

ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ

ΤΜΗΜΑ ΗΛΕΚΤΡΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ ΚΑΙ ΜΗΧΑΝΙΚΩΝ ΥΠΟΛΟΓΙΣΤΩΝ

Τομέας Τεχνολογίας Πληροφορικής Υπολογιστών

Εργαστήριο Λογικής Επιστήμης Υπολογιστών

Αλγόριθμοι για Γραφήματα Εναλλακτικών Διαδρομών σε

Οδικά Δίκτυα : Επισκόπηση και Αξιολόγηση

ΔΙΠΛΩΜΑΤΙΚΗ ΕΡΓΑΣΙΑ

Νεφέλη Χαλαστάνη

Επιβλέπων : Δημήτρης Φωτάκης

 Λέκτορας Ε.Μ.Π.

Αθήνα, Απρίλιος 2013

Στην οικογένειά μου

ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ

ΤΜΗΜΑ ΗΛΕΚΤΡΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ ΚΑΙ ΜΗΧΑΝΙΚΩΝ ΥΠΟΛΟΓΙΣΤΩΝ

Τομέας Τεχνολογίας Πληροφορικής Υπολογιστών

Εργαστήριο Λογικής Επιστήμης Υπολογιστών

Αλγόριθμοι για Γραφήματα Εναλλακτικών Διαδρομών σε

Οδικά Δίκτυα : Επισκόπηση και Αξιολόγηση

ΔΙΠΛΩΜΑΤΙΚΗ ΕΡΓΑΣΙΑ

Νεφέλη Χαλαστάνη

Επιβλέπων : Δημήτρης Φωτάκης

 Λέκτορας Ε.Μ.Π.

Εγκρίθηκε από την τριμελή εξεταστική επιτροπή την 1η Απριλίου 2013

....................................
Δ. Φωτάκης Χ. Ζαρολιάγκης Σ. Ζάχος
Λέκτορας Ε.Μ.Π. Καθηγητής Παν. Πατρών Καθηγητής Ε.Μ.Π.

Αθήνα, Απρίλιος 2013

....................................

Νεφέλη Χαλαστάνη

Διπλωματούχος Ηλεκτρολόγος Μηχανικός και Μηχανικός Υπολογιστών Ε.Μ.Π.

Copyright © Νεφέλη Χαλαστάνη, 2013

Με επιφύλαξη παντός δικαιώματος. All rights reserved.

Απαγορεύεται η αντιγραφή, αποθήκευση και διανομή της παρούσας εργασίας, εξ’

ολοκλήρου ή τμήματος αυτής για εμπορικό σκοπό. Επιτρέπεται η ανατύπωση,

αποθήκευση και διανομή για σκοπό μη κερδοσκοπικό, εκπαιδευτικής ή ερευνητικής

φύσης, υπό την προϋπόθεση να αναφέρεται η πηγή προέλευσης και να διατηρείται το

παρόν μήνυμα. Ερωτήματα που αφορούν τη χρήση της εργασίας για κερδοσκοπικό

σκοπό πρέπει να απευθύνονται προς το συγγραφέα.

Οι απόψεις και τα συμπεράσματα που περιέχονται σε αυτό το έγγραφο εκφράζουν τον

συγγραφέα και δεν πρέπει να ερμηνευθεί ότι αντιπροσωπεύουν τις επίσημες θέσεις

του Εθνικού Μετσόβιου Πολυτεχνείου.

Contents

ABSTRACT .. i

ΠΕΡΙΛΗΨΗ ... iii

ΕΥΧΑΡΙΣΤΙΕΣ ... iv

Chapter 1 : Introduction

1.1 Motivation and problem statement .. 1

1.2 Related applications of shortest path algorithms ... 2

1.3 Contribution .. 5

1.4 Overview .. 6

Chapter 2 : Definitions and Related Work

2.1 Graph theory ... 9

2.2 Data structures for graph representation ... 10

2.2.1 Adjacency list representation ... 11

2.2.2 Forward star representation (static and dynamic) .. 12

2.2.3 Packed-memory graph representation .. 12

2.2.4 Comparison of graph structures ... 15

2.3 Shortest path problem and route planning ... 16

2.3.1 Shortest path problem in road networks ... 16

2.3.2 Route planning in road networks ... 17

2.4 Speed-up techniques ... 18

2.4.1 Bidirectional search .. 19

2.4.2 Goal-directed search .. 20

2.4.2.1 A* search ... 20

2.4.2.2 ALT algorithm .. 22

2.4.2.3 Arc flags ... 23

2.4.3 Contraction ... 26

2.4.3.1 Highway hierarchies .. 26

2.4.3.2 Contraction hierarchies ... 27

2.4.3.3 Reach ... 30

2.4.4 Summary... 31

Chapter 3 : Alternative Route Algorithms and Alternative Graphs

3.1 Alternative graph (AG) ... 33

3.2 K-shortest paths .. 33

3.2.1 K-shortest paths with loops (by Eppstein) .. 34

3.2.2 Loopless k-shortest paths (by Yen) ... 37

3.3 Disjoint paths ... 39

3.3.1 Disjoint paths algorithms .. 39

3.3.2 Discussion ... 42

3.4 Pareto optimality (with SHARC) ... 43

3.4.1 Pareto optimality algorithm ... 43

3.4.2 Discussion ... 46

3.5 Penalty method ... 46

3.5.1 Penalty algorithm ... 46

3.5.2 Discussion ... 49

3.6 Conclusion ... 49

Chapter 4 : Plateau Method and Admissibility Criteria

4.1 Admissible alternative routes .. 51

4.2 Plateau method (Choice routing algorithm) .. 54

4.4 Plateau method with penalization of edges (hybrid approach) .. 60

4.5 Criteria for alternative routes evaluation and attributes to measure in AGs. 61

4.5.1 Evaluation of paths quality ... 61

4.5.2 Evaluation of AG quality ... 64

Chapter 5 : Practical Implementation and Methodology

5.1 Plateau Method Implementation .. 67

5.2 Plateau method with penalization of edges (hybrid method) ... 74

Chapter 6 : Experiments and Results

6.1 Experimental setup.. 77

6.1.1 Experimental environment ... 77

6.1.2 Input ... 77

6.1.3 Queries ... 78

6.1.4 Measurements and statistics ... 78

6.2 Experiments ... 79

6.2.1 AG and alternative paths quality (goodness_threshold = 1.0) ... 80

6.2.2 AG and alternative paths quality (goodness_threshold = 0.85) 83

6.2.3 Memory usage and time performance of plateau method (goodness_threshold = 1.0) . 87

6.2.3.1 Memory usage ... 87

6.2.3.2 Time performance (goodness_threshold = 1.0) .. 89

6.2.4 Time performance of plateau method with penalization of edges (goodness_threshold =

1.0) ... 92

6.2.5 Summary... 94

Chapter 7 : Conclusion and Future Work

7.1 Conclusion ... 95

7.2 Outlook .. 95

Appendix – Technical details and Implementation’s interface ... 97

Bibliography ... 100

i

ABSTRACT

Nowadays, mobility has gained great importance. People travel daily either for their works or for

pleasure making route planning a significant aspect of their everyday life. Although first

algorithms solving this kind of problem, such as Dijkstra and Bellman-Ford, are quite old, the

new circumstances require more efficient solutions taking into account various parameters

related to driver’s preferences, environmental conditions, financial conditions, traffic

congestions and many other aspects.

 Under these new requirements and needs, algorithmic engineering exhibited an impressive

surge of interest during the last years in the field of route planning, developing new algorithmic

approaches that solve more sophisticated variants of the shortest path problem. For example,

researchers developed speed-up techniques computing queries in large-scale networks with

great time efficiency, introduced new concepts of multi-modal and multi-objective routing etc.

In this thesis, we focus on a variant of the shortest path problem that aims to find multiple

alternative routes from source to target, apart from the single shortest path. Research on this

field is very important since finding a set of alternatives can be useful for various reasons. For

example, the need to avoid costly roads, the increasing occurrence of traffic congestions,

driver’s preferences to avoid some streets are cases that a single route would not be enough.

So, we present plateau method which is a significant approach on this field of interest based on

paths with constant distances from source and target, along them (plateaux). We analyze step

by step its stages, we understand the methodology and we implement it in our own C++

program. We further combine our plateau approach with penalty algorithm which, as its name

states, penalizes the edges already belonging in an alternative. Apart from the two interesting

implementations, we aim to evaluate the resulting alternative routes so as to choose the best

ones. The superiority of each single alternative is examined on the basis of specific criteria we

introduce. These criteria check the quality of the candidate plateaux, the amount of disjointness

between the paths, the average length, the local optimality. These criteria are incorporated in

the C++ implementations. Last but not least, in order to examine the efficiency of these

algorithms, we conduct an experimental study for various values of the parameters in large-

scale road networks, we export statistical data and we draw conclusions.

ii

iii

ΠΕΡΙΛΗΨΗ

Στις μέρες μας, οι μετακινήσεις έχουν αποκτήσει μεγάλη σημασία. Οι άνθρωποι ταξιδεύουν

καθημερινά είτε για τις δουλειές τους είτε για λόγους αναψυχής με αποτέλεσμα οι

μετακινήσεις να αποτελούν ένα σημαντικό μέρος της ζωής τους. Αν και οι πρώτοι αλγόριθμοι,

που έλυναν τέτοιου είδους προβλήματα, όπως ο Dijkstra και ο Bellman-Ford είναι αρκετά

παλιοί, οι νέες συνθήκες απαιτούν πιο αποδοτικές λύσεις λαμβάνοντας ταυτόχρονα υπόψη

ποικίλες παραμέτρους όπως τις προτιμήσεις των οδηγών, τις περιβαλλοντικές συνθήκες, τις

οικονομικές συγκυρίες, την κυκλοφοριακή συμφόρηση και πολλά άλλα.

Κάτω από αυτές τις νέες απαιτήσεις, το algorithmic engineering δείχνει τα τελευταία χρόνια

μεγάλο ενδιαφέρον σχετικά με την εύρεση και το σχεδιασμό διαδρομών, αναπτύσσοντας νέες

αλγοριθμικές μεθόδους οι οποίες λύνουν πιο εξεζητημένες εκδοχές του προβλήματος εύρεσης

βέλτιστης διαδρομής. Για παράδειγμα, ερευνητές έχουν αναπτύξει τεχνικές επιτάχυνσης του

Dijkstra με τις οποίες καταφέρνουν να υπολογίσουν ερωτήματα μεταξύ αφετηρίας-προορισμού

σε μεγάλης κλίμακας δίκτυα με πολύ μικρή χρονική πολυπλοκότητα ή έχουν εισάγει την έννοια

εύρεσης διαδρομών με συνδυασμό των μέσων μαζικής μεταφοράς κλπ.

Σε αυτή τη διπλωματική εργασία, επικεντρωνόμαστε σε μία παραλλαγή του προβλήματος

εύρεσης συντομότερης διαδρομής η οποία έχει στόχο να εντοπίζει πολλαπλές εναλλακτικές

διαδρομές από μία αφετηρία σε έναν προορισμό, πέραν της βέλτιστης. Η έρευνα πάνω σε αυτό

το αντικείμενο είναι ιδιαίτερα σημαντική μιας και ο υπολογισμός ενός συνόλου εναλλακτικών

διαδρομών είναι πολύ χρήσιμος σε πληθώρα περιπτώσεων. Για παράδειγμα, η αποφυγή

διοδίων, η αυξανόμενη εμφάνιση κυκλοφοριακών προβλημάτων, η προτίμηση ενός οδηγού να

αποφεύγει κακόφημους δρόμους αποτελούν λίγες περιπτώσεις όπου ο υπολογισμός μιας

μοναδικής διαδρομής δεν επαρκεί.

Συνεπώς, στην εργασία αυτή, παρουσιάζουμε τη μέθοδο του plateau (plateau method) η οποία

αποτελεί μία σημαντική προσέγγιση σε αυτό το πεδίο ενδιαφέροντος και βασίζεται στην

εύρεση μονοπατιών οι κόμβοι των οποίων έχουν σταθερές αποστάσεις από την αφετηρία και

τον προορισμό (plateaux). Αναλύουμε βήμα προς βήμα όλα τα στάδια του αλγορίθμου,

κατανοούμε τη μεθοδολογία και κάνουμε τη δική μας υλοποίηση σε C++. Στη συνέχεια,

συνδυάζουμε το plateau με τον αλγόριθμο penalty ο οποίος, όπως δηλώνει και το όνομά του,

εισάγει κάποια ποινή (= επιπλέον βάρος) στις ακμές των εναλλακτικών που ήδη έχουν

υπολογιστεί. Εκτός από αυτές τις δύο υλοποιήσεις, στόχος μας επίσης είναι να αξιολογήσουμε

τις υποψήφιες εναλλακτικές που προκύπτουν ώστε να διαλέξουμε τις καλύτερες. Η υπεροχή

της κάθε εναλλακτικής εξετάζεται με βάση κάποια συγκεκριμένα κριτήρια. Αυτά τα κριτήρια

εξετάζουν την ποιότητα των plateaux, το ποσοστό των κοινών τμημάτων των εναλλακτικών, το

μέσο μήκος τους συγκριτικά με το βέλτιστο, την τοπική βελτιστότητα. Αυτά τα κριτήρια επίσης

ενσωματώνονται στις υλοποιήσεις μας σε C++. Τέλος, για να εξετάσουμε την αποδοτικότητα

αυτών των αλγορίθμων, εκτελούμε πειράματα για διάφορες τιμές των παραμέτρων, σε οδικά

δίκτυα μεγάλης κλίμακας, εξάγουμε στατιστικά αποτελέσματα και βγάζουμε συμπεράσματα.

iv

v

ΕΥΧΑΡΙΣΤΙΕΣ

Κατ’ αρχάς, θα ήθελα να ευχαριστήσω τον καθηγητή και επιβλέποντα της διπλωματικής μου,

κ. Δημήτρη Φωτάκη. Με τις γνώσεις, τον ενθουσιασμό, τη μεταδοτικότητά του και τις

εξαιρετικές διαλέξεις του, με έκανε να αγαπήσω τους αλγορίθμους και να αναλάβω μία

διπλωματική σε αυτό το ερευνητικό αντικείμενο. Θα ήθελα επίσης να τον ευχαριστήσω για την

εμπιστοσύνη που μου έδειξε καθώς και για το χρόνο που πέρασε μαζί μου συζητώντας για το

θέμα και λύνοντας τις απορίες μου.

Θα ήθελα επίσης να ευχαριστήσω τον καθηγητή κ. Χρήστο Ζαρολιάγκη, από το Πανεπιστήμιο

της Πάτρας, ο οποίος μου έδωσε τη δυνατότητα να ασχοληθώ με αυτό το πολύ ενδιαφέρον

θέμα και μου παρείχε μία έτοιμη βιβλιοθήκη σε C++, την οποία ανέπτυξε με την ερευνητική του

ομάδα, και η οποία περιέχει έτοιμες και αποδοτικές δομές δεδομένων και υλοποιήσεις

αλγορίθμων, που κρίθηκαν απαραίτητες για την εκπόνηση της διπλωματικής μου.

Επιπλέον, θα ήθελα να ευχαριστήσω τον Παναγιώτη Μιχαήλ, μεταπτυχιακό φοιτητή στην

ερευνητική ομάδα του κ. Ζαρολιάγκη ο οποίος με βοήθησε για το στήσιμο του περιβάλλοντος

και ήταν πάντα πρόθυμος να απαντήσει στις απορίες μου.

Ένα μεγάλο ευχαριστώ θα ήθελα να δώσω στην οικογένειά μου μου η οποία με στήριξε καθ’

όλη τη διάρκεια της φοιτητικής μου ζωής και χωρίς αυτούς θα ήταν αδύνατο να ολοκληρώσω

τις σπουδές μου.

Τέλος, θα ήθελα να ευχαριστήσω τους φίλους μου για τη στήριξή τους. Αποτέλεσαν ένα

σημαντικό κομμάτι της φοιτητικής μου ζωής.

Νεφέλη Χαλαστάνη

Απρίλιος 2013

vi

1

CHAPTER 1

INTRODUCTION

1.1 Motivation and problem statement

Mobility is very important in our society. People live in one city and work in another. They visit

friends and family living in different parts of the country. Even leisure time is not always spent in

their residence. Consequently, finding best possible routes in transport networks from a given

source to a given target location becomes an everyday problem. Many people daily deal with

this question when planning trips either with their cars or with public transportation.

First algorithms to solve this problem are quite old and are presented in the 1950s and 60s by

Dijkstra [Dij59], Bellmann and Ford [Jr.56, Bel58] and Hart, Nilsson and Raphael [HNR68] (A*).

Since then, an impressive amount of work has been done to solve different shortest path cases.

Lately, the route planning problem has received considerable attention and has become one of

the showpieces of real-world applications of algorithmics. Many reasons lead to this kind of

interest :

 The large increase in transportations

 The increasing use of private vehicles in combination with CO2 emissions and energy

consumption that require more eco-friendly approaches in order to reduce the

environmental footprint

 The increasing occurrence of traffic congestions that leads to alternative routes search

 The large real-world graphs like continental road networks that require more efficient

computations

 The new financial circumstances that create the need to avoid costly roads and set new

criteria in route planning

The above mentioned reasons lead to the development of new algorithmic approaches that

solve more sophisticated variants of the shortest path problem.

In this thesis, we focus on the problem of finding efficiently alternative routes in road networks.

Taking into account that every human likes choices and that today’s fast route planning

2

algorithms usually compute just a single route, we consider a generalization of the well-known

shortest path problem, in which not one but several alternative paths must be produced. Often,

there exist several noticeable different paths from start to end which are almost optimal with

respect to travel time. For a human, it is advantageous to be able to choose a route for his tour

among a set of good alternatives. He may have personal preferences, knowledge for some

routes, and bias against others which are unknown or difficult to obtain (e.g. slippery road).

Also, routes can vary in different attributes besides travel time, for example in toll pricing, scenic

value, fuel consumption or risk of traffic jams. The trade-off between those attributes depends

on the person and is difficult to determine. By computing a set of good alternatives, the person

himself can choose the route which best fits his needs.

So far, beginnings to compute alternative routes have been made, but this topic has not been

studied thoroughly. We fill in this gap by describing mathematical definitions for such routes,

introducing heuristics, implementing and combining methods to compute them and using new

data structures that improve data locality and accelerate queries computation.

1.2 Related applications of shortest path algorithms

Routing is a widely researched topic in computer science, mainly because of its relevance to real

world applications. Many software companies develop state of the art applications and web-

services relating to routing and great projects on this field take place under the joint

participation of universities, companies and organizations.

Navigation Systems . Car navigation

systems are being offered as a special

feature of new cars in an increasing number

of car-brands. These car navigation systems

are capable of taking over some of the tasks

that are performed by the driver such as

reading the map and determining the best

route to the destination. A navigation

system offers the driver the possibility to be

guided to his destination, by means of

spoken and visual advices. In order to

achieve this, the driver first has to enter his

destination into the system. Such a destination may be a city center, an entire street, or an

address including a house number. They should also take daily congestion patterns into account.

Because a car navigation system uses a built-in computer to determine a route, it can compare

many different routes and the user expects the system to determine the best possible or

optimum route fast.

Figure 1.1: Built-in car navigation system

3

Web mapping services . Many software companies provide web mapping service applications

and technology that power many map-based functionalities including routing and navigation.

They offer street maps, route planners for travelling on foot, by car or public transport.

Specifically, those services are computer software programmes, designed to plan a (optimal)

route between two geographical locations using a journey planning engine, typically specialized

for road networks as a road route planner. It can typically provide a list of places one will pass

by, with crossroads and directions that must be followed, road numbers, distances, etc. Also, it

usually provides an interactive map with a suggested route marked on it. Many online mapping

sites offer road route planning like C2Logix, ViaMichelin, Google Maps, Bing Maps & Directions,

Mapquest, Intermodal Journey Planner and TomTom Route Planner systems. Although as a

route planning software is prone to mistakes if you try to get directions from destination A to B,

the use of common sense is also required. Applications can typically also calculate the journey

time and cost, some also display points of interest along the route.

Tourists trip planning applications . Many tourists visit a region or a city for one or more days

and have to make a selection of the most valuable Points of Interest (POIs). This personal

selection is based on information found on web sites, in articles, in magazines or in guidebooks

from specialized book stores or libraries. Once the selection is made, the tourist decides on a

route, keeping in mind the opening hours of the POIs and the available time. However, this

procedure faces several difficulties and requires great organization and good combination and

confirmation of the information acquired, since sometimes it may be out of date. For these

reasons, web-based decision support applications have been developed and become excellent

aid for tourists who want real life support for tourist planning problems. Based on an interest

profile, up-to-date POI information and trip information, a (near-) optimal and feasible selection

of POIs and a route between them can be suggested solving a generalization of the well-known

travelling salesman problem. Similar functionalities for visiting POIs are being embedded in

smartphones platforms using android and ios technologies.

Fleet management functionalities . A fleet route, also called Vehicle Routing Problem

(generalization of TSP) is similar to a point-to-point route with VIA points, but with one

important difference: every point visited had a load, and each vehicle has a maximum capacity,

so one vehicle might not be enough to visit all VIA points. This means that several vehicles are

usually needed, which adds a lot of complexity to the route calculations. Libraries (like Xtreme

Route library) contain functionality for solving fleet routes, with several configurable parameters

as vehicle capacity, VIA point load, depot, route type (round-trip, inbound, outbound) etc. As

with point-to-point routing there are a lot of use cases for fleet routes, some of them are:

 Package delivery involving many or a fixed number of vehicles (if only 1 vehicle, the

problem becomes a point-to-point route with VIA points)

 Transport of students to and from school

 Mail delivery

 Timber transportation

4

 Waste management

eCOMPASS Project . eCOMPASS

introduces new mobility concepts

and establishes a methodological

framework for route planning

optimization aiming at reducing

the environmental impact of urban

mobility. eCOMPASS aims at

delivering a comprehensive set of

tools and services for end users to

enable eco-awareness in urban

multi-modal transportations.

eCOMPASS involves a generic

architecture that will consider all

types and scenarios of human and

goods mobility in urban

environments minimizing their

corresponding environmental impact. Firstly, the project will focus on the design and

development of intelligent on-board and centralized vehicles’ fleet management systems; the

fundamental objective of eco-awareness will be addressed through employing intelligent traffic

prediction and traffic balancing methods, while also taking into account driving behaviour and

considering the option of car drivers transferred to means of public transportation at suitable

locations. Secondly, eCOMPASS will develop web and mobile services providing multi-modal

public transportation route planning, taking into account contextual information (such as

location and time) as well as various restrictions and/or user constraints. Recommended routes

will be optimized mainly in terms of the transports’ environmental footprint, although additional

objectives will also be considered. An important objective of eCOMPASS is to develop novel

algorithmic solutions and deliver the respective services to familiar end-user mobile devices.

