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ABSTRACT 

 

Nowadays, mobility has gained great importance. People travel daily either for their works or for 

pleasure making route planning a significant aspect of their everyday life. Although first 

algorithms solving this kind of problem, such as Dijkstra and Bellman-Ford, are quite old, the 

new circumstances require more efficient solutions taking into account various parameters 

related to driver’s preferences, environmental conditions, financial conditions, traffic 

congestions and many other aspects.  

 Under these new requirements and needs, algorithmic engineering exhibited an impressive 

surge of interest during the last years in the field of route planning, developing new algorithmic 

approaches that solve more sophisticated variants of the shortest path problem. For example, 

researchers developed speed-up techniques computing queries in large-scale networks with 

great time efficiency, introduced new concepts of multi-modal and multi-objective routing etc. 

In this thesis, we focus on a variant of the shortest path problem that aims to find multiple 

alternative routes from source to target, apart from the single shortest path. Research on this 

field is very important since finding a set of alternatives can be useful for various reasons. For 

example, the need to avoid costly roads, the increasing occurrence of traffic congestions, 

driver’s preferences to avoid some streets are cases that a single route would not be enough. 

So, we present plateau method which is a significant approach on this field of interest based on 

paths with constant distances from source and target, along them (plateaux). We analyze step 

by step its stages, we understand the methodology and we implement it in our own C++ 

program. We further combine our plateau approach with penalty algorithm which, as its name 

states, penalizes the edges already belonging in an alternative. Apart from the two interesting 

implementations, we aim to evaluate the resulting alternative routes so as to choose the best 

ones. The superiority of each single alternative is  examined on the basis of specific criteria we 

introduce. These criteria check the quality of the candidate plateaux, the amount of disjointness 

between the paths, the average length, the local optimality. These criteria are incorporated in 

the C++ implementations. Last but not least, in order to examine the efficiency of these 

algorithms, we conduct an experimental study for various values of the parameters in large-

scale road networks, we export statistical data and we draw conclusions.  
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ΠΕΡΙΛΗΨΗ 

 

Στις μέρες μας, οι μετακινήσεις έχουν αποκτήσει μεγάλη σημασία. Οι άνθρωποι ταξιδεύουν 

καθημερινά είτε για τις δουλειές τους είτε για λόγους αναψυχής με αποτέλεσμα οι 

μετακινήσεις  να αποτελούν ένα σημαντικό μέρος της ζωής τους. Αν και οι πρώτοι αλγόριθμοι, 

που έλυναν τέτοιου είδους προβλήματα, όπως ο Dijkstra και ο Bellman-Ford είναι αρκετά 

παλιοί, οι νέες συνθήκες απαιτούν πιο αποδοτικές λύσεις λαμβάνοντας ταυτόχρονα υπόψη 

ποικίλες παραμέτρους όπως τις προτιμήσεις των οδηγών, τις περιβαλλοντικές συνθήκες, τις 

οικονομικές συγκυρίες, την κυκλοφοριακή συμφόρηση και πολλά άλλα. 

Κάτω από αυτές τις νέες απαιτήσεις,  το algorithmic engineering δείχνει τα τελευταία χρόνια 

μεγάλο ενδιαφέρον σχετικά με την εύρεση και το σχεδιασμό διαδρομών, αναπτύσσοντας νέες 

αλγοριθμικές μεθόδους οι οποίες λύνουν πιο εξεζητημένες εκδοχές του προβλήματος εύρεσης 

βέλτιστης διαδρομής. Για παράδειγμα, ερευνητές έχουν αναπτύξει τεχνικές επιτάχυνσης του 

Dijkstra με τις οποίες καταφέρνουν να υπολογίσουν ερωτήματα μεταξύ αφετηρίας-προορισμού 

σε μεγάλης κλίμακας δίκτυα με πολύ μικρή χρονική πολυπλοκότητα ή έχουν εισάγει την έννοια 

εύρεσης διαδρομών με συνδυασμό των μέσων μαζικής μεταφοράς κλπ. 

Σε αυτή τη διπλωματική εργασία, επικεντρωνόμαστε σε μία παραλλαγή του προβλήματος 

εύρεσης συντομότερης διαδρομής η οποία έχει στόχο να εντοπίζει πολλαπλές εναλλακτικές 

διαδρομές από μία αφετηρία σε έναν προορισμό, πέραν της βέλτιστης. Η έρευνα πάνω σε αυτό 

το αντικείμενο είναι ιδιαίτερα σημαντική μιας και ο υπολογισμός ενός συνόλου εναλλακτικών 

διαδρομών είναι πολύ χρήσιμος σε πληθώρα περιπτώσεων. Για παράδειγμα, η αποφυγή 

διοδίων, η αυξανόμενη εμφάνιση κυκλοφοριακών προβλημάτων, η προτίμηση ενός οδηγού να 

αποφεύγει κακόφημους δρόμους αποτελούν λίγες περιπτώσεις όπου ο υπολογισμός μιας 

μοναδικής διαδρομής δεν επαρκεί. 

Συνεπώς, στην εργασία αυτή, παρουσιάζουμε τη μέθοδο του plateau (plateau method) η οποία 

αποτελεί μία σημαντική προσέγγιση σε αυτό το πεδίο ενδιαφέροντος και βασίζεται στην 

εύρεση μονοπατιών οι κόμβοι των οποίων έχουν σταθερές  αποστάσεις από την αφετηρία και 

τον προορισμό (plateaux). Αναλύουμε βήμα προς βήμα όλα τα στάδια του αλγορίθμου, 

κατανοούμε τη μεθοδολογία και κάνουμε τη δική μας υλοποίηση σε C++. Στη συνέχεια, 

συνδυάζουμε το plateau με τον αλγόριθμο penalty ο οποίος, όπως δηλώνει και το όνομά του, 

εισάγει κάποια ποινή (= επιπλέον βάρος) στις ακμές των εναλλακτικών που ήδη έχουν 

υπολογιστεί. Εκτός από αυτές τις δύο υλοποιήσεις, στόχος μας επίσης είναι να αξιολογήσουμε 

τις υποψήφιες εναλλακτικές που προκύπτουν ώστε να διαλέξουμε τις καλύτερες. Η υπεροχή 

της κάθε εναλλακτικής εξετάζεται με βάση κάποια συγκεκριμένα κριτήρια. Αυτά τα κριτήρια 

εξετάζουν την ποιότητα των plateaux, το ποσοστό των κοινών τμημάτων των εναλλακτικών, το 

μέσο μήκος τους συγκριτικά με το βέλτιστο, την τοπική βελτιστότητα. Αυτά τα κριτήρια επίσης 

ενσωματώνονται στις υλοποιήσεις μας σε C++. Τέλος, για να εξετάσουμε την αποδοτικότητα 

αυτών των αλγορίθμων, εκτελούμε πειράματα για διάφορες τιμές των παραμέτρων, σε οδικά 

δίκτυα μεγάλης κλίμακας, εξάγουμε στατιστικά αποτελέσματα και βγάζουμε συμπεράσματα. 
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CHAPTER 1 

INTRODUCTION 

 

 

 

1.1 Motivation and problem statement 

 

Mobility is very important in our society. People live in one city and work in another. They visit 

friends and family living in different parts of the country. Even leisure time is not always spent in 

their residence. Consequently, finding best possible routes in transport networks from a given 

source to a given target location becomes an everyday problem. Many people daily deal with 

this question when planning trips either with their cars or with public transportation.  

 

First algorithms to solve this problem are quite old and are presented in the 1950s and 60s by 

Dijkstra [Dij59], Bellmann and Ford [Jr.56, Bel58] and Hart, Nilsson and Raphael [HNR68] (A*). 

Since then, an impressive amount of work has been done to solve different shortest path cases.  

 

Lately, the route planning problem has received considerable attention and has become one of 

the showpieces of real-world applications of algorithmics. Many reasons lead to this kind of 

interest : 

 

 The large increase in transportations 

 The increasing use of private vehicles in combination with CO2 emissions and energy 

consumption that require more eco-friendly approaches in order to reduce the 

environmental footprint  

 The increasing occurrence of traffic congestions that leads to alternative routes search 

 The large real-world graphs like continental road networks that require more efficient 

computations 

 The new financial circumstances that create the need to avoid costly roads and set new 

criteria in route planning 

 

The above mentioned reasons lead to the development of new algorithmic approaches that 

solve more sophisticated variants of the shortest path problem.  

 

In this thesis, we focus on the problem of finding efficiently alternative routes in road networks. 

Taking into account that every human likes choices and that today’s fast route planning 
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algorithms usually compute just a single route, we consider a generalization of the well-known 

shortest path problem, in which not one but several alternative paths must be produced. Often, 

there exist several noticeable different paths from start to end which are almost optimal with 

respect to travel time. For a human, it is advantageous to be able to choose a route for his tour 

among a set of good alternatives. He may have personal preferences, knowledge for some 

routes, and bias against others which are unknown or difficult to obtain (e.g. slippery road). 

Also, routes can vary in different attributes besides travel time, for example in toll pricing, scenic 

value, fuel consumption or risk of traffic jams. The trade-off between those attributes depends 

on the person and is difficult to determine. By computing a set of good alternatives, the person 

himself can choose the route which best fits his needs. 

 

So far, beginnings to compute alternative routes have been made, but this topic has not been 

studied thoroughly. We fill in this gap by describing mathematical definitions for such routes, 

introducing heuristics, implementing and combining methods to compute them and using new 

data structures that improve data locality and accelerate queries computation. 

1.2 Related applications of shortest path algorithms 

 

Routing is a widely researched topic in computer science, mainly because of its relevance to real 

world applications. Many software companies develop state of the art applications and web-

services relating to routing and great projects on this field take place under the joint 

participation of universities, companies and organizations.  

 

Navigation Systems . Car navigation 

systems are being offered as a special 

feature of new cars in an increasing number 

of car-brands. These car navigation systems 

are capable of taking over some of the tasks 

that are performed by the driver such as 

reading the map and determining the best 

route to the destination. A navigation 

system offers the driver the possibility to be 

guided to his destination, by means of 

spoken and visual advices. In order to 

achieve this, the driver first has to enter his  

destination into the system. Such a destination may be a city center, an entire street, or an 

address including a house number. They should also take daily congestion patterns into account. 

Because a car navigation system uses a built-in computer to determine a route, it can compare 

many different routes and the user expects the system to determine the best possible or 

optimum route fast. 

 

Figure 1.1: Built-in car navigation system  
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Web mapping services . Many software companies provide web mapping service applications 

and technology that power many map-based functionalities including routing and navigation. 

They offer street maps, route planners for travelling on foot, by car or public transport. 

Specifically, those services are computer software programmes, designed to plan a (optimal) 

route between two geographical locations using a journey planning engine, typically specialized 

for road networks as a road route planner. It can typically provide a list of places one will pass 

by, with crossroads and directions that must be followed, road numbers, distances, etc. Also, it 

usually provides an interactive map with a suggested route marked on it. Many online mapping 

sites offer road route planning like C2Logix, ViaMichelin, Google Maps, Bing Maps & Directions, 

Mapquest, Intermodal Journey Planner and TomTom Route Planner systems. Although as a 

route planning software is prone to mistakes if you try to get directions from destination A to B, 

the use of common sense is also required. Applications can typically also calculate the journey 

time and cost, some also display points of interest along the route. 

 

Tourists trip planning applications . Many tourists visit a region or a city for one or more days 

and have to make a selection of the most valuable Points of Interest (POIs). This personal 

selection is based on information found on web sites, in articles, in magazines or in guidebooks 

from specialized book stores or libraries. Once the selection is made, the tourist decides on a 

route, keeping in mind the opening hours of the POIs and the available time. However, this 

procedure faces several difficulties and requires great organization and good combination and 

confirmation of the information acquired, since sometimes it may be out of date. For these 

reasons, web-based decision support applications have been developed and become excellent 

aid for tourists who want real life support for tourist planning problems. Based on an interest 

profile, up-to-date POI information and trip information, a (near-) optimal and feasible selection 

of POIs and a route between them can be suggested solving a generalization of the well-known 

travelling salesman problem. Similar functionalities for visiting POIs are being embedded in 

smartphones platforms using android and ios technologies. 

 

Fleet management functionalities . A fleet route, also called Vehicle Routing Problem 

(generalization of TSP) is similar to a point-to-point route with VIA points, but with one 

important difference: every point visited had a load, and each vehicle has a maximum capacity, 

so one vehicle might not be enough to visit all VIA points. This means that several vehicles are 

usually needed, which adds a lot of complexity to the route calculations. Libraries (like Xtreme 

Route library) contain functionality for solving fleet routes, with several configurable parameters 

as vehicle capacity, VIA point load, depot, route type (round-trip, inbound, outbound) etc. As 

with point-to-point routing there are a lot of use cases for fleet routes, some of them are:  

 Package delivery involving many or a fixed number of vehicles (if only 1 vehicle, the 

problem becomes a point-to-point route with VIA points) 

 Transport of students to and from school 

 Mail delivery 

 Timber transportation 



4 
 

 Waste management 

 

eCOMPASS Project . eCOMPASS 

introduces new mobility concepts 

and establishes a methodological 

framework for route planning 

optimization aiming at reducing 

the environmental impact of urban 

mobility. eCOMPASS aims at 

delivering a comprehensive set of 

tools and services for end users to 

enable eco-awareness in urban 

multi-modal transportations. 

eCOMPASS involves a generic 

architecture that will consider all 

types and scenarios of human and 

goods mobility in urban 

environments minimizing their 

corresponding environmental impact. Firstly, the project will focus on the design and 

development of intelligent on-board and centralized vehicles’ fleet management systems; the 

fundamental objective of eco-awareness will be addressed through employing intelligent traffic 

prediction and traffic balancing methods, while also taking into account driving behaviour and 

considering the option of car drivers transferred to means of public transportation at suitable 

locations. Secondly, eCOMPASS will develop web and mobile services providing multi-modal 

public transportation route planning, taking into account contextual information (such as 

location and time) as well as various restrictions and/or user constraints. Recommended routes 

will be optimized mainly in terms of the transports’ environmental footprint, although additional 

objectives will also be considered. An important objective of eCOMPASS is to develop novel 

algorithmic solutions and deliver the respective services to familiar end-user mobile devices. 

 

To sum up, there are numerous applications and projects relevant to shortest path problems 

that range from planning a motorcycle tour with a mobile device to facility location problems of 

large industrial companies. Although we mainly associate shortest path algorithms with routing 

and navigation problems in transportation, there are also major fields of science where these 

algorithms are widely applied. Specifically, two typical cases are : 

 

Computer networks . Routing in computer networks is an essential functionality, which 

influences the network management and the quality of services in global networks. The 

management of the traffic flows has to satisfy requirements for volume of traffic to be 

transmitted, for avoidance of congestions and for decreasing the transmission delays. The 

optimal traffic management is a key issue for the quality of the information services. Routing in 

networks and applying shortest path algorithms is widely used in communication protocols in 

Figure 1.2 : eCOMPASS expected results from eCompass site 
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WAN. The routing algorithm is described as network layer protocol (i.e. OSFP, BGP) that guides 

packets (information stored as small strings of bits) through the communication subset to their 

correct destinations. 

 

Robotics . Due to the development of automation industry, robots are needed in more and 

more complex and dynamic environments.  For example, the research of unmanned vehicle 

robots is increased, especially in military field. An important issue to be considered is how these 

robots move and avoid static or moving obstacles in the workplace. They need to implement 

both path tracking and obstacle avoidance algorithms that are borrowed or inspired from 

shortest path problems in graphs. They need to plan a path from a current to a goal position 

avoiding hurdles and in order to achieve that use Dijkstra and A* variants. 

1.3 Contribution 

 

In this thesis we approach the problem of finding efficiently alternative routes in large-scale 

road networks. Our main contribution is divided into three parts : a) reviewing basic algorithms 

on the field of alternative routes search, b) presenting analytically plateau method and criteria 

for evaluating method’s results and c) conducting an experimental study on large-scale road 

networks using our practical implementations for plateau method and for a combination of 

plateau with penalty method. 

Algorithms for finding alternative routes. As we stated above, this thesis focuses on the 

problem of finding alternative routes from source to target apart from the shortest one. So, it is 

necessary to study the algorithms already developed in this field. Specifically, we review some of 

the most important methods used for alternative route search, namely  k-shortest paths, 

disjoint paths, pareto-optimal paths and penalty method, we describe the steps of each 

algorithm and we state their main drawbacks which led to the development of new approaches. 

Thanks to this study, the reader gets familiar with the field of interest and obtains an insight on 

the various methods developed.  

Plateau Method and Criteria for evaluating results. The main part of our work is the study of 

Plateau method which is a significant algorithm for generating a plurality of diverse routes. So 

our main contribution lies in the analysis of the algorithm’s stages which helps us to understand 

the methodology and implement it in our own C++ program. We further combine plateau 

algorithm with penalty algorithm (hybrid approach). Apart from the two interesting 

implementations, we evaluate the resulting alternative routes so as to choose the best ones. 

The superiority of each single alternative is  examined on the basis of specific criteria we 

introduce. These criteria check the quality of the candidate plateaux, the amount of disjointness 

between the paths, the average length, the local optimality. So the reader understands Plateau 

method in depth and obtains a set of useful metrics to evaluate the results.  
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Experimental Study. Last but not least, we conduct an experimental study so as to examine the 

efficiency of Plateau method and the hybrid approach. We run several experiments in real large-

scale road networks, we evaluate the results regarding the quality of the alternative routes 

found based on the criteria we defined and we further examine the time performance and 

memory usage of the algorithms. So, thanks to the experimental results and statistical data, the 

reader obtains a practical overview of the algorithms quality and their efficiency in real-world 

maps. 

1.4 Overview 

 

This thesis is organized as follows : 

 

Chapter 2 : Definitions and related work. Chapter 2 lays the essential foundations for our work. 

We define basic notion for graphs including edge weights and paths. Moreover, we present the 

data structures used for graph representation and we make a comparison between them, 

necessary for the experimental results given in chapter 6. Furthermore, we model road 

networks as graphs and we introduce the concept of basic routing. Besides, we analyze basic 

improvements and speed-up techniques of Dijkstra algorithm as bidirectional Dijkstra, A*,  Arc 

Flags, Highway Hierarchies, Contraction Hierarchies. Although these techniques are not directly 

associated with our main subject of interest, which is alternative routes in large-road networks, 

they provide us with a general theoretical background that is widely used in large-scale 

transportation and might easily be applied as a future work in the current thesis. 

 

Chapter 3 : Alternative route algorithms and alternative graphs. Chapter 3 introduces us to the 

main subject of this thesis and several initial approaches for finding alternative routes are 

presented. First of all, we describe the alternative route graph that is given as a result from each 

algorithm’s execution and then we describe the algorithms and theirs steps for computing more 

than one routes in a road network. As their name states, k-shortest paths compute the k 

shortest paths as alternative routes and regard sup-optimal paths. The computation of disjoint 

paths is similar, except that the paths must not overlap. Another approach uses several edge 

weights to compute Pareto-optimal paths. Given a set of weights, a path is called Pareto-optimal 

if it is better than any other paths for respectively at least one criterion. All Pareto-optimal paths 

can be computed by a generalized Dijkstra’s algorithm. The penalty method iteratively 

computes shortest paths in the graph while increasing certain edge weights. 

 

Chapter 4 : Plateau method and admissibility criteria. While the methods in chapter 3 are 

widely used in many applications until now, their results can suffer a lot, as they can be very 

long or very common etc. and as a result may not be admissible to the user. To avoid these 

problems, in chapter 4, we introduce the concept of admissible alternative routes. In other 

words, we define the properties that a good alternative must satisfy and we propose ways of 

measuring these properties in real-world maps. Specifically, alternative candidates should be 
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nonoverlapping to a large extend, locally optimal and not significantly larger than the optimal 

route. 

Having defined these properties, in the second part of this chapter, we present plateau method 

or choice routing algorithm for finding alternative routes. The alternatives, found by plateau 

method, “naturally” meet the admissibility criteria to a greater extent (due to the way they are 

computed) than the methods presented in chapter 3. Furthermore, we combine plateau with 

the aforementioned penalty method (hybrid approach) in order to achieve better results. These 

two methods are going to be implemented and, thus, presented thoroughly in the next chapter. 

 

Chapter 5 : Practical implementation and methodology. This chapter analyzes plateau method 

and hybrid method, presented in chapter 4, in a more practical way with references in our 

practical implementations. Specifically, we present  our  implementation strategy for plateau 

method using a block diagram. In this diagram, the stages of the algorithm are presented in the 

order they are meet in our programs. After that, each stage is described in detail. Last but not 

least, we present the basic methodology for the hybrid method, namely plateau method with 

penalization of edges. 

 

Chapter 6 : Experiments and results. In Chapter 6, we conduct several alternative routes 

experiments. At first, we describe our experimental setup including the inputs used throughout 

the experiments (DIMACS10 maps), the experimental environment etc. In the next sections, we 

compare execution times for the different stages of our approaches, we show the mean 

targetFunction values for plateau and the hybrid implementation (combination of plateau and 

penalty) and we draw conclusions regarding the efficiency of the different approaches.  

