NATIONAL TECHNICAL UNIVERSITY OF ATHENS
SCHOOL OF ELECTRICAL AND COMPUTER ENGINEERING

) “'\,‘
.\{ii;.a WL
” nror\pat\d_-ﬁll
W=EFE
Nvpporat

DivisioN oF COMPUTER SCIENCE

n

Speech Codecs analysis, basic arithmetic operations
profiling and efficient Hardware mapping

DIPLOMA THESIS

Michail Papanikolaou

Supervisor: Kiamal Z. Pekmestzi

Professor

Athens, July 2013

€

'
Z
L
O

£

EONIKO METzOBIO INMOAYTEXNEIO

2XOAH HAEKTPOAOTQN MHXANIKQN
KAl MIHXANIKQN YNOAOTIZTON

TOMEA: TEXNOAOTIAZ [TAHPO®OPIKHE KAI YIIOAOTIZTQN

£

=
b :-_@%
£
&

‘,&,Tiog
NE
B .
W
Vo i
APOMHOEVS .
L=

5

3
|

«
@k
J
.
h

|

MeA€tn Baoclkwv aplOunTikKwWY MPALEWVYV TTOU
XPNOLUOTIOLOUVTOL OO TNV OLKOYEVELA TWV
speech codecs Kol oOXeSLaOMOC APLOMNTLKAC
povadacg o€ UALKO yia armodoTtikn vAomoinon

AIMAQMATIKH EPTAZIA

MuxanA MamoavikoAdou

EmuBAEnwy: KiopadA Z. Nekpeotln

KaBnyntng

EykpiBnke amo tnv tpiueln e€etaotikn emtpornt tnv 5" louAiou 2013.

ABnva, lovAlog 2013

KlapdA Mekpeotln AnUATPLOG ZoUVTPNG lewpylog OLKOVOUAKOG
KaBnyntnig Enikoupog KaBnyntng Emnikoupog KaBnyntng

MIXAHA NANANIKOAAQOY

AutAwpatouxog HAektpoAdyog Mnxavikog kat Mnxavikog YroAoylotwy E.M.M.

Copyright © MIXAHA MANANIKOAAOQOY, 2013

Me emidpUAaén mavtog dikawwpatoc. All rights reserved.

AnayopeUetal n avtiypadn, anobrikeuon Kat Sltavoun Tng mapoloag epyaociag, €€ oAokAnpou n
TUAUOTOG QUTAG, VLo EUMOPLKO OKOTIO. ETUTpEmetal n avatumworn, anmobrikeuon Kol SLavopn yla
OKOTIO HN KEPOOOKOTIKO, EKMALSEUTIKAG N EPELVNTIKAG ¢UONG, umo Tnv mpolmobeon va
avadEpETaL n Ny MPoEAELONG Kal va SLaTnPEiTtaL To mapov pivupa. Epwtipata mou adopolv
N XpNon tg epyoociog yio KEpSOOKOTILKO OKOTIO TIPEMEL VA areuBUvovTal MPog Tov cuyypadea.

OL amoYelg Kol T CUUTEPACMOTO TIOU TIEPLEXOVIAL OE AUTO TO €yypado ekdpdlouv Tov

ouyypadEa kat Sev mpEMeL va epunveUBEel OTL avTLpooweoLV TI¢ emionpeg B0l Tou EBvikol
MetooBlou MoAuteyveiou.

Table of Contents

Y« 2 o 8
LG VAT T ¢ 8
AcCKNOWIEAZEMENLS.......coieeeceiieiceirreec e cerrreee e s rreese s s e snssessenassessennssessennssessennssessennnnsnee 9
[=Y 17,V U T TP TTUPPO 10
NEEELG — KAELOLAL. .. ceieereeeniiiiiiiiieernenseiesineteennesssssesseeeennnssssssessnseennnssssssssssessnnnsssssssssssssnnnes 10
[0 T] Uo 1 o £ TP 11
Y ¢ T=Y =T 4 T o T 1Y o N 12
11 INEFOTUCTION ...ttt ettt et e st e e sab e sbe e sateesbeeesaeeenas 12
1.2 Speech Codecs ClassifiCation........cuiiiieciiiiicciiie e 17
1.2.1 Classification by Sampling FrEQUENCYcoeevcuieieiiiiiee et 17
1.2.2 Classification by Bit-Rat@c..eeiiiuiiie e et 18
1.2.3 Single-Mode and Multimode COdECScovvciiiiiiiiiiiiciieee e 19
1.2.4 Classification by Coding TEChNIQUES........ccovvcuiiiiiiiiie e 20

1.3 Speech Production and Modelingcccuueeeeciiiiiciiiee et 23
1.3.1 Origin of SPEECh SiGNAIS ...ccceeiiiece e et 23
1.3.2 Classification of Speech Signalsccccviiiiiiiiiiicie e 24
1.3.3 Modeling the Speech Production Systemcccccvvciieeiiciiee e 25
134 A Glimpse of Parametric Speech CoOdiNgcccueeeeciiiieeciiiiee e 26

1.4 Detailed Description of selected COAECS.......ccoiuriieeiiiiieeciiee e e 29
1.4.1 G711 (PCIM).utiiteeteeee ettt ettt sttt sb et b e st sbe e e 29
1.4.2 G.726 (ADPCM) ...ttt sttt sttt st sb e ettt sbe e 33
1.4.3 G.722 (SB = ADPCIM) ..ttt sttt ettt ettt st sttt sbe e bt s s e 40
144 G.723.1 (ACELP/MP-MLQ) ...veeitieireeerieeieeiteesieesteeseesresteeteesseesseesssesssessesnseans 47

2 Selected Codecs Software Mapping.....c..ccceeeeiiriemeierieniisnenesierenesierenessesrenesssssennnes 57
21 [T Ao e [N o1 o] o FO PP P TP PSPPRPR 57
2.2 ITU COS...eiiieeeetee ettt e e es e s bt ee st e st e e sa e st e e bee e sab et e saseesaneesneeesaneeenneeenns 58

2.3 Matlab implementation ... 60

231 SOftware amendmMENtScooiiii et 60
2.3.2 EXperimental Parameters.....ccocuieeeiciiee ettt 66

3 Speech Codecs Profilingccceeeeeeeiiieieciiiecccrrcecerrcen s s reenes s eeen e s s e na s s s enasssssenanes 75
3.1 INEFOTUCTION ...ttt st et e e st e b e s nee e sbeeesneeenas 75
3.2 Functions and arithmetic Operationsccccceveviieeiiiiii e 75
3.3 Sequences of arithmetic Operationscccoccviii e 80
3.4 Data dependencies of arithmetic operations........cccccceeeeecieeeicieee e, 82
34.1 Tracking Of [0OPS wevveeeiiiiecee e e 82
3.4.2 Listing of the operation bIOCKSccccuveiiiiiiiiiie e 84

3.5 Modeling based on operation factoring.......cccccccueeeeeiieeeeciieee e e 88
3.6 CONCIUSIONS ...ttt ettt sttt et be e sae e st e st e e be e beesbeesaeesaeeeaneens 96

4 Hardware Implementation.........ccccciveiiiiiiieeniieniiieenereenierencereeerenserensesensseressesnnsessnns 929
4.1 INEFOTUCTION ...ttt ettt et e st e e st e st esateesbeeesaeeenas 99
4.2 TOOIS AN FIOW ..cutiiiiiiiiiiieieee ettt sttt ettt s e beenaees 99
43 L@ T ol 0 D T=TYol T o o o PP 99
43.1 GENEral DESCIIPLION . ..ciiii ittt e e e e e et re e e e e e e s s rtsraeaeeeeeens 99
4.3.2 Detailed DeSCriptionciccieei ettt e e e ebee e e 104

4.4 IMPlemMeNtation RESUILScccciiiii it e e e e 112

5 FULUFE WOrK...coooiiiiiiiiiiccccicccnrrrrrr s 117
0o 3Tl 1¥ £ o T 118
LISt Of FIBUI@S.. . ciiieeiiiiieeiiiiiiietireeetireeesteeneeesesnesestesnsssssennsssssennsssssesnsssssennsssssennsnanns 119
List Of TabIeS......ccii e 123
REFEIENCES.... .. s 124

Abstract

The purpose of the present diploma thesis is the hardware design of an arithmetic unit for
efficient implementation of speech codecs. First of all, that was an idea of Mr. N.
Moschopoulos who noticed that nowadays execution of speech codecs is done mainly by
general purpose DSPs. It would be interesting to study arithmetic operations of speech
codecs and search for an efficient arithmetic unit that it could work as (a part of) an

Arithmetic and Logic Unit (ALU) dedicated to speech applications.

Initially, the method followed included studying of the basic principles of speech coding and
the algorithms of selected speech codecs (chapter 1). That study was followed by the
software implementation of the selected speech codecs by using C-programming combined
with the software environment of Matlab (chapter 2). The next step was profiling of the
arithmetic operations that take place on the selected speech codecs and the proposal of an
efficient arithmetic unit (chapter 3). Finally, the proposed arithmetic unit was implemented

in Verilog HDL and evaluated through simulation and synthesis (chapter 4).

Key Words

speech coding, waveform codecs, parametric codecs, hybrid codecs, G.711, G.726, G.722,
G.722.2 G.723.1, G.729, iLBC, SILK, Opus, C programming with Matlab, profiling of arithmetic
operations, arithmetic data dependencies, hardware design, Verilog HDL

Acknowledgements

| would really like to thank the supervisor professor Mr. K. Pekmestzi for his advices and his
comments especially regarding the arithmetic unit implementation, the research associate
Dr. N. Moshopoulos for his guidance, his willingness to share his experience and his ability to
give solutions to a variety of problems that appeared during the whole period of this thesis,
as well as the PhD students K. Tsoumanis, G. Zervakis and N. Eftaxiopoulos — Sarris for their
willingness to provide me practical advices and invaluable help on the hardware

implementations of the proposed arithmetic unit.

NepiAnyn

O okomdg tng mapoloOg SUTAWUOTIKAG epyaociag eival n oxedlacn o UAKO HLOG
oplBunTikng povadag ywa amodotik uvAomoinon Twv aAyopibuwv kwdilkomoinong —
anokwdikomoinong ¢wvng. ApXLKd, aUTOG 0 OKOTIOC TIPoEKUYE amd pila okeyn tou K. N.
MooxomouAou, o omolog €ixe MopATNPNOEL MWE OTI LEPEC LAG N UAOTIOINGN O UALKO TwV
oAyopiBuwyv kwdikomoinong dwvng uAomoleital kupiwg pe Wnolakoug Enefepyacteg (DSPs)
vevikoU okomol Kol okéDTnke Twe Ba ntav evlladépov va peAeTnBoUV oL apLOUNTIKEG
TPAEELC Kal va YIVEL €peuva yLa pLo armoSoTikh aplOuntikn povada n omnoia Ba pnopolos va
amoteA£0el PEPOC ULlag AplBunTikng kat Aoyikng Movadag mpooavatoAloUEVNG EOLKA yLa

Vv uAomoinon twv aAyopiBuwv kwdikomoinong pwvnc.

Apxika, n pnéBodoc mou akolouBnBnke TepleAappove TN HEALETN TWV BACLKWY OPXWV TNG
Kwdkomoinong dwvng Katl Twv alyoplBuwv mou enhéxBnkav (keddAato 1). Auth n pHeAtn
okohouBnBbnke amod TNV ulomoinon Twv emAeyopevwy alyopiBuwv oe AOYLOULKO HE TN
Xpnon tou npoypappatiopol o C og cuvbuaouod pe to rieplBaAlov Aoylopikol tou Matlab
(kedaato 2). To emdpevo PR ATV N HEALTN TWV apBUNTIKWY MPAfewy mou Aappdavouv
Xwpa otou¢ adyopiBuoug kwdikomoinong — anokwdikonoinong Gwvng Kal n mpotacn HLag
amo8oTkNG aplBunTkng povadag (keddahato 3). TEAKE, N TPOTEWVOUEVN aplOUNTIKA Hovada
vlomowBnke He T YAwooa mepypadnc UAkou Verilog kat aflohoynbnke pEOw

npocopoiwong Kat cuvBeonc (kedpdAato 4).

Né€eic — KAsldua

Kwdkomoinon dwvrg, alyoplBuol Kwdlkomoinong KUUATOopdNG, TOPAUETPLKOL
oAyoplOuot kwdikomoinong, uppLdikol alyoplBuol kwdikomoinong, G.711, G.726, G.722,
G.722.2 G.723.1, G.729, iLBC, SILK, Opus, mpoypappatiopog C pe Matlab, moootikn kat
TOLOTLKI HEAETN aPLOUNTIKWY TIPAEEWV, E€aPTNOELS aplBunTIKWY SeSopévwy, oxediaon
UAkoU, Mwooa Mepypadng YAkou Verilog

10

Euxaplotieg

Oa nBsha MPAYUATIKA VO EUXOPLOTHOW Tov eTiPAEmovTa KaBnynt K. K. Nekpeotln yla Tig
OUMPOUAEG Kol T OXOALO TOU, ELSLIKA O OX£0Nn HE TO Tola aplOUNTIK povada £MpeTe va
UAOTIOL\OOUE, TO EPEUVNTIKO cuvepyatn k. N. MooxomouAo yia 6An tnv kabodrynon tou,
TNV MpoBupia Tou va POoLpaoTEL TNV EUMELpla TOU, KABWCE, Kal TNV LKAvOTNTa Tou va Sivel
AOoelg o pla motkAia mpoBANUATwWY mou gpdaviotnkav Kad’' OAn tn SLAPKELA EKTIOVNONG
QUTAG TNG epyaociag, onwg eniong toug Ynoyndioug Adaktopeg K. Tooupavn, I. ZepPakn
kot N. Eutaglomoudo — Zappn yla thv mpoBupia Toug vo Lou SwoouV TIPAKTIKEG CUUBOUAEG

KoL aveKkTipntn BonBela Katd TNV UAOTOLNGN TNE TPOTEWVOUEVNG OPLBUNTIKAG Lovadag.

11

1 Speech Codecs

1.1 Introduction

In general, speech coding is a procedure to represent a digitized speech signal using as few
bits as possible, maintaining at the same time a reasonable level of speech quality. A not so
popular name having the same meaning is speech compression. Speech coding has matured
to the point where it now constitutes an important application area of signal processing.
Due to the increasing demand for speech communication, speech coding technology has
received augmenting levels of interest from the research, standardization, and business
communities. Advances in microelectronics and the vast availability of low-cost
programmable processors and dedicated chips have enabled rapid technology transfer from
research to product development; this encourages the research community to investigate
alternative schemes for speech coding, with the objectives of overcoming deficiencies and
limitations. The standardization community pursues the establishment of standard speech
coding methods for various applications that will be widely accepted and implemented by
the industry. The business communities capitalize on the ever-increasing demand and
opportunities in the consumer, corporate, and network environments for speech processing

products.

Speech coding is performed using numerous steps or operations specified as an algorithm.
An algorithm is any well-defined computational procedure that takes some value, or set of
values, as input and produces some value, or set of values, as output. An algorithm is thus a
sequence of computational steps that transform the input into the output. Many signal
processing problems—including speech coding—can be formulated as a well-specified
computational problem; hence, a particular coding scheme can be defined as an algorithm.
In general, an algorithm is specified with a set of instructions, providing the computational
steps needed to perform a task. With these instructions, a computer or processor can
execute them so as to complete the coding task. The instructions can also be translated to

the structure of a digital circuit, carrying out the computation directly at the hardware level.

12

Figure 1.1 shows the block diagram of a speech coding system. The continuous time analog
speech signal from a given source is digitized by a standard connection of filter (eliminates
aliasing), sampler (discrete-time conversion), and analog-to-digital converter (uniform

guantization is assumed).

Spu:-:th_._ Filter | Sampler e AT gl Source |l Channel
SOUTCe
converter encoder encoder
"l Channel

Output

—po| Channel [Source [/A [pf Filter [speech
speed

decoder decoder converter

Figure 1.1: Block diagram of a speech coding system

The output is a discrete-time speech signal whose sample values are also discretized. This
signal is referred to as the digital speech. Traditionally, most speech coding systems were
designed to support telecommunication applications, with the frequency contents limited
between 300 and 3400 Hz. According to the Nyquist theorem, the sampling frequency must
be at least twice the bandwidth of the continuous-time signal in order to avoid aliasing. A
value of 8 kHz is commonly selected as the standard sampling frequency for speech signals.
To convert the analog samples to a digital format using uniform quantization and
maintaining toll quality—the digital speech will be roughly indistinguishable from the
bandlimited input—more than 8 bits/sample is necessary. The use of 16 bits/sample
provides a quality that is considered high. So, if the following parameters are assumed for

the digital speech signal:
Sampling frequency = 8 kHz,
Number of bits per sample = 16
This gives rise to

Bit-rate = 8 kHz - 16 bits = 128 kbps

13

The above bit-rate, also known as input bit-rate, is what the source encoder attempts to
reduce (Figure 1.1). The output of the source encoder represents the encoded digital
speech and in general has substantially lower bit-rate than the input. The codec G.723.1, for
instance, can have an output rate of 5.3 kbps, a reduction of more than 24 times with

respect to the input.

The encoded digital speech data is further processed by the channel encoder, providing
error protection to the bit-stream before transmission to the communication channel,
where various noise and interference can sabotage the reliability of the transmitted data.
Even though in Figure 1.1 the source encoder and channel encoder are separated, it is also
possible to jointly implement them so that source and channel encoding are done in a single

step.

The channel decoder processes the error-protected data to recover the encoded data, which
is then passed to the source decoder to generate the output digital speech signal, having the
original rate. This output digital speech signal is converted to continuous-time analog form

through standard procedures: digital-to-analog conversion followed by antialiasing filtering.

In this thesis, the emphasis is on the source encoder and source decoder. For simplicity, they

are referred to as the encoder and decoder, respectively (Figure 1.2).

Input . Output
speech ——W Encoder p| Decoder L speech
(128 kbps) Encoded (128 kbps)
bit-stream
<128 kbps)

Figure 1.2: Block diagram of a speech codec

The input speech (a discrete-time signal having a bit-rate of 128 kbps) enters the encoder to
produce the encoded bit-stream, or compressed speech data. Bit-rate of the bit-stream is
normally much lower than that of the input speech. The decoder takes the encoded bit-
stream as its input to produce the output speech signal, which is a discrete-time signal
having the same rate as the input speech. Different methods provide differing speech

quality and bit-rate, as well as implementation complexity.

14

The encoder/decoder structure presented in Figure 1.2 is known as a speech codec, where
the input speech is encoded to produce a low-rate bit-stream. This bit-stream is input to the

decoder, which constructs an approximation of the original signal.

Closing this section, the application of VoIP (Voice over IP) has to be referred. This is one of

the main applications nowadays, where speech codecs are playing a very important role.

I

Codec Coding Fizm:e:‘f Duration of | Samples per Bit Rate Complexity Used
Technique (?(Hz) ¥ Frame (ms) frame (kbit/s) (MIPS) Algorithms
035 Companded

G.711 Waveform 8 0.125 1 64) PCM

a)16, b)24, 12 ADPCM
G.726 Waveform 8 0.125 1 c)32, d)40
19 a) ACELP, b)
G.723.1 Hybrid 8 30 240 a) 5.3, b)6.3 MPC-MLQ
a) 15.2,

1 1 FB-LP
iLBC Hybrid 8 20 0or 30 160 or 240 b)13.3 3) 15, b)18 ¢
G.729a Hybrid 8 10 80 8 13 CS-ACELP

a) 48, b) 56,
G.722 Waveform 16 0.0625 1 c) 64 10 SB-ADPCM
A variety of
nine different
Bit Rates from 38 ACELP
G.722.2 Hybrid 16 20 320 6.60 to 23.85

Table 1.1: Speech Codecs of VolP

Table 1.1 displays some characteristics of the speech codecs that, almost all, IP Phones

support. These characteristics are concerning:

e The Coding Technique, which is referred to the approach of the coding procedure
that each codec follows. More are described in paragraph 1.2.4.

e The Sampling Frequency, which is referred to the frequency that the input speech is
sampled.

e The Duration of Frame, which is referred to the duration of each speech frame that
the codec processes while encoding/decoding.

e The Samples of Frame, which is referred to number of samples that each speech

frame includes

15

e The Bit Rate, which is referred to the Bit Rate that the encoded speech is
transmitted.

e The Complexity, which is referred to the complexity of each codec and it is
measured in Million Instructions Per Second (MIPS).

e The Used Algorithm, which is referred to the digital processing algorithm that each

codec implements.

It worths mentioning that 4 of the speech codecs of Table 1.1 (G.711, G.726, G.722, G.723.1)

were selected and analyzed within the framework of this thesis.

