to respond to future trends and demands: 

• To follow the evolution of the market over the long lifetime of communication 
satellites, thereby minimizing the business risks of satellite operators. 

• To support different services in the new era of multi-mission satellites. 
• To re-locate the satellite to a different orbital slot. 
• To cope with changes in spectrum allocation status over particular countries or 

regions imposed by International Coordination agreements. 

Throughout this section, satellite payload will refer to the electronic equipment 
performing the necessary carriers processing between the receiving and the 
transmitting antenna. The payload usually consists of several channels (also called 
transponders), which are dedicated to the sub-bands the total system bandwidth is 
separated into. Following the trend in existing satellite systems, this investigation is 
focused on transparent repeaters, similar to the one depicted in Fig.2.1, and does not 
consider other technologies related to regenerative on board processing. Depending on 
the specified mission and the technological constraints, the main tasks of a transparent 
satellite payload are [2.1] (see Fig.2.1). 

• Low noise amplification of the very weak uplink carriers 
• Uplink to downlink frequency conversion 
• Channelization of the repeater to separate the wide band satellite signal into 

transponders 
• High power amplification 
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• Recombining different channels (transponders) and connecting them with a 
specific beam (in case of multiple beams) 

 

Fig. 2.1 Block diagram of satellite payload 

Elaborating on the above process, the first stage consists of a low noise amplifier 
(LNA) to deal with the very weak signal received on the uplink and minimize the 
noise contribution of the mixer that follows in the chain performing uplink to 
downlink frequency conversion. Frequency conversion plus a first level of 
amplification can be performed either in a single stage or in two stages using an 
intermediate frequency –lower than the downlink frequency–, if it is difficult to attain 
the required output power level by a single stage amplification only.  

After frequency conversion, the signal is further amplified as it moves through the 
amplification stages. However, moving the operating point from the linear to the non-
linear region gives rise to intermodulation products. This limits any further 
amplification and dictates channelization of the wide band satellite signal of several 
hundreds MHz into sub-bands of smaller bandwidth. Since there is a smaller number 
of carriers in each sub-band, the resulting intermodulation products are less important 
compared to those coming up when the whole satellite bandwidth is amplified. Hence, 
the advantages of channelization are twofold [2.1]: 

• Power amplification with limited intermodulation products due to the small 
number of carriers per amplifier 

• Increase in the available total power since each transponder benefits from the 
maximum power available from each amplifier. 

Transponder separation in the frequency domain is carried out by a set of bandpass 
filters called input multiplexers (IMUX). Typical transponder bandwidths are 30, 36, 
50, 72 and 120 MHz. The carriers included in the transponder bandwidth are 
amplified by a high power amplifier (HPA). Next, the various sub-bands are 
recombined with the help of the output multiplexer (OMUX). In case of multi-beam 
satellites (dealt with in this chapter), a switch associates payload channels with the 
transmitting antenna, specifically with the relevant beam feeds (see Fig. 2.1). 
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2.3.1 Power Flexibility 
RF power flexibility is essential for optimum resource allocation in multibeam 
satellite communications. To understand whether and how this is possible, a brief 
summary on state-of-the-art satellite High Power Amplifier (HPA) equipment is 
given. In fact, an HPA is the device that determines the output power of each channel 
and the Effective Isotropically Radiated Power (EIRP). The most frequently employed 
satellite HPA is the traveling wave tube amplifier (TWTA) which is based on the 
interaction between an electron beam and the radio wave within a tube. Typical non-
flexible satellite systems transmit the same EIRP in each beam; in practice this 
corresponds to a TWTA operating with a given backoff. A second option, not as 
popular but definitely worth mentioning, are the so-called solid-state power amplifiers 
(SSPAs), where amplification is achieved by connecting FET transistors in parallel. 
SSPAs provide a very attractive power-to-mass ratio, as well as a very good linearity. 
Still, their drawback of exhibiting a very low DC to RF conversion efficiency and the 
low output power left them behind in the competition with TWTAs. Table 6.1 
summarizes the basic characteristics of TWTA and SSPA [2.3]. 

Table 6.1: Summary of TWTA and SSPA characteristics. 

Characteristics TWTA SSPA 
Typical frequency band C, Ku, Ka L, C 
Saturated output power 20-250 W 20-40 W 

Gain at saturation 55 dB 70-90 dB 
DC to RF efficiency 50-65% 30-45% 

Mass 1.5-2.2 kgr 0.8-1.5 kgr 
 

An ideal reconfigurable payload should allow the redistribution of the available RF 
power based on real traffic conditions. The desired on-board power flexibility can be 
obtained by implementing a common power pool wherefrom each channel can 
adaptively draw the power it requires. To provide this kind of flexibility, new 
generation of tubes with in-orbit adjustable saturated output power are being 
developed. These flexible TWTAs have the advantage of significantly reduced power 
consumption compared to the conventional TWTAs since, on average, they operate in 
saturation mode for smaller time periods. Specifically, the saturated output power 
level of flexible TWTAs may vary within a pre-determined range (e.g. around 4 dB). 
A drawback of current equipment is that the required power level must be set by a 
telemetry command, which implies that it can accommodate only medium and long 
term demand changes and cannot implement adaptive power allocation. 

The amplification option that provides the highest flexibility is multiport power 
amplifiers (MPAs) [2.4], where the total available power of a set of amplifiers can be 
flexibly distributed amid different channels and, in case of multibeam payloads, 
different beams. MPAs –sometimes also referred to as hybrid or Buttler matrix 
amplifiers– are composed of three stages: an input network, a set of power amplifiers 
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and an output network. In particular an MPA is composed of an array of n HPAs in 
parallel and a pair of complementary nxn Buttler matrix networks, i.e. the input and 
the output network, that consist of  90° hybrid networks. A 90° hybrid network is a 
four port device equally splitting an input signal with a resultant 90° phase shift 
between the output ports. Thus, the signal at each input in the MPA is divided into n 
signals with particular phase relationships. These signals are amplified separately in 
each HPA, therefore, each amplifier operates on all input signals which enables the 
amplifiers to operate in their linear region and have equal gain and phase shift and 
then, the amplified signals are recombined in the output Buttler matrix. In this way, 
the signal at each input is amplified by all the HPAs, but assembled at the 
corresponding output [2.12]. The operation principle of a 4x4 MPA is illustrated in 
Fig.2.2. 

 

Fig. 2.2 4x4 MPA operation principle. Combination/cancelation principle for one 
input/output pair. 

 The main features of MPAs are the following [2.5]: 

• The RF power assigned to any beam is a percentage of the total available RF 
power and all amplifiers contribute to each individual beam. 

• The failure of one HPA does not cause the total loss of a beam. 
• It is possible to flexibly distribute the total available RF power amid the 

antenna beams by properly adjusting the input signals. 

An important drawback of the MPA is related to isolation losses between channels 
due to the different electrical characteristics of each path. 

2.3.2 Flexibility in Reconfiguring the Frequency Plan 
The need for modifying the frequency plan including both the uplink and downlink 
bands, channel frequencies and bandwidths may result due to a number of factors like 
the need to transfer the satellite to a different orbital position, a change in the status of 
spectrum allocation in different countries or regions and the ability to support 
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different services operating in different bands. A first level of frequency plan 
flexibility is achieved when it is possible to downconvert the uplink to several 
downlink frequencies. Full frequency flexibility refers to the totally independent and 
flexible management of uplink and downlink frequencies. 

Overcoming the limitations of analogue mechanical switches which in conventional 
payloads are combined with converters, the use of an on-board digital signal processor 
(DSP) has the advantage of individually filtering multiple sub-bands within a given 
band with a very fine granularity. DSPs can be further separated into transparent or 
regenerative depending on whether they operate on baseband digital signals or not. 
The generic transparent processor architecture is based on a fully flexible switching 
network which routes channels between a set of uplink and a set of downlink beams. 
For this purpose, the signals on each uplink beam are channelized using a digital 
frequency demultiplexer of fine granularity. The channels can then be routed between 
beams and mapped onto different frequencies at this fine granularity. 

Another means for obtaining flexibility concerning the frequency plan is through the 
MPA. Specifically, as recombination of power from different HPAs is done within the 
MPA structure, the use of an OMUX with specific fixed bandwidth per channel can 
be avoided. Using, instead, a wideband output network offers flexible managing of the 
downlink frequency plan and differentiates the bandwidth allocated to each beam. 

 

2.3.3 Coverage Flexibility 
A multibeam antenna system usually consists of three components [2.6]: 

1. A power distribution network, commonly called beamforming network (BFN), 
necessary when multiple feeds are attached to each beam 

2. An array of feeds 
3. An optical system to focus the radiated power increasing the antenna gain. 

Coverage flexibility is related to the ability to in orbit modify the beam shape, the 
number of beams or the beam location on Earth and is primarily related to satellite 
antenna reconfigurability. Such flexibility can be provided: to a limited extent by 
passive antennas (steerable, zoomable or electro-mechanically reconfigurable); to a 
larger extent by semi-active or active antennas like array fed reflectors (ARF) or 
direct radiating arrays (DRAs) which, in addition, can provide a high degree of 
dynamic adaptation to changing traffic demands. 
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Fig. 2.3 Semi-active AFR with MPA 

The AFR payload front-end is widely employed in satellite communication systems. It 
generally employs a BFN with a limited number of feeds per beam able to partially 
share the feeds among beams which illuminate a reflector in a focal configuration. 
When each HPA is directly connected to each feed, the AFR is active. It can also be 
semi-active when there is a stage of appropriately connected input and output 
networks respectively before and after the HPAs, i.e. when it is connected as an MPA. 
Fig. 2.3 depicts an example of this type of AFR implementation. On the other hand, 
the DRA is characterized by full sharing of feeds per beams without the adoption of a 
reflector. A simple DRA block diagram is depicted in Fig. 2.4. Note that active 
antennas may operate with either analogue or digital processing depending on the 
reconfigurability requirements and this of course will also affect the equipment 
complexity. 

 

Fig 2.4 DRA 
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If the array of radiating elements is fed from the same signal with a specific amplitude 
and phase distribution, a shaped beam is obtained. The distribution is obtained by 
means of a set of phase shifters, couplers and power splitters, i.e. the BFN5 [2.7]. 
Specifically, a BFN is defined as a device having N input ports corresponding to the 
number of channels (transponders) and M output ports (feeds). The device is able to 
generate P distinct beams which are orthogonal to each other in the sense that each 
channel can be independently routed to only one beam. In the simplest case P and M 
are equal, i.e. each feed generates one beam. In the general case, each beam is 
generated by 1 up to M feeds. Beamforming techniques can be either analogue or 
digital. In turn, analogue beamforming can be implemented either before or after the 
HPA stage. Connecting the BFN after the HPA would be preferred when the number 
of beams is smaller than the required number of feeds –thus fewer HPAs are required. 
If the weights on the paths of the BFN are variable, e.g. by employing adjustable gain 
and phase shifters, then the desired coverage flexibility is obtained. In the case of 
digital beamforming the antenna must be coupled via a DSP in a DRA or AFR 
configuration. Digital beamforming offers all the benefits of reconfigurable analogue 
beamforming, but with enhanced flexibility. 

2.3.4 Connectivity and Routing Flexibility 
When each uplink channel is always connected to the same downlink beam, or each 
uplink beam is always connected to the same downlink channel there is no flexibility 
with regard to connectivity. That is, the selection of the target region is achieved by 
choosing the uplink carrier frequency so that, after frequency conversion, it falls 
within the band of one of the channels allocated to the target region (beam). In 
contrast, when any receive antenna output is connected to several downlink channels 
and any downlink channel is connected to several transmit antenna inputs there is a 
high connectivity and routing flexibility. Moving from the (telecommand-controlled) 
conventional mechanical switches –whose operation is limited to simple channel re-
routing and changing the number of channles/beam–, a DSP based solution for the 
switching matrix could provide a high degree of flexible interconnectivity between 
transmission channels or subchannels. 

2.4 Formulation of the Multibeam Fixed Satellite Optimization Problem 

2.4.1 General 
The previous section presented the four axes of payload flexibility. In particular 
flexibility can be viewed with regard to coverage, power, frequency planning and 
higher layer functionalities (e.g. routing and switching). In exploiting these degrees of 
flexibility, multibeam satellites can play a key role since their design can easily be 
extended to support re-configurability of power and frequency plans as well as routing 
and switching functionalities. Thus, multibeam systems provide the necessary 
                                                             
5 The term beamforming in the context of this section refers to the electronic equipment either in 
space or on the ground that implements the corresponding communication technique analyzed in 
other chapters and in the literature. 
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flexibility in order to dynamically reconfigure the power and frequency plan in 
response to the spatiotemporal variations of traffic demand.  

However, due to frequency reuse, multibeam systems are subjected to inter-beam 
interference. Hence a dynamic allocation of system resources in order to satisfy the 
varying traffic demand while mitigating the resulting interference seems imperative 
for efficient multibeam systems. These system resources are the bandwidth and the 
transmit power. The resource allocation is an optimization problem that aims at 
maximizing the throughput of each beam taking into account the current traffic 
demand. 

Since, in general, bandwidth allocation is done in terms of carriers of fixed 
bandwidth, the bandwidth allocation problem can be transformed into a power 
allocation problem where power is either allocated to the respective carrier or not. 
Furthermore, recent advances in flexible TWTA and particularly in MPA technology 
allow for efficient power splitting. Hence, the resource allocation problem turns into a 
power allocation problem where power is efficiently apportioned across beams to 
match the varying traffic demand.  

2.4.2 Multibeam Architecture and System Resources 
Assume a multibeam satellite system consisting of N beams employing a typical four 
color reuse pattern following the four color theorem [2.2]. In order to efficiently 
utilize the available bandwidth and mitigate interference, the four colors can be 
arranged as two colors in frequency and two in polarization. The available total 
downlink system bandwidth BTOT is equally divided among the four colors. It is 
further assumed that the available bandwidth reused over the different colors is 
equally divided among the beams of each color and each of these beams 
accommodates four carriers. A carrier represents the elementary system entity for 
conveying different streams of information. The bandwidth of each beam is equally 
divided among its carriers. The multi-beam system in hand is depicted in Fig. 2.5. 

Having appropriately allocated BTOT among colors, beams and carriers, the resource 
allocation turns into the appropriate allocation of the total available system power, 
PTOT. PTOT is a function of the platform total DC power on board the satellite and 
must be appropriately allocated to each beam, so that the offered bit rate to each beam 
meets the relevant user requirements. The power allocated to each beam, Pb, will then 
be equally divided among the Nc carriers of the beam (i.e. Pb,c = Pb / Nc). The reason 
behind the uniform beam power allocation over the respective carriers is the fact that 
MPAs and TWTAs work on a very high number of carriers and adjusting the power of 
each of these carriers is a highly involved task.  
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Fig. 2.5 Four color reuse pattern, for a 37 circular beam layout 

 

2.4.3 Resource Optimization 
The optimization target is to determine the beam power Pb, that: 

Maximizes the system capacity. 
subject to: 
 The power constraints of the system 
 The power constraints of each beam 

Thus, the optimization variable of the problem is the vector x = (P1, …, PN), where 
each vector element represents the continuous power value of the respective beam. To 
maximize system capacity, the following four candidate cost functions have been 
employed in past studies. Let Rb,req denote the bit rate requested by the users in beam 
b and Rb,off denote the offered, bit rate by beam b. 
 
1.Differential System Capacity (DSC) [2.10]   

minimize f 

                                      f = � abs�Rb,req − Rb,off� 
N

b=1
                               (2.1)  

According to (2.1), the performance of the system is evaluated by the absolute 
difference between the offered and requested beam capacities.  
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2.Unmet System Capacity (USC) [2.10] 
minimize f 

                              f = � max�Rb,req − Rb,off, 0�,
N

b=1
                              (2.2) 

In (2.2), offered beam capacities exceeding the required do not contribute to the figure 
of merit and do not affect the optimization. 
 
Satisfaction Factor (SF) [2.11] 

maximize f 

                                                 f =
� min�Rb,req  ,Rb,off�

N

b=1

� Rb,req ,
N

b=1

                                         (2.3) 

The offered beam capacities exceeding the required capacity do not contribute to the 
figure of merit defined in (2.3). But in this case the objective value is scaled by the 
cumulative required capacity. 

 
Aggregate Fitness (AF)   
 

maximize f 

                                          f =� �1 + abs�Rb,req −  Rb,off��
−1N

b=1
                         (2.4) 

According to (2.4), the performance of the system is again evaluated by the absolute 
difference between the offered and requested beam capacities, but these results are 
scaled down on a beam bases and the optimization is driven according to the sum of 
the individual beam fitness. 
 
Subject to: 
 
System power constraint (PTOT):              

                                                           ∑ 𝑃𝑏𝑁
𝑏=1 ≤ 𝑃𝑇𝑂𝑇                          (2.5) 

 
Beam power constraints (Pb,con): 
          
                                                            Pb ≤ Pb,con,   b=1, …, N                 (2.6) 
 
Rb,req is the output of the traffic model according to the statistical parameters that 
depend on the size of the beam, population covered by the beam, type of terminals 
within the beam, busy hours and the GDP per inhabitant. Furthermore, Rb,off denotes 
the cumulative bit rate of all carriers in beam b, i.e. 
 

                                 R b,off
 = � B ∗  fDVB−S2(SNIRc)

Nc

c=1
                                   (2.7) 

The function fDVB-S2(SNIRc) quantifies the spectral efficiency of the various 
modulation and coding schemes employed by DVB-S2 as a function of the SNIR of 
carrier c. 
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2.4.4 SNIR Evaluation 
The SNIR of carrier c characterized by transmission power Pb,c and bandwidth B is 
determined from [2.1]: 
 

                                                         
    SNIRc =  ab

2Pb,c(OBO)
N0(ab)B+∑ αq2Pq,c(OBO)q∈Φ +Iadjch(B,XPD)+Iadjsat+Iinter(OBO,Cb,Mod)

            (2.8) 

 
Φ: is the set of co-channel beams in the coverage area having active carriers 
overlapping with the bandwidth of carrier c (co-channel interference with intended 
beam b) 
 
aq: is a gain incorporating the effect of (Output of link budget module): 

• satellite antenna beam gain toward the intended (covered) region 
• terminal receive antenna gain 
• free space loss 
• clear sky attenuation (according to ITU-R Recommendations) 
• rain attenuation (according to ITU-R Recommendations) 

 
ab: is the beam gain incorporating the effect of the above parameters. 

 
N0: is the noise power spectral density which is a function of ab because of the 
increase in noise temperature under rain fading conditions that affect ab 
 
Iadj_ch: accounts for adjacent channel interference due to filter imperfections (function 
of B), including spillover from the beams into orthogonal polarizations if both 
polarizations are employed (function of XPD) 
 
Iadj_sat: Inter-system interference caused by adjacent satellites operating closely in 
orbit with the serving satellite 
 
Iinter : Intermodulation interference. It is a function of the OBO, number of carriers 
through the HPA and the modulation scheme employed. 
 
The notation Pb,c(OBO) denotes the dependence on the OBO appropriate for the 
modulation scheme employed 
 
Following the problem formulation an appropriate optimization technique must be 
adopt to solve the problem. In this course an overview of the available optimization 
techniques is performed in the next chapter in order to determine an efficient 
optimization algorithm for the optimization problem under consideration. 
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Chapter 3 
Optimization Techniques 
 

3.1 Introduction 

A mathematical optimization problem, or just optimization problem, has the form: 

                                                 minimize fo(x)                                                                 (3.1) 
                                       subject to fi(x) ≤ bi , i = 1, …. , m.                                  (3.2) 

The vector x = (xR1R, …, xRnR) is the optimization variable of the problem whereas the 
function fRoR : RP

n
P → R is the objective function, the functions fRiR : RP

n
P → R, i = 1, …, m, 

are the constraint functions and the constants bRi R, i=1,…., m, are the limits or bounds, 
for the constraints. A vector x* is called optimal or a solution to the problem, if it has 
the smallest objective value among all vectors that satisfy the constraints. That is, for 
any z satisfying Equation 3.2 fRoR(z) ≥ fRoR(xP

*
P) [3.1]. 

The optimization problem described above is an abstraction of the problem of 
choosing the best possible vector in RP

n
P from a set of candidate choices. The set of 

candidate choices defines the search space of the problem. The problem search space 
is determined by the constraints fRiR(x) ≤ bRi. R These constraints represent either 
specifications or limitations of the problem. A choice belonging to the problem search 
space is represented by variable vector x and the respective performance is evaluated 
via the objective function fRoR In particular, the objective value fRoR(x) represents the cost 
of choosing xP5 F

6
P. Hence, the solution of the optimization problem corresponds to a 

choice that has the minimum cost or maximum utility among all choices of the 
defined search space. 