 

Chapter 7: Conclusion and outlook. Chapter 7 gives a final conclusion and an outlook regarding 

future research on the topic of alternative routes and specifically as an extension of the current 

thesis, taking into account various aspects, such as time dependency, real-time traffic etc. 
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CHAPTER 2 

DEFINITIONS AND RELATED WORK 

 

In section 2.1 of this chapter, we define the basic notion for graphs, while in section 2.2, we 

present some data structures that are used for the graph storage which exhibit significant 

characteristics ([MMPZ12]). Furthermore, we model road networks as graphs and we introduce 

the concept of basic routing. Besides, we analyze basic improvements and speed-up techniques 

of Dijkstra algorithm providing a general theoretical background widely-used in large-scale 

transportation. 

 

 

 

2.1 Graph theory 

 

In this section, we develop the basic notation which is needed throughout this thesis. Since all of 

our algorithms work on graphs, the underlying concepts of graph theory are introduced first.  

 

Graphs . A graph     (   ) is a tuple consisting of a finite set   of nodes and a set of 

      of edges.  We say there is an edge from     to    , if and only if  (   )   . 

Usually          denotes the number of nodes and         denotes the number of edges. 

The graph obtained by flipping all edges is called backward graph   ⃖  (   ⃖ ) where (   )  

 ⃖  (   )   . Furthermore, a graph has a weight function          that assigns a 

positive weight to each edge in  . For an edge (   )   ,  we usually write  (   ) instead of 

 ((   )).  

 

Edge Weights .  The edge weights may indicate travel time, distance, or may be a combination 

of different  parameters. The values of edge weights differentiate between  time-independent 

and time-dependent route planning. Whereas for time-independent route planning it is 

sufficient to have constant weights, this concept is generalized to periodic functions to 

accommodate for different edge weights at different times of day. 

 

Paths . A path   in   is a sequence of nodes  

 

               ⟨       ⟩        with (       )   , for all               
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For          the subpath of   between     and     is denoted        and it is a path 

itself which is fully contained in P.  A path that passes via a node   is denoted by    . 

 

 

 

 

 

Figure 2.1 : A graph G with 5 nodes (              ) and 4 edges 

 

The length of a path P is the sum of its edge weights along the path and is denoted  by 

    

 (     )   ( )   ∑  (       )

   

   

 

 

By    , we denote the number of edges along the path. 

 

The distance between two nodes   ,     is the minimal length of all paths   from   to  .  

 

    (   )        ( )   ⟨     ⟩                          

 

If   is clearly indicated, it is omitted :   (   )   (   ). 

 

Note that it is possible that there might be more than one minimal paths from    to  . A minimal 

path   between two nodes     is called shortest path from   to  . 

 

Let     , then  (     ) with     (   )              is a subgraph of G.  

2.2 Data structures for graph representation 

 

There are multiple data structures for graph representations and their use depends heavily on 

the characteristics of the input graph and the performance requirements of each specific 

application. In this thesis, we provide four representation options for the graph : the adjacency 

list representation, the static forward star representation, the dynamic forward star 

representation and the packed-memory graph representation. We assume the reader is more 

familiar with the first three. The fourth one is a new dynamic graph structure for large-scale 

transportation networks which provides unique features. It was developed by Zaroliagis, Mali, 

Michail, Paraskevopoulos in the University of Patras ([MMPZ12]). 

 

8 

5 
4 
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2.2.1 Adjacency list representation  

 

In graph theory and computer science, an adjacency list representation of a graph is a collection 

of unordered lists, one for each vertex in the graph. Each list describes the set of neighbors of its 

vertex. The adjacency list representation of our graphs associates each vertex in the graph with 

a collection of its neighboring edges and all vertices are stored in a node list. It is implemented 

with linked lists of adjacent nodes. Figure 2.3 shows the adjacency list representation of the 

graph in Figure 2.2. 

 

Figure 2.2 : A directed graph with 5 nodes and 16 edges, as given in paper [MMPZ12] 

 

 

 

 

 

 

 

 

 

 

Figure 2.3 : Adjacency list representation of graph in figure 2.2, as given in [MMPZ12] 

Adjacency list provides dynamicity in a way that it supports insertions and deletions of nodes 

and edges in  ( ) time complexity. However, it provides no guarantee on the actual layout of 

the graph in memory, since it is handled by the system’s memory manager. 
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2.2.2 Forward star representation (static and dynamic)  

 

A second representation we use for our graphs is the forward star which is a very interesting 

variant of the adjacency list and extensively used in several speed-up techniques. The forward 

star representation implements the node list of the adjacency list representation as an array and 

all adjacency lists are appended to a single edge array sorted by their source. The nodes and 

edges can be stored in consecutive, non-overlapping memory addresses which can then be 

scanned with maximum efficiency. We understand that the forward star is a very space-efficient 

data structure that allows fast traversal of the graph. Figure 2.4 depicts the forward star 

representation of figure 2.2. 

Figure 2.4 : The forward star representation of graph in figure 2.2  as given in [MMPZ12] paper. 

The basic arrays have to be extended in order to incorporate necessary information for the 

nodes and the edges. To attach additional data to the nodes and edges, the entries of the node 

and edge vectors do not only contain pointers but structs. The same applies to the adjacency list 

representation. 

The main disadvantage of forward star representation is that, in case of dynamic graphs, in 

order to insert an edge at a certain adjacency segment, all edges after the segment must be 

shifted to the right. This shift needs  ( ) time complexity. For this reason, a dynamic version of 

the forward star representation was developed. The adjacency segments has size equal to a 

power of 2, containing the edges and some empty cells at the end. So, when inserting an edge, if 

there are empty cells in the proper segment, the new edge is inserted. Otherwise, the whole 

segment is moved to the end of the edge array, and its size is doubled. 

 

2.2.3 Packed-memory graph representation  

 

The third structure we used for graph representation is the packed-memory graph (see also 

[MMPZ12]). As we said before, although the adjacency list provides insertions and deletions in 

 ( ), it does not provide any guarantee on the actual layout of the graph in memory. On the 

other hand, the forward star structure occupies consecutive memory addresses dedicated to the 

graph, which facilitates the scanning process of nodes and edges. Packed memory graph is a 

new structure that can combine the positive aspects both of the adjacency list and the forward 

star representation. The new structure is able to efficiently access consecutive nodes and edges, 
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to change and reconfigure its internal layout in order to improve the locality of the elements 

and to efficiently insert or delete nodes and edges (in cases of dynamic graphs). These three 

features reflect the compactness, agility and dynamicity of the data structure which are defined 

as follows : 

 Compactness : The ability of scanning consecutive nodes and edges in an optimal way as 

far as time and memory transfers are concerned. The compactness of the packed-

memory graph representation is comparable to the maximum efficiency of the forward 

star representation. 

 Agility : The ability to reorder nodes and edges in allocated memory in order to increase 

the locality of reference. The various speed-up techniques implementations can give 

their desired node ordering as input to the packed-memory graph structure. 

 Dynamicity : The ability to insert or delete edges and nodes in an optimal way in terms 

of time. The dynamicity of the new structure is comparable to the performance of the 

adjacency list representation when implemented as a linked list. 

The packed-memory graph representation is based on a data structure, called packed-memory 

array. A packed-memory array maintains   ordered elements in an array of size        , 

where       is a constant. Hence, the array contains   ordered elements and (   )    

empty cells, called holes. The goal of a packed-memory array is to support efficiently insertions, 

deletions and scans by keeping the holes in the array uniformly distributed. This is accomplished 

by dividing the array in segments of size  (    )  such that a constant fraction of each segment 

contains holes. When a segment of the array becomes too full or too empty – depending on the 

density bounds imposed – its elements are spread out evenly within a larger interval by keeping 

their relative order. This process is called a rebalance of the (larger) interval (see also 

[MMPZ12]). 

Figure 2.5 : Packed-Memory Array on the ordered set [0-19]. The array is divided in segments 

such that the number of them is a power of 2 and a perfect binary tree is built iteratively on top 

of these segments. This figure is taken from the paper [MMPZ12]. 
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As mentioned before, the packed-memory graph representation is based on the packed-

memory array data structure. The figure below illustrates the packed-memory graph 

representation. 

 
Figure 2.6 : Packed-Memory Graph representation as depicted in [MMPZ12] 

Τhis graph data structure stands as a good compromise between two extremes, the adjacency 

list representation which offers optimal dynamicity and the forward star representation which 

offers optimal compactness and agility. Especially, it is slower than the adjacency list in update 

time, but close to 30% faster in query times and a bit slower than the forward star in query time 

but over a million times faster in update time.  Besides, one of the most important operations 

supported by the graph structure is the internal node reordering. That is to say, the structure 

can internally change the relative position of the nodes and the edges, a really important 

functionality since there are algorithms that have some information beforehand about the 

sequence of accesses of the elements in the graph and this can be exploited in speeding-up their 

performance (i.e. hierarchical speed-up techniques).Therefore, improving the locality of those 

important nodes in memory can give a performance speed-up in the execution. 
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2.2.4 Comparison of graph structures   

 

In this section, the three graph structures are compared on the basis of the three performance 

features, namely compactness, agility and dynamicity. 

 

Table 1 : Comparison of space, running time and memory transfer complexity between the three 

graph data structures.   denotes the cache block and   denotes the maximum node degree. This 

table is taken from the paper [MMPZ12]. 

An adjacency list structure implemented with linked lists is a reasonable candidate for our graph 

representation, given that our graphs are static. It supports optimal insertions of nodes and the 

scanning of the edges is fast enough in practice. However, since there is no guarantee for the 

memory allocation scheme, the nodes and edges are most probably scattered in memory, 

resulting in many cache misses and less efficiency during scan operation, especially for the large-

scale networks. Finally, it offers no support for any (re)-ordering of the nodes and edges 

[MMPZ12]. 

In contrast to the adjacency list, the forward star representation is optimal during the scan 

operations. Due to its layout,   consecutive edges are stored in at most   
 

 
 memory blocks. 

Hence, during a scan operation, the least amount of blocks is transferred into the cache 

memory. Moreover, its elements can be reordered in-line in a way that will favor the memory 

accesses of any algorithm. However, an insertion/deletion of a node or edge must shift all 

subsequent elements in the array in order to make space for the new element [MMPZ12]. 

A packed-memory graph representation is effective in all three features. The elements are 

stored as in the forward star representation, with only one difference: it keeps slightly larger 

arrays complemented with empty elements uniformly distributed within the array. Thus, it 

accomplishes efficient scanning of consecutive elements. Furthermore, it supports fast enough 

insertions and deletions of elements. Finally, it offers the element reordering in order to favor 

the memory accesses of each algorithm [MMPZ12]. 
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The impact of these three representations on time complexity is going to be checked practically 

on multiple executions of the plateau and hybrid algorithm in large-scale road networks like the 

road network of Luxembourg, Belgium, Germany etc., in chapter 6. 

2.3 Shortest path problem and route planning 

 

In this section, we are going to present the shortest path problem in road networks  and to 

introduce the basic concept of route planning in road networks. 

 

2.3.1 Shortest path problem in road networks 

 

A road network can easily be represented as a graph whether undirected, directed or mixed. 

The road junctions become the nodes of the graph and the road segments between nodes 

become the edges of the graph. Each edge is assigned a weight, e.g. the length of the road or an 

estimation of the time needed to travel along the road. Using directed edges it is also possible to 

model one-way streets. Such graphs are special in the sense that some edges are more 

important than others for long distance travel (i.e. highways). In graph theory, the computation 

of the shortest paths between two nodes is a classical problem. Actually, we can distinguish 

between several variants of this problem: 

 

•     point-to-point : compute the shortest-path length from a given source node       to a 

given target node         

•     single-source :  for a given source node       , compute the shortest-path lengths to all 

nodes        

•    many-to-many : for given node sets  ,       , compute the shortest-path length for 

each node pair (   )          

•     all-pairs : a special case of the many-to-many variant with            

 

The most important algorithms for solving this problem are: 

 

 Dijkstra's algorithm : solves the single-source shortest path problem 

 Bellman–Ford algorithm : solves the single-source problem if edge weights may be 

negative 

 A* search algorithm : solves for single pair shortest path using heuristics to try to speed 

up the search 

 Floyd–Warshall algorithm : solves all pairs shortest path problem 

 Johnson's algorithm : solves all pairs shortest path problem, and may be faster than 

Floyd–Warshall on sparse graphs 
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2.3.2 Route planning in road networks 

 

While the above-mentioned algorithms compute optimal shortest paths with optimal theoretic 

time complexity, they are too slow to process real world data sets like large scale road networks, 

even on today’s computers. However, only in recent years, computer hardware has become 

efficient enough to allow the handling of large networks like they occur in route planning. 

Consequently, during the past years, research focused on developing speed-up techniques to 

accelerate the basic shortest paths algorithms by reducing their search space. In this section we 

mention work on the subject of road networks. 

 

Although, the first attempts to speed up Dijkstra’s algorithm were conducted regarding 

timetable information on railway networks in 1999 (see [SWW99]), huge road networks were 

made publicly available in 2005 which led research toward road networks. This culminated in 

the 9th DIMACS Challenge on shortest paths [DGJ09] in 2006.  

 

All modern speed-up techniques belong to one of 3 basic categories : Bi-directional search, goal-

directed search and contraction.  

 

In short, bi-directional search starts two Dijkstra searches, one from the source and one from 

the target. The latter is performed on the reverse graph and is labeled backward search in 

contrast to the forward search from the source. The final shortest path is then combined from 

partial paths obtained by the forward and backward searches. While this approach works well in 

time-independent networks where the edge weights are constant in the graph, adapting bi-

directional routing to time-dependent networks where the edge weights are time-dependent 

functions is not straightforward . 

 

 As far as goal-directed search is concerned, the search is directed towards the target   by 

preferring edges that shorten  the distance to   and by excluding  edges that cannot possibly  

belong to a shortest path to  . There are different existing approaches. One is based on the A* 

algorithm by Nilsson and Raphael [HNR68],  another on the enhanced A* by Goldberg et al.  who 

introduce landmarks to compute feasible potential functions using the triangle inequality [GH05, 

GW05]. Their approach is called ALT and turns out as a very robust technique [BDW07].  The 

second goal-directed approach is using edge-labels to guide the search. Wagner et al. 

introduced in [WW03, WWZ05] a method called geometric containers where each edge contains 

a label that represents some geometric object containing all nodes to which a shortest path 

begins at the respective edge. During the query, edges that do not contain the target node can 

be pruned. This approach, refined by Lauther in [Lau04], is called Arc-Flags. Instead of geometric 

containers, the graph is partitioned into R regions and R edge-labels (arc-flags) are attached to 

every edge to indicate whether the respective edge is part of any shortest path leading into each 

region. 
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Regarding contraction there are a variety of approaches. Highway Hierarchies by Sanders and 

Schultes [SS05, SS06a] exploits the implicitly given hierarchy in road networks regarding 

different road categories. Contraction Hierarchies presented by Geisberger et al. [Gei08, 

GSSD08] is solely based on contracting the graph yielding a very efficient speed-up technique.  

 

Furthermore, reach method reduces the search space of the graph. The reach of a node  ,  ( ), 

is a measure of centrality. In other words, a node with high reach value is more central to the 

graph in such a way that it is usually  close to the middle of a long shortest path, whereas  low-

reach nodes are located rather near the end of shortest paths. If  ( )   (   ) and  ( )  

 (   ) holds,    cannot be on the shortest path from   to  ,  and does not need to be checked 

and settled by the query algorithm, so it can be pruned. 

 

Generally, there are many combinations based on the afore-mentioned speed-up techniques. It 

turns out that the combinations of some techniques are more useful than of others. In 

particular, it has been observed that combining speed-up techniques from different categories is 

most promising whereas a combination of two similar techniques usually does not yield viable 

results since they tend to exploit the same aspects of the graph. For example, a combination of 

the two hierarchical techniques, i.e. Reach and Highway Hierarchies is not very promising.  

 

 

 

 

 

   

    

 

 

 

2.4 Speed-up techniques 

 

In the previous section, we introduced briefly the basic speed-up techniques  to solve the 

shortest path problem in large road networks. In this section, they will be presented to a greater 

extent as a background to the general route planning problem. Note that, although the analysis 

of the speed-up techniques does not belong to the main object of this thesis, the development 

of the speed-up techniques is one of the most significant research fields in large-scale route 

planning and some of them can be easily incorporated as an extension to this thesis (which also 

deals with large-scale networks). 

 

Figure 2.7 : Overview of the techniques and combinations as given in [Sch08]. Goal-directed are 
marked with purple and hierarchical are drawn in yellow. Edges denote existing combinations 
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The development of speed-up techniques started when even the evolved computer hardware 

could not handle large-scale networks, like continental-sized networks, encountered in route 

planning, resulting to high query times. To encounter this problem, research in the past years 

focused on developing speed-up techniques for Dijkstra algorithm. The common goal of these 

techniques is to reduce the search space while still yielding optimal results. In other words, the 

majority of the speed-up techniques preprocess the input data, in order to accelerate the 

answer to single-source single-target shortest paths queries. This means that the solution 

method has two phases (in most times): a preprocessing phase, that computes useful 

information on the input graph and is applied only once, and a query phase, which computes 

the actual shortest paths using the output of the preprocessing phase to accelerate the search. 

For this reason, wherever feasible, the analysis is structured in a preprocessing phase and in a 

query phase. 

 

It turns out that speed-up techniques are based on a few, basic concepts and thus can be 

categorized in bidirectional search, goal-directed search and contraction. 

 

In this section, we present the basic speed-up techniques by introducing their algorithmic 

concepts in the context of uni-modal time-independent routing. 

 

2.4.1 Bidirectional search 

 

The bidirectional approach is probably the most evident idea to speed-up shortest path query 

from one source   to one target  . Ira Pohn was the first to design and implement it, but Andrew 

Goldberg et al. explained the correct termination conditions for the bidirectional version of 

Dijkstra’s Algorithm. 

 

 Bidirectional search executes two Dijkstra simultaneously, one forward from the source and the 

other backwards from the target. The forward search is performed in  , while the other in  ⃖. 

The two Dijkstra computations (forward and backward direction) are interleaved as follows. Two 

priority queues are used to store the distances of the two Dijkstra. In each step, the Dijkstra 

which priority queue has the smallest key is executed. The algorithm terminates if a node 

becomes settled in one direction that has already been settled in the other direction. This node 

is called the meeting node. The shortest path can be derived from the information already 

gathered. The cost of the optimal route is computed as the    {  (   )    (   )}, for all   

visited in both directions(the meeting node does not necessarily lie on the shortest path). 

 

Regarding the illustration of the search space in Figure 2.8, it can be perceived why a 

bidirectional search is usually faster than a normal Dijkstra query. In road networks, where 

search spaces will take a roughly circular shape, we can expect a speedup around two – one disk 

 (   ) has twice the area of two disks with half the radius.  
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               (a) Uni-directional Dijkstra                                              (b) Bidirectional Dijkstra 

 

Figure 2.8 : Comparison of uni-directional with bidirectional search 

The respective search spaces are illustrated by disks around source and target node. 

 

Bidirectional Dijkstra is one of the most known and useful speed-up techniques and it is widely 

combined with many other techniques either based on  goal-directed search or contraction. 

 

2.4.2 Goal-directed search 

 

Goal-directed approaches direct the search towards the target   by preferring edges or nodes 

that shorten the distance to   and by excluding edges or nodes that cannot possibly belong to a 

shortest path to  —such decisions are usually made by relying on preprocessed data. 

 

2.4.2.1 A* search 

 

In computer science, A* is a computer algorithm originated from artificial intelligence and 

widely used in pathfinding and graph traversal. It was first described in 1968 by Peter Hart, Nils 

Nilsson and Bertram Raphael [HNR68]. 

 

The A* algorithm is a modified Dijkstra algorithm that applies additional information to improve 

the performance. A* uses a best-first search and finds a least-cost path from a given initial node 

to one goal node (out of one or more possible goals). Let   (   ) be an arbitrary graph.  As 

A* traverses   , it follows a path of the lowest known heuristic cost, keeping a sorted priority 

queue of alternate path segments along the way. 
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Specifically, let        be an arbitrary potential function on the graph nodes to estimate 

distances between them. Then, a reduced weight function   (   ) of a path  ⟨     ⟩can be 

defined as the sum of two parts 

 

 the path-cost function  ( )    (   ), which is the cost from the starting node   to the 

current node   

 an admissible "heuristic estimate",  ( )   ( ), of the distance from the start node  to 

the goal 

 

Consequently,    (   )   (   )   ( )   ( ).  

 

Note that the length of an arbitrary     path is only changed by a constant value  ( )   ( ) 

when   ( ) is applied. This potential function  ( ) is called feasible if the reduced edge weights 

  ( ) are non-negative for all edges      . The potential  ( ) is a lower bound on the 

distance  (   ), if  ( )    holds and   ( ) is feasible . 

 

The A* search applies a feasible potential function  ( ) to speed-up     queries. The basic 

structure of Dijkstra's algorithm is retained but priority keys are changed to     ( )   

  (   )     ( ). Thus, in each step the node   is settled with the shortest estimated path from 

the source to the target via  . Figuratively speaking, nodes that potentially lead closer to the 

target are preferred, whereas the other nodes are ignored. 

 

This approach is equivalent to performing a classical Dijkstra on a graph with weights derived 

from the weight function   (   ). Since the length of arbitrary     paths is only changed by 

a constant value  ( )   ( ), the priority keys become    ( )    (   )    ( )   ( ). This 

yields the same sorting as in priority queue above, since  ( ) is constant. Therefore, running a 

shortest-path search on the normal graph is equivalent to running one on the graph with 

reduced edge weights. 

