

Δημήτριος Α. Σταμούλης

Adaptation of the Berkeley Short-channel IGFET Model

Code Base for Atomistic BTI/RTN Simulation

ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ

ΣΧΟΛΗ ΗΛΕΚΤΡΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ

ΚΑΙ ΜΗΧΑΝΙΚΩΝ ΥΠΟΛΟΓΙΣΤΩΝ

ΤΟΜΕΑΣ ΤΕΧΝΟΛΟΓΙΑΣ ΠΛΗΡΟΦΟΡΙΚΗΣ ΚΑΙ ΥΠΟΛΟΓΙΣΤΩΝ

ΔΙΠΛΩΜΑΤΙΚΗ ΕΡΓΑΣΙΑ

Επιβλέπων : Δημήτριος Σούντρης

Επίκουρος Καθηγητής Ε.Μ.Π.

Αθήνα, Ιούνιος 2013

Δημήτριος Α. Σταμούλης

Adaptation of the Berkeley Short-channel IGFET Model

Code Base for Atomistic BTI/RTN Simulation

ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ

ΣΧΟΛΗ ΗΛΕΚΤΡΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ

ΚΑΙ ΜΗΧΑΝΙΚΩΝ ΥΠΟΛΟΓΙΣΤΩΝ

ΤΟΜΕΑΣ ΤΕΧΝΟΛΟΓΙΑΣ ΠΛΗΡΟΦΟΡΙΚΗΣ ΚΑΙ ΥΠΟΛΟΓΙΣΤΩΝ

ΔΙΠΛΩΜΑΤΙΚΗ ΕΡΓΑΣΙΑ

Επιβλέπων : Δημήτριος Σούντρης

Επίκουρος Καθηγητής Ε.Μ.Π.

Εγκρίθηκε από την τριμελή εξεταστική επιτροπή τη 13
η
 Ιουνίου 2013.

Αθήνα, Ιούνιος 2013

............................
Κιαμάλ Πεκμεστζή

Καθηγητής Ε.Μ.Π.

............................
Δημήτριος Σούντρης

Επίκουρος Καθηγητής Ε.Μ.Π.

............................
Ιωάννης Ξανθάκης

Καθηγητής Ε.Μ.Π.

...................................

Δημήτριος Α. Σταμούλης

Διπλωματούχος Ηλεκτρολόγος Μηχανικός και Μηχανικός Υπολογιστών Ε.Μ.Π.

Copyright © Δημήτριος Σταμούλης, 2013.

Με επιφύλαξη παντός δικαιώματος. All rights reserved.

Απαγορεύεται η αντιγραφή, αποθήκευση και διανομή της παρούσας εργασίας, εξ ολοκλήρου ή

τμήματος αυτής, για εμπορικό σκοπό. Επιτρέπεται η ανατύπωση, αποθήκευση και διανομή για

σκοπό μη κερδοσκοπικό, εκπαιδευτικής ή ερευνητικής φύσης, υπό την προϋπόθεση να αναφέρεται

η πηγή προέλευσης και να διατηρείται το παρόν μήνυμα. Ερωτήματα που αφορούν τη χρήση της

εργασίας για κερδοσκοπικό σκοπό πρέπει να απευθύνονται προς τον συγγραφέα.

Οι απόψεις και τα συμπεράσματα που περιέχονται σε αυτό το έγγραφο εκφράζουν τον συγγραφέα

και δεν πρέπει να ερμηνευθεί ότι αντιπροσωπεύουν τις επίσημες θέσεις του Εθνικού Μετσόβιου

Πολυτεχνείου.

Στη μνήμη της Γρηγορίας Αλιφέρη

Table of Contents

Abstract . viii

Acknowledgements . ix

List of Figures . x

1 Introduction . 1

2 Research Landscape . 3

2.1 Introduction . 3

2.2 Landscape of BTI modeling . 3

2.3 Mapping State-of-the-Art on the Landscape 6

2.3.1 One-time Analysis without Device Individuality 7

2.3.2 Transient Analysis without Device Individuality 11

2.3.3 One-time Analysis with Device Individuality 13

2.3.4 Transient Analysis with Device Individuality 14

2.4 Conclusions . 15

3 Tool Description . 17

3.1 Introduction . 17

3.2 BSIM Flowchart . 18

3.2.1 Data Structures . 19

3.2.2 Overall device structure - bsim4v6init.c file 19

3.3 Alterations to the Source Code . 22

3.3.1 Data Structures . 22

3.3.2 Overall device structure . 23

3.4 User Manual . 26

3.4.1 Normal Usage . 27

3.4.2 BTI without Initial Conditions . 27

3.4.3 BTI with Initial Conditions . 31

3.5 Conclusion . 32

vi

4 Verification Test Cases . 33

4.1 Introduction . 33

4.2 Phenomenological Verification . 33

4.3 Detailed Verification . 38

4.4 Validation of BTI impact . 43

4.5 Conclusion . 44

5 Conclusions and Future Work . 46

5.1 Conclusions . 46

5.2 Recommendations for Future Work . 48

5.2.1 Extension of the implemented framework to other Device Models . . 48

5.2.2 Transient BTI Simulations of Large Netlists on Multi-Processor Systems 49

References . 50

vii

Abstract

The aggresive downscaling of CMOS technology intensifies both time-zero and time-dependent
device variability. During the last years, extensive research on degradation effects has
demonstrated their importance for the reliability of downscaled devices. Two mechanisms
with an increasingly adverse impact on threshold voltage Vth variations are Bias Temper-
ature Instability (BTI) and Random Telegraph Noise (RTN). Accurate and user-friendly
simulation frameworks are crucial for the development of appropriate mitigation techniques.

During the last years, an atomistic model that incorporates the transient nature of BTI/RTN
mechanisms has been presented. However, this approach is only implemented on top of com-
mercial tools that feature reduced flexibility and increased CPU times. The current thesis
proposes the adaptation of the BSIM source code, in order to include the atomistic BTI/RTN
model. Using an open source SPICE distribution as a concept vehicle, we developed a SPICE
simulator that seamlessly integrates BTI and RTN in transient simulations. The resulting
implementation is far more elegant than previous attempts, both from the point of the devel-
oper (a single code base) and that of the end-user (no wrapper scripts; only four parameters
added to the modelcard). The correctness of the implementation presented herein will be
verified against already published results.

Keywords: Berkeley Short-channel IGFET Model (BSIM), Bias Temperature Instability
(BTI), Gate Stack Defects, Random Telegraph Noise (RTN), Reliability, Simulation Pro-
gram with Integrated Circuit Emphasis (SPICE), Transient Circuit Simulations

viii

Acknowledgments

First and foremost, I would like to thank my thesis supervisor Prof. Dimitrios Soudris. I am
thankful for his valuable guidance that he gave me in working upon my thesis. His advices
were really helpful during my search for graduate studies. I am grateful for his support and
trust expressed through his recommendation letters. Being part of his research team was
my best academic experience at NTUA.

During my thesis research, I was fortunate to cooperate and interact with Dimitrios Rodopou-
los. I would like to sincerely thank him for his mentorship and support. His insightful
feedback during our meetings helped me tremendously to improve this current work. His
thoughtful and rigorous remarks had always motivated me to push myself to work harder.
Moreover, his mentality and his organizational skills will be always useful and inspiring
experiences for my future.

I would like to acknowledge Prof. Kiamal Pekmestzi and Prof. John P Xanthakis for serving
on my thesis committee. I would like to thank Prof. Nectarios Koziris and Dr. Konstantinos
Nikas for their collaboration during the MILE project. From Microlab, NTUA I would
also like to thank Harry Sidiropoulos and Dr. Kostas Siozios for generously sharing their
experience with FPGAs and Embedded Systems.

I give my special thanks to Katerina Mousteraki for her enjoyable support and cheering me
up whenever I needed it. I also thank all my friends whom I met during my time at NTUA.
Yannis Chatzimichos, Evangelos Nikoloudakis, George Pavlakos, Stratis Skoulakis, Costas
Tokas and Nikolaos Tsiamitros have been great friends and colleagues.

I find myself fortunate to have the guidance of Anastasios and Yannis Stamoulis. I would
like to thank them for ours discussions covering a wide range of subjects and for sharing
their experiences with me. Their advices taught me to be an honest, critical and respectful
man.

Finally, my very special gratitude goes to my father Anastasios Stamoulis, my mother
Anastasia Aleiferi and my brother Thomas Stamoulis for their unconditional love, support,
and wisdom. I am really blessed to have parents who dedicate their lives for the happiness
of their children.

ix

List of Figures

2.1 Expected threshold voltage degradation in devices of (a) older and (b) modern
technologies [1] . 5

2.2 A systematic classification describing the landscape of BTI modeling 6

2.3 SPAF method, as presented in [2] . 7

2.4 Area-delay curve for the simulated benchmark used in [3] 8

2.5 NBTI-aware exploration framework used in [4] 8

2.6 Graphical representation of the SNM as presented in [5] 9

2.7 Setup of BTI simulations as presented in [6] 9

2.8 The Verilog-A source representing NBTI degradation under temperature vari-
ation [7] . 10

2.9 Reliability simulation framework with Virtuoso UltraSim or RelXpert, as pre-
sented in [8] . 11

2.10 Several stress patterns, where the final degradation depends on the stress
history[9] . 12

2.11 Simulation flow, as presented in [9] . 12

2.12 Simulation flowchart, as presented in [10] . 14

3.1 BSIM device hierarchical approach . 18

3.2 BSIM flowchart - Setup time . 21

3.3 BSIM flowchart - Run time . 21

3.4 BSIM flowchart - BTI alterations . 22

3.5 BTI simulation flowchart - Run time . 25

4.1 Relaxation transient results as presented in [11]: (a) Typical VTH transients
after DC stress and (b) Histograms of emission times extracted from 100 VTH

relaxation transients . 34

4.2 Simulation results for trelax = 10nsec : (a) 5 Typical VTH transients and (b)
Histograms of emission times extracted from 100 VTH relaxation transients,
fitted with the equation 2 of [11] . 36

4.3 Simulation results for trelax = 1msec : (a) 5 Typical VTH transients and (b)
Histograms of emission times extracted from 100 VTH relaxation transients,
fitted with the equation 2 of [11] . 36

x

4.4 Simulation results for trelax = 1sec : (a) 5 Typical VTH transients and (b)
Histograms of emission times extracted from 100 VTH relaxation transients,
fitted with the equation 2 of [11] . 37

4.5 Simulation results for trelax = 10sec : (a) 5 Typical VTH transients and (b)
Histograms of emission times extracted from 100 VTH relaxation transients,
fitted with the equation 2 of [11] . 37

4.6 Probabilities of Trap 1. The Runtime Pc and Pe values of our implemented
framework and of the reference tool [10] are almost identical. 40

4.7 Probabilities of Trap 2. The Runtime Pc and Pe values of our implemented
framework and of the reference tool [10] are almost identical. 40

4.8 Probabilities of Trap 3. The Runtime Pc and Pe values of our implemented
framework and of the reference tool [10] are almost identical. 41

4.9 Probabilities of Trap 4. The Runtime Pc and Pe values of our implemented
framework and of the reference tool [10] are almost identical. 41

4.10 Delay measurements of the multiplier output for tsimulation = 500nsec : (a)
Results of both simulations with and without BTI degradation and (b) Dis-
tributions extracted from these delay measurements per case. 44

xi

Chapter 1

Introduction

As the device dimensions decrease, adverse degradation effects emerge for many device

parameters. Quantities that were considered constant in devices of older technologies, now

display flunctuations. Accurately simulating these fluctuations, is of vital importance for

researchers and designers, as it will trigger all the appropriate mitigation techniques that

will guarantee the reliability of modern electronics. A device parameter that encounters

important variability threats is the threshold voltage Vth of a MOSFET transistor.

