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EuqaristÐec

Me th diplwmatik  aut , kleÐnei ènac kÔkloc, autìc thc proptuqiak c mou foithtik c

zw c. Aisj�nomai loipìn thn an�gkh na euqarist sw ìlouc ekeÐnouc touc anjr¸pouc

pou stìlisan autì to st�dio twn spoud¸n mou.

Arqik�, ja  jela na euqarist sw ton epiblèponta thc diplwmatik c mou, k. Dhm trh

Fwt�kh. O lìgoc pou aisj�nomai tuqerìc pou ton eÐqa epiblèponta den eÐnai mìno oi

gn¸seic pou mou èqei prosfèrei   h aperiìristh upomon  kai empistosÔnh pou èdeixe

sto prìswpì mou. EÐnai kurÐwc h ag�ph pou mou kallièrghse gia to antikeÐmeno twn

algorÐjmwn mèsw tou dikoÔ tou enjousiasmoÔ kai thc t�shc tou na jètei sto epÐkentro

thn ousÐa.

'Epeita, ni¸jw thn an�gkh na euqarist sw kai ìla ta upìloipa mèlh tou ergasthrÐou.

Arqik� oi �lloi dÔo kajhghtèc tou ErgasthrÐou Logik c kai Epist mhc twn Upolo-

gism¸n, k. 'Arhc Pagourtz c kai k. St�jhc Z�qoc, me tic dialèxeic touc kai tic suzht seic

mazÐ mou bo jhsan tìso sthn dieÔrunsh twn gn¸sewn mou gÔrw apì jèmata Jewrhtik c

Plhroforik c ìso kai sthn eurÔterh kallièrgei� mou. 'Epeita ìla ta paidi� tou Er-

gasthrÐou èqoun sqhmatÐsei mÐa atmìsfaira pou k�nei ton opoiond pote na aisj�netai

filìxena se autì to q¸ro. H allhleggÔh pou up�rqei mèsa se autì to ergast rio eÐnai

k�ti pou spanÐzei genik�.

Par�llhla, ja  jela na euqarist sw kai treic kajhghtèc ektìc tou ergasthrÐou,

ton k. Nekt�rio KozÔrh, ton k. NÐko PapaspÔrou kai ton k. TÐmo Sell  gia tic

empneustikèc dialèxeic pou mou prosèferan diaÐsjhsh gia orismèna �lla komm�tia thc

Epist mhc Upologist¸n.

Tèloc, kaj¸c autì to keÐmeno apoteleÐ to kÔkneio �sma thc proptuqiak c mou zw c,

aisj�nomai thn an�gkh na euqarist sw ìlouc ìsouc mou st�jhkan kat� th di�rkeia twn

proptuqiak¸n foithtik¸n mou qrìnwn. Arqik�, despìzousa jèsh diajètei h oikogènei�

mou me th diark  thc st rixh. Katìpin, jèlw na euqarist sw orismèna �toma pou gia

k�poio komm�ti   gia ìlh th di�rkeia twn proptuqiak¸n mou qrìnwn èpaixan shmantikì

rìlo sthn akadhmaðk  mou poreÐa kai thn proswpik  mou eutuqÐa. Pio sugkekrimèna,

euqarist¸ touc Orèsth, Marialèna, BÐbian, M�no, ElÐza, Orèsth, Tzènh, Eir nh, LudÐa,

Nefèlh, Pètro, Panagi¸th, Panagi¸th, Q�rh, Jan�sh, Jèmh, Man¸lh kai K�tia.
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Abstract

Nowadays, monopolies rarely show up as many companies compete for

the crucial mass of most potential services. Moreover, the advent of the

Internet and the rapid growth of social networking facilitates the spread of

information among the customers. Hence, when determining their selling

strategy, companies should take into account these interactions to evade

getting overtaken by their competitors.

Such strategies might include offering the product to some customers

for free so that they can influence their friends or even paying to attract

their interest, either by bribing them or through advertisement. Another

possible decision is selling the product at a low price at first and later

increasing the price, as new customers are rather more eager to pay for it.

In this thesis we survey the main directions in this area. We first elabo-

rate on the diffusion of a product, should an initial influence set be targeted.

Subsequently, we extend our viewpoint to the framework where competing

products spread their influence. In addition to the existing approaches,

our work in computing and characterizing equilibria on such a setting is

concisely described. Afterwards, we move to pricing models and the vital

role that externalities among people play in the firms’ revenue maximiza-

tion. We conclude this document with a brief review of the algorithmic

work in the most fundamental competition pricing models.
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1 Introduction

Everybody has, at some point of their life, faced the dilemma of whether

an investment is worthwhile. There is a tug of war between the happiness

that the investment offers and the money that should be spent in it. The

winner of this game determines the eventual decision.

In Algoritmic Game Theory, these notions are formalized. The hap-

piness is called valuation and is quantified by a virtual price υ. On the

other hand, the money is usually depicted by the price p of the product.

Utility u = υ − p shows the eventual satisfaction of the buyer, considering

the pleasure that the product brings to them but also the disappointment

due to the money spent. It is typical that players in Game Theory try to

maximize their utility.

Nevertheless, there are many products that are far more useful when

friends have also adopted them. Consider, for instance, the mobile phone

industry. When you and your friends have the same package, you may

have unlimited calls or other provisions. Another example comes from the

Internet. Many web games or social networking sites would be less amusing

if you were surrounded by strangers.

These positive externalities are taken into account and increase the

valuation for a product. As a result, the valuation is no longer a pure

number but is instead a function of the set S of friends that already own

it. Hence, the utility is u = υ(S)− p.
In order to model such social network interactions explicitly, graphs are

usually used. The vertices are the players of the game, i.e. the potential

buyers in our case. The edges point the friendship between the vertices

that are adjacent to them. The graph is not necessarily undirected as

the influence may be one way. For example, Brad Pitt’s aroma choices will

probably influence John Mimic but the opposite direction is rather unlikey.

Moreover the edges can be weighted, which quantifies the influence they

depict.

Of course, when deciding to buy a product, the influence that a friend’s

suggestion will exert is usually not independent to the previous recommen-

dations. For example, a friend who will propose you the new product first

might tempt you more marginally than if he was the tenth to speak about

it to you. This feature that makes the mere influence of a node being

greater when you have already been approached by some set than when a

11



superset of it has tried to convince you is called submodularity.

The firms try to use the properties of these externalities among the

potential buyers in order to maximize their revenue. This direction has

become more urgent with the expansion of social networks and the rapidity

with which information moves. Indeed, most of the marketing power still

remains unexploited. Hence, modeling the way that influence spreads and

designing efficient algorithms that approximate the best solutions is of

crucial importance for them.

However, this radical shift in the technologies has brought trouble to

some firms as the competition became larger. Now advertising a product

is easy and often at low cost and the dispersion of digital goods, i.e. goods

that are produced in zero cost such as music songs, is facilitated. As a

result, in most of the areas, monopolies tend to become extinct and are

replaced by competitive firms that seek for the same customers.

This competitive marketing setting was the motivation behind this the-

sis. We try to regard how much it determines the firms’ profit and, con-

sequently, the prices that the customers are about to pay. In addition,

we survey the neat techniques that are suggested in modeling influence

and checking its expansion. This gives an exciting viewpoint towards the

deeper understanding of how social networks work.

The structure of this thesis contains two parts. In the first part, we

examine competitive diffusion models, where the firms’ strategy is to select

some initial set of buyers to attract and later exploit its expansion. In this

setting, the goal of the firms is to gain the most ultimate buyers possible

and do not have any control on the price of the product. On the other

hand, the second part is more interested in the pricing models. There

firms select not only the way they will approach the potential buyers but

also the prices they will offer them.

In section 2, we regard the monopoly Influence Maximization Prob-

lem. There, the firm needs to select the k initial nodes that will ensure

the maximum number of eventual adopters. Many models have been sug-

gested that differ on how the influence spreads and whether it propagates

independently (cascade models) or in an accumulative way (threshold mod-

els). The Influence Maximization Problem is proved to be inapproximable

with any constant factor in each general case, however if there are local

submodular conditions then there is a constant approximation for it.

In section 3, we move to competitive diffusion models and ask algorith-

12



mic questions towards them. Firstly, we are interested in the extension of

monopoly models to the competitive case. Then we survey a broad class

of threshold models with high proximity to reality. We finish the section

posing best response questions in the Stackeberg problem, where there is

a leader who establishes her dominance and followers that take decisions

after this.

In section 4, we emphasise on a competitive contagion model, Switching-

selection model and set game-theoretic questions on it. Firstly, the inef-

ficiency of equilibria (Price of Anarchy) and the superiority of the firm

with the highest budget (Budget Multiplier) is examined. Afterwards, we

move on attempts towards computing and characterizing equilibria in such

a setting, which is the focal point of our own ongoing work. Last but not

least, we examine the role of compatibility in the diffusion of products.

In section 5, we present our own results on computing and character-

izing equilibria in the Switching-selection model. Firstly, we prove that

pure Nash equilibria do not always exist. Then we try to approach these

equlibria, when they exist. We provide an equivalent threshold model that

is more easily tractable. Moreover, we give exact and approximation algo-

rithms for computing a firm’s utility in an instance. Finally, we move to

best response questions trying to understand the nature of these equilibria.

In section 6, we begin the second part, by adding another weapon to the

firm, price. We focus on models with no externalities, where the already

adoptions do not shift users’ valuation. This is a very active aspect of

recent research in Algorithmic Mechanism Design.