16

1.2 Speech Codecs Classification

The task of classifying modern speech codecs is not simple and is often confusing, due to the
lack of clear separation between various approaches. This section presents some
classification criteria. Readers must bear in mind that this is a constantly evolving area and

new classes of codecs will be created while alternative techniques are introduced.
1.2.1 Classification by Sampling Frequency

Depending on the sampling frequency (fs) of the input signal, that a speech codec

can compress, the following categories can be recognized:

Category Sampling Frequency (kHz)
Narrowband 8
Wideband 16
Super-Wideband 24
Ultra-Wideband 32
Fullband 48

Table 1.2: Classification of Speech Codecs according to Sampling Frequency

Figure 1.3 shows how higher sampling frequency gives a better VolP service as it encodes
more (actually, double) frequencies of the input speech. This is displayed as the codec G.729
uses input speech that is sampled in 8 kHz and, on the other hand, codec G.722.2 uses input

speech that is sampled in 16 kHz.

1]
Mrosend{] =) =5 Wi, c.mﬂ———@q—» =
s ——— (I
- o

Widehand B —JA,.
@ g

Figure 1.3: Greater sampling frequency provides truer representation of speech

Examples of the different categories from Table 1.2, in relation to bit-rate, are displayed in

Figure 1.4. Generally, until now, the most of the codecs are Narrowband (G.711, G.726,

17

G.723.1, G.729 etc) or Wideband (G.722, G.722.2). The rest of the categories usually contain,

some open-source codecs like Opus or SILK (speech codec of Skype).

Afull band stereo

fullband

super-wideband

wideband

Quality

narrowband

.
i BC G.711
: ! !] -
8 16 32 64 128
bitrate (kb/s) @ royalty-free, open-source

#free license, not open-source
@ licensing fees, not open-source

Figure 1.4: Different categories of sampling frequency in relation to bit-rate

1.2.2 Classification by Bit-Rate

All speech codecs are designed to reduce the reference bit-rate of 128 kbps to lower values.
Based on the bit-rate of the encoded bit-stream, it is common to classify the speech codecs
according to Table 1.3. Generally, different coding techniques lead to different bit-rates. A
given method works fine at a certain bit-rate range, but the quality of the decoded speech
will drop radically if it is decreased below a certain threshold. The minimum bit-rate that
speech codecs will achieve is limited by the information content of the speech signal.
Current codecs can produce good quality at 2 kbps and above, suggesting that there is

plenty of room for future improvement.

18

Category Bit — Rate Range
High bit rate >15 kbps
Medium bit rate 5 to 15 kbps
Low bit rate 2 to 15 kbps
Very Low bit rate <2 kbps

Table 1.3: Classification of Speech Codecs according to Bit — Rate

1.2.3 Single-Mode and Multimode Codecs

Single-mode codecs are those that apply a specific, fixed encoding mechanism at all times,
leading to a constant bit-rate for the encoded bit-stream. An example of such codecs is the

pulse code modulation (PCM or G.711).

Multimode codecs were invented to take advantage of the dynamic nature of the speech
signal, and to adapt to the time-varying network conditions. In this configuration, one of
several distinct coding modes is selected, with the selection done by source control, when it
is based on the local statistics of the input speech, or network control, when the switching

obeys some external commands in response to network needs or channel conditions.

Figure 1.5 shows the block diagram of a multimode codec with source control. In this
system, several coding modes are selected according to the properties of the signal at a
given interval of time. In an open-loop system, the modes are selected by solely analyzing
the input signal, while in a closed-loop approach, encoded outcomes of each mode are taken
into account in the final decision. The mode selection information is transmitted as part of

the bit-stream, which is used by the decoder to select the proper mode.

19

—» Encoder | e

£y _:"'
13{‘3%——.’ C— Encoder 2 —H?. \
\L,. . /’g Pack [— Bit-stream
i Encoder ¥ —

h 4

¥

Encoder
selection

O/—Iv Decoder | ﬁ‘b
—./’j‘ 'i._)—ll- Decoder 2 —I-Q- K\.—P Synthetic
I ¢ '\ H

i . speech
Bit-stream o e
— 3| Unpack : _/J
3 \\LI' Decoder N |

Figure 1.5: Encoder (top) and decoder (bottom) of a source-controlled multimode codec

Most multimode codecs have a variable bit-rate, where each mode has a particular, fixed
value. Keeping the bit-rate varied allows more flexibility, leading to improved efficiency and
a significant reduction in average bit-rate. Also, there are codecs which can adaptively switch

between different sampling frequencies.

Examples of multimode codecs are G.722.2, SILK and Opus. Especially the last one (Opus),
came up in 2012 and it can adaptively switch from 6 kb/s to 512 kb/s (as far as the bit-rate is
concerned) and from Narrowband (8 kHz) to Fullband (48 kHz).

1.2.4 Classification by Coding Techniques

Waveform Codecs

An attempt is made to preserve the original shape of the signal waveform, and hence the
resulting codecs can generally be applied to any signal source. These codecs are better
suited for high bit-rate coding, since performance drops sharply with decreasing bit-rate. In
practice, these codecs work best at a bit-rate of 32 kbps and higher. Signal-to-noise ratio

(SNR) can be utilized to measure the quality of waveform codecs. Some examples of this

20

class include various kinds of pulse code modulation (PCM-G.711) and adaptive differential

PCM (ADPCM-G.726).

Parametric Codecs

Within the framework of parametric codecs, the speech signal is assumed to be generated
by a model, which is controlled by some parameters. During encoding, parameters of the
model are estimated from the input speech signal, with the parameters being transmitted
within the encoded bit-stream. This type of codec makes no attempt to preserve the original
shape of the waveform, and hence SNR is a useless quality measure. Perceptual quality of
the decoded speech is directly related to the accuracy and complexity of the underlying
model. Due to this limitation, the codec is signal specific, having poor performance for non-

speech signals.

There are several proposed models in the literature. The most successful, however, is based
on linear prediction. In this approach, the human speech production mechanism is
summarized using a time-varying filter, with the coefficients of the filter found using the

linear prediction analysis procedure.

This class of codecs works well for low bit-rate. Increasing the bit-rate normally does not
translate into better quality, since it is restricted by the chosen model. Typical bit-rate is in
the range of 2 to 5 kbps. Example codecs of this class include linear prediction coding (LPC)

and mixed excitation linear prediction (MELP).

Hybrid Codecs

As its name implies, a hybrid codec combines the strength of a waveform codec with that of
a parametric codec. Like a parametric codec, it relies on a speech production model; during
encoding, parameters of the model are located. Additional parameters of the model are
optimized in such a way that the decoded speech is as close as possible to the original
waveform, with the closeness often measured by a perceptually weighted error signal. As in
waveform codecs, an attempt is made to match the original signal with the decoded signal in

the time domain.

This class dominates the medium bit-rate codecs, with the code-excited linear prediction
(CELP) algorithm and its variants (ACELP — G.723.1, CS-ACELP — G.729) the most outstanding
representatives. From a technical perspective, the difference between a hybrid codec and a

parametric codec is that the former attempts to quantize or represent the excitation signal

21

to the speech production model, which is transmitted as part of the encoded bit-stream. The
latter, however, achieves low bit-rate by discarding all detail information of the excitation

signal; only coarse parameters are extracted.

A hybrid codec tends to behave like a waveform codec for high bit-rate, and like a

parametric codec at low bit-rate, with fair to good quality for medium bit-rate.

SPEECH
QUALITY
A | TWAVEFORM "I
EXCELLENT | CODECS |
GOCD !
FAIR
POOR
BAL . I
1 2 4 8 16 32 64 =

BIT RATE (Khits/s)

Figure 1.6: Speech Quality versus Bit Rate for Common Classes of Codecs

22

1.3 Speech Production and Modeling

The methods of Digital Signal Processing, that usually take place in speech coding and

especially in parametric and hybrid speech codecs, are not about to be described in depth.

The purpose is to outline the philosophy of parametric coding and how it was implemented,

by understanding and modeling the human speech production system.

1.3.1 Origin of Speech Signals

The speech waveform is a sound pressure wave originating from controlled movements of

anatomical structures making up the human speech production system. A simplified

structural view is shown in Figure 1.7. Speech is basically generated as an acoustic wave that

is radiated from the nostrils and the mouth when air is expelled from the lungs with the

resulting flow of air perturbed by the constrictions inside the body. It is useful to interpret

speech production in terms of acoustic filtering. The three main cavities of the speech

production system are nasal, oral, and pharyngeal forming the main acoustic filter. The filter

is excited by the air from the lungs and is loaded at its main output by a radiation

impedance associated with the lips.

o S ———
"
Velum |
\‘
Pharyngcal cavity g "\ >

Larynx

4 -

Lungs

Figure 1.7: Diagram of the human speech production system

‘\ Nostril

. N
Trachea 7‘—*

The form and shape of the vocal and nasal tracts change continuously with time, creating an

acoustic filter with time-varying frequency response. As air from the lungs travels through

23

the tracts, the frequency spectrum is shaped by the frequency selectivity of these tracts. The
resonance frequencies of the vocal tract tube are called formant frequencies or simply

formants, which depend on the shape and dimensions of the vocal tract.

Inside the larynx is one of the most important components of the speech production
system—the vocal cords. Vocal cords are a pair of elastic bands of muscle and mucous
membrane that open and close rapidly during speech production. The speed by which, the
cords open and close is unique for each individual and define the feature and personality of

the particular voice.
1.3.2 Classification of Speech Signals

Roughly speaking, a speech signal can be classified as voiced or unvoiced. Voiced sounds are
generated when the vocal cords vibrate in such a way that the flow of air from the lungs is
interrupted periodically, creating a sequence of pulses to excite the vocal tract. With the
vocal cords stationary, the turbulence created by the flow of air passing through a
constriction of the vocal tract generates unvoiced sounds. In time domain, voiced sound is
characterized by strong periodicity present in the signal, with the fundamental frequency
referred to as the pitch frequency, or simply pitch. For men, pitch ranges from 50 to 250 Hz,
while for women the range usually falls somewhere in the interval of 120 to 500 Hz.
Unvoiced sounds, on the other hand, do not display any type of periodicity and are

essentially random in nature.

It is necessary to indicate that the voiced / unvoiced classification might not be absolutely
clear for all frames, since during transitions (voiced to unvoiced or vice versa) there will be
randomness and quasiperiodicity that is difficult to judge as strictly voiced or strictly

unvoiced.

For most speech codecs, the signal is processed on a frame-by-frame basis, where a frame
consists of a finite number of samples. The length of the frame is selected in such a way that
the statistics of the signal remain almost constant within the interval. This length is typically

between 20 and 30 ms, or 160 and 240 samples for 8-kHz sampling.

24

1.3.3 Modeling the Speech Production System

In general terms, a model is a simplified representation of the real world. It is designed to
help the better understanding of the world and, ultimately, to duplicate many of the

behaviors and characteristics of real-life phenomenon.

However, it is incorrect to assume that the model and the real world that it represents are
identical in every way. In order for the model to be successful, it must be able to replicate
partially or completely the behaviors of the particular object or fact that it intends to
capture or simulate. The model may be a physical one (i.e., a model airplane) or it may be a

mathematical one, such as a formula.

The human speech production system can be modeled using a rather simple structure: the
lungs—generating the air or energy to excite the vocal tract—are represented by a white
noise source. The acoustic path inside the body with all its components is associated with a
time-varying filter. The concept is illustrated in Figure 1.8. This simple model is indeed the
core structure of many speech coding algorithms. By using a system identification technique
called linear prediction, it is possible to estimate the parameters of the time-varying filter

from the observed signal.

White Time-
noise B VAINE —— Ouiput speech
generator filter
Lungs - Trachea

- Pharyngeal cavity
~ Masal cavity
- Oral cavity
- MNostril
L Mouth

Figure 1.8: Correspondence between the human speech production system with a simplified
model based on time-varying filter.

The assumption of the model is that the energy distribution of the speech signal in
frequency domain is totally due to the time-varying filter, with the lungs producing an
excitation signal having a flat-spectrum white noise. This model is rather efficient and many
analytical tools have already been developed around the concept. The idea is the well-

known autoregressive model.

25

1.3.4 A Glimpse of Parametric Speech Coding

Consider a speech frame corresponding to an unvoiced segment with 256 samples. Applying
the samples of the frame to a linear prediction analysis procedure, the coefficients of an

associated filter are found. This filter has system function

1

H — i
@) = 1+ X310 az7t

with the coefficients denoted by i, i=1 to 10.

White noise samples are created using a unit variance Gaussian random number generator;
when passing these samples (with appropriate scaling) to the filter, the output signal is
obtained. Figure 1.9 compares the original speech frame, with two realizations of filtered
white noise. As can be seen, there is no time-domain correspondence between the three
cases. However, when these three signal frames are played back to a human listener

(converted to sound waves), the perception is almost the same!

5000 ! ! ! ! !

i o il lﬁlﬁl i ﬁ'v 'Wln";rn"'f“"l'p'u"fﬂ“'fwWﬁ~"ﬂ"4"v'1l‘f'ff'ﬂ"-‘.'l'“t'"~'*'-"a'h"f#

—S00000]]]]]
0 50 100 150 200 250

5000 T T T T T

il 0 *’"‘f'wLﬁql'"‘F~"~”a‘~"a‘h't4,i-ﬂuuwf" '1! f'“v Vh '* I | h” bt

—S000 | | | | |
0 50 100 150 200 250

5000 I I I I I

2] 0 ,'lrﬂ.lw "1||‘-a.'m-.l..|',, “Uum'l.m.l l'”ku.fl o 1‘“|.||"|;.|1 T T PRI II|!'1.

5000 : : :
0 50 100 150 200 250

Figure 1.9: Comparison between an original unvoiced frame (top) and two synthesized
frames.

26

Even if they look so different in the time domain, the perception is almost the same, because
they all have a similar magnitude spectrum, as plotted in Figure 1.10. As it can be noticed,
the frequency contents are similar, and since the human auditory system is not very
sensitive toward phase differences, all three frames sound almost identical. The original
frequency spectrum is captured by the filter, with all its coefficients. Thus, the flat-spectrum
white noise is shaped by the filter so as to produce signals having a spectrum similar to the

original speech. Hence, linear prediction analysis is also known as a spectrum estimation

technique.
1-10° T . . : : .
100 = . .--l.:":*l".-\.ll- A F [7
ST41| 10 ot T AANT A
L Ll P | A 8 - g Y I': |f W« ‘III-"‘" e
PR DA AR | |
I o o _
0.1 ! I L 1 I I
0 20 40 &0 80 100 120

Figure 1.10: Comparison between the magnitude of the DFT for the three signal frames of
Figure 1.9

It is known that the objective in speech coding is to represent the speech frame with a lower

number of bits. The original number of bits for the speech frame is
Original number of bits = 256 samples x 16 bits/sample = 4096 bits.

As indicated previously, by finding the coefficients of the filter using linear prediction
analysis, it is possible to generate signal frames having similar frequency contents as the
original, with almost identical sounds. Therefore, the frame can be represented alternatively
using ten filter coefficients, plus a scale factor. The scale factor is found from the power level
of the original frame. In bibliography, it is mentioned that the set of coefficients can be
represented with less than 40 bits, while 5 bits are good enough for the scale factor. This

leads to

Alternative number of bits = 40 bits + 5 bits = 45 bits.

27

Therefore, an order of magnitude saving is achieved in terms of the number of required bits

by using this alternative representation, fulfilling in the process our objective of bit

reduction. This simple speech coding procedure is summarized below.

1)
2)

Encoding

Derive the filter coefficients from the speech frame.

Derive the scale factor from the speech frame.

Transmit filter coefficients and scale factor to the decoder.

Decoding

Generate white noise sequence.

Multiply the white noise samples by the scale factor.

Construct the filter using the coefficients from the encoder and filter the scaled

white noise sequence. Output speech is the output of the filter.

By repeating the above procedures for every speech frame, a time-varying filter is created,

since its coefficients are changed from frame to frame. Note that this overly simplistic

scheme is for illustration only: much more elaboration is necessary to make the method

useful in practice. However, the core ideas for many speech codecs are not far from this

uncomplicated example.

28

1.4 Detailed Description of selected Codecs

1.4.1 G.711 (PCM)

In the early 1960’s interest was expressed in encoding the analog signals in telephone
networks, mainly to reduce costs in switching and multiplexing equipment and to allow the
integration of communication and computing, increasing the efficiency in operation and

maintenance.

In 1972, the then CCITT (renamed ITU-T in 1993) published the Recommendation G.711 that
constitutes the principal reference as far as transmission systems are concerned. The basic
principle of the algorithm is to code speech using 8 bits per sample, the input voiceband
signal being sampled at 8 kHz, keeping the telephony bandwidth of 300-3400 Hz. With this

combination, each voice channel requires 8kHz x 8 bits = 64 kbit/s.

There are two different versions of G.711, according to the region of the world in which it is

implemented. These are a-law for Europe and p-law (or u-law) for North America.
1.4.1.1 Applications

G.711 is considered to be a speech codec of high prevalence. Even if is the oldest one, the
simplicity of his algorithm makes it ubiquitous, except, maybe, for the applications that
bandwidth is really restricted. Every IP Phone, nowadays, supports G.711. Also, this codec is
used in Radio over IP (RolP) systems and in some Fax over IP devices (FolP). RolP is a method
of communication that interconnects standard two-way radios with an IP network such as
the public Internet and FolP is the technology that enables the internetworking of fax

machines with a packet-based network
1.4.1.2 Parameters

As it is mentioned above speech is sampled in 8 kHz sampling frequency. In the a-law
version input speech is consisted of 13-bit uniform PCM numbers and in the u-law version of
14-bit uniform PCM numbers. While encoding, numbers in the range of {-4092, 4092} (A-
law) or in the range of {-8192, 8192} (u-law) are assigned to an 8-bit form. On decoding, the

8-bit form comes back to the 13- or 14-bit form, according to law that is used.

29

1.4.1.3 Algorithm

The algorithm of G.711 is based on quantization. Maybe the most natural quantization
scheme would be linear (or uniform) quantization. But one drawback of this approach is that
the signal-to-noise ratio (SNR) varies with the amplitude of the input signals: the smaller the
amplitude, the smaller the SNR. And, from the quality point of view, if a signal has a wide

variance, or a variance that changes with time (as in the case of speech signals), the SNR will

also change, resulting in a wide-varying quality of the system.

To avoid this problem logarithmic quantization was selected which will result into a more
uniform quantization noise. With this in mind, several studies were carried out in late 1960’s

to choose a good algorithm for this purpose. This led to the definition of the two

transmission schemes, one using the a-law compression characteristic:

(Ao | x| A
0
- = <
) :! T+ a9 x| < A,
A(l +1n(A0M|x|/A))S n(x) A < |x| < 4
1+1In4, guxd, g = 1xh=
and the other using the p-law compression characteristic:
In(1+ulx|/4)
x) = sgn(x), |x| < A.
f@) S x|
J ——:___-TT"_'__-_
H”;,,hh A =8
(o T 20
f) 0 i 8.
/':"Ilu
-1 = .--."___E-'--'-'_-_-_
-1 0.5] 0.5 1

Figure 1.11: Plots of a-law characteristics with Ao = 87.6, 20, and 8. A = 1 for all cases

30

8

— |

32

]
L

fix) 0

:z,':.: = LU
s
-‘f’:ll'l

-1 —0.5 0 0.5 1

Figure 1.12: Plots of u-law characteristics with u = 255, 32, and 8. A = 1 for all cases

As it can be noticed in Figure 1.11 and Figure 1.12, lower value of Ap or u results to an
almost linear quantization behavior. Also, both characteristics behave as linear for small
amplitude signals (being then equivalent to a linear quantization scheme), but are truly

logarithmic for large signals.

The G.711 standard does not specify the law as defined above, but rather uses a good linear-
piecewise approximation for 8 bit samples, which has easier implementation (in hardware),

as well as other properties.

This approximation uses bit 1 for sign (1 for positive, 0 for negative), bits 2—4 to indicate a
segment, and bits 5-8 for level. Within each segment, the quantization is linear (4 bits, or 16

levels), having 13 segments of distinct slopes for a-law, and 15 for p-law.

The a-law works with signals in the range from -4096 to 4096, implying in a range of 13 bits.
As for the p-law, the linear signals are accepted in the range -8159 to 8159, which is
represented by 14 bits. Besides this, in the dynamic range sense, a- and pu- law are

equivalent to 12 and 13 bit linear quantization, respectively.

One detail for the a-law is that the even bits are inverted. The reason for this comes from
problems observed in transmission systems when long sequences of zeros happen, because
small amplitudes, in a law, to be coded mostly using ‘0’ bits. With this bit-inversion, long

sequences of bits ‘0’ become less probable, thus improving performance.

The conversion rule for a/p-law from/to linear is described in terms of tables in G.711
(Figure 1.13 and Figure 1.14). A good reason for this, is that there is no closed form for the
compression of linear samples (although it is possible to find a closed formulae for the

expansion algorithm). Hence, two implementations are possible: table look-up, and

31

algorithmic. For in-chip (LSI) implementations, the first one may be preferred, because it is
simpler to implement, at the cost of a wider chip area. For other applications, such as using
Digital Signal Processors (DSPs), or software implementations, table look-up would occupy

too much memory, and the algorithmic solution would be preferred.