 

If a graph layout is given, the Euclidian distance to the target node is a suitable choice for a 

feasible potential function, as illustrated in the figure 2.9. This works only as long as the metric 

in the graph is also geographical distance since then geographical distance is guaranteed to be a 

lower bound of any path from   to  .          
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If we combine bidirectional Dijkstra with A*, we should pay attention to several particularities. 

Let    be the potential in the forward direction  and    the potential in the backward direction.  

 

 

The two potentials are called consistent if the reduced weight function is the same for both. This 

is true if               holds. If they are not consistent, the search cannot be stopped when 

the two search spaces meet since both directions use different weight functions and as a result 

new approaches should be implemented for the bidirectional A* search. 

 

2.4.2.2 ALT algorithm 

 

The ALT algorithm, which has been introduced by Goldberg and Harrelson in 2004, is a variant of 

A* and stands for A* search, Landmarks and Triangle inequality. 

 

The ALT algorithm is an A* search with a far simpler potential function. Its main idea is to use 

landmarks and triangle inequality to produce feasible lower bounds. Furthermore, it is not 

dependent on the availability of additional layout information. 

 

Preprocessing . In the preprocessing phase, a small set of nodes   is chosen and labeled as 

landmarks. Moreover, an exact distance table with the distances to/from every landmark    , 

for all nodes  , is computed. The number of landmarks is usually set between 16 and 64. 

Because distances on   form a metric, the following instances of the triangle inequality hold : 

 

 (   )   (   )   (   )      and 

 

 (   )   (   )   (   ) 
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Figure 2.9 : Graph with a feasible potential function, inspired by [Sch08]. Potential values are 

written below the  nodes and reduced weights are given in brackets next to the normal edge 

weights. The shortest path from s to t is shown in red and the associated search space is drawn 

in bold. 
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Figure 2.10 : The two pictures show the application of the triangle inequality 

 

Query . During the query, a lower bound is computed according to  (   )   (   )   (   )  

(implying distance to a landmark   ) or  (   )   (   )   (   ) (implying distance from a 

landmark  ). Specifically,  

  ( )        (   )   (   )  (   )   (   )   (   ) 

The best lower bound   can be obtained by using the landmark yielding the greatest lower 

bound according to  

 

 ( )             (   )   (   )  (   )   (   )  

 

With  (   ) and  (   ) precomputed for each landmark       and every node     , the 

reduced cost graph    is then computed implicitly by altering the key of   in the priority queue 

to  (   )   ( ). 

 

Consequently, the only difference to Dijkstra algorithm is that instead of using  (   ) as keys in 

the priority queue, we use the cost reduced distance function  (   )   ( ). However, 

previous experiments revealed that computing the lower bound with respect to all landmarks 

produces too much overhead during the query. For that reason, we apply triangle inequality 

only on a subset           . We usually restrict the cardinality of         to 2. The landmarks 

that are set active depend on the query and are determined in the beginning using    ( ). 

Furthermore, every k iterations of the algorithm we update the set of active landmarks by 

rechecking which landmarks yield the best lower bound for the currently settled nodes. 

 

2.4.2.3 Arc flags 

 

Besides the afore-mentioned goal-directed algorithms, the Arc-Flag approach (or edge labels) is 
another speed-up technique for Dijkstra algorithm. Although it belongs to goad-directed 
approaches, the underlying idea is different. It was first introduced by Lauther [Lau97, Lau04] 
and has ever since been studied and revised several times.  
 

  

 (   ) 
 (   ) 

    

 (   )  (   ) 

  
 (   )   

 (   )   
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The basic intuition of the algorithm will be given with an example. If a driver is in Munich and 

wants to go to Berlin, he will follow mostly roads, their direction is to the north. Based on this 

idea, Arc-Flags try to find paths that can be pruned  during the search, thus, yielding a smaller 

search space. This approach aims to put appropriate flags on the edges so as to use only the 

relevant edges during an s-t query, these leading to the direction of the goal/target. 

 

Preprocessing .  Arc-Flags require two-phase preprocessing.  

 

First, the graph  (   ) is partitioned in a fixed number of cells or regions     (          ). 

An example of a graph partitioned into four regions is shown in Figure 2.11. In a s-t query, we 

shall refer to the region or the cell that the target belongs to as target region or target cell  . 

Thus, every node belongs to only one region. 

 

 
Figure 2.11 : A simple example of a partition in a graph G taken from [Bau11] . G is divided into 

four regions    ⟨        ⟩     ⟨           ⟩    ⟨     ⟩      ⟨           ⟩ 

 

Given the graph   and the partition R, we assign a distinct number in         to each region 

and define a mapping              such that  ( ) is the number of the region that   

belongs. Storing this information clearly requires space linear in n.  

 

Regions should be divided properly so as to be nonoverlapping and compact. So, as far as the 

type of partition is concerned, experiments show (see [HKMS06, MSS+06]) that it has a major 

impact on query performance of the Arc-Flags query algorithm. While in fact any partition 

works, a ‘good’ partition should have the following properties. First, the cells of the partition 

should be connected. This helps the goal-direction of Arc-Flags. Moreover, the number of 

boundary nodes (i.e., nodes that are incident to edges connecting different cells) should be low. 

The main reason is, as we see soon, that a high number of boundary nodes imply a high 
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preprocessing effort. It should be noted that the geometric partitioning methods in [HKMS06, 

MSS+06] fulfill the first claim, while the second is not considered. These do not require 

geographical information attached to the nodes and compute the partition solely based on the 

structure of the graph. We omit further technical details and only like to point out that from the 

tested partitioning methods, METIS [Kar07], PARTY [MS04] and SCOTCH [Pel07], the latter yields 

the most promising results for Arc-Flags. 

 

The second phase of the preprocessing is the computation of the edges flags. Thus, we enrich 

each edge   of the graph by a vector   ( ) of   binary flags construed as boolean values. Each of 

the   boolean values corresponds to the relevant region and indicates if that edge is part of a 

shortest path to any node of that region. For example, if   (     )  is equal to (       ), edge  

(     ) belongs to every shortest path with target node lying on region 1, but it does not 

belong to any shortest path to regions 2, 3 and 4. Thus the additional memory consumption 

necessary for these arc-flags amounts to     bits and therefore is linear to m. We interpret 

that  (   )( ( ))      means that the edge (   ) might be important in any query with the 

target node t (belonging in every region    ). Let       denote the set of all shortest s-t paths in a 

given graph. Every flag is then supposed to fulfill the following property to retain correctness of 

the query algorithm. 

 

                            (   )        ( ( ))    

 

By satisfying this expression we ensure that for any pair of source and target nodes, there exists 

at least one shortest path for which the flags corresponding to the target region are set to 1 on 

all of its edges. 

 

The simplest and most naive way to compute arc-flags with respect to region    is the following. 

First, we initialize the      flag on all edges except those edges with their tail inside    with false. 

Now we consecutively grow a full backward shortest path tree from every node       , setting 

the     flag to true for every edge that is contained in the tree. Arc-flags once set to true are 

never changed back to false. To complete this approach for every region, we end up computing 

    full backward shortest path trees in   ⃖ which is too slow for large graphs (see also [Lau04]).  

 

A faster method only uses boundary nodes. The key observation is that a shortest path with 

target region    has to enter the region at some point. Hence, it is sufficient to compute 

backward shortest path trees from the boundary nodes (instead of the nodes in the region). This 

decreases the preprocessing time significantly [Lau04]. However, preprocessing time is still 

rather high (several hours,  even up to days on large graphs), which is the major drawback of the 

Arc-Flags approach. Thus in [HKMS06] another approach is presented using centralized shortest 

path trees which decreases preprocessing time significantly. 
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Figure 2.12 : Arc-flags after preprocessing, as given in [Bau11] 

 

Query . A unidirectional Arc-Flags query is a modified Dijkstra operating on the input graph. For 

a random s-t query, it first determines the target cell T, and then relaxes only those edges with 

set flag for cell T. Note that compared to plain Dijkstra, an Arc-Flags query performs only one 

additional check.  

 

2.4.3 Contraction 

 

The underlying idea of contraction is based on the hierarchy of roads. In other words, in a s-t 

query, when the driver is close to the source and the target, he should take into account mainly 

residential roads, when he is a bit further, mainly avenues and when he is even further away, 

mainly motorways. 

So, contraction is a method that leads to a reduction concerning the size of the graph, either, 

regarding nodes (node reduction) or edges (edge reduction). A graph     (   ), as generally 

used in this field of research, contains a lot of nodes that have very few connections to the other 

nodes. The goal of the contraction is to identify these nodes and to remove them, but retaining 

shortest-path distances between the remaining nodes by inserting additional shortcuts.  

 

2.4.3.1 Highway hierarchies 

 

Highway Hierarchies introduced in [SS05] and refined in [SS06a] is one of the first speed-up 

techniques using contraction based methods. 
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Preprocessing . Highway Hierarchies group nodes and edges in a hierarchy of levels by 

alternating between two procedures: Contraction (i.e., node reduction) removes low degree 

nodes by bypassing them with newly introduced shortcut edges (see also [SS05]). In particular, 

all nodes of degree one and two are removed by this process. Edge reduction removes non-

highway edges, i.e., edges that only appear on shortest paths close to source or target. More 

specifically, every node   has a neighborhood radius  ( ), we are free to choose. An edge (   ) 

is a highway edge if it belongs to some shortest path   from a node   to a node   such that 

(   ) is neither fully contained in the neighborhood of   nor in the neighborhood of  , i.e., 

 (   )     ( ) and  (   )     ( ). In all our experiments, neighborhood radii are chosen such 

that each neighborhood contains a certain number   of nodes.   is a tuning parameter that can 

be used to control the rate at which the network shrinks.  

 

Query . The query algorithm is very similar to bidirectional Dijkstra search with the difference 

that certain edges need not be expanded when the search is sufficiently far from source or 

target. 

 

HHs were the first speedup technique that could handle the largest available road networks 

giving query times measured in milliseconds. There are two main reasons for this success: under 

the above contraction routines, the road network shrinks in a geometric fashion from level to 

level and remains sparse and near planar, i.e., levels of the HH are in some sense self-similar. 

The other key property is that preprocessing can be done using limited local searches starting 

from each node. Preprocessing is also the most nontrivial aspect of HHs. In particular, long 

edges (e.g. long-distance ferry connections) make simple minded approaches far too slow. 

Instead we use fast heuristics that compute a superset of the set of highway edges. 

 

Routing with HHs is similar to the heuristics used in commercial systems. The crucial difference 

is that HHs are guaranteed to find the optimal path. This qualitative improvement actually 

makes HHs much faster than the heuristics. The latter have to make a precarious compromise 

between quality and size of the search space that relies on manual classification of the edges 

into levels of the hierarchy. In contrast, after setting a few quite robust tuning parameters, HH 

preprocessing automatically computes a hierarchy aggressively tuned for high performance. 

 

2.4.3.2 Contraction hierarchies 

 

Contraction Hierarchies [Gei08, GSSD08] is a further development based on Highway 

Hierarchies, yielding a high-performance speed-up technique solely based on the concept of 

contraction. 

 

Preprocessing .  

 

Node Reduction  .  The node-reduction when applied once, divides the graph into two parts: the 
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core and the component. In the beginning all nodes are considered to belong to the core. 

Iteratively, nodes are bypassed according to a certain order, they get extracted from the core 

and eventually belong to the component of the graph, until no further nodes are bypassable 

(the criterion to which nodes are selected for bypassing is not discussed at this point). A node   

is bypassed by removing it from the graph along with all of its ingoing edges  ( ) and outgoing 

edges  ( ). For each pair of removed edges (   )    ( ) and (   )     ( ) with     , a 

shortcut (   ) is inserted into the graph. Its weight is set to the sum of the weights of the 

removed edges:  (   )     (   )     (   )  If there already was an edge   in the graph, 

connecting   and  , the shortcut is not inserted. But if the weight of the shortcut would have 

been smaller than  ( ), it is used instead. Finally, the node   and all its incident edges are 

deleted from the graph. Note that the node-reduction routine preserves correct distances 

between two arbitrary core nodes. The obtained core graph is denoted by       

(           ), while the component is defined by       (           ) where         

       and              . 

 

 

 

                                                              

 

 

 

        (a) before              (b) after   (c)edge-reduction (   ) 

 

Figure 2.13 : Figures (a) and (b) illustrate the bypass operation during node reduction, inspired by 

[Paj09] thesis. For each pair of incoming and outgoing edges at  , a shortcut is inserted. If the 

shortcut   is already contained in the graph (blue edge), the weight on the shortcut is set to the 

minimum weight of e. Figure (c) illustrates edge-reduction. The bold path from   to   is shorter 

than the edge   (   )(dashed line), thus, e can be deleted. 

 

Edge Reduction . 

Note that the node-reduction routine potentially adds shortcuts not needed for keeping the 

distances in the core correct. Hence, we perform an edge-reduction directly after node-

reduction, similar to [SWW99]. We grow a shortest path tree from each node   of the core. We 

stop the growth as soon as all neighbors   of   have been settled. Then we check for all 

neighbors   whether   is the predecessor of    in the grown partial shortest path tree. If   is not 

the predecessor, we can remove (   ) from the graph because the shortest path from   to 

  does not include (   ). In order to remove as many edges as possible we favor paths with 

more hops over those with few hops. In order to limit the running time of this procedure, we 

restrict the number of priority-queue removals to 10.000. Hence, we may leave some unneeded 

edges in the graph. 
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Query . While the query algorithms of the previous techniques turned out easy, the contraction 

routine requires a more complicated query algorithm (see also [Paj09]). As input we are given a 

graph     (   ) with designated core-nodes. For an     query the algorithm works in two 

phases. The first phase operates on the component part of the graph, while the second operates 

only on the core. Phase one instantiates a bi-directional search on the component of  . This is 

achieved by not relaxing edges that are contained in the core (i.e., edges     (   ) for which 

both   and   have the core flags set). Note that by these means we in fact settle core nodes, we 

just abort the search as soon as they are first hit (if either   or   are core nodes, the forward 

resp. backward search terminates immediately). The set   of core nodes that are hit by the 

forward search is called set of core-entry-nodes, while the set   of core nodes hit by the 

backward search is called the set of core-exit-nodes. Phase one terminates if one of the 

following conditions holds.  

 

 Both, the forward and backward priority queues are empty. 

 There has been a    -path   found for which it holds that 

 

  ( )   (        
   )   (     

     ) 

 

where        
       denotes the core-entry-node with minimal distance from s in G, 

while      
         denotes the core-exit-node with minimal distance from t in   ⃖. 

 

If phase one is aborted due to the second condition, we can stop the query and output the 

computed path P as shortest s-t-path. In this case, the shortest path solely uses nodes of the 

component. So for the rest of this paragraph we assume that no path P in the component has 

been found by phase one. In this case, phase two of the algorithm is instantiated with a many-

to-many     query only relaxing edges contained in the core. However, the forward (and 

backward) queues are re-filled such that the initial keys are set to the distances (from   

respectively  ) computed in phase one. The algorithm used in phase two is not specified. Thus, 

contraction yields a modular design that allows combination with an arbitrary speed-up 

technique applied on the core. The final    -path is then combined by determining the 

minimal       path        for every node       where the length is computed by 

 

 (      )     (   )     (   ) 
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                    (a) Phase I      (b) Phase II 

 

Figure 2.14 : Illustration of the core-based routing algorithm as given in [Paj09]. Phase I conducts 

a bidirectional Dijkstra until all core-entry resp. core-exit nodes have been reached.  In phase II, 

an s-t query  is performed on the core graph. The shortest path is then combined by taking from 

all s-T-t paths the one with the minimum length. 

 

2.4.3.3 Reach 

 

The notion of reach in the context of graphs was first introduced by Gutman in [Gut04]. It can be 

applied either to nodes or to edges, with the latter being more effective but also needing more 

space. Here, the Reach algorithm is described using node-reaches, but most of the explanation 

can be easily adapted for edge-reaches. 

 

Definition 1 . The reach of a node  , denoted by  ( ), is defined as the maximum, over all 

shortest  –  paths containing  , of      (   )  (   ) . 

 

 

 

 

                                             (   )                 

                        

        (    ) 

               

 

             (   )  

     (    ) 

  

              

                                                                                                      Figure 2.15 : Illustration of reach 

 

 

So,    ( )        
      (   )  (   ) ,       
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Therefore, the reach value is a measure for the centrality of the node. In other words, a node 

with a high reach value is more central to the graph in such a way that it is usually close to the 

middle of a long shortest path, whereas low-reach nodes are located rather near the end of 

shortest paths. On a road network, this differentiation corresponds to important highway roads 

and non-relevant local roads.  

 

Preprocessing . The reach values for each node are computed in a preprocessing step and can 

be used during the query to prune the search space. If  ( )     (   ) and  ( )     (   ) 

holds,   cannot be on a shortest path from s to t and does not need to be touched or settled by 

the query algorithm. Note that upper bounds on reaches  ( ) and lower bounds on distances 

 (   ) suffice for the condition to hold.  

 

Query . The query algorithm implements Dijkstra’s algorithm with pruning based on reaches. 

Whereas reach values are precomputed and available during the query, and distances from the 

source to a node   are automatically given by the query, the distance from   to the target is 

more difficult to be obtained. Gutman [Gut04] suggested using Euclidean distances to  compute 

lower bounds as is done by the A* search. A graph layout is required to compute the Euclidean 

distances and if the weight function is not based on a distance metric, this approach usually 

does not produce good lower bounds. Goldberg et al. found a more promising way to obtain 

lower bounds implicitly by using a bidirectional query together with reach-based pruning (see 

also [Fuc10]).  

2.4.4 Summary 

 

In this section 2.4, we presented speed-up techniques for Dijkstra’s algorithm which are an 

integral ingredient in large-scale route planning so as to minimize the query times. These 

techniques can also apply to the alternative route problem either separately or combined.  

In general, each technique (or speed-up category) has its advantages and its disadvantages 

which can be taken into account depending on the application, the specifications for memory 

consumption and execution times and generally the problem under consideration [Del09]. In 

particular, ALT is easily adapted to dynamic scenarios, is robust to the input and its 

preprocessing algorithm is easy enough. However, it yields high memory consumption. The 

advantage of Arc-Flags is the exceptional query performance. Preprocessing phase is based on 

Dijkstra search, while the query algorithm performs only one additional check compared to plain 

Dijkstra. However, the time consuming preprocessing phase (needs more than 17 hours to 

preprocess a continental-sized road network) is a crucial drawback. Hierarchical speed-up 

techniques are quite successful due to the iterative contraction of the input. It turns out that, at 

least in road networks, it is often sufficient to perform extensive preprocessing only on a small 

subgraph of the input, the core. Thus, combining techniques belonging to different categories, 

we can benefit from the advantages of each one, achieving great results.  
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CHAPTER 3 

ALTERNATIVE ROUTE ALGORITHMS AND ALTERNATIVE GRAPHS 

 

As we mentioned in the beginning, today’s requirements for routing services, be it in-car or as a 

web-service, ask for more than just computing the shortest path. Thus, it is desirable not only to 

compute a single path to a user, but instead a set of paths. This chapter introduces us to the 

main subject of our study, that of finding alternative routes in graphs. Given an initial graph   

and a pair of source and target nodes, the aim is to compute a subgraph of   resulting from the 

union of the alternative routes found from   to  . So, initially, we define this resulting subgraph, 

called Alternative Graph (  ) and then we continue by discussing basic methods used for 

finding alternative routes and as a result creating AGs. K-shortest paths, disjoint paths, pareto-

optimal paths, penalty method are some approaches in this direction. The chapter continues by 

stating where these algorithms are used and which are their main drawbacks that led the study 

in defining certain criteria for the alternative routes and developing new approaches, presented 

in chapter 4. 

 

 

 

 

3.1 Alternative graph (AG) 

 

No matter which approach is used for the computation of the alternative routes, the final goal is 

the creation of the alternative route subgraph, denoted by   , which consists of the paths 

computed by the approach. 

The initial graph is the representation of a network and the desirable output is a subgraph 

resulting from the union of several alternative paths from source to target. In general, these 

alternatives can share nodes and edges and subpaths of them can be combined to new 

alternative routes. So, more formally, let  (   ) be the input graph with edge weight function 

      . For a pair of source and target nodes,  ,  , an alternative route graph or more 

simply, an alternative graph,      (     ) is a graph consisting of paths starting from   and 

ending to   that represent alternative roads in the network.       such that for every edge 

     , there exists a simple     path in    containing   and none of the nodes is isolated. 

3.2 K-shortest paths 

 

K-shortest paths is a widely used approach to find alternative paths. As the name states, the k- 

shortest-paths problem, for a given   and a given source-destination pair in a graph is to list   
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paths in the graph with minimum total length. There are two types of k-shortest-paths network 

problems. The first is to find k paths from the origin to the sink that have the shortest lengths, in 

which loops are allowed. Hoffman and Pavley ([HP59]), Bellman and Kalaba ([BK60]), Sakarovitch 

([Sak66]) proposed different algorithms for solving this type of problem, but Eppstein’s  

algorithm([Epp94]) achieves the best running time complexity. The second type of problem is to 

find k paths from the origin to the destination that have the shortest lengths, in which no loops 

are allowed. The available algorithms for solving this type of problem are proposed by Bock, 

Kantner and Haynes ([BKH57]), Pollack ([Pol61]), Clarke, Krikonian and Rausan ([CKR63]), 

Sakarovitch ([Sak66]) and others. However, the best running time for this case is attributed to 

Yen([Yen71]). 

 

3.2.1 K-shortest paths with loops (by Eppstein)   

 

Eppstein  solved efficiently the problem if k-shortest path problem in 1994. Paths are allowed to 

have loops. 