In section 7, we initiate externalities and study Influence-and-exploit

strategies. There some people are given the product for free and later firms

try to extract the maximum profit possible by choosing the sequence in

which they will approach the customers and the prices they will offer them.

We interest more in some simple cases of models where the externalities

are submodular. Closing this section, we review the case where the price

addressed to the customers is necessarily undifferentiated.

In section 8, we care about price trajectories under the existence of

externalities. There we examine both posted pricing strategies that capture

this notion and a competitive scenario.

Section 9, which is the concluding section, examines competition pricing

models. After a concise overview in the most prevalent models, we review

some algorithmic extensions on them.

13



Part I

Competitive Diffusion in

Networks
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2 Influence Maximization Problem

As previously mentioned, one strategy that the companies implement in

order to attract more customers is to offer the product for free to some

initial influential set of them, so that they can urge their friends to buy it.

The problem of finding the initial set, posit S, that maximizes the eventual

number of adoptions of the product in the monopoly case, posit σ(S), was

first addressed by Domingos and Richardson in [23, 45]. Following this

work, Kempe, Kleinberg and Tardos [33, 34] have shown that this problem

is NP-hard to approximate within a factor better than 1 − 1
e even for

simple models. However the outcome can be approximately maximized for

these models using a hill-climbing algorithm when σ is a monotone and

submodular function of S (definition given below). Inspired by this work,

Mossel and Roch [40] have extended the latter result for all the models

where the influence functions are monotone and submodular, showing that

such local conditions imply the global monotonicity and submodularity of

σ.

Definition 1. (Monotonicity) The function f : 2V → R is monotone if

f(S) ≤ f(T ) for all S ⊆ T ⊆ V

Definition 2. (Submodularity) The function f : 2V → R is submodular if

f(S ∪ υ)− f(S) ≥ f(T ∪ υ)− f(T ) for all S ⊆ T ⊆ V, υ ∈ V

Most of the positive results referenced above are based on the following

theorem [20, 44, 33]:

Theorem 1. Let f be a non-negative, monotone, submodular function on

sets.

1. The greedy algorithm, which always picks the element υ with largest

marginal gain f(S∪{υ})−f(S), is a (1− 1
e )-approximation algorithm

for maximizing f on k-element sets S.

2. A greedy algorithm which always picks on element υ within 1 − ε of

the largest marginal gain results in a 1 − 1
e − ε

′ approximation, for

some ε′ depending polynomially on ε.

Intuitively, the monotonicity rule implies that the addition of an ele-

ment in set S can’t decrease the value of f(S), whereas the submodularity
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rule implies that this addition offers more marginal gain to S than to any

of its supersets.

Applying the theorem above, the existence of an approximation algo-

rithm of 1 − 1
e (or 1 − 1

e − ε when the exact greedy computation of the

function’s maximizer is not efficient) is proved by just showing that σ(S)

is monotone and submodular.

2.1 Modeling the world

The problem space is modeled as a graph whose nodes are the potential

buyers and where the existence of an edge implies the friendship of two

people. A node υ’s decision of whether to buy the product or not (be-

coming active or staying inactive) depends on an influence function for

each vertex/edge that is based on the set of customers that have already

adopted the product(in most cases, the node is just influenced by its rel-

atives). Hence an initial set of active nodes helps the product propagate

through the network. The goal of the company is to choose the initial k-set

that maximizes the eventual number of active nodes. In most models, this

diffusion is progressive, which means that a node can’t get deactivated,

should it become active once. This is rational as we might imagine the

activation of a node as buying the product. The models proposed differ on

either the condition that leads nodes to adopt the product or the proper-

ties of the influence functions. The most sensible models of this form are

the following:

One of the first models proposed is the Linear Threshold Model. In this

model, each edge e = (υ,w) has a weight bυ,w that quantifies the influence

node υ wields to node w, supposing υ is already active. Each node υ

chooses a threshold θυ uniformly at random from [0, 1], which declares the

minimum total amount of influence that should be exerted to this node to

activate it. Choosing an initial influence k-set S to maximize the expected

σ(S) is NP-hard, which was proved in [33] by a reduction from Vertex

Cover. What is more interesting is the other result about this model in the

same paper, which shows that σ(S) is monotone and submodular for this

model. To prove that, the authors use a technique that proved to be very

useful for future work in the same area. As
∑

w bυ,w < 1 for all υ ∈ V ,

they throw a biased coin to decide which of the internal edges becomes

live, while all the others become blocked (with probability 1 −
∑

w bυ,w,
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no internal edge becomes live). By this technique, they transfer the u.a.r.

selection of the threshold in a much more easy-handling form. Hence, the

problem is reduced to finding live-edge paths from the initial set. As the

cardinality of these nodes, for each of the live-edge paths’ decision, is a

submodular function of the initial set, σ(S) is also submodular (as a linear

combination of them).

Another widely studied model is the Independent Cascade Model. In

this model, each node υ has a probability pυ,w to influence another node

w. The influence is exerted at most once, when node υ gets activated. In

[33], the authors prove that the influnce maximization problem is NP-hard,

even for this simple model using a reduction from the set cover problem.

Moreover, by a similar technique as in the previous model (throwing a

biased coin for each edge at the beginning of the process), σ(S) is proved

to be a monotone and submoduar function of S, which shows the existence

of an efficient approximation algorithm (as already mentioned).

Extending this in [34], the Decreasing Cascade Model preserves the

order-independence of the influence functions but introduces a notion of

submodularity to the probabilities of the model. The influence probability

of each edge now depends on the set of nodes already adopted the product,

however it decreases as the set of adopters increases. Supposing S is the

initial influence set and B,B′ are the sets of adopters at some time, this

means that:

pυ(u, S ∪B) ≥ pυ(u, S ∪B′) for all υ, u ∈ V,B ⊆ B′

The equation clearly implies that, if u is the only contagious node at a time

step, its contribution will be submodular. By getting a threshold identical

viewpoint of the problem and by delaying the influence exertion of newly

activated nodes, the authors isolate each node’s contagion and, as a result,

the desired submodularity follows.

2.2 Hardness results

Although the models already presented hold some nice properties that lead

them to allow efficient approximation algorithms, the general case is not as

easily tractable. In fact, the exact utility computation is #P -complete and

the best response is NP-hard to approximate within any constant factor.

17



2.2.1 Exact utility computation

Theorem 2. The exact computation of the utility in the Linear Threshold

Model is #P -complete.

This was proved by Chen et al in [18]. The reduction comes from the

the problem of counting the number of simple paths in a directed graph,

which is known to be #P -complete. On the positive side, Kempe et al

[34] hinted the existence of a FPRAS for the problem. We will present an

extension of it in section 5.

2.2.2 Approximating the best response in the general case

On the other hand, the best response is not easy to handle, as implies a

reduction from the set cover problem in [33]:

Theorem 3. It is NP-hard to approximate the influence maximization

problem within a factor of n1−ε for any ε > 0

As this proof is highly descriptive for such inapproximable results, we

will present it here.

Proof. Firstly, we should remind the set cover problem: Given a set of n

elements E = {e1 . . . en} and m sets S1 . . . Sm, each of which contains a

subset of E. Find whether there exist k of the sets Si such that their union

equals E.

Given an instance of this problem, we create the following instance of

Influence Maximization Problem. For every element of E, we introduce a

vertex ui and, for every set Sj , a vertex sj . If ei ∈ Sj then a directed edge

(sj , ui) is put. In addition, N = n1−ε vertices are created and we create

directed edges from all the elements of E to all of those N vertices. Last

but not least, we require for each of the N nodes to adopt the product that

all their neighbours have already adopted it, whilst for the nodes ei, just

one neighbour is needed.

As is pretty obvious, the only way to make all the N nodes eventually

adopt is through the adoption of all the elements of E. There is no reason

to select one element of E in the initial k-set, as we can attract this node

through one of si. As a result, we need to find a k-set of {s1, . . . , sm}
such that all the elements of E have a neighbour in it. However, if we can

efficiently solve this problem, we can solve the initial general case of the
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set cover problem. As this problem is NP-hard to solve, any other solution

can’t assure us to have the N = n1−ε nodes in our eventual adopters. As

a result, the problem is NP-hard to approximate with ratio better than

n1−ε.

The above theorem is based on very extreme deterministic thresholds.

In section 5, we will show that even without so extreme thresholds, the

same hardness is preserved.

2.3 Local submodularity of influence is extended

globally

It is easy to figure out that the model used in the previous reduction doesn’t

have the property of submodularity, which is natural as the thresholds

are deterministically chosen. For example, the addition of un offers more

marginal gain in the eventual adopters in set T = {u1, . . . , um−1} than in its

subset S = {u1, . . . , ui} where i < m−1 as in the first case it leads all the N

nodes to adopt. This is expected as we have already pointed the existence

of an approximation algorithm with better approximation ratio than the

one of the inapproximable result. What is more interesting is that, in this

model, the influence functions are not submodular as well. This hinted the

authors of [33] to conjecture a correlation between the submodularity of

the threshold functions of the vertices and the submodularity of eventual

adopters. In [40], the authors answered the aforementioned hypothesis and

reached to the following result:

The diffusion, starting with initial set S, is modeled as a process Sn−1
t=0

where S0 = S, each vertex υ has a threshold function fυ : 2V → [0, 1]

in order to decide when to adopt and selects u.a.r. one threshold θυ in

[0, 1] and, at any time t > 0, a vertex υ is added to St if and only if

fυ(St−1) ≥ θυ.

