
ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ
ΤΜΗΜΑ ΗΛΕΚΤΡΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ ΚΑΙ ΜΗΧΑΝΙΚΩΝ

ΥΠΟΛΟΓΙΣΤΩΝ

Τομέας Επιστήμης Υποοιστών
Εραστηρίο Μικροϋποοιστών & Ψηφιακών Συστημάτν (MicroLab)

Big Data Techniques Applied on Transient Integrated
Circuit Simulations

ΔΙΠΛΩΜΑΤΙΚΗ ΕΡΓΑΣΙΑ

του

Γρηόριου Ν. Λύρα

Επιέπν: Δημήτριος Ι. Σούντρης
Επίκουρος Καηητής

Γρηόριου Ν. Λύρα

Αήνα, Ιούνιος 2013

ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ
ΤΜΗΜΑ ΗΛΕΚΤΡΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ
ΚΑΙ ΜΗΧΑΝΙΚΩΝ ΥΠΟΛΟΓΙΣΤΩΝ
Τομέας Επιστήμης Υποοιστών
Εραστηρίο Μικροϋποοιστών & Ψηφιακών
Συστημάτν (MicroLab)

Big Data Techniques Applied on Transient Integrated
Circuit Simulations

ΔΙΠΛΩΜΑΤΙΚΗ ΕΡΓΑΣΙΑ

του

Γρηόριου Ν. Λύρα

Επιέπν: Δημήτριος Ι. Σούντρης
Επίκουρος Καηητής

Εκρίηκε από την τριμεή εξεταστική επιτροπή την 20/06/2013

..
Κιαμά Πεκμεστζή

Καηητής

..
Δημήτριος Ι. Σούντρης
Επίκουρος Καηητής

..
Νεκτάριος Κοζύρης

Καηητής

Αήνα, Ιούνιος 2013.

...................................
Γρηόριος Ν. Λύρας
Διπματούος Ηεκτροόος Μηανικός και Μηανικός Υποοιστών Ε.Μ.Π.

Copyright © Γρηόριος Ν. Λύρας 2013,
Με επιφύαξη παντός δικαιώµατος. All rights reserved.

Απαορεύεται η αντιραφή, αποήκευση και διανοµή της παρούσας ερασίας, εξ οο-
κήρου ή τµήµατος αυτής, ια εµπορικό σκοπό. Επιτρέπεται η ανατύπση, αποή-
κευση και διανοµή ια σκοπό µη κερδοσκοπικό, εκπαιδευτικής ή ερευνητικής φύσης,
υπό την προϋπόεση να αναφέρεται η πηή προέευσης και να διατηρείται το παρόν
µήνυµα. Ερτήµατα που αφορούν τη ρήση της ερασίας ια κερδοσκοπικό σκοπό
πρέπει να απευύνονται προς τον συραφέα.

Οι απόψεις και τα συµπεράσµατα που περιέονται σε αυτό το έραφο εκφράζουν τον
συραφέα και δεν πρέπει να ερµηνευεί ότι αντιπροσπεύουν τις επίσηµες έσεις του
Ενικού Μετσόιου Πουτενείου.

List of Figures

2.1 Research Landscape . 9
2.2 OpenMP pragma in ngspice BSIM loading routines 12

3.1 Execution Framework . 17
3.2 Mod counter signals . 18
3.3 Execution Framework Toolchain 21
3.4 Sample netlist . 22
3.5 Sapp invocation . 23
3.6 Partitioner invocation . 24
3.7 Partitioner invocation example 24
3.8 Miner invocation . 25
3.9 Miner invocation example 25
3.10 Task Line . 25
3.11 Hello world . 26
3.12 Hypervisor invocation . 26
3.13 Hypervisor invocation example 26
3.14 sapp_commmon.h . 27
3.15 Task definition . 28
3.16 Signal definition . 29

4.1 Inputs and Outputs of a 4x4 multiplier 32
4.2 Subtractor of two signal pairs 33
4.3 Error calculation processj 34
4.4 RMSE error compared to hspice results 34
4.5 Cross platform execution times v1 35
4.6 Comparison of times of v1 against hspice 36
4.7 RMSE error compared to spectre results 38
4.8 Multiple transitions error 39
4.9 Temporal offset error . 40
4.10 Cross platform execution times v2 41
4.11 Comparison of times of v2 against Spectre 42

5

LIST OF FIGURES

4.12 Comparison of execution times of v1, v2 against hspice and
Spectre . 43

4.13 Comparison of execution times of v1, v2 44

Grigorios N. Lyras Page 6 of 78

Abstract
In the recent years, one can observe a shift in the software design principles.
Earlier practices focused on the optimization of signle-thread execution. In
an era where anyone has multicore systems at their disposal this approach
is limiting. Therefore there is a need for flexible and scalable techniques
for parallel application development. This project attempts to attack this
issue with the use of a versatile development framework. This principle has
been verified on the field of transient integrated circuit simulations.
Digital circuits are an integral part of modern world. Ever since the begin-
ning of digital circuit design there has been a need for accurate simulation
and verification. This need generated a family of software tools known
as SPICE applications. The constant increase of the number of devices
per silicon die has pushed this family of applications to the limit. The
increasing device inventory of the simulated circuits is also pushing system
memory and CPU times to their limit. Especially in systems with a unified
memory hierarchy, the extreme demands in main memory causes transient
simulations to halt due to bad allocation errors.
The proposed approach redirects this memory load incrementally to the
file system. By partitioning the initial simulation to multiple substantially
smaller ones we manage to decrease the amount of memory requested dur-
ing each simulation.

Περίηψη
Τα τεευταία ρόνια, μπορεί κανείς να παρατηρήσει μια στροφή στις αρές
του σεδιασμού οισμικού. Παιότερες πρακτικές εστιάζουν στη ετιστο-
ποίηση της εκτέεσης ενός νήματος. Σε μια εποή όπου ο καένας έει στη
διάεσή του συστήματα ποαπών πυρήνν, η προσέιση αυτή είναι πε-
ριοριστική. Ως εκ τούτου, υπάρει ανάκη ια ευέικτες και κιμακούμενες
τενικές ια την ανάπτυξη παράην εφαρμοών. Το έρο αυτό, επιειρή
να αντιμετπίσει αυτο το έμα με τη ρήση ενός ευέικτου παισίου ανάπτυ-
ξης εφαρμοών. Η αρή αυτή έει επαηευτεί στον τομέα της προσομοίσης
οοκηρμένν κυκμάτν.
Τα ψηφιακά κυκώματα αποτεούν αναπόσπαστο μέρος του σύρονου κό-
σμου. Από τις απαρές της σεδίασης ψηφιακών κυκμάτν υπάρει έντονη
ανάκη ια ακριή προσομοίση και επαήευση. Αυτή η ανάκη δημιούρ-
ησε μια οικοένεια εφαρμοών νστές ς εφαρμοές SPICE. Η συνεής
αύξηση του αριμού τν συσκευών ανά τσιπ πυριτίου έει ήσει αυτή την
οικοένεια προραμματιστικών εραείν στα όρια. Η αυξητική αυτή τάση
στο μέεος τν προσομοιούμενν κυκμάτν πιέζει τα υποοιστικά συ-
στήματα που εκτεούν τις προσομοιώσεις, τόσο στο επίπεδο της μνήμης όσο
και στο επίπεδο ρόνν εκτέεσης, στα όριά τους. Ειδικά σε συστήματα με
ενιαία ιεραρεία μνήμης, οι ακραίες απαιτήσεις στην κύρια μνήμη, σταματούν
προσομοιώσεις ό ανεπάρκειας μνήμης.
Η προτεινόμενη προσέιση ανακατευύνει αυτό το φορτίο σταδιακά στο σύ-
στημα αρείν. Καταμερίζοντας την αρική προσομοίση σε ποαπά ση-
μαντικά μικρότερα τμήματα, καταφέρνουμε να μειώσουμε την ποσότητα απαι-
τούμενης μνήμης κατά τη διάρκεια κάε προσομοίσης.

Acknowledgements

The work described in the present thesis has been carried out at the Micro-
processors Laboratory and Digital Systems Lab of the School of Electrical
and Computer Engineering of NTUA, where I conducted my thesis project,
under the supervision of Prof. D.J. Soudris and Dr. D. Rodopoulos.
I am extremely grateful to both of them for their guidance, support and
enthusiasm at all stages of this project. I would like to thank them for
giving me the opportunity to discover the challenging world of SPICE sim-
ulations and Parallel implementations and for all, very generously, they
taught me. Their positive attitude and their invaluable advice, whenever
I needed it, along with their trust and the freedom they provided me work
independently, are very much appreciated.
I would like to thank Dr. Antonis Papanikolaou for his precious work during
this work. I thank him for his constant support and innovative ideas he
contributed to this project. His experience, guidance and realistic point of
view were of great importance to the development of this project.
My special thanks to all my friends in Athens, who contributed in making
this story a really worth telling one, Thank you all for the moments we
shared, everything we learnt, the fun we had, for being there when needed
and for "bringing me back to life" when the work was dragging me down
and also the one that gave me that little red book, and all the support they
gave me.
Last but not least, I wish to thank my family. The completion of this work
wouldn't be possible without their endless love and support. There are no
words to express my gratitude... This thesis is dedicated to them.

Γρηόρης Λύρας

3

Contents

1 Introduction 6

2 Research Landscape 8
2.1 Introduction . 8
2.2 State of the Art . 9

2.2.1 SPICE in general . 10
2.2.2 SPICE in Specific Hardware 10
2.2.3 SPICE in Generic Hardware 11
2.2.4 Industry Standard Tools 13

2.3 Motivation . 14
2.3.1 SPICE in Variability Simulation 14
2.3.2 SPICE in Time-Dependant Verification 14
2.3.3 Summary . 15

3 Data Partitioning SPICE 16
3.1 Introduction . 16
3.2 Principles . 17

3.2.1 Theoretics . 17
3.3 Implementation . 20

3.3.1 User Manual . 20
3.3.2 References to Source Code 26

4 Benchmarks & Results 30
4.1 Introduction . 30
4.2 Simulation Description . 30
4.3 Results . 31

4.3.1 First Benchmarking Session 33
4.3.2 Second Benchmarking Session 36
4.3.3 Results . 37

5 Conclusions & Future Work 45

4

CONTENTS

5.1 Conclusions . 45
5.2 Future Work . 46

Bibliography 48

6 Appendix 50
A: DATE 2013 Preprint . 50
B: Source Code . 57

Grigorios N. Lyras Page 5 of 78

Chapter 1

Introduction

During our time we have witnessed radical changes in the computing world.
In the past decade the processing model has gradually evolved from single-
thread execution to multithreaded execution and to massively parallel ex-
ecution. Nowadays, everyday computing is handled by multiple processing
nodes. Even smartphones have multiple asymmetric cores. Thus it can
be understood that we need frameworks with great versatility that can
adapt and port easily applications in various contexts. There is a constant
need for tools that will be able to harness the new processing potential as
materialized in multi- and many-core platforms.

One field that can greatly benefit from the multi and many core architec-
tures is the field of Electronic Design Automation (EDA) and especially
transient integrated circuit (IC) simulations. With the integration level
race constantly increasing the devices per silicon dye circuit simulations
become more complex and consume a lot more CPU time and system mem-
ory, thus increasing the development cost in multiple levels.

Another reason for resource hungry circuit simulations comes as an indirect
result of aggressively decreased device feature sizes. With devices reaching
lengths at the decananometer order, they also display

a stochastic behaviour. Thus designers need to be able to perform a more
comprehensive circuit verification. This is usually achieved by Monte Carlo
simulations for time zero device variability and through extensive simula-
tions over large workloads for time dependent phenomena. As a result, it is
highly desirable to explore the potential of High Performance Computing
techniques (e.g. for big data) on the field of EDA applications, such as
transient IC simulations.

6

CHAPTER 1. INTRODUCTION

When we refer to circuit simulations we refer to SPICE applications. There
have been attempts to optimise SPICE ever since it was introduced. Novel
ideas such as mapping SPICE on custom hardware, such as Field Pro-
grammable Gate Arrays (FPGAs) or Graphics Processing Units (GPUs)
have been explored, each with its advantages and disadvantages. Open
source tools as well as enterprise solutions attempt to improve SPICE per-
formance with the use of multiple threads of execution over a common
memory hierarchy. However such approaches cannot overcome the mem-
ory wall imposed by the executing system.
In the context of this thesis we propose a framework that can provide
a solution to the above problem through partitioning techniques. Since
design houses don't have the source code of the commercial tools they use,
the framework should remain agnostic with regard to the processing kernel
per simulation using the black box paradigm. Instead of running a long
massive simulation we propose the execution of multiple smaller ones and
forwarding the signals among the simulations. The framework is able to
handle multiple simulations and execute them in parallel using a graph of
dependencies to determine when the simulations can be executed. Apart
from the partitioning in the circuit axis, later referred to as Node Tearing,
we propose temporal partitioning, referred to as Workload Tearing . The
latter enables even greater parallelism provided the circuit at hand can be
simulated in such a manner.
During our experiments we compared our results with two state of the art
commercial tools, hspice by Synopsys and spectre by Cadence. For our
simulations we used the open source ngspice. The runtime environment
consisted of three different platforms, an Intel Xeon X3470 powered server,
the Single Chip Cloud Computer prototype by Intel Labs and a virtual
machine hosted on okeanos cloud service by GRNET. We conducted two
benchmarking sessions using a multiplier as the circuit to be simulated.
During the first benchmarking session we managed to overcome the mem-
ory wall imposed by the executing system and we verified the accuracy of
the framework. In the second benchmarking session we improved the per-
formance of the framework using more advanced partitioning techniques.
In conclusion we managed to overcome the limitations imposed by the
runtime system. The framework we propose can produce accurate results
for circuits far larger than the industry standard tools used, with significant
speedups. A subset of this work has been accepted in the proceedings of the
Design Automation and Testing in Europe Conference, held in Grenoble,
France. A preprint of the respective paper can be found in Appendix A.