Two mechanisms responsible for Vth variations are Bias Temperature Instability (BTI) and

Random Telegraph Noise (RTN). Several models can be found in related literature. A novel

approach is the atomistic BTI model. This model incorporates the stohastic properties

of individual gate oxide defects and realistically captures their transient behaviour. Thus,

transient simulation approaches has been enabled. In the context of the current thesis, a

SPICE-based BTI/RTN simulation framework will be created. The implementation flow,

as well as the simulation results of the inspected examples, will be presented within the

following Chapters.

The next Chapter depicts the state of the art on the simulation of Bias Temperature Instabil-

ity (BTI). Different BTI models will be presented. Moreover, the landscape of BTI modeling

will be categorized into several levels of classification. Various simulation approaches will

be then reviewed and properly classified. Thereby, any insufficiencies observed in the state

of the art will be revealed.

In Chapter 3, the simulation tool will be described. The selected open source SPICE distri-

bution and its MOSFET transistor models will be extensively explored. More specifically,

all the Vth evaluation steps during setup and at run time will be pointed out. That way, it

will be demonstrated where all the BTI/RTN-related commands and data structures should

1

be added. In addition, a brief user manual of the implemented simulation framework along

with a descriptive usage example will be provided.

Next, in Chapter 4 the correctness of the BTI simulation tool will be verified against al-

ready published results. For that purpose, phenomenological and detailed validation will

be demonstrated by inspecting representative examples. The results of the selected test

cases will be properly presented and will be compared to results of related state-of-the-art

simulation frameworks. Moreover, the verification of BTI/RTN impact will be investigated

by simulating an array multiplier with and without the BTI/RTN effect.

Finally, the last Chapter lists a series of conclusions from the work presented herein. The

potential for future work will be also pointed out.

2

Chapter 2

Research Landscape

2.1 Introduction

The current Chapter illustrates the state of the art on the simulation of Bias Temperature

Instability (BTI) and Random Telegraph Noise (RTN). During the last years, research on

the BTI/RTN physical principles has demonstrated its importance for the reliability of

aggressively downscaled devices. A model that realistically captures the impact of BTI/RTN

is required to achieve reliable designs. Designers are asked to meet certain lifetime reliability

specifications. Accurate simulation frameworks are necessary for the development of proper

mitigation techniques. Consequently, a particular BTI/RTN model would not be sufficient

on its own. It should be followed by an accurate and user-friendly simulation tool.

Several BTI/RTN models have been presented, and therefore various simulation approaches

exist and should be reviewed. In the following Section, we will employ a systematic classifi-

cation to produce the state-of-the-art landscape. The resulted framework will be used as a

guideline in order to map prior art related to BTI/RTN simulations. Having addressed the

above subjects, we will provide a summary of what is missing from the state of the art. The

intention of this thesis is to provide meaningful and novel contribution, in order to complete

the insufficiencies observed in the state of the art.

2.2 Landscape of BTI modeling

In this Section we will present the landscape of BTI modeling. The absence of a single,

unified BTI model yields a heterogeneous landscape to be explored. Consequently, we have

3

to wonder through different BTI simulation approaches. We will classify all these state-

of-the-art approaches into several levels of categorization. In this way, our state-of-the-art

categorization will cover all relevant aspects, without suppressing hybrid works.

To identify the initial step of our methodology, it is important to reflect on the degradation of

a device throughout its lifetime. We notice that devices of older technologies exhibit uniform

degradation [1]. Therefore, older simulation approaches could assume a similar behavior of

all devices under the same operating and stress conditions. However, the downscaling trend

in device dimensions resulted in extensive variability during the device lifetime. A single

device is not representative of the way all devices of the same technology behave. As a

consequence, a fundamental criterion for the first level of our classification is the device

individuality of the implemented BTI model.

If we employ the first splitting criterion during state-of-the-art readings, we come across a

notable observation : The majority of the reviewed works that do not take device individu-

ality into consideration are based on reaction and diffusion mechanisms. More specifically,

they are founded upon the Reaction-Diffusion (RD) model [12]. Since the RD model is one

of the predominant approaches towards BTI, a brief presentation is required here.

The Reaction-Diffusion model is mainly used for the explanation of NBTI. Under the neg-

ative bias condition (i.e. VGS = −VDD), Si-H bonds gradually break. Interface traps are

generated as hydrogen diffuses toward the gate. Carriers are trapped in the broken bonds

and the gate drive current is reduced. Thus, the NBTI phenomenon causes a gradual in-

crease in the Vth value. The NBTI relaxation phase is accordingly attributed to diffusion

phenomena. When no stress condition is present, hydrogen is expected to diffuse back and

anneal some of the broken bonds.

According to the RD model, the change in the threshold voltage due to the increase in

interface charge can be given by [13]:

∆Vth(Eox, t) = (1 +m)
qNIT (Eox, t)

Cox

where m is a constant representing the equivalent Vth shift due to mobility degradation for

4

a given technology. The number of interface traps NIT can be described by several different

equations, depending on the form of the detached hydrogen (i.e atoms, molecules, ions). For

the dominant case of hydrogen atoms, NIT is given by [14]:

NIT =

√
kFN0

2kR
(DHt)

1/4

If we combine the two equations above, we can easily have the 1/4 exponent dependence

in threshold voltage shifts throughout the device lifetime. But such an expected threshold

voltage degradation can mainly be verified in devices of older technologies, which exhibit

uniform reliability behaviour (Figure 2.1a). One the contrary, RD based approaches are

deemed unrealistic for modern downscaled devices (Figure 2.1b). From the latter observa-

tion it becomes apparent that the splitting criterion regarding device individuality is quite

relevant for our classification of the state-of-the-art.

Fig. 2.1: Expected threshold voltage degradation in devices of (a) older and (b) modern
technologies [1]

A novel BTI model that captures the time-dependent variability not only at a circuit level,

but more extensively at the device level, is the atomistic BTI model presented in [1]. This

approach is based on the stohastic properties of individual gate oxide defects. Each par-

ticular FET device has a number of defects. Each one of these traps, that is characterized

by a set of time constants, can be either occupied or not. By monitoring these occupancy

transitions, the impact on FET operation under actual circuit workloads can be properly

modeled. Thus, this approach incorporates the time-dependent variability of degradation

mechanisms such as BTI and RTN. Note that our implementation is founded upon the

5

atomistic BTI model. More details and related works will be reviewed within the following

Sections.

Having covered possible instantiations of BTI models in terms of device individuality, we

assess prior work in terms of the actual reliability analysis tool. During prior work readings,

we come across different simulation approaches. In some cases, the expected threshold

voltage degradation is precomputed and added as a known Vth shift before the actual circuit

simulation [13]. This means that any consequent simulation approach will be unable to follow

the degradation mechanisms in a transient way. Thus, another interesting classification

criterion is whether the BTI analysis that is performed is transient or not.

The outcome of our classification is demonstrated in Figure 2.2. The subdomain that is the

residence of the current thesis is highlighted in red.

BTI Modeling

With device
Individuality

Without device
Individuality

Transient
Analysis

One-time
Analysis

Transient
Analysis

One-time
Analysis

Fig. 2.2: A systematic classification describing the landscape of BTI modeling

2.3 Mapping State-of-the-Art on the Landscape

In the current Section, we will be mapping specific papers/works from the literature on the

classification domains that have been presented in the previous Section. Therefore all the

reviewed approaches will be accordingly classified into the four categories appearing as the

leaves of the Figure 2.2.

6

2.3.1 One-time Analysis without Device Individuality

A representative work that is based on one-time BTI simulations is [13]. The utilized circuit

simulation software is HSPICE [15]. Several combinatorial circuits were tested and the

impact of NBTI on the performance degradation was evaluated. An important simplification

is that the threshold voltage degradation (∆Vth) due to NBTI was precomputed before the

SPICE simulation and no time-dependent view of BTI is provided. The Vth variation was

represented as an additional voltage source to the gate of each PMOS transistor. Reaction-

Diffusion (RD) model is used for these ∆Vth values to be computed. For a given signal

switching probability, the ON-time (VGS = −VDD) is computed. Using this total stress time

the ∆Vth of each PMOS transistor is calculated.

By studying this work [13], we can make one major observation: Only the total stress time

is taken into consideration. Hence, the computed threshold voltage degradation does not

properly incorporate the effect of recovery, even though it is proved to have a significant

effect on the overall NBTI impact. Such a result will be valuable if used and interpreted

only as the worst case of the NBTI effects. Otherwise, if used as a design criterion, it can

lead to overly pessimistic NBTI estimation and over constrained circuits [3].

Fig. 2.3: SPAF method, as presented in [2]

A work that targets to properly address

the aforementioned flaw is [2]. This work

aims to extend the classical RD model to

an analytical model that captures the phys-

ical effects of multiple stress and relaxation

phases. Unlike previous works where the

RD models are restricted to a single stress

cycle followed by a single relaxation cycle

[16] [17], this work provides an analytical solution for the first two cycles, as well as for

all the subsequent phases. The Signal Probability and Activity Factor (SPAF) method is

presented. The concept of signal propability (SP) is therefore introduced. All different input

signals are treated as random waveforms. These waveforms are converted into equivalent

7

deterministic periodic rectangular signals. More specifically, a random waveform with signal

probability equal to SP is converted into a periodic rectangular waveform with the same SP

value (Figure 2.3).

Fig. 2.4: Area-delay curve for the simulated
benchmark used in [3]

The researchers of the above work used

their SP method in [3], in order to compute

the delay degradation of several ISCAS85

and LGSYNTH benchmarks. The SPAF

method is used to convert the probabilistic

waveforms of the various nodes into deter-

ministic periodic signals with the same SP

values. The threshold voltage degradation

of all PMOS transistors is computed and the

gate delays are chatacterized as a function of SP. The computed delays are used in the timing

library, instead of the nominal values. The NBTI simulation results have been extended to

NTBI-aware technology mapping testcases. Both worst-case NBTI and SP-based synthesis

have been performed. For a particular benchmark and a selected target delay, the SP-based

requires 15% less area compared to the worst-case NBTI, as shown in Figure 2.4. This result

corroborates our aforementioned observation that a worst case NBTI criterion can lead to

over-constrained circuits.

Fig. 2.5: NBTI-aware exploration framework
used in [4]

We should point out that the SP method [2]

is used as a valid assumption in other simu-

lation approaches. Such an example is a pair

of works of A. Calimera et al. [4][5]. Both

works examine the usage of power-gating as

a technique to reduce the effects of NBTI.

On the one hand, the implemented explo-

ration framework in [4] is a SPICE-based

flow (Figure 2.5). In the context of our

currect classification, we will concentrate on

8

those blocks that are related to NBTI simulation. More specifically, a pre-stress simulation

is performed for the threshold voltage degradation to be computed. During the post-stress

simulation, each ∆Vth value is represented as an negative voltage source to the gate of each

PMOS transistor.

Fig. 2.6: Graphical representation of the
SNM as presented in [5]

On the other hand, the usage of power-

gating in [5] is focused specifically on SRAM

cells. Instead of delay degradation that was

inspected before, this work uses the signal-

to-noise margin (SNM) as the simulation

metric. The total degradation of the SNM is

extracted from a SPICE-based framework.

Once again the SP method is used for the

signal statistics of the stored bits to be converted into equivalent deterministic periodic

rectangular signals. Depending on these resulted signals and the operations conditions, the

∆Vth is extracted. This threshold voltage degradation is emulated with additional voltage-

controlled voltage source on the gate terminal of each pMOS transistor. SPICE DC simula-

tions are performed to the new NBTI-aware netlist. SNM is numerically extracted by using

the graphical method illustrated in Figure 2.6. By comparing the simulation results without

and with power-gating, the latter technique seems to reduce the degradation of read/write

stability of a SRAM cell.