To sum up, there are numerous applications and projects relevant to shortest path problems

that range from planning a motorcycle tour with a mobile device to facility location problems of

large industrial companies. Although we mainly associate shortest path algorithms with routing

and navigation problems in transportation, there are also major fields of science where these

algorithms are widely applied. Specifically, two typical cases are :

Computer networks . Routing in computer networks is an essential functionality, which

influences the network management and the quality of services in global networks. The

management of the traffic flows has to satisfy requirements for volume of traffic to be

transmitted, for avoidance of congestions and for decreasing the transmission delays. The

optimal traffic management is a key issue for the quality of the information services. Routing in

networks and applying shortest path algorithms is widely used in communication protocols in

Figure 1.2 : eCOMPASS expected results from eCompass site

5

WAN. The routing algorithm is described as network layer protocol (i.e. OSFP, BGP) that guides

packets (information stored as small strings of bits) through the communication subset to their

correct destinations.

Robotics . Due to the development of automation industry, robots are needed in more and

more complex and dynamic environments. For example, the research of unmanned vehicle

robots is increased, especially in military field. An important issue to be considered is how these

robots move and avoid static or moving obstacles in the workplace. They need to implement

both path tracking and obstacle avoidance algorithms that are borrowed or inspired from

shortest path problems in graphs. They need to plan a path from a current to a goal position

avoiding hurdles and in order to achieve that use Dijkstra and A* variants.

1.3 Contribution

In this thesis we approach the problem of finding efficiently alternative routes in large-scale

road networks. Our main contribution is divided into three parts : a) reviewing basic algorithms

on the field of alternative routes search, b) presenting analytically plateau method and criteria

for evaluating method’s results and c) conducting an experimental study on large-scale road

networks using our practical implementations for plateau method and for a combination of

plateau with penalty method.

Algorithms for finding alternative routes. As we stated above, this thesis focuses on the

problem of finding alternative routes from source to target apart from the shortest one. So, it is

necessary to study the algorithms already developed in this field. Specifically, we review some of

the most important methods used for alternative route search, namely k-shortest paths,

disjoint paths, pareto-optimal paths and penalty method, we describe the steps of each

algorithm and we state their main drawbacks which led to the development of new approaches.

Thanks to this study, the reader gets familiar with the field of interest and obtains an insight on

the various methods developed.

Plateau Method and Criteria for evaluating results. The main part of our work is the study of

Plateau method which is a significant algorithm for generating a plurality of diverse routes. So

our main contribution lies in the analysis of the algorithm’s stages which helps us to understand

the methodology and implement it in our own C++ program. We further combine plateau

algorithm with penalty algorithm (hybrid approach). Apart from the two interesting

implementations, we evaluate the resulting alternative routes so as to choose the best ones.

The superiority of each single alternative is examined on the basis of specific criteria we

introduce. These criteria check the quality of the candidate plateaux, the amount of disjointness

between the paths, the average length, the local optimality. So the reader understands Plateau

method in depth and obtains a set of useful metrics to evaluate the results.

6

Experimental Study. Last but not least, we conduct an experimental study so as to examine the

efficiency of Plateau method and the hybrid approach. We run several experiments in real large-

scale road networks, we evaluate the results regarding the quality of the alternative routes

found based on the criteria we defined and we further examine the time performance and

memory usage of the algorithms. So, thanks to the experimental results and statistical data, the

reader obtains a practical overview of the algorithms quality and their efficiency in real-world

maps.

1.4 Overview

This thesis is organized as follows :

Chapter 2 : Definitions and related work. Chapter 2 lays the essential foundations for our work.

We define basic notion for graphs including edge weights and paths. Moreover, we present the

data structures used for graph representation and we make a comparison between them,

necessary for the experimental results given in chapter 6. Furthermore, we model road

networks as graphs and we introduce the concept of basic routing. Besides, we analyze basic

improvements and speed-up techniques of Dijkstra algorithm as bidirectional Dijkstra, A*, Arc

Flags, Highway Hierarchies, Contraction Hierarchies. Although these techniques are not directly

associated with our main subject of interest, which is alternative routes in large-road networks,

they provide us with a general theoretical background that is widely used in large-scale

transportation and might easily be applied as a future work in the current thesis.

Chapter 3 : Alternative route algorithms and alternative graphs. Chapter 3 introduces us to the

main subject of this thesis and several initial approaches for finding alternative routes are

presented. First of all, we describe the alternative route graph that is given as a result from each

algorithm’s execution and then we describe the algorithms and theirs steps for computing more

than one routes in a road network. As their name states, k-shortest paths compute the k

shortest paths as alternative routes and regard sup-optimal paths. The computation of disjoint

paths is similar, except that the paths must not overlap. Another approach uses several edge

weights to compute Pareto-optimal paths. Given a set of weights, a path is called Pareto-optimal

if it is better than any other paths for respectively at least one criterion. All Pareto-optimal paths

can be computed by a generalized Dijkstra’s algorithm. The penalty method iteratively

computes shortest paths in the graph while increasing certain edge weights.

Chapter 4 : Plateau method and admissibility criteria. While the methods in chapter 3 are

widely used in many applications until now, their results can suffer a lot, as they can be very

long or very common etc. and as a result may not be admissible to the user. To avoid these

problems, in chapter 4, we introduce the concept of admissible alternative routes. In other

words, we define the properties that a good alternative must satisfy and we propose ways of

measuring these properties in real-world maps. Specifically, alternative candidates should be

7

nonoverlapping to a large extend, locally optimal and not significantly larger than the optimal

route.

Having defined these properties, in the second part of this chapter, we present plateau method

or choice routing algorithm for finding alternative routes. The alternatives, found by plateau

method, “naturally” meet the admissibility criteria to a greater extent (due to the way they are

computed) than the methods presented in chapter 3. Furthermore, we combine plateau with

the aforementioned penalty method (hybrid approach) in order to achieve better results. These

two methods are going to be implemented and, thus, presented thoroughly in the next chapter.

Chapter 5 : Practical implementation and methodology. This chapter analyzes plateau method

and hybrid method, presented in chapter 4, in a more practical way with references in our

practical implementations. Specifically, we present our implementation strategy for plateau

method using a block diagram. In this diagram, the stages of the algorithm are presented in the

order they are meet in our programs. After that, each stage is described in detail. Last but not

least, we present the basic methodology for the hybrid method, namely plateau method with

penalization of edges.

Chapter 6 : Experiments and results. In Chapter 6, we conduct several alternative routes

experiments. At first, we describe our experimental setup including the inputs used throughout

the experiments (DIMACS10 maps), the experimental environment etc. In the next sections, we

compare execution times for the different stages of our approaches, we show the mean

targetFunction values for plateau and the hybrid implementation (combination of plateau and

penalty) and we draw conclusions regarding the efficiency of the different approaches.

Chapter 7: Conclusion and outlook. Chapter 7 gives a final conclusion and an outlook regarding

future research on the topic of alternative routes and specifically as an extension of the current

thesis, taking into account various aspects, such as time dependency, real-time traffic etc.

8

9

CHAPTER 2

DEFINITIONS AND RELATED WORK

In section 2.1 of this chapter, we define the basic notion for graphs, while in section 2.2, we

present some data structures that are used for the graph storage which exhibit significant

characteristics ([MMPZ12]). Furthermore, we model road networks as graphs and we introduce

the concept of basic routing. Besides, we analyze basic improvements and speed-up techniques

of Dijkstra algorithm providing a general theoretical background widely-used in large-scale

transportation.

2.1 Graph theory

In this section, we develop the basic notation which is needed throughout this thesis. Since all of

our algorithms work on graphs, the underlying concepts of graph theory are introduced first.

Graphs . A graph () is a tuple consisting of a finite set of nodes and a set of

 of edges. We say there is an edge from to , if and only if () .

Usually denotes the number of nodes and denotes the number of edges.

The graph obtained by flipping all edges is called backward graph ⃖ (⃖) where ()

 ⃖ () . Furthermore, a graph has a weight function that assigns a

positive weight to each edge in . For an edge () , we usually write () instead of

 (()).

Edge Weights . The edge weights may indicate travel time, distance, or may be a combination

of different parameters. The values of edge weights differentiate between time-independent

and time-dependent route planning. Whereas for time-independent route planning it is

sufficient to have constant weights, this concept is generalized to periodic functions to

accommodate for different edge weights at different times of day.

Paths . A path in is a sequence of nodes

 ⟨ ⟩ with () , for all

10

For the subpath of between and is denoted and it is a path

itself which is fully contained in P. A path that passes via a node is denoted by .

Figure 2.1 : A graph G with 5 nodes () and 4 edges

The length of a path P is the sum of its edge weights along the path and is denoted by

 () () ∑ ()

By , we denote the number of edges along the path.

The distance between two nodes , is the minimal length of all paths from to .

 () () ⟨ ⟩

If is clearly indicated, it is omitted : () ().

Note that it is possible that there might be more than one minimal paths from to . A minimal

path between two nodes is called shortest path from to .

Let , then () with () is a subgraph of G.

2.2 Data structures for graph representation

There are multiple data structures for graph representations and their use depends heavily on

the characteristics of the input graph and the performance requirements of each specific

application. In this thesis, we provide four representation options for the graph : the adjacency

list representation, the static forward star representation, the dynamic forward star

representation and the packed-memory graph representation. We assume the reader is more

familiar with the first three. The fourth one is a new dynamic graph structure for large-scale

transportation networks which provides unique features. It was developed by Zaroliagis, Mali,

Michail, Paraskevopoulos in the University of Patras ([MMPZ12]).

8

5
4

6

11

2.2.1 Adjacency list representation

In graph theory and computer science, an adjacency list representation of a graph is a collection

of unordered lists, one for each vertex in the graph. Each list describes the set of neighbors of its

vertex. The adjacency list representation of our graphs associates each vertex in the graph with

a collection of its neighboring edges and all vertices are stored in a node list. It is implemented

with linked lists of adjacent nodes. Figure 2.3 shows the adjacency list representation of the

graph in Figure 2.2.

Figure 2.2 : A directed graph with 5 nodes and 16 edges, as given in paper [MMPZ12]

Figure 2.3 : Adjacency list representation of graph in figure 2.2, as given in [MMPZ12]

Adjacency list provides dynamicity in a way that it supports insertions and deletions of nodes

and edges in () time complexity. However, it provides no guarantee on the actual layout of

the graph in memory, since it is handled by the system’s memory manager.

12

2.2.2 Forward star representation (static and dynamic)

A second representation we use for our graphs is the forward star which is a very interesting

variant of the adjacency list and extensively used in several speed-up techniques. The forward

star representation implements the node list of the adjacency list representation as an array and

all adjacency lists are appended to a single edge array sorted by their source. The nodes and

edges can be stored in consecutive, non-overlapping memory addresses which can then be

scanned with maximum efficiency. We understand that the forward star is a very space-efficient

data structure that allows fast traversal of the graph. Figure 2.4 depicts the forward star

representation of figure 2.2.

Figure 2.4 : The forward star representation of graph in figure 2.2 as given in [MMPZ12] paper.

The basic arrays have to be extended in order to incorporate necessary information for the

nodes and the edges. To attach additional data to the nodes and edges, the entries of the node

and edge vectors do not only contain pointers but structs. The same applies to the adjacency list

representation.

The main disadvantage of forward star representation is that, in case of dynamic graphs, in

order to insert an edge at a certain adjacency segment, all edges after the segment must be

shifted to the right. This shift needs () time complexity. For this reason, a dynamic version of

the forward star representation was developed. The adjacency segments has size equal to a

power of 2, containing the edges and some empty cells at the end. So, when inserting an edge, if

there are empty cells in the proper segment, the new edge is inserted. Otherwise, the whole

segment is moved to the end of the edge array, and its size is doubled.

2.2.3 Packed-memory graph representation

The third structure we used for graph representation is the packed-memory graph (see also

[MMPZ12]). As we said before, although the adjacency list provides insertions and deletions in

 (), it does not provide any guarantee on the actual layout of the graph in memory. On the

other hand, the forward star structure occupies consecutive memory addresses dedicated to the

graph, which facilitates the scanning process of nodes and edges. Packed memory graph is a

new structure that can combine the positive aspects both of the adjacency list and the forward

star representation. The new structure is able to efficiently access consecutive nodes and edges,

13

to change and reconfigure its internal layout in order to improve the locality of the elements

and to efficiently insert or delete nodes and edges (in cases of dynamic graphs). These three

features reflect the compactness, agility and dynamicity of the data structure which are defined

as follows :

 Compactness : The ability of scanning consecutive nodes and edges in an optimal way as

far as time and memory transfers are concerned. The compactness of the packed-

memory graph representation is comparable to the maximum efficiency of the forward

star representation.

 Agility : The ability to reorder nodes and edges in allocated memory in order to increase

the locality of reference. The various speed-up techniques implementations can give

their desired node ordering as input to the packed-memory graph structure.

 Dynamicity : The ability to insert or delete edges and nodes in an optimal way in terms

of time. The dynamicity of the new structure is comparable to the performance of the

adjacency list representation when implemented as a linked list.

The packed-memory graph representation is based on a data structure, called packed-memory

array. A packed-memory array maintains ordered elements in an array of size ,

where is a constant. Hence, the array contains ordered elements and ()

empty cells, called holes. The goal of a packed-memory array is to support efficiently insertions,

deletions and scans by keeping the holes in the array uniformly distributed. This is accomplished

by dividing the array in segments of size () such that a constant fraction of each segment

contains holes. When a segment of the array becomes too full or too empty – depending on the

density bounds imposed – its elements are spread out evenly within a larger interval by keeping

their relative order. This process is called a rebalance of the (larger) interval (see also

[MMPZ12]).

Figure 2.5 : Packed-Memory Array on the ordered set [0-19]. The array is divided in segments

such that the number of them is a power of 2 and a perfect binary tree is built iteratively on top

of these segments. This figure is taken from the paper [MMPZ12].

14

As mentioned before, the packed-memory graph representation is based on the packed-

memory array data structure. The figure below illustrates the packed-memory graph

representation.

Figure 2.6 : Packed-Memory Graph representation as depicted in [MMPZ12]

Τhis graph data structure stands as a good compromise between two extremes, the adjacency

list representation which offers optimal dynamicity and the forward star representation which

offers optimal compactness and agility. Especially, it is slower than the adjacency list in update

time, but close to 30% faster in query times and a bit slower than the forward star in query time

but over a million times faster in update time. Besides, one of the most important operations

supported by the graph structure is the internal node reordering. That is to say, the structure

can internally change the relative position of the nodes and the edges, a really important

functionality since there are algorithms that have some information beforehand about the

sequence of accesses of the elements in the graph and this can be exploited in speeding-up their

performance (i.e. hierarchical speed-up techniques).Therefore, improving the locality of those

important nodes in memory can give a performance speed-up in the execution.

15

2.2.4 Comparison of graph structures

In this section, the three graph structures are compared on the basis of the three performance

features, namely compactness, agility and dynamicity.

Table 1 : Comparison of space, running time and memory transfer complexity between the three

graph data structures. denotes the cache block and denotes the maximum node degree. This

table is taken from the paper [MMPZ12].

An adjacency list structure implemented with linked lists is a reasonable candidate for our graph

representation, given that our graphs are static. It supports optimal insertions of nodes and the

scanning of the edges is fast enough in practice. However, since there is no guarantee for the

memory allocation scheme, the nodes and edges are most probably scattered in memory,

resulting in many cache misses and less efficiency during scan operation, especially for the large-

scale networks. Finally, it offers no support for any (re)-ordering of the nodes and edges

[MMPZ12].

In contrast to the adjacency list, the forward star representation is optimal during the scan

operations. Due to its layout, consecutive edges are stored in at most

 memory blocks.

Hence, during a scan operation, the least amount of blocks is transferred into the cache

memory. Moreover, its elements can be reordered in-line in a way that will favor the memory

accesses of any algorithm. However, an insertion/deletion of a node or edge must shift all

subsequent elements in the array in order to make space for the new element [MMPZ12].

A packed-memory graph representation is effective in all three features. The elements are

stored as in the forward star representation, with only one difference: it keeps slightly larger

arrays complemented with empty elements uniformly distributed within the array. Thus, it

accomplishes efficient scanning of consecutive elements. Furthermore, it supports fast enough

insertions and deletions of elements. Finally, it offers the element reordering in order to favor

the memory accesses of each algorithm [MMPZ12].

16

The impact of these three representations on time complexity is going to be checked practically

on multiple executions of the plateau and hybrid algorithm in large-scale road networks like the

road network of Luxembourg, Belgium, Germany etc., in chapter 6.

2.3 Shortest path problem and route planning

In this section, we are going to present the shortest path problem in road networks and to

introduce the basic concept of route planning in road networks.

2.3.1 Shortest path problem in road networks

A road network can easily be represented as a graph whether undirected, directed or mixed.

The road junctions become the nodes of the graph and the road segments between nodes

become the edges of the graph. Each edge is assigned a weight, e.g. the length of the road or an

estimation of the time needed to travel along the road. Using directed edges it is also possible to

model one-way streets. Such graphs are special in the sense that some edges are more

important than others for long distance travel (i.e. highways). In graph theory, the computation

of the shortest paths between two nodes is a classical problem. Actually, we can distinguish

between several variants of this problem:

• point-to-point : compute the shortest-path length from a given source node to a

given target node

• single-source : for a given source node , compute the shortest-path lengths to all

nodes

• many-to-many : for given node sets , , compute the shortest-path length for

each node pair ()

• all-pairs : a special case of the many-to-many variant with

The most important algorithms for solving this problem are:

 Dijkstra's algorithm : solves the single-source shortest path problem

 Bellman–Ford algorithm : solves the single-source problem if edge weights may be

negative

 A* search algorithm : solves for single pair shortest path using heuristics to try to speed

up the search

 Floyd–Warshall algorithm : solves all pairs shortest path problem

 Johnson's algorithm : solves all pairs shortest path problem, and may be faster than

Floyd–Warshall on sparse graphs

17

2.3.2 Route planning in road networks

While the above-mentioned algorithms compute optimal shortest paths with optimal theoretic

time complexity, they are too slow to process real world data sets like large scale road networks,

even on today’s computers. However, only in recent years, computer hardware has become

efficient enough to allow the handling of large networks like they occur in route planning.

Consequently, during the past years, research focused on developing speed-up techniques to

accelerate the basic shortest paths algorithms by reducing their search space. In this section we

mention work on the subject of road networks.

Although, the first attempts to speed up Dijkstra’s algorithm were conducted regarding

timetable information on railway networks in 1999 (see [SWW99]), huge road networks were

made publicly available in 2005 which led research toward road networks. This culminated in

the 9th DIMACS Challenge on shortest paths [DGJ09] in 2006.

All modern speed-up techniques belong to one of 3 basic categories : Bi-directional search, goal-

directed search and contraction.

In short, bi-directional search starts two Dijkstra searches, one from the source and one from

the target. The latter is performed on the reverse graph and is labeled backward search in

contrast to the forward search from the source. The final shortest path is then combined from

partial paths obtained by the forward and backward searches. While this approach works well in

time-independent networks where the edge weights are constant in the graph, adapting bi-

directional routing to time-dependent networks where the edge weights are time-dependent

functions is not straightforward .

 As far as goal-directed search is concerned, the search is directed towards the target by

preferring edges that shorten the distance to and by excluding edges that cannot possibly

belong to a shortest path to . There are different existing approaches. One is based on the A*

algorithm by Nilsson and Raphael [HNR68], another on the enhanced A* by Goldberg et al. who

introduce landmarks to compute feasible potential functions using the triangle inequality [GH05,

GW05]. Their approach is called ALT and turns out as a very robust technique [BDW07]. The

second goal-directed approach is using edge-labels to guide the search. Wagner et al.

introduced in [WW03, WWZ05] a method called geometric containers where each edge contains

a label that represents some geometric object containing all nodes to which a shortest path

begins at the respective edge. During the query, edges that do not contain the target node can

be pruned. This approach, refined by Lauther in [Lau04], is called Arc-Flags. Instead of geometric

containers, the graph is partitioned into R regions and R edge-labels (arc-flags) are attached to

every edge to indicate whether the respective edge is part of any shortest path leading into each

region.

18

Regarding contraction there are a variety of approaches. Highway Hierarchies by Sanders and

Schultes [SS05, SS06a] exploits the implicitly given hierarchy in road networks regarding

different road categories. Contraction Hierarchies presented by Geisberger et al. [Gei08,

GSSD08] is solely based on contracting the graph yielding a very efficient speed-up technique.

Furthermore, reach method reduces the search space of the graph. The reach of a node , (),

is a measure of centrality. In other words, a node with high reach value is more central to the

graph in such a way that it is usually close to the middle of a long shortest path, whereas low-

reach nodes are located rather near the end of shortest paths. If () () and ()

 () holds, cannot be on the shortest path from to , and does not need to be checked

and settled by the query algorithm, so it can be pruned.

Generally, there are many combinations based on the afore-mentioned speed-up techniques. It

turns out that the combinations of some techniques are more useful than of others. In

particular, it has been observed that combining speed-up techniques from different categories is

most promising whereas a combination of two similar techniques usually does not yield viable

results since they tend to exploit the same aspects of the graph. For example, a combination of

the two hierarchical techniques, i.e. Reach and Highway Hierarchies is not very promising.