Grigorios N. Lyras Page 7 of 78

Chapter 2

Research Landscape

2.1 Introduction

In this chapter of the thesis we present the current landscape and the
research areas regarding optimisations in SPICE applications. In order
to achieve this we use the graph shown in Figure 2.1. This graph shows
binary splits of the field of study. Each path in the tree structure above,
describes a series of design choices one has to make when optimising SPICE
applications.

As shown in Figure 2.1 we can divide the field based on the hardware type
used, the level of the performed optimisations and the memory hierarchy.
Regarding the level of the performed optimisations, we use the term In
Source to designate optimisations that take place in the application source
and the term Source Agnostic for optimisations that take place without
interacting with the SPICE Application source code. Each category is a
binary split of it's parent and the both siblings are complementary. For
each leaf we have a path from the root to the leaf that designates the
design choices made. For example if one chooses the last leaf on the right
the path would be Generic Hardware->Source Agnostic->Distributed
Memory, describing the equivalent design choices in the development of
their application.

8

CHAPTER 2. RESEARCH LANDSCAPE

..
SP

IC
E
A
pp
lic
at
io
ns

O
pt
im
isa

tio
ns

.

Sp
ec
ifi
c
H
ar
dw

ar
e

.

G
en
er
ic
H
ar
dw

ar
e

.

In
So
ur
ce

.

Co
m
m
on

M
em

or
y

.

D
ist
rib

ut
ed

M
em

or
y

.

So
ur
ce

A
gn
os
tic

.

Co
m
m
on

M
em

or
y

.

D
ist
rib

ut
ed

M
em

or
y

Figure 2.1: Research Landscape

2.2 State of the Art

The need for viable transient circuit simulations has played a significant
role in shaping the progress of the EDA industry. This is apparent if one
considers the number of EDA tools developed. An area where a lot of
work has been delivered is integrated circuits (IC) simulation. For the IC

Grigorios N. Lyras Page 9 of 78

CHAPTER 2. RESEARCH LANDSCAPE

domain, the tools that have been produced belong to a family of software
tools known as SPICE applications.
The "original" SPICE was developed at the Electronics Research Labora-
tory of the University of California, Berkeley by Laurence Nagel [12]. It
changed the skyline of the circuit design world and many research teams
started working on derivatives of this work. A lot of work was put in
improving the performance of the initial approach with the use of new nu-
merical methods and more efficient code [11]. Compiler optimisations and
smarter computer architectures combined with the increasing clock speeds
of CPUs provided the EDA industry with enough processing power for the
increasing simulation demands. However this approach has reached a sat-
uration point, since CPU frequencies are no longer increasing at the same
rate, in comparison to previous years. This leads to the conclusion that
we need to explore other means in order to make the ever demanding IC
simulations viable for the years to come.
Producing results faster and with less resource consumption along with
exploiting parallel architectures are goals well set in the HiPEAC roadmap
for the next 10 years [16, 3].

2.2.1 SPICE in general

Since it's first release in 1973 SPICE derivatives have reached a significant
level of maturity. The past decade has shown that single thread execution
has it's limits. Thus there is a need for SPICE to evolve to the next level.
Mapping SPICE to parallel architectures is a multidisciplinary problem and
there are quite a few attempts each with advantages and disadvantages.

2.2.2 SPICE in Specific Hardware

One of the software design constraints when developing SPICE is the run-
ning platform. Running SPICE on specialized hardware can provide sig-
nificant speedups. A fine example of this concept is an implementation
of SPICE running on Field Programmable Gate Arrays (FPGAs) [6]. This
implementation parallelized the different tasks of the SPICE simulator giv-
ing maximum speedup up to eleven (×11). The idea was to map each of the
three demanding tasks to a separate solver. So SPICE was broken down
to the Iteration Controller, Model Evaluation and Sparse Matrix Solver
components that could run independently. However due to the limitations

Grigorios N. Lyras Page 10 of 78

CHAPTER 2. RESEARCH LANDSCAPE

of the hardware it could produce results of up to thirty thousand (30000)
transistors.
Another attempt to run SPICE in specific hardware took advantage of the
processing potential of NVIDIA GPUs as described in [5].
In this project the developers mapped device model evaluation to the
GPU cores enabling parallelism at a device level. However it required sig-
nificant effort in order to rewrite the kernels for the CUDA architecture.
The speedup achieved by this approach was around three (3) with simula-
tion capacity of about eight thousand (8000) transistors.
A few years later OmegaSim was introduced, based on this approach. It
was a massively parallel commercial SPICE implementation, designed to
run on GPUs by Nascentric. The product was based on the NVIDIA's Tesla
hardware platform and claimed that "Using NVIDIA's Tesla platform we
can perform circuit simulations in minutes to hours that would previously
have taken hours, days and weeks," [1]. The company is now defunct and
assets have been purchased by a customer [13].
These implementations hold significant results and insight on the steps that
can be taken to parallelize SPICE using this kind of hardware. Using hard-
ware specially designed for the task at hand can give tremendous speeds
at the cost of performing platform-specific alterations to the applications,
in order to enable efficient mapping. This can be interpreted both as cost
of configuring and maintaining the hardware as well as the cost of porting
the software from one platform to another which can be a task of signifi-
cant effort. On the other hand, working with generic hardware allows great
versatility and portability which seem to be key concepts for application
design.

2.2.3 SPICE in Generic Hardware

When one wants to parallelize SPICE for generic hardware it's common
to work in the SPICE source. This enables the developers to have fine-
grained control over the exact structures to run in parallel. Ngspice has
a series of OpenMP pragmas for this exact purpose as shown in Figure
2.2. Commercial products have also provided this functionality which can
take advantage of the multiple cores of the running platform. That way
the developers improve the application speed without compromising its
versatility. Moreover, using industry standard architectures and setups,
the end users can run the SPICE application of their preference on the

Grigorios N. Lyras Page 11 of 78

CHAPTER 2. RESEARCH LANDSCAPE

1 #pragma omp parallel for num_threads(nthreads) private(here)
2 for (idx = 0; idx < model->BSIM4InstCount; idx++) {
3 here = InstArray[idx];
4 good = BSIM4LoadOMP(here, ckt);
5 }

Figure 2.2: OpenMP pragma in ngspice BSIM loading routines

hardware they already own.
This approach seems to apply on the new multiprocessor context towards
which the computer systems market has shifted [4, 3, 16, 7]. This assumes
that the runtime environment has enough resources to finalise the simu-
lation at hand. However this is not always the case. In unified memory
hierarchies the requests for memory allocation consume a common resource.
Thus many researchers and circuit designers may reach the memory wall,
when running transient simulations with many devices and using complex
device models. In order to solve this problem many design houses invest
large amounts of money for computer systems with massive resources [10].
Another angle to attack this issue would be to design the SPICE appli-
cation on a multiple machine context. This would mean that one would
use a Message Passing Interface (MPI) framework over a computer cluster
context or a grid.
The aforementioned approaches require a lot of development time, specif-
ically for each runtime system in order to achieve optimality. This means
that one has a solid understanding of the target platform and can work on
the source code of the SPICE application. But when EDA software com-
panies sell their products they obviously don't release the relative source
code. The design houses rely on the EDA software companies. Features of
a computer system such as cache size and memory size vary greatly among
processors even if they belong in the same family (x86,x86_64). Thus it is
an extremely difficult task to build software that runs optimally on a range
of platforms even if this range is restricted by the underlying architectures.
So relying on the EDA software companies cannot always produce optimal
results since the tools provided are not flexible enough. From the above
observations, it is highly pragmatic to treat SPICE applications as black
boxes.
The monolithic black box paradigm doesn't provide the end users with
the required flexibility one would need from an EDA tool. So instead of
attempting to parallelize the EDA tool by performing alterations in its code
base, we can treat it as a black box and perform development on top of

Grigorios N. Lyras Page 12 of 78

CHAPTER 2. RESEARCH LANDSCAPE

an existing SPICE executable. Running multiple smaller instances of the
monolithic simulator, while breaking the initial simulation into multiple
smaller ones, we can execute the partial simulations independently. That
way we are able to parallelize an application without really knowing how
it operates internally.

2.2.4 Industry Standard Tools
The work of this thesis is going to be compared to industry standard SPICE
applications. Parallel implementation of SPICE is not a new idea. Sig-
nificant work has been done on part of the EDA industry. Many leading
companies in the field have put effort into building parallel versions of their
software. Two products that have such capabilities are hspice by Synop-
sys and spectre by Cadence. In the context of this thesis we used those
commercial tools in order to have an objective and realistic estimation of
the correctness and the computational viability of our proposal.

Spectre features

Specte is a Circuit Simulator software developed by Cadence. It claims
to provide improved capacity over other simulators due to effective conver-
gence algorithms for large circuits. Dynamic memory allocation, according
to the manual, allows the Spectre circuit simulator to use less than half as
much memory as SPICE for large circuits. The developers also claim that
it runs two to three and two to five times faster than SPICE for small and
large circuits respectively. Models and accuracy are also improved.

HSpice features

HSpice is a Circuit Simulator by Synopsys. It claims to be a performance
leader in the field on both single and multi core computers. It features a
client-server model that boosts the performance and improved integration.
A significant speedup for large netlists is also claimed.

Summary

Both of those tools are well known and industry standard. They enable the
utilisation of threads and numerical methods to exploit the capabilities of

Grigorios N. Lyras Page 13 of 78

CHAPTER 2. RESEARCH LANDSCAPE

the multi core architectures available in modern processing environments.
For our implementation we used the open source alternative ngspice and
compared the results and resource consumption with the commercial tools.

2.3 Motivation

2.3.1 SPICE in Variability Simulation

The past 10 years in digital circuit design have been a race on the inte-
gration levels and the number of transistors per silicon die. This trend
has led manufacturers to very high integration levels up to a point. Latest
technology has reached a significant bounding factor, device variability.
In other words the smaller the gate lengths of the transistors, the more
they exhibit a stochastic behaviour [15]. The greater the integration factor
of a circuit the greater the variability it presents. Thus there is a need
for variability verification for very large circuits [14]. This has lead to the
conception of a new field where circuit simulation can provide insight, that
of Device Variability.
In order to verify the behaviour of a circuit, designers often have to resort
to extensive simulations. Particularly for time zero device variability, engi-
neers often have to resort to Monte Carlo simulations which are immensely
intensive [9]. This methodology involves iteration of the same simulation,
while sampling various random variables that represent the degrees of cir-
cuit variability. The pool of statistical samples has to be large enough
to cover all of the n-stochastic-variable space. These simulations are very
intense with regard to computational power and also have great need for
system memory due to the size of the circuits.

2.3.2 SPICE in Time-Dependant Verification

In circuit design it is often necessary to study phenomena that evolve in
the axis of time. This requires very long transient simulations. Such simu-
lations require large amount of computational power in order to complete
and are often brought to a halt due to insufficient resources. This kind of
Time-Dependent Verification in circuit simulations requires viable simula-
tions over extensive workloads.

Grigorios N. Lyras Page 14 of 78

CHAPTER 2. RESEARCH LANDSCAPE

As stated in [15] digital circuits behaviour varies, not only at time zero
(immediately after manufacturing), but also as the lifetime of circuit pro-
gresses. As argued in [14], in order to account for workload dependent
circuit variability, engineers need to perform transient simulations of long
workloads. These simulations require large amounts of time and computa-
tional resources.

2.3.3 Summary
In the context of this thesis, we claim that we can benefit greatly by provid-
ing viable and relatively fast SPICE simulations. As circuits continuously
grow to larger inventories it is understood that simulations require contin-
uously greater amounts of resources. The memory wall is a bound that we
need to overcome in order to be prepared for the circuits to be simulated
for the years to come. Both Variability Verification and the study of Time-
Dependant phenomena provide a target group that requires simulations
that evolve over a large range of time for large circuits. Thus we conclude
that researchers, designers and developers in these fields can greatly benefit
from faster and less resource hungry simulations.

Grigorios N. Lyras Page 15 of 78

Chapter 3

Data Partitioning SPICE

3.1 Introduction

In our implementation we used a series of techniques that are applied when
handling big data, data partitioning in particular. This chapter describes
the tools and techniques we used to apply the data partitioning principles
in circuits simulations.

The phases of data partitioning consist of the Domain Decomposition, a
process when the data is split into subsets, the Execution, when the appli-
cation runs performing the actual calculation, and the Data Recollection
when the distributed data is recollected and reconciled in order to produce
the final results.