Theorem 4. If F = (fυ)υ∈V is monotone and submodular with respect to

the set of already adopters then the eventual number of adopters is mono-

tone and submodular with respect to the initial set of adopters.

The proof shares some similar ideas with the proof presented for the

Linear Threshold Model as it unravels information for the threshold step by

step, combining the cascade and the threshold models effectively (need-to-

know representation). Another interesting technique used is the antisense
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coupling, which uses both θυ and 1 − θυ in the coupling process as the

latter is equivalent as θυ is selected u.a.r.
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3 Competitive Diffusion from an algorith-

mic point of view

The work on the monopoly influence maximization broadened the horizons

in the understanding of social networks and created questions on how such

an environment would behave when the setting contains more than one

firms that compete for the same target group. Many models have been

suggested since then to capture the competitive nature of the aforemen-

tioned problem. In most of the cases, the principal direction of work is

based on the firms’ strategy for maximizing their eventual adopted nodes,

supposing that they know the strategy of their competitor, which is a nor-

mal generalization of the problem discussed in the previous subsection. In

this section, we will refer to some of the most interesting models and how

they handle this target. In the next section, we will continue with more

game-theoretic questions.

3.1 The first attempts

The first attempt to deal with this issue was made in [9]. The model pro-

posed was a simple extension of the Independent Cascade Model. Similarly

to this model, there is a directed graph (V,E), each vertex is either active

or inactive and each edge e = (υ, u) has a probability pe to activate u,

once υ is infected (the activation takes place after Te steps, where Te is an

independent and exponentially distributed random variable). The innova-

tion of this model is that now there are b firms, instead of one. Each firm

i selects an initial set Si and the diffusion process evolves as previously

mentioned. The goal of each firm i is to select the initial set Si that maxi-

mizes the eventual number of adopters of product i. Adapting the idea of

live paths presented in [33], the authors prove that the last firm can ap-

proximate his optimal solution to a factor of 1− 1
e , using the hill-climbing

brute-force algorithm, as finding the payoff of a firm i when all the initial

sets of the other firms are fixed is a monotone and submodular function of

Si.

In the meantime, Carnes et al have focused on the competition among

two firms proposing two models. Given a graphG(V,E) their models create

a subgraph of it, where each edge e remains with probability pe measuring

the potential influence exerting on it (a common used to technique to avoid
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the stochastic part of the model during the diffusion process). As in the

previous case, the main question examined is the selection of k-influence

set by a firm A, supposing that their competitor B has fixed their influence

set and those two sets must be disjoint. The goal is again the maximization

of the expected number of eventual adopters (ρ(IA | IB) for the first model

and π(IA | IB) for the second).

Their Distance-based model focused more on the proximity between the

node that is about to adopt and the nodes that influence it. Thus, for each

edge, there was a distance de which measure how far the adjacent nodes

are. The game is played in steps and at each step i each node adopts

a product if it is at a distance i from a node in some initial set (if this

happens for both products, there is a tie-breaking rule, for instance the

number of its neighbours that have adopted product A over the number of

its neighbours that have adopted either of the products). For this model,

selecting IA that maximizes ρ(IA | IB) is NP-hard, which was proved by a

reduction from the set cover problem, however this function is monotone

and submodular and thus the optimal result can be approximated to a

factor of (1− 1
e ). This model takes into account the global initial coloring

of the graph and not only the local neighbourhood of a node. This is, in

fact, far fetched from reality as one usually gets influenced just by people

that are close to them.

On the other hand, their Wave propagation model envisages this prob-

lem by interesting only in the node’s neighbours. In fact, the first nodes to

get influenced are the neighbours of the initially selected influential nodes,

with probability proportional to their influence in contrast to the influence

of their competitor. The diffusion process, afterwards, continues with the

newly colored nodes influencing their neighbours. For this model, as well,

the authors prove that the decision problem of finding the initial sets is

NP-hard, using the same idea as above but π(IA | IB) is a monotone and

submodular function of IA and, as a result, there can be found a good

approximation of this problem. The authors supposed that their result

could be extended in the case of weighted edges, however some years lat-

ers, Borodin et al showed in [11] that this model is NP-hard to approximate

within a factor of o(n
1
2
−ε).
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3.2 Threshold models

In the same paper, Borodin et al suggested some models that focus on

the total influence exerted in one node, combining the General Threshold

Model with the competitive feature. Each node υ selects a threshold θυ and

its choice of whether to adopt the product depends on the total influence

on this node and whether it surpasses θυ. The firms’ strategy is again

to select an initial set of influential nodes. Their Weighted-Proportional

Competitive Linear Threshold Model takes into account the total influence

exerted in a node, when it decides whether to buy, no matter which firm

the influencers have adopted. Afterwards, the node decides which firm

to follow proportionally to the influence of each firm or using another

tie-breaking rule. On the other hand, their Seperated Threshold Model

picks different threshold values for each firm (node υ picks θAυ and θBυ

respectively for firms A and B). Each edge has different influence weights

wA and wB corresponding to each firm and in the decision of adopting one

firm’s product, the nodes examine just the influence exerted by the same

firm.

Unlike the previous models, these threshold models handle the mono-

tonicity and submodularity properties in a different way. The first model is

not monotone as one firm’s additional influence can help their competitors

win some key nodes with high threshold and then dominate in the graph,

ruining their own firm’s fate. On the contrary, the second model cannot

show such side effects as the addition of new influence by a firm cannot

help the other firm surpass its threshold. Nevertheless, both models are

not submodular, as adding a single node in a firm’s initial set can devas-

tate their competitor’s strategy and hugely increase its own payoff. As a

result, these rather logical models don’t have the nice approximation that

the property of submodularity provides.

To strengthen the previous argument, the authors have proved that:

Theorem 5. It is NP-hard to give an approximation with a ratio better

than Ω(N
1
2
−ε) for any ε > 0 for the Seperated-Threshold Competitive In-

fluence problem, where N is the number of nodes in the graph.

Proof. The idea of the proof is similar to the one of the same result for

the Wave Propagation Model and comes from a reduction from the Vertex

Cover Problem.

23



Figure 1: Gadget of the reduction

Firstly, we should remind the description of the Vertex Cover Problem.

Given a graph G and an integer k, we are asked to decide whether a

selection of k nodes so that each edge has at least one of its endpoints in

the selection can be found .

From this instance, we create an instance of the Seperated Threshold

Competitive Problem using the gadget above. Suppose that the number of

edges of G is nα. The dotted lines demonstrate influence just for player

A, whereas the dashed lines demonstrate influence just for player B. The

gadget is repeated for t = 1, . . . , nα. The influential set of player B contains

all the nodes of the form B∗0 for all the edges and t ∈ [1, nα] as well as the

nodes of the form B∗1 and the goal is to maximize the payoff of A when he

is about to select k + 1 nodes.

If a k Vertex Cover exists in G then A can block the influence from the

B0 nodes and, by selecting A0, it can influence P t0 for all t ∈ [1, nα] and

thus acquire a total payoff of at least nα × nβ. Else, it can not influence

P t0 through A0 and at some j, Mj will be taken by B. Thus, A can get

influence at most (| E | +5)nα = O(nα+2) from selecting A0 or an M∗

that is upper to M j and at most O(nβ) from selecting P0 or an M node
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that is downer than Mj . As a result, its eventual cascade will be at most

max(nα+3, nβ+1). The total numbers of vertices in G′ is N = O(n2α+2).

Supposing β = α + 2, this means that, if a Vertex Cover does not exist

then we can get at most O(N
α+3
2α+2 ).

As a result, a polynomial time approximation algorithm that gives a

better approximation ratio that the one in the theorem implicitly solves

the Vertex Cover problem which is not solvable in polynomial time unless

P = NP .

On a positive note, the authors have also suggested a model that is both

monotone and submodular, the OR model, combining features from previ-

ous work on cascade models. There, the two firms act independently and,

given an istance (RA, RB) denoting the set of nodes already infected by

either firm, there exist probabilities fAυ (RA, RB), fAυ (RA, RB), fBυ (RA, RB)

that a node υ gets infected. If those functions are monotone and submod-

ular for all vertices then the total expected number of eventual adopters is

monotone and submodular as well, meaning that the approximation algo-

rithm described in the previous section can apply to the model as well.

Another attempt to model the competition among firms using thresh-

olds is presented in [4]. Unlike the previous models, the thresholds are

not chosen uniformly at random but are selected deterministically and

quantify the reluctance of the nodes to adopt a product under multiple

influence. If a node υ is targeted by just one firm then it adopts its prod-

uct in a straightforward manner. Else it is urgent that a total influence

of at least θυ is addressed to it so that the product is eventually adopted.

In this model, the authors study whether there are instances where one

firm can dominate in the whole network and whether such an outcome is

unavoidable. Furthermore, they study the possible outcomes and whether

they are uniquely determined. Should this not occur, they give upper and

lower bounds for the eventual number of adoptions a firm can ensure under

different possible outcomes.

3.3 Leader-Follower models

One broad class of models are based on the Stackelberg competitition

model which constitutes of the following setting. There is a leader who

decides its own strategy. Afterwards, based on the strategy chosen by the

leader, the followers decide their own strategy. This model makes sense
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when there is a great firm which has pioneering ideas and can initially

sustain their influnce, whereas others will follow, strategizing to those not

already influenced by the leader. More specifically for the Competitive

Diffusion Model, the leader will choose an initial influence set, whereas the

follower will select their influence set from the vertices that are not selected

by the leader. This problem was examined in both [35] and [19] for the

case of one leader and one follower.