2.4 Speed-up techniques

In the previous section, we introduced briefly the basic speed-up techniques to solve the

shortest path problem in large road networks. In this section, they will be presented to a greater

extent as a background to the general route planning problem. Note that, although the analysis

of the speed-up techniques does not belong to the main object of this thesis, the development

of the speed-up techniques is one of the most significant research fields in large-scale route

planning and some of them can be easily incorporated as an extension to this thesis (which also

deals with large-scale networks).

Figure 2.7 : Overview of the techniques and combinations as given in [Sch08]. Goal-directed are
marked with purple and hierarchical are drawn in yellow. Edges denote existing combinations

19

The development of speed-up techniques started when even the evolved computer hardware

could not handle large-scale networks, like continental-sized networks, encountered in route

planning, resulting to high query times. To encounter this problem, research in the past years

focused on developing speed-up techniques for Dijkstra algorithm. The common goal of these

techniques is to reduce the search space while still yielding optimal results. In other words, the

majority of the speed-up techniques preprocess the input data, in order to accelerate the

answer to single-source single-target shortest paths queries. This means that the solution

method has two phases (in most times): a preprocessing phase, that computes useful

information on the input graph and is applied only once, and a query phase, which computes

the actual shortest paths using the output of the preprocessing phase to accelerate the search.

For this reason, wherever feasible, the analysis is structured in a preprocessing phase and in a

query phase.

It turns out that speed-up techniques are based on a few, basic concepts and thus can be

categorized in bidirectional search, goal-directed search and contraction.

In this section, we present the basic speed-up techniques by introducing their algorithmic

concepts in the context of uni-modal time-independent routing.

2.4.1 Bidirectional search

The bidirectional approach is probably the most evident idea to speed-up shortest path query

from one source to one target . Ira Pohn was the first to design and implement it, but Andrew

Goldberg et al. explained the correct termination conditions for the bidirectional version of

Dijkstra’s Algorithm.

 Bidirectional search executes two Dijkstra simultaneously, one forward from the source and the

other backwards from the target. The forward search is performed in , while the other in ⃖.

The two Dijkstra computations (forward and backward direction) are interleaved as follows. Two

priority queues are used to store the distances of the two Dijkstra. In each step, the Dijkstra

which priority queue has the smallest key is executed. The algorithm terminates if a node

becomes settled in one direction that has already been settled in the other direction. This node

is called the meeting node. The shortest path can be derived from the information already

gathered. The cost of the optimal route is computed as the { () ()}, for all

visited in both directions(the meeting node does not necessarily lie on the shortest path).

Regarding the illustration of the search space in Figure 2.8, it can be perceived why a

bidirectional search is usually faster than a normal Dijkstra query. In road networks, where

search spaces will take a roughly circular shape, we can expect a speedup around two – one disk

 () has twice the area of two disks with half the radius.

20

 Search space forward backward

 s t

 s t

 (a) Uni-directional Dijkstra (b) Bidirectional Dijkstra

Figure 2.8 : Comparison of uni-directional with bidirectional search

The respective search spaces are illustrated by disks around source and target node.

Bidirectional Dijkstra is one of the most known and useful speed-up techniques and it is widely

combined with many other techniques either based on goal-directed search or contraction.

2.4.2 Goal-directed search

Goal-directed approaches direct the search towards the target by preferring edges or nodes

that shorten the distance to and by excluding edges or nodes that cannot possibly belong to a

shortest path to —such decisions are usually made by relying on preprocessed data.

2.4.2.1 A* search

In computer science, A* is a computer algorithm originated from artificial intelligence and

widely used in pathfinding and graph traversal. It was first described in 1968 by Peter Hart, Nils

Nilsson and Bertram Raphael [HNR68].

The A* algorithm is a modified Dijkstra algorithm that applies additional information to improve

the performance. A* uses a best-first search and finds a least-cost path from a given initial node

to one goal node (out of one or more possible goals). Let () be an arbitrary graph. As

A* traverses , it follows a path of the lowest known heuristic cost, keeping a sorted priority

queue of alternate path segments along the way.

21

Specifically, let be an arbitrary potential function on the graph nodes to estimate

distances between them. Then, a reduced weight function () of a path ⟨ ⟩can be

defined as the sum of two parts

 the path-cost function () (), which is the cost from the starting node to the

current node

 an admissible "heuristic estimate", () (), of the distance from the start node to

the goal

Consequently, () () () ().

Note that the length of an arbitrary path is only changed by a constant value () ()

when () is applied. This potential function () is called feasible if the reduced edge weights

 () are non-negative for all edges . The potential () is a lower bound on the

distance (), if () holds and () is feasible .

The A* search applies a feasible potential function () to speed-up queries. The basic

structure of Dijkstra's algorithm is retained but priority keys are changed to ()

 () (). Thus, in each step the node is settled with the shortest estimated path from

the source to the target via . Figuratively speaking, nodes that potentially lead closer to the

target are preferred, whereas the other nodes are ignored.

This approach is equivalent to performing a classical Dijkstra on a graph with weights derived

from the weight function (). Since the length of arbitrary paths is only changed by

a constant value () (), the priority keys become () () () (). This

yields the same sorting as in priority queue above, since () is constant. Therefore, running a

shortest-path search on the normal graph is equivalent to running one on the graph with

reduced edge weights.

If a graph layout is given, the Euclidian distance to the target node is a suitable choice for a

feasible potential function, as illustrated in the figure 2.9. This works only as long as the metric

in the graph is also geographical distance since then geographical distance is guaranteed to be a

lower bound of any path from to .

22

If we combine bidirectional Dijkstra with A*, we should pay attention to several particularities.

Let be the potential in the forward direction and the potential in the backward direction.

The two potentials are called consistent if the reduced weight function is the same for both. This

is true if holds. If they are not consistent, the search cannot be stopped when

the two search spaces meet since both directions use different weight functions and as a result

new approaches should be implemented for the bidirectional A* search.

2.4.2.2 ALT algorithm

The ALT algorithm, which has been introduced by Goldberg and Harrelson in 2004, is a variant of

A* and stands for A* search, Landmarks and Triangle inequality.

The ALT algorithm is an A* search with a far simpler potential function. Its main idea is to use

landmarks and triangle inequality to produce feasible lower bounds. Furthermore, it is not

dependent on the availability of additional layout information.

Preprocessing . In the preprocessing phase, a small set of nodes is chosen and labeled as

landmarks. Moreover, an exact distance table with the distances to/from every landmark ,

for all nodes , is computed. The number of landmarks is usually set between 16 and 64.

Because distances on form a metric, the following instances of the triangle inequality hold :

 () () () and

 () () ()

5

8 7

0

1

6

8

12

7 (4)

2 (1)

2(1) 5(0)

1 (0)

10 (3)

4 (0)

9 (4)

4 (0)

8 (4)

s

Figure 2.9 : Graph with a feasible potential function, inspired by [Sch08]. Potential values are

written below the nodes and reduced weights are given in brackets next to the normal edge

weights. The shortest path from s to t is shown in red and the associated search space is drawn

in bold.

23

Figure 2.10 : The two pictures show the application of the triangle inequality

Query . During the query, a lower bound is computed according to () () ()

(implying distance to a landmark) or () () () (implying distance from a

landmark). Specifically,

 () () () () () ()

The best lower bound can be obtained by using the landmark yielding the greatest lower

bound according to

 () () () () ()

With () and () precomputed for each landmark and every node , the

reduced cost graph is then computed implicitly by altering the key of in the priority queue

to () ().

Consequently, the only difference to Dijkstra algorithm is that instead of using () as keys in

the priority queue, we use the cost reduced distance function () (). However,

previous experiments revealed that computing the lower bound with respect to all landmarks

produces too much overhead during the query. For that reason, we apply triangle inequality

only on a subset . We usually restrict the cardinality of to 2. The landmarks

that are set active depend on the query and are determined in the beginning using ().

Furthermore, every k iterations of the algorithm we update the set of active landmarks by

rechecking which landmarks yield the best lower bound for the currently settled nodes.

2.4.2.3 Arc flags

Besides the afore-mentioned goal-directed algorithms, the Arc-Flag approach (or edge labels) is
another speed-up technique for Dijkstra algorithm. Although it belongs to goad-directed
approaches, the underlying idea is different. It was first introduced by Lauther [Lau97, Lau04]
and has ever since been studied and revised several times.

 ()
 ()

 () ()

 ()

 ()

24

The basic intuition of the algorithm will be given with an example. If a driver is in Munich and

wants to go to Berlin, he will follow mostly roads, their direction is to the north. Based on this

idea, Arc-Flags try to find paths that can be pruned during the search, thus, yielding a smaller

search space. This approach aims to put appropriate flags on the edges so as to use only the

relevant edges during an s-t query, these leading to the direction of the goal/target.

Preprocessing . Arc-Flags require two-phase preprocessing.

First, the graph () is partitioned in a fixed number of cells or regions ().

An example of a graph partitioned into four regions is shown in Figure 2.11. In a s-t query, we

shall refer to the region or the cell that the target belongs to as target region or target cell .

Thus, every node belongs to only one region.

Figure 2.11 : A simple example of a partition in a graph G taken from [Bau11] . G is divided into

four regions ⟨ ⟩ ⟨ ⟩ ⟨ ⟩ ⟨ ⟩

Given the graph and the partition R, we assign a distinct number in to each region

and define a mapping such that () is the number of the region that

belongs. Storing this information clearly requires space linear in n.

Regions should be divided properly so as to be nonoverlapping and compact. So, as far as the

type of partition is concerned, experiments show (see [HKMS06, MSS+06]) that it has a major

impact on query performance of the Arc-Flags query algorithm. While in fact any partition

works, a ‘good’ partition should have the following properties. First, the cells of the partition

should be connected. This helps the goal-direction of Arc-Flags. Moreover, the number of

boundary nodes (i.e., nodes that are incident to edges connecting different cells) should be low.

The main reason is, as we see soon, that a high number of boundary nodes imply a high

25

preprocessing effort. It should be noted that the geometric partitioning methods in [HKMS06,

MSS+06] fulfill the first claim, while the second is not considered. These do not require

geographical information attached to the nodes and compute the partition solely based on the

structure of the graph. We omit further technical details and only like to point out that from the

tested partitioning methods, METIS [Kar07], PARTY [MS04] and SCOTCH [Pel07], the latter yields

the most promising results for Arc-Flags.

The second phase of the preprocessing is the computation of the edges flags. Thus, we enrich

each edge of the graph by a vector () of binary flags construed as boolean values. Each of

the boolean values corresponds to the relevant region and indicates if that edge is part of a

shortest path to any node of that region. For example, if () is equal to (), edge

() belongs to every shortest path with target node lying on region 1, but it does not

belong to any shortest path to regions 2, 3 and 4. Thus the additional memory consumption

necessary for these arc-flags amounts to bits and therefore is linear to m. We interpret

that ()(()) means that the edge () might be important in any query with the

target node t (belonging in every region). Let denote the set of all shortest s-t paths in a

given graph. Every flag is then supposed to fulfill the following property to retain correctness of

the query algorithm.

 () (())

By satisfying this expression we ensure that for any pair of source and target nodes, there exists

at least one shortest path for which the flags corresponding to the target region are set to 1 on

all of its edges.

The simplest and most naive way to compute arc-flags with respect to region is the following.

First, we initialize the flag on all edges except those edges with their tail inside with false.

Now we consecutively grow a full backward shortest path tree from every node , setting

the flag to true for every edge that is contained in the tree. Arc-flags once set to true are

never changed back to false. To complete this approach for every region, we end up computing

 full backward shortest path trees in ⃖ which is too slow for large graphs (see also [Lau04]).

A faster method only uses boundary nodes. The key observation is that a shortest path with

target region has to enter the region at some point. Hence, it is sufficient to compute

backward shortest path trees from the boundary nodes (instead of the nodes in the region). This

decreases the preprocessing time significantly [Lau04]. However, preprocessing time is still

rather high (several hours, even up to days on large graphs), which is the major drawback of the

Arc-Flags approach. Thus in [HKMS06] another approach is presented using centralized shortest

path trees which decreases preprocessing time significantly.

26

Figure 2.12 : Arc-flags after preprocessing, as given in [Bau11]

Query . A unidirectional Arc-Flags query is a modified Dijkstra operating on the input graph. For

a random s-t query, it first determines the target cell T, and then relaxes only those edges with

set flag for cell T. Note that compared to plain Dijkstra, an Arc-Flags query performs only one

additional check.

2.4.3 Contraction

The underlying idea of contraction is based on the hierarchy of roads. In other words, in a s-t

query, when the driver is close to the source and the target, he should take into account mainly

residential roads, when he is a bit further, mainly avenues and when he is even further away,

mainly motorways.

So, contraction is a method that leads to a reduction concerning the size of the graph, either,

regarding nodes (node reduction) or edges (edge reduction). A graph (), as generally

used in this field of research, contains a lot of nodes that have very few connections to the other

nodes. The goal of the contraction is to identify these nodes and to remove them, but retaining

shortest-path distances between the remaining nodes by inserting additional shortcuts.

2.4.3.1 Highway hierarchies

Highway Hierarchies introduced in [SS05] and refined in [SS06a] is one of the first speed-up

techniques using contraction based methods.

27

Preprocessing . Highway Hierarchies group nodes and edges in a hierarchy of levels by

alternating between two procedures: Contraction (i.e., node reduction) removes low degree

nodes by bypassing them with newly introduced shortcut edges (see also [SS05]). In particular,

all nodes of degree one and two are removed by this process. Edge reduction removes non-

highway edges, i.e., edges that only appear on shortest paths close to source or target. More

specifically, every node has a neighborhood radius (), we are free to choose. An edge ()

is a highway edge if it belongs to some shortest path from a node to a node such that

() is neither fully contained in the neighborhood of nor in the neighborhood of , i.e.,

 () () and () (). In all our experiments, neighborhood radii are chosen such

that each neighborhood contains a certain number of nodes. is a tuning parameter that can

be used to control the rate at which the network shrinks.

Query . The query algorithm is very similar to bidirectional Dijkstra search with the difference

that certain edges need not be expanded when the search is sufficiently far from source or

target.

HHs were the first speedup technique that could handle the largest available road networks

giving query times measured in milliseconds. There are two main reasons for this success: under

the above contraction routines, the road network shrinks in a geometric fashion from level to

level and remains sparse and near planar, i.e., levels of the HH are in some sense self-similar.

The other key property is that preprocessing can be done using limited local searches starting

from each node. Preprocessing is also the most nontrivial aspect of HHs. In particular, long

edges (e.g. long-distance ferry connections) make simple minded approaches far too slow.

Instead we use fast heuristics that compute a superset of the set of highway edges.

Routing with HHs is similar to the heuristics used in commercial systems. The crucial difference

is that HHs are guaranteed to find the optimal path. This qualitative improvement actually

makes HHs much faster than the heuristics. The latter have to make a precarious compromise

between quality and size of the search space that relies on manual classification of the edges

into levels of the hierarchy. In contrast, after setting a few quite robust tuning parameters, HH

preprocessing automatically computes a hierarchy aggressively tuned for high performance.

2.4.3.2 Contraction hierarchies

Contraction Hierarchies [Gei08, GSSD08] is a further development based on Highway

Hierarchies, yielding a high-performance speed-up technique solely based on the concept of

contraction.

Preprocessing .

Node Reduction . The node-reduction when applied once, divides the graph into two parts: the

28

core and the component. In the beginning all nodes are considered to belong to the core.

Iteratively, nodes are bypassed according to a certain order, they get extracted from the core

and eventually belong to the component of the graph, until no further nodes are bypassable

(the criterion to which nodes are selected for bypassing is not discussed at this point). A node

is bypassed by removing it from the graph along with all of its ingoing edges () and outgoing

edges (). For each pair of removed edges () () and () () with , a

shortcut () is inserted into the graph. Its weight is set to the sum of the weights of the

removed edges: () () () If there already was an edge in the graph,

connecting and , the shortcut is not inserted. But if the weight of the shortcut would have

been smaller than (), it is used instead. Finally, the node and all its incident edges are

deleted from the graph. Note that the node-reduction routine preserves correct distances

between two arbitrary core nodes. The obtained core graph is denoted by

(), while the component is defined by () where

 and .

 (a) before (b) after (c)edge-reduction ()

Figure 2.13 : Figures (a) and (b) illustrate the bypass operation during node reduction, inspired by

[Paj09] thesis. For each pair of incoming and outgoing edges at , a shortcut is inserted. If the

shortcut is already contained in the graph (blue edge), the weight on the shortcut is set to the

minimum weight of e. Figure (c) illustrates edge-reduction. The bold path from to is shorter

than the edge ()(dashed line), thus, e can be deleted.

Edge Reduction .

Note that the node-reduction routine potentially adds shortcuts not needed for keeping the

distances in the core correct. Hence, we perform an edge-reduction directly after node-

reduction, similar to [SWW99]. We grow a shortest path tree from each node of the core. We

stop the growth as soon as all neighbors of have been settled. Then we check for all

neighbors whether is the predecessor of in the grown partial shortest path tree. If is not

the predecessor, we can remove () from the graph because the shortest path from to

 does not include (). In order to remove as many edges as possible we favor paths with

more hops over those with few hops. In order to limit the running time of this procedure, we

restrict the number of priority-queue removals to 10.000. Hence, we may leave some unneeded

edges in the graph.

29

Query . While the query algorithms of the previous techniques turned out easy, the contraction

routine requires a more complicated query algorithm (see also [Paj09]). As input we are given a

graph () with designated core-nodes. For an query the algorithm works in two

phases. The first phase operates on the component part of the graph, while the second operates

only on the core. Phase one instantiates a bi-directional search on the component of . This is

achieved by not relaxing edges that are contained in the core (i.e., edges () for which

both and have the core flags set). Note that by these means we in fact settle core nodes, we

just abort the search as soon as they are first hit (if either or are core nodes, the forward

resp. backward search terminates immediately). The set of core nodes that are hit by the

forward search is called set of core-entry-nodes, while the set of core nodes hit by the

backward search is called the set of core-exit-nodes. Phase one terminates if one of the

following conditions holds.

 Both, the forward and backward priority queues are empty.

 There has been a -path found for which it holds that

 () (
) (

)

where
 denotes the core-entry-node with minimal distance from s in G,

while
 denotes the core-exit-node with minimal distance from t in ⃖.

If phase one is aborted due to the second condition, we can stop the query and output the

computed path P as shortest s-t-path. In this case, the shortest path solely uses nodes of the

component. So for the rest of this paragraph we assume that no path P in the component has

been found by phase one. In this case, phase two of the algorithm is instantiated with a many-

to-many query only relaxing edges contained in the core. However, the forward (and

backward) queues are re-filled such that the initial keys are set to the distances (from

respectively) computed in phase one. The algorithm used in phase two is not specified. Thus,

contraction yields a modular design that allows combination with an arbitrary speed-up

technique applied on the core. The final -path is then combined by determining the

minimal path for every node where the length is computed by

 () () ()

30

 (a) Phase I (b) Phase II

Figure 2.14 : Illustration of the core-based routing algorithm as given in [Paj09]. Phase I conducts

a bidirectional Dijkstra until all core-entry resp. core-exit nodes have been reached. In phase II,

an s-t query is performed on the core graph. The shortest path is then combined by taking from

all s-T-t paths the one with the minimum length.

2.4.3.3 Reach

The notion of reach in the context of graphs was first introduced by Gutman in [Gut04]. It can be

applied either to nodes or to edges, with the latter being more effective but also needing more

space. Here, the Reach algorithm is described using node-reaches, but most of the explanation

can be easily adapted for edge-reaches.

Definition 1 . The reach of a node , denoted by (), is defined as the maximum, over all

shortest – paths containing , of () () .

 ()

 ()

 ()

 ()

 Figure 2.15 : Illustration of reach

So, ()
 () () ,

31

Therefore, the reach value is a measure for the centrality of the node. In other words, a node

with a high reach value is more central to the graph in such a way that it is usually close to the

middle of a long shortest path, whereas low-reach nodes are located rather near the end of

shortest paths. On a road network, this differentiation corresponds to important highway roads

and non-relevant local roads.

Preprocessing . The reach values for each node are computed in a preprocessing step and can

be used during the query to prune the search space. If () () and () ()

holds, cannot be on a shortest path from s to t and does not need to be touched or settled by

the query algorithm. Note that upper bounds on reaches () and lower bounds on distances

 () suffice for the condition to hold.

Query . The query algorithm implements Dijkstra’s algorithm with pruning based on reaches.

Whereas reach values are precomputed and available during the query, and distances from the

source to a node are automatically given by the query, the distance from to the target is

more difficult to be obtained. Gutman [Gut04] suggested using Euclidean distances to compute

lower bounds as is done by the A* search. A graph layout is required to compute the Euclidean

distances and if the weight function is not based on a distance metric, this approach usually

does not produce good lower bounds. Goldberg et al. found a more promising way to obtain

lower bounds implicitly by using a bidirectional query together with reach-based pruning (see

also [Fuc10]).

2.4.4 Summary

In this section 2.4, we presented speed-up techniques for Dijkstra’s algorithm which are an

integral ingredient in large-scale route planning so as to minimize the query times. These

techniques can also apply to the alternative route problem either separately or combined.

In general, each technique (or speed-up category) has its advantages and its disadvantages

which can be taken into account depending on the application, the specifications for memory

consumption and execution times and generally the problem under consideration [Del09]. In

particular, ALT is easily adapted to dynamic scenarios, is robust to the input and its

preprocessing algorithm is easy enough. However, it yields high memory consumption. The

advantage of Arc-Flags is the exceptional query performance. Preprocessing phase is based on

Dijkstra search, while the query algorithm performs only one additional check compared to plain

Dijkstra. However, the time consuming preprocessing phase (needs more than 17 hours to

preprocess a continental-sized road network) is a crucial drawback. Hierarchical speed-up

techniques are quite successful due to the iterative contraction of the input. It turns out that, at

least in road networks, it is often sufficient to perform extensive preprocessing only on a small

subgraph of the input, the core. Thus, combining techniques belonging to different categories,

we can benefit from the advantages of each one, achieving great results.