Fig. 2.7: Setup of BTI simulations as
presented in [6]

A BTI simulation approach that shares a

similar goal with our work is [6]. The inten-

sion of the researchers is quite self- explana-

tory: “Research works on NBTI have been

active only within the communities of de-

vice and reliability physics [..] The compact

model of NBTI bridges the gap between the

technological community and CAD tool de-

velopers” [6]. The predictive NBTI model, a SPICE compatible model is presented. In

9

terms of BTI simulation, the selected simulation setup is a 2-input NAND gate, as shown in

Figure 2.7. Note that the presented results are extended to design techniques exploration.

Different cases of Vdd, Vth, duty cycle and gate size tuning have been simulated. Although

several claims about the models scalability have been made, no other simulation testcases

have been presented throughout this work.

The aforementioned predictive NBTI model is used in [18]. This work exhibits similarities

with the work of A. Calimera et al.[5] that is presented in the previous page. More specif-

ically, stability parameters (SNM and WNM) are selected as the evaluation metrics and

the same graphical method (Figure 2.6) is therefore used as before. Once again, PMOS

transistor models with shifted threshold voltage due to NBTI were added in the HSPICE

netlist. However, the basic difference is that the performed simulations are not limited to

a specific SRAM cell configuration, but the abstraction level is expanded to whole cache

memory units. Different power saving strategies and SRAM cells based cache configurations

were simulated and the impact of NBTI is evaluated.

Fig. 2.8: The Verilog-A source representing
NBTI degradation under temperature

variation [7]

Another pair of noteworthy approaches are

the works of Seyab and Said Hamdioui

[19][7]. Note that the RD model as-

sumes that NBTI degradation is temper-

ature dependent[20]. However, the re-

searchers make an interesting observation

that NTBI temperature dependent sub-

processes and the temperature increment in scaling techologies were not fully investigated

[7]. Therefore, they use the formulas of each RD model sub-process as presented in [21]

(i.e. bond breaking and recovery rates, atomic to molecular H conversion rate and H species

diffusion in oxide layer) and they refine them in order to highlight their temperature depen-

dence. As far as the NBTI simulation is concerned, the NBTI impact is emulated with a

temperature dependent voltage source on the gate terminal of each pMOS transistor (Fig-

ure 2.8). The output value Vm of the module is defined by the 4 temperature dependent

formulas and the modified netlist to be simulated in HSPICE.

10

2.3.2 Transient Analysis without Device Individuality

Up to this point we have seen that the majority of the approaches on BTI modeling, consist

of two basic parts: (i) an evaluation of an analytical transistor degradation model as a

pre-simulation step and (ii) a one-time (usually SPICE-based) simulation of the modified,

NBTI-aware netlist. Although such a type of processes could be very fast, it has a major

drawback that should be pointed out: “The transistor aging calculation is only based on

DC stress voltages; time-varying stress voltages are not included” [22]. Simulators and

commercial tools such as ELDO and RelXpert, use short transient simulations to solve

this problem. Related transient-simulation approaches will be presented within the current

Subsection.

Fig. 2.9: Reliability simulation framework
with Virtuoso UltraSim or RelXpert, as

presented in [8]

A representative example of commercial tool

is RelXpert [8]. From the available doc-

umentation [8], we quote: “RelXpert will

drive the commercial SPICE-like simulator

for the lifetime and degradation computa-

tions. RelXpert will generate a new netlist

allowing an aged circuit simulation”. Its

simulation flowchart is illustrated in Figure

2.9. More specifically, to simulate the NBTI

effects, RelXpert is linked to a SPICE simulator, which reads in the SPICE circuit netlist

and generates the voltage and current waveforms of all MOSFETs. The reliability tool then

uses these waveforms to evaluate the corresponding age for each device. Based on this com-

puted age effect, the degraded model is provided into the SPICE simulator for second-pass

circuit simulation.

Another commercial option from Cadence R© Design Systems, Inc. is Virtuoso R© UltraSim [8].

UltraSim is a Fast SPICE isomorphic simulator. It has a similar simulation flowchart with

RelXpert (Figure 2.9). Its fundamental difference compared to RelXpert is that UltraSim

does not use a simulated SPICE circuit netlist as an input to generate reliability effects. All

11

the reliability parameters are instead built inside its own simulation framework so it can

directly account for NBTI effects.

A noteworthy NBTI simulation approach that aims to analyze both temporal and spatial

reliability variations is [22]. In order to reduce transient simulation times without sacrificing

simulation accuracy, the framework uses an automatic step-size algorithm. The reliability

behaviour of the simulated circuit is evaluated through a vector of performance parameters

P i, where exponent i refers to each ti time step. The total degradation due to NBTI is

expressed as the integral equation of ANBTI , which is a function of design, environmental

and process-related parameters. Moreover, these technology parameters may not be properly

defined by their nominal values, as they exhibit a process-dependent variability. A method

is therefore presented for this variability to be mapped on the aforementioned P i vector.

Fig. 2.10: Several stress patterns, where the
final degradation depends on the stress

history[9]

Based on the RelXpert simulation flowchart

presented above, we can make an impor-

tant observation: For each simulation step,

no memory of the stress history is taken

into consideration between the independent

subsequent transient steps. However, it is

crucial to incorporate the past stress of a

device when considering the evolution of

BTI degradation. Such an argument is ade-

quately demonstrated in Figure 2.10.

Fig. 2.11: Simulation flow, as presented in [9]

An approach that aims to properly adress

the aforementioned flaw is [9]. In this work,

it is assumed that the impact of degrada-

tion could be quantifiable in an encapsu-

lated form. Therefore, the degradation D(t)

is evaluated by the convolution of the input

function g(t) and the response function h(t)

of this degradation mechanism. The pre-

12

sented model is applied to RelXpert and the added steps are shown as the shaded blocks

of Figure 2.11 The SPICE simulation that is driven from RelXpert generates the voltage

waveforms for all transistors in the circuit. The total age computed without stress history is

substituted by the convolution-based result. In addition, the corresponding delay correction

is provided for the following simulation steps.

2.3.3 One-time Analysis with Device Individuality

As we have already mentioned, with the CMOS downscaling trend, a single device may

not be still representative of all devices of the same technology. Consequently, it is crucial

that a BTI approach accurately incorporates this device individuality. A notable work that

aims to capture the time-dependent variability of degradation mechanisms is [23]. In this

work, a “defect-centric” approach is used that is founded upon the atomistic BTI model [1].

The total Vth degradation due to BTI is modeled from the occupancy transitions of gate

oxide defects in each particular FET. That way, the time-dependent variability is taken into

consideration at both the device and circuit level, and the device individuality is therefore

properly emerged.

The main differentiator of [23] from other state-of-the-art atomistic BTI approaches is the

methodology used for the Vth shift due to BTI to be evaluated. Unlike other transient simu-

lation atomistic approaches that will be presented in the following Subsection, in this work

an analytical description of defects using capture/emission time (CET) maps is proposed.

These CET maps describe the probability density function of capture and emission times

for both high (H) and low (L) voltage levels. The occupancy probability for AC stressing

is calculated for a given frequency f , duty factor DF and stress time tstress. The tstress

dependency of the occupancy probability formula indicates the one-time analysis nature of

this methodology.

By multiplying the original CET map with this occupancy probability map a CET-active

map is constructed. This resulting map describes the distribution of the active traps after

the corresponding stress waveform. By numerical integrating of the CET-active map, the

13

ratio of occupied traps and therefore the mean number of captured traps can be obtained.

The total ∆Vth for this given mean number of traps NT is evaluated. The Vth shift of each

transistor is provided to a SPICE level simulator. The circuit under test is SRAM cells and

the performance metric is the SNM degradation.

2.3.4 Transient Analysis with Device Individuality

As it was indicated at our systematic classification (Figure 2.2), this Subsection is the

residence of the current thesis. Thus, any other works that could be classified here, share

similar goals with our implementation. Two representative examples of a novel transient

BTI simulation approach with device individuality are [10] and [1].

Those approaches are founded upon the atomistic BTI model [1]. By properly porting

the stochastic nature of individual oxide defects into commercial circuit simulation tools,

the proposed framework realistically monitors the occupancy transitions and their time-

dependent variability impact on FET operation during the circuit simulation. Moreover, the

occupancy probability formula is dependent on the adaptive time-step of every simulation

phase. Thus, the transient nature of this approach is quite clear. In addition, this probability

is also correlated with the imposed workload at any given time and the workload dependency

is therefore properly incorporated.

Fig. 2.12: Simulation flowchart, as presented
in [10]

More specifically, the simulation flowchart of

[10] is illustrated in Figure 2.12. A control

script (Perl script) is used to annotate the

netlist.cir file with defects. The anno-

tated list is simulated using the Cadence R©

Virtuoso R© Spectre R© commercial simulator.

A proper Verilog-A model is used for the

transient part of the BTI model to be implemented. Note that this work will be used as one

of the reference tools for the correctness of our implementation to be verified.

14

2.4 Conclusions

From the latter classification, we can make several observations on the landscape of BTI

modeling. First of all, we can easily notice that in many approaches the Vth variation is

emulated with a voltage source on the gate terminal of the transistor. The degradation due

to BTI is therefore precomputed before the actual circuit simulation. As a result, only the

impact of a predefined BTI shift is actually simulated and the transient evolution of the

BTI effect is not fully captured.

In many cases, we observe several insufficiencies that are related to the analytical methods

used to represent the stress applied on a device. Besides their computational complexity

during the preprocessing stage of ∆Vth evaluation, many of these statistical methods average

out the input signal and therefore cannot accurately trace the workload dependent variability

at run time. Another important observation is that in the majority of state-of-the-art

works no memory of the stress history is taken into consideration between the independent

subsequent stress phases. In addition, we note that the majority of these methods are limited

to NBTI and models that simultanesouly include the PBTI or the Random Telegraph Noise

(RTN) effects are extremely rare.

Furthermore, as we have already pointed out the uniform reliability behaviour of devices of

older technologies cannot be now taken as an efficient assumption for modern downscaled

devices. As a consequence, an individual device may not be representative of the way all

devices of the same technology behave. In the latter point of view, the atomistic BTI

model seems a better option over the RD model for the BTI effect to be properly ported to

transistor models in the sub–100nm regime, such as the BSIM4.6.0 model [24].

More specifically, as far as the atomistic BTI approach with transient analysis is concerned,

we can make several noteworthy observations. It is important that both the presented

related works realistically capture the workload dependency under actual, irregular circuit

workloads. Notice that the defects are characterized by widely distributed time scales. Thus,

these approaches incorporate not only NBTI, but PBTI and RTN as well.

Nevertheless, the interface of these two frameworks is complicated because of the several

15

heterogeneous source layers (i.e. Perl scripts, Verilog-A BTI models), that are separated

from the simulation software. As a consequence, the BTI initialization cannot take place

during the setup phase of the actual simulator. Therefore, an impractical presimulation

phase is necessary for each FET device to be annotated with BTI parameters. Moreover,

these models are built on the top of commercial tools. Although industrial tools usually

constitute an accuracy guarantee, their usage could be a constraint in cases where access to

such costly software options is not available.

The proposed framework of this current work maintains all the aforentioned strenghts of the

representative atomistc BTI approaches with transient analysis. At the same time, it aims

to provide a straight-forward BTI-to-simulator interface. To this end, the transient part of

the atomistic model is embedded in the state-of-the-art BSIM4.6.0 transistor model [24].

Thus, a computationally feasible and user-friendly simulation tool will be developed. More

details on the implementation and its usage will be provided within the following Chapter.

16

Chapter 3

Tool Description

3.1 Introduction

The purpose of this Chapter is to describe the simulation tool where the Bias Temperature

Instability (BTI) model has been incorporated. In order to enable maximum flexibility

during development stages, an open source version of the SPICE class of programs was

selected, namely ngspice [25]. Ngspice is a general-purpose circuit simulation framework,

publicly available through [26].