The first paper to deal with this issue was [35] which suggested that

the decision of the firms’ strategies was the answer in two problems. The

leader shall answer the (r | p)-centroid problem, which consists of choosing

p nodes to influence at first knowing that the follower will select after-

wards r nodes in order to maximize its eventual influence. On the other

hand, the follower needs to face the (r | p)-medianoid problem of maximiz-

ing its eventual adopters by deciding r nodes to infect, already knowing

which p nodes the leader has selected. The propagation model used is a

deterministic one as any firm getting influenced by the first neighbour to

influence it and, whenever there is a collision among two different firms

trying both to influence it, the tie breaking rule declares that the vertex

refuses both influences and never gets influenced again. Both problems are

NP-hard to get solved but whilst the first problem is NP-hard even to get

approximated by a constant factor even for r = 1, the second problem has

a (1 − 1
e ) when the hill climbing’s algorithm is impelemented. Last but

not least, the authors present a counter example showing that the leader

might be condemned to get outplayed by the follower although this seems

rather obscure.

Figure 2: Gadget for the Centroid problem’s reduction

In order to prove that the (1 | p) centroid problem is NP-hard, the
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authors use a reduction from the Vertex Cover problem. More precisely,

each edge (u, v) of the instance of the vertex cover problem is replaced by

an instance of the gadget shown above (the figure shows two edges (u, v)

and (v, w)). If there is a vertex cover of size p in the initial problem then the

follower will eventually have at most 2 vertices of the new graph influenced

(supposing that the leader picks the vertices of the vertex cover). On the

other hand, unless there is a vertex cover of size p, there will be at least

one whole gudget with no leader vertices in it. Hence the follower will

get 3 or more eventually influenced nodes. As a result, if the existence

of a p-node selection minimizing the follower’s eventual influence could be

selected efficiently, then it could be used to efficiently solve the Vertex

Cover problem, which leads to contradiction unless P = NP . The proof

that this problem cannot give efficiently neither an α-approximation uses

the same idea but a more complex gadget.

Figure 3: Graph used for the Medianoid problem’s reduction

The reduction used to prove that the (r | p) medianoid problem is NP-

hard comes from the Dominating set problem which asks whether there is

a subset V ′ of the vertices of the initial graph G(V,E) such that all the

vertices of the graph are in the set or are straight neighbours of a member

of V ′. Posit that the graph is the one shown above, where, for 1 ≤ i ≤ n, si

has edges both to vi and each neighbours, as well as to sn+1. Furhtermore,

X1 = {sn+1}. It is obvious that, should there exists a dominating set, the

selection of the respective si will give an eventual adoption for the follower

of | V |r. Unless this occurs, this size cannot be acquired as the diffusion

of the leader will influence both the rest of s-nodes and the vertices of G
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that are at distance at least 2 from the initially selected. As a result, it is

NP-hard to solve the follower’s problem.

Sharing a similar perspective, Clark et al suggest in [19] a Monte Carlo

model to examine the leader-follower strategies. Their Dynamic Influence

in Competitive Environment model differentiates from the previous models

in that the nodes, once colored by a firm, can shift to the other firm or to

no firm. This Markov process, under some sensible conditions, converges

to a unique stationary distribution. Furthermore, the insinuated utility

function both for the leader and for the follower has the property of sub-

modularity which leads to good approximation algorithms for the firms’

strategies.
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4 Competitive Diffusion from a game-theoretic

perspective

Until now, the firms’ strategies have been regarded independently as if

their decisions don’t alter the strategy of their competitors. However, in

many occasions, the firms change their strategy regarding their opponents’

behavior. This procedure continues till no firm has an incentive to deviate

from its predetermined strategy unilaterally. This situation is called Nash

equilibrium, was introduced in [43] and exists in every finite game.

Although in many cases more than one such situations can exist, they

might not be equally prefered by the players. The social welfare of an

instance captures the total happiness of the game’s players, given that each

player chooses a particular strategy. It might be the case that sometimes

the Nash equilibrium differs from the situation where the social welfare is

maximized, as players tend to play selfishly, trying to maximize their own

welfare. Hence, an interesting unit for describing a game is how bad an

equilibrium can become, should we let the game unravel. This notion is

captured by the Price of Anarchy, introduced in [36], which measures the

inefficiency of the worst-case equilibrium comparing to the set of strategies

that lead to the maximum social welfare. Essentially, it describes how much

the system’s efficiency deteriorates due to the selfishness of the players.

From a game-theoretic point of view, we are interested in two direc-

tions which we will investigate in our problem as well. The first direction

concerns the difficulty of efficiently discovering the equilibria of a game in

order to predict the system’s behavior, given the rules of a game, as well

as studying the characteristics of those equilibria. The second focal point

is how we can alter the rules of the game in order to lead players to a

strategies’ trajectory that maximizes the social welfare or another goal. In

this case, we are interested in designing mechanisms that urge the system

to behave in a desired way.

In this section, we will deal with such problems in the case of compet-

itive diffusion in networks. We will first focus in the switching-selection

model, recently introduced in [27]. Afterwards, other attempts to stress

competitive diffusion from a game theoretic point of view will be regarded.
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4.1 The switching-selection model

In this model, there are two firms (Red and Black) that tend to maximize

their total eventual adopters of a social network, which is modeled as a

graph G(V,E). In order to achieve that, they have some initial budgets

KR and KB respectively. Their strategy is to spare this money in some

of the nodes of the graph, suppose (ap1, ap2, . . . , apn) is this distribution of

the budget, where api denotes the money firm p provides in order to make

node i adopt its product (
∑

i api = Kp). If node i is targeted by just one

firm then it adopts their product. Else, it adopts product p w.p.
api

aRi+abi
.

This is the first step of the procedure that leads to the initial influential

sets of each firm.

Afterwards, the diffusion process begins. This can happen either se-

quentially (each node is asked in a random order) or in steps (each node

gets influenced just by nodes that have already adopted the product in the

previous steps). We will focus on the latter way. The game is thus played

in steps. The initial part that leads in the creation of the influential sets is

step 0. In any step k, any noninfected node can adopt a product if enough

of his friends urge him to do so.

Hence, there is a switching function f , which gives the probability that a

node will choose to adopt some product (with probability f(αRi+αBi) node

i adopts some product where αip is the ratio of node i’s neighbours that

have adopted product p until this step). The two products are judged as

complementary (for example choosing an operating system with Windows

and Mac as possible options). Thus the switching function expresses the

pressure induced by a node’s friend to buy the product, independently of

its special features.

Once a node decides to buy the product, she tends to decide which

of the different firms she should choose. This feature is captured by the

selection function g, which gives the probability that a node chooses to

adopt product p, given that he has already decided to buy one of the

products (with probability g(
αpi

αRi+αBi
) node i adopts product p).

The update process can occur in many different ways, according to the

authors (such as after every step for a particular period). We choose to

treat function f as the total probability that node i will have bought the

product by time step k and consider that each neighbor influences just

once. Hence, given that α(k−1) neighbors of i have adopted till step k − 2
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and αk−1 have adopted it at step k − 1, the probability that i adopts the

product at step k is f(αk−1)−f(α(k−1))

(1−f(α(k−1)))
as only the new adopters influence i

to adopt. It is obvious that f is a monotone increasing function and it is

sensible to suppose f(0) = 0 and f(1) = 1 (no infection leads to lack of

information and thus non adoption and full peer pressure leads to certain

adoption).

For the selection between the firms, no such modification is urgent as

this biased coin will fall just once. Again, if all the influence of a node

comes from the same firm then he will get this product (g(0) = 0 and

g(1) = 1) and, as the node will get some product in any case, once she has

decided to buy, g(y) + g(1− y) = 1.

Recall that the strategy of a firm p, σp, is to select a distribution of

each initial budget. We suppose that the firms play just pure strategies,

i.e. this distribution is deterministically given. The payoff of this firm Πp,

given both the strategies σR and σB, is as previously the expected number

of eventual adopters of its product, that is Πp(σR, σB) = E[χp | (σR, σB)]

where χp denotes the random variable of the number of eventually infected

nodes by p. If no firm has incentive to deviate from their selected strategy

and win more, that is, for any si and any p, Πp(si, σ−i) ≤ Πp(σi, σ−i) then

(σR, σB) is a Nash equilibrium of the system (σ−i denotes that all other

players apart from i keep playing the same strategy).

4.1.1 Price of Anarchy

The Price of Anarchy in this game quantifies the effect of the non-collaboration

of the firms in their total eventual adopters. More precisely, suppose

(a∗R, a
∗
B) is the allocation tha maximizes their total payoff, that is E[χR +

χB | (σR, σB)] and (σR, σB) is the equilibrium minimizing the total payoff.

Then the Price of Anarchy is defined as
E[χR+χB |(a∗R,a

∗
B ]

E[χR+χB |(σR,σB)] . The denomina-

tor interests just in Nash equilibria as there are the only stable outcomes

of the system, whereas the nominator cares for any possible outcome as,

should an alliance between the firms was decided, this would be a possible

outcome.