32

33

CHAPTER 3

ALTERNATIVE ROUTE ALGORITHMS AND ALTERNATIVE GRAPHS

As we mentioned in the beginning, today’s requirements for routing services, be it in-car or as a

web-service, ask for more than just computing the shortest path. Thus, it is desirable not only to

compute a single path to a user, but instead a set of paths. This chapter introduces us to the

main subject of our study, that of finding alternative routes in graphs. Given an initial graph

and a pair of source and target nodes, the aim is to compute a subgraph of resulting from the

union of the alternative routes found from to . So, initially, we define this resulting subgraph,

called Alternative Graph () and then we continue by discussing basic methods used for

finding alternative routes and as a result creating AGs. K-shortest paths, disjoint paths, pareto-

optimal paths, penalty method are some approaches in this direction. The chapter continues by

stating where these algorithms are used and which are their main drawbacks that led the study

in defining certain criteria for the alternative routes and developing new approaches, presented

in chapter 4.

3.1 Alternative graph (AG)

No matter which approach is used for the computation of the alternative routes, the final goal is

the creation of the alternative route subgraph, denoted by , which consists of the paths

computed by the approach.

The initial graph is the representation of a network and the desirable output is a subgraph

resulting from the union of several alternative paths from source to target. In general, these

alternatives can share nodes and edges and subpaths of them can be combined to new

alternative routes. So, more formally, let () be the input graph with edge weight function

 . For a pair of source and target nodes, , , an alternative route graph or more

simply, an alternative graph, () is a graph consisting of paths starting from and

ending to that represent alternative roads in the network. such that for every edge

 , there exists a simple path in containing and none of the nodes is isolated.

3.2 K-shortest paths

K-shortest paths is a widely used approach to find alternative paths. As the name states, the k-

shortest-paths problem, for a given and a given source-destination pair in a graph is to list

34

paths in the graph with minimum total length. There are two types of k-shortest-paths network

problems. The first is to find k paths from the origin to the sink that have the shortest lengths, in

which loops are allowed. Hoffman and Pavley ([HP59]), Bellman and Kalaba ([BK60]), Sakarovitch

([Sak66]) proposed different algorithms for solving this type of problem, but Eppstein’s

algorithm([Epp94]) achieves the best running time complexity. The second type of problem is to

find k paths from the origin to the destination that have the shortest lengths, in which no loops

are allowed. The available algorithms for solving this type of problem are proposed by Bock,

Kantner and Haynes ([BKH57]), Pollack ([Pol61]), Clarke, Krikonian and Rausan ([CKR63]),

Sakarovitch ([Sak66]) and others. However, the best running time for this case is attributed to

Yen([Yen71]).

3.2.1 K-shortest paths with loops (by Eppstein)

Eppstein solved efficiently the problem if k-shortest path problem in 1994. Paths are allowed to

have loops.

Preliminaries . Let () be a graph with the number of vertices and the

number of edges. Self-loops and multiple edges in the graph are allowed, so maybe larger

than (

). Furthermore, for the purposes of the algorithm, a heap is a binary tree in which

vertices have weights, satisfying the restriction that the weight of any vertex is less than or

equal to the minimum weight of its children. More generally, a D-heap is a degree-D tree with

the same property. Thus the usual heaps are 2 –heaps.

The algorithm described below, does not output each path it finds explicitly as a sequence of

edges, but implicitly. The representation is similar in spirit to those used for the k minimum

weight spanning trees problem: for that problem, each successive tree differs from a previously

listed tree by a swap, the insertion of one edge and removal of another. The implicit

representation consists of a pointer to the previous tree, and a description of the swap. For the

shortest path problem, each successive path will turn out to differ from a previously listed path

by the inclusion of a single edge not part of a shortest path tree, and appropriate adjustments in

the portion of the path that involves shortest path tree edges. Our implicit representation

consists of a pointer to the previous path, and a description of the newly added edge.

Eppstein’s algorithm goal is to create appropriate data structures (in particular a path graph

 () and a heap ()) from which we can reconstruct k-shortest paths from to . Thus, it is

necessary to explain some basic concepts, to see how a path is represented by a heap, to define

the path graph () and the path heap () and finally find the k shortest paths in .

Steps of the algorithm .

At first, the algorithm constructs the destination tree . In other words, it finds the shortest

path from each vertex to the destination node, running a Dijkstra on the backward graph ⃖.

35

Basic Concepts . Given an edge in , () () (()) (()) is defined.

Intuitively, () measures how much distance is lost by diverging from the shortest path tree or

alternatively by being «sidetracked» along edge instead of taking a shortest path to . For any

 , () . For any , () .

For any path in , some edges of may belong to , and some others may belong to .

Any path from to is uniquely determined solely by the subsequence () of its

edges in (sidetracks are edges that diverge from the shortest path tree). For a given pair

of edges in (), there is a uniquely determined way of inserting edges from so

that the head of the first edge is connected to the tail of the second edge. A sequence of edges

in may not correspond to any path, if it includes a pair of edges that cannot be

connected by a path in . If (), we define () to be the path . The

implicit representation will involve these sequences of edges in . For any nonempty

sequence of edges in , let () be the sequence formed by the removal of the last

edge in . If (), then () will define a path ()

 (()). We next show how to recover () from information in ().

For any path p from to ([Epp94]),

 () () ∑ ()

 ()

 () ∑ ()

Representation of Paths by Heap . The representation of paths discussed in the previous

section gives a natural tree of paths. Every path is represented by a path in the tree in which

the parent is () and the child is (). The degree of any node in this path

tree is at most , since there can be at most one child, corresponding to each possible value of

 (). The possible values of () for paths that are children of are those

edges in that their tails rely on the path starting from node (()) and

ending to destination node , along the shortest path tree Note that if contains cycles, the

path tree is infinite. The path tree is heap-ordered. However, since its degree is not constant, we

cannot find the k smallest weight vertices (as it is usually done in any heap, in time ()).

Instead, we form a heap by replacing each vertex of the path with an equivalent bounded-

degree subtree (heap of edges at vertices).

Heaps of Edges at Vertices . For each vertex , we form a heap () containing all edges with

tails on the path form to , ordered by (). This heap is used to modify the path tree that

was described before. Specifically, every node of the path tree is replaced by a copy of

 ((()). The procedure is described in detail below.

36

 () contains all edges leaving a vertex in a graph which are not part of a shortest path in

 . They are heap-ordered by () that represents the distance lost when using this edge

instead of the one on a shortest path (shortest paths have been found at the computation of

tree) . Now, we build a 2-min-heap () by heapifying the set of edges () according

to their () for any node .

Then, we build for each vertex , a balanced heap (), containing only the roots ()

of the heaps (), for each vertex on the path from to . () is formed by inserting

 () into (()). Since insertion into a balanced heap can be performed with

 () changes of pointers on a path from the root of the heap, we can store () without

changing (()), by using an additional () words of memory to store only the

nodes on that path.

Now, we can build (), by making each node () in () point to an additional

subtree, namely to the rest of heap () () can be constructed at the same time as

 (). () is thus a 3-heap as each node includes at most either two edges from () and

one edge from (), or no edges from () and two edges from ().

Having computed (), we can construct a DAG called () containing ()

vertices and a mapping from vertices to () (). Each vertice in () corresponds

to an edge in and has out-degree at most 3. Furthermore, The vertices reachable in ()

from () form a 3-heap () in which the vertices of the heap correspond to edges of

with tails on the path in from to , in heap order by the values of (). The graph ()

provides a structure () representing the paths differing from the original shortest path by the

addition of a single edge in .

The Path Graph . Our goal is to produce a graph which can represent all paths, not just

those paths with a single edge in . For that reason, path graph () is defined and

consists of the vertices of () with one additional vertex, the root () that is connected

to () by an edge with (()). The vertices of () are the same in () but they are not

weighted. The edges are given lengths. Then for each directed edge () () the

corresponding edges in () are created and weighted by () (). They are called Heap

Edges. Then for each vertex () which represents an edge not in a shortest path

connecting a pair of vertices and , "cross edges" are created from to () in () having

a length (()). Every vertex in () only has an outgoing degree of 4 max. () paths

starting from are supposed to be a one-to-one length correspondence between paths in

G.

In the end a new heap ordered () is build. Each vertex corresponds to a path in

 () rooted at . The parent of any vertex has one fewer edge. The weight of a vertex is the

length of the corresponding path.

37

Finding k-shortest paths . It is known that we can find the smallest weight vertices in any heap

in time () and that given the heap, there is a data structure that will output the vertices in

order by weight, taking time () to output the vertex. So, having constructed the (),

we can find the k shortest s-t paths in in time (). The running time of Eppstein’s algorithm

is ().

3.2.2 Loopless k-shortest paths (by Yen)

Yen raised an algorithm to solve the finding of k shortest paths without loops which is the basis

of many other algorithms that are widely used for this problem.

Preliminaries .

Let () be a graph where :

 : the nodes of the graph with the origin and the sink

 ⟨ ⟩ : the path from to , passing through node

 ()

 : the distance of the direct arc from – if this arc exists, d is a

finite number, otherwise, d is considered equal to infinity

 ⟨

 ⟩ : the shortest path from to ,

where

 are respectively the node of th shortest path

 : set of “deviations from path at node - a deviation from

at node is the shortest of the paths that coincide with from node to the

node on the path and then deviate to a node that is different from any of the ()

nodes of those , that have the same paths from to the node

as does ; and finally reaches by a shortest subpath without passing any node

that is already included in the first part of the path. Note that
 is loopless and

contains the same node no more than once

 : root of

 is the subpath of
 that coincides with , i.e.,

 in

 : spur of

 is the last part of
 that has only one node conciding with , i.e.,

 in

Steps of the algorithm .

The Yen’s algorithm that finds the K-shortest-path is as follows :

Iteration 1 . Determine by an efficient shortest-path algorithm (see [Yen70] for more

details). Note that Yen's algorithm is an algorithm which finds the lengths of all shortest

paths from a fixed node to all other nodes in an nonnegative-distance network

([Yen70]).

38

Iteration k () . Determine (in order to find , the shortest paths

 must have been previously determined) as follows :

For each of the nodes of the shortest path, do the following

a. Check if the subpath consisting of the first nodes of in sequence coincide

with the subpath consisting of the first nodes of in sequence for j = 1, 2, ... ,

k – 1. If so, set () where is the () node of otherwise, make no

changes. Then go to Step (b).

Note that distances () are set to infinity for computations in iteration only.

They should be replaced by their original values before iteration starts.

b. Apply a shortest-path algorithm to find the shortest path from to allowing it

to pass through those nodes that are not yet included in the path. Note that the

subpath from to is defined as root of
 ,

 , and the subpath from to is

defined as spur of
 ,

 .

c. Find
 by joining

 and
 . Then add

 to List B. Note that it is necessary to

store only the shortest paths
 in List B.

Find from List B the path(s) that have the minimum length. If the path(s) found plus the path(s)

already in List A exceed K, the problem of k-shortest paths is solved. Otherwise, this path is

denoted by and move it from List B to List A - leaving alone the rest of the paths in List B.

Then algorithm continues on iteration k + 1.

The above algorithm is developed from the fact that is a deviation from

 . More precisely, must coincide with for the first nodes.

Then, it deviates to a different node and finally arrives at the sink without passing each node

more than once. Therefore, to obtain , it is only necessary to look for all shortest deviations

 and then choose the one with the shortest length.

To sum up, in each iteration , step (a) of the approach sets () to force to

deviate at each node on the path without allowing the deviations to take any path that its

length is shorter than . This is followed by steps (b) and (c) that find the shortest deviations

of . Finally , the is selected from all possible candidates in List B.

3.2.3 Discussion

Although, k-shortest-paths is a widely used method, the routes computed are very similar to

each other and are not even considered as distinct to humans. Computing all shortest paths up

to a number produces many paths that are almost equal, sub-optimal and as result, only after

a large number of (1000 first shortest paths) the results tend to be satisfactory for the drivers.

Consider, for example, the following situation : there are two long different highways from to

39

 , where the travel time between them differs only for 5 minutes. To reach the highways, we

need to drive through the city. For the number of different paths through the city to the faster

highway, we have a combinatorial explosion. The number of different paths is exponential in the

number of nodes and edges in the city, as we can independently combine short detours around

a block, in the city. That means, it is not feasible to compute all shortest paths until we discover

the alternative path on the slightly longer highway. Consequently, this method is quite

impractical for computing alternatives.

3.3 Disjoint paths

The problem of finding link/node-disjoint paths between a pair of nodes in a network has

received much attention in the past due to its theoretical as well as practical significance to

many applications. Paths between a given pair of source and destination nodes in a network are

called link disjoint if they have no common (i.e. overlapping) links, and node disjoint if, besides

the source and destination nodes, they have no common nodes.

In this section, we focus on computing link-disjoint paths. In general, a link-disjoint paths

algorithm can be extended to a node-disjoint algorithm with the concept of node splitting, i. e.

replacing one node with two nodes that are linked together by a link with zero weights.

3.3.1 Disjoint paths algorithms

Link-disjoint path pair (LPP) problem . Given a (), for a source-destination pair (), find

a set of two paths and , such that ⋂ and the total length () () is minimized.

An intuitive method to determine two shortest link-disjoint paths between a pair of source and

destination nodes consists of two steps. The first step retrieves the shortest path between a

given pair of nodes in a graph. The second step is to remove all the links of that path from the

graph, and to find the shortest path in the pruned graph. This method is referred as the remove-

find (RF) method. Although the RF method is direct and simple, it has at least two disadvantages

due to the removal of links belonging to the first shortest path. Provided that two link-disjoint

paths exist, there is no guarantee that they will be found as illustrated in figure 3.3. The second

link-disjoint shortest path may have a significantly larger length.

To surmount these problems, other methods have been devised to find shortest link-disjoint

paths with minimal total length. Suurballe (see [Suur74]) proposed an algorithm, to find K node-

disjoint paths with minimal total length using the path augmentation method. The path

augmentation method is originally used to increase the size of a matching with an augmenting

path [Die97] and to find a maximum flow or a minimum cost flow in a network ([FF62], [PS82]).

The problem to find link/node disjoint paths can be viewed as a special case of the minimum

40

cost flow problem as demonstrated in [ST84], [Bha94], [Suu74]. The basic idea of Suurballe’s

algorithm is to construct a solution set of two disjoint paths based on the shortest path and a

shortest augmenting path. K disjoint paths can be obtained by augmenting the optimal

disjoint paths with this algorithm. In 1994, Bhandari [Bah94] proposed an algorithm to find a

pair of span-disjoint paths. The disjoint paths algorithm used by Bhandari is a modified version

of Suurballe’s algorithm [Suu74] that requires a special link weight transformation to facilitate

the use of Dijkstra’s. Bhandari made a simplification to Suurballe’s algorithm by directly setting

all the link weights on the first shortest path negative.

A simplified variant of Bhandari’s Algorithm [Bah94], referred to as LBA (link disjoint version of

Bhandari’s algorithm), which can produce an optimal solution for the LPP problem is presented.

Bhandari’s algorithm is modified into a link-disjoint path pair algorithm LBA by omitting the

node-splitting operation that ensures the node-disjointness and the graph transformations that

ensure span-disjointness.

Preliminaries .

Before explaining the operation of LBA, some notations are introduced. Let () be a

directed graph and () a source-destination pair. If the direction of a link is reversed, then its

weight becomes negative, i.e. () (). Thus, if a path from to exists,

reversing the direction and the weight of all of its links, we will have a path directed from to ,

denoted by ⃖ . Furthermore, (⃖) (). A set, which consists of links whose reversed

links appear on and vice versa, is denoted as ⋂̃ () () ()

 () . In the following figures, bold lines represent edges on the shortest

path(s) in the graph or its corresponding modified graph, dashed lines represent reversed edges

which do not exist in the original graph and bold dashed lines represent such reversed links that

appear on the shortest path.

Steps of the algorithm .

The steps of the LBA method are as follows :

 Find the shortest path from node to node ,

 Replace with ⃖ , a modified graph () is created,

 Find a shortest path from node to node in the modified graph (); if

 does not exist, then stop,

 Take the union of and , remove from the union the link set which consists of

 links whose reversed links appear in and vice versa, then group the

remaining links into two paths
 and

 ,

i.e.

 ()(⋂̃)

The above-mentioned steps of LBA will be explained with an example, illustrated in figure 3.1.

Suppose that we are required to find a set of two shortest disjoint paths between and . In

41

the start, the shortest path from to is found as ⟨ ⟩ with minimum

length 4.

Figure 3.1 : (a) the first shortest path, (b) reversing direction and signs of shortest path, (c) the

second shortest path, (d) computing the final pair of disjoint paths inspired by [GKM03]

In the next step, a modified graph () is created by reversing the direction and the sign of

the weight of each edge on . For instance, the edge with weight () is

replaced by the reverse edge with weight () () . In step 3,

the shortest path in the modified graph ⟨ ⟩ has length 6. In step 4,

 ⋂̃ is removed from the union . The solution set

of disjoint paths {

 ⟨ ⟩ ⟨ ⟩ is obtained. The total length of this

path set equals , which is exactly the minimal total length of two link-disjoint paths

in this graph.

For comparison, in figure 3.2, RF method is applied on the same topology with the same

requirements. In step 1, the shortest path ⟨ ⟩ is retrieved. In the next step, a

modified graph is created by removing all the edges of the shortest path. In step 3, the new

42

shortest path ⟨ ⟩ is computed. Thus, the set ⟨ ⟩ , ⟨ ⟩ has a total

length , which is bigger than 10 as found with LBA. This example illustrates that

the RF method cannot guarantee to find the optimal solution. More important, in the graph

shown in figure 3.3(a), although there exist two link-disjoint paths between and , RF

cannot find the second path in step 2 as shown in figure 3.3(b). LBA, on the other hand, still

returns the optimal set in this case.

Figure 3.2 : RF method, (a) the shortest path, (b) the second shortest path after the removal of

the edges of the first shortest path. Figures (a),(b) were inspired by [GKM03]

Figure 3.3 : the disadvantages of RF method inspired by [GKM03], (a) the first shortest path, (b)

although in the graph there are 2 disjoint paths, RF, due to the removal of edges cannot find the

second path

3.3.2 Discussion

The disjoint-paths method is a way to find alternative routes. However, the results obtained can

be occasionally not at all satisfactory. If RF method is applied, it is most likely that the resulting

43

alternatives (apart from the shortest path) have large lengths, since no edge is allowed to be

common. Moreover, this method cannot guarantee that existing alternatives in the graph will

actually be found. On the other hand, LBA method certainly achieves better results than RF.

However, it is not that helpful for finding good alternative routes in road networks, since some

road segments may be shared between several of the diverse routes that we would like to find,

which are therefore not disjoint. We usually do not request total disjointness for alternatives

routes in road planning. Thus, this method is not that proper for our problem. Instead, it can be

useful in cases that link-disjoint path problems actually occur. Such kind of problem usually

appears in computer network design where aspects as survivability, load balancing and network

resource utilization are strived for.

3.4 Pareto optimality (with SHARC)

Pareto optimality or Pareto efficiency is a concept originally appeared in economics and then

applied in engineering. In engineering, given a set of choices (i.e. alternative routes in a map)

and a way of valuing them, the Pareto set is the set of choices that are Pareto optimal. An

outcome of a game is Pareto optimal if there is no other outcome that makes every player at

least as well off and at least one player strictly better off. That is to say, a Pareto optimal

outcome cannot be improved upon without hurting at least one player.

3.4.1 Pareto optimality algorithm

Introducing the concept in the field of routing, Pareto optimality is a classical approach to

compute alternatives. In general, up to a short time ago, routing on road networks focused on

single-criteria scenarios. The goal was to find the quickest route within a network. However, the

quickest route is often not the best one. A user might be willing to accept slightly longer travel

times if the cost of the journey is less. A common approach to cope with such a situation is to

find Pareto-optimal routes, concerning a variety of metrics. Specifically, we can consider several

weight functions for the edges like travel time, distance, fuel consumption or scenic value and

compute pareto-optimal alternative routes in a way that each route is better than any other

route with respect to at least one metric under consideration, e.g. fuel consumption. Thus, the

concept of multi-criteria search in road networks is introduced.

The straightforward approach to find all Pareto optimal paths is the generalization ([Han79],

[Mar84]) of Dijkstra’s algorithm: Each node gets a number of multi-dimensional labels

assigned, representing all Pareto paths to . For the bicriteria case, [Han79] was the first

presenting such a generalization, while [Mar84] describes multi-criteria algorithms in detail. By

this generalization, Dijkstra loses the label-setting property, i.e., now a node may be visited

more than once. It turns out that a crucial problem for multi-criteria routing is the number of

labels assigned to the nodes. The more labels are created, the more nodes are reinserted in the

44

priority queue yielding considerably slowdowns compared to the single-criteria setup. In the

worst case, the number of labels can be exponential in yielding impractical running times

[Han79].

In this section, an efficient speed-up technique for multi-criteria routing is presented. This

speed-up technique is an augmented version of SHARC which is a combination of two speed-up

techniques presented in the chapter 2, contraction (Shortcuts) and arc flags(ARC). By

augmenting the main subroutines of SHARC to multi-criteria variants and by changing the

intuition when setting Arc-Flags, a very efficient method for the multi-criteria scenario is

generated (see [DW09]).

Preliminaries .

Let () be a directed graph. The main difference between single and multi criteria routing is

that the labels assigned to edges contain more than one weight and in particular they are

vectors in
 . Let () and (

) be two labels. dominates

another label if
 holds for one and

 holds for each . The

sum of and is defined by (

). The minimum and

maximum component of is defined by and respectively.

Finally, the length () of an path ⟨ ⟩ is given by

 () () (). In contrast to a single-criteria scenario, many paths exist between

two nodes that do not dominate each other. In this work, we are interested in the Pareto-set

 () () () () consisting of all non-dominated path lengths ()

between and . () is called size of a Pareto-set. Note that by storing a predecessor for

each , Pareto paths can be computed as well. The function assigns a label in each edge.

Steps of the algorithm .

Augmenting Ingredients . In this section, we show how to augment Dijkstra-search, arc flags and

contraction in order to guarantee correctness in a multi-criteria scenario ([DD09]).

Dijkstra search . Computing a Pareto set () can be done by a straightforward generalization

of Dijkstra ([Han79], [Mar84]). For managing the different distance-vector at each node , a list

of labels () is maintained.

 Initialize the source node with a label () () and any other list as empty.