The suggested framework consists of an input signal partitioner, a generic
hypervisor, a SPICE kernel wrapper and a data miner. This set of
tools enables the handling of workload tearing, task dependencies, output
forwarding and data mining. An abstract visualisation of the framework is
shown in Figure 3.1.

16

CHAPTER 3. DATA PARTITIONING SPICE
N

o
d

e
 T

e
a

ri
n

g

Workload Tearing

(1,1)

(2,1)

(N,1)

...

...

...

(1,2)

(N,2)

(1,M)

(N,M)

H
y
p

e
rv

is
o

r

(2,M)...(2,2)

...

M
u

lt
ic

o
re

 P
la

tf
o

rm

S
u

b
c

ir
c

u
it

 D
o

m
a

in

Time Slice Domain

2D Set of intermediate SPICE

Simulations

Subcircuit Interdependencies

Extensive Input

Large

Netlist

Primitive Output
D

a
ta

M
in

e
r

Figure 3.1: Execution Framework

3.2 Principles

3.2.1 Theoretics
The leading principle behind this project is data partitioning. We apply
two concepts of partitioning, on the time axis which will be further referred
to as workload tearing and on the circuit level which will be referred to as
node tearing.

Workload Tearing

Workload Tearing consists of breaking the input signals on appropriate
time slices. One of the challenges was to identify those time slices, and
the overall timeslice duration. Input signals are in the form of PieceWise
Linear (PWL) sources described in text files. This form is easily parsed
and can be used directly as input following specific naming conventions
described in the next section.

Grigorios N. Lyras Page 17 of 78

CHAPTER 3. DATA PARTITIONING SPICE

For slicing the input signals we used two methods. For the first version
we generated PWL signals that had a specific form. The pulses were in a
regular pattern and each pulse contained four points as shown in Figure 3.2.
When the input signals have this form, one can easily partition the signals
with the use of a mod counter every four points and generate the partitioned
output signals. However, in the general case that may not be applicable.
Input signals might not be that regular due to the characteristics of the
simulation at hand. Thus a new more advanced partitioning scheme needs
to be applied.

 0

 0.2

 0.4

 0.6

 0.8

 1

0 5e-09 1e-08 1.5e-08 2e-08 2.5e-08 3e-08 3.5e-08 4e-08

V
o
lt
a
g
e
 (

V
o
lt
)

Time (sec)

Regular signal

Figure 3.2: Mod counter signals

In order to tear the input signals we need to specify timeslice durations
which will be used for the partitioning proceed. Each timeslice has to
contain whole pulses of the input signals meaning that there has to be
a minimum amount of time after a transition otherwise the accuracy of
the simulation will be compromised. In order to achieve that we use a
simple but effective method. Since we only perform digital simulations we
can safely partition in times where all signals are constant and in a stable
state. By stable state, we define one of the two states: logical 0 or logical
1. This way all the transitions will be contained in the partitioned signals.

Grigorios N. Lyras Page 18 of 78

CHAPTER 3. DATA PARTITIONING SPICE

Additionally we define a minimum time after each transition. We identify
the regions where all signals are constant simultaneously and we perform
the slicing at these parts.
One should note that we are dealing with digital signals. In case of analog
signals that are not latched to constant voltage levels, one would have
to interact with the DC operating point solver of SPICE. This task falls
beyond the current thesis.

Node tearing

Node tearing is a well-established technique and many approaches have
targeted efficient implementations. In the context of this thesis, we do
not elaborate on efficient node tearing algorithms but exploit the modular
syntax of a SPICE netlist with a specific subcircuit that is replicated. This
requires the user to define the components of the circuit at hand and the
dependencies amongst them. After this analysis is complete then the end
user can easily compose the configuration file that will be parsed by the
hypervisor of the framework. This file will describe all the requested input
files and all the output files for the simulations along with the dependencies.
The user has to follow the same naming conventions described in the next
section.

Signal filtering

When performing digital simulations we comprehend that we don't need
multiple points when the signal is in a stable state. Where stable state
is defined by the logical 0 and 1 values. SPICE uses adaptive step sizing
to stride over such intervals. So while a signal is in one region or the
other we only need two points to identify its value, since it's essentially
constant. However, the adaptive step sizing, as implemented in ngspice, is
highly suboptimal and produces many points. As a result, signal filtering
is required, in order to avoid storage of useless time,voltage points between
intermediate simulations.
Keeping the above in mind we can devise a filtering function that replaces
all the points in a constant signal region with only two points. This will
apply only in the logical 0 and logical 1 states of the signal while leaving the
intermediate points intact. This procedure can greatly decrease the signal
size. In some cases even an order of magnitude, with no observable loss in
data. That we can greatly reduce the number of points kept in the signals

Grigorios N. Lyras Page 19 of 78

CHAPTER 3. DATA PARTITIONING SPICE

and thus improving performance and reducing the memory footprint of the
output PWL files of each simulation.
While having this piece of information we can apply an even more crude
filtering method if it proves crucial to increase drastically the performance.
If in our simulation we claim that we do not care about any intermediate
points, we can simply ignore them and perform filtering based on that
assumption. This will ensure the preservation of transition information for
digital simulations while minimising the signals' size.

Execution Grid

Instead of task oriented parallelization we implement a data oriented paral-
lel framework. The two axis of partitioning, Workload Tearing and Node
Tearing constitute a 2-D space of simulations as shown in Figure 3.1. These
simulations will be handled by the framework and run on the given plat-
form.

3.3 Implementation
In Figure 3.3 we observe the set of tools implemented, namely the hypervi-
sor (hyper), the main execution kernel (sapp), the partitioner (party) and
the data miner (aspirin). The figure also shows the workflow in order to
use the framework. The process is rather simple. Initially one has to parti-
tion the input signals with the use of party. Afterwards one will generate
the execution graph and spawn hyper. Hyper will parse the execution
graph and spawn as many instances of sapp are needed to complete the
simulation. Finally the user will spawn aspirin in order to reconcile the
output signals.

3.3.1 User Manual
Netlist generation

The netlist generation process is simple. The user has to define the circuit
as a number of independent components that can be simulated separately.
These subcircuits have a number of inputs and outputs. These have to
be enumerated in order to be substituted properly by the forwarded input
signals.

Grigorios N. Lyras Page 20 of 78

CHAPTER 3. DATA PARTITIONING SPICE
N

od
e

T
ea

rin
g

Party

(1,1)

(2,1)

(N,1)

...

...

...

(1,2)

(N,2)

(1,M)

(N,M)

H
yp

er(2,M)...(2,2)

...

M
ul

tic
or

e
P

la
tfo

rm

S
u

b
ci

rc
u

it
 D

o
m

ai
n

Time Slice Domain

2D set of Sapp instances

Execution Graph

Initial input files

Large
Netlist

Output files
A

sp
ir

in

Figure 3.3: Execution Framework Toolchain

The inputs will be handled by the wrapper provided that the netlist of the
subsircuit uses a simple naming convention. The names of the input signals
in the netlist wiring instantiation need to be in the form "inX" where X
is the number of the input starting from 0. What's more, in the same
netlist there need to be a series of include lines in the format ".include
INPUT%03d".
The simulation duration can either be constant and common for all times-
lices or be different due to custom partitioning. If the first is the case, then
the user must ensure that the runtime folder does not contain a timeslice
log file. The timeslice log file is named always "tslices.log" so it is easy to
recognise and remove if necessary.
In the case of custom timeslice duration the timeslice log file is of utmost
importance. This special file is part of the framework's partitioning mech-
anism and provides the start times and durations for each of the timeslices.
This file has always the same name "tslices.log" and should be handled
with care. It is in essence a two column data file in the format "<start
time> <duration>". In the general case this file should be generated by
the partitioner and used by the wrapper and the miner. When this file

Grigorios N. Lyras Page 21 of 78

CHAPTER 3. DATA PARTITIONING SPICE

is present in the directory running the simulation, the wrapper reads it's
contents and replaces the ".tran" line in the netlist filling in the proper
duration for each execution. So one should be careful not to delete it by
mistake since the wrapper as it is at the moment will simply ignore the
duration parameters leading to possibly erroneous results.

Output handling follows a similar approach to the input signal handling.
The ".print" line in the netlist needs to hold the signals to be forwarded
to the next simulation before any other signals of interest. These do not
need to follow a specific naming convention but the same numbering as in
inputs should be applied to avoid confusion. Below (Figure 3.4) is a sample
netlist following the aforementioned conventions.

1 ** A 2 x 2 multiplier based on the FA* module **
2

3 ** Subcircuits & Modelcards **
4 .include modelcard.nmos
5 .include modelcard.pmos
6 .include subcircuits.cir
7

8 ** DC Sources **
9 Vvdd vdd 0 1.0
10 Vvss vss 0 0
11

12 ** Multiplier Instantiation (per FA* Module) **
13 X0 vdd vss vss in0 in2 vss product0 wire0 module
14 X1 vdd vss vss in1 in2 wire0 wire1 wire2 module
15 X2 vdd vss wire1 in0 in3 vss product1 wire3 module
16 X3 vdd vss wire2 in1 in3 wire3 product2 product3 module
17

18 ** Inputs **
19 .include INPUT001
20 .include INPUT003
21 .include INPUT002
22 .include INPUT004
23

24 **Simulation Definition **
25 .tran 800.000000ns 800.000000ns
26

27 ** Output File Definition **
28 .print tran v(product0) v(product1) v(product2) v(product3) i(Vvdd) i(Vvss)

Figure 3.4: Sample netlist

Grigorios N. Lyras Page 22 of 78

CHAPTER 3. DATA PARTITIONING SPICE

Wrapper (Sapp)

The wrapper we used for ngspice is a pure ANSI C tool that was developed
for this project. Its role is to prepare and execute an ngspice simulation and
harvest the outputs. Sapp (the wrapper name) is statically linked against
the microsig signal library developed for this project. As it can be seen
in Figure 3.5, sapp parses all the information it needs as command line
arguments. It copies the contents of the input files to its private namespace
as designated by the timeslice id and circuit id and generates the PWL
signals that will be used for the particular simulation. It also copies the
netlist module and then inserts the PWL input filenames in its personal
netlist module. If a timeslice log file is available it reads it and inserts the
appropriate ".tran" line in its netlist. Otherwise it ignores this step.
At this point the simulation is ready to start. So it is executed with the
use of the system command. If the simulation finishes successfully the
wrapper is going to parse the simulation output. While in this step the
wrapper will also apply a simple 0-1 high-Z filter on the output signals in
order to decrease its size. Afterwards it writes each output as designated
by the command line arguments <output 1> <output 2> and so on. After
that step the wrapper will delete all intermediate results from the folder to
save space. If the simulation finishes with an error status code the wrapper
will not try to parse the erroneous output nor delete the files to enable
debugging.

sapp <timeslice id> <circuit id> <number of inputs> <input 1> <input 2>
.. <number of outputs> <output 1> <output 2> .. <netlist module>

Figure 3.5: Sapp invocation

Input signals generation

The input signals are initially waveforms represented in the PWL format.
This is a well known format used by all typical SPICE applications and is
used to great extent. Signals in PWL format are relatively easy to parse
and generate. The framework can effectively use any set of signals already
generated for simulations and does not require any specific handling. When
the initial signals are prepared all the end user has to do is invoke the
partitioner with the PWL files.
The partitioner is a simple tool written in C using the microsig library
which was developed for this project. The partitioning process for the

Grigorios N. Lyras Page 23 of 78

CHAPTER 3. DATA PARTITIONING SPICE

user is as simple as running one shell command (Figure 3.6). Beware of
the double quotes " in the command. It is important to add the quotes
so that the shell will not expand *.in to all the files in the folder. It is
often needed to partition a large number of files and passing them all as
command line arguments is impractical. The file pattern is used instead
and the partitioner searches the current directory for all the files that
satisfy the pattern.
For example if we use the command in Figure 3.7 the partitioner will
search the current directory for all the files that have the suffix ".in". Thus
files such as "a0.in", "a1.in" and so on will be partitioned in at most 10
timeslices. Due to the partitioning theory limitations at the moment, the
partitioner might be unable to provide the requested timeslices. However
it will attempt to provide as many as possible. For reasonable slicing the
process will provide the requested number of slices.
It is important to note that the initial files are not erased written over or
otherwise tampered with. The partitioner will use the filename as a base
and create a series of files in the format "%04d_base.prty". This ensures
that no matter what the initial files are the output files will not overwrite
or corrupt the input. The output files are simple two column raw signals
that are handled in the runtime by the wrapper.

partitioner <requested timeslices> "<input file pattern>"

Figure 3.6: Partitioner invocation

partitioner 10 "*in"

Figure 3.7: Partitioner invocation example

Data mining - Output signals recollection

When the simulation is complete multiple output files will be generated.
For every signal there will be n output files containing part of the full output
where n is the number of timeslices. These output files will be zero aligned
and have to be collected in order to produce the complete output signal. In
order to achieve this we created a miner that takes into consideration the
number of timeslices the timeslice log in order to generate the final signal.
As shown in Figure 3.8 the miner also takes the signal base name as input.
The output signals are named in a specific manner with the timeslice index
as a prefix (000_<base name>, 0002_<base name>..). Thus the miner

Grigorios N. Lyras Page 24 of 78

CHAPTER 3. DATA PARTITIONING SPICE

will gather all the signals that have the same <base name> as a suffix and
merge them to create the final output. In Figure 3.9 we call the miner for
10 timeslices using the file tslices.log to collect all the 01_vsout bit signals.