The authors go on by giving upper and lower bounds for the Price of

Anarchy. They focus in linear selection functions. As for the switching

function, they use functions of the form f(x) = xr. The value of r can

make this function either concave (r < 1), linear (r = 1) or convex (r > 1).
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Succinctly, their results are given in the following theorem:

Theorem 6. Let the switching function be f(x) = xr and let the selection

function be linear g(y) = y. Then:

• For any r ≤ 1, the Price of Anarchy is at most 4 for any graph G

• For any r > 1 and any V , there exists a graph G for which the Price

of Anarchy is greater than V

We will now give a sketch of the proof for the upper bound. First

observe that the concavity of the switching function and the linearity of the

selection function imply that a firm p is more likely to infect a node in the

absense of a competitor, if we suppose that the number of neighbors that

have adopted its product remains unaltered. This occurs as in such a case
f(x+y)
x+y ≤

f(x)
x as the slope of a concave function reduces as the argument

increases. Using this observation and, running a coupling simulation of

the process where the competitor is absent (solo Red process) and where

the competitor exists (joint process), we get that E[χR | (AR, ∅)] ≥ E[χR |
(AR, AB)] and E[χB | (∅, AB)] ≥ E[χB | (AR, AB)]. The coupling ensures

that the same nodes are asked and that at each time step no node of the

joint process will be painted red if this doesn’t happen to the solo process

as well (as previously mentioned, the latter probability is greater). Hence,

we have the following Lemma, which states that the total payoff of the

firms when competing each other is less than what both could get if their

competitor didn’t exist:

Lemma 1. E[χR | (AR, ∅)] + E[χB | (∅, AB)] ≥ E[χR + χB | (AR, AB)]

Using a similar coupling technique, the authors show that the total

payoff of the firms when competing each other is greatet that what each

of them would get if its competitor didn’t exist.

Lemma 2. E[χR | (AR, ∅)] ≤ E[χR + χB | (AR, AB)]

Combining these lemmas, we get the following corollary that proves the

upper bound:

Corollary 1. For any Nash equilibrium (SR, SB),

E[χR + χB | (SR, SB)] ≥ E[χR+χB |(S∗R,S
∗
B)]

4

where (S∗R, S
∗
B) is the strategy trajectory leading to the maximum total pay-

off.
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4.1.2 Budget Multiplier

A significant contribution of the same paper is the notion of the Budget

Multiplier, which quantifies the extent to which the initial difference in

budgets determines the eventual dominance of a firm in the outcome of

the game. More precisely, supposing that KR > KB the Budget Muti-

plier is the ratio ΠR(σR.σB)
ΠB(σR.σB) ×

KB
KR

for the Nash equilibrium (σR, σB) that

maximizes this ratio. Intuitively, this quantity declares whether the initial

suppremacy in budgets is reflected in the outcome (bigger Budget Multi-

plier implies more suppremacy of the initially dominant firm).

Similarly to the Price of Anarchy, the authors continue with offering up-

per and lower bounds for the Budgett Multiplier. For the selection function,

they focus on Tullock context functions of the form ys

ys+(1−y)s . For s = 1

we have the linear selection function discussed above. For s > 1, there is

a polarizing selection function that favors a winner-take-it-all conception,

whereas for s < 1, there is an equalizing selection function that normalizes

the initial inequalities. When either the selection function has a polariz-

ing behavior or the switching function is strongly convex (f(1
2) = 0), the

authors show instances where the budget multiplier, for any V is greater

than V .

On the other hand, for linear switching and selection functions, it is

proved that the budget multiplier is at most 2 as the minority party (posit

B) can copy the KB most profitable nodes of R. From those nodes, the red

node gets
∑KB

i=1 E[χRi | (SR, ∅)] ≥ KB
KR

E[χR | (SR, ∅)], supposing it plays

alone, where χRi is a random variable declaring the expected contribution

in the payoff of this node. As a result, as all the functions are linear,

playing this strategy, the Blue firm has at least 1
2
KB
KR

E[χR | (SR, SB)].

Thus, in Nash equilibrium it will have at least this payoff (or else it would

have incentive to deviate to the decribed strategy: E[χB | (SR, SB)] ≥
1
2
KB
KR

E[χR | (SR, SB)]. As a result, the budget multiplier is at most 2.

4.2 Attempts of computing Nash equilibria

Probably the first attempt to address equilibria questions arose in [2].

Their model included n firms that target (for simplicity reasons) one node

each. In the later steps, the nodes influence their neighbors. If a node

gets influence by just one firm, it gets this product but if it gets multi-

ple competitive influence, it abstains from buying it for the rest of the
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game (as the authors claim there is great negative advertisement from the

competing firms). For this simple model, they prove that Pure Nash Equi-

librium always exists when the maximum distance of two nodes is 2, but

there are cases where it does not exist when it is greater than 2. This

result, although seen as far fetched, seems to approach the form of social

networks. Recently, Goel et al in [26] have presented a number of experi-

ments on real social networks (Yahoo!, Zync, Twitter News) showing that

the vast majority of diffusion occurs in the the first few steps, challenging

the cascading models.

4.3 Compatibility in competitive diffusion

Until now, we have limited our approaches to cases where the potential

buyers choose only one firm’s product and can communicate just with

those having picked the same firm. In [31], Immorlica et al waive these

constraints and study the effect of multi-firm adoption and compatibility

among those firms. Their model is an extension of Morris’ Contagion

threshold model presented in [39]

In his model, the firms are located in the ends of a line and there is a

point, whose distance to a firm shows its superiority in quality comparing

to its opponent. More precisely, a node’s utility is q | SA | where q ∈ [0, 1] is

a quality factor and SA the set of its neighbors that have selected product

A, if it selects product A and (1 − q) | SB |, (where SB is the set of its

neighbors that have selected product B), if it selects product B. Morris

interests in the significance of the quality in the dominance of a firm and

searches the behavior of the system for different network structures and

different quality factors, trying to figure out how much quality superiority is

needed so that a newly introduced firm can dominate fully in the network,

by endowing a small fraction of the total nodes in order to attract them.

If it can dominate in the whole network, then the firm is called epidemic

Immorlica et al extend his model, permitting the buyers to take both

products. In that case, the buyers enjoy full communication with all their

neighbors but have a cost c due to preserving both products (their utility

function is | S | −c where S is the set of its neighbors). Like previously,

they study the case that a new firm bribes some small fraction of the total

nodes to join it. Afterwards, each node may change either by adopting

just one product or both until no node has reason to deviate and increase
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its payoff, where a Nash Equilibrium is reached. They prove, through a

contradiction technique, that when a node decides to adopt the new firm or

discard the old firm, this decision can never get recalled, which means that

a Nash Equilibrium can always appear (it works like a potential function

[38]) and, if there are infinite time steps, the order with which the update

process occurs does not influence the eventual result. Continuing their

results, they prove that, even in this generalized setting, a firm can never

become epidemic if the other firm is of higher quality and, even when it is

of higher quality, there are cases where it will stay non-epidemic

The second extension they make is letting firms have some limited

compatibility among them (meaning that users of different firms have some

limited utility from their communication). Although the results remain

unchanged for the case of 2 firms under this new addition, this option

offers the existent firms a powerful weapon to resist, should a new firm

tries to enter the market, being superior in quality than them. In fact,

the coalition of the existent firms is proved often capable to prevent such

a firm from becoming epidemic and eliminating them.
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5 Our results

One interesting extension of [27] contains studying how the firms will be-

have in the Switching selection model, presented in subsection 4.1, and the

strategies they will implement. We first show a counterexample proving

that Pure Nash Equilibria do not exist in all the instances of the problem.

Afterwards we suggest a stochastically equivalent threshold model, where

we give a Dynamic Programming Algorithm for computing a firm’s payoff

given the strategies of the firms. Although this algorithm is polynomial

when the graph is a DAG(Directed Acyclic Graph), it is exponential in

general graphs. We conjecture that the exact payoff computation for gen-

eral graphs is NP-Hard. However, using sampling, we can ε-approximate

it ∀ε > 0. This means that there is an efficient way for a firm to decide

its best response , given the strategy of its opponent (if the budgets are

relatively small). Trying to approach the best response, we extend the

hardness result of [33] and prove an inapproximability result when the

thresholds take any deterministic value. Open directions contain answer-

ing questions regarding the computation of best response with thresholds

chosen uniformally at random. This is a joint work with Dimitris Fotakis

and Vangelis Markakis.

5.1 Pure Nash Equilibria

A Pure Nash Equilibrium, i.e. a Nash Equilibrium where the players have

pure strategies (deterministically defined), is not always existent in our

game. For instance, suppose there are two components C1 and C2, each of

which is a star with N nodes and both the switching and selection functions

are linear. Moreover posit KR = 3 and KB = 1. It is obvious that the Red

player will put some budget to the centre of both components, as it will

ensure all the N nodes of this component if the Blue player puts no budget

there and some of it if the Blue player’s budget is put to that componennt.

Hence 2 of the Red player’s budget can be put to the centre of C1 and 1 to

the centre of C2. The Blue player will search to avoid the component where

the Red player has put more budget and will select to put its budget to the

centre C2 to ensure payoff N
2 . However, the Red player will have incentive

to move one unit of budget to C2 in order to increase its payoff from N+ N
2

to N + 2N
3 . Sequentially, the Blue player will have incentive to alter its
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distribution and this never stops. It is easy to see that any other selection

of initial nodes than targeting the central nodes of the components is not

best response for a player. Hence, these games do not always possess Pure

Nash Equilibria.

5.2 Equivalent Threshold Model

In order to collect all the randomness in the beginning of the process

and then treat everything in a deterministic way, we suggest an equiva-

lent threshold model to the switching-selection model, under the switching

function we have presented in subsection 4.1.