TABLE 1a/G.711
A-law, positive input values
T T T T
1 2 i 4 5 L] 7 &
Character signal .
before inversion Qu::;:::ed
Number Value i | - of the even bits Decoder
Segment of intervals at scgment D:;llzém ?:lﬂ:“:n (value autpul
number * interval end number n (see Nui:nl] at decoder value
size points Bit number output) ¥. number
12345678
4096 (128) (4096) - === ===~~~ :
Tl - 4032 | 128
121 .| e —————— |
| | | I |
7 16 = 128 :] (see Note 2) : !
1 1 H |
|
| | | | |
113 2176
11110000 = 2012 “3.
2048 12 2048 T ! 1
] I I]
6 16 % 64 | i e Note 2 i }
| | |
97 1088 L ! |
11100000 - 1056 97
1024 QEI- 1024; ———!—— : l
I |
I | |
] 16 x 32 l I (see B:nlc 2) I :
81 544 L I i
[11010000 |- 528 8l
\— 1 s2 30 512 , ! |

Figure 1.13: Table of conversion for a-law from/to liner (snapshot from ITU-T G.711
Recommendation)

32

TABLEAU 2a/G.711
j-law, positive input values

|— 1 2 3 4 5 6 7 L3
| Character signal Quantized
Number Value - - value Decoder
Segment of intervals at segment nglfl‘f" E:?fllgli“) {value ouilput
mber | menal |5 ed | i | Kol sdsoser | vl
size | po Bit number output) ¥,
! 12345678
|
&159 | (128) (8159) - 4-----====+
10000000 | 8031 127
IZTI T9U3| ———— : I
1
] 16 x 256 I ! {see Note 2) } i
| I | |
13 4319 . ! !
10001111 | 4191 12
4063 12 4063 , | ;
| i | | |
7 16 x 128 | | (see Note 2) ! !
I I |
97 2143 I | I
10011111 |- 2079 96
2015 96 Zﬂlf: T : :
' ! I I
I I ~
6 16 x 64 I l (see ."Iil)l.e 2) i i
81 1055 ' I [
L9101 111 - 1023 &0
991 80 91 | [
{] i]
] i .
5 16 x 32 I I (see hl.o'r.e 2) I | I

Figure 1.14: Table of conversion for a-law from/to liner (snapshot from ITU-T G.711
Recommendation)

1.4.2 G.726 (ADPCM)

In 1982, a group was established by CCITT to study the standardization of a speech coding
technique that could reduce the 64 kbps rate used in digital links, as per ITU-T

Recommendation G.711, by half (32 kbps) while maintaining the same voice quality.

After considering contributions received from several organizations, there was a general
feeling that the ADPCM (Adaptive Differential Pulse Code Modulation) technique could
provide a good quality codec. This process of finalizing an algorithm took 18 months of
development and testing, to culminate in an ITU Recommendation, published in October,

1984 as Recommendation G.721.

Meanwhile, problems were found with the G.721 algorithm of 1984 regarding voice-band
data and changes had to be done to the algorithm. These changes were approved in 1986
and published in the next series of Recommendations of the CCITT. Also, in that Study Period
(1985-1988), a need for other rates was identified, and a new Recommendation, G.723, was

approved to extend the bitrate to 24 and 40 kbps.

33

In the Study Period of 1989-1992, these two Recommendations have been joined into a
single one, keeping full compatibility with the former ones, and adding a lower rate of 16
kbps. This new Recommendation was named G.726, and the former G.721 and G.723 have
been replaced. The most commonly used mode is 32 kbps, since this is half the rate

of G.711, thus increasing the usable network capacity by 100%.
1.4.2.1 Applications

G.726 is present in the most IP phones. It is primarily used on international trunks in the
phone network. G.726 is, also, the standard codec used in DECT cordless phone systems and

on some Canon cameras. Finally, it is used, like G.711, in RolP systems.
1.4.2.2 Parameters

In G.726 speech is, also, sampled in 8 kHz sampling frequency. Actually, it includes the
processing of G.711 in the beginning of encoding (Figure 1.15 — 64kbps PCM input) and in
the end of decoding (Figure 1.16 — 64kbps PCM output). As a result, if the a-law version of
G.711 is included, input speech is consisted of 13-bit uniform PCM numbers and, if the u-law

version, of 14-bit uniform PCM numbers, respectively and they are assigned to an 8-bit form.

i T Input +
64 Kkbit/s Convert to signal 7N Differencs signal - Adaptative ADPCM
PCM uniform PCM "_|_/' | quantizer output
input I
Signal estimate
Reconstruc- ¥+
o 20 signal (—f—\, y
. J Inverse
Adaptive + adaptive
predictor quantizer
Quantized
difference

signal

Figure 1.15: G.726 Encoder

Then, while encoding and according to the mode of G.726 that is used (40, 32, 24 or 16
kbps), 8-bit form is transformed to a 5-, 4-, 3- or 2-bit form, respectively, and this is the

transmitted data.

Finally, decoder restores data to the 8-bit form and this is brought back to the 13- or 14-bit

uniform PCM by the G.711 decoding part that is included.

34

ADPCM
—
Input

1.4.2.3 Algorithm

Inverse

adaptive
quantizer

Quantized . L
difference - Reconstruc-
signal ™, ted signal Synchronous 64 kbit/s
=(\—|— ! » ConverttoPCM —»{ coding
5 adjustment output
ah +
'y
Signal
estimate
T1508180-02
-

Adaptive
predi

ctor

Figure 1.16: G.726 Decoder

In this section the algorithm of 32 kbps mode of G.726 is described, as applied at the most

common applications nowadays. Other modes use almost the same algorithm.

The basic idea behind the G.726 codec is to code into 4-bit samples the input speech-band

signals, sampled at 8 kHz and represented by the 8-bit of G.711 a- or u- law samples. The

decoder just implements the reverse procedure.

Input PCM
— format

s(k) conversion

silk)

Difference
signal
computation

A

Reconstructed
Sth;F;L%.M = signal =
calculator
l%k)
- Inverse)
Quantzer adaplive predicior
dik) I(k) quantizer dglk) S(k)
A A A
az(k)
l i 4
Quantizer > Adaptation * Tone and
scale factor (k) speed trlk) transition
adaptation -+ control + detector
aq (k) t4lk)
vk | i)

Figure 1.17: G.726 Encoder Block Schematic

The ADPCM algorithm of the G.726 exploits the predictability of the speech signals.

Therefore, an adaptive predictor is used to compute the difference signal d(k) (based on the

expanded input log-pcm sample s(k)), which is then quantized by an adaptive quantizer

35

using 4 bits. These bits are sent to the decoder and then fed into an inverse quantizer. The

difference signal is used to calculate the reconstructed signal, sr(k), which is compressed (a-

or u-law) and output from the decoder sd(k)).

ADPCM I(k) Inverse dg(k) Reconstructed sk} Qutput PCM sp(K) Synchronous s 4K}
inoui " adaptive #»{ signal » format » coding —
P quantizer calculator COnversion adjustment
Y s (k) y i 'y
Adaptive
predictor
T1508210-82
L v
vy | | | K
Quantizer -) i Tone and
scale factor ay(k) ;Ad:epdta{t:gtml tgik) transition
adaptation - P -t detector
t (&) ? +

Figure 1.18: G.726 Decoder Block Schematic

To provide some insight in the building blocks of the G.726 algorithm, a short description of

each of them is given.

PCM format conversion

The input signal s(k), in either a- or u-law format, must be converted into linear samples.
This expansion is accomplished using the same algorithm in G.711, but converting from

signed magnitude to 14-bit two’s complement samples.

Difference Signal Computation

This block simply calculates the difference between the (expanded) input signal and the

estimated signal:

d(k) = si(k) - se(k)

36

Adaptive Quantizer

A 15-level, non-uniform adaptive quantizer is used to quantize the difference signal. Before
the quantization, this signal is converted to a logarithmic representation (in order to take
advantage of the fact that multiplication in linear domain is addition in logarithmic domain)
and scaled by a factor (y(k)), that is computed in the scale factor adaptation block (see

below).

The output of this block is I(k), and it is used twice; first, the ADPCM coded (quantized)
sample; second, the input to the backward part of the G.726 algorithm, to provide
information for quantization of the next samples. One relevant point to note here is that the
backward adaptation is done using the quantized sample. If one starts the decoder from this
very point, one will find identical behavior. That is why only the quantized samples are

needed in the decoder.
Inverse Adaptive Quantizer

The inverse adaptive quantizer takes the signal I(k) and converts it back to the linear
domain, generating a quantized version of the difference signal, dg(k). This is the input to

the adaptive predictor, such that the estimated signal is based on a quantized version of the

difference signal, instead of on the un-quantized (original) one.
Quantizer Scale Factor Adaptation

This block computes y(k), the factor used in the adaptive quantizer and inverse quantizer for
domain conversion. As input, this block needs Ifk), but also ai(k), the adaptation speed
control parameter. The reason for the latter is that the scaling algorithm has two modes
(bimodal adaptation), one fast and another slow. This has been done to accommodate
signals that in nature produce difference signals with large fluctuations (e.g. speech) and
small fluctuations (e.g. tones and voice-band data), respectively.

This block computes two scale factor (fast, yu(k), and slow, yi(k)) based on I(k), which

combined using ai(k) produce y(k).

37

Adaptation Speed Control

This block evaluates the parameter aifk), which can be seen as a proportion of the speed

(fast or slow) of the input signal, and is in the range [0, 1]. If O, the data are considered to be

slowly varying; if 1, they are considered to be fast varying.

To accomplish this, two measures of the average magnitude of I(k) are computed (dms(k)
and dmi(k)). These, in conjunction with delayed tone detect and transition detect flags (td(k)
and tr(k), calculated in the Tone Transition and Detector block), are used to evaluate ap(k),

whose delayed version (ap(k - 1)) is used in the definition of ai(k), limiting the range to [0, 1].

An analysis of ap(k) gives insight on the nature of the signal: if around the value of 2, this

means that the average magnitude of I(k) is changing, or that a tone has been detected, or
that it is idle channel noise; on the other side, if near 0, the average magnitude of I(k)

remains relatively constant.
Adaptive Predictor and Reconstructed Signal Calculator

The adaptive predictor has as its main function to compute the signal estimate based on the
quantized difference signal, dq(k). It has 6 zeroes and 2 poles, structure that covers well the
kind of input signals expected for the algorithm. With these coefficients, and past values of

dg(k) and se(k), the updated value for the signal estimate se(k) is computed.

The two sets of coefficients (one for the pole section, aifk), i = 1,2, other for the zero section,
bi(k), i = 1,..., 6) are updated using a simplified gradient algorithm. At this point, since a

situation in which the poles cause instability may arise, the two pole coefficients a;j have
their ranges limited. In addition, if a transition from partial band signal is detected (signaled
by tr(k)), the predictor is reset (all coefficients are set to 0), remaining disabled until tr comes

back to zero.

The reconstructed signal sr(k) is calculated using the signal estimate se(k) and the quantized

difference signal dq(k).

38

Tone Transition and Detector

This block was added to improve algorithm performance of G.721 for signals originating

from FSK modems operating in the character mode. First, it checks if the signal has partial

band (e.g., a tone) by looking at the predictor coefficient ax(k), that defines the signal tq(k).

Second, a transition from partial band signal indicator tr(k) is set, such that predictor

coefficients can be set to 0 and the quantizer can be forced into the fast mode of operation.
Output PCM Format Conversion

This block is unique to the decoder. Its sole function is to compress the reconstructed signal
sr(k), which is in linear PCM format, using a- or u-law, and is a complement of the PCM

format conversion block.
Synchronous Coding Adjustment

This block is also unique to the decoder. It has been devised in order to prevent cumulative
distortions occurring on synchronous tandem coding (ADPCM—PCM-ADPCM, etc., in purely

digital connections, i.e., with no intermediate analog conversions), provided that:

e the transmission of the ADPCM and the intermediate PCM are error-free, and
e the ADPCM and the intermediate PCM are not disturbed by digital signal processing

devices.
Extension for linear input and output signals

An extension of the G.726 algorithm was carried out in 1994 to include, as an option, linear
input and output signals. The specification for such linear interface is given in its Annex A.
This extension bypasses the PCM format conversion block for linear input signals, and both
the Output PCM Format Conversion and the Synchronous Coding Adjustment blocks, for
linear output signals. These linear versions of the input and output signals are 14-bit, 2’s

complement samples.

The effect of removing the PCM encoding and decoding is to decrease the coding

degradation by 0.6 to 1 gqdu, depending on the network configuration considered.

39

1.4.3 G.722 (SB - ADPCM)

With the emergence of ISDN networks offering digital connectivity at 64 kbps between
subscribers, the possibility was given to improve the standard telephone quality by
increasing the transmitted bandwidth. A bandwidth of 50-7000 Hz corresponding to a
sampling of 16 kHz was chosen because it provides a substantial improvement of the quality
for applications where the speech is to be heard through high quality loudspeakers e.g. for
audio or video conference services, commentary broadcasting, and high quality hands-free

phones.

An expert group was created in November 1983 whose mandate was to define a standard
for 7 kHz speech coding within 64 kbps. After many contributions received from several
organizations, it has been decided to choose a codec which combined sub-band filtering and
adaptive differential pulse-code modulation algorithms (SB-ADPCM). The final
recommendation was produced in March 1986 and approved in July 1986 by CCITT as

Recommendation G.722.

In 2006, upon ETSI DECT request, packet loss concealment (PLC) procedures for G.722 were

standardized to ensure a sufficient robustness over the DECT wireless interface.
1.4.3.1 Applications

G.722 is present in the most IP phones. It is used for VoIP applications, such as on a local
area network where network bandwidth is readily available, and offers a significant
improvement in speech quality over older narrowband codecs such as G.711. G.722 has also
been widely used by radio broadcasters for sending commentary grade audio over a single
56 or 64 kbps/s ISDN B-channel. Finally, G.722 at 64 kbps/s is the mandatory codec in ETSI
New Generation DECT (NG-DECT) standards. These standards are intended for wideband

audio enabled devices to be connected on VolP networks.
1.4.3.2 Parameters

As it is mentioned above speech is sampled in 16 kHz sampling frequency. Figure 1.19 shows
the block diagrams of encoding-decoding, and explains the 3 different modes of G.722 (64,
56, 48 kbps).

In order to improve the transmitted speech quality, the input signal has to be converted

after antialiasing filtering by an analog-to-digital (A/D) converter operating at 16 kHz

40

sampling rate and with a resolution of at least 14 uniform PCM bits. Input, is encoded to an
8-, 7- or 6-bit form, according to the operating mode, and, similarly, at the receive side, a
digital-to-analog (D/A) converter operating at 16 kHz sampling rate and with a resolution of

at least 14 uniform PCM bits should be used.

Auxiliary Data ,

(mrep put yooads) [auuwy)) sMFo

Channel)
: | ADPCM Coder 1 Gkbit's
Wideband D ouaia upper sub-band . Data
Speech o——= 14 bits = u[_.“m:m Mux [—= [Insertion
. l6kHz ' - Devi .
(50-TOOOHz) ‘| [anec coas |—~ f vice |
: i lower sub-band 48kbitls Y '
Gkbit/s Operating ;
i . Mode :
i Transmission :
: Reception E
H . Gtk bt !
5 ADPCM Decoder | _/Skbic's s ’ 5
Reconstructed | VA - upper sub-band ‘—I_ ; Data '
Speech Signal == 14 bits Qu[ﬂaj:rc DMux = Extraction [=—r——
. lakHz : = . Device H
(50-T000Hz) : ADPCM Decoder :
: --I— Lower sub-band “"J_ !
' {3 variants) 4 8khit's :
Operating Made .
Auxiliary Data
Channel
Notes:

¥ Operating modes:

Mode I: 64kbiv's for speech and Okbit's for auxiliary data
Maode I-bis: 56kbit/s for speech and Okbit's for auxiliary data
Mode 2: 56kbit's for speech and 8kbit's for auxiliary data
Mode 3: 48kbit's for speech and 16kbit/s for auxiliary data

Maode 3-bis: 48kbit's for speech, 6.4kbit's for auxiliary data and
1.6kbit/s for service channel framing and mode control

Operating modes 1-bis and 3-bis are applicable only to US national 56 kbit/s networks

* The signal in the 64kbit's channel comprises 64, 56 or 48 kbit/s for speech and 0, 8 or 16 kbit/s
for data, depending on the operating mode.

Figure 1.19: G.722 Encoder and Decoder Block Diagrams

41

1.4.3.3 Algorithm

Figure 1.20 shows block diagram of the SB-ADPCM encoder which comprises the following

main blocks.
Xy HIGHER SUB-BAND | '° Fbifs
TRANSMIT ADPCM ENCODER |
Kan QUADRATURE H M |64 kbits
MIRROR ..
FILTERS x LOWER SUB-BAND 48 kbivs [
ADPCM ENCODER :

Figure 1.20: Block Diagram of the SB-ADPCM encoder

Transmit quadrature mirror filters

The input signal Xin is first filtered by two quadrature mirror filters (QMF) which split the
frequency band [0, 8000 Hz] into two equal sub-bands. The outputs X. and Xy of the lower
and higher sub-bands are down-sampled at 8 kHz by the filtering procedure.

Lower sub-band ADPCM encoder

Figure 1.21 gives block diagram of the lower sub-band ADPCM encoder. To transmit the
lower band, the encoder was designed to operate at 6, 5 or 4 bits per sample, corresponding
to 48, 40 or 32 kbps, respectively. It is an embedded ADPCM with 4 core bits and 2
additional bits. The embedded property was introduced to prevent degradation in speech

quality when the encoder and the decoder operate during short intervals in different modes.

Adaptive quantizer

A 60-level non-uniform adaptive quantizer is used to quantize the difference er between the

input signal Xr and the estimated signal Si. The output of the quantizer I is the ADPCM

codeword for the lower sub-band.

42

) A N Y 60-LEVEL I 48 khit's
- { +ﬂ\. ADAPTIVE >

A QUANTIZER
DELETE
THE 2
LSE's
CUANTIZER |
A ADAFTATION Lt
15-LEVEL
INVERSE
ADAFTIVE
CQUANTIZER
dy,
5 ADAPTIVE
FREDICTOR 1+
r|.| |'rf+\'|
N

Figure 1.21: Block Diagram of the lower sub-band ADPCM encoder

Inverse adaptive quantizer

In the feedback loop the two least significant bits of /L are deleted to produce a 4-bit signal
It which is used for the adaptation of the quantizer scale factor and applied to a 15-level

inverse adaptive quantizer to produce the quantized difference signal dit.

Quantizer adaptation

In order to maintain a wide dynamic range and minimize complexity, the quantizer scale
factor adaptation is performed in the base 2 logarithmic domain. The log-to- linear
conversion is accomplished using a lookup table. There is no adaptation of the speed control
parameter as in 32 kbps/s ADPCM because the encoder is designed to transmit more than

voiceband data.
Adaptive predictor and reconstructed signal computation

The adaptive predictor structure is 2 poles and 6 zeroes. The two sets of coefficients (one for
the poles and the other for the zeroes section) are updated using a simplified gradient
algorithm. Stability constraints are applied to the poles in order to prevent possible unstable

conditions. However, no predictor reset is applied for some specifics inputs conditions as it is

43

done in G.726 algorithm. The reconstructed signal rit is computed by adding the quantized

difference signal dit to the signal estimate S1 produced by the adaptive predictor. The use of

a 4-bit operation instead of a 6-bit operation in the feedback loops of the lower band
ADPCM encoder and decoder allows for the insertion of data in the two least significant bits

without causing mistracking in the decoder.

Higher sub-band ADPCM encoder

Figure 1.22 shows block diagram of the higher sub-band ADPCM encoder. This encoder is
designed to operate at 2 bits per sample, corresponding to a fixed bitrate of 16 kbps. The
encoder algorithm is very similar to the lower band one but with the following main
differences. The quantizer is a 4-level non-linear adaptive quantizer. The higher sub-band
ADPCM encoder is not embedded; hence the inverse quantizer uses the 2 bits in the

feedback loop.

Xy w8y 4-LEVEL Iy 16 khit's
{ +) ADAPTIVE -
R QUANTIZER
QUANTZER
A ADAPTATION "

4-LEVEL

INVERSE

ADAPTIVE
QUANTIZER

dy
Sy ADAPTIVE

¥ | FREDICTOR -+
My I.""_|_\I

M

T

Figure 1.22: Block Diagram of the higher sub-band ADPCM encoder

Multiplexer

The resulting codewords from the higher and lower sub-bands Iy and IL are combined to

obtain the output codeword I with an octet format for transmission every 8 kHz frame

44

resulting in 64 kbps. Note that the 8 kHz clock may be provided by the network as it is

always done for 64 kbps a-law or u-law log-PCM (G.711) systems.
Figure 1.23 shows block diagram of the SB-ADPCM decoder.