 

Preliminaries . Let  (   ) be a graph with          the number of vertices and         the 

number of edges. Self-loops and multiple edges in the graph are allowed, so   maybe larger 

than ( 
 
). Furthermore, for the purposes of the algorithm, a heap is a binary tree in which 

vertices have weights, satisfying the restriction that the weight of any vertex is less than or 

equal to the minimum weight of its children. More generally, a D-heap is a degree-D tree with 

the same property. Thus the usual heaps are 2 –heaps.  

 

The algorithm described below, does not output each path it finds explicitly as a sequence of 

edges, but implicitly. The representation is similar in spirit to those used for the k minimum 

weight spanning trees problem:  for that problem, each successive tree differs from a previously 

listed tree by a swap, the insertion of one edge and removal of another. The implicit 

representation consists of a pointer to the previous tree, and a description of the swap. For the 

shortest path problem, each successive path will turn out to differ from a previously listed path 

by the inclusion of a single edge not part of a shortest path tree, and appropriate adjustments in 

the portion of the path that involves shortest path tree edges. Our implicit representation 

consists of a pointer to the previous path, and a description of the newly added edge. 

 

Eppstein’s algorithm goal  is to create appropriate data structures (in particular a path graph 

 ( ) and a heap  ( ) ) from which we can reconstruct k-shortest paths from   to  . Thus, it is 

necessary to explain some basic concepts, to see how a path is represented by a heap, to define 

the path graph  ( ) and the path heap  ( ) and finally find the k shortest     paths in  . 

 

Steps of the algorithm . 

At first, the algorithm constructs the destination tree  . In other words, it finds the shortest 

path from each vertex to the destination node, running a Dijkstra on the backward graph   ⃖. 
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Basic Concepts . Given an edge   in  ,   ( )   ( )   (    ( )  )   (    ( )  ) is defined. 

Intuitively,  ( ) measures how much distance is lost by diverging from the shortest path tree or 

alternatively by being «sidetracked» along edge   instead of taking a shortest path to   . For any  

    ,   ( )   . For any       , ( )    . 

 

For any path   in  , some edges of   may belong to  , and some others may belong to     . 

Any path   from   to   is uniquely determined solely by the subsequence           ( ) of its 

edges in       (sidetracks are edges that diverge from the shortest path tree). For a given pair 

of edges in           ( ), there is a uniquely determined way of inserting edges from   so 

that the head of the first edge is connected to the tail of the second edge. A sequence of edges 

in      may not correspond to any     path, if it includes a pair of edges that cannot be 

connected by a path in  . If               ( ), we define     ( ) to be the path  . The 

implicit representation will involve these sequences of edges in    . For any nonempty 

sequence   of edges in     , let       ( ) be the sequence formed by the removal of the last 

edge in  . If               ( ), then       ( ) will define a path         ( )   

     (      ( )). We next show how to recover  ( ) from information in           ( ).  

 

For any path p from   to   ([Epp94]), 

 

 

 ( )   (   )  ∑  ( )

            ( )

  (   )  ∑  ( )

   

 

 

 

Representation of Paths by Heap .  The representation of     paths discussed in the previous 

section gives a natural tree of paths. Every path   is represented by a path in the tree in which 

the parent is         ( ) and the child is          ( ). The degree of any node in this path 

tree is at most  , since there can be at most one child, corresponding to each possible value of 

        ( ). The possible values of         ( ) for paths   that are children of   are those 

edges in     that their tails rely on the path starting from node     (        ( )) and 

ending to destination node  , along the shortest path tree    Note that if   contains cycles, the 

path tree is infinite. The path tree is heap-ordered. However, since its degree is not constant, we 

cannot find the k smallest weight vertices (as it is usually done in any heap, in time  ( )). 

Instead, we form a heap by replacing each vertex   of the path   with an equivalent bounded-

degree subtree (heap of edges at vertices). 

 

Heaps of Edges at Vertices .  For each vertex  , we form a heap   ( ) containing all edges with 

tails on the path form   to  , ordered by  ( ). This heap    is used to modify the path tree that 

was described before. Specifically, every node   of the path tree is replaced by a copy of 

  (    (        ( )). The procedure is described in detail below. 
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   ( ) contains all edges leaving a vertex   in a graph   which are not part of a shortest path in 

 . They are heap-ordered by  ( ) that represents the distance lost when using this edge   

instead of the one on a shortest path (shortest paths have been found at the computation of 

tree  ) . Now, we build a 2-min-heap     ( ) by heapifying the set of edges    ( ) according 

to their  ( ) for any node     . 

 

Then, we build for each vertex  , a balanced heap   ( ), containing only the roots        ( ) 

of the heaps     ( ), for each vertex   on the path from   to  .   ( ) is formed by inserting 

       ( ) into   (      ( )). Since insertion into a balanced heap can be performed with 

 (     ) changes of pointers on a path from the root of the heap, we can store   ( ) without 

changing   (      ( )), by using an additional  (     ) words of memory to store only the 

nodes on that path. 

 

Now, we can build   ( ), by making each node        ( ) in   ( ) point to an additional 

subtree, namely to the rest of heap     ( )    ( ) can be constructed at the same time as  

  ( ).   ( ) is thus a 3-heap as each node includes at most either two edges from   ( ) and 

one edge from     ( ), or no edges from   ( ) and two edges from     ( ).  

 

Having computed   ( ), we can construct a DAG called  ( ) containing  (        ) 

vertices and a mapping from vertices      to  ( )   ( ). Each vertice in  ( ) corresponds 

to an edge in     and has out-degree at most 3. Furthermore, The vertices reachable in  ( ) 

from  ( ) form a 3-heap   ( ) in which the vertices of the heap correspond to edges of     

with tails on the path in   from   to  , in heap order by the values of  ( ). The graph  ( ) 

provides a structure  ( ) representing the paths differing from the original shortest path by the 

addition of a single edge in    . 

 

The Path Graph . Our goal is to produce a graph which can represent all     paths, not just 

those paths with a single edge in    . For that reason, path graph  ( ) is defined and 

consists of the vertices of  ( ) with one additional vertex, the root     ( ) that is connected 

to  ( ) by an edge with  ( ( )). The vertices of  ( ) are the same in  ( ) but they are not 

weighted. The edges are given lengths. Then for each directed edge (   )   ( ) the 

corresponding edges in  ( ) are created and weighted by  ( )   ( ). They are called Heap 

Edges. Then for each vertex    ( )  which represents an edge not in a shortest path 

connecting a pair of vertices   and  , "cross edges" are created from   to  ( ) in  ( ) having 

a length  ( ( )). Every vertex in  ( ) only has an outgoing degree of 4 max.  ( )   paths 

starting from   are supposed to be a one-to-one length correspondence between     paths in 

G. 

In the end a new heap ordered         ( ) is build. Each vertex corresponds to a path in 

 ( ) rooted at  . The parent of any vertex has one fewer edge. The weight of a vertex is the 

length of the corresponding path. 
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Finding k-shortest paths . It is known that we can find the   smallest weight vertices in any heap 

in time  ( ) and that given the heap, there is a data structure that will output the vertices in 

order by weight, taking time  (    ) to output the     vertex. So, having constructed the  ( ), 

we can find the k shortest s-t paths in   in time  ( ). The running time of Eppstein’s algorithm 

is  (          ). 

 

3.2.2 Loopless k-shortest paths (by Yen)  

 

Yen raised an algorithm to solve the finding of k shortest paths without loops which is the basis 

of many other algorithms that are  widely used for this problem. 

 

Preliminaries .  

Let  (   ) be a graph where : 

                  : the nodes of the graph with    the origin and    the sink 

   ⟨          ⟩          : the path from    to   , passing through node    

  (     )
 
 
      : the distance of the direct arc from          – if this arc exists, d is a 

finite number, otherwise, d is considered equal to infinity 

     ⟨     
    

      
    ⟩            : the     shortest path from    to   , 

where   
    

      
  are respectively the               node of th     shortest path 

   
            : set of “deviations from path      at node    - a deviation from      

at node    is the shortest of the paths that coincide with      from node    to the     

node on the path and then deviate to a node that is different from any of the (     )   

nodes of those               , that have the same paths from    to the    node 

as does     ; and finally reaches    by a shortest subpath without passing any node 

that is already included in the first part of the path. Note that   
  is loopless and 

contains the same node no more than once 

   
  : root of   

  is the subpath of   
  that coincides with     , i.e.,      

       
  in 

  
  

   
  : spur of   

  is the last part of   
  that has only one node conciding with     , i.e., 

  
       in   

  

 

Steps of the algorithm .  

The Yen’s algorithm that finds the K-shortest-path is as follows : 

 

Iteration 1 . Determine    by an efficient shortest-path algorithm (see [Yen70] for more 

details). Note that Yen's algorithm is an algorithm which finds the lengths of all shortest 

paths from a fixed node to all other nodes in an        nonnegative-distance network 

([Yen70]).  
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Iteration k (           ) . Determine    (in order to find   , the shortest paths 

               must have been previously determined) as follows : 

 

For each of the            nodes of the      shortest path, do the following 

 

a. Check if the subpath consisting of the first   nodes of      in sequence coincide  

with the subpath consisting of the first   nodes of    in sequence for j = 1, 2, ... ,  

k – 1. If so, set  (     ) where     is the (     )   node of    otherwise, make no 

changes. Then go to Step (b). 

Note that distances  (     ) are set to infinity for computations in iteration   only. 

They should be replaced by their original values before iteration       starts. 

b. Apply a shortest-path algorithm to find the shortest path from    to    allowing it 

to pass through those nodes that are not yet included in the path. Note that the 

subpath from    to    is defined as root of   
 ,   

 , and the subpath from    to     is 

defined as spur of   
 ,   

 . 

c. Find   
  by joining   

  and   
 . Then add   

  to List B. Note that it is necessary to 

store only the           shortest paths   
  in List B. 

 

Find from List B the path(s) that have the minimum length. If the path(s) found plus the path(s) 

already in List A exceed K, the problem of k-shortest paths is solved. Otherwise, this path is 

denoted by    and move it from List B to List A - leaving alone the rest of the paths in List B. 

Then algorithm continues on iteration k + 1. 

 

The above algorithm is developed from the fact that    is a deviation from              

   . More precisely,    must coincide with                for the first     nodes. 

Then, it deviates to a different node  and finally arrives at the sink without passing each node 

more than once. Therefore, to obtain   , it is only necessary to look for all shortest deviations 

   and then choose the one with the shortest length. 

 

To sum up, in each iteration  ,  step (a) of the approach sets  (     )     to force      to 

deviate at each node on the path without allowing  the deviations to take any path  that its 

length  is shorter than     . This is followed by steps (b) and (c) that find the shortest deviations  

of     . Finally , the    is selected  from all possible candidates  in List B. 

 

3.2.3 Discussion 

 

Although, k-shortest-paths is a widely used method, the routes computed are very similar to 

each other and are not even considered as distinct to humans. Computing all shortest paths up 

to a number   produces many paths that are almost equal, sub-optimal and as result, only after 

a large number of   (1000 first shortest paths) the results tend to be satisfactory for the drivers. 

Consider, for example, the following situation :  there are two long different highways from   to 
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 , where the travel time between them differs only for 5 minutes. To reach the highways, we 

need to drive through the city. For the number of different paths through the city to the faster 

highway, we have a combinatorial explosion. The number of different paths is exponential in the 

number of nodes and edges in the city, as we can independently combine short detours around 

a block, in the city. That means, it is not feasible to compute all shortest paths until we discover 

the alternative path on the slightly longer highway. Consequently, this method is quite 

impractical for computing alternatives. 

3.3 Disjoint paths 

 

The problem of finding link/node-disjoint paths between a pair of nodes in a network has 

received much attention in the past due to its theoretical as well as practical significance to 

many applications. Paths between a given pair of source and destination nodes in a network are 

called link disjoint if they have no common (i.e. overlapping) links, and node disjoint if, besides 

the source and destination nodes, they have no common nodes.  

 

In this section, we focus on computing link-disjoint paths. In general, a link-disjoint paths 

algorithm can be extended to a node-disjoint algorithm with the concept of node splitting, i. e. 

replacing one node with two nodes that are linked together by a link with zero weights. 

 

3.3.1 Disjoint paths algorithms 

 

Link-disjoint path pair (LPP) problem . Given a  (   ), for a source-destination pair (   ),  find 

a set of two paths    and   , such that   ⋂   and the total length  (  )   (  ) is minimized. 

 

An intuitive method to determine two shortest link-disjoint paths between a pair of source and 

destination nodes consists of two steps. The first step retrieves the shortest path between a 

given pair of nodes in a graph. The second step is to remove all the links of that path from the 

graph, and to find the shortest path in the pruned graph. This method is referred as the remove-

find (RF) method. Although the RF method is direct and simple, it has at least two disadvantages 

due to the removal of links belonging to the first shortest path. Provided that two link-disjoint 

paths exist, there is no guarantee that they will be found as illustrated in figure 3.3.  The second 

link-disjoint shortest path may have a significantly larger length.  

 

To surmount these problems, other methods have been devised to find shortest link-disjoint 

paths with minimal total length. Suurballe (see [Suur74]) proposed an algorithm, to find K node-

disjoint paths with minimal total length using the path augmentation method. The path 

augmentation method is originally used to increase the size of a matching with an augmenting 

path [Die97] and to find a maximum flow or a minimum cost flow in a network ([FF62], [PS82]). 

The problem to find link/node disjoint paths can be viewed as a special case of the minimum 
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cost flow problem as demonstrated in [ST84], [Bha94], [Suu74]. The basic idea of Suurballe’s 

algorithm is to construct a solution set of two disjoint paths based on the shortest path and a 

shortest augmenting path. K disjoint paths can be obtained by augmenting the       optimal 

disjoint paths with this algorithm. In 1994, Bhandari [Bah94] proposed an algorithm to find a 

pair of span-disjoint paths. The disjoint paths algorithm used by Bhandari is a modified version 

of Suurballe’s algorithm [Suu74] that requires a special link weight transformation to facilitate 

the use of Dijkstra’s. Bhandari made a simplification to Suurballe’s algorithm by directly setting 

all the link weights on the first shortest path negative.  

 

A simplified variant of Bhandari’s Algorithm [Bah94], referred to as LBA (link disjoint version of 

Bhandari’s algorithm), which can produce an optimal solution for the LPP problem is presented. 

Bhandari’s algorithm is modified into a link-disjoint path pair algorithm LBA by omitting the 

node-splitting operation that ensures the node-disjointness and the graph transformations that 

ensure span-disjointness. 

 

Preliminaries . 

Before explaining the operation of LBA, some notations are introduced. Let  (   ) be a 

directed graph and (   ) a source-destination pair. If the direction of a link is reversed, then its 

weight becomes negative, i.e.  (   )      (   ). Thus, if a path   from   to   exists, 

reversing the direction and the weight of all of its links, we will have a path directed from   to  , 

denoted by  ⃖ . Furthermore,  ( ⃖ )     ( ). A set, which consists of    links whose reversed 

links appear on    and vice versa, is denoted as   ⋂̃     (   )     (   ) (   )  

       (   )      . In the following figures, bold lines represent edges on the shortest 

path(s) in the graph or its corresponding modified graph, dashed lines represent reversed edges 

which do not exist in the original graph and bold dashed lines represent such reversed links that 

appear on the shortest path.  

 

Steps of the algorithm . 

The steps of the LBA method are as follows : 

 Find the shortest path       from node   to node  , 

 Replace       with  ⃖     , a modified graph  (    ) is created, 

 Find a shortest path        from node   to node   in the modified graph  (    ); if 

       does not exist, then stop, 

 Take the union of        and       , remove from the union the link set which consists of 

      links whose reversed links appear in        and vice versa, then group the 

remaining links into two paths      
  and      

 ,  

i.e.      
       

  (            )(  ⋂̃   ) 

 

The above-mentioned steps of LBA will be explained with an example, illustrated in figure 3.1. 

Suppose that we are required to find a set of two shortest disjoint paths between    and   . In 
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the start, the shortest path from     to     is found as        ⟨           ⟩ with minimum 

length 4.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.1 : (a) the first shortest path, (b) reversing direction and signs of shortest path, (c) the 

second shortest path, (d) computing the final pair of disjoint paths inspired by [GKM03] 

 

 

In the next step, a modified graph  (    ) is created by reversing the direction and the sign of 

the weight of each edge on       . For instance, the edge       with weight  (     )    is 

replaced by the reverse edge       with weight  (     )     (     )    . In step 3, 

the shortest path in the modified graph       ⟨           ⟩  has length 6. In step 4, 

     ⋂̃                     is removed from the union             . The solution set 

of disjoint paths {     
       

    ⟨        ⟩ ⟨        ⟩  is obtained. The total length of this 

path set equals         , which is exactly the minimal total length of two link-disjoint paths 

in this graph. 

For comparison, in figure 3.2, RF method is applied on the same topology with the same 

requirements. In step 1, the shortest path ⟨           ⟩ is retrieved. In the next step, a 

modified graph is created by removing all the edges of the shortest path. In step 3, the new 
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shortest path ⟨        ⟩ is computed. Thus, the set  ⟨           ⟩ , ⟨        ⟩  has a total 

length          , which is bigger than 10 as found with LBA. This example illustrates that 

the RF method cannot guarantee to find the optimal solution. More important, in the graph 

shown in figure 3.3(a), although there exist two link-disjoint paths between    and   , RF 

cannot find the second path in step 2 as shown in figure 3.3(b). LBA, on the other hand, still 

returns the optimal set in this case. 

 

 

Figure 3.2 : RF method, (a) the shortest path, (b) the second shortest path after the removal of 

the edges of the first shortest path. Figures (a),(b) were inspired by [GKM03] 

 

 

 
 

Figure 3.3 : the disadvantages of RF method inspired by [GKM03], (a) the first shortest path, (b) 

although in the graph there are 2 disjoint paths, RF, due to the removal of edges cannot find the 

second path 

 

3.3.2 Discussion 

 

The disjoint-paths method is a way to find alternative routes. However, the results obtained can 

be occasionally not at all satisfactory. If RF method is applied, it is most likely that the resulting 
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alternatives (apart from the shortest path) have large lengths, since no edge is allowed to be 

common. Moreover, this method cannot guarantee that existing alternatives in the graph will 

actually be found. On the other hand, LBA method certainly achieves better results than RF. 

However, it is not that helpful for finding good alternative routes in road networks, since some 

road segments may be shared between several of the diverse routes that we would like to find, 

which are therefore not disjoint. We usually do not request total disjointness for alternatives 

routes in road planning. Thus, this method is not that proper for our problem. Instead, it can be 

useful in cases that link-disjoint path problems actually occur. Such kind of problem usually 

appears in computer network design where aspects as survivability, load balancing and network 

resource utilization are strived for. 

3.4 Pareto optimality (with SHARC) 

 

Pareto optimality or Pareto efficiency is a concept originally appeared in economics and then 

applied in engineering. In engineering, given a set of choices (i.e. alternative routes in a map) 

and a way of valuing them, the Pareto set is the set of choices that are Pareto optimal. An 

outcome  of a game is Pareto optimal if there is no other outcome that makes every player at 

least as well off and at least one player strictly better off. That is to say, a Pareto optimal 

outcome cannot be improved upon without hurting at least one player. 

 

3.4.1 Pareto optimality algorithm 

 

Introducing the concept in the field of routing, Pareto optimality is a classical approach to 

compute alternatives. In general, up to a short time ago, routing on road networks focused on 

single-criteria scenarios. The goal was to find the quickest route within a network. However, the 

quickest route is often not the best one. A user might be willing to accept slightly longer travel 

times if the cost of the journey is less. A common approach to cope with such a situation is to 

find Pareto-optimal routes, concerning a variety of metrics. Specifically, we can consider several 

weight functions for the edges like travel time, distance, fuel consumption or scenic value and 

compute pareto-optimal alternative routes in a way that each route is better than any other 

route with respect to at least one metric under consideration, e.g. fuel consumption. Thus, the 

concept of multi-criteria search in road networks is introduced. 

 

The straightforward approach to find all Pareto optimal paths is the generalization ([Han79], 

[Mar84]) of Dijkstra’s algorithm: Each node       gets a number of multi-dimensional labels 

assigned, representing all Pareto paths to  . For the bicriteria case, [Han79] was the first 

presenting such a generalization, while [Mar84] describes multi-criteria algorithms in detail. By 

this generalization, Dijkstra loses the label-setting property, i.e., now a node may be visited 

more than once. It turns out that a crucial problem for multi-criteria routing is the number of 

labels assigned to the nodes. The more labels are created, the more nodes are reinserted in the 
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priority queue yielding considerably slowdowns compared to the single-criteria setup. In the 

worst case, the number of labels can be exponential in     yielding impractical running times 

[Han79].  

 

In this section, an efficient speed-up technique for multi-criteria routing is presented. This 

speed-up technique is an augmented version of SHARC which is a combination of two speed-up 

techniques presented in the chapter 2, contraction (Shortcuts) and arc flags(ARC). By 

augmenting the main subroutines of SHARC to multi-criteria variants and by changing the 

intuition when setting Arc-Flags, a very efficient method for the multi-criteria scenario is 

generated (see [DW09]).  

 

Preliminaries . 

Let  (   ) be a directed graph. The main difference between single and multi criteria routing is 

that the labels assigned to edges contain more than one weight and in particular they are 

vectors in   
  . Let   (          ) and    (  

    
      

 ) be two labels.   dominates 

another label    if      
  holds for one       and      

  holds for each      . The 

sum of   and    is defined by      (     
       

         
 ). The minimum and 

maximum component of   is defined by              and              respectively. 