The above optimization problem, known as a global optimization aims at obtaining 
the globally optimal solution x* which minimizes the objective function over all 
choices in the search space. However depending on the specific characteristics of the 
problem, a compromise to avoid searching for the globally optimal and search for a 
locally optimal solution may be necessary. A locally optimal solution minimizes the 
objective function among feasible solutions that are near it but does not guarantee the 
lowest objective value among every feasible solution of the search space. 
Optimization schemes leading to a locally optimal solution achieve local optimization 
and constitute a widely used branch of mathematical optimization for problems and 
applications where a good, if not the best, solution is desirable. 

A wide variety of problems encountered in practice can be formulated as 
mathematical optimization problems. Therefore, mathematical optimization is used in 
many diverse areas such as engineering design, bioinformatics, telecommunications, 
                                                             
6 Alternatively the objective function - fo(x) can be employed representing the utility of choosing x, in 
which case the solution to the optimization problem (3.1) corresponds to a choice that has maximum 
utility. 
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aeronautics, transportation and finance. For most of these cases a human decision 
maker, system designer or system operator is necessary to supervise the process 
carrying out any actions suggested by the optimization method. However, the 
advances of micro-processor technology have enabled embedded optimization, 
namely real-time optimization without human intervention carried out by computers 
embedded in commercial devices. Thus, the use of optimization modules is pervasive 
in current systems. 

As every process is likely to be optimized [3.2] the applications of mathematical 
optimization are numerous. In this course, a relation between a set of inputs 
(optimization variables) and a set of permissible outputs (optimization objectives) 
must be defined. Once such a relation is defined, it must be formulated in the form of 
a mathematical optimization problem as described above. First the objective function 
(or cost function) evaluating the performance of the optimization variable needs to be 
defined. Second the constraint functions have to be formulated taking into account the 
limitations of the problem and the set of permissible outputs. This concludes the 
encoding of the problem. An appropriate optimization method must be selected next. 

3.2 Overview of Optimization Methods 

An optimization method is an algorithm that evaluates a solution to an instance of an 
optimization problem under a specified accuracy. The classification of classical 
optimization methods, given in literature is shown in Fig.3.1 [3.2]. 

 

 

Fig. 3.1 Classification of classical optimization methods 
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As shown in Fig.3.1 the main differentiation of optimization methods is between 
exact and approximate methods. Exact methods guarantee the optimality of the 
solution, whereas approximate methods may determine a high-quality solution but do 
not guarantee to find the global solution. Evidently, optimization methods providing 
exact solutions are favored. However, a large number of real-life optimization 
problems are complex and difficult to solve. The inherent complexity of such 
problems lies in a number of factors, such as the form of the objective and constraint 
functions, the number of variables and constraints as well as the sparsity7 of the 
problem [3.1]. As a result such problems cannot be solved exactly within reasonable 
time, necessitate the use of approximate methods. 

Approximate methods [3.2] can be further classified into two classes: Approximation 
Algorithms and Heuristic Algorithms. Approximation algorithms provide guarantees 
on the distance of the obtained solution from the global optimum. Thus, if the 
complexity of the problem allows the use of an approximation algorithm, the solution 
provided may not be exact but it will be within a certain distance from the exact 
solution. If, however, this is not the case the main alternative to solve such problems 
is to use metaheuristics, a subclass of heuristic algorithms, which are general purpose 
algorithms that can be tailored to solve any optimization problem unlike specific 
heuristics that are designed and tailored to solve specific problems. Therefore, 
metaheuristics can be used to solve complex problems with large solution search 
space. This is done by reducing the effective size of the search space and exploring 
this reduced space efficiently. Thus, complex problems can be solved faster and 
satisfactorily with no guarantee, however, on the optimality of the obtained solution. 

Metaheuristics are further classified according to the number of solutions used for the 
efficient exploration of the problem search space. The relevant categories are the 
single solution based (or trajectory based)8 and the population based metaheuristics. 
The main difference between these classes is the exploration pattern they use in order 
to reduce the effective size of the search space. This notion will be made clear later 
on, when the concepts of exploration and exploitation are introduced.  

All classes of optimization methods mentioned above are described in the following 
pages with emphasis put on their suitability to solve the resource allocation problem 
in hand. The analysis demonstrates the suitability of population based metaheuristics.  

3.2.1 Exact Methods 
Exact methods [3.2] are used to solve complex problems by breaking them down into 
simpler sub-problems and then combining the solutions to reach an overall solution. 
Those methods can be viewed as tree search algorithms where the search is carried 
out over the whole search space of interest, but only certain sub-trees of the search 

                                                             
7 A problem is considered sparse when each constraint function depends on a small number of the 
variables. 
8 The terms “single solution based metaheuristics” and “trajectory based metaheuristics” are used 
interchangeably.  
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space are examined when solving the corresponding sub-problem. The key idea 
behind this approach is that many of these sub-problems are often the same; thus by 
solving them only once, the computation effort is drastically reduced. This property is 
extremely useful when dealing with large instances of difficult problems, hence with a 
large number of recurrent sub-problems. The efficiency of an exact method, however, 
does not depend solely on the number of the redundant sub-problems but, also, on the 
structure of the problem, making ideal for solving large instances of difficult problems 
if their structure is appropriate9 [3.2]. 

Exact algorithms have been widely used and the most popular exact optimization 
strategies, like Dynamic Programming, Constraint Programming and Branch and X 
family of algorithms10, find applications in many real world problems like the Graph 
Coloring, Sequential Ordering and Quadratic Assignment problems. However, it is 
obvious that there is at least one key attribute a problem must have so that exact 
algorithms are applicable, namely having an optimal substructure. A problem has an 
optimal substructure when the solution to the optimization problem can be obtained 
combining optimal solutions to its sub-problems. Furthermore, exact algorithms 
perform better in discrete and combinatorial optimization11 problems, where the set of 
feasible solutions is discrete or can be reduced to discrete. A common problem 
involving combinatorial optimization is the Travelling Salesman Problem (TSP). 

However the satellite resource optimization problem does not have an optimal 
substructure and therefore exact algorithms cannot be applied. The substructure of the 
problem is not optimal due to the interdependence of all beams due to the inter-beam 
interference as well as to the dependence of beam powers on the total available 
system power. Furthermore, the resource allocation problem cannot be classified as a 
combinatorial optimization problem, in case the optimization variables of the problem 
are continuous and the set of candidate solutions infinite. That is the case of the 
problem, described in Section 2.4.3, where each optimization variable represents the 
continuous power value of the respective beam. The continuous optimization is opted 
to avoid quantization errors inherently present in discrete optimization. 

 

 

                                                             
9 Small instances of a specific problem may not be solved by an exact algorithm whereas large instances may be 
solved by the very same algorithm. Hence, recurrent sub-problems the algorithm failed to solve for some small 
instances are solved because of the problem structure. The following table tabulates examples found in the 
literature regarding different instances of popular optimization problems (Sequential Ordering Problem, 
Quadratic Assignment Problem, Graph Coloring) 
Optimization Problem SOP QAP GC 
Size of some unsolved instances 
Size of some solved instances 

53 
70 

30 
36 

125 
561 

 
10 Branch and X family of algorithms: (Branch and Bound, Branch and Cut, Branch and Price). 
11 Combinational optimization designates the procedure of finding an optimal solution from a finite 
set of candidate solutions. 
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3.2.2 Approximate Methods 
When exact methods are not suitable for solving the problem in hand, approximate 
methods [3.2] have to be used instead. There are two kinds of approximate methods, 
namely Heuristic algorithms and Approximation algorithms. To minimize the 
objective function fo(x) of the problem as described in Section 3.1, a heuristic 
algorithm will search over x in some systematic way whereas an approximation 
algorithm is a model based approach that will use an easily minimized approximation 
to fo( ) to guide its search [3.3]. Moreover, the approximation algorithm will provide a 
guarantee on the distance of the obtained solution from the global optimum. 

An ε-approximation algorithm [3.2] determines an approximate solution α which is 

• not less than a factor ε times the global optimum solution s:   
                                                    ε∙s ≤ α                                                        (3.3) 
                                                    if ε<1                                                         (3.4) 

• not greater than a factor ε times the global optimum solution s: 
                                                    α ≤ ε∙s                                                        (3.5) 
                                                    if ε>1                                                         (3.6) 

where the ε factor can be either a constant or a function of the input instances. An 
absolute performance guarantee is also possible if the following property holds: 

                                                         (s-ε)≤α≤(s+ε)                                                   (3.7) 

Such ε-approximation algorithms are the Quadratic Interpolation as well as the 
Newton-Raphson and Quasi-Newton [3.3]. However, to apply such techniques, an 
approximation to fo( ) that will guide the search is necessary . In case of the Quasi-
Newton technique, for example, this guide is the gradient of the function, so the 
function needs to be continuous and differentiable, to define the approximation to fo(). 
Thus, it is obvious that an approximation to fo( ) is not always available and therefore, 
not every optimization problem can be solved following these approaches. 

This is also the case of the problem discussed in Chapter 2. In particular, on the one 
hand, the evaluation of SNIR is very complicated and on the other hand look-up tables 
have to be employed to determine the spectral efficiency for specific SNIR values. 
Thus, SNIR is related to the corresponding spectral efficiency via a non-continuous 
relation. That is, determining an approximation to the problem is a highly involved 
task. In this course, the main alternative is the use of heuristic methods. 

Heuristic methods [3.2] (Greek: “εὑρίσκω”, ”find”) refer to problem solving 
procedures that utilize experimental, especially trial and error, methods. In contrast to 
the approximation algorithms, though, Heuristics do not have an approximation 
guarantee on the obtained solution but they deliver satisfactory solutions for large size 
problem instances. Heuristic methods can be further classified into two classes, 
namely Specific Heuristics and Metaheuristics. 
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Specific Heuristics are designed and tailored to solve a specific problem or instance. 
To enhance their performance and efficiency such problem specific heuristics can be 
combined and guided by higher level strategies which are called metaheuristics. Due 
to their efficiency metaheuristics are selected to solve the problem under 
consideration (Section 2.4). 

3.3 Metaheuristics 

The metaheuristics [3.2] are general-purpose algorithms that can be applied to solve 
almost any optimization problem. The suffix meta (Greek: “μετά” , after) means “later 
or more highly organized or specialized form of something”, so the term Meta-
heuristic refers to upper level general methodologies (templates). Those can be used 
as guiding strategies in designing underlying heuristics to solve specific optimization 
problems. Metaheuristics, like every Heuristic method, do not provide any guarantee 
on the optimality of their solution or even on the distance of the obtained solution 
from the optimal. However, metaheuristics can search very large search spaces of 
candidate solutions, in a reasonable time from a practical point of view, providing 
satisfactory solutions. Moreover, metaheuristics make few or no assumptions about 
the optimization problem, providing high quality solutions to complex problems like 
the one studied in this Thesis. On the contrary other optimization methods require that 
certain preconditions are valid. As a result, the application of metaheuristics has found 
its way into a number of areas including: [3.2] 

• Engineering design: topology and structural optimization in electronics and 
VLSI, aerodynamics, fluid dynamics, telecommunications and robotics. 

• Machine learning and data mining in bioinformatics and computational 
biology and finance. 

• System modeling, simulation and identification in chemistry, physics and 
biology; control, signal and image processing. 

• Planning in routing problems, robot planning, scheduling and production 
problems, logistics and transportation, supply chain management. 

In all the above cases, different metaheuristic methods are used depending on the 
characteristics of the problem to solve. Specifically, once the use of metaheuristics is 
decided, two contradictory aspects must be traded off, namely exploration of the 
search space and exploitation of the best solution(s). Exploration consists in an 
extensive search to make sure that all regions of the search space have been explored 
and the search is not confined to a certain region. Upon completion of the exploration 
of the search space, the regions containing the best solutions are identified. These 
regions are the most likely to contain a satisfactory solution. Exploitation, on the other 
hand, is an intensive and exhaustive search within a region of the search space, likely 
to contain a satisfactory solution, in the attempt to discover the best solution of this 
region. 
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In case the problem under consideration necessitates the exploration of the search 
space, the search has to be diverse, whereas if exploitation is necessary an intensive 
local search must be carried out. In fact, the more diverse the search the less intensive 
it is and vice-versa. Therefore, the nature of the problem must be determined in 
advance, so that either a diverse or an intensive metaheuristics technique is selected. 
Population-based metaheuristics focus on the diversification of the search while 
trajectory-based metaheuristics on the intensification. This also constitutes the main 
classification criterion for metaheuristics12. 

3.3.1 Trajectory-based Metaheuristics 
Trajectory-based techniques [3.2] aim at improving a single solution by following a 
certain search trajectory through the search space. This trajectory is determined 
applying an iterative procedure that chooses the next solution based on the current 
solution. At each step of the procedure, a set of candidate solutions are generated 
applying a certain operator to the current solution. This new set of solutions, ideally, 
located in the vicinity of the current solution, constitutes the neighborhood of the 
current solution. 

The properties of the neighborhood, especially its locality13, are of great importance 
to the convergence of the algorithm. A strong locality ensures the intensity of the 
search and the exploitation of the current solution whereas a weak locality could result 
in a random search within the whole search space. Hence, the operator generating the 
neighborhood has to be chosen carefully. After a new neighborhood has been 
determined, a neighbor has to be selected to replace the current solution and become 
the next station of the search trajectory14. The kind of solution that will replace the 
current one depends on the optimization technique used and the way the trajectory is 
planned. Even points with a higher objective function value than the current one – in 
case of a minimization problem - can be accepted, if the trajectory planning allows so, 
e.g. in order to escape out of a local optimum.  

After the previous solution has been replaced by a new one, the step is completed. The 
same procedure iterates and all steps concatenate into forming the search trajectory of 
the problem, until one of the stopping criteria is met. These criteria can be either a 
priori known (e.g. a predefined number of iterations) or a posteriori (e.g. a number of 
non-improving iterations).  At this point the process is terminated and the current 
solution constitutes the result of the optimization. 

                                                             
12 Many classification criteria can be found in the literature, (Nature inspired/Non-nature inspired, 
Memory usage/Memoryless methods, Deterministic/Stochastic, Iterative/Greedy) but the 
classification under population-based/trajectory-based is the main criterion when selecting a 
metaheuristic technique, for the problem of interest. As a matter of fact, algorithms belonging to 
each of these two classes use the same search mechanisms, so this type of classification is helpful. 
13 The locality of the neighborhood is determined by the Euclidean norm for a continuous problem 
and by the Hamming distance, as defined in information theory, for a discrete. 
14 The generation and the replacement of the current solution could be a memoryless process, in 
which case every operation and decision is based on the current solution, or a memory based process, 
where, a memory stored, search history is being used for every operation and decision to be made. 
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3.3.2 Population-based Metaheuristics 
Unlike trajectory-based techniques, population based metaheuristics [3.2] do not start 
the search from a single solution but from an initial population of solutions. This 
diversity of initial solutions is the very reason why an extensive exploration of the 
search space is possible with this family of techniques. In any case, the initial 
population must be diverse enough, so that the method reaches its full potential. 
Otherwise, the search will be confined to the region encompassing adjacent solutions 
of the initial population. 

Because of the importance of the initialization to the convergence of the algorithm, a 
number of strategies have been proposed to deal with this15. However, the random 
generation is usually applied to the majority of the problems [3.2]. Although the 
algorithmic generation of independent random numbers is impossible, the random 
generation does not have to be performed by pseudo-random numbers. Quasi-random 
sequences of numbers can be used instead, where emphasis is put on both the 
independence and the dispersion of the successively generated numbers that constitute 
the initial population, ensuring the diversity of the initial random population. 

After the initialization of the population an iterative procedure is performed. 
Specifically:  

1. In each iteration a new population of solutions is generated  
2. Individuals, from the new and the current population, are selected, based on 

their performance. i.e. their objective value. 
3. Selected individuals replace the current population16. 
4.  The procedure keeps iterating until one of the stopping criteria is met. 

At this point the best individual of the population (i.e. the best solution out of the 
population of solutions) is selected and returned as the outcome of the optimization. 

3.3.4 Metaheuristic Techniques 
The classification of metaheuristics under trajectory-based and population-based 
techniques is given in Fig.3.2, where some of the well-studied algorithms of each 
class appear. Both classes of metaheuristic methods along with the relevant 
algorithms are applicable to the problem in hand; one of these algorithms must be 
selected to solve the problem. However, there is no general rule to follow when 
choosing an algorithm from the metaheuristics family and, as also suggested by the 
“No Free Lunch” theorem17 [3.4], no universal criterion can prove the superiority of a 
specific technique over others. For this reason, a general intuitive criterion may be 
adopted to provide hints regarding the suitability of each metaheuristic algorithm for 

                                                             
15 Random Generation, Sequential Diversification, Parallel Diversification, Heuristic Initialization. 
16 The generation and replacement can again be a memory less or a memory based procedure. 
17 “No free lunch” theorem,(2005), derivative of the “no free lunch theorems for optimization” by 
Wolpert and Macready, states that any two optimization algorithms are equivalent, when their 
performance is averaged over all possible optimization problems. 



44 
 

the problem in hand. This criterion associates the search pattern of each algorithm 
with the landscape of the problem search space. Given that algorithms belonging to 
the same class of metaheuristics share, to some extent, the same search mechanism, an 
early differentiation between trajectory-based and population-based techniques is 
possible. Indeed, the foregoing description of the two classes denotes that population-
based methods employ an exploratory search pattern whereas trajectory based 
methods employ an intensive search pattern focusing on exploitation. However, high 
dimensionality18 and the large size of the search space of the problem in hand suggest 
the use of an exploratory search pattern to ensure the dispersion of the search over the 
large search space. This infers the suitability of the population-based techniques over 
the trajectory-based for the current resource allocation problem.   

 

Fig. 3.2 Classification of metaheuristics  

(*ACO: Ant Colony Optimization, *PSO: Particle Swarm Optimization) 

In addition to the large size, the multimodal landscape of the problem search space 
suggests the use of an Evolutionary Algorithm, among the population-based 
techniques, particularly the use of a Genetic Algorithm. This is due to the fact that the 
crossover operator of Genetic Algorithms (as well as the recombination operator of 
Differential Evolution) provides long (random) jumps in the space of possibilities, 
thus providing a way out of local optima of the multimodal landscape [3.5]. 

The perspective obtained from this early approach is extremely useful in providing a 
rough outline of the suitability of each algorithm for the current problem. However, 
the suggestions of this early intuitive approach must be corroborated in practice. For 
this reason a systematic study is performed to check the validity of the intuitive 
approach leading to the selection of an appropriate technique. In this course, the 
performance of the Genetic Algorithms and Differential Evolution from the class of 
Evolutionary Algorithms, the performance of yet another population-based technique, 
namely the Particle Swarm Optimization and the performance of a trajectory-based 

                                                             
18 The high dimensionality refers to the large number of beams and consequent large number of 
variables of the problem. Evident of the high dimensionality is the fact that multi-beam systems can 
have hundreds of beams. 
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technique, namely the Simulated Annealing are compared. The results of this study 
are presented in the next chapter. 

The standard metaheuristic techniques systematically compared in the next chapter, 
namely the Simulated Annealing, Genetic Algorithms, Differential Evolution and 
Particle Swarm Optimization are presented in the following pages. 

3.3.4.1 Simulated Annealing (SA) 
Simulated annealing (SA) [3.2] was developed in the 1980s by the pioneering works 
of S. Kirkpatrick [3.6] and V. Cerny [3.7] and was originally applied to graph 
partitioning and VLSI design. In these early approaches SA was used in solving 
combinatorial optimization problems. Soon, it was extended to deal with continuous 
optimization problems. This method models the physical process of heating a material 
and, then, of slowly lowering the temperature to create a strong crystalline structure, 
thus minimizing system energy. The strength of the structure depends on the rate of 
cooling. If the initial temperature is not sufficiently high or fast cooling is applied, 
imperfections come up and, due to the structural defects of the material, minimization 
of the system energy is not attained. Hence, the initial temperature and the rate of 
temperature reduction are essential parameters of the annealing process. 

The SA is a trajectory-based optimization technique imitating the aforementioned 
physical process. That is, the SA algorithm simulates the energy changes in a system 
subjected to a cooling process until it converges to an equilibrium state. This physical 
procedure is analogous to an optimization method. In particular, the objective function 
of the problem is analogous to the energy state of the system and the solution of the 
optimization problem corresponds to a system energy state. The decision variables 
associated with a solution are analogous to the molecular positions within the material 
creating its crystalline structure and the global optimum corresponds to the ground 
state of the system energy.  

As in all trajectory-based techniques the search starts from a single point defined in 
advance. In each iteration of the SA algorithm, a new point is randomly generated. 
The distance of the new point from the previous point, determining the extent of the 
search, is based on a probability distribution with a scale proportional to the 
temperature. The function used to define the extent of the search (i.e. the size of the 
neighborhood) for the next iteration is the annealing function and is an essential 
operator of every trajectory-based technique. Two annealing functions used widely in 
real-life problems are Fast Annealing and Boltzmann Annealing. In case of the fast 
annealing the distance of the new point from the current point must not exceed the 
value of the temperature whereas in Boltzmann annealing the distance must not 
exceed the square root of the temperature. 