We first remind the details of this function. We choose to give a cum-

mulative pattern in the switching function. More precisely, f(α(k)) shows

the probability that a node would have bought the product before time step

k, providing that α(k) percentage of her neighbours have already adopted

till then. Hence, at each step, the probability that a node adopts, posit

x, is influenced only by the marginal influence of neighbors that have not

influenced her in the past. As a result, the probability that the node will

have adopted after k steps is equal to the probability that she has adopted

before the k-th step plus the conditional probability to adopt at this step.

Formally:

f(αk) = f(α(k−1)) + (1− f(α(k−1)))x⇒ x = f(αk)−f(α(k−1))

(1−f(α(k−1)))

We observe that for every node there is a threshold behavior during

the diffusion process, as there is some percentage of neighbors that lead to

her eventual adoption. This is decided during the process as it is a cascade

model. In order to collect all the randomness in the initial step, we pick

this threshold in the beginning, randomly from the distribution f−1.

As for the selection part, we number the neighbors of each node and

pick a number θ for each node uniformally at random. When the switching

function decides that the node adopts, then each of her live neighbors

(already adopters) takes a part of [0, 1] according to the distribution g and

the relevant position in the initial numbering. Obviously, θ is in one of

these parts and this shows who will influnce her to decide which firm to

follow.
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5.3 Exact computation of the utility

In order to deal with the computation of the utility in general cases, we

first present a dynamic programming algorithm for directed acyclic graphs

(DAG). For every node and every step, we keep Ri,k (Bi,k) denoting the

probability that this node was infected strictly before step k − 1 by red

(blue) firm. Furthermore, we keep Rc,k (Bc,k) denoting the probability

that this node was infected in the step k − 1 and is thus contagious. The

game ends after at most N steps as, in order to continue, a shift in at least

one node must occur. This happens because the nodes are N , they are

colored at most once and a shift in a step demands a shift in the previous

step so that there are contagious nodes.

Initially, we set:

• Rc,0 = 0, Bc,0 = 0 if no firm has targeted node i in its initial set

• Rc,0 = 1, Bc,0 = 0 if just the red firm has targeted node i

• Rc,0 = 0, Bc,0 = 1 if just the blue firm has targeted node i

• Rc,0 = aR
aR+aB

, Bc,0 = aB
aR+aB

if the red firm has put a budget of aR to

node i and the blue firm has put a budget of aB to it.

In step k, node j is influenced just by the contagious nodes. The prob-

ability of that influence is conditional to the fact that it was not previously

colored by another node. Hence, this probability is:

x =
f(

∑
i∈N(j) (Ri,k−1+Bi,k−1+Rc,k−1+Bc,k−1))−f(

∑
i∈N(j) (Ri,k−1+Bi,k−1))

1−f(
∑
i∈N(j) (Ri,k−1+Bi,k−1))

If it is decided to get colored then it is colored red w.p.

y = g(
∑
i∈N(j) (Ri,k−1+Rc,k−1)∑

i∈N(j) (Ri,k−1+Bi,k−1+Rc,k−1+Bc,k−1))

and blue w.p. 1− y.

Following to that, we update Ri, Bi, Rc, Bc:

• Ri,k = Ri,k−1 + (1−Ri,k−1)Rc,k

• Bi,k = Bi,k−1 + (1−Bi,k−1)Bc,k

• Rc,k = xy

• Bc,k = x(1− y)

The expected utility of a firm is the sum of the probabilities of each

node being colored by firm’s color at step N : Πp =
∑

i pi,N
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The above algorithm is polynomial to the number of nodes and has

complexity O(N3).

The reason that it works is because the influence has a certain direction

and hence the increase in the probability that a node i is colored due to

j cannot enhance j’s probability of being colored. In order to extend the

result to general graph we need to keep, for each probability, a history

of those that participated in its augmentation and exclude phenomena of

influencing the influencers. This demands an additional 2N for every such

probability and makes the algorithm exponential.

We conjecture that this cycle phenomenon cannot be faced in order

to compute exactly the payoff in polynomial time. However, as we show

in the next subsection, it can be approximately computed with as good

approximation as we desire using sampling.

5.4 Approximate computation of the utility

In order to compute the utility in polynomial time, we use sampling. From

Hoeffding bounds, it is known that when X1, X2, . . . , Xn are independent

random variables that are bounded in [ai, bi] then, by sampling, we can

approximate the expected value. In our case, these independent random

variables are the payoffs of the process. Thus, if S = X1 +X2 + · · ·+Xn

then:

Pr(|S − E[S]| ≥ t) ≤ 2exp(− 2t2∑n
i=1(bi−ai)2 )

We need to approximate E[S], which is the expected value of the sum

of n variables. As a result, in order to achieve ε additive approximation, we

need to set t = nε. Then, we shall find the n that makes this approximation

almost certain (sets the right part of the comparison in an extremely low

value).

As the possible values of the random variables are numbers of nodes,

they will be between ai = 0 and bi = N . As a result, we have:

Pr(|S−E[S]| ≥ nε) ≤ 2exp(−2n2ε2

nN2 )⇒ Pr(|S−E[S]| ≥ nε) ≤ 2exp(−2nε2

N2 )

As a result, in order to achieve an ε-approximation of the utility w.p.

1−ε′, we need n samples s.t. ε′ = 2exp(−2nε2

N2 )⇒ −2nε2

N2 = ln( ε
′

2 )⇒ 2nε2

N2 =

ln( 2
ε′ )⇒ n = ln( 2

ε′ )
N2

2ε2
.

With appropriate selection of ε, ε′ and thus of the number of samples,

we have as good an approximation as we wish.
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5.5 Hardness of best response computation

In [33], the authors give an inapproximability result (presented in subsec-

tion 2.2) which states that finding the initial influential set is NP-hard to

approximate within O(n1−ε) for all ε > 0. Their reduction is from Set

Cover but demands extreme deterministic thresholds. In the one layer, a

node buys the product if at least one neighbor has bought it, whilst in the

other it buys if all her neighbors have bought it. In this subsection we

extend their result for every possible deterministic thresholds and not only

for extreme cases.

In fact, this shows that the best response in our problem is NP-hard

to approximate within O(n1−ε) when the thresholds are deterministically

chosen, even in the absense of the opponent. We will restrict our reduction

to the case that all the threshols are deterministically chosen at 1
2 , i.e.

a node adopts the product if at least half of her neighbors have already

adopted it.

Proof. Suppose an instance of the Set Cover problem. There exist m sets

Si ∈ S and n elements ej ∈ E. Each set is a subset of the elements S ⊂ E.

We need to find k sets such that all the elements exist in their union.

We will create an instance of our problem. As in [33], we first create

a node Si for each set and a node ej for each element. We put a directed

edge from (Si, ej) if and only if ej ∈ Si. Moreover, we create N extra nodes

and put directed edges from all ej ∈ E to all those N nodes.

Now we need to formulate the 1
2 threshold for the layer of the elements.

Hence, we create a universal node u. Furthermore, for every ei ∈ E we

create in degree(i) − 1 nodes vi,j (one less than the number of her total

appearances in the sets of S). We add the edges (u, vi,j) for all those nodes

and the edges (vi,j , ei) for the element node to which they refer.

Following to that, we fix the 1
2 threshold for the layer of the extra nodes.

We create n+ 1 dummy nodes and put directed edges from them to all the

N extra nodes. Last but not least, we add an edge between the universal

node and each of the N extra nodes.

We need to select k′ = k+1 initial influential nodes in order to maximize

the number of eventual adoptions. We will show that, if a k-set cover exists

then we can make all the N extra nodes adopt. Unless this happens, we

can take none of them if we do not target it in the initial set. Hence, with

appropriate choice of N , the inapproximability result will follow.
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If there exists a k-set cover then, by selecting those nodes and the

universal nodes as our initial influential set, we can make all the element

nodes adopt. The universal node makes all vi,j nodes buy (as their in-

degree is 1, their adoption depends only on the adoption of u). In order

for an element node to reach the 1
2 threshold, one more adopting neighbor

is needed. This comes from the set cover as each element is in at least

one of the selected sets. Afterwards, all the N extra nodes buy as half of

their neighbors (the element nodes and the universal node have already

adopted). Hence, N + n+ k + 1 nodes adopt the product.

If we pick the universal node and there is no k-set cover then, in the so-

lution that maximizes the eventual number of nodes adopting the product,

at least on element node does not buy (posit ej). As there is no k-set cover,

we cannot pick set nodes such that all the elements are in them. Hence, ej

will have less than the half of her neighbors adopting the product and, as

a result, will not adopt. This means that the N extra nodes will not adopt

the product, as they will have at most the influence of the universal node

and n − 1 from the element nodes, leading to n
2n+2 <

1
2 of her neighbors.

It is obvious that we have none of the dummy nodes adopts the product

because, if one of them has adopted, we can pick a set containing ej instead

and win at least as much.

If we do not pick the universal node, then even if we manage to take

all the element nodes (k+ 1-set cover), we cannot take any of the N extra

nodes as they will receive again influence less than their threshold’s. As

previously, we cannot have a dummy node selected as it would be more

profitable to replace it with either the universal node or one set node

containing an element node not selected.

Thus, unless a k-set cover exists, we can make at most (n−1)+k+1 =

n+k adopt whilst, if a k-set cover exists, we can make N +n+k+1 nodes

adopt. The total number of nodes is M = N+m+n+(n+1)+(m−n)+1 =

N + 2m + n + 2. Fixing N = Ω(M1−ε), the inapproximability result

follows.
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Part II

Competitive Pricing under

externalities
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6 Pricing without externalities

In the previous part, the main objective of the firms was to spread their

influence to the maximum possible number of buyers. Hence, the prob-

lem was to find the initial influential set that would enable the maximum

eventual expansion.