 Insert () to a priority queue

In each iteration step,

 Extract the label with the smallest minimum component

 For all outgoing edges (), a temporary label () () () is created

 If () is not dominated by any of the labels in (),

 add () to ()

45

 remove all labels from () that are dominated by ()

 Stop the query as soon as () and all labels in the priority queue are dominated

by all labels in ()

Pareto Path Graph is a graph (PPG) constructed by computing () for a given source s and all

nodes . An edge () is a PPG-edge if and only if it is a part of at least one Pareto-optimal

path from to .

Arc flags . In a single-criteria scenario, an arc-flag () denotes whether e has to be

considered for a shortest-path query targeting a node within the region . In other words, the

flag is set if is important for (at least one target node) in . The adaption to multi-criteria

states that an arc-flag () is set to true, if is important for at least one Pareto path targeting

a node in . For the “augmented” computation of arc-flags, we build a pareto path graph (PGG)

in ⃖ for all boundary nodes of all regions . Then, we set ()() if () is a

PGG-edge for at least one PPG grown from all boundary nodes . SHARC is based on

multi-level Arc-Flags. Hence, we grow a PPG in ⃖ for all boundary nodes on the lower level and

stop the growth as soon as all labels attached to the nodes in the superregion of dominate all

labels in the priority queue. Then, we set an arc-flag to true if the edge is a PPG edge of at least

one Pareto path graph (see [DD09]).

Contraction . The Pareto contraction routine is similar to the one mentioned in chapter 2. First,

the unimportant nodes are contracted and in order to preserve Pareto paths between non-

removed edges, new edges called shortcuts are added to the graph. Then, edge-reduction step

is applied to remove unneeded shortcuts.

SHARC query . Augmenting the SHARC-query is straightforward. For computing a Pareto-set

 (), the modified multi-criteria Dijkstra explained before is applied on the output graph.

The modifications are then the same as for the single-criteria variant of SHARC: When settling a

node , we compute the lowest level on which and the target node are in the same super-

regions. Moreover, we consider only those edges outgoing from having a set arc-flag on level

for the corresponding region of . In other words, we prune edges that are not important for the

current query.

The number of Pareto-optimal paths can be quite large. So, the number of computed paths can

be decreased by tightening the domination criteria to keep only paths that are sufficiently

different. Therefore, the travel time metric is defined so as to be the dominating metric W.

Then, the tightened definition of dominance is as follows: Besides the constraints mentioned

before, a label () dominates another label (

) if

 () holds. In other words, Pareto-paths are allowed if they are up to times

longer (with respect to the dominating metric). Note that by this notion, this has to hold for all

sub-paths as well.

46

3.4.2 Discussion

Pareto optimality method is a method which concept differentiates from the classical idea of

alternative route finding of the previous algorithms. It introduces the concept of multi-criteria

routing in large-scale networks. Thus, pareto optimality with SHARC is an efficient speed-up

technique for computing multi-criteria paths in large-scale networks which results from the

augmentation of single-criteria routines of SHARC to multi-criteria versions. The main problem

that can arise is the large number of Pareto-routes, making preprocessing and query times

impractical for large instances. This problem is dealt with pruning, as described above.

3.5 Penalty method

Obviously, the aforementioned algorithms are capable of generating a large number of

alternative paths, which can be useful in a number of transport planning instances. However,

many of these alternative paths are likely to share a large number of edges. If one can define a

measure of dissimilarity between these paths, then a subset of these paths can be selected, so

that the minimum dissimilarity is maximized. In fact, this description refers to the path

dissimilarity problem (PDP) that is a routing problem in which a set of paths from an origin to

a destination must be generated with minimum length and maximum dissimilarity. One of the

most relevant procedures developed to solve this problem is the Penalty Method.

The Penalty method was originally suggested in the context of hazardous materials routing by

Johnson et al.(1992) and used by Ruphail et al. (1995), in a decision support system to generate

economically different paths over a network characterized by time-dependent link travel times.

3.5.1 Penalty algorithm

Steps of the algorithm .

The Penalty Method is based on a repetitive application of an appropriate shortest path

algorithm. The basic steps of the algorithm are described below.

 Compute a shortest path with a shortest path algorithm, i.e. Dijkstra

 Add it to the solution set or alternative route subgraph,

 Increase the edge weights on this path and start from the beginning until we are

satisfied with the solution

Hence, the repeated selection of the same set of links is discouraged and dissimilar paths

may be generated as results. However, the paths generated may not be completely

different as some subpaths may still be shorter than a full detour (depending on the

47

increase). Thus, there are several choices or “dimensions” that one have to take into

account for the implementation ([AEB00]). Specifically,

 Penalized units . Penalties can be applied to the links, or nodes, or both.

 Penalty structure . An additive penalty (i.e. adding a fixed positive amount to the

impedance), or a multiplicative penalty structure (i.e. multiplying the current

impedance by a factor greater than one) can be used. If one uses a multiplicative

penalty formula, the new impedance can be based on the current impedance

(which may have been penalized before), or on the original impedance.

 Penalty magnitude . If a relatively large penalty is chosen, then links that appear in

generated paths are discouraged more heavily. Smaller penalties, on the other

hand allow for more frequent appearances of links in generated paths.

 Penalized paths . Penalties can be applied to the most-recently found path only, or

to all paths found so far or to paths “close” to the most-recently found.

The above choices lead to various experiments with different penalty mechanisms. For example,

as far as penalty magnitude is concerned, the higher the penalty, the more the new shortest

path deviates from the last one. Although a small penalty may not achieve the goal of

dissimilarity, a large penalty may eliminate possible good viable paths. Consider the following

case. There are two good alternatives whose first part is common, while the second is different.

The algorithm computes the first route and penalizes its edges. If the penalty has small

magnitude, the algorithm will find the second alternative with higher probability since the total

length of the second alternative will remain relatively small, despite the increase in the edges of

the first common part. On the contrary, if the penalty is very high, then it is likely that the

second alternative cannot be found or a large detour will be computed for the first part instead,

as illustrated in figure 3.4.

 3

 4

4 3 7

 4

 5 6

 (a) Shortest path between s-t illustrated by green

48

Figure 3.4 : Graph with 2 good alternative routes. The first part of the alternatives with

weight 5 should be common because there are not meaningful alternatives. The second part of

the alternatives is different as illustrated in figure (a). Figures (b1), (b2) show the graph

after the penalization with small and large factor respectively. Figures (c1), (c2) show the second

alternative that the algorithm computes after the penalization. When the factor is too big, the

results are not the desirable ones

Furthermore, as far as penalty structure is concerned, one can add an absolute value on each

edge of the shortest path, but this depends on the assembly and the structure of the graph and

penalizes short paths with many edges. To by-pass this, a multiplicative penalty structure can be

used. In other words, edges are penalized by a fraction “penalty-factor” of the initial edge

weight to the weight of the edge. Like before, although the highest the penalty-factor is, the

more disjoint are the paths found, a similar problem still appears. For instance, the first part of

the route has no meaningful alternative but the second part has 5. That means that the first part

of the route is likely to be increased several times during the iterations (multiple-increase). In

this case, we can get a shortest path with a very long detour on the first part of the route. To

circumvent this problem, the number of increases of a single edge can be limited. When a new

shortest path does not increase the weight of at least one edge, it is an indication of a natural

saturation of the number of available alternatives.

49

Another problem that rises is that depending on the “penalized paths” strategy, a new

alternative can have many small detours compared to the last alternative. For example, the last

computed path is a long motorway and the new shortest path is almost equal to the last one,

but at the middle of the motorway, it contains a very short detour from the long motorway on a

less important road (due to the increase). There can occur many of those small hops that look

unpleasant for humans and are not considered as distinct alternatives. To tackle this problem,

the concept of penalization strategy arises. In particular, instead of increasing only the weights

of the currently computed shortest path, the weights of the edges around the path (i.e. in a

radius from the path) can be also increased. This avoids small hops, as edges on potential hops

are probably not shorter. Still, potential, meaningful alternatives close to the current path can

be unfairly penalized. To avoid this, one can increase only the weights of the edges, which leave

and join edges of the current alternative route subgraph. This strategy is called rejoin-penalty. It

should be additive and dependent on the general penalty factor and the distance from s to t,

e.g. () () ([BDGS11]).

3.5.2 Discussion

Penalty method is another way of finding alternatives. However, as we described above, it can

produce alternatives not admissible, since the various parameters should be chosen carefully.

Intuitively, we believe that it can be better used as a complement to other methods, as we will

soon see in chapter 4.

3.6 Conclusion

In this chapter, various methods in the direction of alternative route planning were presented.

Both of them have a specific methodology in identifying the alternative paths, leading either to

good or bad results. Most of them, however, usually produce bad results because of the way

they find alternatives (requiring total disjointness, minimum lengths, introducing large penalties

etc.) and as a result they are suitable only in specific circumstances. Thus, in chapter 4, we

introduce a new method in the field of alternative route planning, called plateau method, which

is suitable for identifying alternatives in road networks due to the strategy followed. Before that,

we introduce the concept of admissible alternative routes. Aside from how well each algorithm

discovers routes, we want alternative paths that are meaningful to each driver and as a result

satisfy a set of characteristics/criteria. These criteria will be incorporated in plateau method and

the other approaches and they will filter candidate routes so as to hold the best of them.

50

51

Chapter 4

PLATEAU METHOD AND ADMISSIBILITY CRITERIA

In the previous chapter, we presented methods for finding alternative routes which are widely

used in several scientific fields. A well-known approach is the k-shortest paths algorithm, but it is

impractical because a reasonable alternative in a road network is probably not among the first

few thousand paths. Besides, disjoint paths is another approach presented, but the requirement

for totally nonoverlapping paths can lead to the loss of some potentially good alternatives. Thus,

we do not want only to calculate alternative routes, but compute reasonable alternatives which

are considered as distinct to the user. For that reason, we define a subset of alternative routes,

admissible alternative routes that meet certain desired characteristics. In this context, the best

published results we are aware of are produced by the choice routing algorithm or plateau

method which is presented in detail. The stages of the algorithm are presented in detail, but

apart from the identification of the plateaux chains, include the evaluation of them based on

admissibility criteria, goodness metric etc. For this evaluation, we also present heuristics in

order to measure sharing, stretch etc. and an objective function in order to sort them and

choose the best one to add in the alternative graph AG in every round ([ADGW10]).

4.1 Admissible alternative routes

As mentioned above, an alternative path in a road network should satisfy certain properties in

order to be reasonable and natural to the user. Obviously, an alternative route must be

substantially different from the optimal path and must not be much longer. But this is not

enough. Alternative routes should avoid unnecessary detours. Formally, they must be locally

optimal, that is to say, every subpath up to a certain length must be shortest path. Thus, path

belonging in the class of admissible alternative routes, should have (see also [ADGW10]) :

 Limited sharing

 Bounded stretch, even for all subpaths

 Local Optimality

Definitions . Let () be a directed graph with nonnegative, integral weights on the edges.

Given any path in , is its number of edges and () the sum of the weights of its edges.

By extension, () is the sum of the lengths of the edges shared by paths and , and

 () is equal to () ().

52

Sharing . The idea of sharing refers to the amount of difference between the alternative routes

 and the optimal route computed by a shortest path algorithm, i.e. Dijkstra. The total

length of the edges they share must be a small fraction of ().

Figure 4.1 : Graphical representation of sharing. Shortest path is illustrated by green and the

alternative by blue. (a) The length of the alternative is a small fraction of () , in contrast to

(b) where the alternative slightly differs from the optimal route.

Stretch . Stretch refers to the length of the path between two points on the alternative route. A

path has () uniformly bounded stretch (() if every subpath (including

itself) has stretch at most (), i.e. is at most () times larger than the optimal path

 .

Figure 4.2 : Graphical representation of stretch. Shortest path is depicted by green and the

alternative by blue. In the first case, (a), the alternative is much longer than the optimal route. In

contrast, in the second case, (b), the alternative route is a bit longer than the optimal path.

Local Optimality . The idea of local optimality refers to the lack of unnecessary detours in the

alternative routes. Every subpath of the alternative route up to certain length should be

optimal. While driving along it, every local decision must make sense. To formalize this notion, a

path is locally optimal () if every subpath of with () is a shortest path.

Besides, since the path is not continuous, but discrete, a second condition must be true. If

is a subpath of with () and () , where is the path obtained by removing the

endpoints of , then must be a shortest path. Note that a path that is not locally optimal

includes a local detour.

53

Figure 4.3 : Graphical representation of local optimality. The three first figures illustrate

subpaths that are T locally optimal, while the last figure shows the case of an unnecessary

detour

Given these definitions, the class of admissible alternative routes is defined formally below.

Given a shortest path between and , an path is an admissible alternative is

satisfies the following conditions :

Limited Sharing .

Let () () be the sharing amount of a path with the optimal path .

A path has limited sharing, if () () .

Note that for , the paths are totally disjoint, while for , the paths can be identical.

Uniformly Bounded Stretch .

A path has bounded stretch, if () () () .

54

Local Optimality .

A path is -locally optimal for () , if

 is a shortest path if with ()

 is a shortest path if with () and ()

Given the conditions that alternatives should obey, an algorithm can generate zero, one or

multiple admissible alternatives, depending on the input and the choice of parameters. If there

are multiple alternatives, we can sort them according to an objective function (), which may

depend on any number of parameters, possibly including and . Generally, admissible paths

with low sharing, low stretch and high local optimality are preferred.

4.2 Plateau method (Choice routing algorithm)

Having defined the admissible alternative routes, we can present a new approach for finding

alternative routes which computes alternative routes that “naturally” meet admissibility criteria

and especially local optimality, to greater extent than the methods presented in chapter 3. The

related algorithm is called plateau method or choice routing algorithm and it was invented by

Alan Henry Jones in 2009 (see also [Jon12]).

Plateau Method is one of the most significant algorithms for generating a plurality of diverse

routes from a source to a destination in a graph. Such a method may be used for route planning

and navigation in road networks, but may also be used in other applications where the costs can

be described by a weighted graph and where there are no cycles of negative cost, such as

routing of packets in computer network, finding paths for wiring in integrated circuits etc.

Consider that we have converted the road network into a graph () (figure 4.4), and we

want to compute the alternative routes between a source node and a target node .

The method comprises some basic steps which are described below in high level :

 Generating a source routing tree from the source

 Generating a destination routing tree to the destination

 Combining the source and destination trees to form the alternative routes

The three steps will be presented analytically below. Note that the third step is the most

important step and the basic element of the algorithm for computing the alternatives.

55

Figure 4.4 : A road network as a graph as given in [Jon12]. The weights on the edges are

distances.

Source or Forward tree . The first step of the method is to compute the shortest path tree from

the source node to all other nodes. This is typically performed using Dijkstra algorithm or its

variants, such as A* algorithm, often enhanced by clever use of trunk roads, precomputation

and graph restrictions to speed up the computation or reduce the storage requirements (see

also Chapter 2 for speed-up techniques). Figure 4.5 illustrates the resulting forward tree.

In figure 4.5, for each node of the graph(end of road segments), it is annotated the distance

from the source node . Moreover, in every node, there is only one outgoing arrowhead that

Figure 4.5 : The source tree from node as given in [Jon12]

56

shows the way back to the source using the shortest path. In other words, the arrowhead shows

the predecesessor of the current node in the shortest path from . This arrowhead is called back

pointer. Note that back pointers are in the opposite direction to the direction of travel. These

are computed as a necessary part of the Dijkstra of A* algorithm (i.e. stored as pointers).

For example, the shortest path from the source to the destination node has length and can

be traced backwards by following the back pointers through the nodes whose distances are ,

 and finally .

Destination or Backward tree . The second step of the algorithm is to compute the shortest

path tree to the destination node from all other nodes. Instead of executing multiple Dijkstras,

we can execute a single one from node in the backward graph ⃖ (having reversed the edges or

taking into account only the ingoing edges). So, this is just a variant of the previous algorithm

and the output is shown in figure 4.6.

Figure 4.6 : The destination tree to node , taken from [Jon12]

In figure 4.6, the annotations give the distances to the destination node along the shortest

path. The arrowheads show again, for each node, the way to the destination using the shortest

path. Under another perspective, they show the successor (node) for each node in order to

reach the destination along the shortest path. These arrowheads are called front-pointers.

For example, the shortest path to the destination from the node at the top left with distance

 is found by following the front-pointers through the adjacent nodes whose distances are

 . This tree also encodes the globally shortest path, which is

found by following the arrowheads from the source node to the destination and it will always be

identical to the one found in the source tree.

57

Note that the subtle difference between the trees, is that source tree encodes the shortest path

routes from a single node to many others, while the destination tree encodes the shortest path

routes to a single node from many others.

Combined Tree. The next step in plateau method is to sum up for each node its minimum

distances from and , found in the forward and backward tree respectively. The resulting

output is the combined tree.

Figure 4.7 : Combined Tree. Figure is taken from [Jon12]

For instance, the number for the source node was arrived at by adding the corresponding

numbers and from source and destination trees, as shown in figures and . These

numbers have a powerful interpretation. At any node , they represent the cost/length of the

shortest path route from source node to the destination node via the node (we will refer to

this distance as via node distance of node). Therefore, we have computed the set of shortest

paths routes from source to destination via any node in the graph. These paths are

formed as the concatenation of two shortest paths and . Consequently, having

computed the combined tree, we have managed to compute the via node distances of all the

candidate alternative paths via any node in the graph (i.e. To go from to using the path via

the node at the bottom, you cross distance equal to 335 units). However, the number of

candidate paths is huge and some of them are irrelevant when planning our route from to .

Thus, it is necessary we introduce another step in the method in order to reduce the candidate

via paths. This step identifies routes that are meaningful, exploiting paths with the same via

node distances. Specifically, one can observe in figure 4.8, that there are chains of adjacent

nodes which have the same via node distance. Obviously, the nodes that lie on the shortest path

58

route from to have the same via node distance, which is exactly the length of the optimal

route. However, there are other such chains illustrated on the figure below.

Figure 4.8 : Plateaux : chains of adjacent nodes with the same via node distance given in paper

[Jon12]

Each of the maximal-length chains with the same via node distance is called plateau. This

constant via node distance can be represented as the constant height of some plane-plateau.

Plateaux identification . A typical procedure for finding the plateaux is the following :

 we begin by giving each node a single bit that indicates if we have visited it or not.

Initially, it is for not-visited

 we scan every node in turn,

 if it is visited (1), we move on to the next node in scan

 if it is non-visited (0), we set the bit to 1 to indicate that it is visited. For such

newly-marked node, call it , we begin a list of adjacent nodes in the chain by

adding just a reference to that node . We then follow the back pointers in the

source tree and for each node we meet, call it , we check if its via node

distance is the same as . If the via node distances are the same, we mark it as

visited and add a reference to to the list and repeat the procedure for the

predecessor (). When this procedure finishes, that is to say, it was

found a node with different via node distance form or there was no other

back-pointer(null), we return to node , we follow the front-pointers and we

execute the same steps for the successors. When this second procedure

finishes, we have a list that comprises all of the nodes in the chain that node is

part of. This list represents a plateau. We continue to the next node in the scan.

59

A plateau is formed when the source and destination trees traverse a chain of road segments in

the same directions. This indicates that the chain is both useful for getting away from the source

and for getting towards the destination. Such chains tend to use the best roads in their vicinity

and are aligned to help in getting from source to destination. To make a complete route out of a

plateau, we simply have to follow the arrowheads in the source and destination trees from the

endpoints of the plateau.

Figure 4.9 : Plateaux illustrated by bold lines in [Jon12]

Figure 4.9 shows the plateaux found. Suppose we check plateau between and nodes. For

that plateau, its length is simply the difference in the values at nodes and in the source

tree (from figure 4.5) or in the destination tree (from figure

4.6). The shortest path route from source to plateau has length that is equal to the distance

of node from . The shortest path route from plateau to destination has length that is

equal to the distance of node from . Thus, the total length of the optimum route that

incorporates the plateau is given by . This value must be exactly the length of the

shortest path route from source to destination via any one of the nodes in the plateau.

Generally, we want plateaux that are long. In other words, a useful plateau will tend to be

longer than those that are less useful, as it indicates a long stretch of route that is fast and well-

aligned compared to others in its vicinity. Thus, we are looking for plateaux with a larger value

of .

Moreover, a useful plateau will tend to be part of a route that is not too long, as we are not

interested in long plateaux if they are found at a great distance from both source and

destination. Thus, we are looking for plateaux with a smaller value of . As a

consequence, we compute a goodness factor for each plateau that takes into account the

lengths of the different parts of the alternative.

A

B

60

Goodness . Goodness factor is a metric in order to evaluate and sort plateaux taking into

account the different lengths of the alternative, . Goodness is defined as the length of

the plateau minus the length of the route that the plateau is a part of :

 () ()

In order to make this measure independent of the length units, we divide it by the length of the

globally shortest path route and this is called raw goodness :

 ()

Thus, plateaux with raw goodness closer to zero are better and more useful than others with

smaller value. For example, from figure 4.9, we can compute the raw goodness of the different

plateaux depicted.

Via node distance () Raw goodness

Table 2 : Alternative routes data and plateaux raw goodness

Note that plateaux with raw goodness smaller than (threshold) are rejected as useless

alternatives. Apparently, alternatives with high sharing or high stretch are rejected as well. Once

we have reduced the number of plateaux to the most interesting ones by using goodness values

and admissibility criteria, we may choose to order them based on an objective function () and

on user preferences, i.e. motorways, fewer junctions, lower tolls, driving costs, familiarity. So,

we introduce a new evaluation step after the plateaux identification stage and before the

creation of the . The metrics and heuristics used for evaluation of the plateaux, of the

alternative routes and the resulting alternative graph are described in detail in section 4.5.

4.4 Plateau method with penalization of edges (hybrid approach)

The plateau method can be combined with penalty method that was presented in chapter 3,

leading to alternative routes with better characteristics.

The steps of this hybrid algorithm are still the same with plateau method with a further

addition. Let () be a graph and the source and destination nodes. Our goal is to find

the alternative routes between and . So, we still compute the source and destination trees,

we execute the intersection of the trees (combined tree) and we identify the plateaux .