The new points of the trajectory have, generally, a smaller objective value (i.e. a 
better performance) than the previous points, but under a certain probability, points 
raising the objective value may be accepted as new points. By accepting points that 
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raise the objective, the algorithm is able to escape out of local minima. This feature of 
SA is shown in Fig.3.3. The new solution x’ can be accepted by the algorithm in spite 
raising the objective value. The probability of accepting the worst performing x’ 
depends, on the one hand, on the objective value of x’ and on the other hand, on the 
temperature. In fact, at the early stages of the search of Fig.3.3 when the temperature 
is higher the probability of accepting a move raising the objective value is also higher 
whereas at a given temperature, the lower the objective value of x’ the higher the 
probability of accepting it. Evidently a new point with a lower objective value than 
the previous point is always accepted.   

 

Fig 3.3 Simulated annealing escaping from local optima 

Subsequently to the acceptance of a new point, an annealing schedule is selected to 
systematically reduce the temperature as the algorithm evolves. This task is performed 
by the temperature update function, and as the temperature is reduced, the algorithm 
reduces the extent of its search to converge to a minimum. Two common temperature 
update functions found in literature are the Exponential Temperature Update and the 
Logarithmic Temperature Update.  The exponential temperature update denotes an 
exponential dependence of the temperature on the number of iterations. Let Tmax be 
the initial temperature and let k denote the iteration number. The temperature in the 
kth iteration Tk is equal to:  

                                                     Tk = Tmax∙(0,95^k)                                              (3.8) 

Whereas the logarithmic update denotes a logarithmic dependence of the temperature 
on the number of iterations. Thus, the temperature in the kth iteration is equal to: 

                                                           Tk =  Tmax
ln (k)

                                                      (3.9) 

The SA algorithm described above is the standalone SA found in the literature and as 
used in the systematic study of standard techniques in the next chapter. However, a 
new feature of the SA, diverging from the standard theory of trajectory-based 
techniques - hence not included in the stand alone SA is the concept of re-annealing. 
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Re-annealing raises the temperature after the algorithm accepts a certain number of 
new points and starts the search again at the higher temperature. Thus, the algorithm 
avoids getting trapped at local optima.  

3.3.4.2 Particle Swarm Optimization (PSO) 
Particle Swarm Optimization (PSO) [3.2] is a population-based metaheuristic, 
originally designed for continuous optimization problems and was first introduced by 
R.C. Eberhart and J. Kennedy in 1995 [3.8]. PSO mimics the social cooperative and 
competitive behavior of swarms. As described by Eberhart and Kennedy, the PSO 
algorithm is an adaptive algorithm based on social psychological metaphor; a 
population of individuals (referred to as particles) adapts by returning stochastically 
towards previously successful regions [3.9]. 

Like every population-based technique the N particles of the swarm flying around in a 
D-dimensional search space have to be randomly initialized. Each particle i of this 
swarm represents a candidate solution to the problem and is parameterized by its 
position xi and velocity vi in the decision space. The move of each particle is 
influenced by its personal success and the success of its peers. During each generation 
each particle is accelerated toward the best position visited by itself pi and the global 
best position pg, visited by its peers. At each iteration a new velocity value for each 
particle is calculated based on its current velocity vi, the distance from its previous 
best position (xi – pi) and the distance from the global best position (xi – pg). The new 
velocity value is then used to calculate the next position of the particle in the search 
space. This process is iterated until some stopping criteria are met. The velocity 
update and position update are the two primary operators of PSO. 

According to the previous description a particle must be composed of the following 
three vectors in order to update its velocity and position: 

• The x-vector, recording the current position of the particle in the search space. 
• The p-vector, recording the location of the best solution found so far by the 

particle. 
• The v-vector, containing the velocity (i.e. the direction) of the particle in the 

search space. 

As well as two fitness values (i.e. objective values): The x-fitness recording the fitness 
of the x-vector and the p-fitness recording the fitness of the p-vector. 

Then at each iteration, each particle will apply the following operations: 

Update velocity: 

                    vi(t) = w ∙ vi(t-1) + ρ1∙C1∙(pi – xi(t-1)) + ρ2∙C2∙(pg – xi(t-1))           (3.10) 

In this expression ρ1 and ρ2 are random variables ϵ[0,1]. The constant C1 represents 
the cognitive factor, namely the attraction of the particle toward its own success and 
the constant C2 represents the social factor, namely the attraction toward the best 
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success of the swarm. Finally the inertia weight w controls the impact of the particle 
momentum to the velocity of the next iteration. In fact the inertia weight represents 
the trade-off between the explorative and exploitative search mode, since a large 
inertia weight encourages a global exploration whereas a small inertia weight 
encourages the local exploitation. 

However the velocity vi is limited by the permissible values of the system. Hence if 
the velocity exceeds the maximal value Vmax, (vi > Vmax, vi < Vmax, respectively) it 
will be reset to Vmax. (-Vmax respecively).  

Update position: 

                                             xi(t) = xi(t-1) + vi(t)                                              (3.11) 

Thus each particle updates its position according to its updated velocity. The position 
update is shown in Fig.3.4. 

 

Fig 3.4 Particle Position Update 

Update best found particles: 

Each particle has a potential of updating the global best solution, therefore: 

                                                              pg = xi                                                      (3.12) 

                                                            if f(xi) < pg                                                  (3.13) 

As well as the local best solution: 

                                                                pi = xi                                                      (3.14) 

                                                            if f(xi) < pi                                                  (3.15) 

At the end of the process the global best solution pg returns as the result of the 
optimization. An algorithm describing the PSO is Algorithm 3.1. 
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Algorithm 3.1 Particle Swarm Optimization algorithm. 

Random initialization of the whole swarm ; 
Repeat 
 Evaluate f(xi) ; 
 For all particles i 
  Update velocities: 
   vi(t) = vi(t - 1) + ρ1 ∙ (pi - xi(t - 1)) + ρ2 ∙ (pg - xi(t - 1)) ; 
  Move to the new position: xi(t) = xi(t - 1) + vi(t) ; 
  If f (xi) < f (pbesti) Then pbesti = xi ; 
  If f (xi) < f (gbest) Then gbest = xi ; 
  Update(xi, vi) ; 
 EndFor 
Until Stopping criteria   

 

3.3.4.3 Differential Evolution (DE) 
Differential Evolution (DE) [3.2] is a population-based metahueristic inspired from 
natural biological evolution and is one of the most successful approaches for 
continuous optimization. DE was developed by K. Price [3.10] in 1995 in an attempt 
to solve the Chebycheff polynomial fitting problem posed by R.Storm. The main idea 
behind DE is the use of vector differences to shake up the vector population and 
diversify the exploration of the search space. In this direction a recombination 
operator (based on the vector differences of two or more random individuals of the 
population) is applied providing random leaps in the space of possibilities. Moreover 
a self-referential mutation operator is applied to drive the search toward “good” 
solutions. 

Like every population-based technique DE generates a random initial population of 
size k (k ≥ 4). Each individual i of the population is a D-dimensional vector xij of 
floating-point elements. Each element of the i-th vector is generated within the 
acceptable bounds of each variable as follows: 

                         xij = xj
lo + randj[0,1] ∙ (xj

hi – xj
lo),  i ϵ[1, k], j ϵ[1, D]                   (3.16) 

where xj
lo denotes the lower bound and xj

hi the upper bound of the j-th element and 
randj is a uniformly distributed random variable in the range [0, 1]. 

Once the initial population is generated the recombination operator is applied. The 
recombination operator is a linear combination of usually three random individuals. 
Given a parent i and three randomly selected individuals r1, r2, r3. Each dimension j 
of the offspring of i will be a linear combination of the j-th dimension of the three 
selected individuals according to a certain probability. This probability depends on the 
recombination probability CR ϵ[0, 1] and the random dimension jrand to ensure that at 
least the jrand dimension will be evolved regardless of the value of CR. That means 
that when (randj[0, 1] < CR or j = jrand) the j-th element of the offspring of i will be 
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the linear combination of the j-th element of r1, r2, r3. Otherwise the offspring 
variable j will inherit the value of its parent. The aforementioned linear combination is  

                                     Offspring: uij = xr3j + F ∙ (xr1j - xr2j)                                   (3.17) 

Where the parameter F represents a scaling factor F ϵ[0, 1] controlling the 
amplification of the difference between the individuals r1 and r2 to avoid stagnation of 
the search process. The recombination operator algorithm described above will be 
made clear with the Algorithm 3.2. 

Algorithm 3.2 Recombination operator in DE. 

Input: Parent i, three randomly selected individuals r1, r2, r3, i ≠ r1 ≠ r2 ≠ r3. 
jrand = int(randi[0, 1] ∙D) + 1 ; 
For (j = 1, j ≤ D, j + +) Do 
 If (randj[0, 1]) < CR) or (j = jrand ) Then 
  uij = vij = xr3j + F ∙ (xr1j - xr2j) ; 
 Else 
  uij = xij ; 
Output: Offspring ui.  

After the recombination operator is applied to every parent (i) of the population an 
elitist approach is adopted to determine which of the offspring will further contribute 
to the population evolution and which will be discarded. As a result of this elitism the 
offspring replaces its parent if its objective value is better or equal to the objective 
value of the parent. That is: 

                         xi(t + 1) =  � ui(t + 1)  if f�ui(t + 1)� ≤ f�xi(t)�
    xi(t)         otherwise                              

                  (3.18) 

Thus each individual (i) of the population is iteratively evolved and the evolution 
process consists of two steps.  

• Mutation and Recombination: In this step randomly selected members of the 
population create a variant solution. Next this variant solution is recombined 
with the individual i creating a trial solution. 

• Replacement: The trial solution generated is compared to the original 
individual i and the best performing solution replaces the other in the 
population. 

This process iterates for a number of generations and at the end of the process the 
global best solution xi of the population returns as the result of the optimization. The 
whole DE algorithm described above is clearly presented in the following algorithm 
(3.3). 
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Algorithm 3.3 Differential Evolution algorithm. 
 
Input: Parameters: F (scaling factor), CR (crossover constant). 
Initialize the population (uniform random distribution) ; 
Repeat 
 For (i = 1, i ≤ k, i + +) Do /* Each individual */ 
  Mutate and Recombine: 
   jrand = int(randi[0, 1] ∙ D) + 1 ; 
   For (j = 1, j ≤ D, j + +) Do 
    If (randj[0, 1]) < CR) or (j = jrand) Then 
         uij = vij = xr3j + F · (xr1j - xr2j) 
    Else 
         uij = xij 
   Replace: 

                                                         xi(t + 1) =  � ui(t + 1)  if f�ui(t + 1)� ≤ f�xi(t)�
   xi(t)          Otherwise                              

 

 
 End For 
Until Stopping criteria /* exceed: a given number of generations */ 
Output: Best population or solution found.   

The obtained solutions from the variation operators (i.e. recombination and mutation) 
may exceed the bounds of the system. In those cases a repair strategy has to be 
followed to reset the exceeded values and in this course extreme repair strategies as 
well as intermediate repair strategies are found in literature. The first extreme 
strategy resets the variable to the limit it exceeds. However this strategy decreases the 
diversity of the population. In order to ensure the diversity of the population another 
extreme strategy has been proposed, reinitializing the offending value to a random 
value, but evidently this strategy is extreme in terms of diversity maintenance and 
decreases the exploitation of the search hindering the convergence of the algorithm. 

In order to deal with the drawbacks of the extreme strategies intermediate strategies 
may be applied instead. An example of intermediate strategy consists in reinitializing 
the exceeded value to an intermediate point between its previous value (before 
variation) and the bound it exceeds. That is: 

                            𝑢𝑖𝑗(𝑡 + 1) =  

⎩
⎪
⎨

⎪
⎧

𝑥𝑖𝑗(𝑡)+𝑥𝑗
𝑙𝑜

2
  if 𝑢𝑖𝑗(𝑡 + 1) < 𝑥𝑗𝑙𝑜

𝑥𝑖𝑗(𝑡)+𝑥𝑗
ℎ𝑖

2
  if 𝑢𝑖𝑗(𝑡 + 1) > 𝑥𝑗ℎ𝑖

𝑢𝑖𝑗(𝑡 + 1)     otherwise               

                       (3.19) 

Because of the simplicity and effectiveness of DE in solving continuous optimization 
problems DE had a major impact on the field of continuous optimization. Furthermore 
DE is very easy to tune and a number of empirical rules simplify the tuning process. 
The tuning of DE as also the tuning of every technique presented herein will be 
discussed in the next chapter. 
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3.3.4.4 Genetic Algorithms (GA) 
A Genetic algorithm (GA) [3.2] is a population-based technique that mimics the 
process of natural evolution. This method was developed by J. Holland in the 1970s in 
an attempt to rigorously and systematically describe the adaptive processes of natural 
systems [3.11]. Not long after that, artificial systems retaining these important natural 
mechanisms were designed and, in the 1980s, GAs had already been applied to 
optimization and machine learning. The reason for that was the adaptability of the 
method, which provided a good learning mechanism for research in Artificial 
Intelligence, as well as a good search mechanism tailored to the landscape of the 
search space. This key feature of GAs is what makes them a fitting optimization 
technique for rough, multimodal, and large search spaces, or even for search spaces 
not well understood [3.12].  

GAs were originally associated only with combinatorial optimization, the reason for 
that being mainly historical. The systematic use of binary encodings19 by Holland and 
his research group set an example that was followed by the majority of the researchers 
in the years to come. However, GAs were extended to continuous optimization. In 
fact, empirical comparisons between binary encodings and continuous encodings have 
shown better results for the continuous encodings [3.12]. 

Like any other population-based technique, a GA starts the search from a randomly 
generated initial population of solutions (chromosomes) and iteratively replaces the 
current population with a new one (the population of the next generation) according 
to the performance of each individual. The performance of each individual is 
evaluated by its objective value (or fitness value) indicating the probability of an 
individual to be selected for reproduction in a way similar to the natural selection, 
where the genome of fittest individuals is more likely to survive to the next generation 
through reproduction. Thus, individuals with higher fitness function values have a 
higher probability of been selected and, consequently, are expected to breed more 
offspring. However, since the fitness value is only indicative, even a highly evaluated 
individual may not be selected at all or, on the contrary, it may be selected more times 
than once. 

The evolution of the population is described by the following iterative process. Two 
parents are selected according to their fitness and to the selection function employed 
by the algorithm. Then, two genetic operators are sequentially applied under a specific 
probability, namely the crossover operator that exchanges portions of the parent 
solution vectors and the mutation operator that randomly modifies an individual.  

Finally, the offsprings generated are evaluated and returned back to the population. 
The evolution process described above is depicted in Fig. 3.5. 

 

                                                             
19 The discrete set of feasible solutions of a combinatorial optimization problem can be represented in 
a binary way. 



53 
 

 

Fig 3.5 The GA evolution process 

Selection: 

Selection is the process of choosing the individuals that will be subjected to the GA 
operators in the attempt to further evolve the current population. The purpose of 
selection is, on the one hand, to drive the search towards the best individuals hoping 
that their offspring will have an even higher fitness value and, on the other hand, to 
maintain the diversity of the population preserving the explorative nature of the GA. 

The most important selection methods found in literature are: the roulette wheel 
selection, the stochastic universal selection, and the tournament selection.  

The “roulette wheel” sampling chooses parents by simulating a roulette wheel. The 
population total fitness score ( F ) is represented by a roulette wheel and cyclic slices 
of the wheel are assigned to the member of the population. The area of each cyclic 
slice is proportional to the fitness of the corresponding individual. This fitness wheel 
is spun as many times as the size of the population ( N ) and after every spin the 
individual of the point the wheel stops is selected. Though this stochastic method, in 
general returns the statistically expected results, it could perform poorly in case of a 
small population. A series of unfortunate spins could allocate all offspring to the 
worse individual. For this reason the stochastic universal sampling has been 
introduced.  

The stochastic universal selection method lays out a line where each parent 
corresponds to a section of the line of length proportional to its fitness value. A 
pointer moves along the line in steps of equal size, (typically equal to the mean 
fitness). At each step, the pointer lands on a section selecting the corresponding parent 
of the section. The first step ( r ) of the pointer is a uniform random number less than 
the step size. An example of the stochastic universal selection is depicted in Fig. 3.6. 
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Fig. 3.6 “Stochastic Universal sampling” example 

The N repeated random samplings used by the roulette wheel selection are replaced 
by a single random sampling (i.e. the first step (r)). Thus, the negative effect of the 
random samplings on the selection process is nullified. 

Tournament selection selects the individuals that will be subjected to the GA 
operators by choosing two Tournament players at random from the population and 
finding the best individual out of them. Then, a random number between 0 and 1 is 
chosen and if it exceeds a certain parameter (e.g. 0.8), the best individual is selected to 
be evolved by the GA operators; otherwise, the worse individual is selected. The two 
Tournament players are then returned to the original population and the Tournament 
selection is applied again until selecting the desirable number of individuals. Unlike 
roulette wheel and stochastic universal selection, tournament selection does not have 
to pass through the population at each generation to compute the population total 
fitness score (F). Tournament selection passes through the population once holding as 
many tournaments as the population size. Hence, it is computationally more efficient 
and more amenable to parallel implementation.   

Finally, Elitism is an important supplementary selection method that preserves a 
number of the best individuals, which otherwise could be lost, if not selected or if 
destroyed by crossover and mutation. The improvement to the GA’s performance by 
the  use of elitism has been verified by numerous researches over the years [3.12].  

Crossover: 

Crossover is a genetic recombination operator responsible for the reproduction of a 
part of the population. The percentage of the population that will be subjected to 
crossover is determined by the crossover rate. During crossover, portions of the 
chromosomes are exchanged between the individuals in order to explore new points 
of the search space. Because of the diversity of the population in the early stages of 
the process, the application of the crossover operator causes a significant change in 
the population allowing the exploration of new regions of the search space. This, 
however, will settle down in future generations enabling the convergence of the 
algorithm. 
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The primary advantage of the GAs comes from the crossover operator20. According to 
Holland [3.5] the respective three explanations for that are: 

1. Crossover provides long (random) jumps in the space of possibilities, thus 
providing a way off of local minima. 

2. Crossover repairs mutational damage by sequestering deleterious mutations in 
some offspring while leaving other offspring free of them. 

3. Crossover recombines building blocks. 

The most commonly used methods for population crossover are the single point 
crossover, the two-point crossover, the uniform crossover. In single point crossover, a 
crossover point is chosen at random in the solution vector-matrix. Offspring are then 
created by exchanging the vector elements after the crossover point between the 
parents. In case of binary encoding, the offsprings are created by exchanging the bits 
after the crossover point between the parents. To illustrate the above procedure the 
single point crossover of binary encoding is depicted in Fig 3.7. 

 

Fig. 3.7 Single point Crossover 

In two-point crossover, the ends of each chromosome are joined together to form one 
ring. Two crossover points are then chosen at random, splitting the ring into two 
segments. Offspring are then created by exchanging the respective segments between 
the parents. The same approach has also been extended to multi point crossovers 
where the ring shaped chromosomes are cut at more than two points creating more 
segments that are exchanged between the parents. 

Finally, the uniform crossover uses a randomly generated crossover mask, which 
designates the vector elements that will be exchanged between the parents. In case of 
binary encoding the crossover mask designates the bits that will be exchanged 
between the parents. To illustrate this procedure the uniform crossover of binary 
encoding is depicted in Fig.3.8. In this figure the bits of the crossover mask equal to 1 
designate the bits that will be exchanged. The respective bits (the 1st and the 5th) are 
then exchanged between the parents X1 and X2 to create the new individuals Y1 and 
Y2. 
                                                             
20 The paramount importance of the crossover is also apparent in natural systems, where it is known 
that the crossover rate for mammals is 6 order of magnitude greater than the mutation rate. 
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Fig 3.8 Uniform Crossover 

Mutation: 

Mutation is the modification of a randomly selected vector element. Each element of a 
vector can be subjected to mutation under a small probability, namely the mutation 
rate. The value of the elements subjected to mutation will be replaced by a random 
number uniformly selected from the range of the population. In case of binary 
encoding, the mutated bit will be reversed. The binary mutation is depicted in Fig.3.9. 

 

Fig 3.9 Mutation 

According to the original GA theory introduced by Holland, the mutation operator 
plays only a background role, behind the main instrument of variation which is the 
crossover operator. In the original approach, the mutation operator was nothing more 
than an evasion mechanism of local optima or of any other locus that the algorithm 
could get stuck in. But actually, mutation is the only operator which is responsible for 
the introduction of new genetic material into the population, especially in the case of 
continuous optimization where the mutated children may develop variable values that 
do not exist anywhere in the population up to the application of mutation. Therefore, 
the role of mutation in solving complex continuous problems is crucial. 
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3.3.5 Statistical analysis of Metaheuristics 
Most of the metaheuristics in general and all the metahuristics discussed above belong 
to the class of nondeterministic (or stochastic) algorithms. As a result, these 
algorithms have to be averaged over a number of trials to assure statistical confidence. 
Moreover, a number of measures such as the mean, minimum, maximum, standard 
deviation may also be of interest in the statistical analysis. The minimum number of 
trials that must be carried out to produce reliable statistical results is 10 [3.2]. In this 
course, all results presented herein are averaged over 15 independent runs as the high 
computational cost of the process (involving the comparison of many metaheuristics, 
performing an extremely high number of fitness evaluations, to obtain high quality 
solutions) does not allow for a larger number of trials. 