Finally, the length  (   ) of an     path   ⟨          ⟩ is given by 

 (  )  (  )     (  ). In contrast to a single-criteria scenario, many paths exist between 

two nodes that do not dominate each other. In this work, we are interested in the Pareto-set 

 (   )     (   )   (   )     (   )  consisting of all non-dominated path lengths   (   ) 

between   and  .   (   )  is called size of a Pareto-set. Note that by storing a predecessor for 

each   , Pareto paths can be computed as well. The     function assigns a label   in each edge. 

 

 

Steps of the algorithm . 

 

Augmenting Ingredients . In this section, we show how to augment Dijkstra-search, arc flags and 

contraction in order to guarantee correctness in a multi-criteria scenario ([DD09]). 

 

Dijkstra search . Computing a Pareto set  (   ) can be done by a straightforward generalization 

of Dijkstra ([Han79], [Mar84]). For managing the different distance-vector at each node  , a list 

of labels     ( ) is maintained. 

 Initialize the source node   with a label  (   )  (     ) and any other list as empty. 

 Insert  (   ) to a priority queue 

In each iteration step, 

 Extract the label with the smallest minimum component 

 For all outgoing edges (   ), a temporary label  (   )   (   )     (   ) is created 

 If  (   ) is not dominated by any of the labels in     ( ),  

 add  (   ) to     ( ) 
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 remove all labels from     ( ) that are dominated by  (   ) 

 Stop the query as soon as     ( )    and all labels in the priority queue are dominated 

by all labels in     ( ) 

 

Pareto Path Graph is a graph (PPG) constructed by computing  (   ) for a given source s and all 

nodes    . An edge (   ) is a PPG-edge if and only if it is a part of at least one Pareto-optimal 

path from   to  . 

 

Arc flags . In a single-criteria scenario, an arc-flag   (  ) denotes whether e has to be 

considered for a shortest-path query targeting a node within the region    .  In other words, the 

flag is set if   is important for (at least one target node) in   . The adaption to multi-criteria 

states that an arc-flag   (  ) is set to true, if   is important for at least one Pareto path targeting 

a node in   . For the “augmented” computation of arc-flags, we build a pareto path graph (PGG) 

in  ⃖ for all boundary nodes       of all regions    . Then, we set  (   )(  )    if (   ) is a 

PGG-edge for at least one PPG grown from all boundary nodes      . SHARC is based on 

multi-level Arc-Flags. Hence, we grow a PPG in  ⃖ for all boundary nodes   on the lower level and 

stop the growth as soon as all labels attached to the nodes in the superregion of    dominate all 

labels in the priority queue. Then, we set an arc-flag to true if the edge is a PPG edge of at least 

one Pareto path graph (see [DD09]). 

 

Contraction . The Pareto contraction routine is similar to the one mentioned in chapter 2. First, 

the unimportant nodes are contracted and in order to preserve Pareto paths between non-

removed edges, new edges called shortcuts are added to the graph. Then, edge-reduction step 

is applied to remove unneeded shortcuts. 

 

SHARC query . Augmenting the SHARC-query is straightforward. For computing a Pareto-set 

 (   ), the modified multi-criteria Dijkstra explained before is applied on the output graph. 

The modifications are then the same as for the single-criteria variant of SHARC: When settling a 

node  , we compute the lowest level   on which   and the target node   are in the same super-

regions. Moreover, we consider only those edges outgoing from   having a set arc-flag on level   

for the corresponding region of  . In other words, we prune edges that are not important for the 

current query.  

 

The number of Pareto-optimal paths can be quite large. So, the number of computed paths can 

be decreased by tightening the domination criteria to keep only paths that are sufficiently 

different. Therefore, the travel time metric is defined so as to be the dominating metric W. 

Then, the tightened definition of dominance is as follows: Besides the constraints mentioned 

before, a label   (           ) dominates another label    (     
        

 ) if 

  (   )     holds. In other words, Pareto-paths are allowed if they are up to   times 

longer (with respect to the dominating metric). Note that by this notion, this has to hold for all 

sub-paths as well. 
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3.4.2 Discussion 

 

Pareto optimality method is a method which concept differentiates from the classical idea of 

alternative route finding of the previous algorithms. It introduces the concept of multi-criteria 

routing in large-scale networks. Thus, pareto optimality with SHARC is an efficient speed-up 

technique for computing multi-criteria paths in large-scale networks which results from the 

augmentation of single-criteria routines of SHARC to multi-criteria versions. The main problem 

that can arise is the large number of Pareto-routes, making preprocessing and query times 

impractical for large instances. This problem is dealt with pruning, as described above. 

3.5 Penalty method 

 

Obviously, the aforementioned algorithms are capable of generating a large number of 

alternative paths, which can be useful in a number of transport planning instances. However, 

many of these alternative paths are likely to share a large number of edges. If one can define a 

measure of dissimilarity between these paths, then a subset of these paths can be selected, so 

that the minimum dissimilarity is maximized. In fact, this description refers to the path 

dissimilarity problem (PDP) that is a routing problem in which a set of   paths from an origin to 

a destination must  be generated with minimum length and maximum dissimilarity. One of the 

most relevant procedures developed to solve this problem is the Penalty Method.  

 

The Penalty method was originally suggested in the context of hazardous materials routing by 

Johnson et al.(1992) and used by Ruphail et al. (1995), in a decision support system to generate 

economically different paths over a network characterized by time-dependent link travel times. 

 

3.5.1 Penalty algorithm 

 

Steps of the algorithm . 

The Penalty Method is based on a repetitive application of an appropriate shortest path 

algorithm. The basic steps of the algorithm are described below. 

 

 Compute a shortest path with a shortest path algorithm, i.e. Dijkstra 

 Add it to the solution set or alternative route subgraph,  

 Increase the edge weights on this path and start from the beginning until we are 

satisfied with the solution 

 

Hence, the repeated selection of the same set of links is discouraged and dissimilar paths 

may be generated as results. However, the paths generated may not be completely 

different as some subpaths may still be shorter than a full detour (depending on the 
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increase). Thus, there are several choices or “dimensions” that one have to take into 

account for the implementation ([AEB00]). Specifically, 

 

 Penalized units . Penalties can be applied to the links, or nodes, or both. 

 Penalty structure . An additive penalty (i.e. adding a fixed positive amount to the 

impedance), or a multiplicative penalty structure (i.e. multiplying the current 

impedance by a factor greater than one) can be used. If one uses a multiplicative 

penalty formula, the new impedance can be based on the current impedance 

(which may have been penalized before), or on the original impedance. 

 Penalty magnitude . If a relatively large penalty is chosen, then links that appear in 

generated paths are discouraged more heavily. Smaller penalties, on the other 

hand allow for more frequent appearances of links in generated paths. 

 Penalized paths . Penalties can be applied to the most-recently found path only, or 

to all paths found so far or to paths “close” to the most-recently found. 

 

The above choices lead to various experiments with different penalty mechanisms. For example, 

as far as penalty magnitude is concerned, the higher the penalty, the more the new shortest 

path deviates from the last one. Although a small penalty may not achieve the goal of 

dissimilarity, a large penalty may eliminate possible good viable paths.  Consider the following 

case. There are two good alternatives whose first part is common, while the second is different. 

The algorithm computes the first route and penalizes its edges. If the penalty has small 

magnitude, the algorithm will find the second alternative with higher probability since the total 

length of the second alternative will remain relatively small, despite the increase in the edges of 

the first common part. On the contrary, if the penalty is very high, then it is likely that the 

second alternative cannot be found or a large detour will be computed for the first part instead, 

as illustrated in figure 3.4.        
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          (a) Shortest path between s-t illustrated by green 

 

                

  



48 
 

     

Figure 3.4 : Graph with 2 good alternative routes. The first part of the alternatives     with 

weight 5 should be common because there are not meaningful alternatives. The second part of 

the alternatives     is different as illustrated in figure (a). Figures (b1), (b2) show the graph 

after the penalization with small and large factor respectively. Figures (c1), (c2) show the second 

alternative that the algorithm computes after the penalization. When the factor is too big, the 

results are not the desirable ones 

 

Furthermore, as far as penalty structure is concerned, one can add an absolute value on each 

edge of the shortest path, but this depends on the assembly and the structure of the graph and 

penalizes short paths with many edges. To by-pass this, a multiplicative penalty structure can be 

used. In other words, edges are penalized by a fraction “penalty-factor” of the initial edge 

weight to the weight of the edge. Like before, although the highest the penalty-factor is, the 

more disjoint are the paths found, a similar problem still appears. For instance, the first part of 

the route has no meaningful alternative but the second part has 5. That means that the first part 

of the route is likely to be increased several times during the iterations (multiple-increase). In 

this case, we can get a shortest path with a very long detour on the first part of the route. To 

circumvent this problem, the number of increases of a single edge can be limited. When a new 

shortest path does not increase the weight of at least one edge, it is an indication of a natural 

saturation of the number of available alternatives. 
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Another problem that rises is that depending on the “penalized paths” strategy, a new 

alternative can have many small detours compared to the last alternative. For example, the last 

computed path is a long motorway and the new shortest path is almost equal to the last one, 

but at the middle of the motorway, it contains a very short detour from the long motorway on a 

less important road (due to the increase). There can occur many of those small hops that look 

unpleasant for humans and are not considered as distinct alternatives. To tackle this problem, 

the concept of penalization strategy arises. In particular, instead of increasing only the weights 

of the currently computed shortest path, the weights of the edges around the path (i.e. in a 

radius   from the path) can be also increased. This avoids small hops, as edges on potential hops 

are probably not shorter. Still, potential, meaningful alternatives close to the current path can 

be unfairly penalized. To avoid this, one can increase only the weights of the edges, which leave 

and join edges of the current alternative route subgraph. This strategy is called rejoin-penalty. It 

should be additive and dependent on the general penalty factor   and the distance from s to t, 

e.g.                     (              )       (   ) ([BDGS11]). 

 

3.5.2 Discussion 

 

Penalty method is another way of finding alternatives. However, as we described above, it can 

produce alternatives not admissible, since the various parameters should be chosen carefully. 

Intuitively, we believe that it can be better used as a complement to other methods, as we will 

soon see in chapter 4. 

3.6 Conclusion 

 

In this chapter, various methods in the direction of alternative route planning were presented. 

Both of them have a specific methodology in identifying the alternative paths, leading either to 

good or bad results. Most of them, however, usually produce bad results because of the way 

they find alternatives (requiring total disjointness, minimum lengths, introducing large penalties 

etc.) and as a result they are suitable only in specific circumstances. Thus, in chapter 4, we 

introduce a new method in the field of alternative route planning, called plateau method, which 

is suitable for identifying alternatives in road networks due to the strategy followed. Before that, 

we introduce the concept of admissible alternative routes. Aside from how well each algorithm 

discovers routes, we want alternative paths that are meaningful to each driver and as a result 

satisfy a set of characteristics/criteria. These criteria will be incorporated in plateau method and 

the other approaches and they will filter candidate routes so as to hold the best of them. 
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Chapter 4 

PLATEAU METHOD AND ADMISSIBILITY CRITERIA 

 

In the previous chapter, we presented methods for finding alternative routes which are widely 

used in several scientific fields. A well-known approach is the k-shortest paths algorithm, but it is 

impractical because a reasonable alternative in a road network is probably not among the first 

few thousand paths. Besides, disjoint paths is another approach presented, but the requirement 

for totally nonoverlapping paths can lead to the loss of some potentially good alternatives. Thus, 

we do not want only to calculate alternative routes, but compute reasonable alternatives which 

are considered as distinct to the user. For that reason, we define a subset of alternative routes, 

admissible alternative routes that meet certain desired characteristics. In this context, the best 

published results we are aware of are produced by the choice routing algorithm or plateau 

method which is presented in detail. The stages of the algorithm are presented in detail, but 

apart from the identification of the plateaux chains, include the evaluation of them based on 

admissibility criteria, goodness metric etc. For this evaluation, we also present heuristics in 

order to measure sharing, stretch etc. and an objective function in order to sort them and 

choose the best one to add in the alternative graph AG in every round ([ADGW10]). 

 

 

 

 

4.1 Admissible alternative routes 

 

As mentioned above, an alternative path   in a road network should satisfy certain properties in 

order to be reasonable and natural to the user. Obviously, an alternative route must be 

substantially different from the optimal path and must not be much longer. But this is not 

enough. Alternative routes should avoid unnecessary detours. Formally, they must be locally 

optimal, that is to say, every subpath up to a certain length must be shortest path. Thus, path   

belonging in the class of admissible alternative routes, should have (see also [ADGW10]) : 

 

 Limited sharing 

 Bounded stretch, even for all subpaths 

 Local Optimality 

 

Definitions .  Let  (   ) be a directed graph with nonnegative, integral weights on the edges. 

Given any path   in  ,     is its number of edges and  ( ) the sum of the weights of its edges. 

By extension,  (   ) is the sum of the lengths of the edges shared by paths   and  , and  

 (   ) is equal to  ( )   (   ). 
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Sharing .  The idea of sharing refers to the amount of difference between the alternative routes 

  and the optimal route      computed by a shortest path algorithm, i.e. Dijkstra. The total 

length of the edges they share must be a small fraction of  (    ). 

 

  
Figure 4.1 : Graphical representation of sharing. Shortest path is illustrated by green and the 

alternative by blue. (a) The length of the alternative is a small fraction of (    ) , in contrast to 

(b) where the alternative slightly differs from the optimal route. 

 

 

Stretch . Stretch refers to the length of the path between two points on the alternative route. A 

path   has (   ) uniformly bounded stretch ((   )      if every subpath (including   

itself) has stretch at most (   ), i.e.   is at most (   ) times larger than the optimal path 

     . 

 

 
Figure 4.2 : Graphical representation of stretch. Shortest path is depicted by green and the 

alternative by blue. In the first case, (a), the alternative is much longer than the optimal route. In 

contrast, in the second case, (b), the alternative route is a bit longer than the optimal path.  

 

Local Optimality .  The idea of local optimality refers to the lack of unnecessary detours in the 

alternative routes. Every subpath of the alternative route up to certain length should be 

optimal. While driving along it, every local decision must make sense. To formalize this notion, a 

path   is   locally optimal (    ) if every subpath    of   with  (  )    is a shortest path. 

Besides, since the path   is not continuous, but discrete, a second condition must be true. If    

is a subpath of   with  (  )    and  (   )   , where     is the path obtained by removing the 

endpoints of   , then    must be a shortest path. Note that a path that is not locally optimal 

includes a local detour. 
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Figure 4.3 : Graphical representation of local optimality. The three first figures illustrate 

subpaths that are T locally optimal, while the last figure shows the case of an unnecessary 

detour 

 

Given these definitions, the class of admissible alternative routes is defined formally below. 

Given a shortest path      between   and  , an     path   is an admissible alternative is 

satisfies the following conditions : 

 

Limited Sharing .   

 

Let   ( )   (      ) be the sharing amount of a path   with the optimal path      .  

 

A path   has limited sharing, if   ( )     (    )      . 

Note that for    , the paths are totally disjoint, while for    , the paths can be identical. 

 

Uniformly Bounded Stretch .  

 

A path   has bounded stretch, if   ( )  (   )   (    ) . 
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Local Optimality . 

 

A path   is  -locally optimal for      (    )          , if 

 

    is a shortest path if       with  (  )     

    is a shortest path if               with  (  )    and  (   )    

   

Given the conditions that alternatives should obey, an algorithm can generate zero, one or 

multiple admissible alternatives, depending on the input and the choice of parameters. If there 

are multiple alternatives, we can sort them according to an objective function  ( ), which may 

depend on any number of parameters, possibly including     and  . Generally, admissible paths 

with low sharing, low stretch and high local optimality are preferred.  

4.2 Plateau method (Choice routing algorithm) 

 

Having defined the admissible alternative routes, we can present a new approach for finding 

alternative routes which computes alternative routes that “naturally” meet admissibility criteria 

and especially local optimality, to greater extent than the methods presented in chapter 3. The 

related algorithm is called plateau method or choice routing algorithm and it was invented by 

Alan Henry Jones in 2009 (see also [Jon12]).  

Plateau Method is one of the most significant algorithms for generating a plurality of diverse 

routes from a source to a destination in a graph. Such a method may be used for route planning 

and navigation in road networks, but may also be used in other applications where the costs can 

be described by a weighted graph and where there are no cycles of negative cost, such as 

routing of packets in computer network, finding paths for wiring in integrated circuits etc. 

Consider that we have converted the road network into a graph  (   ) (figure 4.4), and we 

want to compute the alternative routes between a source node   and a target node  .  

The method comprises some basic steps which are described below in high level :  

 Generating a source routing tree from the source   

 Generating a destination routing tree to the destination   

 Combining the source and destination trees to form the alternative routes 

The three steps will be presented analytically below. Note that the third step is the most 

important step and the basic element of the algorithm for computing the alternatives. 
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Figure 4.4 : A road network as a graph as given in [Jon12]. The weights on the edges are 

distances. 

Source or Forward tree . The first step of the method is to compute the shortest path tree from 

the source node   to all other nodes. This is typically performed using Dijkstra algorithm or its 

variants, such as A* algorithm, often enhanced by clever use of trunk roads, precomputation 

and graph restrictions to speed up the computation or reduce the storage requirements (see 

also Chapter 2 for speed-up techniques). Figure 4.5 illustrates the resulting forward tree. 

 

 

In figure 4.5, for each node of the graph(end of road segments), it is annotated the distance 

from the source node  . Moreover, in every node, there is only one outgoing arrowhead that 

Figure 4.5 : The source tree from node   as given in [Jon12] 



56 
 

shows the way back to the source using the shortest path. In other words, the arrowhead shows 

the predecesessor of the current node in the shortest path from  . This arrowhead is called back 

pointer. Note that back pointers are in the opposite direction to the direction of travel. These 

are computed as a necessary part of the Dijkstra of A* algorithm (i.e. stored as pointers). 

For example, the shortest path from the source to the destination node has length     and can 

be traced backwards by following the back pointers through the nodes whose distances are    , 

                         and finally  . 

Destination or Backward tree . The second step of the algorithm is to compute the shortest 

path tree to the destination node   from all other nodes. Instead of executing multiple Dijkstras, 

we can execute a single one from node   in the backward graph  ⃖ (having reversed the edges or 

taking into account only the ingoing edges). So, this is just a variant of the previous algorithm 

and the output is shown in figure 4.6. 

 

Figure 4.6 : The destination tree to node  , taken from [Jon12] 

In figure 4.6, the annotations give the distances to the destination node   along the shortest 

path. The arrowheads show again, for each node, the way to the destination using the shortest 

path. Under another perspective, they show the successor (node) for each node in order to 

reach the destination along the shortest path. These arrowheads are called front-pointers. 

For example, the shortest path to the destination from the node at the top left with distance 

    is found by following the front-pointers through the adjacent nodes whose distances are 

                           . This tree also encodes the globally shortest path, which is 

found by following the arrowheads from the source node to the destination and it will always be 

identical to the one found in the source tree. 
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Note that the subtle difference between the trees, is that source tree encodes the shortest path 

routes from a single node to many others, while the destination tree encodes the shortest path 

routes to a single node from many others. 

Combined Tree. The next step in plateau method is to sum up for each node its minimum 

distances from   and  , found in the forward and backward tree respectively. The resulting 

output is the combined tree. 

 

Figure 4.7 : Combined Tree. Figure is taken from [Jon12] 

For instance, the number     for the source node was arrived at by adding the corresponding 

numbers   and     from source and destination trees, as shown in figures     and    . These 

numbers have a powerful interpretation. At any node  , they represent the cost/length of the 

shortest path route from source node   to the destination node   via the node   (we will refer to 

this distance as via node distance of node  ). Therefore, we have computed the set of shortest 

paths routes    from source to destination via any node   in the graph. These paths    are 

formed as the concatenation of two shortest paths     and    . Consequently, having 

computed the combined tree, we have managed to compute the via node distances of all the 

candidate alternative paths via any node in the graph (i.e. To go from   to   using the path via 

the node at the bottom, you cross distance equal to 335 units). However, the number of 

candidate paths is huge and some of them are irrelevant when planning our route from   to  . 

Thus, it is necessary we introduce another step in the method in order to reduce the candidate 

via paths. This step identifies routes that are meaningful, exploiting paths with the same via 

node distances. Specifically, one can observe in figure 4.8, that there are chains of adjacent 

nodes which have the same via node distance. Obviously, the nodes that lie on the shortest path 
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route from   to   have the same via node distance, which is exactly the length of the optimal 

route. However, there are other such chains illustrated on the figure below.  

 

Figure 4.8 : Plateaux : chains of adjacent nodes with the same via node distance given in paper 

[Jon12] 

Each of the maximal-length chains with the same via node distance is called plateau. This 

constant via node distance can be represented as the constant height of some plane-plateau. 

Plateaux identification . A typical procedure for finding the plateaux is the following :  

 we begin by giving each node a single bit that indicates if we have visited it or not. 