The selected device that will be used as an implementation framework is the Berkeley Short-

channel IGFET Model (BSIM) [27]. BSIM is a family of MOSFET transistor models that

represent the behavior of devices found on an IC. The BSIM model simulates accurately a

great variety of physics-based phenomena, including second-order effects such as channel-

length modulation and subthreshold conduction. More specifically, the BTI model will

be ported to the BSIM4.6.0 model. BSIM4.6.0 is the latest extension of BSIM that was

developed to address the MOSFET physical effects into sub-100nm regime [24].

Within the following Section we will present the BSIM model and its implementation de-

tails. Therefore, the target code base involves only the BSIM functionality, rather than

the functionality of ngspice as a whole. A complete BSIM flowchart will be presented in

order to examine all the simulation steps during setup and run time. The BSIM to SPICE

interface will also be described. Thereby it will become obvious where all the BTI steps

should be added. All these code alterations will be described. Having addressed the above

subjects, the current Chapter will be completed with a brief user manual of the developed

simulation tool.

17

3.2 BSIM Flowchart

In this Section we will present the functionality of the existing BSIM model. We will inspect

the behavior of BSIM as a simulator object. Hence we will have to meticulously examine how

the SPICE simulator manipulates each type of object. A model is a second level construct

which the simulator manipulates [28]. Functions that will create, delete or set the model

parameters should be provided. In addition, instances are treated as instances of a model

and thus third level objects. They also should be described by a set of functions that will

create, delete, initialize them or define their behavior. We can observe that such a set of

device specific routines should be implemented for both a model and an instance.

SPICE simulator

BSIM device

Data Structures (3.2.1)

Model & Instance structures

Parameter descriptors

Overall device structure (3.2.2)

Front end

Input/Output routines

Setup TIme routines

Run Time routines

Fig. 3.1: BSIM device hierarchical approach

According to the available documentation

[29], each device is described by a structure

which contains three types of pointers: (i)

Pointers to functions which provide device

specific operations, (ii) pointers to parame-

ter descriptors and (iii) pointers to functions

necessary at the higher SPICE and user-

interface levels. This data structure should

follow certain rules and specifications. A

useful advice from the related documenta-

tion is to avoid building a new device from

scratch [29]. It is obviously more efficient to

implement it by walking through the framework of an existing device. By following this

approach all these device specifications are directly met.

In the following subsections we will extensively demonstrate the BSIM device. All the de-

clared data structures and their parameters will be presented. In addition, the functionality

of basic BSIM routines will be illustrated. An indicative hierarchy of the BSIM abstraction

levels is given in Figure 3.1. This hierarchical approach will be also followed at the next

section where all the code alterations will be presented.

18

3.2.1 Data Structures

Model and Instance structures - BSIM header file

Like all other SPICE devices, BSIM should have its internal data structures defined. There

are two required structures : (i) one for the device model and (ii) one for the instance. Both

of them should be properly declared inside the header file and follow a certain format. The

implemented header file of BSIM is bsim4v6def.h . Inside this code file two struct variable

types are defined. These are the BSIM4v6model and BSIM4v6instance records for the device

and the instance structure respectively.

In order to be connected to its instances, the model structure contains some initial pointer

entries. Apart from these standard entries, the model parameters that are common among

different devices should be properly declared. For example, if a number of devices are alike

to have common substrate doping concentration, such a model parameter should be declared

inside the BSIM4v6model record. The instance structure also follows a similar format. There

are its specific entries followed by all the needed instance parameters.

Parameter descriptors - b4v6.c code file

The implementor should provide an adequate description of all the declared parameters.

Hence the next pair of structures that is complementary to the the aforementioned pair is

the parameter descriptor arrays. These arrays are properly defined inside the b4v6.c file.

For each included parameter, they provide information needed by the simulator routines.

For example, the data type of a variable is set and also it is defined whether it is an input

or an output variable.

3.2.2 Overall device structure - bsim4v6init.c file

The next stage is to examine the overall device structure. This structure contains informa-

tion required from the front-end interface and pointers to all the device routines. When a

certain operation needs to be performed on the device, this overall structure identifies the

19

specific subroutine to be called. There are lot of different functions which perform certain

tasks. For example, functions are provided to set parameters, to delete a model from a

circuit or to initialize an instance. We should point out that not all these routines will be

extensively presented in this thesis.

Both in terms of modeling and behavior, we observe that our implemented mechanism is

responsible only for threshold voltage fluctuations. This means that we should focus on

how SPICE computes the Vth value. We will try to locate all the simulation steps where

the threshold voltage is computed during setup and at run time. Therefore we will examine

only the corresponding routines and code files.

BSIM to SPICE Interface - Input/Output routines

A crucial functionality of any implemented model is the ability to interact with the higher

SPICE and user-interface levels. Consequently, there should be a simple interface that will

permit the developer to handle variables to and from the device. The BSIM to SPICE

interface consists of 4 simple input and output routines.

First of all, the input routines are used by the frond end to communicate input parameters

to the device. The code files b4v6par.c and b4v6mpar.c handle input values for an instance

and a model parameter respectively. Users can fully define all the model parameters through

the model card. The b4v6mpar.c function takes the model card values from the input

parser and sets the appropriate fields in the per model data structure. The b4v6par.c

functionality is analogous to b4v6mpar.c, but handles values for instance parameters. The

user can directly set an instance parameter inside the circuit datafile. For example, they

can define the MOS channel length at the same line where the device is declared.

The pair of output routines provides a complementary behavior. These routines are used

by the simulator to obtain data from the device. The code files b4v6ask.c and b4v6mask.c

handle output values for an instance and a model parameter respectively. They both assign

the asked values to the proper field inside the IFvalue. IFvalue is the structure used to

pass values to and from the simulator.

20

Setup time routines Start

V
th

 Given

V
th=

Given Value

BSIM

NO

V
th
= 0.7V Vth = -0.7 V

nMOS pMOS

YES

Size dependent
parameters variations

Stress effect
variations

Well effect
variations

Zero bias threshold
voltage variations

End

V
th
= -0.7V

b4v6temp.c

b4v6set.c

Fig. 3.2: BSIM flowchart - Setup time

The function that performs the first step

of preparing a device for simulation is the

setup function. The corresponding BSIM

code file is b4v6set.c. All the device pa-

rameters are initialized to their given or

their default values. Therefore the thresh-

old voltage is properly set during this stage.

All the executed steps are shown in the up-

per part of Figure 3.2.

The following stage that completes the de-

vice preprocessing is the temperature routine. The given b4v6temp.c code file is executed.

Different MOSFET physical effects are initialized and computed. In the lower part of Figure

3.2 we summarize all the steps that are related to threshold voltage variations.

Run time routines
Start

End

b4v6ld.c

Vth -= n * T4;

here->BSIM4v6von = Vth

 V
th
 Calculation :

using the 2.5.6 formula of BSIM4.6.0 MOSFET
Model – User’s Manual [22]

Correction for
Pocket implant

YES

NO

Compute Lpe_Vb
Compute DIBL_Sft =

shift due to DIBL effect

Compute Vth_NarrowW =
shift due to

Narrow-Width Effect
Compute Delt_vth

Correction to forward body bias -
precompute variables necessary

for V
th
 calculation part

(i.e. T0, T1, sqrtPhis, Vbseff etc)

Fig. 3.3: BSIM flowchart - Run time

After the aforementioned initial steps, the

dc or transient analysis iterations follow.

The b4v6ld.c code file is the device rou-

tine that is responsible for evaluating all

instances at each iteration. Therefore this

routine is the most frequently called func-

tion and it is crucial that it is as efficient

as possible. All the executed steps for Vth

calculation at run time are shown in Figure

3.3. After the b4v6ld.c code file has been

executed, the threshold voltage is updated

to its newest value.

21

3.3 Alterations to the Source Code

SPICE simulator

BSIM device

Data Structures (3.3.1)

Model & Instance structures

Parameter descriptors

Overall device structure (3.3.2)

Input/Output routines

Setup TIme routines

Run Time routines

Front end

BTI variables

BTI I/O Interface

BTI @ Setup Time

BTI @ Run Time

Fig. 3.4: BSIM flowchart - BTI alterations

In the previous section we presented the

BSIM device as a simulator object. All its

data structures and its routines were illus-

trated. Thus, all the threshold voltage com-

putation steps both during setup and at run

time have been revealed. With this detailed

code examination, we are able to locate all

these lines where further code alterations

should be added, in order to enable BTI

support. We will follow the same hierarchi-

cal approach as in the previous Section. All

these code alterations that will implement the BTI mechanism (cyan blocks in Figure 3.4)

will be presented.

3.3.1 Data Structures

Model and Instance structures - BSIM header file

As we have already mentioned, both Model and Instance structures should be properly

declared inside the header file and follow a certain format. Using the existing BSIM header

file, this asked format is satisfied. The only remaining alteration is the declaration of the

proper BTI variables. Therefore we will start with a brief description of all the parameters

that are needed for the BTI model. It is crucial that we make a correct discrimination

between the per instance and the per model BTI variables.

The per model data include the parameters that are common within the different devices

of the model. These will be predefined from the user inside the model card file. The BTI

variables that will be independent of any instance are the parameters of the statistical

distributions from which we draw to initialize gate stack defects (their number, their time

22

constants and the associated ∆Vth). Hence, these variables are added at the BSIM4v6model

structure.

On the other hand, we can easily observe that each instance is enhanced with a random

number of traps. Each trap has different threshold voltage impact and time constants.

These parameters of each trap follow specific distributions[10]. Hence all these data should

be placed in the BSIM4v6instance data structure. In addition, a BTI flag variable will be

used to indicate whether the BTI mechanism is ignored or not. A defect variable will be

also defined to indicate whether a trap is occupied or not.

Parameter descriptors - b4v6.c code file

All the aforementioned BTI variables should be also included in the descriptor arrays at the

b4v6.c code file. Therefore inside the BSIM4v6mPTable structure we added the data type

and a short description for each one of the four BTI model parameters. We also followed

the same steps for all the BTI instance parameters inside the BSIM4v6pTable.

3.3.2 Overall device structure

The next implementation stage is to fill in the overall device structure. Using the existing

BSIM routines all the asked structure rules are satisfied. Our coding alterations will address

three important functionalities: (i) The BTI variable handling through Input/Output rou-

tines, (ii) the BTI model initialization during setup time and (iii) the Vth fluctuations due

to BTI at run time. Therefore we will examine only the corresponding routines and their

source code files.

BSIM to SPICE Interface - Input/Output routines

With all the BTI variables declared, we should now investigate all possible I/O simulation

requirements. We will start with the fairly simple case of the BTI model parameters. The

distribution parameters for interface trap instantiation will be only used for the BTI ini-

23

tialization during setup time. Consequently there is no need for them to be included in the

model output routine (b4v6mask.c file). We should only add the appropriate fields inside

the b4v6mpar.c code file.

As we have already mentioned, this function takes the model card values from the input

parser. Users can fully define all the BTI model parameters through the model card file.

Note that such an approach comes in direct contrast to previous works [1][10], since no pre-

processing stages are required. Also the netlist syntax is perfectly retained, which enhances

the user-friendly attributes of our approach.

An analogous implementation inside the b4v6par.c file would be more than inefficient.

Usage of the input parser for the BTI instance parameters would demand that all input

values be typed inside the netlist.cir file. Such a practice is followed in [1]. In this work

a control script (Perl script) is used to annotate the netlist.cir file with defects, making

the entire process hugely impractical for larger circuits (SRAMs, Multipliers, etc.) with an

enormous number of traps to be simulated.

We will follow a completely different approach on the way the simulator will manipulate

the BTI instance parameters. For any input and output requirements a specific file will

be used. Users can define its exact name. The BTI output file contains the BTI instance

parameters of all BSIM devices and provides a straightforward BTI-to-front-end interface.

When a transient simulation is completed the final BTI instance values are saved at the

BTI output file. These output data can be used as an input file for later BTI simulations.

That way we perfectly decouple the netlist structure and syntax of the target circuit from

the associated gate stack defect database.