Demultiplexer

The demultiplexer decomposes the received 64 kbps/s octet formatted signal Ir into two

signals Ir and IHr which form the codeword inputs for the lower and higher sub-band

ADPCM decoders, respectively.
Lower sub-band ADPCM decoder

Figure 1.24 shows a block diagram of the lower sub-band decoder. This decoder operates in
three different modes depending on the received mode indication: 64, 56 and 48 kbps. The

block which produces the estimate signal is identical to the feedback portion of the lower
sub-band ADPCM encoder. The reconstructed signal rt is produced by adding the signal

estimate to the relevant quantized difference signals dis, dis or di4a, which are selected

according to the received indication of the mode of operation.

Ly HIGHER SUB-BAND | Tu
ADPCM ENCODER _
| 16 kbit's RECENE X,
— . DMuX QUADRATURE

B4 kbit's | LOWER SUB-BAND r MIRRCR

- ADPCM DECODER L FILTERS

48 khit's I3 VARIANTS)
A

maode indication

Figure 1.23: Block Diagram SB-ADPCM decoder

Higher sub-band ADPCM decoder

This decoder (see Figure 1.25) is identical to the feedback portion of the higher sub-band

ADPCM encoder. Here, the output is the reconstructed signal ru.

45

Receive QMF

The receive QMF are two reconstruction filters which interpolate the outputs of the lower

and higher sub-band ADPCM decoders from 8 to 16 kHz (ry and rt) and generate 16 kHz

sampling reconstructed output Xout. Signal Xout is converted to analog by the digital to

analog converter of the receiving side.

mode indication

: 15LEVEL _ "
DELETE () INVERSE (duw)
2LEB's ADAFTATIVE .
s QUANTEER s
I0LEVEL . .
I, DELETE I s INVERSE d e d, (’+‘\ r,
. 1LSB ADAPTATIVE)
48 it QUANTEER 5 +
L
E
' C
¢
| BO-LEVEL 4 I
Le INVERSE Le R
ADAPTATIVE
QUANTEER
DELETE
2 LS8
QUANTIZER
b ADAFTATION AL
15-LEVEL
INVERSE
ADAFTATIVE
QUANTIZER
st
L S
ADAPTATIVE L
.
o r PREDICTOR
I + i
Ay

Figure 1.24: Block Diagram of the lower sub-band ADPCM decoder

Iy
16 kbit's

4-LEVEL
INVERSE

T

ADAFTATIVE

QUANTIZER

Ay

QUANTIZER
ADAPTATION

)

ADAPTATIVE
PREICTCA

+
4|5|-

Figure 1.25: Block Diagram of the higher sub-band ADPCM decoder

46

1.4.4 G.723.1 (ACELP/MP-MLQ)

G.723.1 can be used for compressing the speech or other audio signal component of
multimedia services at a very low bit rate. This codec has two bit rates associated with it: 5.3
and 6.3 kbps. The higher bit rate has better quality. The lower bit rate gives good quality and
provides system designers with additional flexibility. Both rates are a mandatory part of the

encoder and decoder. It is possible to switch between the two rates at any frame boundary.

This speech codec, unlikely with the previous three codecs that were described and they are
waveform codecs, is a hybrid codec. As a result, it was optimized to represent speech with a
high quality at the above rates using a limited amount of complexity. It encodes speech or

other audio signals in frames, using linear predictive analysis-by-synthesis coding.
1.4.4.1 Applications

G.723.1 is also one of the main codecs of VoIP and, as a result it is present in the most IP
phones. G.723.1 is a required audio codec in the H.324 ITU-T recommendation for H.324
terminals offering audio communication and, also, in 3GPP 3G-324M specification support
for G.723.1 is not mandatory, but recommended. Finally, it can be used for transmission of

recorded messages and it is used, like G.711 and G.726, in RolP systems.
1.4.4.2 Parameters

This codec is designed to operate with a digital signal obtained by first performing telephone
bandwidth filtering of the analogue input, then sampling at 8000 Hz and then converting to
16-bit linear PCM for the input to the encoder. The output of the decoder should be

converted back to analogue by similar means.

In order to clarify how the different bitrates (5.3 and 6.3 kbps) of G.723.1 are produced the
following have to be mentioned. The encoder transmits, every 30ms (because input speech

is processed in frames of 30 ms), 189 bits or 158 bits in high-rate and low-rate mode,

respectively. That makes bitrates of: 189 X % = 6300 bps = 6.3 kbps and 158 X % =

5267 bps = 5.3 kbps, respectively.

47

1.4.4.3 Algorithm

G.723.1 is a hybrid speech codec and, as it was mentioned, parameters of the speech
production model (parametric coding) are optimized in such a way that the decoded speech
is as close as possible to the original waveform (waveform coding). As it is above-
mentioned, in this thesis, complicated methods of signal processing are not about to be

described in depth.

Initially, some things about CELP algorithm of hybrid coding have to be described, as G.723.1

is based in almost the same algorithm (Adaptive CELP).

Figure 1.26 shows how CELP algorithm approaches the human speech production model.

White Timse-
vise AYINE e
o B vaning Output speech
generator filter

l

Lungs Trachea

Pharyngeal cavity

Nasal cavity

Oral cavity

Nostrl

Mouth
Excitation Pitch Formant
codebook | ,-/i\ o] synthesis synthesis » Speech

Al filter filter

Excitation Gain Long-term Short-term
index paramelers parameters

Figure 1.26: The CELP model of speech production

This algorithm is based on the principles of linear prediction analysis-by-synthesis coding

(Figure 1.27) and attempts to minimize a perceptually weighted error signal.

48

Input speech

Excitation Pitch Formant -
generator — sypthesis —™ synthesis
filter filter Synthetic

f speech

E Error Perceptual)

i L eichting Error

minimization4—{ Wwelghting
filter

Figure 1.27: Analysis-by-synthesis loop of a CELP encoder with perceptual weighting

In order to understand the meaning of analysis-by-synthesis the following things have to be
considered. In a hybrid speech codec, the speech signal is represented by a combination of
parameters: gain, filter coefficients, voicing strengths, and so on. In an open-loop system,
the parameters are extracted from the input signal, which are quantized and later used for

synthesis.

A more effective method is to use the parameters to synthesize the signal during encoding

and fine-tune them so as to generate the most accurate reconstruction.

Conceptually, this is a closed-loop optimization procedure, where the goal is to choose the
best parameters so as to match as much as possible the synthetic speech with the original
speech. Since the signal is synthesized during encoding for analysis purposes, the principle is

known as analysis-by-synthesis.
General Description of G.723.1 Encoder

In G.723.1, the encoder operates on blocks (frames) of 240 samples each. That is equal to 30
ms at an 8-kHz sampling rate. Each block is first high pass filtered to remove the DC
component and then divided into four subframes of 60 samples each. For every subframe, a
10th order Linear Prediction Coder (LPC) filter is computed using the unprocessed input
signal. The LPC filter for the last subframe is quantized using a Predictive Split Vector
Quantizer (PSVQ). The unquantized LPC coefficients are used to construct the short-term
perceptual weighting filter, which is used to filter the entire frame and to obtain the

perceptually weighted speech signal.

49

For every two subframes (120 samples), the open-loop pitch period, Lo, is computed using

the weighted speech signal. This pitch estimation is performed on blocks of 120 samples.

The pitch period is searched in the range from 18 to 142 samples.

From this point the speech is processed on a 60 samples per subframe basis.

Using the estimated pitch period computed previously, a harmonic noise shaping filter is
constructed. The combination of the LPC synthesis filter, the formant perceptual weighting
filter, and the harmonic noise shaping filter is used to create an impulse response. The

impulse response is then used for further computations.

Using the pitch period estimation, Lot, and the impulse response, a closed-loop pitch

predictor is computed. A fifth order pitch predictor is used. The pitch period is computed as
a small differential value around the open-loop pitch estimate. The contribution of the pitch
predictor is then subtracted from the initial target vector. Both the pitch period and the

differential value are transmitted to the decoder.

Finally the non-periodic component of the excitation is approximated. For the high bit rate,
Multipulse Maximum Likelihood Quantization (MP-MLQ) excitation is used, and for the low

bit rate, an algebraic-code-excitation (ACELP) is used.

The block diagram of the encoder is shown in Figure 1.28.

50

vin] Simulated decoder

LSP | LSP LSP
= quantizer t decoder |# interpolator
Framer 4] : 5] 5]
1) ifz)
sfnf l
= Wizl Siz) |
Tropulse = Memary efnf
High pass Tesponse ; upsdate -
filser Fiz) . caleulaior 1?]
2) 10)
& xn/ vinf
¥
LPC g '
analysis |— . | Pitch Excitation
3] Zero inpal i decoder decoder
response |
[n] ! 16) 15)
1 11) 1 3
i i|)
J.':.'J.'l'.l.T\'rdIal-I ||u.n'.:.unil.; Pitch j' B * MP=ML/
el (Lo | A
elghiing shaping oln] L
7) 9) wn| 12) - 13]1 14)
3 rin/
¥ Jin]
tfnf
Prtch m
estimator
8)

Figure 1.28: Block diagram of G.723.1 encoder

Framer

The coder processes the speech by buffering consecutive speech samples, y[n], into frames
of 240 samples, s[n]. Each frame is divided into two parts of 120 samples for pitch
estimation computation. Each part is divided by two again, so that each frame is finally

divided into four subframes of 60 samples each.
High pass filter

This block removes the DC element from the input speech, s[n]. The output of this filter is:

x[nln =0..239.

LPC analysis

The LPC analysis is performed on signal x[n] in the following way. Tenth order Linear
Predictive (LP) analysis is used. For each subframe, a window of 180 samples is centred on
the subframe. A Hamming window is applied to these samples. Eleven autocorrelation
coefficients are computed from the windowed signal. A white noise correction factor of

(1025/1024) is applied by using the formula R[0] = R[0](1 + 1/1024). The other 10

51

autocorrelation coefficients are multiplied by the binomial window coefficients table. The
Linear Predictive Coefficients (LPC) are computed using the conventional Levinson-Durbin
recursion. For every input frame, four LPC sets are computed, one for every subframe. These

LPC sets are used to construct the short-term perceptual weighting filter.

LSP quantizer

First, a small additional bandwidth expansion (7.5 Hz) is performed. Then, the resulting A3(z)

LP filter is quantized using a predictive split vector quantizer.
LSP decoder

The decoding of LSP coefficients is performed.

LSP interpolation

Linear interpolation is performed between the decoded LSP vector, p,, , and the previous
LSP vector, P,—1 , for each subframe. Four interpolated LSP vectors, { P;}, i = 0.3 , are
converted to LPC vectors, { d@;} i = 0..3. The quantized LPC synthesis filter, le-(z) , is used for

generating the decoded speech signal.

Formant perceptual weighting filter

For each subframe a formant perceptual weighting filter (Wi(z)) is constructed, using the

unquantized LPC coefficients {ajj} j = 1..10 . The input speech frame {x[n]} n = 0..239 is then
divided to four subframes and each subframe is filtered, using the above-constructed filter,

and the weighted output speech signal {f[n]} n =0..239 is obtained.

Pitch estimation

Two pitch estimates are computed for every frame, one for the first two subframes and one

for the last two. The open-loop pitch period estimate, Lot, is computed using the

perceptually weighted speech fln]. A cross-correlation criterion, Cor, maximization method

is used to determine the pitch period.

From this point on, all the computational blocks are performed on a once per subframe

basis.

52

Harmonic noise shaping

In order to improve the quality of the encoded speech, a harmonic noise shaping filter (Pi(z))

is constructed. After computing the harmonic noise filter coefficients, the formant

perceptually weighted speech, fln], is filtered using P(z) to obtain the target vector, w[n].

Impulse response calculator

For closed-loop analysis, the following combined filter, Si(z), is used:
5i(2) = Ay(2) - Wy(2) - Py(2).

Zero input response and ringing subtraction

The zero input response of the combined filter, Si(z), is obtained by computing the output of
that filter when the input signal is all zero-valued samples. The zero input response is

denoted {z[n]} n = 0.59. The ringing subtraction is performed by subtracting the zero input

response from the harmonic weighted speech vector, {w[n]} n = 0..59. The resulting vector is

defined as t[n] = w[n] - z[n].
Pitch Predictor

The pitch prediction contribution is treated as a conventional adaptive codebook
contribution. The pitch predictor is a fifth order pitch predictor. For subframes 0 and 2, the
closed-loop pitch lag is selected from around the appropriate open-loop pitch lag in the
range +1 and coded using 7 bits. (Note that the open-loop pitch lag is never transmitted.)
For subframes 1 and 3 the closed-loop pitch lag is coded differentially using 2 bits and may

differ from the previous subframe lag only by —1, 0, +1 or +2. The quantized and decoded
pitch lag values will be referred to as Li. The pitch predictor gains are vector quantized using
two codebooks with 85 or 170 entries for the high bit rate and 170 entries for the low bit

rate. The contribution of the pitch predictor, {p[n]} n = 0.59, is subtracted from the target

vector {t[n]} n=0.59, to obtain the residual signal {r[n]} n=0.59.

r [n] = t[n] - p[n]

53

High rate excitation (MP-MLQ)

The residual signal {r[n]} n = 0..59, is transferred as a new target vector to the MP-MLQ block.

This block performs the quantization of this vector. The quantization process is
approximating the target vector r[n] by r'[n]. The purpose of this block is to estimate the
unknown parameters of the algorithm that minimize the mean square of the error signal
err[n]. The parameters estimation and quantization processes are based on an analysis-by-

synthesis method.
Low rate excitation (ACELP)

The same purpose with 13) but it used in low rate mode and uses a different hybrid coding

method. More information can be found on ITU-T Rec. G.723.1 (05/2006).
Excitation Decoder

It decodes the parameters of the previous step and forms the excitation vector e[n].
Decoding of the pitch information

The decoding of pitch information is performed

Memory update

The last task of the ith subframe before proceeding to encode the next subframe is to
update the memories of the synthesis filter 4;(z), the formant perceptual weighting filter
W;(z), and the harmonic noise shaping filter P;(z). To accomplish this, the complete
response of combined filter $;(z), is computed by passing the reconstructed excitation
sequence through this filter. At the end of the excitation filtering, the memory of the
combined filter is saved and will be used to compute the zero input response during the

encoding of the next speech vector.

54

7

Figure 1.29: A hybrid encoder

General Description of G.723.1 Decoder

d(n) N Error
! Minimization
L
Excitation | Excitation
vector parameters
L Predictor 4—('-!J-\

Prediction parameters——»

The decoder operation is also performed on a frame-by-frame basis. First the quantized LPC

indices are decoded and then the decoder constructs the LPC synthesis filter. For every

subframe, both the adaptive codebook excitation and fixed codebook excitation are

decoded and input to the synthesis filter. The adaptive postfilter consists of a formant and a

forward-backward pitch postfilter. The excitation signal is input to the pitch postfilter, which

in turn is input to the synthesis filter whose output is input to the formant postfilter. A gain

scaling unit maintains the energy at the input level of the formant postfilter.

L8P
decoder

5)

Pitch
decoder
16)

wfn]

Excitation
decoder

15)

efnj

_ LsP Afz)
interpolator
6)
N
Pitch nnfin] Synthesis svfn] Formant
postfilter > filter ®—» postfilter
18) 19) 20)
l piin}
(Gain H\:;l“nl.:,
unit
21)

Figure 1.30: Block diagram of G.723.1 decoder

agin
ainf

55

Pitch postfilter

A pitch postfilter is used to improve the quality of the synthesized signal. It is important to

note that the pitch postfilter is performed for every subframe, and to implement it, it is
required that the whole frame excitation signal {fe[n]} n = 0..239 is generated and saved. The

quality improvement is obtained by increasing the SNR at multiples of the pitch period.
LPC synthesis filter

The 10th order LPC synthesis filter 4;(z) is used to synthesize the speech signal sy[n] from
the decoded pitch postfilter residual ppf[n].

Formant postfilter

A conventional ARMA postfilter is used. The postfiltered signal pffn] is obtained as the

output of the formant postfilter with input signal sy[n].

Gain scaling unit

This unit receives two input vectors, the synthesized speech vector {sy[n]} n = 0.59 and the

postfiltered output vector {pf[n]} n = 0.59. Firstly, the amplitude ratio gs is computed and,

then, the output vector g[n] is obtained by scaling the postfiltered signal pffn] . Finally, the
gain g[n] is updated.

56

2 Selected Codecs Software Mapping

2.1 Introduction

After studying the selected speech codecs, the next step, is software implementation. The
Fixed Point C-code is free and available from ITU (this does not happen if a speech codec is

property of a company) and that was, basically, the source code that has been used.

In order to create a more user-friendly platform, the C-code was compiled and run inside the
software environment of Matlab (by MathWorks, Inc). For this reason, the MEX-files tool of
Matlab was used, which provides flexible usage of C-functions. Another reason for using
Matlab was the tools provided for manipulating speech files and plotting their waveforms.

As a result, a direct evaluation of the decoding result could be noticed.

Matlab environment

Figure 2.1: The environment of speech codecs’ software implementation

57

The main purpose of this implementation was to create a platform (see Figure 2.1) that it
would be evolved to the Profiler of the speech codecs’ arithmetic operations (this will be

described in Chapter 3).

2.2 ITU Codes

For the software implementation of G.711, G.726 and G.722, the Fixed Point C-code that it is
included in Recommendation ITU-T G.191 (“Software tools for speech and audio coding
standardization”) was used and, for G.723.1 the Fixed Point C-code from Recommendation

ITU-T G.723.1, respectively.

For each speech codec there is a main function that, basically, calls the two principal
functions of software implementation: encode and decode, taking care of the operations of
the encoder and decoder, respectively. In both of them, usually, other functions are called

in order to implement a specific part (block) of encoding or decoding.

Input speech is obtained (fread C-function) from an input speech file, which consists of 16-bit
numbers (type short of C), and is processed from the function encode. The speech produced
from encoding is written (fprintf C-function) to the encoded speech file or it is stored to a
buffer. Then, function decode processes the encoded speech and writes the output
(decoded) speech to the output speech file (again in a 16-bit form). The general flow chart of

the whole process is shown in Figure 2.2.

The main function for each speech codec, usually, provides the user with extra options
through the values of some global variables, which are specified by the arguments defined

on the executing command. Some of these options are:

e Perform encoding or decoding only

e Bit-Rate mode

e Choosing (for G.711 and G.726) to perform a- or p-law

e Using extra features (e.g. Voice Activity Detection algorithm (VAD) that compresses

transmitted bits during silent intervals)

58

—
f Start

input available

Read speech
data from the
input speech file

A\ 4

Encode speech
function

A\ 4

Decode speech
function

\ 4
Write speech
data to the
output speech
file

Figure 2.2: General flow chart of the main function of speech codecs

59

2.3 Matlab implementation

2.3.1 Software amendments

The software environment that it was created in Matlab, for selected codecs software

mapping, can be divided to two parts:

1) The Matlab (.m) file

2) The main (mex) C-function

Actually, the second is included in the first, but they will be described separately in the

following sections, in order to completely clarify the structure of the created platform.
2.3.1.1 The Matlab (.m) file

A matlab file was created for each speech codec, depending on the options that it is needed
to be made. For example, the encoding law (a- or p-law) is an option only in G.711 and G.726
and not to the other two speech codecs. Figure 2.3 shows the general flow chart of the .m

file and is followed by a short description of the numbered blocks.

60

—%pile the C-code

1) compiling

\ 4
/Name of the
input speech fil

/ \
Ni/Listen to the

speech file

Playing of the
input speech file

A\ 4

2) Import options

for bit-rate or/and
encoding law

\ 4

3) Calling the main
(mex) C-function
with the chosen

arguments

\ 4

Playing the decoded
speech

\ 4
4) Plot the
waveforms of
input, encoded and
output speech

Figure 2.3: Flow chart of the Matlab (.m) file

61

62

1)

2)

3)

4)

Compiling

This is an available option of this platform that the user has in order to compile
the C-code. C-compiling takes place very easily in Matlab with the use of mex
function. With this tool, Matlab uses a C-compiler that it is available in the
current computer system (Microsoft Visual Studio 2010 was used for this thesis)
and there is no need for complicated make-files, as it is usual in cases that parts
of the code exists in different files.

The first file after the word mex is that in which the main function exists. The
files that follow are them in which other functions of the C-code exist. An

example (taken from the .m file of G.722) for the compiling command is:

mex G722 _profiled.c profiler.c g722.c basop32.c enh1632.c enh40.c control.c
count. funcg722.c;

Import options for bit-rate or/and encoding law
In this step user is urged to choose:
e Bijt-rate
l. 16, 24, 32 or 40 kbps for G.726
1. 48, 56 or 64 kbps for G.722
Il. 5.3 or 6.3 kbps for G.723.1
e Encoding law
Available only in G.711 and G.726 and it is an option between a- or u-

law.