Initially, it is   for not-visited 

 we scan every node in turn, 

 if it is visited (1), we move on to the next node in scan 

 if it is non-visited (0), we set the bit to 1 to indicate that it is visited. For such 

newly-marked node, call it  , we begin a list of adjacent nodes in the chain by 

adding just a reference to that node  . We then follow the back pointers in the 

source tree and for each node we meet, call it   , we check if its via node 

distance is the same as    . If the via node distances are the same, we mark it as 

visited and add a reference to   to the list and repeat the procedure for the 

predecessor     (  ). When this procedure finishes, that is to say, it was 

found a node with different via node distance form   or there was no other 

back-pointer(null), we return to node  , we follow the front-pointers and we 

execute the same steps for the successors. When this second procedure 

finishes, we have a list that comprises all of the nodes in the chain that node   is 

part of. This list represents a plateau. We continue to the next node in the scan. 
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A plateau is formed when the source and destination trees traverse a chain of road segments in 

the same directions. This indicates that the chain is both useful for getting away from the source 

and for getting towards the destination. Such chains tend to use the best roads in their vicinity 

and are aligned to help in getting from source to destination. To make a complete route out of a 

plateau, we simply have to follow the arrowheads in the source and destination trees from the 

endpoints of the plateau.  

 

Figure 4.9 : Plateaux illustrated by bold lines in [Jon12] 

Figure 4.9 shows the plateaux found. Suppose we check plateau between   and   nodes. For 

that plateau, its length    is simply the difference in the values at nodes   and   in the source 

tree (            from figure 4.5) or in the destination tree (            from figure 

4.6). The shortest path route from source to plateau has  length     that is equal to the distance 

of node   from  . The shortest path route from plateau to destination has length     that is 

equal to the distance of node   from  . Thus, the total length of the optimum route that 

incorporates the plateau is given by           . This value must be exactly the length of the 

shortest path route from source to destination via any one of the nodes in the plateau. 

Generally, we want plateaux that are long. In other words, a useful plateau will tend to be 

longer than those that are less useful, as it indicates a long stretch of route that is fast and well-

aligned compared to others in its vicinity. Thus, we are looking for plateaux with a larger value 

of   . 

Moreover, a useful plateau will tend to be part of a route that is not too long, as we are not 

interested in long plateaux if they are found at a great distance from both source and 

destination. Thus, we are looking for plateaux with a smaller value of           . As a 

consequence,  we compute a goodness factor for each plateau that takes into account the 

lengths of the different parts of the alternative. 

A 

B 
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Goodness . Goodness factor is a metric in order to evaluate and sort plateaux taking into 

account the different lengths of the alternative,            . Goodness is defined as the length of 

the plateau minus the length of the route that the plateau is a part of : 

   (          )   (       ) 

In order to make this measure independent of the length units, we divide it by the length of the 

globally shortest path route and this is called raw goodness : 

                 
 (       )

              
 

Thus, plateaux with raw goodness closer to zero are better and more useful than others with 

smaller value. For example, from figure 4.9, we can compute the raw goodness of the different 

plateaux depicted. 

Via node distance             (       ) Raw goodness 

                          
                          
                         
                

Table 2 : Alternative routes data and plateaux raw goodness  

Note that plateaux with raw goodness smaller than       (threshold) are rejected as useless 

alternatives. Apparently, alternatives with high sharing or high stretch are rejected as well. Once 

we have reduced the number of plateaux to the most interesting ones by using goodness values 

and admissibility criteria, we may choose to order them based on an objective function  ( ) and 

on user preferences, i.e. motorways, fewer junctions, lower tolls, driving costs, familiarity. So, 

we introduce a new evaluation step after the plateaux identification stage and before the 

creation of the   . The metrics and heuristics used for evaluation of the plateaux, of the 

alternative routes and the resulting alternative graph are described in detail in section 4.5.  

4.4 Plateau method with penalization of edges (hybrid approach) 

 

The plateau method can be combined with penalty method that was presented in chapter 3, 

leading to alternative routes with better characteristics. 

The steps of this hybrid algorithm are still the same with plateau method with a further 

addition. Let  (   ) be a graph and     the source and destination nodes. Our goal is to find 

the alternative routes between   and  . So, we still compute the source and destination trees, 

we execute the intersection of the trees (combined tree) and we identify the plateaux . 

Consider that the result of the algorithm is the alternative graph    (     ) of   comprising the 

requested alternative routes (see also 3.1). Having found the plateaux chains, we should 
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proceed with the evaluation step based on the aforementioned criteria. Instead of sorting once 

the alternatives and creating the   , the procedure evolves in rounds. In every round, we sort 

the alternatives based on the criteria and the objective function  ( ), we choose the one that 

better satisfies them and we add it in the subgraph   . Before moving to the next round, we 

penalize the edges of this alternative and we re-evaluate the alternatives. We choose again the 

best one and repeat the procedure until the end criterion is satisfied. The penalization’s choices 

(presented in paragraph 3.5.1) applied in this hybrid method can vary and one should 

experiment in order to determine which is the best combination. We present thoroughly the 

implementation of the hybrid method and the chosen strategies in the next chapter.  

The method of plateau with proper penalization strategy displays better results because 

reinforces the disjointness of the paths. Adding penalties on the edges discourages paths with 

many common parts to be added on the subgraph. Thus, the new method emphasizes on 

sharing and minimizes the amount of it among the different alternatives, while the other 

properties are satisfied equally well. 

4.5 Criteria for alternative routes evaluation and attributes to measure in AGs. 

 

In section 4.1, we introduced the concept of admissibility alternative routes and in section 4.3 

the concept of goodness since our goal is not only to find numerous roads joining the source to 

the end, but compute paths that are reasonable, meaningful from a human perspective and 

thus, satisfy certain criteria. We want roads with low sharing, bounded stretch and high local 

optimality. Furthermore, alternative routes should obey the criterion of goodness that applies 

exclusively to the plateau and hybrid method and evaluates alternatives from another 

perspective. Consequently, we wish to quantify the quality both of alternative routes and 

alternative graphs measuring the aforementioned properties and characteristics. So, we apply 

metrics already defined in the previous chapter and new ones based on heuristics to achieve the 

best possible results. 

We are going to present these attributes and criteria in the order we look at them in the 

practical implementation. 

 

4.5.1 Evaluation of paths quality  

 

In our implementation, we check each separate candidate alternative path (formed either as an 

extension of a candidate plateau or as a path via any node in the graph (before the construction 

of plateaux)) as far as the properties of stretch and goodness are concerned. For these 

properties, we introduce the metrics we use so as to measure them in our practical 

implementation. 
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Stretch of path.  

Paths in order to be good alternatives should satisfy the property of bounded stretch. They 

should not be much longer than the optimal path from   to  . Thus, paths that are longer than 

an upper bound (  ( )  (   )   (    ) ), should be recognized as soon as possible and 

pruned. 

We introduce this “pruning” step in the stage of the construction of the combined tree. 

Specifically, during this stage, the forward and backward distances for each node are added in 

order to compute the via node distances which are essential for the plateaux identification.   

If the via node distance for a node exceeds the threshold, then this node is pruned since it 

cannot form a significant alternative through it. It cannot be part of a good plateau. In this way, 

we limit the search space and accelerate the following stages of the algorithm. 

This procedure is also known as Global Thinout. Global Thinout identifies useless nodes by 

checking for each node  , if                      (   ) for some   (   )   . 

The next figure illustrates an example of this pruning step for      . Red nodes are pruned 

since they cannot be part of a good plateau and as a result they cannot form a good alternative 

route from source to destination. 

 

 

 

 

 

 

 

 

 

 

Figure 4.10 : The red nodes are pruned since their viaNodeDistance exceeds the threshold 

   (    )          
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Goodness . 

The goodness property is  very important, since it ensures the driver  that the alternative route 

is not found in great distance from source and destination and its main part is formed by the 

plateau.  

 

 

 

 

 

 

 

Figure 4.11 : Shortest path is illustrated by green, plateaux by orange, alternatives by the union 

of blue and orange. The plateau 1 has better goodness value than plateau 2. 

For a plateau     and by extension, for an alternative containing the plateau     (as 

illustrated in the figure above), goodness metric is defined as 

          
       

              
 

         the lengths of subpaths from source to plateau and from plateau to target respectively. 

Note that in section 4.3, this ratio was called “raw goodness” and was defined with a negative 

sign, but for simplicity, we mention it as “goodness” and we consider it as a positive quantity. 

In our implementation, we introduce the criterion of goodness in the stage of plateaux 

identification. That is to say, after the construction of the combined tree, we move to the 

creation of the plateaux chains and by extension to the creation of the corresponding candidate 

alternative routes. For each candidate alternative found, we compute its goodness value and if it 

surpasses an upper bound (threshold), we reject it as inappropriate. Obviously, in this way, the 

time complexity of the next evaluation step is decreased, since the search space is pruned. We 

have experimented with various goodness thresholds, but mainly with the values 0.85 and 1.0.  

The goodness criterion is further used in cases where the objective function has even values for 

more than one candidate alternative paths. 
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4.5.2 Evaluation of AG quality  

 

Besides  the evaluation of each candidate path separately, we evaluate the alternative route 

graph as a whole. This evaluation concerns the sharing amount and the average distance of the 

paths in the AG as well as the number of junctions in the AG. The metrics that are used to 

evaluate the AG, determine the alternatives to be added in order that the  AG formed has 

desirable characteristics.  

Sharing . 

The alternative routes of the    should have low sharing with each other and with the optimal 

route in order to be considered as distinct. In order to measure the amount of disjointness in 

the alternative graph, we present a heuristic metric referred as totalDistance : 

 

                ∑
 ( )

 (   )   ( )   (   )
  (   )   

 

 

The total distance measures the extent to which the routes defined in the    are 

nonoverlapping. Note that  (   )   ( )   (   ) is necessary because otherwise, 

nonoptimal  paths would be encouraged. Having 2 totally disjoint paths from   to  , we have a 

total distance of 2. So, total distance can reach its maximum value of   when the    consists of 

  disjoint paths. 

In our implementation, we introduce the criterion of totalDistance at the stage of plateaux 

evaluation where we choose which alternatives to add in the alternative graph. Specifically, we 

have a set of candidate alternatives from the previous stage (plateaux identification) and in 

every round, we want to add the best one in the alternative graph. Thus, for each candidate 

alternative, we compute the new value of total distance that the current AG will have after the 

possible addition of the alternative in question. The alternative which yields the best value, will 

be added on AG. Note that totalDistance is combined with the averageDistance metric in the 

defined target function (both presented below)  for the proper choice of the alternative to be 

added. 

 

Average Distance . 

Good alternatives should have bounded stretch and their lengths should be close to the optimal. 

Average Distance is a metric that measures the average stretch of the alternative paths in the 

  . Average distance is defined using the definition of totalDistance as : 
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∑  ( )    

 (   )               
 

 In our implementation, we introduce the criterion of                 at the stage of 

plateaux evaluation. Specifically,  we have a set of candidate alternatives from the previous 

stage and in every round, we want to add the best one in the alternative graph, as mentioned 

before. Thus, for each candidate alternative, we compute the new potential value of average 

distance of the AG. If this new value is lower than an upper bound, and meets the other 

aforementioned criteria in the best way, it is added in the   . For upper bound, we set the 

value of     . 

 

Decision Edges . 

Decision edges is the last metric for the    evaluation. Decision edges measure the complexity 

of   , which should be small to be digestive for a human. This metric is defined as : 

                ∑          ( )   

         

 

A node in    having more than one outgoing edges implies a decision. Human cannot handle 

too many of them. Thus,               set a maximum permissible number of alternatives 

route. In our implementation, we have set it to   . 

The next figures illustrate two examples of totalDistance, averageDistance and decisionEdges 

computation. 

 

 

 

 

 

 

Figure 4.12 : 
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Figure 4.13 : 

              
     

     
 

     

     
   

                
           

    
      

                

Objective Function .  

Generally, we want alternatives with limited stretch. So, we choose a relatively small value of   

in global thinout (of course, not that small to lose good candidate alternatives) and small upper 

bound for averageDistance. We also want limited sharing. Thus, high values of totalDistance are 

more appealing. Finally, we want to limit the number of decisionEdges.  

Therefore, our goal is to maximize the difference between totalDistance and averageDistance, 

while the other constraints are satisfied. So, we define our target function as : 

                                              

under the constraints : 

                        (   )                          

                                                  

                            

                         

Target function represents an overall evaluation of the   .  

In our implementation, the objective function is examined in the stage where both totalDistance 

and averageDistance are checked, namely in the plateaux evaluation stage. As we mentioned in 

the section of Total Distance, the value of targetFunction is the one that ultimately determines 

the alternative to be added in   . This alternative chosen is the one which maximizes the 

targetFunction, while obeying the restrictions imposed. 
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Chapter 5 

PRACTICAL IMPLEMENTATION AND METHODOLOGY 

In chapter 4, we described plateau and hybrid method in theory. In this chapter, we analyze the 

practical implementation of these algorithms. We describe step by step all the stages of plateau 

algorithm from the conversion of the real road map into a graph  (   ) to the alternative 

graph    that is given as a result as well as the stages of hybrid method. The programs were 

written in C++ and in our implementations we used a library of efficient graph structures and 

algorithms for large scale networks, called “pgl”. This library is developed in the University of 

Patras1 and already provides useful data structures for graphs (see section 2.2) and priority 

queues and a fast implementation of Dijkstra algorithm with many modifications and many 

speed-up techniques. Moreover, at a few rare places, we used STL and Boost library. 

 

 

 

5.1 Plateau method implementation  

 

In this section, we present the implementation strategy we followed both in plateau method 

and the hybrid approach. Specifically, we present the stages of the method in a more practical 

way with references in our practical implementations. Initially, we provide our  implementation 

strategy for plateau method using a block diagram. In this diagram, the stages of the algorithm 

are presented in the order they are meet in our programs. After that, each stage is described in 

detail. Last but not least, we present the basic methodology for the hybrid method, namely 

plateau method with penalization of edges. 

 

Figure 5.1 illustrates the stages of plateau method implemented in our C++ program. 

 

 

                                                           
1
 Pgl library is developed in the University of Patras by Prof. Zarologias and his research team and one can 

find it in the following link :     http://www.ceid.upatras.gr/faculty/zaro/software/pgl/index.html  

http://www.ceid.upatras.gr/faculty/zaro/software/pgl/index.html
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Implementation strategy . 

As stated above, the following block diagram shows the basic stages of the algorithm : 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Start 

Graph Reading & 
store in data 

structure 

Calculation of 
Edges weights 

Defining source & 
target node 

Build forward & 
backward trees 

Build combined 
tree 

Find plateaux with 
goodness<=thresh 

Evaluate plateaux 

Create Alternative 
Route Graph 

End 

Figure 5.1 : Block diagram illustrating the implementation strategy for the plateau algorithm 
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Below, we are going to describe analytically the stages presented in the block diagram. Before 

that, we should mention a few words about the road networks given as input to the program 

(analytically in chapter 6). The networks are real-world street maps, such as the street map of  

Luxembourg, Italy, Germany etc. Each road network is given in two files. The first one (denoted 

by “.graph”) contains     uncommented lines, where   is the number of nodes containing 

neighbor lists for each vertex from 1 to   in order. The second file (denoted by “.xyz”) supply 

vertex coordinates in   uncommented lines. Each line   contains the coordinates     and   of 

vertex  .  

Graph Reading . 

As mentioned above, the graph construction is based on the two DIMACS10 files (“.graph”, 

“.xyz”). Initially, a DIMACS10 reader is created in order to access the files. This reader accesses 

the node lists of each vertex and the network information gathered is stored sequentially in the 

graph structure we choose – adjacency list, forward star, dynamic forward star or packed 

memory graph representation. Note that the forward star is implemented as a packed memory 

graph that has undergone “memory compression”2. The node coordinates from the .xyz file are 

also stored in the graph structure. Apart from the aforementioned, further information is stored 

in the data structure. Specifically, we define a struct for nodes and a struct for edges in order to 

store the required information in the data structure. The resulting graph is denoted by  (   ), 

    (   )(with compression),    (   ) or     (   ) depending on the representation 

chosen. The numbering of nodes begins from   and ends at    . This order forms the relative 

position of the nodes. 

The struct for nodes( “struct Node”) contains the following fields : 

 unsigned int dist, distBack, viaNodeDistance; 

where   dist : minimum distance of each node from source node 

               distBack : minimum distance of each node from target node 

               viaNodeDistance : sum of dist and distBack (dist+distBack) 

 

 void* pred, succ; 

where   pred, succ : pointers of each node to other nodes, i.e. if Dijkstra executed 

               pred : pointer to predecessor in a forward shortest path tree  

               succ : pointer to successor in a backward shortest path tree 

 

 

 void* startNode, link; 

where    startNode, link : pointers to nodes. Useful in order that each node belonging in 

a plateau store the start and the end of the corresponding plateau 

                                                           
2
 The graph data structures that we used in our implementations (adjacency list, forward star, dynamic 

forward star and graph memory representation), were borrowed from the “pgl library”. 
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 unsigned int plateauFlag; 

where    plateauFlag : flag for search and check of the nodes belonging in a plateau 

 

 unsigned int  selectionID; 

where selectionID : integer, useful for the class NodeSelection used in the 

implementation 

 

The struct for edges (“struct Edge”) contains one field : 

 unsigned int weight; 

where   weight : the weight of the edge 

 

Calculation of Edges weights. 

The method “calcWeights” is responsible for the calculation of edges’ weights. The calculation is 

based on the Euclidean distance between the start and the end node of each edge. Specifically, 

let (   ) be an edge of the graph. The weight of (   ), namely  (   ), is equal to 

                 (                    ) where     are the coordinates of each 

node.  

Defining source & target node . 

The program execution and the computation of alternative routes make sense between two 

nodes of the graph which correspond to the start and the destination point respectively. So, it is 

necessary we have a source and a target node. These two nodes are chosen randomly using a 

generator of random numbers. This generator returns 2 values of type double between   and  , 

the first corresponding to the source node and the latter to the target node. These random 

values are then multiplied by the number of nodes   so as to generate the relative positions of 

source and target node in the graph representation. 

In case of multiple, consecutive     queries, the random numbers of the generator are stored 

initially in a vector “queries” and in every iteration of the algorithm, the appropriate pair of 

numbers is retrieved and the corresponding pair of source and target nodes is computed for the 

execution of the method.  

Build Forward & Backward trees . 

The first two basic steps of plateau algorithm include the construction of the shortest path tree 

from source node to target node and the computation of the shortest path trees from all the 

other nodes to the target node, as described analytically in chapter 4. 
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As far as the forward tree is concerned, an execution of Dijkstra algorithm is necessary until 

target node is settled. For this computation, we use a C++ class, called Dijkstra3 and specifically 

the method         (              ) which develops a shortest path tree from the source 

to the target (forward tree). For each node that becomes settled in the forward tree, the field 

“dist” obtains a new value equal to the shortest path distance of the node from the source. 

Moreover, the field “pred” of each node points to its predecessor in the forward path tree, 

according to Dijkstra execution. 

Similarly, for the construction of the shortest path trees from all the other nodes to the target 

node, Dijkstra execution is needed. Since the graph is undirected, it is equivalent to run a 

Dijkstra from the target node (to all the others) without any modification to the direction of the 

edges. For this computation, we use a C++ class, called BackwardDijkstra and specifically its 

method runQuery which stops the Dijkstra execution when source node is settled. After the end 

of execution, the backward shortest path tree is built and the field “distBack” of each node is 

equal to its shortest distance from target node. The field “succ” of each node also points to its 

successor node (predecessor in the backward tree from another point of view).  

For the next stages of the plateau algorithm, a new class has been created. It is called “Plateau” 

and implements the appropriate methods for the combined tree construction and the plateau 

identification and evaluation. 

 

Build Combined Tree . 

First of all, we remind that plateau is a path where the sum of dist and distBack, namely the 

viaNodeDistance, of its nodes stays stable along it. Note that the via node distance of a node   

expresses the distance a driver traverses from source to target via/through this node    So, in 

order to identify the plateau chains, it is necessary we compute and store the via node 

distances. Specifically, we implemented a method denoted by “buildCombinedTree” in 

“Plateau” class, where all the nodes of the graph are checked. In more detail, for the nodes 

which are settled both from the forward and the backward Dijkstra, we sum up the dist and 

distBack values from the corresponding fields and if the resulting via node distance is smaller 

than an upper bound (limited stretch, see also 5.3.1), then we store it in the corresponding 

struct field. In other words, we apply a first level of node pruning since we reject nodes that 

form single via paths and by extension, plateaux which length is much longer than the length of 

the optimum/shortest path. At the same time, the nodes with admissible via node distances, are 

inserted in a priority queue    according to the minimum distance from the source node. 

 

 

 

                                                           
3
 The classes Dijkstra and BackwardDijkstra were also borrowed from the “pgl library”. 
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Find Plateaux . 

From the previous stage, the priority queue   , contains all the nodes that potentially belong in 

a plateau. In every round (until the priority queue is empty), the node   with the minimum 

distance from the source node is extracted from the priority queue and by following the “succ” 

pointers, we check its successors – as defined in the backward shortest path tree (follow the 

shortest path from the current node   to target). If the successors have the same via node 

distance with node  , a new plateau is created. It is sufficient to find only one additional node 

with the same via node distance in order to create a new plateau ( at least   and        ). At 

the same time, the pointers “startNode” and “link” of the nodes that belong in the currently 

formed plateau, acquire their new values. The pointers “startNode” and “link” of each node 

point at the start and the end of the plateau to which it belongs (specifically, for the 

intermediate nodes of a plateau, only the pointer “link” is used so as to point at the start of the 

plateau they belong to). Furthermore, all the nodes belonging in plateaux set their flag 

“plateauFlag” to 1 and are then removed from the priority queue so as not to be checked twice. 