miner <slices> <timeslice log> <base name>

Figure 3.8: Miner invocation

miner 10 tslices.log 01_vsout

Figure 3.9: Miner invocation example

Task graph generation

One of the most complex tasks one has to complete in order to use the
framework is the task graph generation. This constitutes the core of the
implementation. The task graph will be parsed by the hypervisor and
provide all the information that is needed to run the entire simulation.
The execution graph or task graph is a text file. The first line contains
the program to be executed, which in our case is the ngspice distribution
installed in the executing platform. Each of the following lines contain
a task. A task line is as shown in Figure 3.10. The arguments are the
command arguments that will be passed to the executing program. For
example we can have an execution graph as shown in Figure 3.11. The hy-
pervisor understands that the task WORLD depends on the task HELLO.
In that context it will execute "/bin/echo Hello" which will print "Hello"
and afterwards it will execute "/bin/echo world" so in the end it will print
"Hello world".
<task name> <number of dependencies> <dep 1> <dep 2> .. <arguments>

Figure 3.10: Task Line

Hypervisor

The hypervisor, as shown in the task graph generation process, is a com-
pletely agnostic tool with regard to what it is running. The hypervisor
runs only one program, the one specified on the first line in the configura-
tion file. This design choice may seem a bit rigid but allows great flexibility.
The invocation process is again simple. As shown in Figure 3.12 the only

Grigorios N. Lyras Page 25 of 78

CHAPTER 3. DATA PARTITIONING SPICE

/bin/echo
HELLO 0 hello
WORLD 1 HELLO world

Figure 3.11: Hello world

options needed are the execution nodes available and the task graph that
was created beforehand. The example in 3.13 shows the command that we
used to run the hypervisor for 48 execution nodes (the SCC).
When the hypervisor parses the file it creates multiple tree structures in
the system memory representing the dependencies. All roots are available
to be executed since they have no dependencies. Each available task can be
executed as long as there are resources (execution nodes) available. When
the task completes the resource is released and another task can be executed
on that node. This is practically implemented with the abuse of the return
values when the processes die. The scheduling algorithm is a simple first
come first served algorithm using dual ended queues. Prioritisation could
be handled if instead of queues we would have heaps but that is left as
future work.
hyper <available execution nodes> <input file>

Figure 3.12: Hypervisor invocation

hyper 48 executionGraph

Figure 3.13: Hypervisor invocation example

3.3.2 References to Source Code
Wrapper (sapp)

Sapp is a C application used to prepare and run an ngspice kernel and
afterwards break the ngspice output file to simple two column files per out-
put bit. It uses the microsig library developed in the context of this thesis.
The source code contains a properly written Makefile for it's compilation.
It uses two macros in order to specify the command to be run. When
compiling with the RUN_ON_SCC macro defined, the ngspice command
is the ngspice compiled for the SCC in a path the SCC can read. This
can be extended with the use of multiple RUN_ON directives and equiv-
alent NGSPICE_CMD_LINE macros. The macros are defined in the file

Grigorios N. Lyras Page 26 of 78

CHAPTER 3. DATA PARTITIONING SPICE

"sapp_common.h" and the specific part regarding the command executed
is shown in Figure 3.14.
#ifndef NGSPICE_CMD_LINE
#if RUN_ON_MITSOS
#define NGSPICE_CMD_LINE "/shared/master/bin/ngspice -b %s 2> %04d_%05d.log > %04d_%05d.out"
#elif RUN_ON_SCC
#define NGSPICE_CMD_LINE "/shared/master/bin/ngspice -b %s 2> %04d_%05d.log > %04d_%05d.out"
#endif /* where do you want to run */
#endif /* NGSPICE_CMD_LINE */

Figure 3.14: sapp_commmon.h

Hypervisor (hyper)

Hyper is a C++ application used to handle the graph of task dependencies
describing the simulations. It parses the execution graph and spawns any
task that is ready to run on the available execution nodes.

Run process

The run process is simple. When there are available execution nodes and
jobs that are ready to be spawned the hypervisor forks to new process and
spawns task on the given platform by executing the run function. The
run function is currently defined at compile time. The run function for
the platforms implemented currently uses the system command in order
to spawn the configured application. When the run is complete the forked
process exits using the execution node id as an exit value.
When the father process runs out of execution nodes or runs out of processes
that can be spawned it performs the waitpid system call in order to release
an execution node that was previously used. When a process exits the
hypervisor identifies the execution node and, with the use of a lookup
table, the task that was running. For the task that was running and the
hypervisor decreases the reference counter of it's children. If the reference
counter reaches zero the child is ready to be put in the available jobs queue.
The exit code conception limits the number of parallel processes to 256.
This limitation can easily be overcome with the use of a multi-level spawn
process. As an example we can spawn a hypervisor that spawns 256 hyper-
visors that can in turn handle 256 execution nodes each. Thus the number
of parallel processes that can be handled increases exponentially. Exten-
sion of the number of parallel processes can also be performed with the use
of the pthreads API or any equivalent framework.

Grigorios N. Lyras Page 27 of 78

CHAPTER 3. DATA PARTITIONING SPICE

Data Structures

In this section we explain some of the basic data structures that were de-
veloped and used in the hypervisor.

Task

The task is a simple data structure (Figure 3.15) containing the command
to be executed as a string, the number of dependencies and a vector of
the indices of it's children. This allows the hypervisor to decrease the
dependencies of the children of every task that is completed.

1 class task {
2 std::string command;
3 int dependencies;
4 std::vector<int> children;
5 public:
6 task(const task &N);
7 task(int deps, std::string cmd);
8 ~task();
9 bool decDeps();
10 bool ready();
11 void addChild(int i);
12 const char *getCmd();
13 int childrenN();
14 std::vector<int> getChildren();
15 void print();
16

17 };

Figure 3.15: Task definition

Execution Nodes

For the handling of the execution nodes the data structure is a simple
dual ended queue. During the initialization stage the number of execution
nodes indicated by the command line arguments is inserted in the deque.
When one job needs to be started, if there are available execution nodes,
the hypervisor pops the front of the queue and spawns the job on that
execution node using the run function defined for the given platform.

Grigorios N. Lyras Page 28 of 78

CHAPTER 3. DATA PARTITIONING SPICE

Partitioner (party)

The partitioner is a C application developed for the partitioning of input
signals. It handles PWL input signals and outputs the partitioned signals
as described in the previous section. For the representation of the signals
it uses the microsig library signal datatype as shown in Figure 3.16.

1 struct _signal {
2 uint32_t len;
3 uint32_t alloc;
4 double *time;
5 double *value;
6 };
7

8 typedef struct _signal signal;

Figure 3.16: Signal definition

Miner (aspirin)

The miner is a C application that handles the recollection of signals after
the simulation is complete. It uses the same library as the partitoner for
the signal handling. Specifically it parses the 2-column signals, shifts them
according to their respective timeslice offset, and appends them in the right
order.

Grigorios N. Lyras Page 29 of 78

Chapter 4

Benchmarks & Results

4.1 Introduction
In this chapter of the thesis we provide details regarding the benchmarks
we performed and their respective results. The simulation outputs were
compared with the reference values and we also compared the execution
times of the hypervised version and the reference tool.
During the verification process of this thesis we performed two benchmark-
ing sessions. During the first session we compared the results of the sim-
ulations using the results of hspice as reference values. For the second
benchmarking session we improved the hypervised version and used spec-
tre as the reference tools.

4.2 Simulation Description
To verify the proof of concept of the implementation we run a set of bench-
mark simulations. The circuit of choice was a typical multiplier described
in [17]. This circuit features great modularity and scales easily as shown
in Figures 4.1(a) and 4.1(b). This inherent quality of the circuit allows
the verification process to explore large device inventories. Obviously, the
modularity of the circuit provides great speed and efficiency when it comes
to simulations with the use of our tool. However, even circuits that are not
characterised by such modularity can use our tool since its benefits come
also from the Workload Tearing process.
The decisive factor when using our tool was the type of the simulation.

30

CHAPTER 4. BENCHMARKS & RESULTS

10
0

10
1

10
2

10
3

10
4

10
5

2
0

2
1

2
2

2
3

2
4

2
5

2
6

2
7

2
8

S
u

b
c
ir
c
u

it
s
 (

F
A

*
m

o
d

u
le

s
)

block size (multiplier arguements bit length)

Subcircuits

(a) Subcircuits

10
1

10
2

10
3

10
4

10
5

10
6

10
7

2
0

2
1

2
2

2
3

2
4

2
5

2
6

2
7

2
8

D
e

v
ic

e
s
 (

tr
a

n
s
is

to
rs

)

block size (multiplier arguements bit length)

Devices (transistors)

(b) Transistors

Due to the algorithm of the filtering process and the concept of output
forwarding, we limit the application range to digital simulations in order
to be able to use the partitioning methods described in Chapter 3 and the
filtering methods described in Section 3.2.1. In conclusion, roughly any
Digital Circuit Simulation can be handled with the use of our tool.

4.3 Results
One of the objectives of this process was to evaluate the validity of the
approach. Thus we extracted the output signals from our output results
and compared them to outputs derived from industry standard tools. The
output bits of the multiplier are the pi bits shown in Figure 4.1. For each
benchmark run, we had two data sets of the bit outputs of the multiplier.
One set was the output of our tool and the second set was the output of
the reference tool.
The output of our tool was a set of files, each for one output bit. The files
themselves are simply two column data files. The first column being the
time and the second the voltage values.
For the first benchmarking session the reference tool was hspice by Syn-
opsys. The outputs were in .tr0 format. In order to parse these files we
developed a miner for the specific output format.
For the second benchmarking session the reference tool was spectre by
Cadence. The outputs were in .raw format. For these files a simple awk
script was used to extract the useful pieces of information from the data
files.

Grigorios N. Lyras Page 31 of 78

CHAPTER 4. BENCHMARKS & RESULTS

FA*FA*FA*FA*

FA*FA*

FA*FA*

FA*FA*

FA*FA*

FA* FA* FA* FA*

a0a1a3 a2 000 0

b0

b1

b2

b3

0

0

0

0

p0p1p3 p2p4p5p6p7

a3a2a1a0
b3b2b1b0

p7p6p5p4p3p2p1p0

Data Block Size

equal to 4 Bits

Figure 4.1: Inputs and Outputs of a 4x4 multiplier

The two digital signal sets (our set and the reference values) have dif-
ferent and variable sample rates. Thus in order to be able to calculate
their difference we had to interpolate the signals. Instead of interpolating
and performing text handling on the signals we calculated the difference
between the two signal sets as shown in Equation 4.1 using a different ap-
proach. In order to calculate diffi we used an ideal subtractor as shown in
Figure 4.2. This technique was used in order to make the data verification
more accurate and less strenuous.

In a later step we extracted the difference signals per output bit. Then we
calculated the Root Mean Square Error (RMSE) for each of these difference
signals as shown in Equation 4.2. The process is graphically presented in
Figure 4.3.

diffi = reference_bit_signali − hyper_spice_bit_signali (4.1)

RMSEi =

√√√√ n∑
j=0

(xj −meani)2

n
(4.2)

The development progress had two major steps. The first round of results
has been published in [8].

Grigorios N. Lyras Page 32 of 78

CHAPTER 4. BENCHMARKS & RESULTS

1 ** A signal subtractor for 2 pairs of signals **
2

3 ** VCVS instantiations
4 E0 output0 0 input0 input1 1
5 E1 output1 0 input2 input3 1
6

7 ** Sources **
8 .include input0.in
9 .include input1.in
10 .include input2.in
11 .include input3.in
12

13 ** Simulation Definition **
14 .tran 800.000000ns 800.000000ns
15

16 ** Output File Definition **
17 .print tran v(output0) v(output1)

Figure 4.2: Subtractor of two signal pairs

4.3.1 First Benchmarking Session

During the first round of results the tool we compared against was hspice
by Synopsys. We extracted the bit signals directly from the .tr0 output
files and compared them bit by bit to the outputs of our tool.
As shown in 4.4 it is apparent that the approach we implemented was not
far off the target. In fact, the errors values are as low as 10−18. Due to the
RMSE process as described above in 4.2 the error is calculated in Volts.
Thus we reach the conclusion that the process remains accurate.
Unfortunately that can only be verified up to data block size of 25 as the
commercial tool failed to produce results further due to bad allocation er-
rors. This fact proves the necessity of our tool since hspice cannot produce
results for data block sizes greater than a 32 by 32 bit multiplier, given the
memory wall of the executing system.
As shown in Figure 4.5 the prototype idea keeps producing results within
a viable time frame up to 27 with almost linear times with regard to the
circuit size on all the platforms tested.
Finally in Figure 4.6 we see a comparison of execution times between the
hspice and hypervised spice. The latter seems to execute at a slower
pace for the first smaller circuit sizes, however when the netlist becomes

Grigorios N. Lyras Page 33 of 78

CHAPTER 4. BENCHMARKS & RESULTS

MSE per

Output Bit

Average

of MSEs

Square

Root

Error

Value

H
y
p

e
rv

is
e

d

S
P

IC
E

B
a

s
e

lin
e

Figure 4.3: Error calculation processj

substancially large the tool provides faster execution times.