Calling the main (mex) C-function with the chosen arguments

In this step the C-code (encoding-decoding) is executed just by using the name
of the file which includes the main (mex) function. Also, the arguments that are
needed should be included. An example of this calling taken from the
aforementioned case is:

G722 (input_file, bit_rate);

Plot the waveforms of input, encoded and output (decoded) speech
In this final step the waveforms of Input, Encoded and Output speech are

plotted. Figure from Figure 2.4 to Figure 2.7 depict these waveforms for each

speech codec. Finally, Figure 2.8 shows the messages in the command window

of Matlab, while is executing G.711 encoding.

Input
Speech

E i i i i i i i
0 2000 4000 6000 8000 10000 12000 14000 16000 18000

200
Encoded -

Transmitted
Speech

-200
0

Output
Speech 0

E i i i
0 2000 4000 6000 8000 10000 12000 14000 16000 18000

Figure 2.4: Speech waveforms of G.711 (a-law)

% 2000 4000 6000 8000 10000 12000 14000 16000 18000
2

Output

(decoded)’

Speech
0 2000 4000 6000 8000 10000 12000 14000 16000 13000

Figure 2.5: Speech waveforms of G.726 (u-law, 16kbps)

63

64

Encoded???
Speech

-200
0

Output 2
(decoded),
Speech

Figure 2.6: Speech waveforms of G.722 (64kbps)

Input
Speech

|
0 2000 4000 6000 8000 10000 12000 14000 16000 18000

Output
(decoded)

Speech
0

-

I I I I i I i I |
0 2000 4000 6000 8000 10000 12000 14000 16000 18000

Figure 2.7: Speech waveforms of G.723.1 (5.3 kbps). Some distortion can be noticed

Command Window

fx>>|

== profiler new g711

Would you like to compile the C code first? [Y/N]Y

Type the name of input file....speech\speechl 1.8k

Listen the voice before encoding? [Y/N]Y

Would you like to implement "a" or "u" type of G.711 ["a" type is the default]? [a/u]a

(1) Mew to MATLAB? Watch this Video, see Demos, or read Getting Started.

Figure 2.8: Command window of Matlab while executing G.711 encoding

2.3.1.2 The main (mex) C-function

The main (mex) function is, actually, the same main function that the

aforementioned ITU Recommendations provide. The only amendments that took

place were:

Omitting some of the options that ITU codes provide (e.g. performing

only encoding or only decoding), and keeping only the options

concerning bit-rate and encoding law.

Amendments concerning the transform from pure C-code to mex C-code

(C-code that can be called from a Matlab function). These are:

1.

Instead of the usual syntax void main (), it has to be written:
void mexFunction(int nlhs, mxArray *plhs[],int nrhs, const
mxArray *prhs[]). The list of arguments lets the Matlab code,
that calls the main function, to pass arguments, as it is
mentioned that happened in 3) of 2.3.1.1 . For this case, Matlab
supports a general type of data called mxArray in order to pass
arguments. An array (prhs) of arguments (mxArrays) is
constructed. For example at the function call: G.722 (input_file,
bit-rate), input_file is prhs[0] and bit-rate is prhs[1].

In order to use the arguments as a specific type, inside the
mexFunction, there are special functions. For example function
mxArrayToString that makes a String from an mxArray is used in
the following way:

mode = mxArrayToString(prhs[1]);

65

, Where mode is declared as a string (char *mode) inside the
mexFunction.

2. In mex C-code, some functions have different names (e.g.
mexPrintf instead of printf), but they have the usual syntax and

functionality.
2.3.2 Experimental parameters

In order to test the software platform that was created, eight different human voices were
used as samples. Four of them were female voices and four of them were male. For each
voice there were two samples of an, approximately, two-seconds duration each. The used
samples were characterized by a 8kHz sampling frequency as it is needed for the three of the
selected codecs (G.711, G.726, G.723.1). For G.722, which is a wideband speech codec, the
same voices were used, but characterized by a 16kHz sampling frequency. The following

figures (Figure 2.9 to Figure 2.24) depict the waveforms (for the both samples of each
person) in the domains of time and frequency (Fs=8kHz) for the used samples of human

speech. For the waveforms of frequency domain, a 50 msec window of speech was used for
each person, supposing that the signal is linear and time-invariant in that piece of time and,

as a result, a DFT can be performed. The computations took place in Matlab.

1000 2000 3000 4000 5000 6000
Time {msec)

Figure 2.9: Time domain waveform for the first male speech sample

66

* 10

351 -

25

15+ -

T
=
|

0.5

U |
0 1000 2000 3000 4000 5000 6000 7000 3000
Frequency (Hz)

Figure 2.10: Frequency domain waveform for the first male speech sample

0 1000 2000 3000 4000 5000 6000
Time (msec)

Figure 2.11: Time domain waveform for the second male speech sample

67

x10°

3a8F

2000 3000 4000 5000 6000 7000 3000
Frequency (Hz)

1000

0

Figure 2.12: Frequency domain waveform for the second male speech sample

x 10°

ol Sttt aleli il el

A==

15

1—-----

-1.5

1500 2000 2500 3000 3500 4000 4500 5000

1000

500

Time (msec)
Figure 2.13: Time domain waveform for the third male speech sample

68

/

16000

14000

12000

10000

5000

6000
4000 -
2000 -

1000 2000 3000 4000 5000 6000 7000 5000

0

Frequency (Hz)

Figure 2.14: Frequency domain waveform for the third male speech sample

R

R
;
i
i
|
i
|

[

s IR
.
i
i
|
i
|

A5k
-2

1500 2000 2500 3000 3500 4000 4500 5000

1000

500

Time (msec)

Figure 2.15: Time domain waveform for the fourth male speech sample

69

70

x 10

3a¢F -

25+ -

156F B

N |

U L L
0 1000 2000 3000 4000 5000 G000 7000 8000
Freguency (Hz)

Figure 2.16: Frequency domain waveform for the fourth male speech sample

0 1000 2000 3000 4000 5000 6000
Time (msec)

Figure 2.17: Time domain waveform for the first female speech sample

12 T T T T T T T

10+ -

Mo P,

0
0 1000 2000 3000 4000 5000 6000 7000 8000
Frequency (Hz)

Figure 2.18: Frequency domain waveform for the first female speech sample

0 1000 2000 3000 4000 5000 6000
Time (msec)

Figure 2.19: Time domain waveform for the second female speech sample

71

72

%10

351 -

1581 .

05} -

U | 1 1
0 1000 2000 3000 4000 5000 6000 7000 a000
Frequency (Hz)

Figure 2.20: Time domain waveform for the second female speech sample

|
0 1000 2000 3000 4000 5000 6000
Time (msec)

Figure 2.21: Time domain waveform for the third female speech sample

1 | | 1
2000 3000 4000 5000 6000 7000 @000

Frequency (Hz)

U |
0 1000

Figure 2.22: Frequency domain waveform for the third female speech sample

|
0 1000 2000 3000 4000 5000 6000
Time (msec)

Figure 2.23: Time domain waveform for the fourth female speech sample

73

25 . . : . . : :

2t i
151 i
1} i
05

Wl

0

0 1000 2000 3000 4000 5000 6000 7000 8000

Frequency (Hz)

Figure 2.24: Frequency domain waveform for the fourth female speech sample

The conclusions from testing the selected speech codecs, through the software platform,

were:

e The different quality of the output (decoded) speech among different codecs.
Obviously, the bit-rate plays a very important role on that. For example, G.726 has
better results on its normal mode (32kbps) than on the mode of 16kbps or G.723.1
has much poorer result than the other codecs.

e Wideband speech codec, G.722, has the best of the decoding results.

e (G.711 and G.726 have almost the same quality of decoding speech.

e G.723.1 seems to have better results for female speech.

74

3 Speech Codecs Profiling

3.1 Introduction

After the platform, for the software mapping of speech codecs, was created, the next, and
very principal, stage of this thesis was profiling of the arithmetic operations that are
performed during the executing of the selected speech codecs algorithms. In the following
sections of this chapter, the different steps and approaches that were held, in order to reach

to the conclusion of which arithmetic unit should have been implemented, are described.

The general approach was to create a C-library named profiler.c in which profiling functions
were about to be developed. These functions were called during the executing, and in
specific points, from the main C-code in order to perform a task like changing the value of a
counter or printing a message to a .txt file. The input speech samples, in order to evaluate

the profiling result, were those referred in paragraph 2.3.2.

Firstly, the whole procedure was developed for G.711 and G.726, because they are not so
complicated as G.722 and G.723.1. After the method of profiling reached to a final form, it

was applied to the other two codecs as well.

3.2 Functions and arithmetic operations

The first approach was characterized by an effort to keep track of the path that data (input
voice) followed. For this reason the functions that were developed, in this step, had two

purposes:

1. tracking of the function calls that take place during execution and of the arguments
that get involved in these function calls
2. tracking of the arithmetic operations that take place during execution (this was a

first step towards arithmetic profiling)

For the second purpose a data structure was created named operation_element in order to
store information for each arithmetic operation. From the elements of this structure, a list

named operations was constructed. Figure 3.1 shows the declaration of this structure.

75

]/ *structure dedicated to an operand (argument), named "args" and having two fields:
1) name of the operand
2} bits of the operand
Istruct arg {
char name[l12]; /*name of the argument#*/
short bits:;/* (1) for 16 bits, (2) for 32 bits, (3) for 40 bits*/
“1:
typedef struct arg
args;

]/*structure dedicated to an arithmetic operation,
named "operatio

element™ and hawving six fields:

1) No_C (explained belaow)

2) No C (explained belaow)

3) symbol, which operation takes place

4) operands, an array of two "args", the two operands of the arithmetic operation

5) result, an eslement of "args" that stores the information about the result of the operation
6) A pointer to the next "operation element™ in order to create a list

with all the operations that take place during executing

]struct Arrav2? {

long No C; /*Number of calling (in which function iz this operation performed)*/
long No op; /*Number of operation (in the order of operations)*®/

char symbol;

args operands[Z]: S*Arguments*/

args result;
struct Array2 #%next;
|
typedef struct Arravd
operation_ element;

Figure 3.1: Declaration of the structure operation_element

It has to be mentioned that through the whole profiling procedure (and not only during this
step) logical operations (like and, or, xor etc), complements and shifts were not taken into
consideration. For example, operations like (a < 2) + b or (a &2) + b were considered
the same as a + b. This approach was due to the fact that the purpose of this thesis was to
implement an efficient arithmetic unit and as a result no attention was given to other kinds

of operations.

Table 3.1 shows the characteristics of the developed functions. The first and the second
function are dedicated to purpose 1 (track function calls), while the other four functions to

purpose 2 (track arithmetic operations).

Figure 3.2 and Figure 3.3, that follow, show two snapshots, of .txt file Function Calls after
executing of G.711 encoding-decoding and of the and Arith_operations after executing of
G.726 encoding-decoding, respectively. Function Calsl.txt and Arith_operations.txt are

described below in Table 3.1.

Also, Figure 3.4 provides an overview of the way that this part of profiling was performed.

76

Function
Name

Input
Parameters

Output Parameters

Function
Description

void keep_track()

char *fCalled,

Writes on

When there is a function call,
it prints on Function_calls.txt
the number of calling (Nol)

void f_arguments()

int Nol Function_calls.txt followed by the name of the
Function that is called

After any keep_track(), it is

called n-times (where n is the

char *name, Writes on number of arguments) and it

char *nature

Function_calls.txt

prints on Function_calls.txt
the name and nature (type) of
each argument

void track_oper()

char symbol, long No_C,
long No_op

Writes on
Arith_operations.txt

It is called when an arithmetic
operation is performed and it
prints on Arith_operations.txt:

1. the number of
Function in which the
operation is
performed (No_C)

2. the number that the
operation has in the
general operation
order (No_op)

3. the symbol
operation

of the

void
update_operations_typ

e()

char symbol, /ong No_C,
long No_op

Creates and updates a
new operation_element of
the list operations

It is called inside the function
track_oper() and creates a
new element of the list
operations. It fills the fields of
symbol, No_C and No_op

void f_operands()

short num, short result,
char *name ,short bits

Writes on
Arith_operations.txt

After any track_oper(), it is
called 3 times (2 for the
operands and one for the
result) and it prints on
Arith_operations.txt the name
and the number of bits of each
operand (or of the result)

void
update_operations_ope
rands()

short num, short result,
char *name ,short bits

updates the
operation_element that
the previous
update_operations_type()
created

It is called inside the function
f operands() and it fills the
fields of name and bits for the
first operand (when num = 0),
the second operand (when
num = 1), the result (when
result=1)

Table 3.1: Describing of the profiling functions

77

main
.alaw_compress,
Return to main
.alaw_expand,
Return to main

L I X

Calling:35608,
35608,
35608,
35608,
35608,
35608,
35608,
35608,
35608,
35608,
35608,
35608,
35608,
35608,
35608,
35608,
35608,
35608,
35608,
35608,
35608,
35608,
35608,
35608,

Calling:
Calling:
Calling:
Calling:
Calling:
Calling:
Calling:
Calling:
Calling:
Calling:
Calling:
Calling:
Calling:
Calling:
Calling:
Calling:
Calling:
Calling:
Calling:
Calling:
Calling:
Calling:
Calling:

78

Argument=s of alaw_expand:

Lrguments of alaw compress: frame

frame

(int),

{int) , inp buf (array of -frame- 16-bit),

tnp_buf (array of -frame- 8&-bit),

tmp_buf (array of -frame- 16-bit),

out_buf (array of -frame- &-bit),

Figure 3.2: Function_calls.txt after G.711 encoding-decoding

Cperation:3233651, type:+,
Cperation:3233652, type:*®,
Cperation:3233653, type:+4,
Cperation:3233654, ctype:—,
Cperation:3233655, type:—,
Cperation:3233656, type:—,
Cperation:3233657, type:+,
Cperation:3233658, type:*®,
Cperation:3233653, type:4,
Cperation:3233660, type:-—,
Cperation:3233661, type:+,
Cperation:3233662, type:*®,
Cperation:3233663, type:+,
Cperation:3233664, type:—,
Cperation:3233665, type:—,
Cperation: 3233666, type:—,
Cperation:3233667, type:+,
Cperation:3233668, type:*®,
Cperation:3233669, type:+,
Cperation:3233670, type:—,
Cperation:3233671, type:—,
Cperation:3233672, type:+,
Cperation:3233673, type:+,
Cperation:3233674, type:+4,

Cperands: srnexp (32), anexp (32), Besult: wanexp
OCperands: sromant (32), anmant (32), Result: templ
Cperands: templ (32), 48 (1&), Besult: wanmant (32)
Cperands: 26 (16}, wanexp (32), Besult: wanmag (32)
OCperands: 65536 (32), wanmag (32), Besult: wan (32)
Cperands: 16384 (1&), an (32}, Besult: anmag (32)
Cperands: srnexp (32), anexp (32), Besult: wanexp
OCperands: sromant (32), anmant (32), Result: templ
Cperands: templ (32), 48 (1&), Besult: wanmant (32)
Cperands: 26 (16}, wanexp (32), Besult: wanmag (32)
OCperands: Sronexp (32), anexp (32), Result: wanexp
Cperands: srnmant (32), anmant (32), Besult: templ
Operands: temnpl (32), 48 (16) , Re=sult: wanmant (32)
OCperands: 28 (16}, wanexp (32), Result: wanmag (32)
Cperands: 65536 (32), wanmag (32), Besult: wan (32)
Operands: 16384 (16) , an (32), Result: anmag (32)
OCperands: Sronexp (32), anexp (32), Result: wanexp
Cperands: srnmant (32), anmant (32), Besult: templ
Operands: temnpl (32), 48 (16) , Re=sult: wanmant (32)
OCperands: 28 (16}, wanexp (32), Result: wanmag (32)
Cperands: 65536 (32), wanmag (32), Besult: wan (32)
Operands: whll (32), wh21l (32), Re=zult: templ
OCperands: templ (32), wh31 (32), Besult: temp?
Cperands: temp2 (32), wb4l (32), Besult: temp3

Figure 3.3: Snapshot from Arith_operations.txt after G.726 encoding-decoding

(32

(32)

132)
132)
(32)

global long No; //Number of Function Call extern long No; //Number of Function Call

global long No_op; //Number of operation extern long No_op; //Number of operation
main Function Af(short a, long b)

No=1;

No_op=0; long c;
Print_to_txt(“Function_Calls”,No,”main”),//fprintf() c=a+b;

I

keep_track(“Function_Calls”,No++,”main”)
track_oper('+', No, ++No_op);

call A(a,b) num=0;

/[_operands(num, 0, "a", 1),/*first operand, bits=1

f_arguments(“a”, "short”); means short (16 bits)*/

f_arguments(“b”, "long”); num++;

f_operands(num, 0, "b", 2);/*second operand, bits=2
No++; means long (32 bits)*/
Print_to_txt(“Function_Calls”,No,”Return to Main”); f_operands(num, 1, "c", 2);/*result, long*/

Function_calls.txt

W Creates the new
operation_element operation_element

1. main
oRGE2 update_operations_type(‘+,2,1); ; :;tAJrgnu:;e:]t:i :f A:a (short), b (long)
No_op=1
symbol =+’ f_operands(0, 0, ‘a’,1); Arith_operations.txt
operand][0] / Calling:2, Operation:1, type:+, Operands: a (16), b (32), Result: ¢ (32)

name="a’ bits=1 W

operand[i] / f_operands(1, 0, b’ ,2);

name="b’ bits=2
result

name="c’ bits=2 [

next

1

NULL

f_operands(1, 2, ‘¢’ ,2);

Figure 3.4: Overview of performing the profiling functions

This version of the aforementioned profiling functions is not exactly the form they had at
their very first development. For example, within the framework of track_sequence() and
f_arguments(), a list of function _elements was created while executing. But, then, this
feature was removed as it did not provide any useful information and Function_calls.txt was

enough.

The conclusion, from this profiling attempt, was the need to focus on the operations list and
on the data that could be extracted from it and not to concentrate anymore on the

procedure of tracking the function calls.

79

3.3 Sequences of arithmetic operations

As a result of the aforementioned conclusion, the next step of profiling was developing a

new function named track_sequence(). Its characteristics are described in Table 3.2 and

Figure 3.5, Figure 3.6 clarify its operation.

Function
Name

Input
Parameters

Output Parameters

Function
Description

void track_sequence()

operations

Processes the list

Writes on sequence.txt

It is called at the end of the main
function and it accomplishes the
following tasks:

e It accesses the field
symbol of all the nodes
of the list operations

e It counts sequential
multiplications and
additions or subtractions

e It makes blocks of the
counted operations

e It prints the blocks on
sequence.txt

80

Table 3.2: Describing of the track_sequence() profiling function

37690: add or sub 28014-add 9876-=ub

malt
add or
maltc
add or
maltc
add or
mult
add or
mult
add or
mult
add or
mult
add or
mult

1 add or
mult
add or
mult

: add or
mult
add or
malt
add or
malt

oW W W W W W W e

1 e
Y TR 11

[N T I

sub

sub

sub

sub

sub

sub

sub

sub

sub

sub

sub

sub

2—-add 1-=zub

2—-add 1-sub

2—-add 1-sub

2-add 1-sub

2—-add 1-sub

2—-add 1-sub

2-add 1-zub

10-add 3-sub

4-add 3-zub

48-add 26-sub

2—-add 3-zub

Figure 3.5: Snapshot from sequence.txt after G.726 encoding-decoding

operations

|
. ﬁ operation_element operation_element operation_element
main
No_C No_C No_C
No_op No_op No_op
encoding(); 5
2 symbol =+ Ly symbol = -’ 'y symbol = “*
/
operand[0 — yﬂé@/ operand[0]
decoding(); _eperand[1 L— operand[1 operand[1]
/ result result result
//
call track_sequence();— | next next next
NULL
sequence.txt
2: add orsub 1-add 1-sub
1:

mult

Figure 3.6: An overview of performing track _sequence() for three sequential arithmetic
operations

This new profiling function (track_sequence()) provided a clearer view of the operations that
are performed during the encoding-decoding procedure. But, obviously, this approach was

not efficient enough, as data dependencies information for these operations was needed.

81

3.4 Data dependencies of arithmetic operations

In order to extract the required information of data dependencies among the performed

arithmetic operations, a new approach was developed without any further process of the list

operations. This approach consisted of the two following steps:

e Tracking of the loops performed while executing

e Creating a list of operation blocks

3.4.1 Tracking of loops

Within the framework of this profiling step, the C-codes of G.711 and G.726 were searched

for loops. The purpose of this searching was to discover loops that are performed for a

remarkable number of iterations and they include a sequence of operations with data

dependencies. This could, possibly, lead to a compound operation, worthy to be mapped on

hardware.

As a result, a simple function named cnt_loops() was developed and added to the profiling

platform. Its description is available in Table 3.3 that follows and Figure 3.7, Figure 3.8

clarify its operation.

Function
Name

Input
Parameters

Output Parameters

Function
Description

void cnt_loops()

long cnt, char *tree

Writes on
num_of_iterations.txt

It is called inside any
algorithmic loop. It prints
on num_of _iterations.txt
the number of iterations
(cnt) that the loop was
performed followed by the
operations of the loop. The
number of bits that the
operands are composed of
is, also, noted.