Consider that the result of the algorithm is the alternative graph () of comprising the

requested alternative routes (see also 3.1). Having found the plateaux chains, we should

61

proceed with the evaluation step based on the aforementioned criteria. Instead of sorting once

the alternatives and creating the , the procedure evolves in rounds. In every round, we sort

the alternatives based on the criteria and the objective function (), we choose the one that

better satisfies them and we add it in the subgraph . Before moving to the next round, we

penalize the edges of this alternative and we re-evaluate the alternatives. We choose again the

best one and repeat the procedure until the end criterion is satisfied. The penalization’s choices

(presented in paragraph 3.5.1) applied in this hybrid method can vary and one should

experiment in order to determine which is the best combination. We present thoroughly the

implementation of the hybrid method and the chosen strategies in the next chapter.

The method of plateau with proper penalization strategy displays better results because

reinforces the disjointness of the paths. Adding penalties on the edges discourages paths with

many common parts to be added on the subgraph. Thus, the new method emphasizes on

sharing and minimizes the amount of it among the different alternatives, while the other

properties are satisfied equally well.

4.5 Criteria for alternative routes evaluation and attributes to measure in AGs.

In section 4.1, we introduced the concept of admissibility alternative routes and in section 4.3

the concept of goodness since our goal is not only to find numerous roads joining the source to

the end, but compute paths that are reasonable, meaningful from a human perspective and

thus, satisfy certain criteria. We want roads with low sharing, bounded stretch and high local

optimality. Furthermore, alternative routes should obey the criterion of goodness that applies

exclusively to the plateau and hybrid method and evaluates alternatives from another

perspective. Consequently, we wish to quantify the quality both of alternative routes and

alternative graphs measuring the aforementioned properties and characteristics. So, we apply

metrics already defined in the previous chapter and new ones based on heuristics to achieve the

best possible results.

We are going to present these attributes and criteria in the order we look at them in the

practical implementation.

4.5.1 Evaluation of paths quality

In our implementation, we check each separate candidate alternative path (formed either as an

extension of a candidate plateau or as a path via any node in the graph (before the construction

of plateaux)) as far as the properties of stretch and goodness are concerned. For these

properties, we introduce the metrics we use so as to measure them in our practical

implementation.

62

Stretch of path.

Paths in order to be good alternatives should satisfy the property of bounded stretch. They

should not be much longer than the optimal path from to . Thus, paths that are longer than

an upper bound (() () ()), should be recognized as soon as possible and

pruned.

We introduce this “pruning” step in the stage of the construction of the combined tree.

Specifically, during this stage, the forward and backward distances for each node are added in

order to compute the via node distances which are essential for the plateaux identification.

If the via node distance for a node exceeds the threshold, then this node is pruned since it

cannot form a significant alternative through it. It cannot be part of a good plateau. In this way,

we limit the search space and accelerate the following stages of the algorithm.

This procedure is also known as Global Thinout. Global Thinout identifies useless nodes by

checking for each node , if () for some () .

The next figure illustrates an example of this pruning step for . Red nodes are pruned

since they cannot be part of a good plateau and as a result they cannot form a good alternative

route from source to destination.

Figure 4.10 : The red nodes are pruned since their viaNodeDistance exceeds the threshold

 ()

63

Goodness .

The goodness property is very important, since it ensures the driver that the alternative route

is not found in great distance from source and destination and its main part is formed by the

plateau.

Figure 4.11 : Shortest path is illustrated by green, plateaux by orange, alternatives by the union

of blue and orange. The plateau 1 has better goodness value than plateau 2.

For a plateau and by extension, for an alternative containing the plateau (as

illustrated in the figure above), goodness metric is defined as

 the lengths of subpaths from source to plateau and from plateau to target respectively.

Note that in section 4.3, this ratio was called “raw goodness” and was defined with a negative

sign, but for simplicity, we mention it as “goodness” and we consider it as a positive quantity.

In our implementation, we introduce the criterion of goodness in the stage of plateaux

identification. That is to say, after the construction of the combined tree, we move to the

creation of the plateaux chains and by extension to the creation of the corresponding candidate

alternative routes. For each candidate alternative found, we compute its goodness value and if it

surpasses an upper bound (threshold), we reject it as inappropriate. Obviously, in this way, the

time complexity of the next evaluation step is decreased, since the search space is pruned. We

have experimented with various goodness thresholds, but mainly with the values 0.85 and 1.0.

The goodness criterion is further used in cases where the objective function has even values for

more than one candidate alternative paths.

64

4.5.2 Evaluation of AG quality

Besides the evaluation of each candidate path separately, we evaluate the alternative route

graph as a whole. This evaluation concerns the sharing amount and the average distance of the

paths in the AG as well as the number of junctions in the AG. The metrics that are used to

evaluate the AG, determine the alternatives to be added in order that the AG formed has

desirable characteristics.

Sharing .

The alternative routes of the should have low sharing with each other and with the optimal

route in order to be considered as distinct. In order to measure the amount of disjointness in

the alternative graph, we present a heuristic metric referred as totalDistance :

 ∑
 ()

 () () ()
 ()

The total distance measures the extent to which the routes defined in the are

nonoverlapping. Note that () () () is necessary because otherwise,

nonoptimal paths would be encouraged. Having 2 totally disjoint paths from to , we have a

total distance of 2. So, total distance can reach its maximum value of when the consists of

 disjoint paths.

In our implementation, we introduce the criterion of totalDistance at the stage of plateaux

evaluation where we choose which alternatives to add in the alternative graph. Specifically, we

have a set of candidate alternatives from the previous stage (plateaux identification) and in

every round, we want to add the best one in the alternative graph. Thus, for each candidate

alternative, we compute the new value of total distance that the current AG will have after the

possible addition of the alternative in question. The alternative which yields the best value, will

be added on AG. Note that totalDistance is combined with the averageDistance metric in the

defined target function (both presented below) for the proper choice of the alternative to be

added.

Average Distance .

Good alternatives should have bounded stretch and their lengths should be close to the optimal.

Average Distance is a metric that measures the average stretch of the alternative paths in the

 . Average distance is defined using the definition of totalDistance as :

65

∑ ()

 ()

 In our implementation, we introduce the criterion of at the stage of

plateaux evaluation. Specifically, we have a set of candidate alternatives from the previous

stage and in every round, we want to add the best one in the alternative graph, as mentioned

before. Thus, for each candidate alternative, we compute the new potential value of average

distance of the AG. If this new value is lower than an upper bound, and meets the other

aforementioned criteria in the best way, it is added in the . For upper bound, we set the

value of .

Decision Edges .

Decision edges is the last metric for the evaluation. Decision edges measure the complexity

of , which should be small to be digestive for a human. This metric is defined as :

 ∑ ()

A node in having more than one outgoing edges implies a decision. Human cannot handle

too many of them. Thus, set a maximum permissible number of alternatives

route. In our implementation, we have set it to .

The next figures illustrate two examples of totalDistance, averageDistance and decisionEdges

computation.

Figure 4.12 :

66

Figure 4.13 :

Objective Function .

Generally, we want alternatives with limited stretch. So, we choose a relatively small value of

in global thinout (of course, not that small to lose good candidate alternatives) and small upper

bound for averageDistance. We also want limited sharing. Thus, high values of totalDistance are

more appealing. Finally, we want to limit the number of decisionEdges.

Therefore, our goal is to maximize the difference between totalDistance and averageDistance,

while the other constraints are satisfied. So, we define our target function as :

under the constraints :

 ()

Target function represents an overall evaluation of the .

In our implementation, the objective function is examined in the stage where both totalDistance

and averageDistance are checked, namely in the plateaux evaluation stage. As we mentioned in

the section of Total Distance, the value of targetFunction is the one that ultimately determines

the alternative to be added in . This alternative chosen is the one which maximizes the

targetFunction, while obeying the restrictions imposed.

67

Chapter 5

PRACTICAL IMPLEMENTATION AND METHODOLOGY

In chapter 4, we described plateau and hybrid method in theory. In this chapter, we analyze the

practical implementation of these algorithms. We describe step by step all the stages of plateau

algorithm from the conversion of the real road map into a graph () to the alternative

graph that is given as a result as well as the stages of hybrid method. The programs were

written in C++ and in our implementations we used a library of efficient graph structures and

algorithms for large scale networks, called “pgl”. This library is developed in the University of

Patras1 and already provides useful data structures for graphs (see section 2.2) and priority

queues and a fast implementation of Dijkstra algorithm with many modifications and many

speed-up techniques. Moreover, at a few rare places, we used STL and Boost library.

5.1 Plateau method implementation

In this section, we present the implementation strategy we followed both in plateau method

and the hybrid approach. Specifically, we present the stages of the method in a more practical

way with references in our practical implementations. Initially, we provide our implementation

strategy for plateau method using a block diagram. In this diagram, the stages of the algorithm

are presented in the order they are meet in our programs. After that, each stage is described in

detail. Last but not least, we present the basic methodology for the hybrid method, namely

plateau method with penalization of edges.

Figure 5.1 illustrates the stages of plateau method implemented in our C++ program.

1
 Pgl library is developed in the University of Patras by Prof. Zarologias and his research team and one can

find it in the following link : http://www.ceid.upatras.gr/faculty/zaro/software/pgl/index.html

http://www.ceid.upatras.gr/faculty/zaro/software/pgl/index.html

68

Implementation strategy .

As stated above, the following block diagram shows the basic stages of the algorithm :

Start

Graph Reading &
store in data

structure

Calculation of
Edges weights

Defining source &
target node

Build forward &
backward trees

Build combined
tree

Find plateaux with
goodness<=thresh

Evaluate plateaux

Create Alternative
Route Graph

End

Figure 5.1 : Block diagram illustrating the implementation strategy for the plateau algorithm

69

Below, we are going to describe analytically the stages presented in the block diagram. Before

that, we should mention a few words about the road networks given as input to the program

(analytically in chapter 6). The networks are real-world street maps, such as the street map of

Luxembourg, Italy, Germany etc. Each road network is given in two files. The first one (denoted

by “.graph”) contains uncommented lines, where is the number of nodes containing

neighbor lists for each vertex from 1 to in order. The second file (denoted by “.xyz”) supply

vertex coordinates in uncommented lines. Each line contains the coordinates and of

vertex .

Graph Reading .

As mentioned above, the graph construction is based on the two DIMACS10 files (“.graph”,

“.xyz”). Initially, a DIMACS10 reader is created in order to access the files. This reader accesses

the node lists of each vertex and the network information gathered is stored sequentially in the

graph structure we choose – adjacency list, forward star, dynamic forward star or packed

memory graph representation. Note that the forward star is implemented as a packed memory

graph that has undergone “memory compression”2. The node coordinates from the .xyz file are

also stored in the graph structure. Apart from the aforementioned, further information is stored

in the data structure. Specifically, we define a struct for nodes and a struct for edges in order to

store the required information in the data structure. The resulting graph is denoted by (),

 ()(with compression), () or () depending on the representation

chosen. The numbering of nodes begins from and ends at . This order forms the relative

position of the nodes.

The struct for nodes(“struct Node”) contains the following fields :

 unsigned int dist, distBack, viaNodeDistance;

where dist : minimum distance of each node from source node

 distBack : minimum distance of each node from target node

 viaNodeDistance : sum of dist and distBack (dist+distBack)

 void* pred, succ;

where pred, succ : pointers of each node to other nodes, i.e. if Dijkstra executed

 pred : pointer to predecessor in a forward shortest path tree

 succ : pointer to successor in a backward shortest path tree

 void* startNode, link;

where startNode, link : pointers to nodes. Useful in order that each node belonging in

a plateau store the start and the end of the corresponding plateau

2
 The graph data structures that we used in our implementations (adjacency list, forward star, dynamic

forward star and graph memory representation), were borrowed from the “pgl library”.

70

 unsigned int plateauFlag;

where plateauFlag : flag for search and check of the nodes belonging in a plateau

 unsigned int selectionID;

where selectionID : integer, useful for the class NodeSelection used in the

implementation

The struct for edges (“struct Edge”) contains one field :

 unsigned int weight;

where weight : the weight of the edge

Calculation of Edges weights.

The method “calcWeights” is responsible for the calculation of edges’ weights. The calculation is

based on the Euclidean distance between the start and the end node of each edge. Specifically,

let () be an edge of the graph. The weight of (), namely (), is equal to

 () where are the coordinates of each

node.

Defining source & target node .

The program execution and the computation of alternative routes make sense between two

nodes of the graph which correspond to the start and the destination point respectively. So, it is

necessary we have a source and a target node. These two nodes are chosen randomly using a

generator of random numbers. This generator returns 2 values of type double between and ,

the first corresponding to the source node and the latter to the target node. These random

values are then multiplied by the number of nodes so as to generate the relative positions of

source and target node in the graph representation.

In case of multiple, consecutive queries, the random numbers of the generator are stored

initially in a vector “queries” and in every iteration of the algorithm, the appropriate pair of

numbers is retrieved and the corresponding pair of source and target nodes is computed for the

execution of the method.

Build Forward & Backward trees .

The first two basic steps of plateau algorithm include the construction of the shortest path tree

from source node to target node and the computation of the shortest path trees from all the

other nodes to the target node, as described analytically in chapter 4.

71

As far as the forward tree is concerned, an execution of Dijkstra algorithm is necessary until

target node is settled. For this computation, we use a C++ class, called Dijkstra3 and specifically

the method () which develops a shortest path tree from the source

to the target (forward tree). For each node that becomes settled in the forward tree, the field

“dist” obtains a new value equal to the shortest path distance of the node from the source.

Moreover, the field “pred” of each node points to its predecessor in the forward path tree,

according to Dijkstra execution.

Similarly, for the construction of the shortest path trees from all the other nodes to the target

node, Dijkstra execution is needed. Since the graph is undirected, it is equivalent to run a

Dijkstra from the target node (to all the others) without any modification to the direction of the

edges. For this computation, we use a C++ class, called BackwardDijkstra and specifically its

method runQuery which stops the Dijkstra execution when source node is settled. After the end

of execution, the backward shortest path tree is built and the field “distBack” of each node is

equal to its shortest distance from target node. The field “succ” of each node also points to its

successor node (predecessor in the backward tree from another point of view).

For the next stages of the plateau algorithm, a new class has been created. It is called “Plateau”

and implements the appropriate methods for the combined tree construction and the plateau

identification and evaluation.

Build Combined Tree .

First of all, we remind that plateau is a path where the sum of dist and distBack, namely the

viaNodeDistance, of its nodes stays stable along it. Note that the via node distance of a node

expresses the distance a driver traverses from source to target via/through this node So, in

order to identify the plateau chains, it is necessary we compute and store the via node

distances. Specifically, we implemented a method denoted by “buildCombinedTree” in

“Plateau” class, where all the nodes of the graph are checked. In more detail, for the nodes

which are settled both from the forward and the backward Dijkstra, we sum up the dist and

distBack values from the corresponding fields and if the resulting via node distance is smaller

than an upper bound (limited stretch, see also 5.3.1), then we store it in the corresponding

struct field. In other words, we apply a first level of node pruning since we reject nodes that

form single via paths and by extension, plateaux which length is much longer than the length of

the optimum/shortest path. At the same time, the nodes with admissible via node distances, are

inserted in a priority queue according to the minimum distance from the source node.

3
 The classes Dijkstra and BackwardDijkstra were also borrowed from the “pgl library”.

72

Find Plateaux .

From the previous stage, the priority queue , contains all the nodes that potentially belong in

a plateau. In every round (until the priority queue is empty), the node with the minimum

distance from the source node is extracted from the priority queue and by following the “succ”

pointers, we check its successors – as defined in the backward shortest path tree (follow the

shortest path from the current node to target). If the successors have the same via node

distance with node , a new plateau is created. It is sufficient to find only one additional node

with the same via node distance in order to create a new plateau (at least and). At

the same time, the pointers “startNode” and “link” of the nodes that belong in the currently

formed plateau, acquire their new values. The pointers “startNode” and “link” of each node

point at the start and the end of the plateau to which it belongs (specifically, for the

intermediate nodes of a plateau, only the pointer “link” is used so as to point at the start of the

plateau they belong to). Furthermore, all the nodes belonging in plateaux set their flag

“plateauFlag” to 1 and are then removed from the priority queue so as not to be checked twice.

If a successor has different via node distance from or it has the same via node distance but

belongs to a different plateau, the procedure continues with a new extraction from the priority

queue . A special case that we should take into account so as to ensure correct results is the

following. Consider a node that has two equivalent successors (same via node distance),

choses to follow (successor) one of them by random (or according to which node the pointer

“succ” was set to point to in the backward tree) and as a result it is likely that another plateau

with the same via node distance exists (probably with different goodness). In order to avoid this

situation, apart from the node’s successors, we also check only the predecessor of the initial

node . In case the two nodes, and , have the same viaNodeDistance, further

checks take place in order to identify the maximum plateau that can be constructed.

The plateaux identified may be numerous. For this reason, we apply a second level of pruning.

The plateaux that are not admissible are rejected. In this stage, the admissibility of a plateau is

defined by its goodness value. Thus, if the goodness value of the candidate plateau is bigger

than an upper bound, the plateau is rejected and is not further evaluated in order to be added

in the alternative route graph. The start nodes of the admissible plateaux (

) are stored in a vector instantiated as a variable of the NodeSelection class (this

class is created in “pgl library” so as to store a smaller set/selection of nodes of the initial graph

and implements various methods, such as selectNodes, getMembers, isMember etc.). This

selection of vertices is provided to the next stage of the algorithm which is responsible for the

final evaluation of the candidate plateaux.

Evaluate Plateaux .

In this stage, we evaluate the alternative route graph that results from the addition of a new

alternative route. The alternative routes are formed by the union of the corresponding

73

candidate plateaux with the source and target nodes. This evaluation is based on the

“totalDistance”, “averageDistance” and “decisionEdges” criteria, described in detail in section

4.5. In particular, in every round, our aim is to add that alternative route, or for simplicity, that

plateau) that maximizes the target function :

 – .

The criteria are initialized to zero. Then, the nodes contained in the NodeSelection variable

created in the previous stage, are checked in turn. The process is the following : it starts from

the in question node and sums up the weights of the edges initially in the direction of its

predecessors () and then in the direction of its successors () and stores the

result in a variable denoted by “weightSum”. Note that the computation of weight sum in each

direction stops when a node (predecessor in the first case, successor in the latter) was formerly

checked, that is to say, the weights of the edges from this predecessor (or successor) until the

source (or the target) have already been included in totalDistance and averageDistance. Having

calculated weightSum, we can compute the new values of totalDistance and averageDistance :

Where refers to the value of the metric of the formed so

far alternative route graph

Where refers to the sum of edges’ weights of the alternative route

graph formed so far. Note that the numerator of the a metric of

the chosen alternative in every round is stored in a variable so as to be used in the next

round.

The plateau and by extension the alternative route that achieves the best value for the

targetFunction with respect to the constraints imposed for averageDistance and decisionEdges

is chosen for the alternative route graph and removed from the NodeSelection variable.. In this

stage, we choose the alternative route by setting the plateauFlag field of its nodes to 2.

Obviously, the shortest path (one of them in case there are more than one) is the first to be

chosen. Note that for every alternative route added (except the first one which is the shortest

path) the value of decisionEdges increase by one. The process ends when the value of

decisionEdges exceeds the upper bound imposed or if no other candidate alternative satisfy the

criteria and the constraints. As mentioned above, the nodes that belong to the admissible

alternatives have “plateauFlag” set to 2.

74

Create Alternative Route Graph .

In this stage of the implementation, we create a subgraph of the initial graph (or ,

 etc.) consisting of the nodes and the edges of the admissible alternative routes identified

in the previous step. This subgraph is implemented as an adjacency list with appropriate node

and edge structs. The node struct has only one field, a pointer “nodeDesc” to its corresponding

node in the initial graph. The edge struct is the same as in the initial graph and has only one field

where the weight of each edge is stored.

For the creation of the alternative route graph, we implemented a new class, called Subgraph. In

this class, we implemented the three necessary steps for the alternative route graph

construction.

Node Insertion . The initial graph is traversed and nodes with plateauFlag value equal to 2, are

inserted in the subG. A pointer to the corresponding node in the initial graph is also stored in

the field “nodeDesc”. Moreover, the mappings between the nodes of the initial graph and the

subgraph are stored in a vector.

Sort . Then, the vector with the mappings is sorted with the use of the library function “sort” in

ascending order of the nodes descriptors in the initial graph.

Edge Insertion . The aforementioned vector is traversed. For each node, we check if its edges

should exist in the alternative graph. Actually, we check if the end node of the edge (the start

node is the current node of the vector) has plateauFlag value equal to 2. If yes, we add this edge

on the alternative route graph with the same weight.

5.2 Plateau method with penalization of edges (hybrid method)

In this hybrid method, as mentioned before, we want to amplify the disjointness of the

alternative routes and in order to achieve it we penalize some edges according to a strategy.

Practically, in order to combine plateau method with penalty in our C++ implementation, we

should, first of all, add one more field in the “struct edge” of the input graph. This field,

denoted by penalty, is an unsigned integer for storing the edge weight after the penalization.

Generally, the method’s stages are common to these of plateau method, as illustrated in figure

5.1, except the one doing the evaluation of the alternative routes. As far as this stage is

concerned, for each alternative we choose to add in the subgraph, we traverse its edges and

multiply their weights by a penalty factor (equal to 0.3). Moreover, we multiply the outgoing

and incoming edges of the nodes belonging to the alternative route by a smaller factor called

rejoin factor () so as to prevent alternatives “direct towards” an

alternative already belonging in the AG. Furthermore, for the containing nodes of the alternative

route, we set plateauFlag to 2, as in plateau method implementation. So, the question is how to

exploit these penalized weights in selecting the alternative (since alternatives may consist of

75

common parts) and how they will be adapted to the criteria used (totalDistance,

averageDistance, decisionEdges). We apply two alternative approaches:

 1st approach : we modify the calculation and the meaning of totalDistanceNew and

hence the objective function for selecting paths. Specifically, we use the penalized

weights for the calculation of totalDistanceNew. So :

Where refers to the metric’s value on the formed so far alternative

route graph based on the normal weights and distances.

Therefore ,

In this way, the introduction of more disjoint alternative routes is promoted while at the

same time the constraints are satisfied. In this first approach, the selection of an

alternative is also accompanied by penalization of its edges (+ rejoin penalty).