If a successor has different via node distance from   or it has the same via node distance but 

belongs to a different plateau, the procedure continues with a new extraction from the priority 

queue   . A special case that we should take into account so as to ensure correct results is the 

following. Consider a node   that has two equivalent successors ( same via node distance), 

choses to follow (successor) one of them by random (or according to which node the pointer 

“succ” was set to point to in the backward tree) and as a result it is likely that another plateau 

with the same via node distance exists ( probably with different goodness). In order to avoid this 

situation, apart from the node’s successors, we also check only the predecessor of the initial 

node  . In case the two nodes,   and        , have the same viaNodeDistance, further 

checks take place in order to  identify the maximum plateau that can be constructed. 

The plateaux identified may be numerous. For this reason, we apply a second level of pruning. 

The plateaux that are not admissible are rejected. In this stage, the admissibility of a plateau is 

defined by its goodness value. Thus, if the goodness value of the candidate plateau is bigger 

than an upper bound, the plateau is rejected and is not further evaluated in order to be added 

in the alternative route graph. The start nodes of the admissible plateaux (          

           ) are stored in a vector instantiated as a variable of the NodeSelection class (this 

class is created in “pgl library” so as to store a smaller set/selection of nodes of the initial graph 

and implements various methods, such as selectNodes, getMembers, isMember etc.). This 

selection of vertices is provided to the next stage of the algorithm which is responsible for the 

final evaluation of the candidate plateaux. 

 

Evaluate Plateaux . 

In this stage, we evaluate the alternative route graph that results from the addition of a new 

alternative route. The alternative routes are formed by the union of the corresponding 
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candidate plateaux with the source and target nodes. This evaluation is based on the 

“totalDistance”, “averageDistance” and “decisionEdges” criteria, described in detail in section 

4.5. In particular, in every round, our aim is to add that alternative route, or for simplicity, that 

plateau) that maximizes the target function :                                  

 –                 . 

The criteria are initialized to zero. Then, the nodes contained in the NodeSelection variable 

created in the previous stage, are checked in turn. The process is the following : it starts from 

the in question node   and  sums up the weights of the edges initially in the direction of its 

predecessors (       ) and then in the direction of its successors (       ) and stores the 

result in a variable denoted by “weightSum”. Note that the computation of weight sum in each 

direction stops when a node (predecessor in the first case, successor in the latter) was formerly 

checked, that is to say, the weights of the edges from this predecessor (or successor) until the 

source (or the target) have already been included in totalDistance and averageDistance.  Having 

calculated weightSum, we can compute the new values of totalDistance and averageDistance : 

                                
         

                 
 

 

Where               refers to the value of the               metric of the formed so 

far alternative route graph 

 

                     
                        

                                
 

 

Where              refers to the sum of edges’ weights of the alternative route 

graph formed so far. Note that the numerator of the a                  metric of 

the chosen alternative in every round is stored in a variable so as to be used in the next 

round.  

The plateau and by extension the alternative route that achieves the best value for the 

targetFunction with respect to the constraints imposed for averageDistance and decisionEdges 

is chosen for the alternative route graph and removed from the NodeSelection variable.. In this 

stage, we choose the alternative route by setting the plateauFlag field of its nodes to 2. 

Obviously, the shortest path (one of them in case there are more than one) is the first to be 

chosen. Note that for every alternative route added ( except the first one which is the shortest 

path) the value of decisionEdges increase by one. The process ends when the value of 

decisionEdges exceeds the upper bound imposed or if no other candidate alternative satisfy the 

criteria and the constraints. As mentioned above, the nodes that belong to the admissible 

alternatives have “plateauFlag” set to 2. 
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Create Alternative Route Graph . 

In this stage of the implementation, we create a subgraph      of the initial graph   (or    , 

     etc.) consisting of the nodes and the edges of the admissible alternative routes identified 

in the previous step. This subgraph is implemented as an adjacency list with appropriate node 

and edge structs. The node struct has only one field, a pointer “nodeDesc” to its corresponding 

node in the initial graph. The edge struct is the same as in the initial graph and has only one field 

where the weight of each edge is stored. 

For the creation of the alternative route graph, we implemented a new class, called Subgraph. In 

this class, we implemented the three necessary steps for the alternative route graph 

construction.  

Node Insertion . The initial graph is traversed and nodes with plateauFlag value equal to 2, are 

inserted in the subG. A pointer to the corresponding node in the initial graph is also stored in 

the field “nodeDesc”. Moreover, the mappings between the nodes of the initial graph and the 

subgraph are stored in a vector. 

Sort . Then, the vector with the mappings is sorted with the use of the  library function “sort” in 

ascending order of the nodes descriptors in the initial graph. 

Edge Insertion . The aforementioned vector is traversed. For each node, we check if its edges 

should exist in the alternative graph. Actually, we check if the end node of the edge (the start 

node is the current node of the vector) has plateauFlag value equal to 2. If yes, we add this edge 

on the alternative route graph with the same weight.  

5.2 Plateau method with penalization of edges (hybrid method)  

 

In this hybrid method, as mentioned before, we want to amplify the disjointness of the 

alternative routes and in order to achieve it we penalize some edges according to a strategy. 

Practically, in order to combine plateau method with penalty in our C++ implementation, we 

should, first of all, add one more field in the “struct edge”  of the input graph. This field, 

denoted by penalty, is an unsigned integer for storing the edge weight after the penalization. 

Generally, the method’s stages are common to these of plateau method, as illustrated in figure 

5.1, except the one doing the evaluation of the alternative routes. As far as this stage is 

concerned, for each alternative we choose to add in the subgraph, we traverse its edges and 

multiply their weights by a penalty factor (equal to 0.3). Moreover, we multiply the outgoing 

and incoming edges of the nodes belonging to the alternative route by a smaller factor called 

rejoin factor (                      ) so as to prevent alternatives “direct towards” an 

alternative already belonging in the AG. Furthermore, for the containing nodes of the alternative 

route, we set plateauFlag to 2, as in plateau method implementation. So, the question is how to 

exploit these penalized weights in selecting the alternative (since alternatives may consist of 
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common parts) and how they will be adapted to the criteria used (totalDistance, 

averageDistance, decisionEdges). We apply two alternative approaches: 

 1st  approach : we modify the calculation and the meaning of totalDistanceNew and 

hence the objective function for selecting paths. Specifically, we use the penalized 

weights for the calculation of totalDistanceNew. So : 

 

                                        
         

                   
 

 

Where               refers to the metric’s value on the formed so far alternative 

route graph based on the normal weights and distances.  

 

Therefore , 

                                                               

 

In this way, the introduction of more disjoint alternative routes is promoted while at the 

same time the constraints are satisfied. In this first approach, the selection of an 

alternative is also accompanied by penalization of its edges (+ rejoin penalty). 

 

 2nd  approach : we change the objective function for the final selection of alternatives 

and instead of maximizing the aforementioned                                

               , we defined a new                                     , 

where                     is the length of each alternative route after penalization. 

Specifically, having created the NodeSelection variable from the previous stage, in each 

round, we check all the remaining candidate alternatives which arise from the 

corresponding plateaux. For each alternative, we calculate its length (from the source to 

the target), which may include common edges with an alternative already been added 

to the alternative route graph. These common edges are penalized, so the path length is 

also penalized. Of all these alternatives, we look for the one that minimizes the 

                                     while respecting the constraints for 

                and                (                calculation is still based on 

the original graph weights). The alternative selected is punished as mentioned above 

with an appropriate penalty (+ rejoin penalty). 
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Chapter 6 

EXPERIMENTS AND RESULTS 

In this chapter we give an experimental evaluation of our programs in different road networks. 

Specifically, we evaluate the alternative graph and paths quality based on the metrics presented 

in section 4.5 for different goodness thresholds as well as the time performance and memory 

usage resulting from the execution for the different graph data structures implemented. 

Initially, we describe the experimental setup, including the experimental environment, input 

data and other necessary parameters for the experiments. Then, we present tables with our 

experimental results and we make comparison of them, leading to useful conclusions. The 

section is wrapped up by a summary on the main results. 

 

 

 

6.1 Experimental setup 

 

6.1.1 Experimental environment 

 

Experiments have been done on a quad-core Intel® Xeon® processor X3363 clocked at 2.83GHz 

with 8GB RAM and 6MB Cache, running  “Ubuntu precise (12.04.2 LTS)”. All of our programs are 

single threaded and thus, only one of the cores was used. The program was compiled by the 

GNU C++ compiler 4.6.3 using optimization level 3. 

 

6.1.2 Input 

 

In this section we introduce the input data we use throughout our experiments. All networks are 

based on real world data and are, thus, not synthetic. The source of these networks is the 

Center of Discrete Mathematics & Theoretical Computer Science (DIMACS – 

http://www.cc.gatech.edu/dimacs10/archive/streets.shtml).   

The networks are real-world street maps, such as the street map of  Luxembourg, Italy, Germany 

etc. These maps are undirected and unweighted versions of the largest strongly connected 

component of the corresponding Open Street Map road networks 

(http://download.geofabrik.de).  

http://www.cc.gatech.edu/dimacs10/archive/streets.shtml
http://download.geofabrik.de/
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The road network provided is given in two files following the popular METIS input/output 

format. The first one (denoted by “.graph”) contains     uncommented lines, where   is the 

number of nodes. The first of these lines contains two integers, separated by space that denote 

the number of vertices and the number of edges in the graph. Note that in this case the number 

of edges is only the half of the sum of the vertex degrees (since the graph is undirected and 

edges are stated twice from the two ends of each edge). The remaining   lines contain neighbor 

lists for each vertex from 1 to   in order. These lists are sets of integers separated by spaces and 

contain all the neighbors of a given vertex. The second file (denoted by “.xyz”) supply vertex 

coordinates in   uncommented lines. Each line   contains the coordinates     and   of vertex  . 

In the street maps used, the   coordinate is always set to   (altitude is not taken under 

consideration). 

Table   contains the size of our test instances. 

 

Map No. of Nodes No. of Edges 

   
Luxembourg 114599  119666 

Belgium 1441295  1549970 
The Netherlands 2216688  2441238 

Italy 6686493  7013978 
Germany 11548845  12369181 

   

 

Table 3 : Size of our main input graphs 

6.1.3 Queries 

 

The results, either concerning the quality of the alternative route graph and its paths or the time 

performance and memory usage, are computed by running a number of random queries. For 

the “small” graphs, such as Luxembourg and Belgium, we use      random queries, but on the 

“larger” graphs we only run     random queries. Note that the     pairs, are chosen 

randomly at the beginning. So, we have 5 different sets of random s-t pairs (each set consists of 

1000 or 100 pairs respectively), one for each of the 5 road networks in order to be able to 

compare the results on a specific map. That is to say, we run the same queries for all the 

executions on a specific road network. 

6.1.4 Measurements and statistics 

 

As mentioned above, in our experimental results, we report two aspects. The first one refers to 

the quality of the resulting AG and the latter to the execution times and the memory usage.  

As far as AG and paths quality is concerned, for every execution of the 1000 (or 100) queries, we 

measure: 
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 the goodness values for all the plateaux detected 

 the stretch for all the alternative routes detected 

 the targetFunction value for every resulting AG  

 the totalDistance value for every resulting AG 

 the averageDistance value for every resulting AG 

 the decisionEdges value for every resulting AG 

Based on these measurements, we export statistics for the various implementations (plateau, 

plateau with penalization of edges (1st approach), plateau with penalization of edges (2nd 

approach)) and compare them. Specifically, we detect the minimum and maximum value for 

each of the 5 metrics and we compute the average value of the goodness, stretch, 

targetFunction, averageDistance, decisionEdges metrics and their variance, where needed. Note 

that the value of (average) totalDistance and by extension, the (average) value of targetFunction 

should be examined together with the (average) value of decisionEdges. That is to say, we are 

interested not only in the percentage of disjointness found in the AG (illustrated by 

totalDistance metric), but also in the number of the alternatives achieving this percentage. For 

example, if totalDistance is equal to 4 and alternatives(or equivalently decsionEdges) are equal 

to 4, it means that we have 4 totally disjoint alternative paths. On the contrary, if totalDistance 

is equal to 4 and decisionEdges are equal to 8, it means that the alternative routes are common 

almost by 50%. 

Furthermore we compute the time performance of the programs depending on the graph data 

structure used. We execute queries on the road maps for the four graph representations – 

adjacency list, forward star, dynamic forward star and packed-memory graph (see section 2.2), 

and we measure the time needed for each of the algorithm’s stages (forward, backward tree, 

combined tree, plateaux finding, evaluation etc.) as well as the total time performance. 

Moreover, we examine the memory needed for the graph representation depending on the data 

structure used. For these measurements, we export the corresponding statistical data, we make 

comparisons and draw conclusions. 

6.2 Experiments 

 

We conducted experiments so as to measure the aforementioned criteria and to export 

statistical data, necessary for evaluation of the methods. For our experiments, we executed 

queries with specific upper bounds for the admissibility criteria. Specifically, we require : 

      , referring to the upper bound for alternative path’s stretch 

                     

                  

 Minimization or maximization of the objective function : 

 In case of Plateau method, maximization of the following objective function is 

required :                                                    
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 In case of Plateau method with penalization of edges (1st approach), 

maximization of the following objective function is required: 

                                                               

 In case of Plateau method with penalization of edges (2nd approach), 

minimization of the following objective function is required : 

                                     

As far as the goodness criterion is concerned, we conducted experiments with two different 

upper bounds, equal to     and to      . The goodness criterion refers to this amount of the 

alternative path that does not belong to the plateau chain. So, the lower the upper bound is set, 

the smaller the lengths of the subpaths from source to plateau and from plateau to target are 

allowed to be. 

 

6.2.1 AG and alternative paths quality (goodness_threshold = 1.0)   

 

Below we present tables containing results for the AG and alternative paths quality for the 

various implementations. 

Plateau method (goodness_threshold = 1.0) . 

The following two tables show the statistical data referring to AG and alternative paths quality 

resulting from the execution of plateau method in 5 different road networks for  

                       

 

 Alternative Route Graph Quality 

Map TargetFunction AverageDistance DecisionEdges 

 min max average variance Average variance min max average variance 

Luxembourg                1.13 1.07 0.00039 1 10 9.64 2.20 

Belgium                0.86 1.06 0.00028 0 10 9.98 0.04 

The Netherlands                0.93 1.06 0.00317 8 10 10.00 0.00 

Italy                0.94 1.06 0.00031 10 10 10.00 0.00 

Germany                0.59 1.06 0.00026 10 10 10.00 0.00 

Table 4 : Statistics on the quality of the alternative route graph resulting from the execution of 

plateau method on various European road networks 
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  Alternative Routes Quality 

Map  Goodness Stretch 

 average variance average 

Luxembourg                 

Belgium                 

The Netherlands                 

Italy                 

Germany                 

Table 5 : Statistics on the quality of the alternative routes resulting  

from the execution of plateau method on various European road networks 

To be more specific, each line indicates the results computed from the execution of      

queries in the maps of Luxembourg and Belgium and     queries in the maps of Netherlands, 

Italy and Germany. As shown, these results contain minimum and maximum values as well as 

the average and the variance of the different metrics. 

Remarks . 

 The average goodness values are almost at the same level for all the maps. 

 Mean averageDistance is the same as mean stretch for each map, since they measure 

the same property each one from another perspective. 

 As the size of the map increases, the mean value of decisionEdges also increases. This is 

reasonable since in larger maps, the probability of finding more alternative routes is 

higher. 

 

Plateau method with penalization of edges (1st approach – goodness_threshold = 1.0) . 

The following two tables show the statistical data referring to AG and alternative paths quality 

resulting from the execution of the 1st approach of the hybrid algorithm (see sections 4.4, 5.5) in 

5 different road networks for                         

  Alternative Route Graph Quality 

Map TargetFunction AverageDistance DecisionEdges 

 min max average variance average variance min max average variance 

Luxembourg                                                 

Belgium                                                 

The Netherlands                                                 

Italy                                                   

Germany                                                   

Table 6 : Statistics on the quality of the alternative route graph resulting from the execution of 

the 1st approach of the hybrid method on various European road networks 
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 Alternative Routes Quality 

Map Goodness Stretch 

 average Variance average 

Luxembourg                 

Belgium                 

The Netherlands                 

Italy                 

Germany                 

Table 7 : Statistics on the quality of the alternative routes resulting from the  

execution of the 1st approach of the hybrid method on various European road networks 

 

Remarks . 

Making a comparison between the plateau method and the 1st hybrid method, we conclude that 

for the same configuration : 

 The average value of targetFunction is better by about 5% in the hybrid method for all 

the road networks. The difference between the values of targetFunction in the two 

implementations derives mainly from the better mean totalDistance values in the hybrid 

method. This fact implies that the hybrid method actually manages to select more 

disjoint alternative routes than the plateau method, achieving better values for 

totalDistance and as a result, targetFunction. 

 As far as the other metrics are concerned, namely averageDistance, decisionEdges, 

goodness and UBS remain almost the same for both methods. 

 

Plateau method with penalization of edges (2nd approach – goodness_threshold = 1.0) . 

The following two tables show the statistical data regarding AG and alternative paths quality 

resulting from the execution of the 2nd  hybrid approach (see sections 4.4, 5.5) in 5 different 

road networks for                       . Note that the 2nd approach uses a totally 

different objective function which selects alternative routes with the minimum length while 

satisfying the other criteria. 

 Alternative Route Graph Quality 

Map TargetFunction AverageDistance DecisionEdges 

 min max average variance average variance min max average variance 

Luxembourg                                                 

Belgium                                                 

The Netherlands                                                 

Italy                                                   

Germany                                                   

Table 8 : Statistics on the quality of the alternative route graph resulting from the execution of the 2nd 

approach of the hybrid method on various European road networks. 
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 Alternative Routes Quality 

Map Goodness Stretch 

 Average Variance average 

Luxembourg                 

Belgium                 

The Netherlands                 

Italy                 

Germany                 

Table 9 : Statistics on the quality of the alternative routes resulting from the  

execution of the 2nd hybrid method on various European road networks 

Remarks . 

In comparison with plateau method and the 1st hybrid approach, the 2nd hybrid approach : 

 has slighter better mean averageDistance and goodness values. That is to say, it selects 

a bit shorter alternatives which at the same time have shorter lengths from source to 

plateau and from plateau to target. 

 has worse mean targetFunction values by about 6% than plateau method. In other 

words, the penalization of edges in combination with the in question objective function 

does not improve the quality of the resulting AG. 

 

Conclusion .  

Based on the experimental results for the AG quality, we conclude that the three approaches 

are almost equally good. However, out of the three, the 1st approach of plateau with 

penalization of edges (+ rejoin penalty) yields the best results as far as the disjointness of the 

paths is concerned (which is the most meaningful metric, since the others are limited by upper 

bounds). In the next section, we will examine how the goodness threshold influences the quality 

of the resulting graph. 

 

6.2.2 AG and alternative paths quality (goodness_threshold = 0.85)   

 

In this section, we present results concerning the AG and alternative routes quality, conducting 

experiments in the 5 road networks for a smaller goodness_threshold (=0.85). Our goal is to 

examine how the reduction of the goodness upper bound influences the selection of 

alternatives and as a result the measured quality, as reflected by mean targetFunction and mean 

decisionEdges. Obviously, we will not focus on comparing which of the three methods is better 

for goodness_threshold=0.85, since, the 1st approach of hybrid method is expected to be slightly 

better, based on the results for goodness_threshold=1.0. Instead, we will compare the results 
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with the corresponding results for goodness_threshold = 1.0 for the three implementations.  

 

Plateau method (goodness_threshold = 0.85) . 

The following two tables show the statistical data referring to AG and alternative paths quality 

resulting from the execution of plateau method in 5 different road networks for  

                        

 

 

 Alternative Route Graph Quality 

Map TargetFunction AverageDistance DecisionEdges 

 min max average variance Average variance min max average variance 

Luxembourg                                                

Belgium                                                

The Netherlands                                                

Italy                                                

Germany                                                

Table 10 : Statistics on the quality of the alternative route graph resulting from the execution of 

plateau method on various European road networks 

 

 

  Alternative Routes Quality 

Map  Goodness Stretch 

 average variance average 

Luxembourg                 

Belgium                 

The Netherlands                 

Italy                 

Germany                 

Table 11 : Statistics on the quality of the alternative routes resulting  

from the execution of plateau method on various European road networks 
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Plateau method with penalization of edges (1st approach – goodness_threshold = 0.85) . 

The following two tables show the statistical data referring to AG and alternative paths quality 

resulting from the execution of the 1st approach of the hybrid algorithm (see sections 4.5, 5.5) in 

5 different road networks for                          

 

 

 Alternative Route Graph Quality 

Map TargetFunction AverageDistance DecisionEdges 

 min max average variance Average variance min max average variance 

Luxembourg                                                

Belgium                                                

The Netherlands                                                

Italy                                                

Germany                                                

Table 12 : Statistics on the quality of the alternative route graph resulting from the execution of 

the 1st hybrid approach on various European road networks 

 

 

  Alternative Routes Quality 

Map  Goodness Stretch 

 Average variance average 

Luxembourg                 

Belgium                 

The Netherlands                 

Italy                 

Germany                 

Table 13 : Statistics on the quality of the alternative routes resulting  

from the execution of the 1st hybrid approach on various European road networks 

 

 

Plateau method with penalization of edges (2nd approach – goodness_threshold = 0.85) . 