However, seeking to maximize their revenue, firms take advantage of

another degree of freedom, price. Sometimes it is more profitable to have

less diffusion when each buyer pays more for the product.

In this section, we will thus neglect the importance of the externalities

in convincing potential buyers to adopt a product and will focus on the

power of price and how it can be used to make them pay the maximum

amount of money they are willing to. The goal of the section is to introduce

the reader to the area of pricing and discuss some correlations with game-

theoretic and algorithmic areas. Hence we will not cover all the litterature

of the area.

6.1 Auctions vs Pricing

This direction was widely introduced in [28]. Supposing that many different

objects are offered, each potential buyer has a valuation for each subset

of them. Guruswami et al are interested in designing pricing algorithms

that are envy-free, i.e. allocations of bundles to buyers at some prices

such that no buyer would prefer another bundle and its price to what he

has received. As the general case is intractable due to the vast variety of

different possible allocations and the limited supply of objects, the authors

specify to two cases: when each bundle contains just one object (unit-

demand bidders) and when each buyer has positive valuation just for one

object (single-parameter bidders). Even these special cases are APX-hard

and the authors give logarithmic approximation algorithms. Dealing with

the unit-demand bidders’ problem, Guruswami et al regard the solution

as a matching between the objects and the customers. In order to ensure

envy-free pricing algorithms, they cut low-priced edges of the matching,

putting reserve prices to the objects (prices under which the object is given

to nobody). This elucidates a correlation between optimal algorithmic

pricing and algorithmic multi-parameter mechanism design.

Algorithmic mechanism design is a very active research area. The focal
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point in such problems is to find a mechanism that decides the allocation of

the products to buyers and the prices they will pay, ensuring the maximum

amount of profit to the auctioneer. Buyers might misreport their true

valuation for the objects, trying to increase their own utility and thus

such mechanisms usually have to be truthful, giving no incentive to the

buyers to deviate from reporting their true valuations. Single-parameter

mechanism design, i.e. the case where each buyer reports a single value, is

solved by Myerson. In his seminal paper [41], he considers the case that

the values of each buyer are private and come from a distribution, known

to the auctioneer. He implements an auction on his virtual valuations,

that take into account both this distribution and the declared buyers’ bid

and using a technique called ironing in order to make the virtual valuation

function non-decreasing. The item is afterwards given to the buyer with

the biggest virtual valuation in a price that comes from his own virtual

valuation function and the second bigger virtual valuation. This algorithm

solves the single-parameter problem optimally. Much research is done to

the direction of addressing the multi-dimensional problem but, apart from

its relations with the Pricing problem, is out of the scope of this thesis.

In [14] and [15], the Algorithmic Pricing problem and the Algorithmic

mechanism design problem are directly related. In [14], Chawla et al use

Myerson’s technique to approximate the optimal solution of the aforemen-

tioned Unit-demand Pricing Problem with a constant factor of 3, when

the valuations of the players are independent random variables. They also

suggest Polynomial Approximation Schemes for the case where the valu-

ations are regular (the virtual valuations are non-decreasing). Extending

their work in [15], the authors arrive at good approximations of the opti-

mal single-dimensional pricing solution by using sequential posted-pricing

mechanisms, where buyers in sequence are given a take-it-or-leave it price.

This result is generalized in some multi-dimensional settings, showing the

implicit connection among these two problems.

This framework is discussed and extended in some other papers with

positive and negative results. In [13], Cai and Daskalakis stress that there

exists a PTAS for computing a price vector whose revenue is a (1 + ε)-

approximation of the optimal revenue both for the regular case and the

Monotone Hazard Condition case (analyzed in subsection 7.1). In both

cases, a constant number of distinct prices are needed. As the authors

analyze some structural properties of the problem, they reduce the vec-
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tor space of possible solutions and, as a result, do not use a loose lower

bound for the optimal solution, unlike previous work on the same prob-

lem. On the opposite side of the coin, optimal pricing in the unit-demand

bidder is hard when the bidders’ prices are correlated [12] and in various

other Bayesian settings when prices follow some specific distributions [22],

making resorting to approximation schemes vital.

6.2 Unknown distributions

While the previous work considers that the distribution of the valuations is

known, this is not always the case. In many cases, the seller should extract

this information during the selling process through a sampling step in order

to be able then to design an effective pricing policy. This problem has a

direct correlation to the Secretary problem where the potential employees

come online for an interview and the employer should inform them for the

outcome just after the interview. In [6], Babaioff et al address the one-

dimensional problem of designing such a seller’s strategy when the bidders’

utility come from a distribution which is unknown and the bidders are un-

willing to reveal. Focusing on sequential posted-prices, they show that the

optimal revenue in such a case is Ω( logn
loglogn) to the optimal online revenue

when the distribution is known. However, when we restrict the possible

distributions to those that satisfy the Monotone hazard rate condition, this

ratio diminishes radically to just a constant factor, when the number of

players is significantly bigger than the support of the distributions.
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7 Influence and exploit

In this section, we will focus on monopoly Influence-and-exploit strategies

that, in fact, bind the aforementioned directions. At the first step, the

firm offers for free the good to some selected nodes (the influencers) and

subsequently exploits the externalities they induce to the rest in order to

sell the product to them in a higher price.

The idea was introduced in the seminal paper [30]. There, Hartline,

Mirrokni and Sundararajan suggest two main models to capture the in-

fluence exerted: the Uniform Additive Model where the influence of each

neighbor that has already bought the product is independent and works

in an additive way and the Concave Graph Model where this influence is

a submodular function of the set influencing the potential buyer. In both

models the authors have suggested some results that were later amelio-

rated. Another direction that this paper suggested was the idea of fixed-

prices where the firms have no power on defining different prices for each

buyer.

7.1 Marketing Strategies

The marketing strategy of a firm depends on some decisions it must take.

At first, it should decide the sequence with which it will approach the

potential buyers and then offer them such prices that will maximize its

expected revenue.

In [30], the authors simplify the second step by assuming that sellers

are myopic. As a result, when selecting the price, they try to maximize the

revenue from each buyer neglecting its potential influence on the following

buyers. This price is called myopic price.

Challenging this assumption, Fotakis and Siminelakis [25], focusing on

the Undirected Additive Model, proved that offering prices smaller that

the myopic is often more profitable. Selling more inexpensively, sellers

augment their influential set and this influence exerted on future buyers

compensates for the myopic loss.

Approximating the optimal solution of these problems was a main issue

in both papers. In [30], the authors prove the NP-hardness of choosing a

myopic marketing strategy, i.e. choosing the sequense that maximizes the

revenue. The approximation algorithm they suggest lacks a tight upper
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bound. Following this work, the authors of [25], after proving the NP-

hardness of the non-myopic case, improve the approximation ratio using

semidefinite programming and observing the relation between large cuts

and good influence-and-exploit strategies.

7.2 Submodular externalities

In the Concave Graph Model, Hartline et al consider a useful property, the

monotone hazard rate condition, in order to create their approximation

algorithms.

Definition 3. A distribution, with density function f and distribution func-

tion F, satisfies the monotone hazard rate condition if h(t) = f(t)
1−F (t) is

monotone non-decreasing.

Supposing that this condition holds and that the revenue functions for

each player are submodular, they arrive at a 1
4 -approximation algorithm of

the optimal revenue in the Concave Graph Model. In fact, the algorithm

is very simple. Each potential buyer is chosen in the Influencers w.p. 1
2 .

Then the rest pay at least half what they would pay if they were globally

influenced, due to the submodularity of the revenue function. Hence, the

approximation ratio comes straightforward.

In [29], Haghpanah et al consider the problem of auctions with pos-

itive network externalities, inspired by [30]. Using the submodularity of

the expected revenue they can extract from one set and recent results in

submodular maximization, they increase this result.

An interesting class of submodular externalities where the authors of

[29] focused is the step-function externalities. In this case, a node buys the

product if at least one of its neighbors has already bought it. This ressem-

bles to a graph-theoretic problem, where we need to find a maximum-

weight subset of (possibly negative-weighted) vertices, whose induced sub-

graph contains no isolated vertices.

Facing the problem we discussed previously with the loose upper bound,

they made a LP-based auction and rounded its solution. The result was

a 0.73-approximation for the initial problem, leading to a huge increase to

the ratio.
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7.3 Extensions

Based on the Influence-and-exploit model, many research works tried to

pose questions towards a better understanding of the area.

In [5], Arthur et al enrichened the model, rewarding already adopters

that influence their friends with a cashback offer for every customer they

convince (to buy the product). This offers them incentive to personalize

their influence and make their advertisement more successful. As a re-

sult, the offer of the seller to a prospective buyer includes both a price

for adopting the product and a commitment in a cashback price for ev-

ery subsequent adopter influenced by her. As was previously described,

marketing in such a setting is the result of many biased coinflips (which

decide whether a buyer will purchase the product or not). As a result,

it is sensible to assume that the firms should better adapt their strategy

depending on the state of the random process. Surprisingly, the authors

suggest a seller strategy that, despite being non-adaptive, incurs revenue

just a constant factor away from what could have been acquired by an

adaptive strategy.

Another interesting extension of the original model is found in [37]

where the authors permit just a fixed-price in the exploit-step for all the

buyers, again under the existence of positive network externalities. The

seller’s strategy is to select the initial influential set and the fixed-price p.