10
-20

10
-18

10
-16

10
-14

10
-12

10
-10

10
-8

10
-6

10
-4

10
-2

10
0

10
1

10
2

10
3

10
4

10
5

10
6R

o
o
t
M

e
a
n
 S

q
u
a
re

d
 E

rr
o
r

o
f
h
y
p
e
rv

is
e
d
 s

p
ic

e
 (

V
o
lt
s
)

Device inventory (transistors)

bad alloc

RMSE compared to hspice

Figure 4.4: RMSE error compared to hspice results

Grigorios N. Lyras Page 34 of 78

CHAPTER 4. BENCHMARKS & RESULTS

10
-4

10
-3

10
-2

10
-1

10
0

10
1

10
2

10
3

10
2

10
3

10
4

10
5

10
6

10
7

T
im

e
 (

h
o
u
rs

)

Device inventory (transistors)

Xeon
okeanos cloud

SCC

Figure 4.5: Cross platform execution times v1

Grigorios N. Lyras Page 35 of 78

CHAPTER 4. BENCHMARKS & RESULTS

10
-4

10
-3

10
-2

10
-1

10
0

10
1

10
2

10
3

10
2

10
3

10
4

10
5

10
6

10
7

T
im

e
 (

h
o
u
rs

)

Device inventory (transistors)

bad alloc

hypervised spice on Xeon
Synopsys Hspice on Xeon

Figure 4.6: Comparison of times of v1 against hspice

The first set of results led to a series of realisations. One of the first design
choices that were made during the development of the hypervised spice
tool was that all the signal forwarding operations will be conducted over
the file system. This way we can overcome the memory wall but the strain
on the file system is significant. Thus we can understand that the IO of
the application, at the level of produced (and later consumed) PWL text
files, appears to be the a bottleneck.

4.3.2 Second Benchmarking Session
The hypervised spice tool is bound by the file system. So it becomes nece-
sary that one should minimise the IO in order to increase the performance.
During our benchmarks we had a series of file systems, one for each tested
platform, that were degrading the performance. In order to overcome that
barrier we took two simple but significant measures.
As a first step we incresed the timeslice duration. With the more advanced
partitioning technique as described in Chapter 3 we could regulate the par-
titioning size. Since we no longer needed the input signals to be broken by

Grigorios N. Lyras Page 36 of 78

CHAPTER 4. BENCHMARKS & RESULTS

a mod counter we could regulate in a finer manner the number of timeslices
and consequently their duration.

With a smaller number of timeslices for the same total duration it is ap-
parent that the timeslices for the second benchmarking session were larger.
With larger timeslices, the number of accesses to the filesystem were re-
duced by a factor of aproximately 0.75. This is evident if we keep in mind
the number of timeslices for the second round of simulations. During the
First Benchmarking Session we used 40 timeslices for a lifetime of 20ns each.
During the Second Benchmarking Session we used 10 timeslices, with an
average duration of 80ns each. Thus we reduced the number of executed
simulations and, as a result, the number of output files by the aforemen-
tioned factor. So having only one fourth of the initial load we expected an
increase in the performance.

That was not the only action point. During the first set of experiments we
observed large signal files that had to be transfered between simulations.
When taking a closer look to the matter, one one particular case, the num-
ber of data points that were forwarded exceeded the number of 60000 for
a simulation duration of merely 20ns. Thus we realised that we needed a
method to decrease the signal size, effectively reducing the number of data
points that were frowarded between simulations.

From this process the concept that we explored was the idea of signal
filtering. Thus we applied the filtering technique described in Section 3.2.1
in order to decrease the number of data points copied from one simulation
to the next.This technique had two significant impacts. The first was of
course the reduction of the strain on the file system. Smaller data files are
faster to read, copy and process in general. The second impact was the
duration of each simulation. With less points to parse, ngspice was a lot
faster to converge.

4.3.3 Results

As show in Figure 4.7 the results during the second benchmarking session
were degraded regarding the errors. The main factor that these errors can
be attributed to is the filtering process. This was an area we expected to
present such a descrepancy and requires further development.

Grigorios N. Lyras Page 37 of 78

CHAPTER 4. BENCHMARKS & RESULTS

10
-2

10
-1

10
0

10
1

10
2

10
3

10
4

10
5R

o
o
t
M

e
a
n
 S

q
u
a
re

d
 E

rr
o
r

o
f
h
y
p
e
rv

is
e
d
 s

p
ic

e
 (

V
o
lt
s
)

Device inventory (transistors)

RMSE compared to spectre

Figure 4.7: RMSE error compared to spectre results

In order to understand why this appears we need to refer back to the
filtering process. In the filtering process we search the signal for transitions.
When performing digital simulations the transitions are signified by two
values. If V1 is the high voltage level and V0 is the low voltage level any
value below V0 + (V1 − V0) × 0.1 is considered low and any value above
V0 + (V1 − V0)× 0.9 is considered high. So in the final stage of the filtering
process we reset the values in this range to their representatives V0 and
V1 respectively. This process inserts a minor offset during the executions
as shown in Figures 4.8, 4.9. This offset is propagated as the results are
forwarded the outputs are filtered again, thus leading to these errors.

Grigorios N. Lyras Page 38 of 78

CHAPTER 4. BENCHMARKS & RESULTS

-0.2

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

3.8e-08 3.9e-08 4e-08 4.1e-08 4.2e-08 4.3e-08 4.4e-08 4.5e-08

V
o
lt
a
g
e
 (

V
o
lt
s
)

Time

hypervised spice
Spectre

Figure 4.8: Multiple transitions error

Grigorios N. Lyras Page 39 of 78

CHAPTER 4. BENCHMARKS & RESULTS

-0.2

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

2.8e-07 2.801e-07 2.802e-07 2.803e-07 2.804e-07 2.805e-07 2.806e-07

V
o
lt
a
g
e
 (

V
o
lt
s
)

Time

hypervised spice
Spectre

Figure 4.9: Temporal offset error

On the other hand, we have linear execution times with regard to the
circuit size on all execution platforms. This is clearly show in Figure 4.10.
This proves that the optimisations we performed were well fiting for this
application profile.

Grigorios N. Lyras Page 40 of 78

CHAPTER 4. BENCHMARKS & RESULTS

10
-4

10
-3

10
-2

10
-1

10
0

10
1

10
2

10
2

10
3

10
4

10
5

10
6

10
7

T
im

e
 (

h
o
u
rs

)

Device inventory (transistors)

Xeon
okeanos cloud

SCC

Figure 4.10: Cross platform execution times v2

When comparing the tool performance the execution times are significantly
smaller when compared to the commercial Spectre. As shown in Figure
4.11 hypervised spice is an order of magnitude faster than Spectre.
Moreover we have to note here that Spectre, just as hspice in the First
Benchmarking Session, fails to produce results for data block sizes greater
than a 32 by 32 bit multiplier.
In Figure 4.12 we see a comparison of execution times of all four tools. We
can observe that the new implementation is faster by an order of magnitude
when compared with either the Synopsys or Cadence tool. This justifies
the steps we took to optimise the performance of the execution, and the
bottleneck estimations were valid. However this methods imposed an er-
ror factor. This indicates that future work is required to optimise signal
filtering in order to reduce these errors.
Finally in Figure 4.13 we see a comparison between the execution times
among the two versions. We can observe that the improvement is vast
with regard to performance.

Grigorios N. Lyras Page 41 of 78

CHAPTER 4. BENCHMARKS & RESULTS

10
-4

10
-3

10
-2

10
-1

10
0

10
1

10
2

10
1

10
2

10
3

10
4

10
5

10
6

10
7

T
im

e
 (

h
o
u
rs

)

Device inventory (transistors)

bad alloc

hypervised spice on Xeon
Cadence Spectre on Xeon

Figure 4.11: Comparison of times of v2 against Spectre

Grigorios N. Lyras Page 42 of 78

CHAPTER 4. BENCHMARKS & RESULTS

10
-4

10
-3

10
-2

10
-1

10
0

10
1

10
2

10
3

10
2

10
3

10
4

10
5

10
6

10
7

T
im

e
 (

h
o
u
rs

)

Device inventory (transistors)

bad alloc

hypervised spice on Xeon (version 1)
hypervised spice on Xeon (version 2)

Synopsys Hspice on Xeon

Figure 4.12: Comparison of execution times of v1, v2 against hspice and
Spectre

Grigorios N. Lyras Page 43 of 78

CHAPTER 4. BENCHMARKS & RESULTS

10
-4

10
-3

10
-2

10
-1

10
0

10
1

10
2

10
3

10
2

10
3

10
4

10
5

10
6

10
7

T
im

e
 (

h
o
u
rs

)

Device inventory (transistors)

hypervised spice on Xeon (version 1)
hypervised spice on Xeon (version 2)

Figure 4.13: Comparison of execution times of v1, v2

Grigorios N. Lyras Page 44 of 78

Chapter 5

Conclusions & Future Work

5.1 Conclusions
This work has been a multi disciplinary project. It is a merge of ideas from
the world of High Performance Computing into the world of Electronic
Design Automation.
As part of the technical work, a series of tools and libraries that constitute
the framework were designed and implemented.
The backbone of the framework is a configurable hypervisor that can
handle jobs with dependencies. As a design choice this tool uses a double
fork and one execve system call. This allows the return of the resource
through the waitpid system call.
The second tool that is used in the framework is the ngspice wrapper.
This is responsible for all handling input and output signals following a set
of strict conventions regarding the naming of the files. Moreover, since it is
agnostic regarding the kernel it executes, it also uses the fork and execve
system calls.
The microsig library was developed to handle input and output of signals
in PWL form and also for performing some simple operations on them.
These operations include filtering, addition, interpolation and inversion.
Most of the tools are built with the use of this library.
Finally partitioning tools and data mining tools were built with the use of
the microsig library
When performing the experiments we had three runtime platforms at hand.
An Intel®Xeon®CPU X3470 @ 2.93GHz powered server, the Single-Chip

45

CHAPTER 5. CONCLUSIONS & FUTURE WORK

Cloud Computer (SCC) Intel Labs prototype and a virtual machine on
GRNET ∼okeanos infrastructure.
For the experiments we used ngspice as the main execution kernel, while
we used hspice by Synopsys and Spectre by Cadence as reference tools
for the first and the second round of experiments respectively. The circuit
we used as a benchmark was a multiplier.
During the first experiment cycle we observed great accuracy on the results
we obtained from our tool. When we compared the execution times with
the execution times of hspice we found that our tool was strictly slower for
small data block sizes but the performance increased and exceeded hspice
from a certain point forward. A significant point here is that the commercial
tool failed to produce results for any block size greater than a 32 by 32 bit
multiplier. On the other hand our tool kept producing results for up to
256 by 256 bit multiplier and a device inventory of 3.6 million transistors.
In order to improve the performance we reduced the partitioning factor and
inserted a filtering method in the process. We have to note that the step
sizing algorithm we used is the one implemented in ngspice. Being far
from optimal, it raised the need to filter the signals in order to reduce their
size. If the execution kernel we used had a better step sizing algorithm,
this step wouldn't be needed.
These courses of action greatly boosted the performance. Compared to the
industry standard tools our tool was able to produce results faster by an
order of magnitude. The commercial tools kept failing at the same point
(32 by 32 bit multiplier). However our tool kept producing results up to
256 by 256 proving that we have overcome the memory barrier imposed by
the runtime system. On the other hand this performance boost came with
a degradation of the accuracy of the tool.
From the above we can conclude that this approach introduces a viable
solution to otherwise unfeasible simulations. Furthermore we can identify
a trade-off between accuracy and speed. As it can be understood if we
increase the speed of the application we can produce results faster with
less accuracy.

5.2 Future Work
We approached the field of SPICE simulation for large netlists and extensive
workloads and provided a viable solution in order to overcome the memory

Grigorios N. Lyras Page 46 of 78

CHAPTER 5. CONCLUSIONS & FUTURE WORK

limitations of each runtime system. This work can be further extended and
improved in various ways.
One step of action would be to improve the hypervisor. The hypervisor
at the moment uses a simple first come first served scheduling algorithm.
If one can prioritise the tasks they can achieve better locality which can
improve the performance on certain cases. Furthermore the hypervisor uses
a simple fork call to spawn the process control threads. An improvement
would be to use the pthread library or an equivalent API which would
enable a more fine grained control on the spawns and less strain on the
running platform.
Another interesting approach regarding the hypervisor would be the con-
cept of local kings. In case of multiple execution nodes one could dispatch,
for example, one hypervisor per physical machine. This way you can achieve
greater locality and scalability.
Secondly one can improve the ngspice wrapper. Sapp as it is it performs
all the transactions through the file system. This approach is needed in
order to overcome the memory wall. Thus one can improve the file system
throughput. Solid State Drives can provide the application with a great
performance boost if they are available. Moreover a compression layer on
the data as they are written and read from the file system can also reduce
the strain on the file system thus greatly improving the performance. A
third idea would be to implement the signal forwarding through a Message
Passing Interface if we need even greater scalability.
Due to the discrepancy we observed in the second round of experiments
we can argue that the filtering method applied is rather crude for such an
application. Thus a more advanced filtering method could greatly improve
the accuracy of our approach. Alternatively, improvements of the adaptive
step sizing algorithm can enhance the performance of intermediate simula-
tions with minimum accuracy degradation.
Another domain where the hypervisor could alleviate significant CPU times
is that of time and workload dependent variability simulations. For in-
stance, a very interesting application would be the atomistic models for
Bias Temperature Instability (BTI) and Random Telegraph Noise (RTN)
[2].
Last but not least, the trade-off between accuracy and speed always re-
mains. The more invasive the filtering method applied the less points the
simulations will parse. This way, depending on the application at hand one
can fine tune the performance to be suitable to their needs and deadlines.