Setup time routines

Having implemented the BTI-to-front-end interface, the following stage is the initialization

of BTI variables during the setup time. For that purpose the BSIM setup routine will be

used. As we have already mentioned, the BTI.out file can be used as an input file for later

BTI simulations. When this file is present at the current simulation directory the setup

24

routine handles its data as BTI initial conditions. Therefore, a critical code addition was a

straightforward text file parser inside the b4v6set.c code file that parses the BTI.out data

and assigns them to the initial instances values.

On the contrary, when no BTI initial conditions are present the BTI parameters will be

generated according to the provided model card data. The number of traps, their time

constants and their threshold voltage impact follow specific distributions [10]. Hence another

significant code addition was the implementation of these distributions inside the b4v6set.c

code file.

Run time routines

New device

BTI
flag=1? Initialize srand()

V
gs

 ?

Get Defect

Done w/ Defects

Done w/ Devices

b4v6ld.c
Start

YES

Generate
Rand_Num

Compute P
c
& P

e
Compute P

c
& P

e

NO

HIGH LOW

NO

End

NO

Resolve
occupancy

YES

YES

Fig. 3.5: BTI simulation flowchart - Run time

The most crucial part of our work is the

proper evaluation of all BTI parameters at

run time. Both in terms of modeling and

behavior, our model accurately implements

the simulation flowchart of the atomistic

BTI model described in [10]. During every

transient analysis iteration, we loop through

all the defects of all BSIM devices. For each

individual defect, the Pc and Pe probabilities

are determined using the appropriate formu-

las found in [10]. Their computed values are

compared to a random number. If the ran-

dom number is found smaller than the prob-

ability, the respective occupancy transition

occurs. When a defect becomes occupied,

its threshold voltage impact is added to the

runtime Vth value of the device. All these execution steps are shown in Figure 3.5

25

3.4 User Manual

In this Section we will provide a brief user manual of the implemented simulation tool.

The tool is actually the LINUX version of ngspice along with the aforementioned code

alterations. Therefore all the prerequisite steps for source compilation and installation are

exactly the same as described in [25]. We will focus on the operation of the added BTI

model using the command line interface of ngspice.

The operation will be illustrated through a simple inverter. The circuit description file for

this example is provided below:

The inverter.cir file – The netlist of a simple inverter

** Subcircuits and Modelcards
.include modelcard
.include subcircuits

** DC Sources
Vvdd vdd 0 1
Vvss vss 0 0

**Input Source
Vinput input 0 pulse (0 1 5n 0.01n 0.01n 5n 10n) DC 0

**Inverter Instantiation
X1 vdd vss input output inv
C1 output 0 2f

**Simulation Definition *
.tran 10ns 10ns

** Output File Definition *
.save tran @m.x1.m0[vth]

.control
set filetype=ascii
.endc

Observe that we select a netlist that contains subcircuits, in order to fully illustrate the

functionality of the implemented tool. Both the appropriate modelcard and subcircuits files

should be provided at the current directory. More specifically, the subcircuits file used for

this example is:

26

The subcircuits file – The subcircuit of a simple inverter

** Inverter = 2 devices
.subckt inv vdd vss in out

M0 out in vdd vdd p1 W=360n L=90n
M1 out in vss vss n1 W=180n L=90n

.ends

The three different utilization methods will be presented in the following Subsections.

3.4.1 Normal Usage

We will start with the normal case of ngspice utilization where the BTI model is ignored. As

an actual ngspice distribution, our tool fully maintains all the functionalities of the original

SPICE simulator. Hence the BTI model is not a limited tool but a part of a powerful and

flexible simulation program. This is an important characteristic that permits users to exploit

simultaneously the BTI model with all the other available SPICE features.

To simulate this circuit the user can simply type the following command :

$ ngspice -b -r rawfile -o logfile inverter.cir

We have used the simple command line options -b, -r and -o as described in [25]. The

ngspice will run the simulation and store the output data in the rawfile. Comments,

warnings and similar information go to logfile. To verify that BTI is ignored, just list the

contents of the current directory by issuing the ls command after the simulation. Note that

no BTI output file is present, unlike the rawfile and logfile files that have been properly

generated.

3.4.2 BTI without Initial Conditions

In order to perform a BTI simulation, a specific BTI output filename should be defined.

Consequently, the required step before every BTI simulation is to set the BTI FILENAME

environment variable. Only with that environment variable available, the BTI model will

be taken into consideration during transient analysis. Therefore, we should type:

27

$ export BTI FILENAME=BTI.out

By using the latter command, we have indicated the BTI.out string as the name of the BTI

output file. We will maintain this name within the following examples. Of course, users can

accordingly select other BTI output filenames for their simulations.

The first way of utilization to be described is a BTI simulation without any initial conditions

given. Again, we will use the same example of a simple inverter. To run a BTI simulation

without initial conditions means that a BTI output file of a previous simulation does not

exist in the current directory. In our case, no BTI.out file should be present. As we have

already mentioned, the BTI instance variables will be generated according to the provided

BTI model parameters. Therefore, we add the following lines inside the model card :

+trapdensity = 1.0e+10

+stepmean = 0.005

+timeminimum = -8

+timemaximum = +8

Notice that we have added them only inside the .model n1. This was done to illustrate the

fact that BTI will be properly not taken into consideration at the .model p1. Once again,

to perform the simulation just type the following command :

$ ngspice -b -r rawfile -o logfile inverter.cir

An output file named BTI.out has now been generated. If we display its contents, we have:

Model n1 Instance m.x1.m1 BTI= 1

ntraps= 3

defects= 1 1 0

teh= 4.978282e+02 8.086966e+04 8.041643e+03

tch= 1.113378e-08 5.513980e-06 9.136106e+07

tel= 1.506615e-08 1.181948e-06 1.327282e-05

tcl= 1.890342e+01 4.823635e-07 3.376247e+06

deltavth= 0.003507 0.001563 0.006897

Model p1 Instance m.x1.m0 BTI= 0

Each instance of all different models is listed with its BTI flag. As we were expecting, the

first BTI flag is one. This declares that BTI was taken into consideration at this device.

28

Therefore all the BTI instance parameters are listed below the flag variable. Time constants

and threshold voltage impact of all traps are provided. The state of each trap after the

BTI simulation is also given. For example, notice that the nMOS device is enhanced with 3

traps. The defects vector demonstrates which traps are occupied (value 1) and which are

not (value 0). Furthermore, we can verify that BTI is ignored for the pMOS device.

An important feature is that users can access the Pc and Pe probabilities of the implemented

BTI model. Their values that are computed at run time can be accessed and saved as

easily as all the other internal BSIM4.6.0 device parameters. We can simply specify these

probabilities among the parameters listed in the .save statement of the inverter.cir file.

The syntax of a .save statement is described in [25]. This specific syntax is not only perfectly

retained but also properly expanded, in order to enhance the user-friendly attributes of our

approach.

More specifically, the default format described in [25] is used:

@device identifier.subcircuit name.<subcircuit name nn>.device name[parameter]

The above general form is extended to a @device full name[probability +flag] format,

where the probability can be replaced with either pc or pe to select the Pc or the Pe values

respectively. Furthermore, the pc, pe identifiers should be accompanied by numbers that

will indicate only certain traps to be accessed. For instance, in our case the m.x1.m0 nMOS

device has 3 traps. We can select only the Pe values of the first and the third trap to be

saved by adding the following .save line inside the inverter.cir file:

@m.x1.m1[pe 1 3]

In order to store the probabilities of all traps, we can simply replace the numbers with

the all identifier. If the Pc and Pe parameters are specified in the .save statement, an

extra appropriate BTI output file will be generated. This file will be named after the

BTI FILENAME environment variable, plus .p at the end of the word. Note that this output

file has a “rawfile” format, in order to be easily handled the same way as the default ngspice

ascii rawfile data.

The netlist of the inverter with the proper syntax of the .save statement is provided below:

29

The inverter.cir file – Syntax of the .save statement to access Pc , Pe values

** An simple inverter
** Subcircuits and Modelcards
.include modelcard
.include subcircuits

** DC Sources
Vvdd vdd 0 1
Vvss vss 0 0

**Input Source
Vinput input 0 pulse (0 1 5n 0.01n 0.01n 5n 10n) DC 0

**Inverter Instantiation
X1 vdd vss input output inv
C1 output 0 2f

**Simulation Definition *
.tran 10ns 10ns

** Output File Definition *
.save tran @m.x1.m0[vth] @m.x1.m1[pc all] @m.x1.m1[pe 1 3]

.control
set filetype=ascii
.endc

We delete the older BTI.out file and we perfom the same simulation as before. Notice that

an extra output file named BTI.out.p is present in the current directory. We can verify

from its contents that the selected probabilities have been stored:

Title: ** Probabilities of BTI events **

Plotname: BTI Transient Analysis

Flags: real

No. Variables: 6

Variables:

0 time time

1 Modeln1 Instancem.x1.m1 Trap1 pc value

2 Modeln1 Instancem.x1.m1 Trap1 pe value

3 Modeln1 Instancem.x1.m1 Trap2 pc value

4 Modeln1 Instancem.x1.m1 Trap3 pc value

5 Modeln1 Instancem.x1.m1 Trap3 pe value

Values:

[..]

30

Finally, it goes without saying that we can simply unset the defined BTI FILENAME envi-

ronment variable to return to the default ngspice utilization. For instance, we can simply

type:

$ unset BTI FILENAME

If we simulate again the netlist of the same inverter, we will have the extact results as

described in the previous Subsection.

3.4.3 BTI with Initial Conditions

The third operation to be described is the BTI simulation with initial conditions. Its only

difference from the previous case is that the BTI instance parameters will not be generated

but they will be parsed from an existing BTI output file. Make sure that this existing file

has the same name with the BTI FILENAME environment variable. At this point, we have

already completed a BTI simulation and the BTI.out file has been generated. To run a new

BTI simulation with initial conditions just include this file in the current directory and type

the following command :

$ ngspice -b -r rawfile -o logfile inverter.cir

If you display the contents of the newest BTI output file, the following lines should appear:

Model n1 Instance m.x1.m1 BTI= 1

ntraps= 3

defects= 1 1 0

teh= 4.978282e+02 8.086966e+04 8.041643e+03

tch= 1.113378e-08 5.513980e-06 9.136106e+07

tel= 1.506615e-08 1.181948e-06 1.327282e-05

tcl= 1.890342e+01 4.823635e-07 3.376247e+06

deltavth= 0.003507 0.001563 0.006897

Model p1 Instance m.x1.m0 BTI= 0

It is important to observe that time constants and threshold voltage impact of all traps

maintain the same values as before. This proves that the provided BTI.out file was parsed

correctly and its data were used as initial conditions.

31

If we had desired to select other initial conditions for BTI instance parameters, we could

simply type and save a totally new BTI.out file. It is crucial that the new typed file follows

EXACTLY the same format as the one demonstrated before; otherwise the BTI parser will

not be able to handle the provided data correctly

Once again, it goes without saying that we can simply set a new name for the BTI FILENAME

environment variable to return to the case of BTI simulation without initial conditions. For

instance, we can simply type:

$ export BTI FILENAME=NewBTI.out

No initial conditions will now be provided as no BTI output file named NewBTI.out is

present. If we simulate again the netlist of the same inverter, we will have similar results as

described in the previous Subsection. Indeed, observe that an output file named NewBTI.out

will be generated.

3.5 Conclusion

In this Chapter, we described the development stages of our simulation tool. An existing

device model was used as the implementation guideline, instead of building a new device

from scratch. The selected device model was the BSIM4.6.0 model [24]. First of all, all

the BSIM parameters, routines and data stractures were presented. All the execution steps

where the Vth value is computed were illustrated. That way, we pointed out where all the

BTI steps should be added. Then, we extensively presented all the code alterations for the

BTI model to be implemented. Having addressed the above subjects, a brief user manual was

provided. The usage of the resulted tool with representative examples was demonstrated.