 2nd approach : we change the objective function for the final selection of alternatives

and instead of maximizing the aforementioned

 , we defined a new ,

where is the length of each alternative route after penalization.

Specifically, having created the NodeSelection variable from the previous stage, in each

round, we check all the remaining candidate alternatives which arise from the

corresponding plateaux. For each alternative, we calculate its length (from the source to

the target), which may include common edges with an alternative already been added

to the alternative route graph. These common edges are penalized, so the path length is

also penalized. Of all these alternatives, we look for the one that minimizes the

 while respecting the constraints for

 and (calculation is still based on

the original graph weights). The alternative selected is punished as mentioned above

with an appropriate penalty (+ rejoin penalty).

76

77

Chapter 6

EXPERIMENTS AND RESULTS

In this chapter we give an experimental evaluation of our programs in different road networks.

Specifically, we evaluate the alternative graph and paths quality based on the metrics presented

in section 4.5 for different goodness thresholds as well as the time performance and memory

usage resulting from the execution for the different graph data structures implemented.

Initially, we describe the experimental setup, including the experimental environment, input

data and other necessary parameters for the experiments. Then, we present tables with our

experimental results and we make comparison of them, leading to useful conclusions. The

section is wrapped up by a summary on the main results.

6.1 Experimental setup

6.1.1 Experimental environment

Experiments have been done on a quad-core Intel® Xeon® processor X3363 clocked at 2.83GHz

with 8GB RAM and 6MB Cache, running “Ubuntu precise (12.04.2 LTS)”. All of our programs are

single threaded and thus, only one of the cores was used. The program was compiled by the

GNU C++ compiler 4.6.3 using optimization level 3.

6.1.2 Input

In this section we introduce the input data we use throughout our experiments. All networks are

based on real world data and are, thus, not synthetic. The source of these networks is the

Center of Discrete Mathematics & Theoretical Computer Science (DIMACS –

http://www.cc.gatech.edu/dimacs10/archive/streets.shtml).

The networks are real-world street maps, such as the street map of Luxembourg, Italy, Germany

etc. These maps are undirected and unweighted versions of the largest strongly connected

component of the corresponding Open Street Map road networks

(http://download.geofabrik.de).

http://www.cc.gatech.edu/dimacs10/archive/streets.shtml
http://download.geofabrik.de/

78

The road network provided is given in two files following the popular METIS input/output

format. The first one (denoted by “.graph”) contains uncommented lines, where is the

number of nodes. The first of these lines contains two integers, separated by space that denote

the number of vertices and the number of edges in the graph. Note that in this case the number

of edges is only the half of the sum of the vertex degrees (since the graph is undirected and

edges are stated twice from the two ends of each edge). The remaining lines contain neighbor

lists for each vertex from 1 to in order. These lists are sets of integers separated by spaces and

contain all the neighbors of a given vertex. The second file (denoted by “.xyz”) supply vertex

coordinates in uncommented lines. Each line contains the coordinates and of vertex .

In the street maps used, the coordinate is always set to (altitude is not taken under

consideration).

Table contains the size of our test instances.

Map No. of Nodes No. of Edges

Luxembourg 114599 119666

Belgium 1441295 1549970
The Netherlands 2216688 2441238

Italy 6686493 7013978
Germany 11548845 12369181

Table 3 : Size of our main input graphs

6.1.3 Queries

The results, either concerning the quality of the alternative route graph and its paths or the time

performance and memory usage, are computed by running a number of random queries. For

the “small” graphs, such as Luxembourg and Belgium, we use random queries, but on the

“larger” graphs we only run random queries. Note that the pairs, are chosen

randomly at the beginning. So, we have 5 different sets of random s-t pairs (each set consists of

1000 or 100 pairs respectively), one for each of the 5 road networks in order to be able to

compare the results on a specific map. That is to say, we run the same queries for all the

executions on a specific road network.

6.1.4 Measurements and statistics

As mentioned above, in our experimental results, we report two aspects. The first one refers to

the quality of the resulting AG and the latter to the execution times and the memory usage.

As far as AG and paths quality is concerned, for every execution of the 1000 (or 100) queries, we

measure:

79

 the goodness values for all the plateaux detected

 the stretch for all the alternative routes detected

 the targetFunction value for every resulting AG

 the totalDistance value for every resulting AG

 the averageDistance value for every resulting AG

 the decisionEdges value for every resulting AG

Based on these measurements, we export statistics for the various implementations (plateau,

plateau with penalization of edges (1st approach), plateau with penalization of edges (2nd

approach)) and compare them. Specifically, we detect the minimum and maximum value for

each of the 5 metrics and we compute the average value of the goodness, stretch,

targetFunction, averageDistance, decisionEdges metrics and their variance, where needed. Note

that the value of (average) totalDistance and by extension, the (average) value of targetFunction

should be examined together with the (average) value of decisionEdges. That is to say, we are

interested not only in the percentage of disjointness found in the AG (illustrated by

totalDistance metric), but also in the number of the alternatives achieving this percentage. For

example, if totalDistance is equal to 4 and alternatives(or equivalently decsionEdges) are equal

to 4, it means that we have 4 totally disjoint alternative paths. On the contrary, if totalDistance

is equal to 4 and decisionEdges are equal to 8, it means that the alternative routes are common

almost by 50%.

Furthermore we compute the time performance of the programs depending on the graph data

structure used. We execute queries on the road maps for the four graph representations –

adjacency list, forward star, dynamic forward star and packed-memory graph (see section 2.2),

and we measure the time needed for each of the algorithm’s stages (forward, backward tree,

combined tree, plateaux finding, evaluation etc.) as well as the total time performance.

Moreover, we examine the memory needed for the graph representation depending on the data

structure used. For these measurements, we export the corresponding statistical data, we make

comparisons and draw conclusions.

6.2 Experiments

We conducted experiments so as to measure the aforementioned criteria and to export

statistical data, necessary for evaluation of the methods. For our experiments, we executed

queries with specific upper bounds for the admissibility criteria. Specifically, we require :

 , referring to the upper bound for alternative path’s stretch

 Minimization or maximization of the objective function :

 In case of Plateau method, maximization of the following objective function is

required :

80

 In case of Plateau method with penalization of edges (1st approach),

maximization of the following objective function is required:

 In case of Plateau method with penalization of edges (2nd approach),

minimization of the following objective function is required :

As far as the goodness criterion is concerned, we conducted experiments with two different

upper bounds, equal to and to . The goodness criterion refers to this amount of the

alternative path that does not belong to the plateau chain. So, the lower the upper bound is set,

the smaller the lengths of the subpaths from source to plateau and from plateau to target are

allowed to be.

6.2.1 AG and alternative paths quality (goodness_threshold = 1.0)

Below we present tables containing results for the AG and alternative paths quality for the

various implementations.

Plateau method (goodness_threshold = 1.0) .

The following two tables show the statistical data referring to AG and alternative paths quality

resulting from the execution of plateau method in 5 different road networks for

 Alternative Route Graph Quality

Map TargetFunction AverageDistance DecisionEdges

 min max average variance Average variance min max average variance

Luxembourg 1.13 1.07 0.00039 1 10 9.64 2.20

Belgium 0.86 1.06 0.00028 0 10 9.98 0.04

The Netherlands 0.93 1.06 0.00317 8 10 10.00 0.00

Italy 0.94 1.06 0.00031 10 10 10.00 0.00

Germany 0.59 1.06 0.00026 10 10 10.00 0.00

Table 4 : Statistics on the quality of the alternative route graph resulting from the execution of

plateau method on various European road networks

81

 Alternative Routes Quality

Map Goodness Stretch

 average variance average

Luxembourg

Belgium

The Netherlands

Italy

Germany

Table 5 : Statistics on the quality of the alternative routes resulting

from the execution of plateau method on various European road networks

To be more specific, each line indicates the results computed from the execution of

queries in the maps of Luxembourg and Belgium and queries in the maps of Netherlands,

Italy and Germany. As shown, these results contain minimum and maximum values as well as

the average and the variance of the different metrics.

Remarks .

 The average goodness values are almost at the same level for all the maps.

 Mean averageDistance is the same as mean stretch for each map, since they measure

the same property each one from another perspective.

 As the size of the map increases, the mean value of decisionEdges also increases. This is

reasonable since in larger maps, the probability of finding more alternative routes is

higher.

Plateau method with penalization of edges (1st approach – goodness_threshold = 1.0) .

The following two tables show the statistical data referring to AG and alternative paths quality

resulting from the execution of the 1st approach of the hybrid algorithm (see sections 4.4, 5.5) in

5 different road networks for

 Alternative Route Graph Quality

Map TargetFunction AverageDistance DecisionEdges

 min max average variance average variance min max average variance

Luxembourg

Belgium

The Netherlands

Italy

Germany

Table 6 : Statistics on the quality of the alternative route graph resulting from the execution of

the 1st approach of the hybrid method on various European road networks

82

 Alternative Routes Quality

Map Goodness Stretch

 average Variance average

Luxembourg

Belgium

The Netherlands

Italy

Germany

Table 7 : Statistics on the quality of the alternative routes resulting from the

execution of the 1st approach of the hybrid method on various European road networks

Remarks .

Making a comparison between the plateau method and the 1st hybrid method, we conclude that

for the same configuration :

 The average value of targetFunction is better by about 5% in the hybrid method for all

the road networks. The difference between the values of targetFunction in the two

implementations derives mainly from the better mean totalDistance values in the hybrid

method. This fact implies that the hybrid method actually manages to select more

disjoint alternative routes than the plateau method, achieving better values for

totalDistance and as a result, targetFunction.

 As far as the other metrics are concerned, namely averageDistance, decisionEdges,

goodness and UBS remain almost the same for both methods.

Plateau method with penalization of edges (2nd approach – goodness_threshold = 1.0) .

The following two tables show the statistical data regarding AG and alternative paths quality

resulting from the execution of the 2nd hybrid approach (see sections 4.4, 5.5) in 5 different

road networks for . Note that the 2nd approach uses a totally

different objective function which selects alternative routes with the minimum length while

satisfying the other criteria.

 Alternative Route Graph Quality

Map TargetFunction AverageDistance DecisionEdges

 min max average variance average variance min max average variance

Luxembourg

Belgium

The Netherlands

Italy

Germany

Table 8 : Statistics on the quality of the alternative route graph resulting from the execution of the 2nd

approach of the hybrid method on various European road networks.

83

 Alternative Routes Quality

Map Goodness Stretch

 Average Variance average

Luxembourg

Belgium

The Netherlands

Italy

Germany

Table 9 : Statistics on the quality of the alternative routes resulting from the

execution of the 2nd hybrid method on various European road networks

Remarks .

In comparison with plateau method and the 1st hybrid approach, the 2nd hybrid approach :

 has slighter better mean averageDistance and goodness values. That is to say, it selects

a bit shorter alternatives which at the same time have shorter lengths from source to

plateau and from plateau to target.

 has worse mean targetFunction values by about 6% than plateau method. In other

words, the penalization of edges in combination with the in question objective function

does not improve the quality of the resulting AG.

Conclusion .

Based on the experimental results for the AG quality, we conclude that the three approaches

are almost equally good. However, out of the three, the 1st approach of plateau with

penalization of edges (+ rejoin penalty) yields the best results as far as the disjointness of the

paths is concerned (which is the most meaningful metric, since the others are limited by upper

bounds). In the next section, we will examine how the goodness threshold influences the quality

of the resulting graph.

6.2.2 AG and alternative paths quality (goodness_threshold = 0.85)

In this section, we present results concerning the AG and alternative routes quality, conducting

experiments in the 5 road networks for a smaller goodness_threshold (=0.85). Our goal is to

examine how the reduction of the goodness upper bound influences the selection of

alternatives and as a result the measured quality, as reflected by mean targetFunction and mean

decisionEdges. Obviously, we will not focus on comparing which of the three methods is better

for goodness_threshold=0.85, since, the 1st approach of hybrid method is expected to be slightly

better, based on the results for goodness_threshold=1.0. Instead, we will compare the results

84

with the corresponding results for goodness_threshold = 1.0 for the three implementations.

Plateau method (goodness_threshold = 0.85) .

The following two tables show the statistical data referring to AG and alternative paths quality

resulting from the execution of plateau method in 5 different road networks for

 Alternative Route Graph Quality

Map TargetFunction AverageDistance DecisionEdges

 min max average variance Average variance min max average variance

Luxembourg

Belgium

The Netherlands

Italy

Germany

Table 10 : Statistics on the quality of the alternative route graph resulting from the execution of

plateau method on various European road networks

 Alternative Routes Quality

Map Goodness Stretch

 average variance average

Luxembourg

Belgium

The Netherlands

Italy

Germany

Table 11 : Statistics on the quality of the alternative routes resulting

from the execution of plateau method on various European road networks

85

Plateau method with penalization of edges (1st approach – goodness_threshold = 0.85) .

The following two tables show the statistical data referring to AG and alternative paths quality

resulting from the execution of the 1st approach of the hybrid algorithm (see sections 4.5, 5.5) in

5 different road networks for

 Alternative Route Graph Quality

Map TargetFunction AverageDistance DecisionEdges

 min max average variance Average variance min max average variance

Luxembourg

Belgium

The Netherlands

Italy

Germany

Table 12 : Statistics on the quality of the alternative route graph resulting from the execution of

the 1st hybrid approach on various European road networks

 Alternative Routes Quality

Map Goodness Stretch

 Average variance average

Luxembourg

Belgium

The Netherlands

Italy

Germany

Table 13 : Statistics on the quality of the alternative routes resulting

from the execution of the 1st hybrid approach on various European road networks

Plateau method with penalization of edges (2nd approach – goodness_threshold = 0.85) .

The following two tables show the statistical data referring to AG and alternative paths quality

resulting from the execution of the 2nd approach of the hybrid algorithm (see sections 4.5, 5.5)

in 5 different road networks for

86

 Alternative Route Graph Quality

Map TargetFunction AverageDistance DecisionEdges

 min max average variance Average variance min max average variance

Luxembourg

Belgium

The Netherlands

Italy

Germany

Table 14 : Statistics on the quality of the alternative route graph resulting from the execution of

the 2nd hybrid approach on various European road networks

 Alternative Routes Quality

Map Goodness Stretch

 Average variance average

Luxembourg

Belgium

The Netherlands

Italy

Germany

Table 15 : Statistics on the quality of the alternative routes resulting

from the execution of the 2nd hybrid approach on various European road networks

Remarks .

 We notice that the average values of decisionEdges are smaller than the corresponding

for goodness_threshold=1.0. By appropriate calculations between the respective tables ,

we estimate that mean decisionEdges for the new goodness threshold are reduced by

about 50% in the road network of Luxembourg for all of the three methods, while in the

other maps, the percentage fluctuates around 10%. Given that the map of Luxembourg

is quite small, the majority of alternative routes consist of relatively small plateaux. As a

result, when the upper bound is set to 1.0, the algorithm identifies paths that satisfy the

criterion, but when this bound is set to a lower value, like 0.85, a lot of them are not still

admissible. On the other hand, in cases of maps with greater number of nodes and

edges, the difference between the two executions is much smaller.

 The new mean averageDistance values differ slightly compared with those obtained for

goodness_threshold = 1.0.

 Average values of targetFunction are smaller than the corresponding for

goodness_threshold = 1.0. By appropriate calculations, we estimate that mean

87

targetFunction values are reduced by about 45%-50% for all the maps and for all the

methods. Given the reduction in decisionEdges, we conclude that in Luxembourg a

constant ratio between targetFunction to decisionEdges is maintained and the results

are equivalent in the two cases. On the contrary, in the other maps, the decrease in

targetFunction is not proportional to the decrease of decisionEdges and thus the new

resulting AG deteriorates in quality as regards the disjointness. Specifically as the size of

the maps increases, alternative routes satisfying the new more strict threshold can be

found (desicionEdges value stays almost the same), but these alternatives are more

overlapping, leading to worse quality.

Conclusion .

Generally, there is no obvious policy that brings the best possible results. On the contrary, it

depends on the specifications that each alternative route graph must fulfill. Apparently,

decreasing the goodness upper bound, alternative routes consist of larger plateaux, but may

have common parts with each other, as demonstrated by the experiments in these maps. On

the other hand, setting a more relaxed threshold, alternatives may possibly consist of smaller

plateaux, but may be better on the other criteria.

6.2.3 Memory usage and time performance of plateau method (goodness_threshold = 1.0)

In the following section, we present the experimental results concerning the time performance

and the memory usage depending on the data structure used for the graph representation.

Initially, we record the memory needed from each data structure to store the graph. Besides

this, we aim to find out the time improvement or deterioration depending on the graph

representation. Thus, one method is sufficient so as to induct conclusions concerning time

performance and memory usage. So, we have conducted experiments using plateau method.

The four data structures used are adjacency list, forward star, dynamic forward star, packed-

memory graph. The goodness threshold is set to .

6.2.3.1 Memory usage

The memory needed for each graph representation is presented below :

Luxembourg

Representation Memory Usage(Mbytes)

Adjacency List

Forward Star

Dynamic Forward Star

Packed-Memory Graph

Table 16 : Luxembourg memory usage

88

Belgium

Representation Memory Usage(Mbytes)

Adjacency List

Forward Star

Dynamic Forward Star

Packed-Memory Graph

Table 17 : Belgium memory usage

The
Netherlands

Representation Memory Usage(Mbytes)

Adjacency List

Forward Star

Dynamic Forward Star

Packed-Memory Graph

Table 18 : The Netherlands memory usage

Italy

Representation Memory Usage(Mbytes)

Adjacency List

Forward Star

Dynamic Forward Star

Packed-Memory Graph

Table 19 : Italy memory usage

Germany

Representation Memory Usage(Mbytes)

Adjacency List

Forward Star

Dynamic Forward Star

Packed-Memory Graph

Table 20 : Germany memory usage

Remarks .

 For all the road networks, the theoretical analysis is confirmed. The adjacency list and

the forward star representation need the minimum amount of memory to be stored,

while the packed-memory graphs needs the largest amount of memory to be stored.

89

This is rational, since the packed-memory graph binds some empty slots of memory

(holes) in order to achieve efficient updates on the graph. Dynamic forward star also

binds empty slots and as a results uses more memory than the static forward star and

the adjacency list

 Although adjacency list and static forward star need exactly the same amount of

memory to store the graph, the layout of the graph in memory in the adjacency list

representation is random while in the forward star representation is as compact as

possible.

 In our implementation, forward star is implemented as a compressed packed-memory

graph. That is to say, the empty cells are not uniformly distributed, but they are at the

end of the data structure and as a result forward star is compact. For that reason, we

consider that forward star uses exactly the same amount of memory as the adjacency

list.

6.2.3.2 Time performance (goodness_threshold = 1.0)

The execution times refer to each of the stages of the plateau method, namely, construction of

forward, backward tree and combined tree, plateaux finding and evaluation, construction of AG.

The total execution time is also included in the following tables. Time is given in sec.

Luxembourg .

Time Performance (sec)

Graph
Representation

Forward
&

Backward
Tree

Combined
Tree

Plateaux
Finding

Plateaux
evaluation

AG
construction

Total time

 average average average average average average variance
Adjacency List

Forward Star
Dynamic

Forward Star

Packed-
Memory Graph

Table 21 : Execution times in Luxembourg road network for the 4 different graph representations

90

Belgium .

Time Performance (sec)

Graph
Representation

Forward
&

Backward
Tree

Combined
Tree

Plateaux
Finding

Plateaux
evaluation

AG
construction

Total time

average average average average average average variance

Adjacency List

Forward Star

Dynamic
Forward Star

Packed-
Memory Graph

Table 22 : Execution times in Belgium road network for the 4 different graph representations

The Netherlands .

Time Performance (sec)

Graph
Representation

Forward
&

Backward
Tree

Combined
Tree

Plateaux
Finding

Plateaux
evaluation

AG
construction

Total time

 average average average average average average variance
Adjacency List

Forward Star

Dynamic
Forward Star

Packed-
Memory Graph

Table 23 : Execution times in the Netherlands road network for the 4 different graph

representations

91

Italy .

Time Performance (sec)

Graph
Representation

Forward
&

Backward
Tree

Combined
Tree

Plateaux
Finding

Plateaux
evaluation

AG
construction

Total time

 average average average Average average average variance
Adjacency List

Forward Star

Dynamic
Forward Star

Packed-
Memory Graph

Table 24 : Execution times in Italy road network for the 4 different graph representations

Germany .

Time Performance (sec)

Graph
Representation

Forward
&

Backward
Tree

Combined
Tree

Plateaux
Finding

Plateaux
evaluation

AG
construction

Total time

 average average average average average average variance
Adjacency List

Forward Star

Dynamic
Forward Star

Packed-
Memory Graph

Table 25 : Execution times in Germany road network for the 4 different graph representations

Remarks .

 The main outcome of this experimental study is that the forward star implementation

achieves the best total time performance. In the second place, not far from the forward

star, we meet the packed-memory graph, while adjacency list is in the last place. This

superiority of the forward star is based on the fact that nodes and edges are stored in

consecutive, non-overlapping memory segments that are scanned in maximum

efficiency. Thus, processes such as the construction of the forward, backward tree and

92

the alternative route graph that require sequential accesses of nodes and edges, are

done in the least possible time. On the contrary, adjacency list’s execution times are

inferior since the layout of the graph in the memory is random.

 To be more specific, the packed-memory graph representation is almost 25% faster in

query time than the adjacency list. Moreover the forward star representation is almost

3% faster than the packed-memory graph representation. This superiority of the two

data structures is due to the fact that, at the expense of a small space overhead, they

achieve greater locality of references, less cache misses and hence, better performance

in query time.

 Although the total time is best for the forward star representation, as far as the middle

stages of the algorithm are concerned, namely plateaux finding and evaluation,

adjacency list seems to be better than all the other structures. These two stages does

not access all the nodes sequentially, but “chains” of them. The starts of these chains

are not necessarily consecutive, thus, a more random layout of the graph in memory

may be more helpful.

 The variance of the total time is getting larger as the map size increases. The pairs of

source-target are more heterogeneous in larger maps (some of them are close enough,

while some can be very remote) and as a result, the time execution may vary enough

from query to query, leading to larger variance value.