82

Table 3.3: Describing of the cnt_loops() profiling function

[# of iterations] <operandl> arithmetic <operandZ>....

[1] iexp(16)+1
[2] iexp(16)+1
[2] iexp(16)+1
[2] iexp(16)+1
[2] iexp(l6)+1
[2] iexp(16)+1
[3] iexp(16)+1
[3] iexp(16)+1
[3] iexp(l6)+1
[3] iexp(16)+1
[3] iexp(16)+1
[3] iexp(16)+1

Figure 3.7: Snapshot from num_of operations.txt after G.726 encoding-decoding

short a,b,c,e;
long d; num_of _iterations.txt
2] d(32) = b(16) +c(16) +e(16)
WHILE (input) (5] d(32) = b(16) +c(16) +e(16)
L [3] d(32) =b(16) +c(16) +e(16)
cnt=0; [6] d(32) = b(16) +c(16) +e(16)
while (<something>)
{ iterations are
a=b+c; d his |
(i counted for this loop
cnt++;
}
cnt_loops(cnt, “d=b+c+e”);
}

Figure 3.8: An overview of performing cnt_loops()

The drawback of using cnt_loops was, initially, the fact that there are not a lot of algorithmic
loops in the C-code (at least for G.711 and G.726 that were the basis of profiler’s developing)
and as a result, most of the arithmetic operations were not represented. But, the main

problem was the importance of discovering data loops and not only algorithmic loops. There

83

was a need for finding remarkable arithmetic patterns that can be detected to a lot of points

of the encoding-decoding procedure.
3.4.2 Listing of the operation blocks

The aforementioned conclusion led to a thorough listing of the operation blocks. The whole
code was scanned and a .txt file named operation_blocks was created. This file included
every operation that takes place during the encoding-decoding procedure and, also, it kept
the information for the number of bits that compose every operand. Obviously, the data

dependencies could be detected and a clearer view was provided.

For this profiling approach there were not any new profiling functions developed. The whole
code (for each speech codec) was scanned and there was only use of the fprintf() C-function.
When, in the code, an if-then-else structure was detected, counters were placed in any
different branch of the if-structure; in order to count how many times each different
operation block was executed. Also, extra information is provided like the name of the
function in which a particular operation block is executed or the fact that a variable
participates in an operation after a shifting or a xor. For example, an operation like = b + ~c

, means that variable c participates in the addition after it has been shift-ed or xor-ed.

This profiling method was the first that it was also applied to the two other selected codecs
(G.722, G.723.1). Figure 3.9 to Figure 3.12 show a small part of the operation_blocks.txt file

for each of the speech codecs.

84

ENCCDING u law....
[16201] MACROL
END OF ENCCDING u law

input: linbuf(le), output: logbuf(le)

MACRCI:
templ=linbuf4+33
temnpZ2=0x0008- [max times=6] (accum: segno(| linbuf)+1)

tenp3=0x000F - low nibble (templ, =egno)
logbuf= “temp2 | temp3

[3+max) adds

DECODING u law....
[16901] MACROCZ
END OF DECODING u law
input: logbuf(l6e), output: linbuf(le)

MACROZ:

templ="logbuf+l

tempZ=constant (templ)

linbuf =temp2*logbuf+constant (logbuf)+ "temp2-132

ladd, lmult, 3adds

Figure 3.9: Part of operation_blocks.txt for G.711 (u_law)

G726_accum(inputs[all 16]: wal, wa2, wbl, wbZ, wb3, wb4, wb53, wbé[all 16&])
G726_accum(outputs: [2all 16]: =e, =ez)

zez=wbll+wb2l+ wb3l+wb4l+wbil+wbel

se=sez+wasl+wall

Tadds

G726 _expand(inputs: =s(16), law, output: =1(1€)):
[4876] templ="(=-128-"=2)+constant(| =) -or— .
[12024] templ=["(s-128-"s)+33]*constant (s)-33+constant(| =) If-structure

counters were used to

measure how many
[4876] 4adds -or- [12024] 3adds,lmult,3adds times each operation
block was executed

2l = le384-templ

G726_subta (inputs: s1(16), =se(l6),outputs: d(l6)):
d = (51+49152)+65536- (se+32768)

4adds

G726 _mix(inputs: al(le), wyu(le), vl(32),output: v(1l6)):
tenpl=yu+l6384-"y1
temp2= (16384 - templ)*al
v = (le3gd4-templd)+ vl
3adds, Imul, 2adds

G726_log(input: d(16), outputs: dl(1l6), ds(le)):
templ=65536-d

ds="d
dl="templ+constant (| templ)

Figure 3.10: Part of operation_blocks.txt for G.726

85

——uppold (inout(le): AL[], input(le): PLT[]):
templ'= O+const (AL[1])
(] PLT[O]-PLT[1])
templ'= O-cons=st (AL[1])
(] PLT[0]-PLT[2])
templ '=(templ'+const) +AL[2])*32512
{] cemp2' -

122
122

)
)

moro
oo

{] cemp2' +
LL[2]=temp2'

Sadds, 1mult, 3adds

——uppoll (incuts(16): AL[], PLT[]):
(] PLT[0]-PLT[1])
templ "=const+RAL[1] *32640
temp2'= 15360-AL[2]
{] cemp2'-templ')
(] cemp2'+templ')
AL[1l]=temp2'

Zadds, l1mult, 3adds

——filtez (inputs(16): DLI[], BL[], output: SZL(1&)):
S5ZL=[x6] SZL+BL[]*(DLT[]+DLT[])}

——filtep (inputs(16): RLT[], RL[], output: SPL(1&)):
SPL=[x2]SPL+AL[]* (RLT[]+RLT[])

Figure 3.11: Part of operation_blocks.txt for G.722

Lzp Qnt (LspVect[] (16),Cod5tat.PrevLsp[] (16), output: Rez(32))
[®18]Wwvect [|=LspVect []-LspVect

[x10] div:Wvect[]=0x0020/Wvect (16)=>[x15] 1lsub(32),ladd(16)
[x10] LspVect=LspVect-const, PrevLsp=PrevLsp-const, 2 subs
[210] Tmpd (16)=Prevlsp*12888+16384, LspVect=LspVect-Tmp0, [x10] lmult,ladd,lsub
[x10] PrevLsp=PrevLsp+const
—-Lsp S5vg(inputs:LspVect,Wvect, output: Rez (32))
[x768] {
[#3]) T[] (16)=Wvect*const+l163E4
[x3])AccD (32)="(LspVect*Tmp) +Acch

[x4)AccD (32)=RAccl-const*Tmnp+acch
const=const+constl

[x3] Rez=Rez+cont

Line.L=pld(32)=Rez

Wght_Lpc (input: UngLpc[] (16),ocutput: PerLpc[] (16)
[x60] Perlpc|]=Unglpc*const+l6384

[x60] lmult,ladd

Figure 3.12: Part of operation_blocks.txt for G.723.1

86

It can be noticed, also, that, usually, after an operation block a summary is following that
describes the number and the sequence of the block’s operations. Figure 3.13 that follows,
shows an overview of the profiling method of this section. Scanning of operations is needed

only once and for this reason a flag (named first) is used.

main Function A (long a, short b, short e)
short b, e, first; {
long a, k; long ¢, d;
long cnt1=0; c=a+b;
long cnt2=0; d=c*e;
first=1; return d;
}
While (inputs)
{
k= Function_A(a,b,e);
if (k>15)
{
k=k*k;

cntl++;//profiler

}

else
k=k+k;
cnt2++; //profiler
} operation_blocks. txt
/[profiler Q,J?a'l:é:;.f()a, e(16), a(32), out: d(32)
'{f (first=1) 25: k=d*d, 20: k=d+d

[25] 1 add, 2 mults or

fprintf(operation_blocks,”A, in: b(16), e(16), a(32), out: d(32)"); [20] 1 add, 1 mult, 1 add

fprintf(operation_blocks,”d = (a+b)*e”);
fprintf(operation_blocks,”%ld: k=d*d, %Id: k=d+d”, cnt1,cnt2);
fprintf(operation_blocks,”[%ld] 1 add, 2 mults or”,cnt1);
fprintf(operation_blocks,”[%ld] 1 add, 1 mult, 1 add”,cnt2);

first=0;

}

Figure 3.13: Overview of the operation blocks profiling method

Then, after all the operation blocks were available, a careful studying followed in order to
detect sequential operation with data dependencies, that could lead to an appropriate
arithmetic pattern, worthy to be implemented. This studying was mainly focused on the

operation blocks of G.722 and G.723.1 that are more complicated and rich in operations.

The dominate operation, of course, is that of multiply-accumulation (MAC) as, especially in
G.722 and G.723.1, there are a lot of different filters that are developed and this is
performed, mainly, through this operation (MAC). But, except from multiply-accumulation,

also, other operation schemes were noticed to can be applied, like:

87

e mac—-add[a*b+c+d]

e add-mac[(a+b)*c+d]

e add-mac-add[(a+b)*c+d+e]

e add - add - add [a + b+ c + d], especially for G.726 that includes a lot of

sequential additions

For this reason, there was a need of finding a way to measure the efficiency of these
different arithmetic schemes. The method that was followed for this measuring is described

in the next paragraph.

3.5 Modeling based on operation factoring

In order to measure the efficiency of the aforementioned arithmetic schemes, there was a
focus on G.722 and G.723.1. The reasons for that were, firstly, the complexity of these two
speech codecs and, as a result, the interesting operation blocks they include, but, mainly,
the existence of a library (named basop.c), for each of them, that includes functions for any

arithmetic operation.

Actually, in the main C-codes of G.722 and G.723.1 there is no arithmetic operations like a =
b —c, but a = sub(b, c), where sub(a,b) is a function from the library basop.c, which is
included in the main C-code. Also, other more complicated operations, like MAC, are
performed through the basic functions (add, sub, mult). Figure 3.14 that follows, provides a

clearer view.

88

instead of... basop.c

a=b+d;
c=b*e; .
add (a,b)
for (i = 1) to 100 {
{ c=a+b;
f=b*e+a; return c;
} }
there is... mult (a,b)
N [

include <basop.h> // c=a*b;
P
/\/ return c;
a=add(b,d); é }
c=mult(b,e);
mac (a,b,c)

for (i = 1) to 100 {
{ d=add(mult(a,b),c);
f=mac(b,e,a);
} return d;
}

Figure 3.14: Using arithmetic functions from the library basop.c

In basop.c there are arithmetic functions of any kind and even for numbers of different size.
For example, there are two functions for addition, one for numbers composed of 16 bits

(shorts), named add(), and one for numbers composed of 32 bits (longs), named L_add().

Therefore, there was a thought of developing a list, very similar to the previously developed
list operations but simpler, in order to keep a record only of the operations performed and
the type of numbers that participate. The name of this list was benchmark and it consisted

of bench elements that were composed only of three fields:

e char symbol, in order to store the type of the operation
e short bits, in order to store the type of the operands

e bench *next, in order to create the next element of the list

In order to create this list, a function named benchmarking() was developed. Table 3.4
contains its description and Figure 3.15 shows the easy way that it was applied through the
functions of basop.c. As it is depicted in this figure, with benchmarking() there was no

reason to detect all the arithmetic operations of the C-code, as it happened during the

89

previous approach of the list operations. Also, it has to be noted that additions and

subtractions were, both, stored as additions because their hardware implementations is

the same.
Function Input Output Parameters Function
Name Parameters Description
It is called only inside the basic
arithmetic functions of addition,
. subtraction and multiplication of
void char symbol, Adds an element to P

benchmarking()

short bits

the list benchmark

basop.c. It adds a bench element

to the list benchmark and it
completes the fields of the
element.

Table 3.4: Describing of the benchmarking() profiling function

basop.c
include <basop.h> L _add (a,b)
{
long a,b,c,d, f; long c;
shorts e,g,h; c=a+b;
a=L_add(b,d); benchmarking(‘+’,32);
c=mult(g,e); return c;
\ }
f=mac(g,h,a);
mult (a,b)
{
long c;
c=a*b;
benchmarking(‘*’,16);
benchmark
return ¢;
}
[E— bench bench bench bench
symbol = “+ symbol = ¥/ symbol = * symbol = ‘+’ l{nac (a,b,c)
bits="32"' bits="16" bits="16' bits="32' long d;
next next next next
l d=L_add(mult(a,b),c);
return d;
NULL }

Figure 3.15: Overview of the profiling function benchmarking()

After the list benchmark was available and in order to measure the efficiency of the different

proposed arithmetic schemes, some final profiling functions were developed. The general

90

idea was: scanning of the list benchmark and count the times that the sequence of

operations, corresponding to each operation scheme, appears.

Actually, each function models a circuit with the following arithmetic units:

a 16-bit adder
a 32-bit adder

a 16-bit multiplier (with the result in 32-bit representation)

P w N R

one of the following units:
e none (simple version)
e amacunit(a*b+c)
e amacaddunit(axb+c+d)
e anadd-macunit ((a+b) *c+d)
e anadd-mac-add unit ((a +b) xc+d +e)
e anadd-add-add unit (a + b+ c + d)

Also, within the framework of this model, it was supposed that any unit needed only a cycle
to perform its operation, but, on every cycle only one of the four arithmetic units could be
used. As a result, each function scanned the list benchmark and counted the times that its
special arithmetic unit can be applied to the sequence of the operations. The purpose was
to have a measure of how efficient is any of these arithmetic units for the encoding-
decoding procedure for different inputs of speech. Obviously, this procedure included an
error factor as the data dependencies were not taken into consideration, but that could be

evaluated from the studying of the available operation_blocks.txt files.

Finally, functions consecutively printed their results to another file, named counters.txt, in
order to provide a general view. The method was based in a central function named
weighting(), which called all the other functions. Table 3.5 contains the descriptions of all

these functions and Figure 3.16 gives an overview of the whole procedure.

91

Function Input Output Function
Name Parameters Parameters Description
It is called in the end of main
void weighting() No Input No Output function and it calls all the other
functions.
void simple_version() The list Writes on It models the case there are only
- benchmark counters.txt the basic arithmetic units (1. - 3.)
It models the case that, except from
. . The list Writes on the basic arithmetic units (1. — 3.),
void mac_version() . o e .
benchmark counters.txt there is also a mac unit (it is applied
to any *,+ sequence).
It models the case that, except from
void mac_add_version() The list Writes on the basic arithmetic units (1. — 3.),
- - benchmark counters.txt there is also a mac-add unit (it is
applied to any *,+,+ sequence).
It models the case that, except from
void add_mac_version() The list Writes on the basic arithmetic units (1. — 3.),
- - benchmark counters.txt there is also an add-mac unit (it is
applied to any +,*,+ sequence).
It models the case that, except from
void The list Writes on the basic arithmetic units (1. — 3.),
add_mac_add_version() benchmark counters.txt there is also an add-mac-add unit(it
is applied to any +,*,+,+ sequence).
It models the case that, except from
void The list Writes on the basic arithmetic units (1. — 3.),
add_add_add_version() benchmark counters.txt there is also an add-add-add unit (it

is applied to any +,+,+ sequence).

92

Table 3.5: Describing of the efficiency measuring profiling functions

counters.txt

Simple Version (mult,add)
cnt_add16:
cnt_add32:
cnt_mult16:

cycles: 8

MAC Version
cnt_add16:
cnt_add32:
cnt_multl16:

cnt_mac:3
cycles: 5

MAC-ADD Version

cnt_add16:

cnt_add32:

cnt_mult16:
cnt_mac_add: 1
cycles: 6

ADD-MAC Version

cnt_add16:

cnt_add32:

cnt_mult16:
cnt_add_mac: 1
cycles: 6

ADD-MAC-ADD Version

cnt_add16:
cnt_add32:
cnt_multl6:

cnt_add_mac_add:
cycles: 5

ADD-ADD-ADD Version
cnt_add16:
cnt_add32:
cnt_mult16:

cnt_add_add_add:1
cycles: 6

w

oN

N

[

[u

N

include <basop.h>

long a,b,c,d, f;
shorts e,g,h;

c=mult(g,e);
a=L_add(b,d);
f=mac(g,h,a);
f=mac(g,h,f);
f=add(e,g);
f=add(e,h);

void weighting()
simple_version();
mac_version();
mac_add_version();
add_mac_version();

add_mac_add_version();

add_add_add_version();

return;
weighting(); }
benchmark
A bench bench bench bench
symbol = * symbol = ‘+’ symbol = * symbol = ‘+’
bits="16' bits="32' bits="16" bits="32'

next next next next

bench bench bench bench

symbol = * symbol =+’ symbol = ‘+’ symbol = ‘+’
bits="16' bits='32' bits="16' bits="16'
next next next next

1

Figure 3.16: Overview of the efficiency measuring profiling functions

93

After all the available input speeches were used, in order to measure the efficiency of the
different operation schemes for the speech codecs G.723.1, G.722 and G.726%, the results
were inserted in Microsoft Excel. The next procedure was to apply different weighting
factors to each operation scheme according to how fast each of these arithmetic units is

supposed to be. For example, a pairing of weighting factors could be

[addermbits, adder32bits,mult16bits, mac, mac_add] =[0.4,0.6,1.8,2.22,2.4],

For this procedure of weighting, results of previous research data were used in combination
with the experience of the Lab’s professor. Finally, for each speech codec, according to the
described model, a table was created comparing the efficiency of implementation, from the
aspect of cycles and weighting, to the efficiency of the simple version. The following figures

(Figure 3.17 to Figure 3.20) provide a view of the efficiency comparing and of the results.

add-16 bits add-32 bits mult-16 bits mult-32 bits
weighting 0,4 0,6 1,8 2,3

mac mac-add add - mac add-mac-add add-add-add
weighting 2,15 2,2 2,45 2,9 1,2

Figure 3.17: Overview of the applied weights®

1 G.711 was omitted in this procedure, because of the simplicity of the performed operations in its
code. For G.726 that there is no basop.c library, the C-code was scanned and function benchmarking()
was applied to every operation.

2 For compound arithmetic units like mac, mac_add etc., a slightly lower weight was used than the
addition of the parts that it is composed of. For example, for mac should have been wpy¢, +
Wadders, = 1.8 + 0.6 = 2.4, but a weight of 2.2 is applied.

3 For the weights of the first row, the Microprocessors Lab’s results were used. For the compound
units the philosophy of footnote 2 was applied. It has, also, to be mentioned that implementation of
mac-add was considered more efficient than that of add-mac. This can be explained from the efficient
way that mac-add was implemented within the framework of this thesis (see Chapter 4).

94

cycles
simple version [mult,add) 134562254
mac version 71450713
mac-add version 127276570
add-mac version 69661748
add-mac-add version 126198179
add-add-add version 132125768

weight
1592643082
143608749,2
156539924.8
1417091797
157481972,7
158932089,6

cycles

improvement

46,9014%
3,4144%
48,2308%
6,2158%
1,8107%

weight
improvement

5,8299%
1,7106%
11,0226%
1,1191%
0,2086%

Figure 3.18: Comparing efficiency among different arithmetic schemes for G.723.1 (5.3 kbps)

cycles
simple version {mult,add) 31178160
mac version 22171425
mac-add version 19917498
add-mac version 17568690
add-mac-add version 19249053
add-add-add version 23552580

weight
26607413
25511156,25
24311241,4
24940782,75
261363777
26519333,8

cycles

improvement

28,8880%
36,1171%
43,6507%
38,2611%
24,4581%

weight

improvement

4,1201%
8,6298%
6,2638%
1,7703%
0,3310%

Figure 3.19: Comparing efficiency among different arithmetic schemes for G.722 (64 kbps)

cycles
simple version (mult,add) 112641384
mac version 105186642
mac-add version 87731900
add-mac version 97731300
add-mac-add version 80277158
add-add-add version 46602134

weight

736966876
654214629
644671974
66251454, 3
65279085,6

602123582

cycles

weight

improvement improvement

6,6181%

13,2362%

13,2362%

19,8544%

58,6279%

7, 1580%

12,5236%

10,1025%

11,4220%

18,2971%

Figure 3.20: Comparing efficiency among different arithmetic schemes for G.726 (32 kbps —

a-law)

95

3.6 Conclusions

Obviously, in order to decide which operation scheme is the most appropriate to implement,

a very careful study, of the operation_blocks.txt file for each speech codec, had to be

realized. After this procedure, that was again, mainly, focused on G.722 and G.723.1, the

final conclusions were:

Multiply-accumulation (MAC) dominates

Efficiency of MAC could be easily understood from the comparing results of the
previous paragraph. But, also, there are numerous points in the speech codecs’
algorithms that it is met, especially in G.723.1 and G.722 for the construction of
filters (see Figure 3.21, Figure 3.22). This is a reason that this arithmetic unit is

included in the most of the Digital Signal Processors (DSPs).