Moreover, the comparison between two sets of metaheuristic independent trials 
imposes the use of a statistical hypothesis test for assessing whether one of the two 
sample distributions is stochastically greater21 than the other. In case the data in the 
two sets are independent samples from identical continuous distributions with equal 
medians (null hypothesis) no conclusion regarding the stochastic dominance of the 
sample distributions can be drawn and the sets cannot be compared. Alternatively if 
the data are independent samples from distributions that do not have equal medians 
(alternative hypothesis) one of the two sample distributions is stochastically greater 
than the other and the sets of metaheuristics can be compared. 

Therefore in order to compare the stochastic results of metaheuristics the null 
hypothesis has to be rejected and for that reason the Wilcoxon rank sum test is 
performed [3.13]. The Wilcoxon test indicates a rejection of the null hypothesis with a 
certain confidence level and as a result if the null hypothesis is rejected with a high 
confidence level (>0.95) the comparison of the results is coherent, whereas if that is 
not the case the results cannot be compared and the simulations have to be repeated. 
The statistical confidence in all comparisons done in framework of the present work is 
verified by performing the Wilcoxon test with standard confidence level 0.95. 

  

 

 

 

 

                                                             
21 The term stochastically greater refers to the concept of stochastic dominance. Stochastic 
dominance is a form of stochastic ordering and is used in decision theory in situations where a 
probability distribution over possible outcomes can be ranked as superior to another. 



58 
 

References: 

[3.1] Stephen Boyd. Convex Optimization. Cambridge University Press. 2004. 

[3.2] El-Ghazali Talbi. Metaheuristics from design to implementation. John Wiley & 
Sons, Inc. 2009. 

[3.3] Paul Schrimpf. Matlab – Optimization and Intergration. 
http://www.web.mit.edu 2009. 

[3.4] Wolpert, D.H., Macready, W.G. “No Free Lunch Theorem for Optimization”, 
IEEE Transactions on Evolutionary Computation. 1997. 

[3.5] J. H. Holland. Building Blocks, Cohort Genetic Algorithms and Hyperplane – 
Defined Functions. The University of Michigan, Ann Arbor, MI 48109  

[3.6] S. Kirkpatrick, C.D. Gelatt, and M.P. Vecchi. “Optimization by simulated 
annealing”. Science, 220(4598):671-680. 1983. 

[3.7] V. Cerny. “A thermodynamical approach to the travelling salesman problem: An 
efficient simulation algorithm”. Journal of Optimization Theory and Applications, 
45:41-51. 1985.  

[3.8] J. Kennedy and R.C. Eberhart. “Particle swarm optimization”. In IEEE 
International Conference of Neural Networks, Perth Australia, pp. 1942-1948. 1995. 

[3.9] J. Kennedy and R.Eberhart. “Swarm Intelligence”. Morgan Kaufmann 
Publishers, Inc. San Francisco,CA, 2001. 

[3.10] R.M. Storn, and K.V. Prince. Differential Evolution: A simple and efficient 
adaptive scheme for global optimization over continuous spaces. Technical Report 
TR-95-012, Int CS Institute, University of California, Mar 1995. 

[3.11] J.H. Holland. Adaptation in Natural and Artificial Systems. The University of 
Michigan press, Ann Arbor, MI. 1975. 

[3.12] Melanie Mitchell. An introduction to Genetic Algorithms. The MIT press. 
1998. 

[3.13] F. Wilcoxon,“Individual comparisons by ranking methods,” Biometrics 
Bulletin Vol. 1, No.6, 1945, pp. 80–83. 

 

 

 

 



59 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



60 
 

Chapter 4 
Simulation Results 
 

4.1 Simulator 

Following the problem formulation of section 2.4, the described multi-beam satellite 
system has been simulated and the proposed metaheuristics have been applied in an 
attempt to determine an optimization technique appropriate for the power allocation 
problem.  

In this course a 37-beam GEO satellite system described in Fig.4.1 has been 
simulated. The satellite serves fixed users via the multiple beams. Each user position 
within a beam corresponds to an off-axis angle θ with respect to the boresight (i.e. θ = 
0°) and the antenna radiation pattern is approximated employing the Bessel function. 
In particular, for the satellite antenna beam gain the following expression is 
employed: 

                                               G(θ) = Gmax(
J1(u)

2u
 +  36

J3(u)

u3
)2                                                 (4.1) 

where, u = 2.07123sinθ/sinθ3db, and J1, J3, are the Bessel functions of the first kind, of 
order one and three respectively [4.1]. The link budget is calculated assuming one 
user per beam located at a random position of the beam edge (worst case position). 
The entries and outputs of the link budget are given in Table 4.1. 

 

Fig. 4.1 Multibeam satellite layout and antenna gain with respect to the elevation 
angle for 2 beam sizes 
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The total downlink bandwidth available is BTOT = 3000MHz, the total available 
system power is PTOT = 2350W and the beam power constraint is Pb,con  = 100W.  

 
Table 1 Link Budget Parameters 

Link Budget Parameters For Capacity Results 
 

Parameter Value 
Frequency Band Ku 
User Link Bandwidth Bu 46.875 MHz 
HPA saturation Power Pτ 80 W 
Max satellite antenna gain GT 52 dBi 
Output Back Off OBO 5 dB 
Satellite EIRP 66 dBW 
Free Space Loss L 212 dB 
Terminal Antenna Gain GR 41.7 dBW 
Terminal noise Temperature T 207 K 
Receive C/N 20.2 dB 
External (C/I)EXT                      (Inter-satellite) 30.0 dB 

 

The standard metaheuristic techniques described in Chapter 3 are compared with 
regard to their performance in maximizing the system capacity for a specific traffic 
demand. In this course, an appropriate objective function, out of the equations 2.1 up 
to 2.4, needs to be selected to quantify the satisfaction of the traffic demand. Thus, the 
best performing technique as well as the best performing objective function need to be 
identified.  

In this course, the first objective function proposed, namely the differential system 
capacity given by (2.1), will be employed for the performance study of the various 
metaheuristics and based on the results of this study the best performing metaheuristic 
technique will then be adopted for the identification of the best objective function out 
of the Eq. 2.1-2.4. 

The performance study of the various metaheuristics will then be repeated, employing 
the best objective function for a different traffic demand scenario, to ensure that the 
performance ranking of the various metaheuristics is independent of the problem 
instance and apply to different search spaces, namely different traffic demands. 

Hence, the optimization problem for the initial performance study is the following: 

                                             minimize f(x)  

                                                 f(x)  = � abs�Rb,req − Rb,off� 
37

b=1
,                                  (4.2)  

subject to:                                ∑ 𝑃𝑏37
𝑏=1 ≤ 2350W                                                                    (4.3) 

                                                      Pb ≤ 100W,    b = 1, 2, …, 37                                     (4.4) 



62 
 

where Rb,req denotes the bit rate requested by the user in beam b and Rb,off denotes the 
bit rate offered by beam b. The optimization variable of the problem is the vector x = 
(P1, …, P37) where each element denotes the transmit power of the respective beam. 
The requested bit rate Rb,req is shown in Fig.4.2, along with the bitrate provided by the 
uniform power allocation Rb,unif. In uniform power allocation the total available 
system power PTOT is equally distributed among the beams (i.e. Pb = 2350W/37 =
 63.5W). Uniform power allocation is done by non-flexible satellite systems that 
transmit the same EIRP over each beam. Therefore, the performance of the uniform 
power allocation option is used for performance comparison between the proposed 
optimized power allocation scheme and that of typical non-flexible satellite power 
allocation. 

To drive the optimization towards improving the performance of non-flexible satellite 
systems, the uniform power allocation is input as an initial solution to the 
optimization problem, i.e. as a member of the initial population of solutions for all the 
population-based techniques explored in this Chapter. Moreover, all results reported 
in this chapter are obtained by averaging over 15 independent runs whereas statistical 
confidence in the comparisons is assured performing the Wilcoxon test with standard 
confidence level 0.95, as suggested by the statistical metaheuristics analysis of 
Chapter 3. 

 

Fig. 4.2 Bitrate requested by users in a beam (Rb,req) under scenario 1 vs the 
bitrate provided by non-flexible satellite systems (Rb,unif) 
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To conduct the performance assessment of the compared metaheuristics the quality of 
their solutions is compared with regard to their associated computational effort. Thus, 
in order to compare results their associated computational cost, expressed by the times 
the objective function is evaluated, must be the same. In this course, all techniques 
explored herein perform the same number of objective function (fitness) evaluations 
and this number is determined by the tuning process. 

Following the theoretical approach presented in Chapter 3, the technique expected to 
yield the best performance is the GA. Therefore, GA is the first technique to be tuned 
and the results of the tuning process will determine, among other GA parameters, the 
number of fitness evaluations. Since all optimization techniques must perform the 
same number of fitness evaluations for their comparison to be fair, the number 
determined by the GA tuning will also be adopted for the rest of the techniques. Thus, 
the GA tuning will influence all optimization techniques of this study and therefore 
the GA tuning process will be thorough.    

 

4.2 GA Tuning 

Tuning a GA aims at determining the parameters of the GA as well as the GA 
functions described in Chapter 3. The GA parameters are the following: 

• Population Size 
• Number of Generations (Iterations) 
• Crossover Rate 
• Mutation Rate 
• Elite Individuals 

The GA functions are the following: 

• Selection function 
• Crossover function 

At the beginning of the tuning process an empirical understanding of the GA 
parameters provides the initial values. In fact, the significance of the crossover 
operator suggests that, to enhance the population evolution, a significant portion of 
the population should be subjected to crossover, i.e. a high crossover rate close to unit 
must be employed (~0.9). Moreover, an empirical rule concerning mutation sets as 
initial mutation rate the inverse of the number of the problem decision variables, in 
this case 1/37 = 0.027.  

Having determined the initial values of the crossover and mutation rates, the 
interdependent parameters of population size, number of generations and elite 
individuals must be determined via a trial and error approach, i.e. by the convergence 
plot of different population sizes. The population size providing the best convergence 
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is selected and the number of generations is set equal to the ratio of the number of 
fitness evaluations required for the convergence of the algorithm over the population 
size. The elite individuals are subsequently determined as a small percentage of the 
population size. 

The trial and error approach described above will be made clear through the GA 
tuning of the problem under consideration. After setting the crossover rate equal to 0.9 
and the mutation rate equal to 0.027, the population size, number of generations and 
elite individuals has to be determined. The selection of the appropriate GA functions 
will ensue, but until then the uniform (scattered) crossover function and the 
tournament selection function are employed. For the specific entries the convergence 
of the GA under different population sizes is compared. GAs with population sizes 
100-200-400-800-1600-3200-6400-12800 are executed until reaching the algorithm 
convergence.  

 
Fig. 4.3 Population size comparison. 

 

Table 4.1 Convergence test with regard to the Population size 
Population Size Average Fitness Value (DSC in Gbps) 

1600 3.5826 
3200 3.5309 
6400 3.5223 
12800 3.6259 
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The convergence plot of GAs using 1600-3200-6400-12800 individuals is shown in 
Fig.4.3. The y-axis of the plot corresponds to the average fitness value (evaluated 
based on (4.1)), of the best performing individual of the population and the x-axis 
corresponds to the number of fitness evaluations performed. The increase in the 
population size results in a steady performance improvement and the four higher - and 
best performing - population sizes are depicted in Fig.4.3. The values of the final 
convergence of these four population sizes are shown in Table 4.1. 

The population size of 6400 individuals provides the best average fitness value after 
243200 fitness evaluations, namely 243200/6400 = 38 Generations. The convergence 
plot of the GA of 12800 individuals suggests that a further decrease of the average 
fitness value would be possible for an additional number of fitness evaluations. 
However, this improvement would have been obtained at an extremely high 
computational cost, given the population size of 12800 individuals. Hence, the 
population size selected is 6400 individuals and the required number of generations is 
38. The elite individuals used are usually less than ten; however, given the very high 
population size required to achieve convergence to a better solution a number of 30 
elite individuals is assumed. 

Following the selection of the GA parameters, the GA functions providing the best 
convergence must be selected. In this course, the performance of the crossover 
functions, namely single-point, two-point and uniform (scattered) crossover functions, 
are compared, at the same time using the tournament selection function and a 
population size of 6400 and 30 elite individuals. To isolate the impact of the crossover 
functions considered on the convergence of the algorithm and make the relevant 
comparison, the mutation operator is neutralized by setting the mutation rate 0; thus, 
the whole population is subjected to crossover, i.e. crossover rate is equal to 1. The 
results of this comparison are shown in Fig.4.4 and the numerical results in Table 4.2. 

The crossover function providing the smaller average fitness value is the scattered 
crossover. The results of this comparison demonstrate also the importance of the 
mutation operator for the convergence of the algorithm. In particular, the GA 
employing the scattered crossover function of Fig.4.4 stagnates after 60000 fitness 
evaluations providing an average fitness value of 4.9383 Gbps, due to the 
neutralization of the mutation operator. On the contrary, the GA of 6400 individuals 
of Fig.4.4, also employing the scattered crossover function, evolves for 234200 fitness 
evaluations providing an average fitness value of 3.5223 Gbps. Thus, the performance 
of the algorithm, employing the exact same GA parameters and functions, decreased 
by 40% in the absence of mutation! 

Finally, the selection function that will be employed in the simulations is the 
tournament selection function. That is since the very high population size selected 
necessitates the employment of the computationally efficient selection method, 
amenable to parallel implementation [4.2]. 
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Fig. 4.4 Crossover Function Comparison 

Table 4.2 Crossover Function Numerical Results 
Crossover Function Average Fitness Value (DSC in Gbps) 

Single-Point 5.124 
Two-Point 5.043 
Scattered 4.9383 

 

Concluding, the parameters and functions selected after the tuning process are given 
in Table 4.3. 

Table 4.3 GA parameters and functions 
Parameter / Function 

 
Value / Selection 

Crossover rate 0.9 
Mutation Rate 0.027 
Fitness evaluations 243200 
Population Size 6400 
Generations 38 
Elite individuals 30 
Crossover function Uniform 
Selection function Tournament 
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The above entities provide an early approach to the GA tuning. In this approach the 
crossover rate, mutation rate and number of elite individuals were determined 
according to empirical understandings but each of these parameters was determined 
individually without reference to the rest of the parameters. However, the royal road 
experiments [4.2] have demonstrated that it is not the choice between crossover or 
mutation - through the selection of the crossover rate and mutation rate - that is 
important but the balance among these operators and their complementary evolution 
of the population. Thus, the most promising prospect is the use of a GA adapting its 
own mutation and crossover rates during a search.  

In this course, it was noted that a GA could be used to optimize the parameters of 
another GA![4.2] Following this approach a meta-level GA will be used to optimize 
the parameters of the GA, providing the final GA tuning. This meta-level GA evolved 
a population of 24 GA parameter sets for 30 generations, employing the uniform 
crossover function and the tournament selection function. Each individual encoded 
four of the GA parameters: Crossover Rate, Mutation Rate, Population Size, Elite 
individuals and following the results of the early GA tuning each individual was 
evolved for 250000 fitness evaluations to evaluate its fitness. The range of the 
parameter values used in the meta-GA is: Crossover Rate [0:1], Mutation Rate 
[0:0.15], Population Size [64:8192] and Elite individuals [0:0.1]*Population Size. 

The parameters and functions selected after the final tuning are given in Table 4.4. 

Table 4.4 GA parameters and functions 
Parameter / Function 

 
Value / Selection 

Crossover rate 0.95 
Mutation Rate 0.05 
Fitness evaluations 234240 
Population Size 5856 
Generations 40 
Elite individuals 30 
Crossover function Uniform 
Selection function Tournament 
 

And the performance of the GA using these parameters is shown in the performance 
comparison of the different techniques. 

At this point should be noted that the computational cost of the meta-level GA was 
extremely high since 24(GAs/Generation)*30(Generations)*250.000(Fitness 
evaluations/GA) = 180.000.000 fitness evaluations had to be performed. This did not 
allow for the averaging of the used GAs over at least 10 independent runs and as a 
result the relation between the optimization variables (i.e. the GA parameter sets) and 
their fitness value (DSC) is not deterministic. Notwithstanding this drawback the 
results provided by the meta-level GA provided a significant improvement of the GA 
performance. 
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4.3 SA Tuning 

The tuning of the SA aims at determining the following parameters and functions of 
SA (see Chapter 3). 

• Initial Temperature 
• Re-annealing Interval 
• Annealing Function 
• Temperature Update Function 

For a fair comparison of different techniques, the same number of fitness evaluations 
must be performed. Hence, the necessary fitness evaluations are 5856*40 = 234240. 
Having decided the number of fitness evaluations, the SA functions are selected. In 
this course, the Initial Temperature (IT) is arbitrarily set equal to 100 and the Re-
annealing Interval (RI) equal to 100. The annealing function selected is fast annealing. 
Keeping the specific set of SA parameters the exponential and logarithmic 
temperature update functions are compared. The relevant comparison shown in 
Fig.4.5 and in Table 4.5 indicate that the exponential temperature update must be 
selected for the SA algorithm. 

 
Fig. 4.5 Temperature Update Function Comparison 

 
Table 4.5 Temperature Update Function Comparison 

Temperature Update Function Average Fitness Value (DSC in Gbps) 
Exponential Temperature Update 4.0790 
Logarithmic Temperature Update 4.9973 
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Following the comparison of the temperature update functions, the performance of 
fast and Boltzmann annealing is compared employing the exponential temperature 
update and for IT = 100, RI =100. The results of this comparison are shown in Fig.4.6 
and Table 4.6. 

 

Fig. 4.6 Annealing Function Comparison 

Table 4.6 Comparison between Fast and Boltzmann annealing 
Annealing Function Average Fitness Value (DSC in Gbps) 

Fast Annealing 3.821 
Boltzmann Annealing 3.817 

  

From the convergence plot and the numerical results it is evident that Boltzmann 
annealing outperforms fast annealing with regard to the speed of convergence and to 
the average fitness value. 

Next the Initial Temperature and Re-annealing Interval are determined having 
selected the exponential temperature update and the Boltzmann annealing function. 
For RI = 100 the average fitness under four IT values was determined. The results of 
this process are shown in Table 4.7. 

Table 4.7 Selecting the Initial Temperature value 
Initial Temperature Average Fitness Value (DSC in Gbps) 

50 3.753 
100 3.948 
200 3.707 
400 3.665 
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The best performing IT value is 400. Setting IT = 400 the average fitness under five 
RI values is determined. The relevant results been shown in Table 4.8 wherefrom it is 
verified that the best performing re-annealing interval is equal to 100. Concluding, the 
parameters and functions selected after the SA tuning are tabulated in table 4.9. 

Table 4.8 Selecting the Re-annealing Interval value 
Re-annealing Interval Average Fitness Value (DSC in Gbps) 

100 3.665 
500 4.061 

1000 4.312 
5000 4.627 
10000 5.200 

 

Table 4.9 SA parameters and functions 
Parameter / Function 

 
Value / Selection 

Initial Temperature 400 
Re-annealing Interval 100 
Temperature Update Function Exponential Update 
Annealing Function Boltzmann Annealing 
 

The above parameters are used in all SA simulations that follow. However, in the 
performance comparison of the standalone techniques, the re-annealing option is not 
used since it does not belong to the standard SA algorithms. 

4.4 DE Tuning 

The DE parameters that need to be defined according to the DE theory presented in 
Chapter 3, are the following: 

• Crossover Rate (CR) 
• Scaling Factor (F) 
• Population Size 

The tuning of a DE algorithm however is very easy and is performed according to the 
guidelines available in the literature for the design of DE algorithms. The population 
size is set at 10 times the number of decision variables of the problem, namely 10*37 
= 370 for the problem in hand. The scaling factor is initialized at F = 0.8 and the 
crossover constant at CR = 0.9. To refine the results yielded by these values, the 
population size can be changed and the scaling factor F can be slightly adjusted 
around 0.8. The parameter adjusted is the scaling factor F and not the crossover CR 
since DE is much more sensitive to F rather than to CR [4.3]. Following this rational, 
the performance of DE is examined for several parameter combinations. The relevant 
results been tabulated in Table 4.10 wherefrom it is deduced that the parameter set 
yielding the best performance is that of Table 4.11.  
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Table 4.10 DE Parameters Comparison 
Parameter Set Average Fitness Value (DSC in Gbps) 

CR=0.9, F=0.8, Population Size=370  3.601 
CR=0.9, F=0.8, Population Size=150 3.601 
CR=0.9, F=0.8, Population Size=100 3.616 
CR=0.9, F=0.8, Population Size=40 3.589 
CR=0.9, F=0.9, Population Size=40 3.604 

 

Table 4.11 DE parameters 
Parameter 

 
Value 

Crossover 0.9 
Scaling Factor 0.8 
Population Size 40 
Iterations 5856 
 

The above parameters are used for all the DE simulations performed that follow. The 
foregoing numerical results, however, demonstrate that, as long as the general 
guidelines of DE tuning concerning CR and F are followed the performance of the 
algorithm does not vary significantly; changes in the population size or adjustments of 
the scaling factor provide only a refinement of the results. 