32

Chapter 4

Verification Test Cases

4.1 Introduction

In this Chapter, we will verify the correctness of the BTI/RTN-enhanced ngspice. As we

have already mentioned, the implemented framework is founded upon the atomistic BTI

model. Further details are provided in [1]. The selected test cases should not be limited

to examples that will verify only the operational accuracy of the simulation software. It is

important to fully investigate the phenomenological validity of the BTI model as well.

Thus, we will properly organize the inspected test cases into three types of verification

processes: (i) phenomenological and (ii) detailed verification, (iii) validation of BTI impact.

Each one of these types will be presented within the three following Sections respectively.

The netlist files of the circuits under test will be provided. For each test case, the simulation

results will be extensively presented. All these output data will be compared to already

published results. That way, the correctness of the implemented framework will be verified.

4.2 Phenomenological Verification

In the current Section, we will demonstrate that our simulation tool realistically captures

the physical principles of the atomistic BTI model. This atomistic approach is based on the

stohastic properties of gate oxide defects. The physics of defect occupancy is experimentally

proven in [11]. From this work, we quote a noteworthy part of its conclusions: “This theory

passes all sets of performed experimental tests. The model can thus be transferred to circuit

simulators in order to simulate the effect of individual traps under AC workloads.”

33

Consequently, an obviously straightforward way to inspect the phenomenological validity is

to adopt a similar experimental setup of [11] in the context of our simulator. By successfully

reproducing the experimental results, the simulation accuracy in terms of BTI modeling will

be verified. More specifically, in [11] the responce of a single trap in a single selected pMOS

device is studied. The device is gate stressed with an AC signal for a certain time tstress.

Afterwards, the relaxation transient follows for a relaxation time trelax. Both the capture

and emission events are observed and the results are illustrated in representative figures.

Fig. 4.1: Relaxation transient results as presented in [11]: (a) Typical VTH transients after
DC stress and (b) Histograms of emission times extracted from 100 VTH relaxation

transients

In the context of our test case, we intend to reproduce similar graphs as shown in Figure 4.1.

Note that we focus on the relaxation transient of a nMOS devide with a single defect. Given

that our implementation is not restricted to NBTI or PBTI, the choice of test case does

not affect the validity of our claims. We assume that a past stress phase has been already

completed and the single trap is occupied. In terms of simulation setup, this means that a

prior BTI simulation has been already performed and an output file of initial conditions is

used. The BTI.out file and the netlist of the simulated nMOS device are respectively:

The BTI.out file – The initial conditions of the relaxation transients

Model n1 Instance m1 BTI= 1
ntraps= 1
defects= 1
teh= 2.000000e-09
tch= 5.000000e+10
tel= 5.000000e-04
tcl= 1.000000e+14
deltavth= 0.030000

34

The singleDevice.cir file – The netlist of a single nMOS device

** An simple nMOS device
** Modelcards
.include modelcard

** DC Sources
Vvddcell vddcell 0 1
Vvddbulk vddbulk 0 1
Vvsscell vsscell 0 0
Vvssbulk vssbulk 0 0

** Input Source
Vinput input 0 0

** nMOS device
m1 vddcell input vsscell vssbulk n1 W=180n L=90n

** Simulation Definition *
.tran 10ns 10ns

** Output File Definition *
.save tran @m1[vth]

.control
set filetype=ascii
.endc

We repeat the above simulation configuration for four different trelax durations: (i) 10nsec,

(ii) 1msec, (iii) 1sec and (iv) 10sec. For each case, the proper values of the time constants

should be defined. The τel constant should be less than the trelax value, for the emission

event to occur within the simulation duration. Here, we select the τel to be the half of trelax

value. At the same time, we select a greater value for the τcl constant, in order not to have

a new capture event right after the emission. That way, we avoid a switching activity of the

single trap.

The current verification procedure can be divided into two parts. On the one hand, we

demonstrate the Vth variation for a small number of simulations, as shown in the left graph

of Figure 4.1. In our case, we perform five relaxation transients. For each simulation, the

emission times should be close to the characteristic mean emission time τe[11]. In other

words, the discrete steps illustrated in the Vth transient graphs are expected to be gathered

within a time interval nearby the τe value.

35

On the other hand, we record the exact time of the emission events extracted from one

hundred relaxation transients. Based on the recorded values, the proper histograms are

plotted, as presented in the right graph of Figure 4.1. We follow the exact histogram

form as described in [11]. The emission times are binned on the logarithmic scale and the

histograms are fitted with Equation 2 of [11].

10
−12

10
−11

10
−10

10
−9

10
−80.305

0.31

0.315

0.32

0.325

0.33

0.335

0.34

Time (sec)

V
T

H
(V

)

5 times
Duration = 10nsec
−−
τ
cH

 = 5.00e+10
τ
cL

 = 1.00e+14
τ
eH

 = 2.00e−09
τ
eL

 = 5.00e−09

10
−12

10
−11

10
−10

10
−9

10
−8

10
−70

5

10

15

20

25

30

35

40

45

50

Emission Time (sec)

N
um

be
r

of
 e

m
is

si
on

s

100 times
Duration = 10nsec
−−
τ
cH

 = 5.00e+10
τ
cL

 = 1.00e+14
τ
eH

 = 2.00e−09
τ
eL

 = 5.00e−09

Fig. 4.2: Simulation results for trelax = 10nsec : (a) 5 Typical VTH transients and (b)
Histograms of emission times extracted from 100 VTH relaxation transients, fitted with the

equation 2 of [11]

10
−7

10
−6

10
−5

10
−4

10
−30.305

0.31

0.315

0.32

0.325

0.33

0.335

0.34

Time (sec)

V
T

H
(V

)

5 times
Duration = 1msec
−−
τ
cH

 = 5.00e+10
τ
cL

 = 1.00e+14
τ
eH

 = 2.00e−09
τ
eL

 = 5.00e−04

10
−7

10
−6

10
−5

10
−4

10
−3

10
−20

5

10

15

20

25

30

35

40

45

50

Emission Time (sec)

N
um

be
r

of
 e

m
is

si
on

s

100 times
Duration = 1msec
−−
τ
cH

 = 5.00e+10
τ
cL

 = 1.00e+14
τ
eH

 = 2.00e−09
τ
eL

 = 5.00e−04

Fig. 4.3: Simulation results for trelax = 1msec : (a) 5 Typical VTH transients and (b)
Histograms of emission times extracted from 100 VTH relaxation transients, fitted with the

equation 2 of [11]

36

10
−4

10
−3

10
−2

10
−1

10
00.305

0.31

0.315

0.32

0.325

0.33

0.335

0.34

Time (sec)

V
T

H
(V

)

5 times
Duration = 1sec
−−
τ
cH

 = 5.00e+10
τ
cL

 = 1.00e+14
τ
eH

 = 2.00e−09
τ
eL

 = 5.00e−01

10
−4

10
−3

10
−2

10
−1

10
0

10
10

5

10

15

20

25

30

35

40

45

50

Emission Time (sec)

N
um

be
r

of
 e

m
is

si
on

s

100 times
Duration = 1sec
−−
τ
cH

 = 5.00e+10
τ
cL

 = 1.00e+14
τ
eH

 = 2.00e−09
τ
eL

 = 5.00e−01

Fig. 4.4: Simulation results for trelax = 1sec : (a) 5 Typical VTH transients and (b)
Histograms of emission times extracted from 100 VTH relaxation transients, fitted with the

equation 2 of [11]

10
−3

10
−2

10
−1

10
0

10
10.305

0.31

0.315

0.32

0.325

0.33

0.335

0.34

Time (sec)

V
T

H
(V

)

5 times
Duration = 10sec
−−
τ
cH

 = 5.00e+10
τ
cL

 = 1.00e+14
τ
eH

 = 2.00e−09
τ
eL

 = 5.00e+00

10
−3

10
−2

10
−1

10
0

10
1

10
20

5

10

15

20

25

30

35

40

45

50

Emission Time (sec)

N
um

be
r

of
 e

m
is

si
on

s

100 times
Duration = 10sec
−−
τ
cH

 = 5.00e+10
τ
cL

 = 1.00e+14
τ
eH

 = 2.00e−09
τ
eL

 = 5.00e+00

Fig. 4.5: Simulation results for trelax = 10sec : (a) 5 Typical VTH transients and (b)
Histograms of emission times extracted from 100 VTH relaxation transients, fitted with the

equation 2 of [11]

We can easily observe that the simulation output data (Figures 4.2–4.5) are consistent with

the experimental results of [11] (Figure 4.1). More specifically, notice that for each different

τe value, the emission events and therefore the Vth discrete steps are located within a time

interval near the respective emission time of the defect. In addition, we can clearly observe

that the shapes of distributions sufficiently follow the equation 2 of [11] (solid blue line of

Figures 4.2–4.5). Thus, the simulation tool accurately captures the behaviour of individual

oxide traps.

37

4.3 Detailed Verification

We should now proceed to the second level of our verification procedure. Once again, proof

of validity will be provided with comparison to already published results [1][10]. From the

conclusions of [1], we quote: “The employment of industry-standard circuit simulator tools

ensures correct combination of the deterministic workload-dependent component with the

stochastic modeling aspect”. Up to this point, we have already demonstrated that our model

accurately captures the stochastic dependent nature of oxide traps. We should now verify

that the time-dependent workload dependency is also realistically incorporated.

In this Section, the correctness of our implementation will be verified against the atom-

istic BTI model, as implemented on top of the Cadence R© Virtuoso R© Spectre R© commercial

simulator [10]. This approach has been already described in the Chapter 2 of Research

Landscape. For each test case inspected here, an identical simulation will be repeated with

this simulation framework. It goes without saying that, if the output data are identical to

each other, a straightforward validation of correctness will be provided.

We will investigate a detailed operational example. The inverter is again selected as the

circuit under test. Only NBTI will be inspected, but PBTI can be easily included, as shown

in the previous Section. The metrics to be compared are the probability values Pc and Pe,

that are computed at run time. Given the mixed stochastic and workload-dependent nature

of the atomistic BTI/RTN model, comparison of Pc and Pe is quite suitable, since their

generation is strictly workload-dependent (and has no stochastic component). Furthermore,

in order to properly investigate the workload dependency, we inspect the more realistic case

of an irregural input signal. A simple Perl script is used to generate a random waveform

before the simulation. The inverter.cir with the proper syntax of the .save statement

and the subcircuits file are provided below:

The subcircuits file – The subcircuit of a simple inverter

** Inverter = 2 devices
.subckt inv vdd vss in out
M0 out in vdd vdd p1 W=360n L=90n
M1 out in vss vss n1 W=180n L=90n
.ends

38

The inverter.cir file – The netlist of a simple inverter

** Subcircuits and Modelcards
.include modelcard
.include subcircuits

** DC Sources
Vvdd vdd 0 1
Vvss vss 0 0
**Input
.include input.in

**Inverter Instantiation
X1 vdd vss input output inv
C1 output 0 2f

**Simulation Definition *
.tran 40ns 40ns

** Output File Definition *
.save tran @m.x1.m0[pc all] @m.x1.m0[pe all] @m.x1.m0[vgs] @m.x1.m0[vth]

.control
set filetype=ascii
.endc

Once again, we should provide the proper file that will be used as the initial conditions of

the BTI simulation. Note that the pMOS device has four traps. In order to inspect the

impact of both the emission and capture events, we define the first two traps to be initially

free and the other two to be occupied. The BTI.out file in our case is:

The BTI.out file – The initial conditions of the relaxation transients

Model n1 Instance m.x1.m1 BTI= 0
Model p1 Instance m.x1.m0 BTI= 1

ntraps= 4
defects= 0 0 1 1
teh= 1.000000e-04 1.000000e-03 1.000000e-01 1.000000e+02
tch= 1.000000e-07 1.000000e-04 1.000000e-04 1.000000e+01
tel= 1.000000e-05 1.000000e-09 1.000000e+03 1.000000e-09
tcl= 1.000000e+05 1.000000e+03 1.000000e-03 1.000000e+08
deltavth= 0.010000 0.02000 0.00300 0.03000

In the next two pages, we present the simulation results of our implemented framework and

of the reference tool [10] (Figures 4.6 - 4.9). A representative set of graphs is provided for

each one of the four traps. More specifically, we demonstrate the probability values Pc and

Pe, that are computed at run time. In addition, the transient Vgs signal of the pMOS device

is provided.