[x720] Acc0(32)="(Temp[]*Temp[])+tAccO,Imac
[x120] AccO="(Temp[]*Temp[])+AccO,1mac

DecCng.S1dGain(16)=Acc0+0x8000

[x120] AccO="(Temp|[]* Temp[])+AccO,1mac

Figure 3.21: A snapshot from G_723_1_operation _blocks.txt with three MAC operation

blocks

[x11] templ= const(from_a_table)*const(from_a_table)+templ, temp2=

const(from_a_table)*const(from_a_table)t+temp?2

Figure 3.22: A snapshot from G_722_operation _blocks.txt with two MAC operation blocks

96

ADD-MAC is not as much efficient as it seems to be

From the Figure 3.18, Figure 3.19 a possible conclusion is that ADD-MAC is worthy
to be implemented. But, studying of operation_blocks files showed that the
arithmetic form of [(a + b) * ¢ + d] is very rare. An explanation of the reason that
the weighting procedure presents this arithmetic unit to be efficient, could be the

existence of numerous MACs.

For example, a loop of the form [x4]{ a x b + c}, in the benchmarking list would be
applied in the sequence: *, +, *,+, *,+, *,+. As the function add_mac_version() would

scan the sequence, would detect the following two sequences of its arithmetic
scheme *, +, *,+, * 4+, *,+. Obviously, these are not sequences of the add_mac

scheme.

3. ADD-MAC-ADD and ADD-ADD-ADD are not efficient
The first scheme is, obviously, not efficient neither for the weighting procedure nor
in the studying of operation blocks (as even ADD-MAC is a rare form).
The second scheme is very efficient for G.726 as its algorithm consists of numerous
sequential additions and, actually, this was the reason that it was selected as one of
the modeling arithmetic units. But, it has not a very general structure in order to be

efficient to the other basic speech codecs, also.

4. Efficiency of MAC-ADD
This arithmetic unit seems efficient to be implemented. Procedure of weighting
indicated that and, also, it can be applied in the operation blocks of speech codecs

(see Figure 3.23, Figure 3.24).

[x60]{

AccO=Acc0+*(PL.ScGn*Temp),lmac
DataBuff=Acc0+0x8000

Figure 3.23: A snapshot from G_723_1_operation _blocks.txt with a MAC-ADD operation
block

temp2'=(temp1l'+const)tAH[2]*32512

templ' = NBH*32512
temp2' = temp1l'+const(ih)
(| temp2'-22528)

Figure 3.24: A snapshot from G_722_operation _blocks.txt with two MAC-ADD operation
blocks

97

98

A combination of MAC and MAC-ADD units would be the most efficient solution
From the aforementioned conclusion it is obvious that a MAC unit with the ability of

performing, also, MAC-ADD, would be the most efficient solution to be

implemented.

4 Hardware Implementation

4.1 Introduction

In this section the Speech Coding Arithmetic Unit (SCAU) is described. The purpose of this
arithmetic unit is the efficient implementation of two arithmetical modes/operations,
according to the conclusions of the whole profiling method. The first mode (MAC mode) is
the implementation of the multiply-accumulate operation for n-times (X~ x; X a;). The
second mode (MADD-ADD mode) is the implementation of multiply-add-add operation (x X

a+b+d).

4.2 Tools and Flow

The tools which were used for the hardware implementation of SCAU were:

e ModelSim (by Mentor Graphics), for the part of Verilog-HDL code simulation and
verification.
e Synopsys Software Tools, for the part of synthesis and the estimation of delay, area

and power.

Both of these tools were used within the framework of the Flow Tool, which has been
developed in Microprocessor’s and Digital Systems Lab. Finally, it has to be mentioned that

for synthesis the tsmc library was used in a 90-nm technology.

4.3 Circuit Description

4.3.1 General Description

Figure 4.1 shows the pins of SCAU. It can be noticed that there are 7 pins as inputs and 2

pins as outputs. Table 4.1 gives the description of any of these pins.

99

X_i
ai——
o 16
b i #’ 0
i/ V-
_ . >
32
cnt %’
10
ready
clk ——
rstn——»
Figure 4.1: Pinout of SCAU
Name | Type | Width Description
(bits)
clk input - clock signal
rst n | input 1 reset signal (Active low)
X i input 16 multiplier
ai input 16 multiplicand
b i input 16 1st addend
di input 16 2nd addend
. counter (counts the number of iterations for the MAC
cnt input 10 .
operation)
output 32 the final result of each operation (it is available until a new
y_o P final result is loaded)
signal that is set HIGH a cycle before y_o has the final
ready | output 1 result (it notifies the CPU of data availability on the next
cycle)

100

Table 4.1: Description of SCAU pins

The way that SCAU functions, is the following (it is supposed that rst_n is HIGH):

. MAC mode

For the MAC mode, it has to be set, on the input pin cnt, the number of iterations that
multiply-accumulation has to be performed. On the same clock positive-edge the first input
pair (x_i, a_i) has to be ready on the pins x_i, a_i and after that, cycle-by-cycle, input pairs
are inserted, according to the value of cnt that it was chosen. For example, for an operation
of 100 multiply-accumulations (see Figure 4.2), on the first positive edge, cnt would be 100
and x_i1, a_i; loaded on the corresponding pins. On the second cycle, x_i,, a_i, would be
loaded, on the third cycle x_is, a_is, etc until the cycle 100 when the pair X_i100, a_i100 Should

be loaded.

[T

pa1

Figure 4.2: Beginning of a MAC mode

The final (proper) result of the whole MAC operation (x; X a; + x; X ay + -+ Xgg9 X Qg9 +
X100 X @100) Will be on the output pin y_o on the cycle 103. On the cycle 102 the output pin
ready is set HIGH and notifies the CPU that on the next cycle (103), the final result will be

available on y_o (see Figure 4.3).

Figure 4.3: Ending of a MAC mode

101

On cycle 101 a new value for cnt can be loaded for a new sequence of input pairs and a new
MAC operation. Also, something important is that, on MAC mode, inputs b_i, d i must have
the zero value, at least on the first cycle after the last input pair (cycle 101 of the previous

example).

° MADD-ADD mode

For the MADD-ADD mode, as it is expected, the value one (1) has to be loaded on the input
pin cnt. On the same clock positive-edge the inputs x i, a_i, b_i, d_i has to be ready on the

corresponding pins.

The result of the MADD-ADD operation (x; X a; + b; + d_i) will be on the output piny_o on
the cycle 4 (if it is supposed that inputs are loaded on cycle 1). On the cycle 3 the output pin
ready is set HIGH and notifies the CPU that on the next cycle (4), the final result will be

available on y_o. Figure 4.4 shows an example of MADD-ADD mode.

Figure 4.4: An example of MADD-ADD mode

On cycle 2 the value one (1) can be loaded on pin cnt and the rest of the inputs for a new

MADD-ADD operation.

102

° Transition from one mode to the other

From the aforementioned description of the two different arithmetic modes, is easy to
understand that controlling of which mode SCAU operates, is a matter of which value is
loaded on the input cnt. As a result, after the finish of inserting the inputs of each mode,

transition to the other mode can happen by loading the proper cnt value.

For example, in the previous example of MAC mode, if it is needed to switch to MADD-ADD
mode after the end of the whole MAC operation, the value one (1) has to be loaded, on
cycle 101, on the input pin cnt and, on the same cycle (positive-edge), the inputs x i, a_i, b_j,

d_ihas to be ready on the corresponding pins.

One the other hand, in the previous example of MADD-ADD mode, if it is needed to switch
to MAC mode, the number of iterations of the multiply-accumulation has to be loaded, on
cycle 2, on the input pin cnt. On the same clock cycle, the first input pair (x_i, a_i) has to be
ready on the pins x_i, a_i and after that, cycle-by-cycle, input pairs are inserted, according to

the value of cnt that it was chosen.

Figure 4.5 shows a transition from MAC to MADD-ADD mode.

Jides |09 100 102 103

clk

Figure 4.5: Transition from MAC to MADD-ADD mode

103

4.3.2 Detailed Description

Figure 4.6 shows the block diagram of SCAU and explains its internal function. Figure 4.7 and

Figure 4.8 show the active data paths for each mode.

clk rst._.n Xx_
|:I

Partial
Product
Cenerator

a_reg

x_reg

(Dé@

<
<

Wallace
Tree

S Cc

s_reg | ¥ Il | c-reg

Yv

Final Adder

ready

Figure 4.6: Block diagram of SCAU

104

clk rst. n x_i al 0 O

a_reg b_reg

Partial
Product

U?LEEiL
— \1_? syn
1 |_|<::
L It is set HIGH a

cycle after cnt_reg
is one (1)

Wallace

<
<
<
- <

inal Adaer ;

32

y_out

y 0 ready

Figure 4.7: Data path when in MAC mode

105

clk rst_n X_

A A

1 0_| syn
iy 1: r7<:;::::::::,

L It is set HIGH a
cycle after cnt_reg
is one (1)

Wallace
Tree

o
o
Yv

inal Adaér ;

32

ready

Figure 4.8: Data path when in MADD-ADD mode

SCAU consists of three parts:

e amultiplier
e afinal adder
e acounter control unit

A more detailed view of these parts and of the way they co-operate, in order to produce the

outputs from the inputs, is provided below.

106

° Multiplier

Multiplier consists of a Partial Product Generator (PPG) and a Wallace Tree Adder. Inputs
Xx_i, a_i are inserted to PPG, through the input registers x reg and a_reg. As Figure 4.6

shows, input a_i is firstly inserted to a Modified-Booth Encoder and after that to PPG.

After PPG, partial products, that have been produced, are inserted to the Wallace Tree.
Wallace Tree adds the partial products and gives a result in a carry-save representation.

Finally, carry and save are stored to ¢ _reg and s_reg, respectively.

In Figure 4.7 it is shown that, after storage to ¢ _reg and s_reg, carry and save return back to
the Wallace Tree as two more inputs of it. This is, actually, the main point of the MAC mode.
As new input pairs are inserted, cycle-by-cycle, and new partial products are produced, carry
and save of every cycle is accumulated, via Wallace Tree, to the previous carry-and-save
result. In SCAU, accumulation happens before the Final Adder (carry-save representation)

and not after the Final Adder (that the result is in normal representation).

) Final Adder

Final Adder is a fast arithmetic unit that takes the final carry and save as inputs, adds them,

and provides the final result of accumulation as an output. This output is stored on y_out.

In order to ensure that the Final Adder will be used only for the addition of the final carry
and save, two multiplexers are used on its inputs, which are controlled from the Counter
Control Unit (register syn). The same signal sets output ready HIGH, in order to notify the

CPU that on the next cycle the final result will be available.

As a result, it is easily understood that the whole synchronization of SCAU is directed from

the Counter Control Unit.

° Counter Control Unit and synchronization

The purpose of Counter Control Unit is to control, first of all, the inputs of Wallace Tree in
order to ensure that SCAU works properly. Firstly, the double role of register syn will be

described and, then, how syn is controlled by the input cnt and the Counter Control Unit.

107

In Figure 4.7 can be noticed that the feedback of accumulation (two of the inputs of Wallace
Tree) is the outputs of two multiplexers, which are controlled by register syn. If syn is zero,
then the current carry and save are inserted to the Wallace Tree with the new partial
products and they form the new carry and save. If syn is one (1), b_i and d_j, and not carry

and save, are inserted to the Wallace Tree to be added with the partial products.

So, during a MAC mode, register syn has to be loaded with zero in order to let the
accumulation to take place. On the other hand, there are two situations (that actually
happen in the same cycle as explained later in this section), in which inputs b_i and d_i need

to be inserted in the Wallace Tree and, as a result, syn has to be loaded with one (1).

The first of them is when a MAC mode is finished and a second MAC mode is about to start.
In this case, the example of paragraph 4.3.1 about MAC mode will help understanding. One
hundred input pairs is assumed. Input pair 100 (x_i100, @_i100) is inserted and loaded to x_reg,
a_reg, respectively, on cycle 100. They will be multiplied during cycle 101 and the new (and
last) pair of carry and save will be loaded on ¢ _reg and s_reg. On the same cycle (101), a new
MAC operation starts. New values of inputs (x_i, a_i, cnt and b_i=d_i=0) are loaded on the
input registers (x_reg, a_reg, cnt_reg). On cycle 102, syn is set HIGH and three different

things happen:
a) the final carry and save of the former MAC are inserted into the Final Adder,

b) the first input pair of the latter MAC operation is inserted into the Partial Product

Generator,

c) carry and save from a) are not allowed to insert in the Wallace Tree (syn is one (1)),
because a new accumulation starts and zero-values are inserted to the two inputs of Wallace
Tree that come from the multiplexers, via b_reg and d_reg. This fact explains the note of
paragraph 4.3.1 about MAC mode that on cycle 101, b_i and d_i must be zeroed and, as a

result, on cycle 102 b_reg and d_reg will be zeroed.

The second situation in which syn has to be loaded with one (1) is when a MADD-ADD
situation is about to start. For example, if for inputs (x_i, a_i, b_i, d_i, cnt=1) on cycle 1, then,
on cycle 2, syn has to be one (1) in order to let b_i, d_i pass, through b_reg and d_reg and
the multiplexers, in the Wallace Tree and be added with the partial products of the

multiplication.

The combination of the above-mentioned descriptions clarify that these two cases happen in

the same cycle (as it was noted) and can be noticed, regardless the mode that SCAU is about

108

to work in, syn must be HIGH a cycle after the beginning of a new operation. This
conclusion does not hold in the case that the very first operation of SCAU is a MAC
operation, because there are no previous carry and save from a previous operation that

should be deterred to insert into the Wallace Tree.

Furthermore, syn has one more very important role to play. It is connected with the output
of SCAU. As already mentioned in the previous MAC example, syn is set HIGH on cycle 102
when the final carry and save are inserted into the Final Adder through the multiplexers. In
Figure 4.6, it can be noticed that output ready is directly connected with syn and, as a result,
on cycle 102 ready is set HIGH and notifying that on cycle 103 the final result will be ready

on the piny_o.

As a result, except from the aforementioned conclusion, it can be noticed that from the
point of view of the output, regardless the mode that SCAU worked in for the last operation,

syn must be HIGH two cycles after the last input of the last operation.

Figure 4.9: Beginning of a MAC operation

Figure 4.9 shows the beginning of a MAC operation. When rst_n is LOW and on the first
clock’s (clk) positive edge, first inputs x_i, a_i, cnt are loaded and everything else is zero.
New input pairs are inserted on successive clock cycles, cnt does not change and only
cnt_reg (which is loaded on cycle 2) is reduced by one each clock. Also, something that is
important is that on cycle 3 the first carry and save results, that come from the first input

pair can be noticed. On the other hand the inputs of the Full Adder (final_adder_s,

109

final_adder c) and the output (y_o) are zeroed because of the multiplexers. The datapath

clock cycle breakdown is as follows:
Cycle 1: input at registers x_reg, a_reg
Cycle 2: multiplication is done and result is stored at registers s_reg, c_reg

Cycle 3: carry and save is inserted back into the Wallace Tree

Figure 4.10: End of the above-figured MAC operation, two sequential MADD-ADD operations
and the beginning of a MAC operation

Figure 4.10 shows the end of the MAC operation, two sequential MADD-ADD operations and

the beginning a new MAC. A description of every cycle for any of these operations follows:
MAC 1 - MADD ADD 1 - MADD ADD 2 - MAC 2:
Cycle 100: Final input pair of MAC operation

Cycle 101 - Cycle 1: Final input pair is multiplied and accumulated with the previous carry

and save. - Inputs x_i,a_i, b_i, d i, cnt=1 are loaded.

Cycle 102 - Cycle 2 - Cycle 1: Final carry and save are inserted in the Final Adder. syn is HIGH

so carry and save does not get back on the Wallace Tree. ready is HIGH so on the next cycle

110

final result will be on y_o. - syn is HIGH so b_i, d_i are inserted in the Wallace Tree through
b _reg, d reg in order to be added with x_j, a_i. - Inputs x_i, a_i (the same with MADD-ADD
1), b_i (the same with MADD-ADD 1), d_i, cnt=1 are loaded.

Cycle 103 - Cycle 3 - Cycle 2 - Cycle 1: Final result is on y_o. - carry and save are inserted in
the Final Adder. syn is HIGH so carry and save does not get back on the Wallace Tree. ready
is HIGH so on the next cycle result will be on y_o. - syn is HIGH so b_i, d_i are inserted in the
Wallace Tree through b_reg, d_reg in order to be added with x_i, a_i. - first inputs x_i, a_i,

cnt=100 are loaded.

null - Cycle 4 - Cycle 3 - Cycle 2: null - result is on y_o - carry and save are inserted in the
Final Adder. syn is HIGH so carry and save does not get back on the Wallace Tree. ready is
HIGH so on the next cycle result will be on y_o. - synis HIGH so b_i=d_i=0 are inserted in the
Wallace Tree through b_reg, d_reg in order to start new accumulation. First carry and save

are produced. New input pair is inserted.

null - null - Cycle 4 - Cycle 3: null - null -resultisony o -synis LOW so carry and save gets

back on the Wallace Tree for being accumulated with next input pairs that have come.

Finally, operation of the Counter Control Unit can be clarified. Input cnt is inserted on every
beginning of a new operation. On the next cycle, it is loaded on cnt_reg and if it is not one
(see Figure 2 — Yes = 0 and No = 1 =>multiplexer takes zero value as control signal) it is
reduced by one. This control happens in every cycle and if it is found that cnt_reg is one one
(Yes = 1 and No = 0 =>multiplexer takes one (1) as control signal), on the next cycle, cnt is
loaded again and syn is set HIGH. Figure 4.11 provide an overview of Counter Control Unit’s

waveforms.

Figure 4.11: Waveforms of Counter Control Unit

111

4.4 Implementation Results

Figure 4.12 shows the implementation results for different values of clock cycle. The

shortest clock cycle that could be met was this of 1.1 ns. Also, Figure 4.13 and Figure 4.14

show the diagrams of clock period — area and period — power, respectively.

clock period (ns)

1,1
1,2
1,3
1,4

1,5

1,6

frequency (MHz)

909

833

769

714

667

625

critical path (ns) area (um?)
1,07 9956,016230
1,17 9141,048193
1,27 8827,761752
1,38 8575,156928
1,49 8630,899410
1,59 8412,868996

Figure 4.12: Implementation results

Obviously, in all cases critical paths exist in the part of Multiplier.

power (mW)

10500

10000

9500

area (um?) 9000

8500

8000

7500

1,1

1,2

1,3 1,4 1,5
Clock period (ns)

1,6

112

Figure 4.13: Diagram of Clock Period — Area

8,597

7,504

6,969

6,366

5,663

3,512

[any
o

power (mW)

o B N W b U1 O N 00 O©

1,1 1,2 1,3 1,4 1,5 1,6
Clock period (ns)

Figure 4.14: Diagram of Clock Period — Power

Furthermore, in order to measure the efficiency of using the Final Adder only for the
extracting of the final result in order to save power, a slightly different circuit was
implemented, which has exactly the same behavior, as far as the output pins are concerned,
but it uses a multiplexer after the Final Adder and not before. As a result, the unit of the
Final Adder is used in every cycle. Figure 4.15 shows the block diagram of this different
implementation of SCAU and Figure 4.16 to Figure 4.18 provide the corresponding

information of the Figure 4.12 to Figure 4.14.

113

clock period (ns)

Figure 4.16: Implementation results of the different implementation of SCAU and comparing

114

cnt_reg=-T]

FinMder

ready

Figure 4.15: A different implementation of SCAU

frequency (MHz) critical path (ns) area (pm?) power (mW) area decrease (%
1,1 909 1,09 9859,349035 8,904 0971%
1,2 833 1,17 9094,478591 8,210 0,509%
13 769 1,28 8793,892950 7,601 0,384%
1,4 714 1,39 8531,409727 6,941 0,510%
1,5 667 1,48 8570,923406 6,174 0,695%
16 625 1,58 8371,944198 3,513 0,486%

with these of the normal implementation

power increase (%

3,571%
9,408%
9,069%
9,032%
9,023%

0,028%

10000

9500

9000

area (um?

8500

8000

7500

'\
|
[|
[|
1,1 1,2 1,3 1,4 1,5 1,6
Clock period (ns)

Figure 4.17: Diagram of Clock Period — Area for the different implementation of SCAU

10

power (mW) 5

11

1,2

1,3 1,4
Clock period (ns)

1,5

1,6

Figure 4.18: Diagram of Clock Period — Power for the different implementation of SCAU

From the implementation results shown in Figure 4.16, the efficiency in power saving

provided from the multiplexers of the normal version of SCAU can be noticed. Actually, with

115

these two multiplexers, SCAU takes advantage of its special feature of accumulation in carry-

save represe ntation.

116

5 Future work

Suggestions for future work could be made for all the different aspects of this diploma

thesis. These aspects are:

. Variety of Speech codecs

1.

Studying of more speech codecs, in order to obtain a more general view, and,
especially, of those applied in VoIP like G.729a, iLBC and G.722.2 (this is not

an open source speech codec).