 

4.5 PSO Tuning 

According to the theory of Chapter 3 for a fixed number of fitness evaluations the 
PSO tuning includes the setting of the following parameters: 

• Cognitive Factor C1 
• Social Factor C2 
• Population Size 
• Inertia w 

To select an appropriate population size the following arbitrary values are assigned to 
the other parameters: C1=0.25, C2=0.85 and w=1. The performance comparison of 
various population sizes for the arbitrarily selected parameters is tabulated in Table 
4.12. 

Table 4.12 PSO Population Size Comparison 
Population Size Average Fitness Value (DSC in Gbps) 

11712 4.709 
5856 4.620 
370 4.410 
40 5.058 
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Thus, the best performing population size is 370. Next the inertia w is defined as a 
linear function of the iteration number (k) so that the inertia is reduced as the 
optimization evolves driving the algorithm from performing a wide exploratory search 
to been confined to a local search for the last generations allowing the convergence of 
the algorithm. Thus, the inertia function is formulated as [4.4]:   

                                          w = (kmax−k)∗(wstart− wend)
kmax

+ wend                                (4.5) 

where kmax is the total number of iterations of the algorithm, k is the number of the 
current iteration, wstart the inertia at the beginning of the algorithm and wend the inertia 
at the end of the algorithm. According to [4.4] wstart=0.9 and wend=0.4. 

According to performance studies found in literature the cognitive and social factors 
are both set equal to 2. Concluding, the parameters selected after the PSO tuning and 
applied to all PSO simulations that follow are tabulated in Table 4.13. 

Table 4.13 PSO parameters 
Parameter / Function Value / Selection 

Cognitive Factor 2 
Social Factor 2 
Population Size 370 
Inertia 

w =
(633− k) ∗ (0.5)

633 + 0.4 

4.6 Metaheuristics Performance Study 

After the tuning of the algorithms, the selected parameters tabulated in Tables 4.4, 
4.9, 4.11, 4.13 are adopted for the performance comparison of the standard techniques 
and are summarized in Table 4.14.  

Table 4.14 Optimization Parameters 
GA Crossover 

Rate: 0.95 
Elite 

Individuals: 30 
Population 
Size: 5856 

Generations:40 

Fitness 
Evaluations: 

234240 
Mutation 
Rate:0.05 

Uniform 
Crossover 
Function 

Tournament 
Selection 
Function 

SA Initial 
Temperature: 

400 

Exponential 
Temperature 

Update 

Boltzmann 
Annealing 

Fitness 
Evaluations: 

234240 
DE Crossover: 0.9  Scaling Factor: 

0.8 
Population 

Size: 40 
Generations: 

5856 

Fitness 
Evaluations: 

234240 

PSO Cognitive 
Factor C1: 2 

Social Factor 
C2: 2 

Population 
Size: 370 

Generations: 
633 

Fitness 
Evaluations: 

234240 
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The convergence plot of the standard techniques for the traffic demand scenario of 
Fig.4.2 is shown in Fig.4.7 and the numerical results concerning the performance of 
the metaheuristic solutions are shown in Table 4.15. The performance of the solutions 
is evaluated by the DSC and Table 4.15 tabulates the average fitness value of the 
results obtained by the 15 independent runs of each metaheuristic. Apart from their 
average fitness value the standard deviation of their fitness value is also tabulated 
since the deviation tendencies of the metaheuristic results must be considered. In 
particular, techniques providing consistency in their results are favored over 
techniques exhibiting high deviation tendencies and unforeseen behavior. Finally the 
overall best DSC over the 15 independent runs is also provided, whereas for the 
uniform power allocation no statistical analysis is required and the fitness value 
(DSC) of the uniform power allocation is tabulated. 

 

Fig. 4.7 Convergence plot of metaheuristic standard techniques (scenario 1) 

Table.4.15- Numerical Results (DSC in Gbps) 
Algorithm Fitness Value 

(Average of 15 runs) 
Standard Deviation 

(of 15 runs) 
Overall Best 

(over 15 runs) 
Simulated 
Annealing 

5.5634 0.35583 4.8916 

Particle Swarm 4.2843 0.36050 3.8605 
Differential 
Evolution 

3.5854 0.03320 3.5480 

Genetic Algorithm 3.4773 0.01679 3.4530 
Uniform Power 

Allocation 
Fitness Value 

 
6.5388e+009 
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According to the above results, the adoption of a GA provides an improvement of 
46.8% in the cost function over the uniform allocation case. The improvement 
provided by the GA over the uniform power allocation is evident in Fig.4.8, where the 
beam capacity offered by a system transmitting the power suggested by the GA 
optimization (RGA) is compared to the beam capacity offered by a non-flexible system 
(Rb,unif) and to the demanded capacity (Rb,req). 

 

Fig. 4.8 Traffic Demand Satisfaction 
of GA-optimized and Uniform power allocation 

 
The convergence plot of Fig.4.7 demonstrates the convergence speed of the various 
metaheuristics. DE, which is one of the most successful techniques for continuous 
optimization problems, provided the best speed of convergence and a final result close 
to the GA-provided result. DE is therefore the best option among the ones compared 
for systems where a good solution (i.e. a power allocation satisfying the traffic 
demand) must be reached in minimum time. 

The best result, however, is acquired applying the GA. GA is the slowest converging 
technique but returns the best results with a smaller standard deviation, thus a higher 
consistency over the independent runs, than DE. Among the standard techniques 
found in the literature and implemented in the framework of this thesis, GA and DE 
exhibit the best behavior, indicating a trade-off between convergence speed and 
quality of solution. 

Another interesting conclusion is that the simulation results are consistent with the 
intuitive suggestions of Chapter 3. In particular, the trajectory-based technique 
(Simulated Annealing) is outperformed by the population-based ones, whereas the 
Evolutionary Algorithms outperform the Particle Swarm Optimization and the 
Genetic Algorithms outperform the Differential Evolution.  
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However, to ensure that the performance ranking of the various metaheuristics and the 
substantial benefits acquired from the use of GA are independent of the problem 
instance and they also apply to different search spaces, namely different traffic 
demands, the performance study is also carried out for a different traffic demand. The 
traffic demand of this scenario is depicted in Fig.4.9.   

 

Fig. 4.9 Traffic Demand (scenario 2) 

In this course and since a first verification on the suitability of GA for the solution to 
the problem in hand is provided by the simulations of scenario 1, before the 
performance study of the metaheuristics following scenario 2, a GA is adopted for the 
performance assessment of the cost functions presented in Chapter 2 (i.e. Equations 
2.1-2.4). The results of this assessment are tabulated in Table 4.16 where the available 
cost functions (Differential System Capacity (DSC), Unmet System Capacity (USC), 
Satisfaction Factor (SF) and Aggregate Fitness (AF)) are compared against the 
unsatisfied capacity under the new traffic demand of scenario 2 (Cumulative Unmet 
Column). 

The numerical results presented in Table 4.16 demonstrate the suitability of the USC 
as cost function, since USC minimizes the unsatisfied capacity. This result is not 
surprising since USC focuses on the minimization of the unmet capacity and beam 
capacities exceeding the required do not contribute to the figure of merit of USC. 
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Table 4.16 Cost Function Performance Assessment 
Cost 

Function 
Capacity [Gbps] 

(Average of 15 runs) 
Cumulative Required Cumulative Offered Cumulative Unmet 

DSC 24.155 23.588 0.801 
USC 24.155 25.605 0.746 
SF 24.155 23.946 0.748 
AF 24.155 23.547 0.842 
 (Overall Best over 15 runs) 

DSC 24.155 23.593 0.778 
USC 24.155 24.879 0.709 
SF 24.155 24.879 0.709 
AF 24.155 23.588 0.802 

 
Hence, hereafter USC is adopted as the best performing cost function and the 
performance study of the metaheuristics on the new scenario will aim at minimizing 
the USC 

                                              minimize f(x)                                              

                                                 f(x)  = � max�Rb,req − Rb,off , 0� 
37

b=1
                              (4.6) 

for the traffic demand scenario depicted in Fig.4.8. The convergence plot of the new 
instance is presented in Fig.4.10 and the respective numerical results are tabulated in 
Table 4.12. 

 

Fig. 4.10 Convergence plot of metaheuristic standard techniques (scenario 2) 
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Table.4.12- Numerical Results (USC in Gbps) 
Algorithm Fitness Value 

(Average of 15 runs) 
Standard Deviation 

(of 15 runs) 
Overall Best 

(over 15 runs) 
Simulated 
Annealing 

1.3484 0.16253 1.2171 

Particle Swarm 0.89785 0.04360 0.80874 
Differential 
Evolution 

0.79582 0.04188 0.72260 

Genetic Algorithm 0.74579 0.01972 0.70850 
Uniform Power 

Allocation 
Fitness Value 

1.6368 
 

As in the scenario 1, GA provides a significant improvement over the uniform 
allocation in the course of cost function minimization (minimizing USC for scenario 
2). Moreover, the behavior of the convergence plot remains the same, with the DE 
providing the best speed of convergence and the GA the best results. Therefore, it is 
evident that the performance ranking of the metaheuristic techniques is independent of 
the traffic demand and that the GA is the best performing technique providing a 
substantial improvement over the performance of non-flexible systems. In particular, 
the improvement provided by GA over the uniform power allocation for the second 
scenario is 56.7%.  

The improvement provided by the GA over the uniform power allocation under 
scenario 2 is observable in Fig.4.11, where the beam capacity offered by a system 
transmitting the power suggested by the GA optimization (RGA) is compared to the 
beam capacity offered by a non-flexible system (Rb,unif) and to the demanded capacity 
(Rb,req). 

 
Fig. 4.11 Traffic Demand Satisfaction 

of GA-optimized and Uniform power allocation (scenario 2) 
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As the system performance is improved by 46.8% under the first scenario and by 
56.7% under the second scenario compared to the performance of the non-flexible 
system, the previous results demonstrate how satellite multibeam broadcasting can 
benefit from dynamic power allocation schemes, in general, and from the use of the 
proposed techniques, in particular. Moreover, the systematic study of the various 
metaheuristic techniques provides a comparative overview of their performance in the 
framework of optimizing the power allocation per se and of their performance when 
various parameters of the problem, such as the quality of the solution, the consistency 
of the results and the speed of convergence are taken into account. A multibeam 
satellite system employing DE techniques, for instance, can deal with rapidly 
changing traffic requirements, a situation where fast convergence is imperative. On 
the other hand, if the quality of the results is of interest, GA approaches must be 
followed. Furthermore, GA approaches provide the smaller standard deviation, 
ensuring the consistency of the obtained results over independent runs, in spite the 
stochastic performance of metaheuristics. 
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Chapter 5 
Hybrid Genetic Algorithm Approach 
 

5.1 Hybridization 

The simulation results of the previous chapter demonstrate the superiority of the 
population-based techniques compared over the trajectory based Simulated 
Annealing. These results are consistent with the intuitive approach of Chapter 3. 
According to this approach the large size and multimodality of the problem search 
space imply the use of an explorative technique to solve the problem. However, 
following this intuitive approach, once the sufficient exploration of the search space is 
done the exploitation of the solutions provided may enhance them even further.  

This proposition relies on the complementary nature of the exploration and 
exploitation search strategies. In particular, an explorative technique performs a 
diverse search over the search space in order to discover regions that are promising 
with regard to encompassing satisfactory solutions. Complementarily to this search an 
exploitative technique can perform an intensive search within these promising 
regions, finding locally optimal solutions of higher quality than the ones provided by 
the initial exploration. It is, therefore, evident that a technique exploiting the benefits 
of both search strategies might yield a significant improvement in the results obtained.  

To formulate such a technique the exploitative nature of trajectory based and the 
explorative nature of population based techniques may be utilized. The utilization of 
different techniques in order to combine their key-components and advantages is 
known as hybridization and can be advantageous in several cases. The hybridization 
of metaheuristics, in particular, has manifold possibilities; a large number of 
publications document the benefits and successes of such hybrids [5.1]. The 
documented success of metaheuristic hybridization has also motivated the 
hybridization of a population-based technique and a trajectory based technique 
following to the previously mentioned intuition. 

In this course the Genetic Algorithm (the best performing out of the population based 
techniques tested) and the Simulated Annealing can be used complementary to 
outperform the best performing techniques of the previous chapter and improve 
system performance even further. This technique is new to the literature and was 
presented in the 2nd ESA Workshop on Advanced Flexible Telecom Payloads, 17-19 
April 2012, Noordwijk, The Netherlands (Appendix 1). Moreover, the proposed 
technique was employed for the “Operational Optimization of a Ku Multibeam 
Flexible Payload” by Astrium Satellites, European Space and Technology Centre 
(ESTEC) of the European Space Agency (ESA), SES-ASTRA and University of 
Luxembourg (Appendix 3). 
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5.2 Hybrid GA-SA Approach 

The GA-SA model developed relies on the sequential application of the GA and the 
SA techniques. Specifically: 

1. GA is applied for a number of generations.  
2. The best solution provided by the GA, along with a number of random 

individuals are extracted from the last population. 
3. These individuals are used to initiate a number of SA optimizations. 
4. SA executions are performed for a predefined number of predefined iterations, 

enhancing the GA solution. 
5. These solutions enhanced by the application of SA are input back to the last 

GA population replacing the extracted individuals. 
6. GA resumes the evolution of the enhanced GA population for a number of 

generations. 
7. The algorithm goes back to step 2. 

This process iterates for a number of fitness evaluations. 

At this point it should also be noted that the SA adopted by the hybrid model is not 
the standard SA but the re-annealing SA, as described in Chapter 3. This allows for 
the efficient exploitation of the GA solutions and the effective intensification of the 
search. 

5.3 GA-SA Performance Study 

To demonstrate the potential benefits of the GA-SA hybrid approach with regard to 
throughput maximization, this technique is compared to the two best performing 
techniques of the previous chapter, specifically the GA and the DE. The parameters of 
the above three techniques, following the tuning of the algorithms performed in 
Chapter 4, are presented in Table 5.1. 

The comparison of the techniques should be done with regard to the minimization of 
the best performing fitness function, namely the USC (see (4.6)). However, since the 
performance of the standard metaheuristics examined in Chapter 4 was assesd based 
on the minimization of DSC (see (4.2)) for the first traffic demand scenario and on the 
minimization of USC for the second scenario, the same approach will be adopted in 
this chapter to enable comparison with the corresponding results of the previous 
chapter.  

The convergence plots of the GA, DE and the hybrid GA-SA techniques under the 
first traffic demand scenario of Fig.4.2 is plotted in Fig.5.1 and the corresponding 
numerical results are tabulated in Table 5.2. The results reported in the present chapter 
were acquired by averaging over 15 independent runs. Also statistical confidence for 
the comparisons is verified by performing the Wilcoxon test with standard confidence 
level 0.95, as suggested by the statistical analysis of metaheuristics of Chapter 3. 
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Table 5.1 Optimization Parameters 

 
 

GA 

Crossover 
Rate: 0.95 

Number of 
Elite 

Individuals: 30 

Population 
Size: 5856 

Generations:40 

Number of 
Fitness 

Evaluations: 
234240 Mutation 

Rate:0.05 
Uniform 

Crossover 
Function 

Tournament 
Selection 
Function 

 
DE 

Crossover: 0.9  Scaling Factor: 
0.8 

Population 
Size: 40 

Generations: 
5856 

Number of 
Fitness 

Evaluations: 
234240 

GA-SA Optimization Parameters 
 

 
 
 

GA 

Crossover 
Rate: 0.95 

Population 
Size: 5856 

Number of 
Evaluations 
before SA: 

35136 
 

Generations 
before SA: 6 

Number of 
exchanged 

individuals: 4 
1best-3random 

 
 

GA-SA  
Loops: 5 

 
Number of 

Fitness 
Evaluations: 

234240 

Mutation 
Rate:0.05 

Number Elite 
Individuals: 30 

Uniform 
Crossover 
Function 

Tournament 
Selection 
Function 

 
 

Re- Annealing 
SA 

Initial 
Temperature: 

400 

Re-Annealing 
Interval: 

100 

 
Number of 
Evaluations 
before GA: 

11712 
Exponential 
Temperature 

Update 

Boltzmann 
Annealing 

 

 

Fig. 5.1 Performance comparison of GA, DE and GA-SA under scenario 1 
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Table 5.2 Numerical Results (DSC in Gbps) 
Algorithm Fitness Value 

(Average of 15 runs) 
Standard Deviation 

(of 15 runs) 
Overall Best 

(over 15 runs) 
Differential 
Evolution 

3.5854 0.03320 3.5480 

Genetic Algorithm 3.4773 0.01678 3.4530 
GA-SA 3.4473 0.01007 3.4444 

 

The convergence plots of the GA, DE and the hybrid GA-SA techniques under the 
second traffic demand scenario of Fig.4.8 are plotted in Fig.5.2 and the respective 
numerical results are tabulated in Table 5.3. 

 

Fig. 5.2 Performance comparison of GA, DE and GA-SA under scenario 2 
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Algorithm Fitness Value 

(Average of 15 runs) 
Standard Deviation 

(of 15 runs) 
Overall Best 

(over 15 runs) 
Differential 
Evolution 

0.79582 0.04188 0.72260 

Genetic Algorithm 0.74579 0.01972 0.70850 
GA-SA 0.73612 0.01937 0.70850 
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The results presented verify the intuitive approach regarding the benefits obtained 
from the hybridization of explorative and exploitative techniques since the proposed 
hybrid approach outperforms both GA and DE for both traffic demand scenaria. 
Specifically, the results provided by the GA-SA improve the GA results by 0.9% in 
the case of the first scenario and by 1.3% in the case of the second scenario. 
Moreover, the GA-SA results have a smaller standard deviation ensuring the 
consistency of the results and the increased reliability of the algorithm with regard to 
the deviation tendencies over independent runs. Thus, the proposed hybrid GA-SA 
technique outperforms the GA in every aspect and provides the best results for the 
problem in hand. 

The performance of the system employing the proposed hybrid technique, in the case 
of the first traffic scenario was improved by 47.3% compared to the performance of 
the non-flexible system. This improvement is apparent in Fig.5.3, showing the 
performance in terms of satisfaction of the traffic demand of the GASA-optimized 
and the non-flexible system. Furthermore, the improvement accomplished by the 
hybrid approach demonstrates the benefits from the hybridization of explorative and 
exploitative techniques in general, setting an example for future work in the field. 

 

Fig. 5.3 Traffic Demand Satisfaction 
of GASA-optimized and Uniform power allocation (scenario 1) 
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Chapter 6 
Multi-objective Optimization Approach 
 

6.1 Multi-objective Optimization 

A multi-objective optimization problem is formulated in the form: 

                                                     minimize F(x)                                                    (6.1) 
                                                     F(x) = (f1(x), f2(x), …., fk(x))                            (6.2) 
                                                     subject to gi(x) ≤ bi , i = 1, …. , m.                    (6.3) 

where k (k ≥ 2) is the number of objectives, x = (x1, …, xn) is the vector representing 
the optimization variables of the problem, F(x) = (f1(x), f2(x), …., fk(x)) is the vector 
of objectives to be optimized, gi(x) are the constraint functions and bi , i = 1, …. , m, 
are the limits or bounds related to the constraints [6.1]. 

The development of the multi-objective optimization was triggered by the fact that 
practical optimization problems are rarely single-objective. In general, a number of 
conflicting objectives are involved. For instance, during the design of a new product, 
the manufacturer must maximize its quality, minimize its cost and minimize the 
environmental impact of the product. Thus, a number of conflicting objectives must 
be taken into account and the manufacturer has to make an acceptable compromise 
between conflicting objectives of a multi-objective optimization problem (MOP) 
[6.1].  

It is, therefore, evident that, in contrast to to the single objective optimization, the 
optimal solution of a MOP is not a single solution optimizing a single objective but a 
set of solutions representing the possible compromises between conflicting objectives. 
From this set of solutions the decision maker can select the most satisfactory solution 
according to his preferences and the priorities set for the various objective. This set of 
solutions is defined as Pareto optimal solutions and comprises all solutions that 
cannot be improved as to one objective without deteriorating at least another 
objective. These solutions are called non-dominated solutions of the problem. 