39

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40
0

0.002

0.004

0.006

0.008

0.01

Time (nsec)

P
c

 ngspice w/ BTI Spectre w/ BTI [10]

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40
0

0.2

0.4

0.6

0.8

x 10
−4

Time (nsec)

P
e

 ngspice w/ BTI Spectre w/ BTI [10]

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40
0

0.2

0.4

0.6

0.8

1

Time (nsec)

V
gs

(V
)

Defect1 : τ
cH

= 1.00e−07, τ
cL

= 1.00e+05, τ
eH

= 1.00e−04, τ
eL

= 1.00e−05

Fig. 4.6: Probabilities of Trap 1. The Runtime Pc and Pe values of our implemented
framework and of the reference tool [10] are almost identical.

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40
0

0.2

0.4

0.6

0.8

1x 10
−5

Time (nsec)

P
c

 ngspice w/ BTI Spectre w/ BTI [10]

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40
0

0.2

0.4

0.6

0.8

1

Time (nsec)

P
e

 ngspice w/ BTI Spectre w/ BTI [10]

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40
0

0.2

0.4

0.6

0.8

1

Time (nsec)

V
gs

(V
)

Defect2 : τ
cH

= 1.00e−04, τ
cL

= 1.00e+03, τ
eH

= 1.00e−03, τ
eL

= 1.00e−09

Fig. 4.7: Probabilities of Trap 2. The Runtime Pc and Pe values of our implemented
framework and of the reference tool [10] are almost identical.

40

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40
0

0.2

0.4

0.6

0.8

1x 10
−5

Time (nsec)

P
c

 ngspice w/ BTI Spectre w/ BTI [10]

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40
0

0.2

0.4

0.6

0.8

1x 10
−8

Time (nsec)

P
e

 ngspice w/ BTI Spectre w/ BTI [10]

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40
0

0.2

0.4

0.6

0.8

1

Time (nsec)

V
gs

(V
)

Defect3 : τ
cH

= 1.00e−04, τ
cL

= 1.00e−03, τ
eH

= 1.00e−01, τ
eL

= 1.00e+03

Fig. 4.8: Probabilities of Trap 3. The Runtime Pc and Pe values of our implemented
framework and of the reference tool [10] are almost identical.

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40
0

0.2

0.4

0.6

0.8

1x 10
−10

Time (nsec)

P
c

 ngspice w/ BTI Spectre w/ BTI [10]

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40
0

0.2

0.4

0.6

0.8

1

Time (nsec)

P
e

 ngspice w/ BTI Spectre w/ BTI [10]

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40
0

0.2

0.4

0.6

0.8

1

Time (nsec)

V
gs

(V
)

Defect4 : τ
cH

= 1.00e+01, τ
cL

= 1.00e+08, τ
eH

= 1.00e+02, τ
eL

= 1.00e−09

Fig. 4.9: Probabilities of Trap 4. The Runtime Pc and Pe values of our implemented
framework and of the reference tool [10] are almost identical.

41

We can see that the transient output data of our simulation tool (solid blue line of Figures

4.6 - 4.9) are almost identical to the results of the reference tool [10] (solid green line).

Consequently, we have an immidate verification of correctness against an established imple-

mentation of the atomistic BTI/RTN model [30]. If we further evaluate the results, we can

make two major observations.

First of all, the only cause of slight divergence of few output data is the different Size-Step

Algorithms of ngspice and Cadence R© Virtuoso R© Spectre R©. We shall take into consideration

that the probability formula [10] is time-step dependent. For this adaptive transient step to

be adjusted at run time, each one of these two simulation tools uses different algorithms in

terms of complexity and accuracy. Nevertheless, we can observe that only few cases of value

divergence are caused because of such a different selection of transient simulation time-steps.

Moreover, we have another crucial observation related to the validity of our simulation tool.

As we have already mentioned, the atomistic BTI model upon which our framework is

founded, realistically captures the time-dependent workload dependency [10]. In our case,

we can see that the Probability values are Vgs dependent. That way, the defects occupancy

transitions correspond to the device workload at every simulation step. Thus, we verify that

the implemented tool accurately incorporates the workload dependency of degradation due

to BTI/RTN.

42

4.4 Validation of BTI impact

Within the two previous Sections, we inspected our implemented simulation flowchart in

terms of valid behavior and correctness. To this end, we simulated the appropriate circuit

examples, i.e. a single pMOS device and an inverter. In this currenct Section, we will now

expand our verification procedure to circuits that are common among integrated CMOS

products. The usage of our simulation tool will be demonstrated on the case of a multiplier.

That way, we will provide a complete operational example in which the BTI degradation of

a representative CMOS circuit will be investigated.

For our test case, a Perl script was used for the creation of the netlist and the input signal

files. The used script has as arguments the data block size of the multiplier, the duration

of a time slice, the number of these time slices and the duration of slope. In our case,

we inspected a multiplier with a data block size of 1 bit. We first performed a simulation

with the BTI effect ignored. The delays measurements were obtained by using the .meas

command of ngspice inside the netlist file.

We then performed the simulation of the same circuit, but with the BTI taken into con-

sideration. We started with a BTI simulation without initial conditions. The BTI instance

variables were generated according to the provided BTI model parameters. Inside the model

card, we added :

+trapdensity = 1.0e+11

+stepmean = 0.020

+timeminimum = -12

+timemaximum = +12

After the latter BTI simulation, the proper BTI output was generated. We repeated the

same simulation by using this file as initial conditions. We took into consideration only

these traps that have time constants smaller or equal to 10−7. For that purpose, another

script was used for the output file to be properly parsed and the traps that do not meet this

criterion to be omitted. Then, a second simulation was performed. Once again, the delay

measurements were obtained with the usage of the .meas command.

43

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40 42 44 46 48 50
100

110

120

130

140

150

160

170

180

190

200

Time Slices (1 Time Slice = 10ns)

D
el

ay
s

(p
s)

0 0.01 0.02 0.03
100

110

120

130

140

150

160

170

180

190

200

Probability Density Function

D
el

ay
s

(p
s)

delays w/o BTI
delays w/ BTI
Mean value of delays w/o BTI
Mean value of delays w/ BTI

Distribution of delays w/o BTI
Distribution of delays w/ BTI

Fig. 4.10: Delay measurements of the multiplier output for tsimulation = 500nsec : (a)
Results of both simulations with and without BTI degradation and (b) Distributions

extracted from these delay measurements per case.

The simulation results are presented in Figure 4.10. Note that the majority of the de-

lays recorded during the BTI simulation (red stars of Fig. 4.10) has greater values than

the respective delays without the BTI effect (blue circles). For this observation to be fur-

ther illustrated, the distributions extracted from the delay measurements of both cases are

presented. Thus, we can easily observe that these output data verify the expected delay

degradation due to BTI. That way, the correctness of the implemented tool was further

validated through an operational example of a representative CMOS circuit.

4.5 Conclusion

In this Chapter, we provided representative operational examples in order to investigate the

validity of the implemented framework. Our tool was verified, in terms of correctness, by

comparison to published results. For each inspected test case, the netlist to be simulated and

the BTI initial conditions were provided. More specifically, the phenomenological verification

44

was achieved by performing relaxation transients of a single device with an individual trap.

We then proceeded to a detailed verification of correctness, based on the Pc and Pe values

of defects during a transient simulation. The simulation results were compared with the

results of another simulation framework, implemented on top of the Cadence R© Virtuoso R©

Spectre R© simulator. Finally, the delay degradation due to BTI was verified with simulation

of an array multiplier. In all these cases, the acquired output results were consistent with

respective reference data.

45

Chapter 5

Conclusions and Future Work

5.1 Conclusions

As the device dimensions of modern electronics aggressively decrease, an extensive variability

during the device lifetime emerges. Two mechanisms with adverse impact in threshold

voltage Vth degradation are Bias Temperature Instability (BTI) and Random Telegraph

Noise (RTN). Models that realistically capture the impact of BTI/RTN effect are necessary.

A representative and novel approach is the atomistic BTI model [1]. This model captures

the transient behaviour of individual gate oxide defects and transient simulation approaches

has been therefore enabled.

To meet lifetime reliability requirements of modern electronics, designers need simulation

tools that will realistically capture BTI/RTN effects during transient simulations. Such ac-

curate yet efficient frameworks will trigger the development of proper mitigation techniques.

To contribute to this research process, the current thesis proposes a SPICE-based simulation

framework founded upon the atomistic BTI model. The purpose of our work is to port the

BTI/RTN model to an open source distribution of the SPICE program, namely ngspice

[25]. More specifically, the atomistic approach is ported to a state-of-the-art transistor model

in the sub100nm regime, the BSIM4.6.0 model [24].

The main differentiator in comparison to related previous works [1][10] is the inline imple-

mentation of the BTI model. The novelty of our work is that the atomistic approach is

embedded in the actual BSIM4.6.0 source code. That way, the BTI initialization is per-

formed during setup time of the ngspice simulator. Thus, no impractical pre-processing

stage is required. Furthermore, the transient part of BTI effect is executed inside the run

time ngspice routines. Consequently, the whole simulation procedure is transparent to

46

the user as no additional, heterogeneous execution stages are added at the default ngspice

simulation flow. In addition, the netlist syntax is perfectly retained, which enhances the

user-friendly attributes of our approach.

First, we presented the state of the art on the simulation of Bias Temperature Instability

(BTI). The two dominants approaches, the Reaction-Diffusion (RD) model and the atomistic

model, were reviewed. Then, the landscape of BTI modeling was categorized into several

levels of classification. Various simulation approaches were presented and properly classified

and any insufficiencies observed in the state of the art were revealed. Thereby, we pointed

out that our approach is meaningful and novel for simulation purposes of modern downscaled

technologies.

Second, we extensively described the implementation procedure. The selected open source

SPICE distribution and its MOSFET transistor models were explored. All the executions

steps where the Vth value is computed were illustrated with representative figures. That

way, we located where the BTI steps should be added. All these code alterations were

also described. Then, we demonstrated the usage of the resulted tool with descriptive

operational examples. A simple inverter was selected as the circuit under test. Besides

the default ngspice usage, both the cases of BTI with and without initial conditions were

inspected.

Third, we verified our implementation in terms of correctness, by comparison to already

published results. Our first step was to demonstrate that our simulation tool realistically

captures the physical principles of the atomistic BTI model. For the phenomenological

validation, relaxation transients were performed in a single device with an individual trap.

Then, detailed validation was provided against another state-of-the-art atomistic BTI model,

implemented on top of the Cadence R© Virtuoso R© Spectre R© commercial simulator [10]. In

addition, we verified the impact of BTI by investigating the case of an array multiplier.

47

5.2 Recommendations for Future Work

5.2.1 Extension of the implemented framework to other Device

Models

As described in previous Chapters, the purpose of this thesis is the creation of an accurate

yet efficient, SPICE-based simulation framework that will realistically capture BTI/RTN

effects during transient simulations. We expect that the resulted simulation tool will fa-

cilitate researchers to explore further mitigation techniques and develop designs that meet

lifetime reliability requirements. Such an intention underlines the importance of extending

the current model to other state-of-the-art device models.

A notable recommendation for future work in the extension of our implemented framework

to FinFET devices. According to the latest International Technology Roadmap for Semi-

conductors (ITRS) [31], FinFETs have emerged as important candidates for device scaling

within the following years. Recent announcements that a FinFET transistor will be used in

manufacturing at the 16 nm has placed renewed emphasis on 3D device structures research.