2. It would be very interesting to study the open-source multimode speech
codecs Opus and SILK (speech codec of Skype).
. Profiling method
1. Trying to apply a better, and less exposed to errors, profiling method. A
good idea could be using a better C-processing of the list operations that
keeps information for the operands.
2. Applying benchmarking method not only for additions and multiplications,
but keeping track also of MACs.
3. Different arithmetic schemes should be tested for efficiency [e.g. mult — mac
((a*b)*c+d)].
. SCAU
1. A more efficient implementation of the two operations of MAC and MADD-
ADD.
2. Test efficiency of SCAU for an operation of a + b + ¢ in comparison with

other solutions (e.g. an adder of three inputs). In SCAU this operation could
be implemented by performing a MADD-ADD mode in a way like: x* 1+
b+d.

117

Conclusion

In this diploma thesis an arithmetic unit for efficient hardware implementation of speech
codecs was designed. The whole procedure that was followed, in order to fulfil this purpose,

included a lot of different aspects of studying and the familiarization with a variety of tools.

Actually, it was a unique experience to use different parts of Electrical and Computer
Engineering and come through all this way from digital signal processing and software
implementations to the testing of different profiling methods and to end up in hardware
design, synthesis and evaluation. It was a touch of how nowadays technology engineering

develops all of these everyday applications, like VolP conferences.

Obviously, researching never stops and there in nothing that can claim that it solved a
problem. The more realistic view is to state that there was a try to find a better approach

towards the problem or towards the covering of a need.

The same can be stated for this diploma thesis. It was an effort to find a better arithmetic
unit for speech codecs and, obviously, there are a lot of aspects that need or can be
improved (see Future Work section). Therefore, these improvements will be very valuable as
they can lead to a better implementation of this great tool of human communication, the

speech codecs.

118

List of Figures

Figure 1.1: Block diagram of a speech coding SYStEMcuuuceereeueerrennncerrennncereennsseseennsseneens 13
Figure 1.2: Block diagram of G SPeECh COUEC .uuuuerrernneerrennnierrenniereenneerrennssessennsseseennssesenes 14
Figure 1.3: Greater sampling frequency provides truer representation of speech................. 17
Figure 1.4: Different categories of sampling frequency in relation to bit-rate........ccccceeeeee.. 18

Figure 1.5: Encoder (top) and decoder (bottom) of a source-controlled multimode codec.... 20
Figure 1.6: Speech Quality versus Bit Rate for Common Classes of COdecsccuuuueerrrnnnaeranes 22
Figure 1.7: Diagram of the human speech production SYSteMc.eeeueeereeencereennncereennseeneens 23
Figure 1.8: Correspondence between the human speech production system with a simplified
model based on tiMe-Varying filter. ... ceueiireerereerirrnerrnnterenserenerensseressersssersasessnsessnsseses 25
Figure 1.9: Comparison between an original unvoiced frame (top) and two synthesized
JTOMES. «eeeieeeereiiticcreeerenereeneteanestnseeensserensesensessnsssrnssssnsserensssensesenssssnssssnssenensssensenannans 26

Figure 1.10: Comparison between the magnitude of the DFT for the three signal frames of

Lo 1 L= I O 27
Figure 1.11: Plots of a-law characteristics with Ao = 87.6, 20, and 8. A = 1 for all cases........ 30
Figure 1.12: Plots of u-law characteristics with u = 255, 32, and 8. A = 1 for all cases.......... 31

Figure 1.13: Table of conversion for a-law from/to liner (snapshot from ITU-T G.711
RECOMMENAALION) «eeeeeueeeireieceereiueeeretaeereennseeetennseseenssssssensssssennsssssenssssssennsssssennsssssennnns 32

Figure 1.14: Table of conversion for a-law from/to liner (snapshot from ITU-T G.711

RECOMMENAALION) «eueeeeeeeeireenceereiueeeretaeereennnaeeeensseseenssssseensssssennsssssennsssssennsssssenasssssennnes 33
FIigUIe 1.15: G.726 ENCOUEN ..ceuuieeniienniriniiieniiieniiieeerensissnssssnsssssssssessssnssssnssssnssssnssssnsssses 34
FiBUre 1.16: G.726 DECOUEN ..cuuuueeiinnnieirirnnieiiinniesiennssessennsssssenssssssennssssssnsssssssnsssssssnssssssnns 35
Figure 1.17: G.726 Encoder BIOCk SCREMALIC ccuuueerernrieriinnieriinniesiennsieriensssesssnsssesssnsssssenns 35
Figure 1.18: G.726 Decoder BIOCk SCREMALIC ccuuuueereruieriinnieriinniesiinnsierienssiessensssesssnsssesenns 36
Figure 1.19: G.722 Encoder and Decoder BIOCKk DiAGrams........eeeeeeeuneieriennsersennssesssnnsseneens 41
Figure 1.20: Block Diagram of the SB-ADPCIM €NCOTESu.erreruierrennserrennssessennssesssnnsseneens 42
Figure 1.21: Block Diagram of the lower sub-band ADPCM encoderceeeeseirirenennnnnnnnns 43
Figure 1.22: Block Diagram of the higher sub-band ADPCM encodercceeeeeneeereennnaenees 44
Figure 1.23: Block Diagram SB-ADPCIM deCOUENcueeeunirenerrenieinniiieenerensirensersassssnssssnnnenes 45
Figure 1.24: Block Diagram of the lower sub-band ADPCM decoderuueeeeeeneeereenneaenenns 46
Figure 1.25: Block Diagram of the higher sub-band ADPCM decoderceeeeeneeereenneaenenes 46
Figure 1.26: The CELP model of Speech productioN.........eeueceeeeeneereennncereenneeseennseeseennseeseens 48
Figure 1.27: Analysis-by-synthesis loop of a CELP encoder with perceptual weighting 49
Figure 1.28: Block diagram Of G.723.1 @NCOUEN «....ueuuueeeeenncerrenneerrenneeseennneeseennsseseennssaseens 51

119

Figure 1.29: A hybrid @NCOGEr....ccivuueiiiiiruiiiiinnieiiinniiniinnieniesmiesienmieiiesiestessssssesssssssens 55
Figure 1.30: Block diagram of G.723.1 deCOdercuueerriruniiriinnieiiennisiiennieniensssensensssnsens 55
Figure 2.1: The environment of speech codecs’ software implementationccececeeenniennes 57
Figure 2.2: General flow chart of the main function of speech coOdecsccceeerreeneereennneerenes 59
Figure 2.3: Flow chart of the Matlab (M) filE......eeueeuneerrerneerreenreerrenneerrenneereennseereennsserenes 61
Figure 2.4: Speech waveforms of G.711 (G-IW) ...eueeueeerrernecerrennncerrennncereennnsessennsseseennsssseens 63
Figure 2.5: Speech waveforms of G.726 (U-1aW, 16KDPS).....ceeeeeueereenneireenncereennnsereennsseneens 63
Figure 2.6: Speech waveforms of G.722 (64KDPS) c..euuueereerneerrennneereennnseseennssessennsseseennsseseens 64
Figure 2.7: Speech waveforms of G.723.1 (5.3 kbps). Some distortion can be noticed.......... 64
Figure 2.8: Command window of Matlab while executing G.711 encodingccccecevveenneneees 65
Figure 2.9: Time domain waveform for the first male speech SAMPIEueeeeeenereencrrencrrennenen 66
Figure 2.10: Frequency domain waveform for the first male speech sampleccceeeeeeeen.. 67
Figure 2.11: Time domain waveform for the second male speech sampleceeeveeeeeennenes 67
Figure 2.12: Frequency domain waveform for the second male speech sample................... 68
Figure 2.13: Time domain waveform for the third male speech SGMPIeceueeeeneeeencerennenen 68
Figure 2.14: Frequency domain waveform for the third male speech sampleccceee.... 69
Figure 2.15: Time domain waveform for the fourth male speech sampleceeeeeueeennee. 69
Figure 2.16: Frequency domain waveform for the fourth male speech sample..................... 70
Figure 2.17: Time domain waveform for the first female speech sample..........ccuecereeeneeennne. 70
Figure 2.18: Frequency domain waveform for the first female speech sample..................... 71
Figure 2.19: Time domain waveform for the second female speech samplecceuueen.... 71
Figure 2.20: Time domain waveform for the second female speech samplecceuuee..... 72
Figure 2.21: Time domain waveform for the third female speech sampleccecevveunnnennee. 72
Figure 2.22: Frequency domain waveform for the third female speech sample 73
Figure 2.23: Time domain waveform for the fourth female speech sampleccceuuueuee.. 73
Figure 2.24: Frequency domain waveform for the fourth female speech sample.................. 74
Figure 3.1: Declaration of the structure operation_element..................ccceeeerveenieriennniennnns 76
Figure 3.2: Function_calls.txt after G.711 encoding-decodingccueeereeeeeereennsereennnsenenns 78
Figure 3.3: Snapshot from Arith_operations.txt after G.726 encoding-decoding 78
Figure 3.4: Overview of performing the profiling fUNCtionsceeeeeueeereeenceereenneereenneeneens 79
Figure 3.5: Snapshot from sequence.txt after G.726 encoding-decoding.........ccceeeeeeeeneeneee. 80

120

Figure 3.6:

An overview of performing track _sequence() for three sequential arithmetic

OPCIALIONS ceuuerrurirenesiranssrnaserensrsasssessstrasssrssssrssssssasssrssssrasssssssssesssssasssssssssasssssnssssnssssassssan 81
Figure 3.7: Snapshot from num_of _operations.txt after G.726 encoding-decoding 83
Figure 3.8: An overview of performing cnt_I0OPS()ccceerreereeneriiieiiiinennnesssesessnesesnnessnnnes 83
Figure 3.9: Part of operation_blocks.txt for G.711 (U _IQW) ...ueeeueeereeenncirreeneereenncereennnseneens 85
Figure 3.10: Part of operation_bloCks.tXt fOr G.726.....ceueeueeerrenneerrennncerrenncereennsseseennsseneens 85
Figure 3.11: Part of operation_blocks.tXt fOr G.722.....cuueeueerrenneerrenncerrenneeseennseeseennsseneens 86
Figure 3.12: Part of operation_blocks.txt for G.723.1ccceeueerrennncirrennncereennsceneennseneens 86
Figure 3.13: Overview of the operation blocks profiling methodcuueeeeeereeencereeencenenes 87
Figure 3.14: Using arithmetic functions from the library BASOP.Ccceueeueeerreenecereeenneenenas 89
Figure 3.15: Overview of the profiling function benchmarking()eeueeeereeneeeeeeneenenns 90
Figure 3.16: Overview of the efficiency measuring profiling functionsccceceeeeecerenceennnenes 93
Figure 3.17: Overview of the applied WEIGALSceeeeereniieererrenierencireenerencrenserenseesnsessnsnenes 94

Figure 3.18:

Figure 3.19:
Figure 3.20:

Comparing efficiency among different arithmetic schemes for G.723.1 (5.3 kbps)

Comparing efficiency among different arithmetic schemes for G.722 (64 kbps) 95

Comparing efficiency among different arithmetic schemes for G.726 (32 kbps —

o (oo < 97
FIiZUre 4.1: PiNOUL Of SCAU .eeeeeeieeeceeiieenieeieenneeseennsesssenssesseenssessesnssessesnssesssnnssesssnnsnnes 100
Figure 4.2: Beginning Of 0 MAC MOUEeauueeeenneeeriennieerienniesreensieseeenssesseenssessennssessennsnenes 101
Figure 4.3: Ending Of G MAC MOuueeuueeiienneeeriennieerienniesseenssessesnssessesnssesssnnssessennsnenes 101
Figure 4.4: An example of MADD-ADD MOGEccueuueeriennceereennceereenniesseennsessennnsessennnenes 102
Figure 4.5: Transition from MAC t0 MADD-ADD MOGEu.cereeuneeereennceereenncessennncessennnenns 103
Figure 4.6: Block diagram Of SCAUuieeeeiiienieiiirnesesiinneesiennssessennssessesnsssssennsssssennsnsnes 104
Figure 4.7: Data path when in MAC MOGE.......eu.eeiieeeieiiirnnieiiinneiesiennssessennssessennssessennssenes 105

121

Figure 4.8: Data path when in MADD-ADD MOGEcccceuuieiiivnniieiinnniiniiennisniissssssiissssns 106
Figure 4.9: Beginning of @ MAC OPEratioNeceeeeiieenieiiinnnsssiisnssssiissssssisssssssisssssssssssssanns 109
Figure 4.10: End of the above-figured MAC operation, two sequential MADD-ADD operations

and the beginning of @ MAC OPeratioN......c.cuuveeeiemnieiiinnisnienssieiienssisiienssisssessssssssssssssaens 110
Figure 4.11: Waveforms of Counter CONtrol UNIteueeeeeeeeceereennsesreennsesseensseseennssessennsenes 111
Figure 4.12: Implementation reSUILSueeeereeeeeereeeneeriirnnierseensseseeenssessennssessennssessennsnanes 112
Figure 4.13: Diagram of ClOCK Period — Ar€Q....uu.ceeeeeeeeeriennerreenneseennnsessennssessennssessennnnanes 112
Figure 4.14: Diagram of CIOCK Period — POWEYccueeeeeerevnnerriennessennssessennssessennssessennsnenes 113
Figure 4.15: A different implementation Of SCAUee.eeeeeeeeeiriennserriennsesreensseseennssessennsenns 114

Figure 4.16: Implementation results of the different implementation of SCAU and comparing
with these of the normal iIMPIEMENTALION.......ceeeecereniireerereanirtnerennterenserenserensesrasserasseranns 114
Figure 4.17: Diagram of Clock Period — Area for the different implementation of SCAU 115
Figure 4.18: Diagram of Clock Period — Power for the different implementation of SCAU... 115

122

List of Tables

Table 1.2:
Table 1.3:

Table 3.1:
Table 3.2:
Table 3.3:
Table 3.4:
Table 3.5:

Table 1.1: SPEECh COAECS Of VOIP.....ueueeeeeeeeeiieeecesiiennessernsessesnssessesnsssssesnssessennssessennnnnes 15
Classification of Speech Codecs according to Sampling Frequencyceeeeeeeneenns 17
Classification of Speech Codecs according to Bit — ROLEceuueeereennerrernnneseennnnenns 19
Describing of the profiling fuNCtiONSceeiieeurieiieniisiieniisiieniinieesiisiesssesiesnses 77
Describing of the track_sequence() profiling function.........eececeeeisrereeenenesescssnnnes 80
Describing of the cnt_loops() profiling funCtioN.........cccuveeeeeeseseisrinnennensssssenenns 82
Describing of the benchmarking() profiling functioneeceeeeeiirineeeeensesesennnns 90
Describing of the efficiency measuring profiling functions.........ccceeeeeerreeersisrenenns 92
Description Of SCAU PiNS ..eeeeueeereeenncereennneereennssessennssessensssessensssessennsssssenssssseens 100

Table 4.1:

123

References

(1]

(2]

(3]
(4]

(5]

(6]

(7]

(8]

(9]

(10]

(11]

[12]

[13]

124

Wai C. Chu (2003), “SPEECH CODING ALGORITHMS Foundation and Evolution of
Standarized Coders”. WILEY-INTERSCIENCE, John Wiley & Sons, Inc., Hoboken, New
Jersey.

Lawrence R. Rabiner, Ronald W. Schafer (1978), “Digital Processing of Speech Signals”.
Ed. Alan V. Oppenheim. Prentice-Hall Signal Processing Series.

K. Pekmestzi (2003), “Wnetaka Zvotiuata VLSI”. Athens

A. Kanatas, F. Konstantinou, G. Pantos (2008), “Juotiuata Kivntwv Entikowvwviwv”.
Athens: Papasotiriou Editions.

ITU- T Recommendation G.191 (2010), “Software tools for speech and audio coding
standardization”.

ITU- T Recommendation G.711 (1988), “Pulse code modulation (PCM) of voice

frequencies”. [Online], Available: http://www.itu.int/rec/T-REC-G.191/en [Accessed:

Apr. 3,2012]
ITU- T Recommendation G.722 (1988), “7 kHz audio-coding within 64 kbit/s”. [Online],
Available: http://www.itu.int/rec/T-REC-G.722/en [Accessed: Apr. 3, 2012]

ITU-T Recommendation G.723.1 (2006), “Dual rate speech coder for multimedia
communications transmitting at 5.3 and 6.3 kbit/s ”. [Online], Available:

http://www.itu.int/rec/T-REC-G.723.1/en [Accessed: Apr. 3, 2012]

ITU- T Recommendation G.726 (1990), “40, 32, 24, 16 kbit/s Adaptive Differential
Pulse Code Modulation (ADPCM) ”. [Online], Available: http://www.itu.int/rec/T-REC-
G.726/en [Accessed: Apr. 3, 2012]

ITU- T Recommendation G.729 (2007), “Coding of speech at 8 kbit/s using conjugate-
structure algebraic-code-excited linear prediction (CS-ACELP) ”. [Online], Available:

http://www.itu.int/rec/T-REC-G.729/en [Accessed: Apr. 3, 2012]

Yao Wang (2006), “Source Coding Basic and Speech Coding”. EE3414 Multimedia
Communications System — I, Polytechnic University, Brooklyn, NY [Online]. Available:

http://eeweb.poly.edu/~yao/EE3414/audio coding.pdf [Accessed: Apr. 24, 2012]

Cisco (2006), “Understanding Delay in Packet Voice Networks” [Online], Available:
http://www.cisco.com/en/US/tech/tk652/tk698/technologies white paper09186a00

800a8993.shtml [Accessed: Apr. 24, 2012]

Cable Television Laboratories, Inc. (2009), “PacketCable 2.0 Codec and Media

Specification”, [Online]. Available: http://www.cablelabs.com/specifications/PKT-SP-

CODEC-MEDIA-107-090702.pdf [Accessed: Apr. 30, 2012]

http://www.itu.int/rec/T-REC-G.191/en
http://www.itu.int/rec/T-REC-G.722/en
http://www.itu.int/rec/T-REC-G.723.1/en
http://www.itu.int/rec/T-REC-G.726/en
http://www.itu.int/rec/T-REC-G.726/en
http://www.itu.int/rec/T-REC-G.729/en
http://eeweb.poly.edu/~yao/EE3414/audio_coding.pdf
http://www.cisco.com/en/US/tech/tk652/tk698/technologies_white_paper09186a00800a8993.shtml
http://www.cisco.com/en/US/tech/tk652/tk698/technologies_white_paper09186a00800a8993.shtml
http://www.cablelabs.com/specifications/PKT-SP-CODEC-MEDIA-I07-090702.pdf
http://www.cablelabs.com/specifications/PKT-SP-CODEC-MEDIA-I07-090702.pdf

(14]

(15]

[16]

(17]

(18]

(19]

(20]

[21]

[22]

(23]

Nuntius, “Wireline Communication Solutions”, [Online], Available:

http://www.nuntius.com/solutions11.html [Accessed: Apr. 30, 2012]

Bishnu S. Atal & Nikil S. Jayant (1996), “Speech Coding”, AT&T Bell Laboratories,
Murray Hill, New Jersey, USA [Online], Available:
http://www.cslu.ogi.edu/HLTsurvey/ch10node4.html [Accessed: Apr. 22, 2012]

Nadeem Unuth, “VoiP Codecs”. [Online], Available:

http://voip.about.com/od/voipbasics/a/voipcodecs.htm [Accessed: Apr. 20, 2012]

Mathworks, Inc.,”Create MEX-Files”. [Online], Available:
http://www.mathworks.com/help/matlab/create-mex-files.html [Accessed: May. 15,
2012]

VolIP Solutions.GR, “VoiP Phones”. [Online], Available:

http://www.voipsolutions.gr/shop/index.php?category id=230&target=categories

[Accessed: Feb. 23, 2013]

“Opus Interactive Audio Codec”, [Online], Available: http://opus-codec.org/ [Accessed:

Feb. 25, 2013]
“Fax Over IP”, [Online], Available: http://www.foip.org/ [Accessed: Feb. 25, 2013]

Radio-Electronics.com, “DECT Technology Tutorial”, [Online], Available:

http://www.radio-electronics.com/info/wireless/dect/dect basics.php [Accessed:

Feb. 25, 2013]
VOCAL, “Voice over IP (VoIP)”, [Online], Available: http://www.vocal.com/voip-
software/ [Accessed: Feb. 27, 2013]

VoiceAge, “Narrowband/Wideband Speech Comparison”, [Online], Available:

http://www.voiceage.com/listening_comparison.php [Accessed: Apr. 11, 2013]

125

http://www.nuntius.com/solutions11.html
http://www.cslu.ogi.edu/HLTsurvey/ch10node4.html
http://voip.about.com/od/voipbasics/a/voipcodecs.htm
http://www.mathworks.com/help/matlab/create-mex-files.html
http://www.voipsolutions.gr/shop/index.php?category_id=230&target=categories
http://opus-codec.org/
http://www.foip.org/
http://www.radio-electronics.com/info/wireless/dect/dect_basics.php
http://www.vocal.com/voip-software/
http://www.vocal.com/voip-software/
http://www.voiceage.com/listening_comparison.php