The concept of dominance is essential in MOPs in the course to define the order 
relation between the solutions. A solution dominates another if it is strictly better in 
one objective and better or equal with regard to the rest of the objectives. Graphically 
a solution dominates another if it is located in the box defined by the projections of 
F(x) on the axes. This is made clear in Fig.6.1 where the solution 1 is located within 
the box defined by the projections of 2 on the axes; therefore, solution 2 is dominated 
by solution 1. Thus, the target of multi-objective optimization is to provide a set of all 
the best performing solutions, i.e. the non-dominated solutions, to the decision maker. 
This set of solutions is known as Pareto optimal set and the image of this set in the 
objective space is denoted as the Pareto front.    
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Fig. 6.1. The concept of dominance: solution 2 is dominated by solution 1 

In the analysis presented in the previous chapters resource allocation of multi-beam 
systems was focused on the dynamic allocation of the system power with as the traffic 
distribution changes. In this course the proposed optimization methods yield 
substantial capacity gains and significant system performance enhancement. 
However, such allocations tend to utilize the maximum DC power available whereas 
its minimization is also desirable due to the scarcity of the satellite resources. Thus, 
the efficient power allocation in a multi-beam system should be considered as a MOP 
aiming at maximizing the available system throughput at the same time minimizing 
the system power consumption. 

6.2 Power utilization in multi-beam systems 

Efficient power utilization and minimization of DC power consumption in flexible 
multi-beam systems has not been sufficiently explored in the literature. An early 
approach in the direction of simultaneously modifying the DC/RF power consumption 
and the available system throughput is proposed in [6.2] where a number of cost 
functions are proposed to quantify the response to the traffic demand. To take the 
power consumption into account, these cost functions incorporate a DC consumption 
parameter and at the same time maximize the available throughput of the system in 
response to the traffic demand. Thus, applying this technique the different objective 
functions related to the satisfaction of the traffic demand and the efficient utilization 
of the DC power are combined into a single-objective function in a linear way, 
transforming the MOP into a single-objective problem. This approach is known as 
scalar approach and the MOP is transformed into the following single-objective 
optimization problem:    

                                                   minimize F(x)                                                      (6.4) 
                                                   F(x)  =  ∑ λj fj(x)k

j=1                                             (6.5) 
                                                 subject to gi(x) ≤ bi , i = 1, …. , m.                      (6.6) 
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where k (k ≥ 2) is the number of objectives and λj , j = 1, …, k (λj ≥ 0) are the weights 
for the linear representation of the various objective functions ∑ 𝜆𝑗 = 1𝑘

𝑗=1 .  

The scalar approach, however, requires a priori knowledge of the considered problem 
objective space, in order to select appropriate weights λj, providing the desirable 
solution (e.g. the solution of the Pareto front providing the maximum throughput). 
Elaborating on this, the optimal solution x obtained from the scalar approach is the 
point of tangency of the hyperplane F and the feasible space of the MOP as shown in 
Fig.6.2(a). Thus, to obtain the desirable x on the Pareto border, the latter must be 
known in advance in order to select weights determining a hyperplane F with a 
gradient parallel to the tangent of the Pareto border at x. If, however, the Pareto 
border is not known in advance, i.e. without an a priori knowledge of the problem, the 
appropriate weights providing the desirable solution x cannot be determined. 

 

Fig. 6.2 Scalar approach optimization for convex and concave Pareto front 

In most cases an a priori knowledge of the problem is not available and therefore the 
scalar approach cannot be employed. However, in numerous cases the weights are 
determined based on a common misconception that the weights selected for the 
linearization of the MOP are representative of the relative importance of the different 
objectives [6.2]. In these cases the objective space hyperplane F as determined by 
these weights intersects randomly with the feasible space of the problem providing 
random solutions of the Pareto border, possibly unacceptable by the decision maker. 

An alternative approach to determine the appropriate weights for the linear 
representation of the scalar approach is the use of the weights as optimization 
variables of the problem that will be optimized in parallel along with the problem. 
However, the computational cost of this approach is significant and cannot guarantee 
to provide all Pareto optimal solutions since the latter are limited to the convex hull of 
the Pareto front (i.e. solutions in concave regions of the Pareto front cannot be found 
as shown in Fig. 6.2(b). The solutions that cannot be found are called non-supported 
solutions). 
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Concluding, the transformation of a MOP into a single-objective problem provides 
only one solution of the Pareto optimal solutions. On the other hand dominance based 
approaches provide all non-dominated solutions of the set of Pareto solutions and the 
trade-off curve of different objectives. This useful information regarding the systems 
objective space is suppressed by the scalar approaches and the decision maker is 
deprived of all the alternative solutions. 

To overcome these drawbacks the present work explores the power allocation 
problem as a strictly multi-objective problem (MOP) and not as a linear function of 
the various objectives. Formulating this problem in a dominance based multi-
objective setting is novel. In this course, a state-of-the-art multi-objective genetic 
algorithm (MOGA), the non-dominated sorting genetic algorithm II (NSGA-II) [6.1] , 
to be presented next, is employed. This novel approach was presented in the 30th 
AIAA International Communications Satellite Conference (ICSSC), 24-27 September, 
2012, Ottawa, Canada (Appendix 2). 

6.3 Non-dominated Sorting Genetic Algorithm II (NSGA-II) 

NSGA-II [6.1] is the most popular and referenced dominance based multi-objective 
algorithm in the literature. It is a GA employing all typical genetic operators of GA 
described in Chapter 3 (i.e. selection, crossover, mutation). Its differentiation from 
standard GAs lies on the fitness assignment of the individuals since multiple 
objectives are considered and the non-dominated solutions are provided at the end of 
the optimization. As a GA, NSGA-II belongs to the metaheuristic techniques; also, 
since metaheuristics do not guarantee the optimality of the solution obtained, the goal 
of this technique is to provide an approximation of the Pareto optimal set having two 
necessary properties: convergence to the Pareto optimal solutions and uniform 
diversity, i.e. a good distribution of the solutions obtained around the Pareto optimal 
front. 

 
Fig. 6.3 Dominance depth ranking method 
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In this course, the fitness assignment of all individuals of the population is based on 
their ranking with respect both to convergence and diversity. In particular, the 
individuals of the population are initially ranked with respect to their convergence; all 
non-dominated individuals (solutions) are assigned rank 1.The individuals that are not 
dominated except by individuals of rank 1 receive rank 2. In general, rank k is 
assigned to individuals that are dominated only by solutions of ranks 1, 2, …, k-1. 
This ranking method of NSGA-II is called dominance depth and is depicted in 
Fig.6.3. 

In practice the dominance based ranking is performed by the following iterative 
process. All non-dominated individuals are assigned rank 1 and then they are removed 
from the population in order to assign rank 2 to the current non-dominated 
individuals. This process is repeated until the population is empty. Then individuals of 
the same rank are ranked according to their diversity, namely their distance from 
surrounding individuals. Individuals with higher distances (i.e. good distribution) are 
assigned higher rank than others. In practice the diversity ranking is implemented 
based on the concept of crowding distance. The crowding distance is defined as the 
circumference of the rectangle defined by the left and right neighbor of an individual 
and infinity if there is no neighbor. The concept of crowding distance is illustrated in 
Fig.6.4(b) where the individuals a, b, c and d belonging to rank 1 are ranked according 
to their diversity. The individuals with the higher diversity are a and d with a 
crowding distance equal to infinity, then follows the solution b located in the bigger 
cuboid and then c.  

 

Fig. 6.4 Ranking method in NSGA-II 

Following to the non-dominance ranking and the crowding distance ranking of the 
population the tournament selection is used, to determine the best among two 
individuals based on their non-dominance rank. If the two individuals belong to the 
same rank the best among the two individuals is selected based on their crowding 
distance rank. The selected individuals are then evolved by the typical genetic 
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operators and at the end of the optimization the non-dominated individuals having a 
good distribution form the Pareto front.    

6.4 Simulation Results 

The multi-objective optimization performed hereafter aims at the enhancement of the 
solutions provided in previous chapters in terms of power utilization. In this course, 
the best performing individual, i.e. the result of the GA-SA approach, is used as 
member of the initial population of solutions of the NSGA-II algorithm. Thus, the 
Pareto front provided by the NSGA-II will include a solution providing the best 
performance in terms of throughput maximization whereas this solution will probably 
be enhanced by the NSGA-II even further, with regard to minimizing the consumed 
power. 

Moreover, the best performing cost function, namely the USC, is chosen as the cost 
function. Thus, the optimization problem takes the following form: 

                                                            minimize f1                                                           (6.7) 

                                                            f1  = � max�Rb,req − Rb,off , 0� 
37

b=1
                   (6.8) 

                                                              minimize f2                                                           (6.9) 

                                                          f2  = ∑ Pb37
b=1                         (6.10) 

 
subject to: 

                                                              ∑ 𝑃𝑏37
𝑏=1 ≤ 2350W                                                 (6.11) 

                                                                    Pb ≤ 100W                                                    (6.12) 

where Rb,req denotes the bit rate requested by the users in beam b and Rb,off denotes 
the bit rate offered, by beam b. The best performing result, namely the result of the 
hybrid GA-SA approach is used as the initial seed of the optimization. The fitness 
value of this result with regard to the fitness functions of the MOP f1 (6.8) and f2  
(6.10) is:  

                                                 � max�Rb,req − Rb,off , 0� = 0.7085 Gbps
37

b=1
             (6.13) 

                                           ∑ Pb = 37
b=1  2030.3W                     (6.14) 

 
The results presented involve averaging of 15 independent runs.The parameters of the 
optimization are shown in Table 6.1 
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Table.6.1 NSGA-II Optimization Parameters 
Parameter Value 

Population Initialisation Random 
Population Size 6000 
Crossover Function Uniform 
Crossover Rate 0.9 
Mutation Rate 0.05 
Selection Function Tournament 
Fitness Evaluations 240000 

 
The Pareto front obtained after 15 runs depicted in Fig.6.5 provides complete 
information concerning the trade-off between the offered capacity and the power 
requirements, whereas the result of the GA-SA approach used as initial seed is further 
enhanced as expected. 

 

Fig. 6.5. Pareto front encompassing the enhanced result of the single-objective 
optimization. 

From the Fig.6.5, it is deduced that the Pareto front obtained provides a large number 
of non-dominated solutions as well as a very good diversity, since the Pareto front 
appears continuous. It is also evident that the result of the single-objective, GA-SA 
approach, (based on (6.13)-(6.14)) has been significantly improved with regard to the 
total consumed Power (f2 (6.10)). In particular, the allocation obtained applying the 
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GA-SA approach, namely the one consuming 2030.3W for an USC of 0.7085Gbps, 
drops to a power consumption of 1870W for the same USC. In other words, the multi-
objective approach satisfies the same traffic demand as the best single-objective 
approach, namely the GA-SA, at 7,9% lower power consumption. 

Furthermore, the slope of the left part of the Pareto front is steep enough to allow for 
even more power saving, if the USC is allowed to slightly deteriorate. Fig. 6.6 details 
the upper left part of the Pareto front to demonstrate the trade-off between the 
satisfaction of the traffic demand and the relevant power requirements. In this case, 
the satellite operator can save up to 12% power by decreasing the USC by only 2.7%. 
It is evident that the Pareto front obtained provides complete information as to the 
trade-off between the two objectives, enabling the decision maker, i.e. the satellite 
operator, to adjust the level of satisfaction of the current traffic requirements 
according to the priority of the two objectives. 

 

Fig.6.6 Pareto front, zoom in 

Thus, the previous analysis demonstrates the potential benefits from using multiple 
objective optimization in payload design as the addition of another objective provides 
gains over the single objective approach. Furthermore, the trade-off curve obtained 
from this approach can provide significant insight and help in system design rendering 
the proposed approach an enhancement to existing payload optimizers. 
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INTRODUCTION 

To compete with the ever-expanding terrestrial technology, current satellite systems need to keep pace with the 
evolution of new applications, including mobile video broadcasting and multimedia interactive services. Apart from the 
services offered, satellite systems also need to consider the deployment of low-cost terminals to reduce the cost of the 
customer premises equipment compared to terrestrial systems.  
Multibeam satellites can play a key role toward these objectives. On the one hand the high gain offered by multibeam 
antennas may compensate for performance degradation faced by low-cost user terminals. On the other hand, multibeam 
systems can ensure the competitiveness of satellite systems in the evolving markets, by providing the necessary 
flexibility. Flexibility in design is an essential issue for the competitiveness of satellites and involves the ability to 
reconfigure the mission to meet the unexpected market changes during the lifetime of the spacecraft [1]. Flexibility can 
be viewed from various aspects because multibeam systems are able to support reconfigurability of power and 
frequency plans, routing and switching functionalities in response to traffic demand, exhibiting both temporal and 
spatial variability. 
In order to rip the benefits of the flexibility provided by the multibeam systems, a system entity has to reconfigure the 
power and frequency plan according to the traffic demand and the channel variability. However, due to frequency reuse, 
multibeam systems are subjected to inter-beam interference. Hence a dynamic allocation of system resources in order to 
satisfy the varying traffic demand, while mitigating the interferences seems imperative for efficient multibeam systems. 
These system resources are the bandwidth and the transmit power and the resource allocation is an optimization 
problem that aims at maximizing the throughput of each beam subject to the current traffic demand. 
Several publications have studied resource allocation in satellite communications. The power and bandwidth allocation 
problem studied in this paper has been formulated in [2] and it is based on the use of advanced equipment such as 
flexible amplifiers and bandwidth processors. Subsequent efforts toward optimization have been largely guided by the 
ESA ARTES activities. In [2], Unmet System Capacity (USC) is proposed as a figure of merit for the optimization of a 
system and antenna/ payload design co-design tool. A Genetic Algorithm (GA) [7] based optimization strategy is 
proposed in [3] for the co-design tool involving iterative antenna and system optimizations. The system optimization 
involves the power and frequency plans and employs the following steps :(1) an initial screening of the space of 
solutions is done employing GA , (2) a further single step optimization starting from the solution given by the previous 
step consists of a Variable Neighborhood Search (VNS) and (3) a refinement of the latter solution is given via multiple 



iterations of an Iterated Local Search (ILS). The use of a similar architecture is considered in the optimization of 
resources (illumination, power and/ or carrier) in a Beam Hopped (BH) system [4, 5]. Flexible and BH transmission 
schemes are also considered in [6] to provide flexibility in frequency (through bandwidth allocation) and time domain 
(through time slot allocation) respectively. Power and bandwidth (or time slot allocation) are optimized to enhance the 
Satisfaction Factor. A heuristic algorithm that iteratively optimizes these resources is provided.  
Though several techniques have been considered for resource optimization, a systematic study leading to the selection 
of the appropriate optimization technique is not available. Focusing on the power optimization problem in multibeam 
systems, the present paper highlights its high dimensionality and multimodal landscape which motivates the use of 
metaheuristic techniques. Various well-known metaheuristic techniques comprising trajectory based (such as Simulated 
Annealing (SA) [7]) or population based (such as Particle Swarm (PSO) [7] or Evolutionary Algorithms) methods are 
explored in a systematic way. Then, simulations are performed to classify the algorithms with regard to their 
performance, thereby providing hints about which technique should be used in different occasions. Subsequently, a 
better performing hybrid GA scheme is proposed, based on the hybridization of a GA with a trajectory based technique 
(SA) to further enhance the GA solutions. 
Since, in general, bandwidth allocation is done in terms of carriers of fixed bandwidth, the bandwidth allocation 
problem can be transformed into a power allocation problem. Furthermore, recent advances in Multi-Port Amplifier 
(MPA) technology allow for efficient power splitting whereas no publicly available technology for bandwidth sharing is 
known to the authors. These motivate the focus on power optimization in this work.  
The remainder of this paper is organized as follows. Section 2 presents the formulation of the power allocation problem. 
Then the considered optimization techniques are described in section 3. Experimental results using the proposed 
approaches are proposed and analyzed in section 4. Finally section 5 contains our conclusions and perspectives. 
 
2. PROBLEM FORMULATION 
 
Assume a multibeam satellite system with b = 1,…,N beams, employing a typical four color reuse pattern (two colors in 
frequency and two in polarization), where the available total downlink bandwidth of the system BTOT  is equally 
distributed among the four colors. It is further assumed that the available bandwidth reused over the different colors is 
equally divided into the beams of each color and the beam bandwidth equally divided into carriers. A carrier represents 
the elementary system entity for conveying different streams of information.  
Given this bandwidth allocation, the problem pertains to the appropriate allocation of the total available power of the 
system PTOT, which is a function of the platform total DC power on board the satellite, to each beam Pb, so that the 
offered beam bit rate meets the user requirements in the same beam. The power allocated to each beam Pb, will then be 
equally divided among the Nc carriers of the beam Pb,c = Pb / Nc. 
Thus, the problem is formulated as an optimization problem aiming at minimizing the following cost function: 

                                                               Min f = � 𝑎𝑏𝑠�𝑅𝑏,𝑟𝑒𝑞 − 𝑅𝑏,𝑜𝑓𝑓�,
𝑁
𝑏=1                                                            (1) 

while ∑ [𝑃b]𝑁
𝑏=1 ≤ 𝑃TOT and 𝑃b ≤ 𝑃b,con 

where, 𝑅b,req denotes the bit rate requested by the users in beam b, 𝑃b,con is the power constraint of each beam and  

                                                              𝑅 b,off
 = � B ×  𝑓DVB−S2(𝑆𝑁𝐼𝑅c)

𝑁c

𝑐=1
,                                                         (2) 

denotes the offered, cumulative bit rate of all Nc carriers in beam b. The function  𝑓DVB−S2(𝑆𝑁𝐼𝑅c) quantifies the 
spectral efficiency of the various modulation and coding schemes employed by DVB-S2 as a function of the SNIRc of 
carrier c, and B  denotes the bandwidth of each carrier. 
The SNIRc of each carrier c, transmitted with power Pb,c and bandwidth B is calculated as follows: 

                   𝑆𝑁𝐼𝑅𝑐 =
𝑎𝑏2𝑃𝑏,𝑐(𝑂𝐵𝑂)

𝑁0(𝑎𝑏)𝐵 + ∑ 𝛼𝑞2𝑃𝑞,𝑐(𝑂𝐵𝑂)𝑞∈𝛷 + 𝐼𝑎𝑑𝑗𝑐ℎ(𝐵, 𝑋𝑃𝐷) + 𝐼𝑎𝑑𝑗𝑠𝑎𝑡 + 𝐼𝑖𝑛𝑡𝑒𝑟(𝑂𝐵𝑂,𝐶𝑏,𝑀𝑜𝑑)              (3) 

Φ: is the set of co-channel beams in the coverage area with active carriers overlapping with the bandwidth of the 
intended carrier c (co-channel interference into intended beam b) 
αq: is a gain factor encompassing the effect of: satellite antenna beam q, terminal receive antenna gain, free space loss, 
clear sky attenuation and rain attenuation 
N0 is the noise power spectral density which is a function of ab because of the increase in noise temperature under rain 
fading conditions 
Iadj_ch: accounts for adjacent channel interference due to filter imperfections (function of B), including spillover from the 
beams in orthogonal polarization if both polarizations are employed (function of XPD) 
Iadj_sat: Inter-system interference caused by adjacent satellites 



Iinter: Intermodulation interference 
The notation Pb,c(OBO) denotes the dependence on the appropriate OBO according to the modulation scheme employed 
It is evident that the SNIRc of each carrier is not characterized by a one to one relation with the power used in beams of 
the same color. Moreover, the corresponding relation to spectral efficiency is non-linear and is typically obtained 
employing look up tables. Hence, the previous analysis indicates a non-linear and non-continuous dependence of the 
cost function on the optimization variables (power). 
 
3. OPTTIMIZATION TECHNIQUES 
 
3.1 Metaheuristics 
 
The non-linear and non-continuous dependence of the cost function on the optimization variables referred to above 
suggest the use of general-purpose algorithms, like Metaheuristics. Metaheuristics make few or no assumptions about 
the optimization problem, allowing the optimization of complex problems, like the one studied in the present paper. 
However, no general axiomatic rule to follow exists when choosing a metaheuristic technique and no universal criterion 
can be proposed in order to prove the superiority of a specific technique over others, as also suggested by the “No Free 
Lunch” theorem [8]. The “No Free Lunch Theorems for Optimization” state that two optimization algorithms are 
equivalent, when their performance is averaged over all possible optimization problems. For this reason and in order to 
specify a suitable technique for the problem under consideration, a systematic performance study has been carried out 
of various well known metaheuristics. These techniques are three population based (GA, Differential Evolution (DE) 
[7], Particle Swarm Optimization (PSO)) and one trajectory based technique (SA).  
There is, however one general intuitive criterion, that can be used as a guide, at the beginning of the study, before the 
simulations and the classification of the techniques. This criterion is matching the landscape of the problem’s search 
space to one of the two available search strategies: The exploration of the search space and the exploitation of the best 
solution. 
On the one hand, the exploration is an extensive search of the search space, to make sure all regions of the search space 
have been explored and the search is not confined to one location. This search is converging to the most promising 
regions, in terms of containing a satisfactory solution. Exploitation on the other hand is an intensive search within the 
promising regions in order to discover the “best” solution of the region. Trajectory-based metaheuristics are more 
exploitation oriented, whereas population based metaheuristics are more diversification oriented. 
The complexity of the problem as well as the large number of variables (multibeam systems can have hundreds of 
beams) and the perceived multimodal landscape of the problem’s search space suggest the use of an explorative 
technique, namely a population based metaheuristic. This deduction however, may be used as an early intuitive 
approach, but not as a reliable criterion. For that reason the systematic study of the aforementioned metaheuristics is 
carried out. A brief introduction to these techniques follows. 
 