Among the near-term (2011–2018) difficult challenges presented in the ITRS 2012 update

[31], we found 3D interconnect reliability aspects to be listed.

If the respective atomistic BTI model for FinFET devices is available, it will be essential

to be ported to the proper device model of ngspice. Note that FinFETs are part of a

compact model for the class of common multi-gate FETs, namely BSIM-CMG [32]. The

points where the code alterations should be added will have to be identified within the

BSIM-CMG model. In this case, the implementation flow presented in Subsections 3.2-3.3

will be a valuable implementation guideline.

The aforementioned addition will enable simulations in FinFET devices, while the current

user-friendly simulation flowchart will be fully maintained. That way, the presented simu-

lation tool will be further enhanced as a meaningful option for reliability simulations.

48

5.2.2 Transient BTI Simulations of Large Netlists on Multi-Processor

Systems

During the classification of research landscape in Section 2.3, we presented various BTI

simulation approaches. Different circuits under test were reviewed and simulated per work.

We can observe that the majority of these test cases seem to have limited processing and

memory overhead.

More specifically, we had cases where the Vth shift was pre-evaluated and emulated with

a voltage source on the gate terminal of each pMOS transistor. As a result, for a simple

combinational circuit, the total simulation overhead by adding these sources were not that

significant. On the other hand, even in cases of (i.e. SRAMs), single memory cells where

simulated instead of the whole circuitry.

Nevertheless, the aggressive technology scaling evinced the need for reliability simulations

not only of simple test cases, but of more sophisticated circuitries. It is, therefore, important

for our simulation framework to be extended to even larger netlist sizes. To this end, an

efficient way should be found in order to overcome any limitations due to simulation memory

requirements. A notable potential for a novel approach is recommended here.

Our SPICE-based tool can be perfectly combined with a powerful simulation framework

presented in [33]. In this work, extensive SPICE simulations on multi-processor systems

were enabled through a novel approach of workload and node partitioning. A remarkable

size of test cases with more than 106 MOSFET devices was achieved. In all the inspected

experiments, ngspice was used. However, as we pointed out in Section 3.4, the only dif-

ference between normal and BTI-aware usage of ngspice is whether the BTI FILENAME is

set or not. Thereby, if such an option is added on the framework of [33] and our ngspice

version enhanced with the BTI model is then executed, then transient BTI simulations on

multi-processor systems will be instantly enabled.

49

References

[1] B. Kaczer, S. Mahato, V. de Almeida Camargo, M. Toledano-Luque, P. Roussel,

T. Grasser, F. Catthoor, P. Dobrovolny, P. Zuber, G. Wirth, and G. Groeseneken,

“Atomistic approach to variability of bias-temperature instability in circuit simula-

tions,” in Reliability Physics Symposium (IRPS), 2011 IEEE International, pp. XT.3.1–

XT.3.5, 2011.

[2] S. Kumar, C. Kim, and S. Sapatnekar, “An Analytical Model for Negative Bias Temper-

ature Instability,” in IEEE/ACM International Conference on Computer-Aided Design,

2006. ICCAD ’06., pp. 493–496, 2006.

[3] S. V. Kumar, C. H. Kim, and S. S. Sapatnekar, “NBTI–Aware Synthesis of Digital

Circuits,” Design Automation Conference, 2007. DAC ’07. 44th ACM/IEEE, pp. 370–

375,4–8, June 2007.

[4] A. Calimera, E. Macii, and M. Poncino, “NBTI-aware power gating for concurrent

leakage and aging optimization,” in Proceedings of the 14th ACM/IEEE international

symposium on Low power electronics and design, ISLPED ’09, (New York, NY, USA),

pp. 127–132, ACM, 2009.

[5] A. Calimera, E. Macii, and M. Poncino, “Analysis of NBTI-induced SNM degradation

in power-gated SRAM cells,” in Proceedings of 2010 IEEE International Symposium on

Circuits and Systems (ISCAS), pp. 785–788, 2010.

[6] R. Vattikonda, W. Wang, and Y. Cao, “Modeling and minimization of PMOS NBTI

effect for robust nanometer design,” in Design Automation Conference, 2006 43rd

ACM/IEEE, pp. 1047–1052, 2006.

[7] Seyab and S. Hamdioui, “Temperature Impact on NBTI Modeling in the Framework

of Technology Scaling,” vol. 0, pp. 1–10, 2010.

50

[8] “Reliability Simulation in Integrated Circuit Design.” White Paper, Cadence Design

Systems, Inc., 2003.

[9] H. Kufluoglu, V. Reddy, A. Marshall, J. Krick, T. Ragheb, C. Cirba, A. Krishnan,

and C. Chancellor, “An extensive and improved circuit simulation methodology for

NBTI recovery,” in Reliability Physics Symposium (IRPS), 2010 IEEE International,

pp. 670–675, 2010.

[10] D. Rodopoulos, S. B. Mahato, V. V. de Almeida Camargo, B. Kaczer, F. Catthoor,

S. Cosemans, G. Groeseneken, A. Papanikolaou, and D. Soudris, “Time and Workload

Dependent Device Variability in Circuit Simulations,” IC Design Technology (ICICDT),

2011 IEEE International Conference Review of Scientific Instruments, pp. 1–4, May

2011.

[11] M. Toledano-Luque, B. Kaczer, P. Roussel, T. Grasser, G. Wirth, J. Franco,

C. Vrancken, N. Horiguchi, and G. Groeseneken, “Response of a single trap to AC neg-

ative Bias Temperature stress,” in Reliability Physics Symposium (IRPS), 2011 IEEE

International, pp. 4A.2.1–4A.2.8, 2011.

[12] K. O. Jeppson and C. M. Svensson, “Negative bias stress of MOS devices at high electric

fields and degradation of MNOS devices,” Journal of Applied Physics, vol. 48, no. 5,

pp. 2004–2014, 1977.

[13] B. Paul, K. Kang, H. Kufluoglu, M. Alam, and K. Roy, “Temporal Performance Degra-

dation under NBTI: Estimation and Design for Improved Reliability of Nanoscale Cir-

cuits,” in Design, Automation and Test in Europe, 2006. DATE ’06. Proceedings, vol. 1,

pp. 1–6, 2006.

[14] Muhammad A. Alam (2005), “On the Reliability of Micro-Electronic Devices: An In-

troductory Lecture on Negative Bias Temperature Instability.” https://nanohub.org/

resources/193.

[15] “HSPICE R© Simulation and Analysis User Guide.” Synopsys, Inc., http://www.

rudraj.it/hspice_sa.pdf.

51

https://nanohub.org/resources/193
https://nanohub.org/resources/193
http://www.rudraj.it/hspice_sa.pdf
http://www.rudraj.it/hspice_sa.pdf

[16] S. Mahapatra, P. Kumar, and M. Alam, “Investigation and Modeling of Interface and

Bulk Trap Generation During Negative Bias Temperature Instability of p-MOSFETs,”

IEEE Transactions on Electron Devices, vol. 51, no. 9, pp. 1371–1379, 2004.

[17] M. Alam and S. Mahapatra, “A Comprehensive Model of PMOS NBTI Degradation,”

Microelectronics Reliability, vol. 45, pp. 71 – 81, 2005.

[18] A. Ricketts, J. Singh, K. Ramakrishnan, N. Vijaykrishnan, and D. Pradhan, “Inves-

tigating the impact of NBTI on different power saving cache strategies,” in Design,

Automation Test in Europe Conference Exhibition (DATE), 2010, pp. 592–597, 2010.

[19] Seyab and S. Hamdioui, “NBTI modeling in the framework of temperature variation,”

in Design, Automation Test in Europe Conference Exhibition (DATE), 2010, pp. 283–

286, 2010.

[20] M. Alam, H. Kufluoglu, D. Varghese, and S. Mahapatra, “A Comprehensive Model

for PMOS NBTI degradation: Recent progress,” Microelectronics Reliability, vol. 47,

pp. 853–862, 2007.

[21] H. Kufluoglu and M. Alam, “A Generalized Reaction Diffusion Model With Explicit H–

H2 Dynamics for Negative-Bias Temperature-Instability (NBTI) Degradation,” IEEE

Transactions on Electron Devices, vol. 54, pp. 1101–1107, May 2007.

[22] E. Maricau and G. Gielen, “Efficient Variability-Aware NBTI and Hot Carrier Cir-

cuit Reliability Analysis,” IEEE Transactions on Computer-Aided Design of Integrated

Circuits and Systems, vol. 29, no. 12, pp. 1884–1893, 2010.

[23] P. P. Weckx, B. Kaczer, M. Toledano-Luque, T. Grasser, P. Roussel, H. Kukner,

F. Raghavan, Catthoor, and G. Groeseneken, “Defect-based Methodology for

Workload-dependent Circuit Lifetime Projections – Application to SRAM,” in Reli-

ability Physics Symposium (IRPS), 2013 IEEE International, pp. 3A.4.1–3A.4.7, 2013.

[24] Dunga, M.V. et al., BSIM4.6.0 MOSFET Model – User’s Manual. 2006.

[25] P. Nenzi and H. Vogt, Ngspice Users Manual. January 2013.

52

[26] “Ngspice simulator home page.” http://ngspice.sourceforge.net/.

[27] “BSIM-CMG model.” http://www-device.eecs.berkeley.edu/bsim/.

[28] T. L. Quarles, The Front End to Simulator Interface. April 1989.

[29] T. L. Quarles, Adding Devices to SPICE3. April 1989.

[30] F. CATTHOOR, B. KACZER, D. RODOPOULOS, V. VALDUGA DE ALMEIDA CA-

MARGO, and S. BANDHU MAHATO, “Time and workload dependent circuit simu-

lation ,” Patent EP2509011 (A1), IMEC [BE], 2012.

[31] “International Technology Roadmap for Semiconductors.” http://public.itrs.net/.

[32] Sriramkumar, V. et al. , BSIM-CMG 106.1.0, Multi-Gate MOSFET Compact Model –

Technical Manual. 2012.

[33] G. Lyras, D. Rodopoulos, A. Papanikolaou, and D. Soudris, “Hypervised transient

SPICE simulations of large netlists & workloads on multi-processor systems,” in Design,

Automation Test in Europe Conference Exhibition (DATE), 2013, pp. 655–658, 2013.

53

http://ngspice.sourceforge.net/
http://www-device.eecs.berkeley.edu/bsim/
http://public.itrs. net/

	Title
	Table of Contents
	Abstract
	Abstract

	Acknowledgements
	Acknowledgements

	List of Figures
	List of Figures

	1 Introduction
	2 Research Landscape
	2.1 Introduction
	2.2 Landscape of BTI modeling
	2.3 Mapping State-of-the-Art on the Landscape
	2.3.1 One-time Analysis without Device Individuality
	2.3.2 Transient Analysis without Device Individuality
	2.3.3 One-time Analysis with Device Individuality
	2.3.4 Transient Analysis with Device Individuality

	2.4 Conclusions

	3 Tool Description
	3.1 Introduction
	3.2 BSIM Flowchart
	3.2.1 Data Structures
	3.2.2 Overall device structure - bsim4v6init.c file

	3.3 Alterations to the Source Code
	3.3.1 Data Structures
	3.3.2 Overall device structure

	3.4 User Manual
	3.4.1 Normal Usage
	3.4.2 BTI without Initial Conditions
	3.4.3 BTI with Initial Conditions

	3.5 Conclusion

	4 Verification Test Cases
	4.1 Introduction
	4.2 Phenomenological Verification
	4.3 Detailed Verification
	4.4 Validation of BTI impact
	4.5 Conclusion

	5 Conclusions and Future Work
	5.1 Conclusions
	5.2 Recommendations for Future Work
	5.2.1 Extension of the implemented framework to other Device Models
	5.2.2 Transient BTI Simulations of Large Netlists on Multi-Processor Systems

	References