 Finally, the graph reading mainly for the forward star and the packed-memory graph

representation is big enough, since the graph storing in the memory should be done

properly using consecutive slots and use of arrays.

Conclusion .

Comparing the experimental results from the above tables, we conclude that the forward star

implementation for our static graphs yields the best time performance. It requires, of course,

more memory, but the query time is almost 30% better than in the adjacency list. Packed-

memory graph and dynamic forward star are also quite good alternatives for our static road

networks.

6.2.4 Time performance of plateau method with penalization of edges (goodness_threshold =

1.0)

In the following section, we present the time performance of the hybrid method and we make a

comparative evaluation with the corresponding execution times of plateau method. The

experiments have been done with goodness upper bound equal to 1.0 and with the use of

adjacency list representation of the graphs. The results refer to the 1st approach of plateau

method with penalization of edges.

93

Table 26 : Time performance of plateau method in comparison to the 1st hybrid approach

Remarks .

 We find out that the execution times of the hybrid method are significantly larger than

those of plateau. Specifically, the increase is about 40%. This increase is due to the

additional time needed in order to initialize the penalties of the edges and the

additional time to penalize the edges of each chosen alternative route plus the edges

due to the rejoin penalty applied. Since there is no limit to the number of times each

edge can be penalized, some penalizations can be done multiple times leading to great

time overheads.

Conclusion .

The 1st approach of hybrid method leads to improvement of the AG quality by about 5%

compared to plateau method, while at the same time it leads to a time overhead of 40%.

Consequently, we believe that this trade-off is not satisfactory enough and thus, plateau

method is better on average.

Times(sec)

Map Method

Forward
&

Backward
Tree

Combined
Tree

Plateaux
Finding

Plateaux
evaluation

AG
construction

Total
time

Total Time
including

graph reading
& weight

calculation

Increase (%)

Luxembourg
plateau 0.063 0.008 0.007 0.001 0.009 0.088 0.743

34.3
hybrid 0.085 0.008 0.007 0.009 0.009 0.118 0.783

Belgium
plateau 0.919 0.122 0.177 0.041 0.090 1.349 12.954

39.9
hybrid 1.264 0.122 0.177 0.235 0.090 1.888 13.509

Netherlands
plateau 1.612 0.191 0.288 0.043 0.134 2.268 20.314

36.7
hybrid 2.194 0.192 0.290 0.288 0.135 3.099 21.157

Italy
plateau 4.656 0.588 1.126 0.140 0.409 6.919 67.384

44.7
hybrid 6.495 0.589 1.121 1.399 0.410 10.015 70.120

Germany
plateau 9.041 0.970 2.039 0.241 0.684 12.976 123.000

45.3
hybrid 12.546 0.977 2.055 2.587 0.687 18.852 125.460

94

6.2.5 Summary

The main results of the experiments conducted are presented below in the corresponding

categories:

AG and alternative routes quality .

 The 1st approach of the hybrid method turned out to better than plateau method and

2nd hybrid method, for both goodness thresholds by about 5 to 10%.

 The 2nd hybrid method achieved to add slightly better alternatives regarding the

goodness criterion.

Memory Usage .

 Adjacency list and forward star representations used the least memory to store the

graphs, while packed-memory graph required the most.

Time performance .

 Regarding the time performance depending on the graph data structure, for the same

pairs of queries, the forward star representation yields the best execution times.

 Regarding the time performance of the three different methods, plateau method

achieves the best results.

Generally, plateau method, either alone or in combination with other methods is a meaningful

method which exhibits superior performance compared to the performance of other methods in

the field of alternative route planning used as reference from the paper [BDGS11].

95

Chapter 7

CONCLUSION AND FUTURE WORK

This final chapter gives a short conclusion on the most important aspects of this thesis and

reports the most significant results obtained by the experimental studies that have been

performed. Also, a perspective for further work in this field of research is presented, trying to

suggest possible directions that are worth to be taken in the future.

7.1 Conclusion

The main goal of this thesis is to provide an insight in the field of navigation regarding the aspect

of alternative route planning in road networks. Apart from introducing some basic algorithms

for alternative routes identification, such as k-shortest paths, disjoint paths, penalty method,

our main contribution is to present the notion of admissibility, that is to say, the notion of

alternatives that look more natural to humans. We used ways to evaluate alternative routes and

metrics to measure the quality of the alternative route graph. Furthermore, we compared

methods to compute AGs using plateau method and a combination of plateau method with

penalty. Our experiments showed that the combination of plateau with penalty achieves the

best quality for the AGs. However, plateau method has much better time performance.

Moreover we examined the time performance within the scope of different graph data

structures and we concluded that for our static real-world maps, forward star representation

achieves the best results. To sum up, plateau method, either alone or in combination with other

methods, is a meaningful method which exhibits superior performance compared to the

performance of other methods in the field of alternative route planning used as reference from

the paper [BDGS11].

7.2 Outlook

The plateau method we implemented has a number of interesting directions for future work.

Weight function . At this level, the edges weights are calculated once, in the beginning of the

execution, are static and it is not possible to change without re-reading the graph. So, the cost

function that is used to compute the weights of the graph can incorporate any of the known

factors. It may be sensitive to both time and duration, can incorporate real-time of historical

96

traffic information, can take into account user preferences and can use financial information

such as road pricing.

Real-time Updates . Currently, our plateau implementation only supports static road networks.

An improvement would be to implement dynamization techniques so as to incorporate node or

edges updates that are caused, for example, by the opening of a road. These dynamizations

techniques would be able to update the graph without re-reading the map from scratch.

Speed-up Techniques . The basic time overhead in our implementation is introduced by the two

Dijkstras running to form the forward and backward trees. Thus, it would be desirable to use a

variation of Dijkstra’s algorithm so as to improve the time performance of this stage. These

variations use special heuristics to explore the nodes or edges in a better order, or to terminate

earlier, or to explore major roads only, or to explore outwards from source and destination

simultaneously. They do this in order to run faster or to use less memory. It should be

understood that plateau method of combining forward and backward trees to find plateaux is

independent of how these trees were computed. So, if these variations, known as speed-up

techniques, are applied, then plateau method can yield diverse alternative routes needing less

running time or memory use.

Metrics . Currently, we evaluate plateaux using totalDistance, averageDistance, decisionEdges,

based on an objective function. But once we have reduced the number of plateaux to the most

interesting ones by using goodness value, we can filter them in many other ways. For example,

we may choose to order them based upon user preferences, such as motorways, fewer

junctions, lower tolls, driving costs, and familiarity.

97

APPENDIX

Appendix – Technical details and Implementation’s interface

In this chapter of the appendix, we give some technical details useful for everyone that wishes

to use our C++ programs, set up the environment and execute them. Obviously, it is necessary

to have a C++ compiler in order to execute the programs. Note that we used the g++ compiler in

a linux environment, so the instructions are given, provided that the setup is going to take place

in a similar environment (see 6.1.1).

First of all, both plateau and hybrid methods are separated into multiple header files which are

necessary for the proper functionality of the program. If any of the files needed is missing, the

program cannot be compiled and as a result executed. In these separate files, various C++

classes are contained, implementing the different stages of the algorithm, such as Dijkstra,

BackwardDijkstra, Plateau etc. as well as the various data structures used, such as priority

queues, graph representations etc. Note that these C++ files are part of “pgl” library which

implements many algorithms and data structures in the wide field of route planning. Besides

that, for a user that wishes to execute the code, it is necessary that the various header files are

in the proper directories, as these are stated in the include statements found in the first few

lines of every file. Our implementations, apart from the files that already exist in pgl, are given in

the following files : plateau.cpp (including main function), plateau.h, subgraph.h and a Makefile

for plateau method and in files : plateau_penalty.cpp (including main function), penalty.h,

subgraph.h and a Makefile for the hybrid method. Makefiles should be in the same directories

with plateau.cpp and in plateau_penalty.cpp respectively. Apart from them, in order to compile

the program, it is necessary to install boost library mainly for “random” and “program options”

libraries.

If no file is missing and everything is well suited in the right directories, the executable file is

produced by executing the command “make” (being in the directory where Makefile is found).

The executable a.out (as denoted in our Makefiles) can be now executed and give results. A user

is able to run the program without having any further knowledge on the code. It is sufficient to

execute the program, as follows, and simply gather the results. So, by running the executable,

namely “./a.out”, one can see the line arguments needed. In our implementations, a typical

execution would be :

Where

 [--size] number of queries to execute. Default : 1

98

 [--numP] max number of alternatives to keep. Values>=1. Default : 1 corresponds

to the shortest path. Default = 11

 [--graphtype] graph type. Adjacency List[0], PackedMemoryArray[1], Forward Star[2],

Dynamic Forward Star [3]. Default : 0

 [--format] map format. DIMACS10[0]. Default:0

 [--map] input map. The name of the map to read. Maps should

 reside in '$HOME/Projects/pgl/Graphs/DIMACS10/' and

 should consist of 2 files, both with the same map name

 prefix, and suffixes 'osm.graph' and 'osm.xyz'.

 Default:'luxembourg'

The aforementioned arguments list describes the use of each argument, and the possible values

for execution. Note that the execution succeeds if the necessary map files are downloaded

(possibly from http://www.cc.gatech.edu/dimacs10/archive/streets.shtml) in the directory

“$HOME/Projects/pgl/Graphs/DIMACS10/”. Note also that the pairs of are chosen

randomly by a random generator.

The output of the program, either referring to AG and alternative routes quality or memory

usage and time performance (depending on which of the two cases is uncommented) is given in

a file denoted by the name of the in question map + “.txt” (i.e. luxembourg.txt).

For users that want to go a bit further, that is to say, to understand to a greater extent the

structure of the code and possibly change some upper bounds (i.e. δ, goodness_threshold,

averageDistance upper bound etc.), we present the prototypes of the basic methods executed

including their arguments.

The basic method called from main function (in both implementations) is the :

 ()

which takes as input, the graph (or , etc), the alternative route , the source

and the target nodes, and respectively, the maximum number of alternatives

to compute and a file to output the results.

This method contains the computation of forward, backward, combined Trees, finds plateau

paths and creates alternative subgraph (with proper function calls).

In more detail, it calls :

 runQueries<Dijkstra<GraphType> >(G, s, t);

 runQueries<BackwardDijkstra<GraphType> >(G, s, t);

http://www.cc.gatech.edu/dimacs10/archive/streets.shtml

99

The runQuery method is implemented with use of templates so as to be called with

Dijkstra template argument the first time and BackwardDijkstra the second. The

arguments are the graph and the source and target nodes .

Then, it instantiates a Plateau (or Penalty) variable called plateauFinder,

 Plateau<GraphType> plateauFinder(G);

and calls

 plateauFinder.buildCombinedTree(s);

Source node is given as argument.

 plateauFinder.findPlateaux(0.85,s,t);

The argument list includes the goodness_threshold which now is set to 0.85 and the

source and target nodes.

 plateauFinder.evaluatePlateaux(nump,s,t,outfile);

The arguments list includes the maximum number of alternatives to be computed, given

as input to the program (now set to 0.85), the source and target nodes and a

reference to the output file.

Finally, it instantiates a Subgraph variable,

 Subgraph< GraphType, subGraph> AG(G, subG);

And then it calls

 AG.createAlternativeGraph();

Note that change in the thresholds of δ, averageDistance can be done manually in the header

files “plateau.h” or “penalty.h”.

100

Bibliography

[ADGW10] Ittai Abraham, Daniel Delling, Andrew V. Goldberg, and Renato F. Werneck,

Alternative Routes in Road Networks, SEA2010.

[AEB00] V. Akgun, E. Erkut, R. Batta, On finding dissimilar paths, European Journal of

Operational Research 121 (2000) 232-246.

[Bau11] Moritz Baum, On Preprocessing the Arc-Flags Algorithm, Master Thesis,

Department of Informatics, Institute of Theoretical Computer Science, Karlsruhe

Institute of Technology (KIT), September 2011.

[BDGS11] R. Bader, J. Dees, R. Geisberger, P. Sanders, Alternative Route Graphs in Road

Networks, TAPAS 2011

[Bel58] Richard Bellman, On a routing problem, Quarterly of Applied Mathematics,

16(1):87–90, 1958.

[Bha94] Bhandari R., Optimal diverse routing in telecommunication fiber networks,

Proceedings of IEEE INFOCOM ’94, Toronto, Ontario, Canada, vol. 3, June, 1994;

1498–1508.

[BK60] Bellman, R. AND Kalaba, R. "On kth Best Policies," J. of SIAM, Vol. 8, No. 4

(December 1960), pp. 582-588.

[BKH57] Bock F., Kantner H. and Haynes J., An Algorithm for Finding and Ranking Paths

Through a Network, Research Report, Armour Research Foundation, Chicago,

Illinois, November 15, 1957.

[CKR63] Clarke S., Krikorian A. and Rausan J., "Computing the N Best Loopless Paths in a

Network," J. of SIAM, Vol. 11, No. 4 (December 1963), pp. 1096-1102.

[Del09] Daniel Delling, Engineering and Augmenting Route Planning Algorithms,

Department of Informatics, University of Karlsruhe (TH), February 2009

[DGJ09] Camil Demetrescu, Andrew V. Goldberg, and David S. Johnson, Shortest Paths:

Ninth DIMACS Implementation Challenge, DIMACS Book, American

Mathematical Society, 2009.

[Die97] Diestel R., Graph Theory, Graduate Texts in Mathematics, Springer, New York,

1997.

101

[Dij59] Edsger W. Dijkstra, A Note on Two Problems in Connexion with Graphs,
Numerische Mathematik, 1:269–271, 1959.

[DW09] Daniel Delling, Dorothea Wagner, Pareto Paths with SHARC, SEA 2009.

[Epp94] Eppstein David, Finding the k Shortest Paths, University of California, May 31

1994.

[FF62] Ford LR, Fulkerson DR. , Flows in Networks, Princeton University Press,

Princeton, NJ, 1962.

[Fuc10] Fabian Fuchs, On preprocessing of the ALT-Algorithm, Student thesis, Faculty of

Computer Science, Institut for Theoretical Informatics(ITI), Karlsruhe Institute of
Technology (KIT), 2010.

[Gei08] Robert Geisberger, Contraction Hierarchies, Master thesis, Universitat Karlsruhe

(TH), Fakultat fur Informatik, 2008.

[GH05] Andrew V. Goldberg and Chris Harrelson, Computing the Shortest Path: A*

Search Meets Graph Theory. In Proceedings of the 16th Annual ACM– SIAM

Symposium on Discrete Algorithms (SODA’05), pages 156–165, 2005.

[GKM03] Yuchun Guo, Fernando Kuipers and Piet Van Mieghem, Link-disjoint paths for

reliable QoS routing, International Journal of Communication Systems, Int. J.

Commun. Syst. 2003; 16:779–798 (DOI: 10.1002/dac.612), 2003.

[GKW06a] Andrew V. Goldberg, Haim Kaplan, and Renato F. Werneck. Reach for A*:

Efficient Point-to-Point Shortest Path Algorithms. In Proceedings of the 8th

Workshop on Algorithm Engineering and Experiments (ALENEX'06), pages 129-

143. SIAM, 2006.

[GSSD08] Robert Geisberger, Peter Sanders, Dominik Schultes, and Daniel Delling,

Contraction Hierarchies: Faster and Simpler Hierarchical Routing in Road

Networks. In Catherine C. McGeoch, editor, Proceedings of the 7th Workshop

on Experimental Algorithms (WEA’08), volume 5038 of Lecture Notes in

Computer Science, pages 319–333. Springer, June 2008.

 [Gut04] Ronald J. Gutman. Reach-Based Routing: A New Approach to Shortest Path

Algorithms Optimized for Road Networks. In Proceedings of the 6th Workshop

on Algorithm Engineering and Experiments (ALENEX'04), pages 100111. SIAM,

2004.

102

[GW05] Andrew V. Goldberg and Renato F. Werneck, Computing Point-to-Point Shortest

Paths from External Memory. In Proceedings of the 7thWorkshop on Algorithm

Engineering and Experiments (ALENEX’05), pages 26–40. SIAM, 2005.

[Han79] Hansen P., Bicriteria Path Problems. In Fandel G., Gal T., eds.: Multiple Criteria

Decision Making – Theory and Application –. Springer (1979) 109–127.

[HKMS06] Moritz Hilger, Ekkehard Kohler, Rolf H. Mohring, and Heiko Schilling, Fast point-

to-Point Shortest Path Computations with Arc-Flags. In Camil Demetrescu,

Andrew V. Goldberg, and David S. Johnson, editors, 9th DIMACS

Implementation Challenge - Shortest Paths, November 2006.

[HNR68] Peter E. Hart, Nils Nilsson, and Bertram Raphael, A Formal Basis for the Heuristic

Determination of Minimum Cost Paths, IEEE Transactions on Systems Science

and Cybernetics, 4:100–107, 1968.

[HP59] Hoffnam W. and Pavley R., "A Method for the Solution of the Nth Best

Problem," J. of ACM, Vol. 6, No. 4 (October 1959), pp. 506-514.

[Jon12] Alan Henry Jones, Method of and apparatus for generating paths, United States

Patent, No. US 8,249,810 B2, August 21,2012.

[Jr.56] L.R. Ford Jr., Network flow theory, Paper P-923, The RAND Corporation, Santa

Monica, California, August 1956.

[Kar07] George Karypis, METIS - Family of Multilevel Partitioning Algorithms, Digital

Technology Center, University of Minnesota, 2007.

[Lau97] Ulrich Lauther, Slow Preprocessing of Graphs for Extremely Fast Shortest Path

Calculations, 1997. Lecture at the Workshop on Computational Integer

Programming at ZIB.

[Lau04] Ulrich Lauther, An Extremely Fast, Exact Algorithm for Finding Shortest Paths in

Static Networks with Geographical Background. In Geoinformation und

Mobilitat - von der Forschung zur praktischen Anwendung, volume 22, pages

219–230. IfGI prints, 2004.

[Mar84] Martins, E.Q., On a Multicriteria Shortest Path Problem, European Journal of

Operational Research 26(3), 1984 236–245.

103

[MMPZ12] Georgia Mali, Panagiotis Michail, Andreas Paraskevopoulos, Christos Zaroliagis,

A New Dynamic Graph Structure for Large-Scale Transportation Networks,

eCOMPASS European Project, Project Number 288094, October 2012.

[MMZ12] Georgia Mali, Panagiotis Michail, Christos Zaroliagis, A New Dynamic Graph

Structure for Large-Scale Transportation Networks, eCOMPASS European

Project, July 2012.

[MS04] Burkhard Monien and Stefan Schamberger, Graph Partitioning with the Party

Library: Helpful-Sets in Practice. In Proceedings of the 16th Symposium on

Computer Architecture and High Performance Computing (SBACPAD’ 04), pages

198–205. IEEE Computer Society, 2004.

[MSS+06] Rolf H. Mohring, Heiko Schilling, Birk Schutz, Dorothea Wagner, and Thomas

Willhalm, Partitioning Graphs to Speedup Dijkstra’s Algorithm, ACM Journal of

Experimental Algorithmics, 11:2.8, 2006.

[Paj09] Thomas Pajor, Multi-Modal Route Planning, Diploma thesis, Department of

Informatics, Institute of Theoretical Computer Science, Karlsruhe Institute of

Technology (KIT), March 2009.

[Pel07] Francois Pellegrini, SCOTCH: Static Mapping, Graph, Mesh and Hypergraph

Partitioning, and Parallel and Sequential Sparse Matrix Ordering Package, 2007.

[Pol61] Pollack, Solutions of the k Best Route Through a Network-A Review, J. of Math.

Anal. And Appl., Vol. 13, No. 3 (August-December 1961), pp. 547-559.

[PS82] Papadimitriou CH, Steiglitz K., Combinatorial Optimization–Algorithms and
complexity. Prentice–Hall, Inc.: Englewood Cliffs, NJ, 1982.

[Sak66] Sakarovitch, The k Shortest Routes and the k Shortest Chains in a Graph, Opns.

Res. Center, University of California, Berkeley, Report ORC-32, October 1966.

[Sch08] Dennis Schieferdecker, Systematic Combination of Speed-Up Techniques for

Exact Shortest-Path Queries, Diploma thesis, Department of Informatics,

University of Karlsruhe, January 2008.

[SS05] Peter Sanders and Dominik Schultes. Highway Hierarchies Hasten Exact Shortest

Path Queries. In Proceedings of the 13th Annual European Symposium on

Algorithms (ESA’05), volume 3669 of Lecture Notes in Computer Science, pages

568–579. Springer, 2005.

104

[SS06a] Peter Sanders and Dominik Schultes. Engineering Highway Hierarchies. In

Proceedings of the 14th Annual European Symposium on Algorithms (ESA’06),

volume 4168 of Lecture Notes in Computer Science, pages 804–816. Springer,

2006.

[ST84] Suurballe JW, Tarjan RE. A quick method for finding shortest pairs of disjoint

paths, Networks 14:325–333, 1984.

[Suur74] Suurballe JW., Disjoint paths in a network, Networks 14: 125–145, 1974.

[SWW99] Frank Schulz, Dorothea Wagner, and Karsten Weihe, Dijkstra's Algorithm On-

Line: An Empirical Case Study from Public Railroad Transport. In Proceedings of

the 3rd International Workshop on Algorithm Engineering (WAE'99), volume

1668 of Lecture Notes in Computer Science, pages 110 - 123. Springer, 1999.

[WW03] Dorothea Wagner and Thomas Willhalm, Geometric Speed-Up Techniques for

Finding Shortest Paths in Large Sparse Graphs. In Proceedings of the 11th

Annual European Symposium on Algorithms (ESA’03), volume 2832 of Lecture

Notes in Computer Science, pages 776–787. Springer, 2003. (Cited on page 2.)

[WWZ05] Dorothea Wagner, Thomas Willhalm, and Christos Zaroliagis, Geometric

Containers for Efficient Shortest-Path Computation. ACM Journal of

Experimental Algorithmics, 10:1.3, 2005. (Cited on page 2.)

[Yen71] Jin Y. Yen, Finding the K Shortest Loopless Paths in a Network, University of

Santa Clara, 1971, pp.712-716.