3.2 Trajectory Based Metaheuristics 
 
Trajectory based techniques aim at improving a single solution following a specific search trajectory over the search 
space. This trajectory is determined by applying an iterative procedure that chooses the next station according to the 
current solution. In each iteration of the process, a set of candidate next stations is defined applying a certain operator 
on the current solution. This new set of solutions is called a neighborhood and, once it is defined, an element of the set 
(a neighbor) is selected to replace the current solution and becomes the next station of the search trajectory. The 
properties of the neighbor that will replace the current one depend on the optimization technique and the way the 
trajectory is planned. It is possible that points having a cost function value worse than the current one are accepted, 
provided that the trajectory planning allows so (e.g. in order to escape from some local optimum). The same process 
iterates and all steps concatenate into forming the search trajectory of the problem until some stopping criteria are 
satisfied. 
 
3.2.1 Simulated Annealing 
SA is a typical trajectory based metaheuristic that mimics the physical process of metal annealing, where the gradual 
reduction of temperature leads the system to a point of minimum energy. In SA, the temperature is the operator 
defining the properties of the neighborhood, i.e. the size of the neighborhood around the current solution, as well as the 
probability of accepting a neighbor with higher cost function value. 
 
 
 



 
 
3.3 Population Based Metaheuristics 
 
Unlike trajectory based metaheuristics, population based metaheuristics do not start the search from a single solution, 
but from an initial population of solutions. This diversity of the initial solutions is the very reason why an extensive 
exploration of the search space is possible with this family of techniques. After initializing the population, an iterative 
procedure is invoked: In each iteration, operators are applied to the current population to generate a new population. 
Individuals from this new population are inserted in the current population, using some selection policy. This whole 
process keeps iterating until the stopping criterion is satisfied. 
 
3.3.1 Particle Swarm Optimization 
PSO is a population based metaheuristic that mimics the social cooperative and competitive behavior of swarms. Each 
particle in the swarm represents a candidate solution and is represented by a position and velocity (i.e. flying direction). 
Each particle move is influenced by its personal success (cognitive factor C1) and the success of the whole swarm or of 
a specific neighborhood (social factor C2). 
 
3.3.2 Differential Evolution 
DE is a population based metaheuristic inspired from natural biological evolution. The operator used to evolve the 
initial population of solutions is a vector difference between 3 individuals of the population. The possibility of each 
dimension of the vector to be evolved is defined by the parameter CR∈[0,1], whereas a scaling factor F∈[0,1] controls 
the amplification of the differences. The generated new solution is inserted in the population if improving the parent 
one. 
 
 3.3.3 Genetic Algorithms 
GA is a population based metaheuristic, based on the Darwinian evolutionary model, which consists in the following 
iterative process. Two parents are first selected from the whole population with a given selection criterion. Then two 
genetic operators are sequentially applied with some probability, namely recombination that exchanges portions of the 
parents solution vectors, and mutation that randomly modifies the individual. Finally the generated offsprings are 
evaluated and inserted back into the population following a given criterion. 
 
3.4 Hybrid GA-SA Approach 
 
The experimental verification of the suitability of explorative techniques for the optimization of the problem, (provided 
in the next section), motivated the hybridization of the best performing population based metaheuristic (GA) with the 
trajectory based one (SA). Indeed, metaheuristics hybridization permits to exploit and combine the advantages of both 
approaches. Our GA-SA model applies the SA after every n generation of the GA and for a predefined number of steps. 
The solutions sent to the SA consist of the current best solution plus a random one. The improved solutions are then 
inserted back in the GA that iterates for n new generations. 
The SA considered includes a re-annealing process that raises the temperature of the system after a predefined number 
of iterations. This permits to efficiently exploit the “good” solutions provided by the GA and avoids fast convergence to 
local optima. 
 
4. EXPERIMENTAL RESULTS 

For the simulations presented herein, a 37-beam system has been simulated, where the antenna pattern is 
modeled with the help of a Bessel function and the link budget is calculated based on one user per beam, located at the 
beam edge (worst case position). The parameters of the link budget as well as the beam layout are presented in Fig. 1. 



 
Fig.1 Beam Layout and Link Budget Parameters 

Simulating the above system, the standard versions of the metaheuristics techniques described in Section 3 are 
compared with regard to their performance in minimizing (1). The parameters chosen for the simulations are depicted in 
Table. 1. All algorithms have been experimentally tested with population sizes ranging from 40 to 6000. The proposed 
parameters are the best performing ones. 
 

Table. 1 Optimization Parameters 
SA Initial Temperature: 

400 
Temperature Function: 

Exponential Update 
Evaluations: 

234240 
PSO C1 = C2 = 2 Population Size: 

370 

Evaluations: 

234240 

DE CR = 0.9, F = 0.8 Population Size: 

40 

Evaluations: 

234240 

GA Crossover rate = 0.95,  Mutation rate = 0.05 

Elite Individuals = 30 

Population Size: 

5856 

Evaluations: 

234240 

GA-SA Optimization Parameters 

GA Crossover rate = 0.95,  
Mutation rate = 0.05 

Elite Individuals = 30 

GA-SA 

Interval: 

 5 

Population Size: 

5856 

Evaluations 
before SA: 

35136 

Re-anneal SA Initial Temperature: 

400 

Re-annealing 
Interval: 

100 

Evaluations 
before GA: 

11712 

The comparison of the standard techniques available in literature is shown in Fig. 2, where the average of the minimum 
values of the cost function (1) is depicted, for every 5856 cost function evaluations. The results reported involve 
averaging over 15 independent runs, as the computational time needed for 234240 evaluations did not allow the use of a 



bigger sample. The statistical confidence in the comparisons is assessed by performing the Wilcoxon test [9]. The 
numerical results of the cost function averaged over 15 runs are shown in Table. 2  

Table. 2 Numerical Results 
Algorithm Solutions Average Standard Deviation Overall Best (over 15 runs) 

Simulated Annealing 5.5634e+009 3.5583e+008 4.8916e+009 
Particle Swarm 4.2843e+009 3.6050e+008 3.8605e+009 

Differential Evolution 3.5854e+009 3.3195e+007 3.5480e+009 
Genetic Algorithm 3.4773e+009 1.6783e+007 3.4530e+009 

 

 

Fig. 2 Comparison of standard techniques available in literature 
At the outset, the use of optimization provides an improvement to the tune of 46.8% in the cost function over the static 
uniform allocation case. DE, one of the most successful techniques for continuous optimization problems provided the 
best speed of convergence and a final result close to the best result, provided by the GA. DE is therefore the best option 
(out of the ones compared) for systems where good solutions must be reached in minimum time. 
The best result, however is provided by the GA. GA is the slowest converging technique, but is returning the best and 
more consistent results with a smaller standard deviation than DE. Among the standard techniques found in literature 
and implemented, GA and DE exhibit the best behavior, indicating a trade-off between convergence speed and quality 
of solution.  
Another interesting conclusion is that the intuitive approach described in section 3 has been verified, as the standard SA 
performs poorly compared to the population based techniques. The suitability of explorative approaches for the 
optimization of the problem, motivated the hybridization of the population based technique with an exploitive technique 
in order to further exploit the provided solutions, as described in section 3.4. The complementary search strategy was 
applied to the more stable of the two best performing techniques and the one providing the best results, namely the GA, 
in order to evaluate the improvement yielded to the best solution. The parameters chosen for this hybrid optimization 
are depicted in Table. 1. 
The result of the proposed approach compared to the two best performing techniques GA and DE is depicted in Fig. 3 
and the numerical results of the cost function averaged over the 15 independent runs are presented in Table. 3. 
Statistical confidence in the comparison is verified by Wilcoxon. 
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Fig. 3 Performance Comparison of GA-SA, GA and DE 

Table. 3 Numerical Results 
Algorithm Solutions Average Standard Deviation Overall Best (over 15 runs) 

GA-SA 3.4473e+009 1.0070e+007 3.444e+009 
The hybrid approach proposed outperforms the best performing techniques. The final result provided by GA-SA 
improves the one provided by the GA by 1%. In addition GA-SA has a smaller standard deviation, than the results of 
GA, ensuring the consistency of the results provided in different runs. Furthermore the speed of convergence of the 
hybrid approach is better than the one of GA. Bottom line the proposed hybrid approach outperforms GA in every 
aspect and even bridges the gap between the speed of convergence and the quality of solution. The performance of the 
GA-SA is presented in Fig. 4, also plotted for comparison is the achieved capacity due to uniform power allocation. 

 
Fig. 4 GA–SA Performance vs Uniform power Performance 
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5. CONCLUSION 

This paper demonstrates how satellite multibeam broadcasting can benefit both from dynamic power allocation 
schemes, in general, and from the use of the proposed techniques, in particular, since the differential capacity of the 
system decreased by 46.8% in the case of the GA and by 47.3% in the case of the hybrid GA-SA, compared to the 
system’s performance for uniform power allocation. Moreover the systematic study of the various metaheuristic 
techniques provides an overview of their performance at the optimization of the power allocation per se and their 
performance when different parameters of the problem, like the quality of the solution, the variation and consistency of 
the results and the speed of convergence, have to be taken into account. A multibeam satellite system employing DE 
techniques, for instance, may deal with rapidly changing traffic requirements, a situation where the convergence speed 
is of interest, whereas if the quality and the variation of the results is of interest, GA and preferably GA-SA hybrid 
approaches can be used. Also the improvement accomplished by the hybrid approach proposed, demonstrates the 
benefits from the hybridization of explorative and exploitive techniques and sets an example for future work in the field. 
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Current satellite systems employ multi-beam technology that 
allows for the dynamic allocation of the system resources (i.e. 
bandwidth and power), based on changing traffic distribution to 
provide substantial capacity gains. Often such an allocation tends to 
utilize the maximum DC power available, whereas a minimization of 
the same is desirable. This paper deals with the power allocation with 
respect to two seemingly conflicting objectives, namely the 
maximization of the available system throughput and the 
minimization of the system power consumption. A multi-objective 
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optimization approach is proposed for power allocation to handle the 
aforementioned objectives. A state-of-the-art multi-objective genetic 
algorithm (MOGA), i.e. the non-dominated sorting genetic algorithm 
II (NSGA-II), is used as optimization approach. The set of obtained 
solutions is presented in the form of a Pareto front, which provides 
complete information to the user concerning the trade-off between the 
traffic demand and power requirements. 

Nomenclature 
N = number of beams 
Nc = number of carriers 
BTOT = total bandwidth 
PTOT = total power 
Pb  = beam power 
Pb,c = carrier power 
B = carrier bandwidth 
Pb,con = beam power constraint 
Rb,req = bit rate requested by user in beam b 
Rb,off = offered cumulative bit rate of all Nc carriers in beam b 
 

I.  Introduction 
HE advent of new applications, including fixed and mobile multimedia interactive services, 
necessitate that satellite systems become more flexible. Design flexibility is essential to ensure 
that satellite systems can deal with emerging traffic requirements and unexpected market 
changes or the change in orbital location during the lifespan of the spacecraft. Flexibility could 

be viewed in four aspects with regard to coverage, power, frequency planning and higher layer 
functionalities (e.g. routing, switching)1. In exploiting these degrees of flexibility, multibeam satellites can 
play a key role since their design can easily be extended to support reconfigurability of power and 
frequency plans as well as routing and switching functionalities. This feature of multibeam systems along 
with the recent advances in Multi-Port Amplifier (MPA) and flexible Traveling Wave Tube Amplifier 
(TWTA) technology allow for efficient beam power allocation in response to the spatiotemporal variations 
of traffic demand. 
 In some previous work, optimization routine to efficiently apportion power across the beams to match 
the traffic demand has been considered.5 Such an optimization is considered to be subject to a maximum 
RF power constraint, which, in turn, assumes a maximum DC power consumption. Since DC power 
consumption is a critical factor, the possibility of minimizing DC power is also warranted. However efforts 
toward modifying the DC/ RF power consumption have not been explored in detail in literature. Therefore, 
the present paper explores the power allocation problem with respect to both seemingly conflicting 
objectives: maximization of the available system throughput and minimization of the system power 
consumption, subject to the aforementioned constraints. 

In order to handle these objectives, the appropriate cost (or objective) functions to quantify the 
performance of each objective have to be selected. In the case of the system power consumption this 
function is just the overall system power consumption, but in the case of the available system throughput 
four different cost functions are found in literature, namely the differential and unmet system capacities7, 
satisfaction factor8 and aggregate fitness. For the identification of the most suitable cost function a 
preliminary study, a comparison of the four functions is conducted. Following the results of Ref. 5, where a 
systematic study of the appropriate optimization techniques for the maximization of the available 
throughput is performed, a Genetic Algorithm (GA)3 is adopted in the preliminary study. The results of the 
four cost functions employing the GA are then presented and compared and the best performing cost 
function is selected. Then, in order to enhance the system utilization, this cost function is used together with 

T 



the minimization of the overall system power consumption as cost functions of a multi-objective 
optimization problem (MOP). 

A MOP deals with the optimization of multiple conflicting objective functions. In such MOPs the order 
relation between solutions relies on the concept of dominance. A solution dominates another if it is strictly 
better in one objective and better or equal with regard to all other objectives. The optimal solution then, is 
not a single solution like in single-objective optimization problems, but a set of non-dominated solutions 
defined as Pareto optimal solutions. This set of solutions represents the compromise between the 
conflicting objectives and allow for the selection of the best solution, according to the preferences of the 
decision maker and the priority of each objective.  

Subsequently a state-of-the-art multi-objective genetic algorithm (MOGA), the non-dominated sorting 
genetic algorithm II (NSGA-II)3 is employed for the resolution of this MOP. The set of solutions obtained is 
then presented in the form of a Pareto front (i.e. the image of the Pareto solutions in the objective space), 
providing complete information concerning the trade-off between the traffic demand and power 
requirements. The results are then analysed, demonstrating the potential benefits that arise from the use of 
the multi-objective approach. 

The remainder of this paper is organized as follows. Section 2 presents the formulation of the resource 
optimization problem for multibeam architecture as a MOP. In the same section the optimization techniques 
applied to the problem in previous studies are presented and compared with the approach proposed in the 
present paper. Then the considered optimization techniques (GA for the preliminary study and NSGA-II for 
the multi-objective optimization) are described in section 3. The preliminary study and the experimental 
results using the proposed multi-objective approach are presented and analysed in section 4. Finally section 
5 contains our conclusions and perspectives. 

II. Resource Optimization in Multibeam Architecture 

Multibeam Architecture and System Resources 
Assume a multibeam satellite system with b = 1,…,N beams, employing a typical four colour reuse 

pattern ( for e.g., two colours in frequency and two in polarization ), where the available total downlink 
bandwidth of the system BTOT  is equally distributed among the four colours. It is further assumed that the 
available bandwidth reused over the different colours is equally divided into the beams of each colour and 
each of these beams accommodates four carriers. A carrier represents the elementary system entity for 
conveying different streams of information and the bandwidth of each beam is equally divided among its 
carriers. The described layout could be visualized in Fig. 1, where the beam layout adopted for this paper’s 
simulations is depicted. 

 
Having allocated BTOT equally among the carriers, the resource allocation pertains to the appropriate 

allocation of the total available system power PTOT. PTOT is a function of the platform total DC power on 
board the satellite, and must be allocated appropriately to each beam, so that the offered beam bit rate meets 
the user requirements in the same beam. The power allocated to each beam Pb, will then be equally divided 
among the Nc carriers of the beam Pb,c = Pb / Nc. Furthermore minimizing the overall power consumption 
while allocating the available PTOT is also warranted. 
 
B. Resource Optimization 

Following this analysis the resource optimization problem is formulated as a MOP. The target of this 
optimization is to determine the beam power Pb, for which: 

1. The system capacity is maximized (cost function f1). 
2. The overall power consumption is minimized (cost function f2). 
Subject to: 

 The power constrains of the system 
 The power constrains of each beam 

For the system capacity maximization the following four candidate cost functions have been employed in 
past studies: 
 
 
 



 
 
Figure. 1 Four colour reuse pattern, for a 37 circular beam layout 

 
Differential System Capacity (DSC)   

                                                            Min 𝑓1  = � abs�Rb,req − Rb,off� 
N

b=1
                                               (1)  

 According to Eq. (1), offered beam capacities exceeding or being less than the required beam 
capacities, both contribute to the figure of merit and drive the optimization closer to the requirements. 
 
Unmet System Capacity (USC)  
 

           Min 𝑓1  = � max�Rb,req − Rb,off, 0�,
N

b=1
                                  (2) 

In Eq. (2), offered beam capacities exceeding the required do not contribute to the figure of merit and 
do not affect the optimization. 
 
Satisfaction Factor (SF) 

     Max 𝑓1  =
� min�Rb,req ,Rb,off�

N

b=1

� Rb,req,
N

b=1

                                                  (3) 

The offered beam capacities exceeding the required capacity do not contribute to the figure of merit 
defined in Eq. (3). But in this case the recessive beam capacities are scaled by the cumulative required 
capacity. 

 
Aggregate Fitness (AF)  
 

                       Max f1  =� 1
1+abs�Rb,req− Rb,off�

N

b=1

                                                  (4) 



According to Eq. (4), offered beam capacities exceeding or being less than the required beam capacities, 
both contribute to the figure of merit, like in the case of the DSC, but these results are scaled down on a 
beam bases and the optimization is driven according to the sum of the individual beam fitness. 

 
For the power consumption minimization the cost function employed is the following: 

  
           Min 𝑓2  = ∑ [Pb]N

b=1                             (5) 
And the optimization is subject to the following constrains: 
 
System power constraint   
           ∑ [𝑃𝑏]𝑁

𝑏=1 ≤ 𝑃𝑇𝑇𝑇                   (6) 
 
Beam power constraints: 
           Pb ≤ Pb,con                (7) 
 
The offered, bit rate Rb,off  is calculated as follows: 

                                                  R b,off
 = � B ×  fDVB−S2(SNIRc)

Nc

c=1
                                                      (8) 

The function fDVB-S2(SNIRc) quantifies the spectral efficiency of the various modulation and coding 
schemes employed by DVB-S2 as a function of the SNIRc of carrier c. 
 
1. SNIR Calculation 

The SNIRc of each carrier c, transmitted with power Pb,c and bandwidth B is calculated as follows4: 
 

                                                         

    SNIRc =  ab
2Pb,c(OBO)

N0(ab)B+∑ αq2Pq,c(OBO)q∈Φ +Iadjch(B,XPD)+Iadjsat+Iinter(OBO,Cb,Mod)
                  (9) 

 
Φ: is the set of co-channel beams in the coverage area with active carriers overlapping with the bandwidth 
of the intended carrier c (co-channel interference into intended beam b) 
aq: is a gain factor encompassing the effect of: satellite antenna beam q, terminal receive antenna gain, free 
space loss, clear sky attenuation and rain attenuation 
N0: is the noise power spectral density which is a function of ab because of the increase in noise 
temperature under rain fading conditions 
Iadj_ch: accounts for adjacent channel interference due to filter imperfections (function of B), including 
spillover from the beams in orthogonal polarization if both polarizations are employed (function of XPD) 
Iadj_sat: Inter-system interference caused by adjacent satellites 
Iinter: Intermodulation interference 
The notation Pb,c(OBO) denotes the dependence on the appropriate OBO according to the modulation 
scheme employed 
 
C. Single-objective Transformation of the Considered MOP  

An early approach in the direction of modifying the DC/RF power consumption along with the 
available system throughput is proposed in Ref. 6. In this approach a number of cost functions to quantify 
the satisfaction of the traffic demand are proposed. These cost functions include a DC consumption 
parameter, in order to take the power consumption into account, while maximizing the available throughput 
of the system. This technique known as scalar approach is transforming a MOP into a single-objective 
problem, by combining different objective functions (i.e. the traffic demand satisfaction and the DC 
consumption minimization) into a single-objective function in a linear way.  

This type of approach however, requires a priori knowledge on the considered problem, in order to find 
the appropriate weights for the linear representation of the different objective functions. That is because the 
Pareto optimal solution is the node of the objective space hyperplane, defined by the weight vector and the 
feasible space of the problem. Thus the Pareto border has to be known in order to select the corresponding 
weights to obtain the desirable optimal solution. 



A common misconception, is that the weights selected for the linearization of the MOP are 
representative of the relative importance of the different objectives. In these cases the objective space 
hyperplane defined by these weights, could intersect randomly with the feasible space of the problem, 
providing undesirable solutions. 