Bounding the possible values of p, they sample in order to generate oracle

calls for each of them, influenced by [33], and receive a 1
2 approximation

for the maximum revenue. Then they prove that the expected revenue

from each user in a price p is a sumodular function of the influence set.

Then, the approximation ratio comes from a recent result in submodular

maximization.
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8 Price trajectory under externalities

In this section, we allow firms to alter their price as time passes. The

original Influence-and-exploit model includes a setting where a different

price is destined to every customer and the game is one-shot. On the

contrary, in posted pricing, the seller’s strategy is a price trajectory that

is addressed to all the customers and the game evolves in many stages.

The reasoning behind these decisions are based on the way advertising

works and the significant role externalities play. Firstly, a new product

can take some time to get best known and, as a result, its initial pricing

should be low in order to urge people adopt it. What is more, some trial

editions might include bugs that justify a significant discount in their early

adoption. As the process goes by, the product becomes more known and

better designed, which induces a higher price. Last but not least, the

products are usually promoted through advertisement so the offers are

usually universal and not customized to every possible buyer.

8.1 Modeling and exploiting externalities

The idea of avoiding price discrimination was introduced in [1]. Akhlagh-

pour et al supposed that the strategy of the firms was to choose a k-price

trajectory for all the steps of the game. In both their models, they assumed

that each customer has a valuation for the product that is increased in an

additive way due to the externalities posed by their friends. Their Basic(k)

model suggests that the externality acts immediately and, as a result, the

valuations alter during the same step. This obliges the firms to adopt a

decreasing price trajectory that seems weird (as the only reason not to

adopt a product is that she does not value it so highly, after all external-

ities are exerted, and this means that a higher price in the next step can

offer nothing to the seller). On the other hand, their Rapid(k) model is

more sensible as it assumes that the interactions take some time to occur

and hence the valuation is updated in the next step. Finding an optimal

strategy in such a setting is NP-hard to approximate within a constant

factor. This follows by a neat reduction from the Independent Set.

A slightly different perspective is given by Anari et al in [3], where the

buyers are not considered myopic. There, the price trajectory is explicitly

given to them initially (for instance, trial editions’ price, early adoption,
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etc) and the customers adopt the product if and when they estimate that

their utility will get larger. The essential difference is that the externalities

in their model do not just increase the buyers’ opinion towards the model

but also enhance the quality of the model, as bugs may be fixed and the

product is better tested in subsequent versions. In order to deal with this

problem, the authors seperate the customers to types (each one describing

people with similar valuation functions) and study the equilibria of this

game and approximations on the best revenue strategy in some special

cases (that differ in the nature of the valuation functions).

In some cases, the externalities do not act in a positive way. For in-

stance, discriminating in a company by the products acquired is something

that often provides joy to some people. In order to model this feature in

[10], Bhattacharya et al examine a game where two products are offered

(a cheaper with fewer assets and a more expensive one). The valuation of

somebody towards the expensive product is increasing for every friend that

has not adopted it, as this offers them the opportunity to boast for this

acquisition. This effect of negative externalities is an interesting direction

towards a better understanding of the interactions among people.

8.2 Competitive Pricing under externalities

In the previous part, we have discussed competition in their effort to dis-

seminate their propagation and buyers’ behavior was a result of the influ-

ence exerted to them. In [8], the problem is discussed from the buyer’s

point of view. Many competing products are offered in different prices.

The valuation of the buyer towards each product is a combination of his

initial (intrinsic valuation) and the increase made due to the externalities.

The authors take into consideration simple cases of externalities (concave,

convex and step-function), model them by linear programs through very

elegant transformations and round their solutions in order to receive good

approximation ratios for the welfare in such a game. Moreover, they prove

that pure Nash equilibria always exist in such a game by showing the ex-

istence of a potential function. Last but not least, they study revenue

maximizing mechanisms, using ideas already discussed in section 6. This

is the first approach towards competitive pricing, taking into account the

effect of externalities.
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9 Competition Pricing Models

In this last section, we will focus on the two most prominent competition

pricing models. In the Cournot model, the firms strategize on the quantities

produced and the prices are implicitly given by them. On the other hand,

in the Bertrand model, the prices are directly chosen by the firms and

the competition is on them. Our main scope will be to elaborate on the

algorithmic game-theoretic handling of those models but first it is useful

to present some details about the models.

According to [46], in 1838, Cournot, who is considered as the pioneer

of the mathematical formulation in the economics, tried to capture the

competition among the mineral water production firms [21]. Each firm’s

strategy was to decide the quantity produced and the price was inversely

related to the total quantity produced. Its goal was to cover the marginal

cost of the production and ensure the maximum possible profit. It is

obvious that firms may have incentive to alter their strategy, regarding

their competitors’ strategies in order to win more, which is very similar to

the notion of equilibria, later formalized by Nash.

In 1883, Bertrand, reviewing this model [7], demonstrated its ineffi-

ciency when the marginal costs are zero and suggested that the main firms’

strategy is the price and not the quantities. The buyers select the cheapest

product and, again, the firms aim to maximize their profit. This model

was later formalized by Edgeworth and catches the notion of perfect com-

petition even in the duopoly case.

Nevertheless, the fact that even a slight price discrimination in the

case of undifferentiated goods leads to a total dominance of one firm led

many researchers to judge this model as unrealistic. In fact, in the duopoly

setting, firms tend to lower their bids in order to surpass their competitor

and the prices can end up to be equal to the initial marginal cost, offering

zero profit to the firms. This is known as the Bertrand paradox and is the

main critisism against the latter model.

To sum up, both models seem to provide some insight in the oligopoly

situation but not a full understanding of how competition works. However,

they both proved to be influential for the area as many interesting results

have used them as their starting point.
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9.1 Bertrand competition

In order to deal with the Bertrand paradox, Nadav and Piliouras [42] have

used a regret minimization technique. In their model, the game is played

in steps and, in each step, buyers prefer the cheapest product (if there are

more than one, they are selected in equal proportion). At each step, firms

select online, through an algorithm A, the distribution from which their bid

comes from, that is their strategy. If an alteration of this strategy cannot,

ultimately, improve their total payoff significantly (Ω(T ), where T is the

number of steps), the algorithm A is said to have no regret. The authors

suggest a no regret algorithm that offers coarse correlated equilibrium which

means that, supposing that all other firms follow a probability distribution,

one cannot expect to gain more by following a single strategy instead of

it. They produce such a distribution and prove that all single strategies

offer less expected payoff. Each firm’s payoff is significantly greater than

the marginal cost, hence the Bertrand paradox is overcome. However, as

the number of firms increases, the expected payoff rapidly returns to the

marginal cost.

From another perspective, Chawla, Niu and Roughgarden [17],[16] study

Bertrand competition in network setting, emphasizing on the inefficiency

of the equilibria. In their model, each edge gets priced by its owner in

the first step and afterwards the users decide the path that will lead them

from their source to their sink in the minimum cost. The Prices of An-

archy and Stability differ much depending on the number of monopolies,

that is edges that are cuts for this flow. In the absense of monopolies, the

social welfare is approximately reached in every equilibrium, whereas the

sellers’ profit is devastated as the competition draws down the prices. On

the other hand, should a monopoly exist, these quantities are inverse, as

the monopoly dominates and imposes its own prices. These results were

proven for the single-source single-sink model and were extended for the

multiple-source single-sink model, where the Prices of Anarchy and Stabil-

ity are bounded by the sparsity of the network. If at least two monopolies

exist, the price of anarchy can become unbounded, however if the Mono-

tone Hazard Rate Condition holds then it is bounded again by a quantity

depending on the network’s sparsity and the number of monopolies. As far

as the multiple-source multiple-sink model is concerned, they prove that

the price of anarchy can become unbounded.
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9.2 Cournot competition

In the linear Cournot setting, each firm decides the quantity it is about

to produce and the price of the oligopoly is inversely related to the total

quantity produced. The utility of each firm is then the quantity it produced

times the price in which it was sold. In fact, this procedure leads to a

unique equilibrium that is usually refered as Cournot-Nash equilibrium.

Inspired by relevant economic work, Immorlica et al [32] pose ques-

tions on the features of this equilibrium in the symmetric case, should the

firms are allowed to make coalitions. In their Coalition formation game,

the utility of each member of a coalition is its equal proportional share to

the coalition. They suggest all the possible deviations that can be made,

including some members joining an existing coalition, dissolving it or in-

auguring another coalition and show the necessary conditions such that

a partition of firms in coalitions is stable, that is no one has incentive to

deviate and increase its utility. Using these conditions, they prove upper

and lower bounds for the inefficiency of a possible equilibrium, showing

that the Price of Anarchy is Θ(n2/5).

Another direction appears in [24], where Fiat et al waive the myopic

restriction of the Cournot model towards best response. In their model,

firms can choose either to maximize profit (PM), which is equal to the

myopic Cournot strategy, or revenue (RM), considering that the virtual

cost of production equals to zero. Although seemingly absurd, seeking to

maximize revenue is often more profitable. As firms’ strategy is either PM

or RM, some sequences of stretegies’ alterations can never occur under best

response behavior. Consequently, the authors prove that any succession of

best response moves converges to a pure Nash equilibrium in at most linear

number of steps, which shows an efficient algorithm for its computation.

As for the quality of this equilibrium, the authors derive the conclusion

that non-myopic action induces lower prices for the products, causing a

significant reduction in the firms’ profit.
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