Grigorios N. Lyras Page 47 of 78

Bibliography

[1] Nascentric announces omegasim(tm) gx - the world's first hardware-
accelerated spice simulator. http://www10.edacafe.com/nbc/
articles/view_article.php?articleid=516299&interstitial_
displayed=Yes.

[2] Time and workload dependent circuit simulation. Technical Report
EP 2 509 011 A1, 2012.

[3] M. Duranton, S. Yehia, B. de Sutter, K. de Bosschere, A. Co-
hen, B. Falsafi, G.N. Gaydadjiev, M.G.H. Katevenis, A. Ramirez,
O. Temam, and M. Valero. The HiPEAC Vision, High Performance
and Embedded Architecture and Compilation. HiPEAC Project,
January 2010.

[4] S.H. Fuller and L.I. Millett. Computing performance: Game over or
next level? Computer, 44(1):31 --38, jan. 2011.

[5] Kanupriya Gulati, John F. Croix, Sunil P. Khatr, and Rahm Shastry.
Fast circuit simulation on graphics processing units. In Proceedings
of the 2009 Asia and South Pacific Design Automation Confer-
ence, ASP-DAC '09, pages 403--408, Piscataway, NJ, USA, 2009. IEEE
Press.

[6] Nachiket Kapre. SPICE2 -- A Spatial Parallel Architecture for
Accelerating the SPICE Circuit Simulator. PhD thesis, California
Institute of Technology -- Pasadena, California, 2010.

[7] Vangelis Koukis. ∼okeanos: Delivering iaas to the greek academic and
research community, August 2012. Invited talk at VHPC 2012, Rhodes
Island, Greece.

[8] Grigorios Lyras, Dimitrios Rodopoulos, Antonis Papanikolaou, and
Dimitrios Soudris. Hypervised transient spice simulations of large
netlists & workloads on multi-processor systems. In Design Automa-

48

http://www10.edacafe.com/nbc/articles/view_article.php?articleid=516299&interstitial_displayed=Yes
http://www10.edacafe.com/nbc/articles/view_article.php?articleid=516299&interstitial_displayed=Yes
http://www10.edacafe.com/nbc/articles/view_article.php?articleid=516299&interstitial_displayed=Yes

BIBLIOGRAPHY

tion and Testing in Europe (DATE), 2013 International, march
2013.

[9] A. Maxim and M. Gheorghe. A novel physical based model of deep-
submicron cmos transistors mismatch for monte carlo spice simulation.
In Circuits and Systems, 2001. ISCAS 2001. The 2001 IEEE In-
ternational Symposium on, volume 5, pages 511 --514 vol. 5, 2001.

[10] T. McConaghy, K. Breen, and J. Dyck. Variation-Aware Design of
Custom Integrated Circuits: A Hands-On Field Guide. Springer,
2013.

[11] Laurence W. Nagel. SPICE2: A Computer Program to Simulate
Semiconductor Circuits. PhD thesis, EECS Department, University
of California, Berkeley, 1975.

[12] Laurence W. Nagel and D.O. Pederson. Spice (simulation program
with integrated circuit emphasis). Technical Report UCB/ERL M382,
EECS Department, University of California, Berkeley, Apr 1973.

[13] Daniel Payne. New parallel spice start-up company eda thoughts:
From an eda marketing insider. http://www.chipdesignmag.com/
payne/2009/12/24/new-parallel-spice-start-up-company/.

[14] D. Rodopoulos, S.B. Mahato, V.V. de Almeida Camargo, B. Kaczer,
F. Catthoor, S. Cosemans, G. Groeseneken, A. Papanikolaou, and
D. Soudris. Time and workload dependent device variability in cir-
cuit simulations. In IC Design Technology (ICICDT), 2011 IEEE
International Conference on, pages 1 --4, may 2011.

[15] M. Toledano-Luque, B. Kaczer, P.J. Roussel, T. Grasser, G.I. Wirth,
J. Franco, C. Vrancken, N. Horiguchi, and G. Groeseneken. Response
of a single trap to ac negative bias temperature stress. In Reliabil-
ity Physics Symposium (IRPS), 2011 IEEE International, pages
4A.2.1 --4A.2.8, april 2011.

[16] Mateo Valero and Nacho Navarro. Multicore: The view from europe.
IEEE Micro, 30(5):2--4, 2010.

[17] N.H.E. Weste and D.M. Harris. CMOS VLSI Design: A Circuits
and Systems Perspective [With Access Code]. ADDISON WESLEY
Publishing Company Incorporated, 2011.

Grigorios N. Lyras Page 49 of 78

http://www.chipdesignmag.com/payne/2009/12/24/new-parallel-spice-start-up-company/
http://www.chipdesignmag.com/payne/2009/12/24/new-parallel-spice-start-up-company/

Chapter 6

Appendix

A: DATE 2013 Preprint

50

Hypervised Transient SPICE Simulations of Large
Netlists & Workloads on Multi-Processor Systems

Grigorios Lyras, Dimitrios Rodopoulos, Antonis Papanikolaou and Dimitrios Soudris
National Technical University of Athens – School of ECE

MICROprocessors and Digital Systems LABoratory
9 Heroon Polytechneiou, Zographou Campus, 157 80 Athens, Greece

Conctact Email: drodo@microlab.ntua.gr

Abstract—The need for detailed simulation of digital circuits
has received the attention of both academia and industry since the
early stages of design automation. As the number of integrated
devices per silicon die increases, the need for faster, device level,
circuit simulations becomes more apparent. These simulations are
heavy on the system memory, hence limiting the size of the circuit
that can be handled by multi-core systems with a unified memory
hierarchy. In this work, we present a parallel implementation
of a traditional circuit simulation program, based on structural
partitioning of the netlist and temporal partitioning of the input
signals. This enables scalability of the overall simulation across
units of execution. It allows simulation of very large circuits,
which cannot be handled even by commercial tools. The proposed
simulation framework is validated through simulations of a
benchmark circuit with more than a million MOSFET devices
and workloads of extended duration. We observe minimal error
in comparison to commercial tools and even a ×2.35 speedup
for moderate netlist sizes. Different execution platforms are in-
spected, thus substantiating the versatility of our implementation.

I. INTRODUCTION

Computer-aided simulation of circuit activity is a key issue
in the manufacturing of digital systems, since it allows the
verification of electric and electronic circuits. As a result, it
covers a very wide range of applications [1]. Especially in
the case of integrated circuits, a definitive piece of work is
the “Simulation Program with Integrated Circuit Emphasis”
(SPICE) [2]. This software has long been considered as the
standard for detailed simulation of integrated circuits. Apart
from being a valuable industry and academic tool, SPICE has
also triggered a wide variety of research. A significant portion
of that research aims at the acceleration of SPICE simulations.
One of the major reasons for this research trend is aggressive
integration. As the device inventory of modern electronics
increases, the simulated netlists contain a larger number of
devices and require more memory during simulation.

Another valid factor that creates demand for computation-
ally viable SPICE simulations of large netlists and work-
loads is device variability. In sub-micron technologies, the
devices feature increased variability at time zero [3]. Also,
as the lifetime of the digital system progresses, devices are
reported to behave in a variable manner, which includes both
a stochastic and a workload-dependent component [4]. Monte
Carlo simulations are usually employed to cover time zero
device variability, as in the case of [5]. Furthermore, transient
simulations of representatively long workloads are required to

account for workload-dependent circuit variability, as in [6].
Hence, we can safely claim that the memory requirements of
transient SPICE simulations are increasing both due to larger
device inventories and extended netlist workloads.

By inspecting state-of-the-art approaches on SPICE opti-
mizations, we observe that the majority of the techniques aim
to parallelize a SPICE simulation among a set of execution
nodes. This is not surprising, if we consider the increasing
number of cores which are available in modern large-scale
processing systems [7]. The concepts of node and branch
tearing are very appealing when parallelizing SPICE. These
concepts involve the physical partitioning of the initial netlist
to smaller subcircuits. Each subcircuit is submitted to a SPICE
instance, thus many instances run in parallel to create the
solution of the initial netlist. Many papers look into the opti-
mization of this partitioning or parallelize intensive execution
stages. Others, deal with the parallel mapping of SPICE on
specific hardware. In all the above cases, the demand for main
memory is made concurrently to the executing platform, which
may prove incapable of fulfilling this requirement.

In the current paper, we differentiate from the state of the
art by enabling massive SPICE simulations and overcoming
memory capacity issues through the distribution of threads
that make minimal memory demands to the available units
of execution. We propose the temporal partitioning of the
netlist’s primary input signals, in what will be referred as
workload tearing. When combined with node tearing, work-
load tearing enables the execution of small and indepen-
dent SPICE instances. These instances are sized according
to the available computational and memory resources so as
to take maximal advantage of the infrastructure capabilities
with minimal communication overhead. A hypervisor has
been designed to dispatch these SPICE instances across the
execution nodes. The proposed framework imposes minimum
hardware constraints on the executing platform and is highly
reusable. It has been tested on an experimental cloud computer
chip, a set of virtual machines and a regular multicore server to
illustrate its reusability. It is also compared to the commercial
tool HSPICE, which supports multi-threaded execution.

In the next Section, we summarize the state-of the-art
dealing with SPICE parallelization. In Section III we elaborate
on the proposed structural and temporal partitioning, which
creates a set of small SPICE instances. We also present

the hypervisor, which dispatches these instances in order
to complete the otherwise infeasible transient simulation. In
Section IV, we present the inspected multi-core platforms, the
netlist benchmark that was used and simulation results. Finally,
conclusions are summarized in Section VI.

II. RELATED WORK

Optimizations of SPICE performance can be split into
two major categories, those that target a single thread of
SPICE execution and solutions that deal with the distribu-
tion of a simulation across different threads of execution
(i.e. parallelization). Naturally, the former category attracted
significant amount of research, even from the initial devel-
opment stages of the SPICE software [8]. As the multi-core
trend materialized, research focused on distributed solutions
for SPICE acceleration. The Electronic Design Automation
(EDA) industry is following the trend of mulit-core SPICE
simulations providing a range of related implementations [9].

Definitive steps towards the parallelization of SPICE sim-
ulations are the works on node tearing [10] and branch
tearing [11]. According to these concepts, the target netlist
is partitioned from its nodes or branches and independent
voltage or current sources are put in their place. The authors
of [12] argue that the addition of extra energy through these
independent sources is connected to non-convergence issues.
An alternative to node tearing is also proposed in [13]. In
this work, a partitioning methodology is proposed aiming
at reduced number of connections between partitions, which
should also be roughly of the same size. Finally, [14] presents
the concepts of direct current connected blocks and strong
connected components as two clustering criteria. However,
verification of this partitioning scheme with netlists containing
more than 103 devices is left as future work.

Many SPICE acceleration attempts are using specific hard-
ware to exploit parallel patterns that are observed in the
simulation execution. Field Programmable Gate Arrays [15]
(FPGAs) can be used to parallelize the tasks performed by
the SPICE simulator. In the case of [16], we read about
the utilization of Graphics Processing Units (GPUs) for the
acceleration of transistor model evaluation.

In view of the related work on SPICE acceleration, it
is evident that netlist partitioning has received significant
attention. Even though optimized, the partitioning of the circuit
is not enough to avoid the violation of the memory constraints
imposed by the executing hardware [13]. Other approaches
that propose the use of customized hardware to perform the
simulations (e.g. GPUs or FPGAs) reduce the versatility of the
parallel SPICE simulations. Our parallel framework reduces
the memory footprint of the simulation on each execution
node, while remaining highly reusable across processing sys-
tems usually found in academic or industry environments.

III. HYPERVISED SPICE SIMULATIONS

A. Simulation Framework Concept

Assume a target netlist with a large number of devices and
a vector of primitive input signals Vin(t). The purpose of our

N
o

d
e

 T
e

a
ri
n

g

Workload Tearing

(1,1)

(2,1)

(N,1)

...

...

...

(1,2)

(N,2)

(1,M)

(N,M)

H
y
p

e
rv

is
o

r

(2,M)...(2,2)

...

M
u

lt
ic

o
re

 P
la

tf
o

rm

S
u

b
c

ir
c

u
it

 D
o

m
a

in

Time Slice Domain

2D Set of intermediate SPICE

Simulations

Subcircuit Interdependencies

Extensive Input

Large

Netlist

Primitive Output

D
a

ta

M
in

e
r

Fig. 1: The designed hypervisor draws from a set of interme-
diate SPICE simulations to synthesize the primitive outputs of
a large netlist, which is simulated over extended workloads.

analysis is to calculate the primitive output signals, namely
Vout(t). Application of node tearing on the target netlist can
create N subcircuits, each one with a number of devices equal
to di, where i = 1, 2, ..., N . Workload tearing is the temporal
partitioning of the primitive input vector based on Equation 1,
where h(t) is the Heaviside pulse and T is a time step.