The following two tables show the statistical data referring to AG and alternative paths quality 

resulting from the execution of the 2nd  approach of the hybrid algorithm (see sections 4.5, 5.5) 

in 5 different road networks for                          
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 Alternative Route Graph Quality 

Map TargetFunction AverageDistance DecisionEdges 

 min max average variance Average variance min max average variance 

Luxembourg                                                

Belgium                                                

The Netherlands                                                

Italy                                                

Germany                                                

Table 14 : Statistics on the quality of the alternative route graph resulting from the execution of 

the 2nd  hybrid approach on various European road networks 

 

  Alternative Routes Quality 

Map  Goodness Stretch 

 Average variance average 

Luxembourg                 

Belgium                 

The Netherlands                 

Italy                 

Germany                 

Table 15 : Statistics on the quality of the alternative routes resulting  

from the execution of the 2nd  hybrid approach on various European road networks 

 

Remarks . 

 We notice that the average values of decisionEdges are smaller than the corresponding 

for goodness_threshold=1.0. By appropriate calculations between the respective tables , 

we estimate that mean decisionEdges for the new goodness threshold are reduced by 

about 50% in the road network of Luxembourg for all of the three methods, while in the 

other maps, the percentage fluctuates around 10%. Given that the map of Luxembourg 

is quite small, the majority of alternative routes consist of relatively small plateaux. As a 

result, when the upper bound is set to 1.0, the algorithm identifies paths that satisfy the 

criterion, but when this bound is set to a lower value, like 0.85, a lot of them are not still 

admissible. On the other hand, in cases of maps with greater number of nodes and 

edges, the difference between the two executions is much smaller.   

 The new mean averageDistance values differ slightly compared with those obtained for 

goodness_threshold = 1.0. 

 Average values of targetFunction are smaller than the corresponding for 

goodness_threshold = 1.0. By appropriate calculations, we estimate that mean 
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targetFunction values are reduced by about 45%-50% for all the maps and for all the 

methods. Given the reduction in decisionEdges, we conclude that in Luxembourg a 

constant ratio between targetFunction to decisionEdges is maintained and the results 

are equivalent in the two cases. On the contrary, in the other maps, the decrease in 

targetFunction is not proportional to the decrease of decisionEdges and thus the new 

resulting AG deteriorates in quality as regards the disjointness. Specifically as the size of 

the maps increases, alternative routes satisfying the new more strict threshold can be 

found (desicionEdges value stays almost the same), but these alternatives are more 

overlapping, leading to worse quality. 

 

Conclusion . 

Generally, there is no obvious policy that brings the best possible results. On the contrary, it 

depends on the specifications that each alternative route graph must fulfill. Apparently, 

decreasing the goodness upper bound, alternative routes consist of larger plateaux, but may 

have common parts with each other, as demonstrated by the experiments in these maps. On 

the other hand, setting a more relaxed threshold, alternatives may possibly consist of smaller 

plateaux, but may be better on the other criteria. 

 

6.2.3 Memory usage and time performance of plateau method (goodness_threshold = 1.0)  

 

In the following section, we present the experimental results concerning the time performance 

and the memory usage depending on the data structure used for the graph representation. 

Initially, we record the memory needed from each data structure to store the graph.  Besides 

this, we aim to find out the time improvement or deterioration depending on the graph 

representation. Thus, one method is sufficient so as to induct conclusions concerning time 

performance and memory usage. So, we have conducted experiments using plateau method. 

The four data structures used are adjacency list, forward star, dynamic forward star, packed-

memory graph. The  goodness threshold is set to    .  

 

6.2.3.1 Memory usage  

 

The memory needed for each graph representation is presented below : 

Luxembourg 

Representation Memory Usage(Mbytes) 

Adjacency List       

Forward Star       

Dynamic Forward Star       

Packed-Memory Graph       

Table 16 : Luxembourg memory usage 
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Belgium 

Representation Memory Usage(Mbytes) 

Adjacency List        

Forward Star        

Dynamic Forward Star        

Packed-Memory Graph        

Table 17 : Belgium memory usage 

 

The 
Netherlands 

Representation Memory Usage(Mbytes) 

Adjacency List        

Forward Star        

Dynamic Forward Star        

Packed-Memory Graph        

Table 18 : The Netherlands memory usage 

 

Italy 

Representation Memory Usage(Mbytes) 

Adjacency List         

Forward Star         

Dynamic Forward Star         

Packed-Memory Graph         

Table 19 : Italy memory usage 

 

Germany 

Representation Memory Usage(Mbytes) 

Adjacency List         

Forward Star         

Dynamic Forward Star         

Packed-Memory Graph         

Table 20 : Germany memory usage 

Remarks .  

 For all the road networks, the theoretical analysis is confirmed. The adjacency list and 

the forward star representation need the minimum amount of memory to be stored, 

while the packed-memory graphs needs the largest amount of memory to be stored. 
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This is rational, since the packed-memory graph binds some empty slots of memory 

(holes) in order to achieve efficient updates on the graph. Dynamic forward star also 

binds empty slots and as a results uses more memory than the static forward star and 

the adjacency list 

 Although adjacency list and static forward star need exactly the same amount of 

memory to store the graph, the layout of the graph in memory in the adjacency list 

representation is random while in the forward star representation is as compact as 

possible. 

 In our implementation, forward star is implemented as a compressed packed-memory 

graph. That is to say, the empty cells are not uniformly distributed, but they are at the 

end of the data structure and as a result forward star is compact. For that reason, we 

consider that forward star uses exactly the same amount of memory as the adjacency 

list. 

 

6.2.3.2 Time performance (goodness_threshold = 1.0) 

 

The execution times refer to each of the stages of the plateau method, namely, construction of 

forward, backward tree and combined tree, plateaux finding and evaluation, construction of AG. 

The total execution time is also included in the following tables. Time is given in sec. 

 

Luxembourg . 

Time Performance (sec) 

Graph 
Representation 

Forward 
& 

Backward 
Tree 

Combined 
Tree 

Plateaux 
Finding 

Plateaux 
evaluation 

AG 
construction 

Total time 

 average average average average average average variance 
Adjacency List                                           

Forward Star                                           
Dynamic 

Forward Star 
                                          

Packed-
Memory Graph 

                                          

 

 

 

 

 

Table 21 : Execution times in Luxembourg road network for the 4 different graph representations 



90 
 

Belgium . 

Time Performance (sec) 

Graph 
Representation 

Forward 
& 

Backward 
Tree 

Combined 
Tree 

Plateaux 
Finding 

Plateaux 
evaluation 

AG 
construction 

Total time 

 
average average average average average average variance 

Adjacency List                                           

Forward Star                                           

Dynamic 
Forward Star 

                                          

Packed-
Memory Graph 

                                          

 

Table 22 : Execution times in Belgium road network for the 4 different graph representations 

 

 

The Netherlands . 

Time Performance (sec) 

Graph 
Representation 

Forward 
& 

Backward 
Tree 

Combined 
Tree 

Plateaux 
Finding 

Plateaux 
evaluation 

AG 
construction 

Total time 

 average average average average average average variance 
Adjacency List                                           

Forward Star                                           

Dynamic 
Forward Star 

                                          

Packed-
Memory Graph 

                                          

 

Table 23 : Execution times in the Netherlands road network for the 4 different graph 

representations 
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Italy . 

Time Performance (sec) 

Graph 
Representation 

Forward 
& 

Backward 
Tree 

Combined 
Tree 

Plateaux 
Finding 

Plateaux 
evaluation 

AG 
construction 

Total time 

 average average average Average average average variance 
Adjacency List                                            

Forward Star                                            

Dynamic 
Forward Star 

                                          

Packed-
Memory Graph 

                                           

 

Table 24 : Execution times in Italy road network for the 4 different graph representations 

 

Germany .  

Time Performance (sec) 

Graph 
Representation 

Forward 
& 

Backward 
Tree 

Combined 
Tree 

Plateaux 
Finding 

Plateaux 
evaluation 

AG 
construction 

Total time 

 average average average average average average variance 
Adjacency List                                             

Forward Star                                             

Dynamic 
Forward Star 

                                            

Packed-
Memory Graph 

                                            

 

Table 25 : Execution times in Germany road network for the 4 different graph representations 

 

Remarks . 

 The main outcome of this experimental study is that the forward star implementation 

achieves the best total time performance. In the second place, not far from the forward 

star, we meet the packed-memory graph, while adjacency list is in the last place. This 

superiority of the forward star is based on the fact that nodes and edges are stored in 

consecutive, non-overlapping memory segments that are scanned in maximum 

efficiency. Thus, processes such as the construction of the forward, backward tree and 
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the alternative route graph that require sequential accesses of nodes and edges,  are 

done in the least possible time. On the contrary, adjacency list’s execution times are 

inferior since the layout of the graph in the memory is random.  

 To be more specific, the packed-memory graph representation is almost 25% faster in 

query time than the adjacency list. Moreover the forward star representation is almost 

3% faster than the packed-memory graph representation. This superiority of the two 

data structures is due to the fact that, at the expense of a small space overhead, they 

achieve greater locality of references, less cache misses and hence, better performance 

in query time. 

 Although the total time is best for the forward star representation, as far as the middle 

stages of the algorithm are concerned, namely plateaux finding and evaluation, 

adjacency list seems to be better than all the other structures. These two stages does 

not access all the nodes sequentially, but “chains” of them. The starts of these chains 

are not necessarily consecutive, thus, a more random layout of the graph in memory 

may be more helpful. 

 The variance of the total time is getting larger as the map size increases. The pairs of 

source-target are more heterogeneous in larger maps (some of them are close enough, 

while some can be very remote) and as a result, the time execution may vary enough 

from query to query, leading to larger variance value. 

 Finally, the graph reading mainly for the forward star and the packed-memory graph 

representation is big enough, since the graph storing in the memory should be done 

properly using consecutive slots and use of arrays. 

 

Conclusion .  

Comparing the experimental results from the above tables, we conclude that the forward star 

implementation for our static graphs yields the best time performance. It requires, of course, 

more memory, but the query time is almost 30% better than in the adjacency list. Packed-

memory graph and dynamic forward star are also quite good alternatives for our static road 

networks. 

 

6.2.4 Time performance of plateau method with penalization of edges (goodness_threshold = 

1.0) 

 

In the following section, we present the time performance of the hybrid method and we make a 

comparative evaluation with the corresponding execution times of plateau method. The 

experiments have been done with goodness upper bound equal to 1.0 and with the use of 

adjacency list representation of the graphs. The results refer to the 1st approach of plateau 

method with penalization of edges. 
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Table 26 : Time performance of plateau method in comparison to the 1st hybrid approach 

 

Remarks . 

 We find out that the execution times of the hybrid method are significantly larger than 

those of plateau. Specifically, the increase is about 40%. This increase is due to the 

additional time needed in order to initialize the penalties of the edges and the 

additional time to penalize the edges of each chosen alternative route plus the edges 

due to the rejoin penalty applied. Since there is no limit to the number of times each 

edge can be penalized, some penalizations can be done multiple times leading to great 

time overheads. 

 

Conclusion . 

The 1st approach of hybrid method leads to improvement of the AG quality by about 5% 

compared to plateau method, while at the same time it leads to a time overhead of 40%. 

Consequently, we believe that this trade-off is not satisfactory enough and thus, plateau 

method is better on average. 

 

 

  
Times(sec) 

 

Map Method 

Forward 
& 

Backward 
Tree 

Combined 
Tree 

Plateaux 
Finding 

Plateaux 
evaluation 

AG 
construction 

Total 
time 

Total Time 
including 

graph reading 
& weight 

calculation 

Increase (%) 

Luxembourg 
plateau 0.063 0.008 0.007 0.001 0.009 0.088 0.743 

34.3 
hybrid 0.085 0.008 0.007 0.009 0.009 0.118 0.783 

Belgium 
plateau 0.919 0.122 0.177 0.041 0.090 1.349 12.954 

39.9 
hybrid 1.264 0.122 0.177 0.235 0.090 1.888 13.509 

Netherlands 
plateau 1.612 0.191 0.288 0.043 0.134 2.268 20.314 

36.7 
hybrid 2.194 0.192 0.290 0.288 0.135 3.099 21.157 

Italy 
plateau 4.656 0.588 1.126 0.140 0.409 6.919 67.384 

44.7 
hybrid 6.495 0.589 1.121 1.399 0.410 10.015 70.120 

Germany 
plateau 9.041 0.970 2.039 0.241 0.684 12.976 123.000 

45.3 
hybrid 12.546 0.977 2.055 2.587 0.687 18.852 125.460 
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6.2.5 Summary  

 

The main results of the experiments conducted are presented below in the corresponding 

categories: 

AG and alternative routes quality . 

 The 1st approach of the hybrid method turned out to better than plateau method and 

2nd hybrid method, for both goodness thresholds by about 5 to 10%. 

 The 2nd hybrid method achieved to add slightly better alternatives regarding the 

goodness criterion. 

Memory Usage . 

 Adjacency list and forward star representations used the least memory to store the 

graphs, while packed-memory graph required the most.  

Time performance . 

 Regarding the time performance depending on the graph data structure, for the same 

pairs of     queries, the forward star representation yields the best execution times. 

 Regarding the time performance of the three different methods, plateau method 

achieves the best results. 

 

Generally, plateau method, either alone or in combination with other methods is a meaningful 

method which exhibits superior performance compared to the performance of other methods in 

the field of alternative route planning used as reference from the paper [BDGS11]. 
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Chapter 7 

CONCLUSION AND FUTURE WORK 

This final chapter gives a short conclusion on the most important aspects of this thesis and 

reports the most significant results obtained by the experimental studies that have been 

performed. Also, a perspective for further work in this field of research is presented, trying to 

suggest possible directions that are worth to be taken in the future. 

 

 

 

7.1 Conclusion 

 

The main goal of this thesis is to provide an insight in the field of navigation regarding the aspect 

of alternative route planning in road networks. Apart from introducing some basic algorithms 

for alternative routes identification, such as k-shortest paths, disjoint paths, penalty method, 

our main contribution is to present the notion of admissibility, that is to say, the notion of 

alternatives that look more natural to humans. We used ways to evaluate alternative routes and 

metrics to measure the quality of the alternative route graph. Furthermore, we compared 

methods to compute AGs using plateau method and a combination of plateau method with 

penalty. Our experiments showed that the combination of plateau with penalty achieves the 

best quality for the AGs. However, plateau method has much better time performance. 

Moreover we examined the time performance within the scope of different graph data 

structures and we concluded that for our static real-world maps, forward star representation 

achieves the best results. To sum up, plateau method, either alone or in combination with other 

methods, is a meaningful method which exhibits superior performance compared to the 

performance of other methods in the field of alternative route planning used as reference from 

the paper [BDGS11]. 

7.2 Outlook 

 

The plateau method we implemented has a number of interesting directions for future work.  

Weight function . At this level, the edges weights are calculated once, in the beginning of the 

execution, are static and it is not possible to change without re-reading the graph. So, the cost 

function that is used to compute the weights of the graph can incorporate any of the known 

factors. It may be sensitive to both time and duration, can incorporate real-time of historical 
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traffic information, can take into account user preferences and can use financial information 

such as road pricing. 

Real-time Updates . Currently, our plateau implementation only supports static road networks. 

An improvement would be to implement dynamization techniques so as to incorporate node or 

edges updates that are caused, for example, by the opening of a road. These dynamizations 

techniques would be able to update the graph without re-reading the map from scratch. 

Speed-up Techniques . The basic time overhead in our implementation is introduced by the two 

Dijkstras running to form the forward and backward trees. Thus, it would be desirable to use a 

variation of Dijkstra’s algorithm so as to improve the time performance of this stage. These 

variations use special heuristics to explore the nodes or edges in a better order, or to terminate 

earlier, or to explore major roads only, or to explore outwards from source and destination 

simultaneously. They do this in order to run faster or to use less memory. It should be 

understood that plateau method of combining forward and backward trees to find plateaux is 

independent of how these trees were computed. So, if these variations, known as speed-up 

techniques, are applied, then plateau method can yield diverse alternative routes needing less 

running time or memory use. 

Metrics . Currently, we evaluate plateaux using totalDistance, averageDistance, decisionEdges, 

based on an objective function. But once we have reduced the number of plateaux to the most 

interesting ones by using goodness value, we can filter them in many other ways. For example, 

we may choose to order them based upon user preferences, such as motorways, fewer 

junctions, lower tolls, driving costs, and familiarity. 
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APPENDIX 

Appendix – Technical details and Implementation’s interface    

 

In this chapter of the appendix, we give some technical details useful for everyone that wishes 

to  use our C++ programs, set up the environment and execute them. Obviously, it is necessary 

to  have a C++ compiler in order to execute the programs. Note that we used the g++ compiler in 

a linux environment, so the instructions are given, provided that the setup is going to take place 

in a similar environment (see 6.1.1). 

First of all, both plateau and hybrid methods are separated into multiple header files which are 

necessary for the proper functionality of the program. If any of the files needed is missing, the 

program cannot be compiled and as a result executed. In these separate files, various C++ 

classes are contained, implementing the different stages of the algorithm, such as Dijkstra, 

BackwardDijkstra, Plateau etc. as well as the various data structures used, such as priority 

queues, graph representations etc. Note that these C++ files are part of “pgl” library which 

implements many algorithms and data structures in the wide field of route planning. Besides 

that, for a user that wishes to execute the code, it is necessary that the various header files are 

in the proper directories, as these are stated in the  include statements found in the first few 

lines of every file. Our implementations, apart from the files that already exist in pgl, are given in 

the following files : plateau.cpp (including main function), plateau.h, subgraph.h and a Makefile 

for plateau method and in files : plateau_penalty.cpp (including main function), penalty.h, 

subgraph.h and a Makefile for the hybrid method. Makefiles should be in the same directories 

with plateau.cpp and in plateau_penalty.cpp respectively. Apart from them, in order to compile 

the program, it is necessary to install boost library mainly for “random” and “program options” 

libraries. 

If no file is missing and everything is well suited in the right directories, the executable file is 

produced by executing the command “make” (being in the directory where Makefile is found).  

The executable a.out (as denoted in our Makefiles) can be now executed and give results. A user 

is able to run the program without having any further knowledge on the code. It is sufficient to 

execute the program, as follows, and simply gather the results. So, by running the executable, 

namely “./a.out”, one can see the line arguments needed. In our implementations, a typical 

execution would be : 

                                           

Where  

     [  --size   ]            number of queries to execute. Default : 1 
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     [ --numP ]        max number of alternatives to keep. Values>=1. Default : 1 corresponds  

to the shortest path. Default = 11 

    [ --graphtype ]  graph type. Adjacency List[0], PackedMemoryArray[1], Forward Star[2], 

Dynamic Forward Star [3]. Default : 0 

       [ --format ] map format. DIMACS10[0]. Default:0 

     [ --map ]        input map. The name of the map to read. Maps should  

                          reside in '$HOME/Projects/pgl/Graphs/DIMACS10/' and               

 should consist of 2 files, both with the same map name  

                          prefix, and suffixes 'osm.graph' and 'osm.xyz'.  

                          Default:'luxembourg' 

 

The aforementioned arguments list describes the use of each argument, and the possible values 

for execution. Note that the execution succeeds if the necessary map files are downloaded 

(possibly from http://www.cc.gatech.edu/dimacs10/archive/streets.shtml)  in the directory   

“$HOME/Projects/pgl/Graphs/DIMACS10/”. Note also that the pairs of     are chosen 

randomly by a random generator. 

The output of the program, either referring to AG and alternative routes quality or memory 

usage and time performance (depending on which of the two cases is uncommented) is given in 

a file denoted by the name of the in question map + “.txt” (i.e. luxembourg.txt). 

For users that want to go a bit further, that is to say, to understand to a greater extent the 

structure of the code and possibly change some upper bounds (i.e. δ, goodness_threshold, 

averageDistance upper bound etc.), we present the prototypes of the basic methods executed 

including their arguments. 

The basic method called from main function (in both implementations) is the : 

                (                              ) 

which takes as input, the graph   (or    ,      etc), the alternative route     , the source 

and the target nodes,   and   respectively, the maximum number             of alternatives 

to compute and a file to output the results.  

This method  contains the computation of  forward, backward, combined Trees, finds plateau 

paths and creates alternative subgraph (with proper function calls). 

 

In more detail, it calls : 

 runQueries<Dijkstra<GraphType> >( G, s, t); 

 runQueries<BackwardDijkstra<GraphType> >( G, s, t); 

http://www.cc.gatech.edu/dimacs10/archive/streets.shtml
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The runQuery method is implemented with use of templates so as to be called with 

Dijkstra template argument the first time and BackwardDijkstra the second. The 

arguments are the graph   and the source and target nodes    . 

 

Then, it instantiates a Plateau (or Penalty) variable called plateauFinder, 

 Plateau<GraphType> plateauFinder(G);  

and calls 

 plateauFinder.buildCombinedTree( s);  

Source node   is given as argument. 

 plateauFinder.findPlateaux(0.85,s,t); 

The argument list includes the goodness_threshold which now is set to 0.85 and the 

source and target nodes. 

 plateauFinder.evaluatePlateaux(nump,s,t,outfile); 

The arguments list includes the maximum number of alternatives to be computed, given 

as input to the program (now set to 0.85), the source   and target   nodes and a 

reference to the output file. 

 

Finally, it instantiates a Subgraph variable, 

 Subgraph< GraphType, subGraph> AG( G, subG); 

And then it calls 

 AG.createAlternativeGraph(); 

 

 

Note that change in the thresholds of δ, averageDistance can be done manually in the header 

files “plateau.h” or “penalty.h”. 
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