Alternatively multiple weights can be used, that will be optimized in parallel along with the problem. 
However the computational cost of this process is significant and even this process cannot guarantee to 
provide all Pareto optimal solutions, since these are limited to the convex hull of the Pareto front (i.e. 
solutions in concave regions of the Pareto front cannot be found). 

Furthermore the provided optimal solution of these scalar approaches is a single solution unlike the set 
of Pareto solutions, provided by the dominance based approaches, depriving the decision maker of the 
alternative solutions, suppressing useful information regarding the system’s objective space. 

The considered problem however is not known a priori. Hence, the present paper explores the power 
allocation problem as a strictly multi-objective problem (MOP) and not as a linear function of the various 
objectives. Formulation of the problem in a dominance based multi-objective setting seems to be novel in 
literature and in this course a state-of-the-art multi-objective genetic algorithm (MOGA), the non-
dominated sorting genetic algorithm II (NSGA-II)3,presented next, is employed for its resolution.  
 

III. Optimization Techniques 
A. Genetic Algorithm (GA) 

The GA adopted in the preliminary study of the paper, is a population based metaheuristic, where the 
search for a “good” solution starts from an initial population of acceptable solutions. This technique is 
based on the Darwinian evolutionary model, which consists in the following iterative process. Two parents 
are first selected from the whole population with a given selection criterion. Then two genetic operators are 
sequentially applied with some probability, namely recombination (or crossover) that exchanges portions of 
the parents solution vectors, and mutation that randomly modifies the individual. Finally the generated 
offsprings are evaluated and inserted back into the population following a given criterion. 

  
B. Non-dominated Sorting Genetic Algorithm II (NSGA II) 

NSGA-II is the most popular and referenced dominance based multi-objective algorithm in literature. It 
is a GA with a non-structured population, that is used to obtain the new population after applying the 
typical genetic operators (i.e. selection, crossover, mutation). As a GA belongs to the metaheuristic 
techniques, and since metaheuristics do not guarantee the optimality of the obtained solution the goal of 
this technique is to provide an approximation of the Pareto optimal set with two necessary properties: 
convergence to the Pareto optimal solutions and uniform diversity (i.e. a good distribution of the obtained 
solutions around the Pareto optimal front). 

In this course, all individuals of the initial population are ranked with respect to both convergence and 
diversity. All non-dominated solutions are assigned to the rank 1 and are subsequently removed from the 
population in order to assign the current non-dominated solutions to the rank 2. This process is iterated for 
all individuals and then individuals within the same rank are ranked according to the distance from their 
surrounding individuals. Individuals with higher distances (i.e. good distribution) are ranked higher than 
others.  

The individuals are then sorted according to their rank and the typical genetic operators are applied 
iteratively. 

IV. Experimental Results 
 For the simulations presented herein, the 37-beam system described in Fig. 1 has been simulated, 

where the antenna pattern is approximated by employing the Bessel function and the link budget is 
calculated assuming one user per beam, located at the beam edge (worst case position). The parameters of 
the link budget, are presented in Table 1. 

 
 
 
 
 



Table 1 Link Budget Parameters 
 

Link Budget Parameters For Capacity Results 
 

Parameter Value 
Frequency Band Ku 
User Link Bandwidth Bu 46.875 MHz 
HPA saturation Power Pτ 80 W 
Max satellite antenna gain GT 52 dBi 
Output Back Off OBO 5 dB 
Satellite EIRP 66 dBW 
Free Space Loss L 212 dB 
Terminal Antenna Gain GR 41.7 dBW 
Terminal noise Temperature T 207 K 
Receive C/N 20.2 dB 
External (C/I)EXT 30.0 dB 

 
A. Problem Instance Setup 

Simulating the above system, the cost functions defined in Section 2 are compared, based on their 
performance concerning the maximization of the available system throughput. The technique employed for 
the comparison of the cost functions is the most appropriate technique out of the standard metaheuristics 
techniques compared in Ref. 5, namely the GA. The solutions are encoded as 37-dimensional vectors, 
where each dimension represents the R/F power of the respective beam. The optimization parameters 
selected for the simulations are shown in Table. 2. 

 
Table 2. GA Optimization Parameters 
 

Parameter Value 
Population Initialisation Random 
Population Size 5856 
Crossover Function 
Crossover Rate 

Uniform 
0.95 

Mutation Function 
Mutation Rate 

Uniform 
0.05 

Selection Function Tournament 
Elite Individuals 30 
Fitness Evaluations 234240 

  
B. Single Objective Results (Preliminary Study) 

The performance assessment of the different cost functions is shown in Table. 3. The results reported 
involve averaging over 15 independent runs, as the computational time needed for 234240 evaluations did 
not allow the use of a bigger sample. The statistical confidence in the comparisons is assessed by 
performing the Wilcoxon test2, with standard confidence level (0.95). 

 
Table 3. Cost Function Performance Assessment 
 

Cost 
Function 

Capacity [Gbps] Power [W] 
(Average of 15 runs) 

Required Offered Unmet  
DSC 24.155 23.588 0.801 1758.2 
USC 24.155 25.605 0.746 2145.7 
SF 24.155 23.946 0.748 2010.4 
AF 24.155 23.547 0.842 1752.5 



 (Overall Best over 15 runs)  

DSC 24.155 23.593 0.778 1743.9 
USC 24.155 24.879 0.709 2030.3 
SF 24.155 24.879 0.709 2030.3 
AF 24.155 23.588 0.802 1777.9 

 
The numerical results presented above demonstrate the suitability of the USC as a cost function, since 

the USC provides the lower unmet capacity of all. This result is not surprising since USC focuses on the 
minimization of the unmet capacity, ignoring the impact of the exceeding beam capacities on the 
optimization. Therefore the performance of the SF, which also ignores the impact of the exceeding beam 
capacities is similar, with that of USC, obtaining also the same overall best solution. The performance of 
the best USC result in the satisfaction of the traffic demand is depicted in Fig. 2. 

 
Figure.2 Single objective optimization performance (USC) 

 
C. Multi-objective optimization results 

The result presented in Fig.2 is the best result provided for the maximization of the system throughput. 
This can be used as initial seed for the multi-objective approach ensuring that the result providing the best 
performance in terms of the capacity maximization will be included in the Pareto optimal set of solutions 
and possibly will be further enhanced. 

Subsequently the obtained solution is used with the same encoding described above as an individual of 
the initial population of the NSGA-II. The target of the optimization employing the NSGA-II is to 
determine the power Pb for which the Eq. (2) and (5), are minimized. The results reported from this 
optimization involve averaging of 15 independent runs and the optimization parameters selected are shown 
in Table. 4. 

 
Table.4 NSGA-II Optimization Parameters 
 

Parameter Value 
Population Initialisation Random 
Population Size 6000 
Crossover Function 
Crossover Rate 

Uniform 
0.9 



Mutation Function 
Mutation Rate 

Uniform 
0.05 

Selection Function Tournament 
Fitness Evaluations 240000 

 
The Pareto front obtained from the 15 runs is depicted in Fig. 3 providing complete information 

concerning the trade-off between offered capacity and power requirements, whereas the initial population 
provided by the single-objective approach is further enhanced. 

 

 
 
Figure. 3. Pareto front encompassing the enhanced result of the single-objective optimization. 

 
From the above figure, it appears that the obtained Pareto front provides a large number of non-

dominated solutions as well as a very good diversity. It is also evident that the result of the single-objective 
optimization, shown in Table 3 has improved significantly in terms of Power. In particular the allocation 
obtained by the single-objective approach, consuming 2030.3W for an USC of 0.709Gbps dropped to a 
power consumption of 1870W for the same USC. In other words the multi-objective approach allows for 
the system to perform the same in terms of satisfying the traffic demand while saving 7,9% power. 

Furthermore the slope of the left part of the Pareto front is steep enough, to allow for even more 
significant power savings, in case the user is willing to let the USC deteriorate by little. Fig. 4 shows the  
left part of the Pareto front, demonstrating the trade-off between the satisfaction of the traffic demand and 
the power requirements. In this case the user can save up to 12% power by decreasing the USC by 2.7%. It 
is evident that the Pareto front obtained provides complete information regarding the trade-off between the 
two objectives, enabling the decision maker (in this point of view, the satellite operator) to adjust to the 
emerging traffic requirements according to the priority of the two objectives. 
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V. Conclusion 
The present paper demonstrates how current multibeam satellite systems can benefit from the use of 

multi-objective approaches for the allocation of their resources, which is novel approach  in literature. The 
interesting aspect is that the two objectives are seemingly conflicting: maximization of the available system 
throughput and the minimization of the system power consumption due to their relation to the power and 
yet the proposed technique can improve one objective by 7,9%, without deteriorating the other. Moreover 
complete information to the satellite operator regarding the trade-off of the different objectives is provided, 
enabling a full exploitation of the available flexibility of the system yielding significant capacity gains and 
power efficiency, which results to the prolongation of the spacecraft’s life expectancy. 

 

 
Figure.4 Pareto front, zoom in 
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INTRODUCTION 
 
The use of multibeam systems for broadband services in Ka-band has shown a significant increase of the satellite 
capacity, due to beam size reduction and an increase in frequency re-use. Such a concept can be used in Ku-band to 
increase the capacity of systems in regions with high rain rate, where the use of Ka-band is difficult. Ku-band ground 
equipments are readily available and a large quantity of consumer DTH receivers, as well as some interactive terminals 
employing mature Ku-band technology, has been installed.  
 
This paper presents the work performed for the ESA study “Techniques and technologies for multi-spot beam Ku-band 
Satellite networks”. 
The advantages brought by the introduction of multi-beams and associated flexibility on Ku-band payloads are 
assessed, together with an investigation on how system and payload flexibility can help satellite operators to address the 
variation of service demand over the lifetime of a telecommunications satellite, e.g. evolving markets area, increased 
market penetration, variability between services, rapid evolution of services.  
 
Realistic system and flexible payload architectures have been defined for a Ku multibeam mission proposed by SES. 
Different payload architectures are proposed using flexible payload equipments chosen according to the considered 
study medium term timeframe, among them Flex-MPM, flexible input section equipment, MPAs and transparent 
processors. 
A major goal of the study is also the development of system performance evaluation software centred on multi-
dimensional link budget calculations and allowing the optimization of the payload configuration based on power and 
bandwidth allocation algorithms. The tool is based on Astrium’s closely connected background system and payload 
tools, to which an optimizer is added, helping to define the best flexible payload configuration meeting the capacity 
demand. 
 



 
MISSION AND SYSTEM REQUIREMENTS 
 
The mission has been defined by SES. The requirements are to be able to embark on the same spacecraft both a Ku 
multibeam mission over Africa and another DTH mission covering Europe. The multibeam mission is expected to use 
roughly half of the satellite resources. 
The main objective of multibeam proposed mission scenario is the delivery of broadband Internet service to residential 
and professional users in Ku-band over the African and Middle Eastern area. 
Fig.1 gives the forward frequency plan, with Ka-band gateways and for user downlink a “nominal” 4-color frequency 
plan with 500 MHz per user beam, with a possible “extended” frequency plan allowing reaching up to 1 GHz per user 
beam. 
 
Traffic demand scenarios have been defined in terms of capacity, with their evolution with time for both forward and 
return links. Several models of evolution with time have been considered, linked to the evolution of the population 
density, of the demand per market segment or of the market penetration. 
Fig. 2 gives an example of forward traffic demand distribution for 2019. 
 
In order to evaluate the potential benefits of a given architecture, compared to another, a figure of merit has been 
defined. The figure of merit is “a parameter used to characterize the performance of a system”. It has to be a 
combination of measurable quantities. The system performance shall be, as far as possible, characterized from a 
commercial point of view. In this study, the proposed figure of merit is a quantity proportional to the operator financial 
return on the space segment investment.  
 
 
FLEXIBLE PAYLOAD ARCHITECTURES 
 
The beam layout has been defined considering the traffic demand geographical distribution as starting point. A strong 
mission requirement was also to be able to cover as much as possible the “white areas” of lower traffic demand. 
The beam sizes and number has been chosen to fulfill the constraints to accommodate the multibeam mission on half of 
a Eurostar 3000 spacecraft, in terms of available mass, power, dissipation and possible number of equipment. Fig. 3 
gives the defined layout. 
Hot spots are identified with the highest capacity demand. 
 
A first optimization by design has been made to choose the best configuration of TWTs power and bandwidth per beam, 
to match as much as possible the maximum traffic demand of all the defined scenarios. This optimization process was 
not extensive as the idea was to use flexible equipment, so that the payload can cope with an evolving traffic evolution. 
 
Architectures with two beams per TWT are considered for most of the beams, in order to decrease the number of 
required TWTs. 
 

 

  
Fig. 1. Forward link frequency plan   Fig. 2. Forward traffic demand distribution for 2019 

 
 
 



 
Fig. 3. Beam layout 

 
The following system and payload configurations have been worked: 
� a conventional non-flexible architecture with: 

o 48 beam coverage 
o fixed bandwidth allocated per beam and fixed power: between 54 MHz and 1 GHz to be allocated per 

beam according to the capacity demand 
� 3 flexible architectures with: 

o 48 beam coverage and different flexibility options 
o flexibility to start with 6 gateways and a restricted frequency plan (500 MHz max per beam) and to 

deploy more gateways to reach an extended frequency plan with more bandwidth allocated to each 
beam (1 GHz max per beam) 

o flexible allocation of bandwidth and power to beam, using Flex-MPMs or MPAs 
� an architecture enabling a very high level of flexibility in the allocation of gateways to beams, using a processor on 

a sub-set of beams. 
 
Fig. 4 gives one flexible payload architecture, based on Flex-MPMs for power management, and flexible input section 
to save gateway spectrum by adaptation to the demand requirement. 
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Fig. 4. Flexible architecture with Flex-MPMs and SCACEs 



Flex-MPM are used to adapt the power to the used spectrum, in order to get the EIRP/MHz required to match the 
availability requirement and optimize the link efficiency. 
The Flex-MPM models of Tesat-Spacecom GmbH & Co. KG, Backnang, Germany, are used, giving an optimized 
efficiency for a given saturation point and back-off. 
The idea is to be able to save some DC power on beams enabling by design more EIRP/MHz than required, and to use 
this unused DC power to increase the RF power for beams having a lack in capacity and an RF output power margin. 
Because of their improved efficiency when used in back-off, the Flex-MPM enable to save more power than classical 
MPMs. 
 
The flexible input section is made with SCACE, which are flexible down converters enabling to change the frequency 
conversion and including selectable filtering. These equipment are modified versions for broadband applications of the 
first SCACE equipment already flying. 
Fig.5 gives the principle of the SCACE. One SCACE down converts two beams (beams 39 and 7 for SCACE 1 in 
Fig.5) of the gateway uplink and the total bandwidth of the two beams can be selected according to the capacity 
demand, the SCACE enables a filtering bandwidth choice matched to the used bandwidth. 
 
One flexible payload is proposed with 8x8 MPAs and allows sharing power between 16 beams. This offers a very high 
level of flexibility and enables to handle very heterogeneous demand. 
 
For the processed architecture, a subset of the beams and a part of their bandwidth is managed by a digital processor for 
a very flexible gateway to beams bandwidth allocation.  
A transparent processor could be used for two different functions: 

1. for a mesh connectivity on a given number of beams and bandwidth, 
2. to process a part of each beam bandwidth. 

The mesh connectivity is a service that was not expected by the mission requirements, and not covered by the other 
proposed flexible payload architectures, then could not be part of the comparison with the different payloads. 
It has then been decided to implement option 2, on the forward link only, and for 12 beams. 
Four beams of 3 gateways will have a processed bandwidth. Fig.6 gives the processed bandwidth location in the user 
beams. Each processed part of the beam can come from any gateway processed bandwidth. 
 
 
TOOL DEFINITION AND DEVELOPMENT 
 
The developed system performance simulation tool allows analysing the system and payload performance by computing 
the defined Figure Of Merit and performance indicators. Fig.7 shows a functional block diagram of the tool. 
 
The performance simulation tool includes the following input parameters: 
� system parameters and constraints e.g. number of beams, available bandwidth, carrier bandwidth granularity, 

service availability constraints, platform power and dissipation constraints, …  
� payload architecture and corresponding repeater and antenna parameters and constraints e.g. RF output power per 

beam constraints, frequency allocation flexibility constraints, feeder/user link connectivity constraints, mapping 
beam/TWTs …  

� link availability constraints in term of percentage of time, 
� requested capacity over the coverage for all the beams. 
 
 

    
 

Fig. 5. Example of SCACE use    Fig. 6. Processed bandwidth in user beams 



 
 

 
 

Fig.7 System performance simulation tool functional block diagram 
 
The software model evaluates for a given resources allocation plan:  
� RF payload performance over the specified coverage (EIRP, G/T, C/Ico-channel, C/Icross-pol, …) by means of 

modelling of relevant payload sub-systems,  
� payload DC power/dissipation for a given resources allocation plan over the specified coverage,  
� multi-dimensional link budgets in order to evaluate system and payload offered capacity and actual served capacity 

for given traffic; link availability constraints are also checked at that level, taking into account atmospheric 
propagation aspects. 

 
The optimisation engine is used to optimise bandwidth and power resources against the following defined cost function. 

Unmet System Capacity (USC) =    [ ]� =
−bN

b offbreqb RR
1

2
,,     (1) 

Where Rb,req is the bit rate requested by the users in beam b and Rb,off is the bit rate offered by the system in beam b 
according to the output of the optimization process. 
Rb,req is the output of the traffic model assuming a certain distribution with statistical parameters that depend on: the size 
of the beam, the population of the beam, the type of terminals within the beam, busy hours and the GDP per inhabitant. 

� =
= bC

c offcboffb RR
1 ,,, corresponds to the cumulative bit rate of all  carriers in beam b. 

 
The optimization problem is a Mixed Discrete-Continuous Variable Optimization. Several approaches have been 
evaluated and a Genetic Algorithm method has been chosen for implementation. This method is described in [1]. 
 
 
PAYLOAD SIMULATIONS AND TRADE-OFFS 
 
Tab.1 gives the main characteristics of the simulated payloads. 
 

 Gateway pattern Filter Power 
allocation Use of SCACE Use of MPA 

Reference Extended Standard (1GHz) Standard with 
MPM  

 

Flexible 1 Flexible Standard (1GHz) Standard with 
MPM   

Flexible 2 Flexible Flexible with SCACE Flexible with 
Flex-MPM X  

Flexible 3 Flexible Flexible with SCACE Flexible with 
MPA X X 

 
Tab. 1. Simulated payloads main characteristics 
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Fig. 8. Computation of cost function for different initial conditions 

 
Fig. 8 gives an example of the optimizer functioning and test: 
� the “handmade adjusted carrier scheme” takes, as initial conditions to the optimizer, the results of a basic 

optimization algorithm, 
� the scenario one carrier per beam takes, as initial conditions to the optimizer, one carrier in each beam, the fully 

loaded one takes the maximum number of carriers per beam, 
� 40 (or 60) generations scenarios consider 40 (or 60) iterations of the genetic algorithm, each one considering a 

population size of 1000. 
We can see that whatever the initial conditions are, the optimizer converges to the same value, and there is an optimum 
in the number of iterations to reach the best cost function. 
 
Fig. 9 gives an example of optimization results, where it remains still difficult to manage the hot spots. 
 

 
Fig. 9. Optimization results for one flexible architecture and one traffic demand scenario 

 



Several ways to truncate the hot spot capacity demand have been studied together with their influence on the 
optimization results. The truncation considered in Fig.9 truncates the capacity with the maximum offered capacity of 
the beam when the system is fully loaded, that means when the whole spectrum allocated to the beam is used. 
 
The simulation software development is finished and under final validation. 
The first simulations results show the interest of Flex-MPMs and MPAs architectures, but the final trade-offs are still to 
be made. 
Also, in most cases the best cost function is achieved while the total capacity is not at its maximum value, showing that 
a big fixed maximum total capacity is not always the answer to meet at best the traffic demand. 
 
 
CONCLUSION 
This paper gives the main outcomes of the ESA study “Techniques and technologies for multi-spot beam Ku-band 
Satellite networks”. The study will end in June 2012, and it remains work for software exploitation. 
The simulations results, over several traffic demand scenarios and times, will enable to assess the best flexible payload 
architecture. 
A satellite accommodation of the payload has already been made and will be refined with the chosen best payload. 
However, the main goal of the study is already achieved with the system performance evaluation software development, 
enabling a big step in the optimization of a multibeam flexible payload. 
The software, more developed for an operational optimization of an already designed flexible payload, can also help to 
optimize the design of the payload architecture. 
 
 
ABBREVIATIONS AND ACRONYMS 
 
MPA  Multiport Amplifier 
MPM  Microwave Power Module 
Flex-MPM Flexible Microwave Power Module, MPM with commandable saturated output power 
SCACE  Single Channel Agile Converter Equipment 
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