Vin(t) =

M∑
j=1

Vin(t) h(t− jT) (1)

This temporal partitioning can be easily implemented at
pre-processing, assuming that the primitive input signals are
available in a piece-wise linear (PWL) form. Given the time
step T , we scan the respective PWL files and create time slices
(addends of Equation 1) of the large netlist’s primitive input
signals. Node and workload tearing create a two dimensional
set of simulations (see Figure 1). In the general case, each of
these simulations requires a combination of primitive signal
slices and intermediate simulation results to produce its output.
A simple graph of dependencies between subcircuits indicates
the flow of intermediate results across subcircuits of the large
netlist. As a result, in order to calculate Vout(t), we require
N×M intermediate SPICE simulations. Each one is uniquely
identified by the pair (i, j) as the simulation of subcircuit i,
for the time slice j.

A hypervisor dispatches intermediate SPICE simulations
from the respective set. Each member is assigned to an
execution node of the available multicore platform. Based on
the framework of Figure 1, a number of SPICE instances will
be running in parallel on the mutlicore platform. As long as all
available units of execution are occupied by SPICE instances,
the hypervisor remains dormant; it becomes activated only
when a SPICE simulation is completed and another has to
initiate. Finally, a data miner is synthesizing Vout(t) from
the outputs delivered by the intermediate simulations. These
simulations demand small amounts of memory due to re-

i=1 i=2
V
in
(t
)

V
o
u
t(
t)

i=3

a

b c
(a) Node Tearing

V
in
(t
)
V
o
u
t(
t)

j=1

j=1

j=2

j=2 j=3

j=3

t

t

(b) Workload Tearing

i=1 i=2

i=3

V
 j
a(t)

V
 j
o

u
t(
t)

V
 j
in
(t

)

V
 j
b(t) V

 j
c(t)

(c) Dependency Graph

(1,1) (2,1)

(1,2) (2,3)(1,3)

(3,1)

(3,2) (3,3)

(2,2)

empty

empty

empty

empty empty

empty

Simulation Time

U
n

it
s
 o

f
E

x
e

c
u

ti
o

n

(d) Supervision of the intermediate simulations

Fig. 2: A qualitative example illustrating our proposed concept.

duced device inventory and input duration. The small memory
portions are returned to the system after the intermediate
simulation is finished. This is a major differentiator of our
approach from the state-of-the-art and even commercial tools,
which require large amounts of memory from the beginning of
a transient simulation.

B. Illustrative Example

In this Subsection, we illustrate the proposed simulation
framework with a qualitative example. Assume a netlist, which
can be partitioned into three subcircuits, using node tearing.
Each subcircuit is uniquely identified by its i value (Figure 2a).
The netlist needs to be simulated over a workload of extended
duration (Vin(t)). With workload tearing, we partition the
input vector into three time slices (see Figure 2b). In this
simulation, we seek to calculate the primitive output Vout(t),
which will be assembled per time as well. For each time slice,
we can notate V j

in(t) and V j
out(t), where j = 1, 2, 3.

It is important that, when performing node tearing, we
choose nodes, the voltage of which is imposed by the same
connected subcircuit during the entire simulated lifetime. In
our example, we assume that the nodes a, b and c of Figure 2a
fulfill this requirement. The voltage signals of each node will

Platform UE∗ Information #UEs Hypervisor
Residence∗∗ Invocation††

SCC P54C @533MHz 48 MCPC† ssh

∼okeanos QEMU Virt. CPU
Version 1.0 @2.1GHz 4 1 UE fork

Xeon X3470@2.93GHz 4 1 UE fork
∗ UE: Unit of execution, ∗∗ The processing system that runs the hypervisor,
† MCPC: Management Console Personal Computer of the SCC,
†† The command required to dispatch an intermediate simulation on a UE.

TABLE I: Details of the inspected multicore platforms

also be created per time slice, hence we can use the notations
V j
a (t), V

j
b (t) and V j

c (t), where j = 1, 2, 3. We can now draw
the directed dependency graph between the three subcircuits,
displayed in Figure 2c.

In the set of independent simulations that will be used as
input to the proposed hypervisor, each member set is uniquely
defined by its (i, j) pair. The hypervisor will complete the
entire set of simulations, by handling simulation instances
with resolved dependencies on a first-come-first serve basis.
An example of the hypervisor’s mapping on a platform with
three execution nodes can be seen in (see Figure 2d). At
each simulation time instance, we can see the occupation of
execution nodes by members of the intermediate simulation
set. Dashed arrows indicate the forwarding of intermediate
simulation results between SPICE instances. Shaded boxes
represent the intermediate simulations that produce the signals
V j
out(t). These outputs will be combined into the primitive

output Vout(t) by the data miner in an overlap-save fashion.

IV. EXPERIMENTAL VERIFICATION

A. Tested Platforms, Benchmark Netlist & Workloads

To confirm the versatility and correctness of our approach,
we have tested the proposed framework on three platforms
that are representative of the computation resources usually
found among industrial or academic infrastructure. The first
platform is the Single-Chip Cloud Computer (SCC) experi-
mental processor, which is a 48-core “concept vehicle” cre-
ated by Intel Labs as a platform for many-core software
research [17]. We have also tested our framework on virtual
machines (VMs) of the cloud service ∼okeanos [18]. Finally,
an Intel R©Xeon R© server has been used to complete the
set of representative computing resources. All experiments
have been performed using an open source SPICE version
called ngspice [19]. Technical details for each platform
are summarized in Table I. As reference for comparison, we
use the commercial tool HSPICE of Synopsis. We choose an
execution with four threads running on a similar 2.33GHz
Intel R©Xeon R© machine (flag -mt 4).

The chosen benchmark netlist is an array multiplier of
scalable size. An overview of the circuit can be seen in
Figures 3a and 3b. We define as data block size the length
of the multiplier’s operands in bits. We increase the device
inventory of the netlist by increasing the data block size of the
multiplier array, reaching beyond 106 devices (see Figure 3c).
Arbitrary workloads in the form of a PWL voltage sources

ai

bj

Sout

cout cin

FA*

Sin

Full Adder

Circuit

FA

(a) Multiplier building block

FA*FA*FA*FA*

FA*FA*

FA*FA*

FA*FA*

FA*FA*

FA* FA* FA* FA*

a0a1a3 a2 000 0

b0

b1

b2

b3

0

0

0

0

p0p1p3 p2p4p5p6p7

a3a2a1a0
b3b2b1b0

p7p6p5p4p3p2p1p0

Data Block Size

equal to 4 Bits

(b) An example of an array multiplier with a data block size of 4 bits

0 2 4 6 8
10

0

10
2

10
4

10
6

10
8

log
2
(Data Block Size)

N
u
m

b
e
r

o
f
D

e
v
ic

e
s
 o

r
S

u
b
c
ir
c
u
it
s
 (

p
.u

.)

Subcircuits

MOSFET Devices

(c) Inspected device inventories

Fig. 3: Circuit diagrams and device inventory of the selected benchmark circuit

MSE per

Output Bit

Average

of MSEs

Square

Root

Error

Value

H
y
p

e
rv

is
e

d

S
P

IC
E

B
a

s
e

lin
e

Fig. 4: Error estimation of the hypervised SPICE simulations

have been created for each multiplier size, the duration of
which is 800ns and the time step T used for workload tearing
is 20ns (see Equation 1). The selected benchmark allows easy
node tearing into identical subcircuits of the FA∗ module of
Figure 3a. As a result, the device inventory is the same for all
subcircuits. In general, our framework supports non-identical
subcircuits, provided that the respective .subckt lines exist
in the initial large netlist.

B. Simulation Results

We start with the estimation of our framework’s perfor-
mance. For various sizes of the multiplier array, we apply the
workloads specified in Subsection IV-A both to our framework
and the baseline implementation. First,we measure the pro-
cessing time that is exclusively dedicated to SPICE simulation
(see Figure 5a). For small device sizes, the commercial base-
line outperforms our framework. However, beyond the array
data block size equal to 32, HSPICE is unable to deliver due to
insufficient system memory. At the same time, our proposed
framework keeps producing results, even for a netlist with
more than 106 MOSFET devices. In the execution of the
proposed framework, the hypervisor is activated to dispatch
a new intermediate simulation, which creates the illustrated
temporal overhead (Figure 5b).

We also assess the accuracy of our approach, by calculating
the root mean squared error (RMSE) of the simulation outputs
with the steps presented in Figure 4. The mean squared error
(MSE) is calculated for each product bit of the multiplier.
Then, an average of all the MSEs (for all product bits) is
calculated. In Figure 5c we can see the root of this average

MSE value for all inspected platforms and device inventories.
Since the primitive outputs are voltage signals, the respective
RMSE values are also measured in Volts. Obviously, we can
produce error results only as long as the respective baseline
execution is completed successfully (namely up to a data
block size equal to 32 bits). In Figure 6 we give transient
output excerpts for the output bits with the maximum MSE
for different multiplier array sizes. In these graphs we can
see that the output signals are reproduced very accurately by
our simulation framework. Signal transitions and intermediate
jitter are the main causes of output error. In Section V, we
propose simple solutions to alleviate these problems.

V. DISCUSSION

The technique proposed in this paper goes further than
existing SPICE parallelization approaches by adding a parti-
tioning of the workload on top of existing netlist partitioning.
Workload tearing can be adjusted to improve the accuracy
of the results presented in Figure 6, by applying workload
tearing so that the transitions of the inputs are kept within each
inspected time slice. The output signals of Figure 6 show a
poor reproduction of the signal overshoot. We believe that the
addition of correct gate capacitances at the subcircuit outputs
can solve this problem and correctly reproduce the waveforms.

A major differentiator of our proposed concept is also the
flexible memory allocation to circuit simulations. Most state-
of-the-art tools (even the commercial ones) allocate memory
for the entire simulation, thus it is often that the simulation
is halted due to insufficient memory. With our framework,
we partition the simulation to small instances, thus making
sure that the transient analysis is completed without making
massive memory requests to the system. We also need to
note that the communication between SPICE instances that
we propose is performed at the level of system storage. As a
result, use of modern storage devices (e.g. solid state disks)
or of a more customized file system would only enhance the
performance of our proposed framework.

In the results presented above, the resolution of the signals
that are propagated through the netlist and across the netlist
components was not altered (as delivered from ngspice).

10
2

10
4

10
6

10
−4

10
−2

10
0

10
2

Number of Devices (p.u.)

T
ra

n
s
ie

n
t
S

im
u
la

ti
o
n
 T

im
e
 (

h
o
u
rs

)

HSPICE −mt 4

Hypervised SPICE @ SCC

Hypervised SPICE @ ∼ okeanos

Hypervised SPICE @ Xeon

HSPICE
failure due to
insufficient
memory

(a)

10
2

10
4

10
6

10
−6

10
−4

10
−2

10
0

10
2

Number of Devices (p.u.)
D

is
p
a
tc

h
in

g
 T

im
e
 f
o
r

H
y
p
e
rv

is
e
d
 S

P
IC

E
 (

h
o
u
rs

)

Hypervised SPICE @ SCC

Hypervised SPICE @ ∼ okeanos

Hypervised SPICE @ Xeon

(b)

10
2

10
4

10
6

10
−20

10
−15

10
−10

10
−5

10
0

Number of Devices (p.u.)

E
rr

o
r

o
f

H
y
p

e
rv

is
e

d
 S

P
IC

E
 (

V
)

(c)

Fig. 5: Performance and accuracy evaluation of hypervised SPICE simulations against the baseline execution

0 0.5 1 1.5 2 2.5 3

x 10
−7

−0.2

0

0.2

0.4

0.6

0.8

1

1.2

Simulated Lifetime (s)

O
u
tp

u
t
B

it
 V

o
lt
a
g
e
 (

V
)

HSPICE −mt 4

Hypervised SPICE Simulation

(a) Data Block Size= 1

4 4.5 5 5.5 6

x 10
−7

−0.2

0

0.2

0.4

0.6

0.8

1

1.2

Simulated Lifetime (s)

O
u
tp

u
t
B

it
 V

o
lt
a
g
e
 (

V
)

HSPICE −mt 4

Hypervised SPICE

(b) Data Block Size= 8

1.5 2 2.5 3

x 10
−7

0

0.2

0.4

0.6

0.8

1

1.2

1.4

Simulated Lifetime (s)

O
u
tp

u
t
B

it
 V

o
lt
a
g
e
 (

V
)

HSPICE −mt 4

Hypervised SPICE Simulation

(c) Data Block Size= 32

Fig. 6: Transient view of the primary output with maximum MSE, for different sizes of the multiplier array

By simplifying these signals into simple ramps, the simulation
time will be considerably reduced and the accuracy of timing
and power metrics will be degraded. Here lies a fundamental
trade-off between simulation time and result quality. This can
prove very handy in the context of simulating digital systems
in presence of variability and/or reliability degradation. Analog
artifacts, such as threshold voltage shifts, in MOSFETs of
a huge design can be simulated and the impact of such
artifacts on the global design can be evaluated. Up to now
this capability has only been available at the IP component
level or through library characterization.

Having presented the experimental results, we can revisit the
comparison to the state-of-the-art with the three key metrics
of Table II. The maximum reported simulation speedup and
inspected device inventories are presented for the related work
cited in the Section II. Also, the target platform is given for
each case, as an indication of the implementation’s versatility.
We can safely claim that the device inventories that we address
are very much increased in comparison to the state-of-the-
art, whereas the proposed framework is not limited to specific
hardware. Finally, we can identify a minor speedup achieved
by our parallelization, based on Figure 5a and specifically for
the a data block size of 32 bits. This reduced acceleration

Cited Work Max.
Speedup

Max.
#MOSFETs Executing Platform

[12]∗ N/A 6 2-Processor System

[13] 1 × 5.96 19,995 SGI Challenge
Server (12 CPUs)

[14] 2 × 2.09 96 Intel 2.66GHz PC

[15] 3 × 11 27,995∗∗ Xilinx Virtex-6
LX760 FPGA

[16] 4 × 3.07 7,682 NVIDIA
GeForce GPU

Proposed
Hypervised

SPICE
5 × 2.35 3,670,016 SCC, VMs of a Cloud,

Intel Xeon Server

∗ Few experimental details are provided, apart from a quantitative example
with three inverters, ∗∗ Maximum size of netlist matrix.
1 vs. single core execution, 2 vs. Fiduccia-Mattheyses partitioning, 3 vs.
SPICE on Intel i7-965, 4 vs. Intel Core 2 Quad Core, 5 vs. HSPICE -mt 4.

TABLE II: Comparison of the proposed transient SPICE
simulation framework with works from the state-of-the-art

is to be expected, since the primary goal of this work is
the viability of massive, transient SPICE simulations from a
memory footprint point of view.

VI. CONCLUSIONS

In this paper, we have presented a simulation framework
that allows transient SPICE simulations of large netlists for
extended workloads. We employ the concept of node tearing
in order to partition the target netlist into subcircuits, which
are simulated independently. The primitive input signals of
the netlist are also temporally partitioned. Workload and
node partitioning create a set of small SPICE instances, that
have reduced memory requirements. Being independent, these
SPICE instances can be mapped to the execution units of a
multi-core platform, thus achieving a data partitioning of the
transient simulation problem. With our simulation framework,
the demand for main memory is not performed massively
and concurrently to the executing platform, as observed in
the state-of-the-art and even commercial tools. Instead, by
scaling the initially large SPICE simulation, we avoid hitting
the memory constraints of all inspected platforms, while
simulating netlists with over 106 devices. Furthermore, our
proposed parallel implementation is flexible and has minimum
hardware requirements. We have verified the performance
and accuracy of our framework on three platforms, covering
the range of cloud service infrastructure, regular multi-core
systems and advanced chips with an increased number of
integrated processors. Thus, we substantiate the reusability of
our approach across computing systems, which are usually
found in academia or industry.

ACKNOWLEDGMENTS

The SCC and its MCPC were provided by Intel Labs
Braunschweig, Germany in the context of the FP7-INFSO-
IST-248789 TRAMS project of the European Commission.

REFERENCES

[1] F. N. Najm, Circuit Simulation, 1st ed. Hoboken, New Jersey, US:
Wiley-IEEE Press, 2010.

[2] L. W. Nagel and D. Pederson, “Spice (simulation program with
integrated circuit emphasis),” EECS Department, University of
California, Berkeley, Tech. Rep. UCB/ERL M382, Apr 1973.

[3] Y. Ye, F. Liu, M. Chen, S. Nassif, and Y. Cao, “Statistical modeling
and simulation of threshold variation under random dopant fluctuations
and line-edge roughness,” Very Large Scale Integration (VLSI) Systems,
IEEE Transactions on, vol. 19, no. 6, pp. 987 –996, june 2011.

[4] M. Toledano-Luque, B. Kaczer, P. Roussel, T. Grasser, G. Wirth,
J. Franco, C. Vrancken, N. Horiguchi, and G. Groeseneken, “Response
of a single trap to ac negative bias temperature stress,” in Reliability
Physics Symposium (IRPS), 2011 IEEE International, april 2011, pp.
4A.2.1 –4A.2.8.

[5] A. Maxim and M. Gheorghe, “A novel physical based model of deep-
submicron cmos transistors mismatch for monte carlo spice simulation,”
in Circuits and Systems, 2001. ISCAS 2001. The 2001 IEEE Interna-
tional Symposium on, vol. 5, 2001, pp. 511 –514 vol. 5.

[6] D. Rodopoulos, S. Mahato, V. de Almeida Camargo, B. Kaczer,
F. Catthoor, S. Cosemans, G. Groeseneken, A. Papanikolaou, and
D. Soudris, “Time and workload dependent device variability in circuit
simulations,” in IC Design Technology (ICICDT), 2011 IEEE Interna-
tional Conference on, may 2011, pp. 1 –4.

[7] S. Fuller and L. Millett, “Computing performance: Game over or next
level?” Computer, vol. 44, no. 1, pp. 31 –38, jan. 2011.

[8] L. W. Nagel, “Spice2: A computer program to simulate semiconductor
circuits,” Ph.D. dissertation, EECS Department, University of California,
Berkeley, 1975.

[9] M. Rewieński, “A perspective on fast-spice simulation technology,” in
Simulation and Verification of Electronic and Biological Systems, P. Li,
L. M. Silveira, and P. Feldmann, Eds. Springer, 2011, pp. 23–42.

[10] A. Sangiovanni-Vincentelli, et al., “An efficient heuristic cluster algo-
rithm for tearing large-scale networks,” Circuits and Systems, IEEE
Trans. on, vol. 24, no. 12, pp. 709 – 717, dec 1977.

[11] F. Wu, “Solution of large-scale networks by tearing,” Circuits and
Systems, IEEE Trans. on, vol. 23, no. 12, pp. 706 – 713, dec 1976.

[12] F. Wei and H. Yang, “Transmission line inspires a new distributed
algorithm to solve the nonlinear dynamical system of physical circuit,” in
Computer Sciences and Convergence Information Technology (ICCIT),
2010 5th Int. Conf. on, 30 2010-dec. 2 2010, pp. 816 –821.

[13] N. Frohlich, V. Glockel, and J. Fleischmann, “A new partitioning
method for parallel simulation of vlsi circuits on transistor level,” in
Design, Automation and Test in Europe Conference and Exhibition 2000.
Proceedings, 2000, pp. 679 –684.

[14] X. Zhou, Y. Wang, and H. Yang, “Dccb and scc based fast circuit par-
tition algorithm for parallel spice simulation,” in ASIC, 2009. ASICON
’09. IEEE 8th International Conference on, oct. 2009, pp. 1247 –1250.

[15] N. Kapre, “Spice2 – a spatial parallel architecture for accelerating
the spice circuit simulator,” Ph.D. dissertation, California Institute of
Technology – Pasadena, California, 2010.

[16] K. Gulati, J. F. Croix, S. P. Khatr, and R. Shastry, “Fast circuit
simulation on graphics processing units,” in Proceedings of the 2009
Asia and South Pacific Design Automation Conference, ser. ASP-DAC
’09. Piscataway, NJ, USA: IEEE Press, 2009, pp. 403–408. [Online].
Available: http://dl.acm.org/citation.cfm?id=1509633.1509733

[17] J. Howard, S. Dighe, S. Vangal, G. Ruhl, N. Borkar, S. Jain, V. Erra-
guntla, M. Konow, M. Riepen, M. Gries, G. Droege, T. Lund-Larsen,
S. Steibl, S. Borkar, V. De, and R. Van Der Wijngaart, “A 48-core ia-32
processor in 45 nm cmos using on-die message-passing and dvfs for
performance and power scaling,” Solid-State Circuits, IEEE Journal of,
vol. 46, no. 1, pp. 173 –183, jan. 2011.

[18] V. Koukis, “∼okeanos: Delivering iaas to the greek academic and
research community,” August 2012, invited talk at VHPC 2012, Rhodes
Island, Greece.

[19] P. Nenzi and H. Vogt, “Spice (simulation program with integrated
circuit emphasis),” Tech. Rep. UCB/ERL M382, July 2012.

APPENDIX B: SOURCE CODE

B: Source Code
Copyright (C) 2013 Gregory Lyras
The following source code is free software: you can redistribute it and/or
modify it under the terms of the GNU General Public License as published
by the Free Software Foundation, either version 3 of the License, or (at
your option) any later version.
The following source code is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.
See the GNU General Public License for more details.
You should have received a copy of the GNU General Public License along
with the following source code. If not, see <http://www.gnu.org/licenses/>.

Hypervisor
1 using namespace std;
2
3 void child(int core, const char *cmd)
4 {
5 #if RUN_ON_MITSOS
6 run(cmd);
7 #elif RUN_ON_SCC
8 run_on_SCC(core, cmd);
9 #endif /* where do you wanna run */
10 exit(core);
11 }
12
13
14 int main(int argc, char **argv)
15 {
16 pid_t p;
17 //children queue (pids)
18 /*
19 * there are two queues that hold the available resources
20 * cores and readyToSpawn, when either one is empty, the hypervisor waits
21 * there could be a better policy there but we leave that to future work
22 */
23 deque<int> available_cores;
24 deque<int> readyToSpawn;
25 /*
26 * allNodes is the main structure of the hypervisor
27 * it holds all the data needed by the hypervisor
28 * regarding the jobs it has to dispatch
29 * it also holds dependencies
30 * and children for each
31 */
32 vector<execNode *> allNodes;
33 int status;
34 int cores;
35 int jobs;

Grigorios N. Lyras Page 57 of 78

http://www.gnu.org/licenses/

APPENDIX B: SOURCE CODE

36 int jobs_remaining;
37 /*
38 * procIDbuf is used to hold each process ID
39 * this is unique and different from the OS pid
40 * it is defined during the parsing of the executionGraph
41 */
42 int procIDbuf;
43 int coreIDbuf;
44 int coreIDstatus;
45
46 /*
47 * it is the number of currently running processes
48 * not needed but usefull for debugging
49 * might be marked as deprecated
50 * XXX: removed as it wasn't used
51 */
52 /* int processesCurrentlyRunning; */
53
54 /*
55 * iterator used for children waking for each node
56 */
57 vector<int>::iterator it;
58 /*
59 * buffer which holds the children of each node every time
60 */
61 vector<int> children;
62 /*
63 * procsOnCores holds a mapping
64 * it knows which currentlyRunning process
65 * is on which core
66 */
67 vector<int> procsOnCores;
68
69 if(argc != 3)
70 {
71 fprintf(stderr, "no arguements given\n");
72 fprintf(stderr, "usage: %s cores genericGraph\n", argv[0]);
73 exit(EXIT_FAILURE);
74 }
75
76 sscanf(argv[1], "%d", &cores);
77 procsOnCores.resize(cores);
78 fill(procsOnCores.begin(),procsOnCores.end(),0);
79
80
81 /*
82 * and now the fun part
83 */
84
85
86 /*
87 * hocus pocus
88 * read the configuration
89 * and fill allNodes with the data i need
90 */
91 parse(allNodes,argv[2]);
92
93
94 /*
95 * add all jobs that are ready to run
96 * in the readyToSpawn queue
97 */

Grigorios N. Lyras Page 58 of 78

APPENDIX B: SOURCE CODE

98 jobs = allNodes.size();
99 for (int i = 0 ; i < jobs ; ++i)
100 {
101 if (allNodes[i]->ready())
102 readyToSpawn.push_back(i);
103 }
104 jobs_remaining = jobs;
105
106 /*
107 * this builds the corelist of the available resources
108 */
109 for(int i = 0 ; i < cores ; ++i)
110 {
111 available_cores.push_back(i);
112 }
113 int processesCurrentlyRunning = 0;
114
115 for (int i = 0; i < jobs ;)
116 {
117 //if there is an available core, go for it
118 //else wait for a child to end
119 if(available_cores.empty() || readyToSpawn.empty())
120 {
121 if (waitpid(-1, &status, 0) < 0) {
122 perror("unreachable state\n");
123 exit(EXIT_FAILURE);
124 }
125 processesCurrentlyRunning--;
126 coreIDstatus = WEXITSTATUS(status);
127 /* the exit status is the coreID */
128 /* this way when a child exits we know where it was running
129 * and with the array procsOnCores we know which process was
130 * running on that core
131 */
132 coreIDbuf = coreIDstatus;
133 available_cores.push_back(coreIDstatus);
134 procIDbuf = procsOnCores[coreIDbuf];
135
136 if (allNodes[procIDbuf]->childrenN() > 0)
137 {
138 children = allNodes[procIDbuf]->getChildren();
139
140 for (it = children.begin() ; it != children.end() ; it++)
141 {
142 if(allNodes[*it] && allNodes[*it]->decDeps())
143 {
144 readyToSpawn.push_back(*it);
145 }
146 }
147 }
148 }
149 else
150 {
151 procIDbuf = readyToSpawn.front();
152 coreIDbuf = available_cores.front();
153 procsOnCores[coreIDbuf]=procIDbuf;
154 p = fork();
155 processesCurrentlyRunning++;
156 if (p == 0)
157 {
158 //child wfd,core,pid,cmd
159 child(coreIDbuf, allNodes[procIDbuf]->getCmd());

Grigorios N. Lyras Page 59 of 78

APPENDIX B: SOURCE CODE

160 }
161 else
162 {
163 printf(">>>> spawning: %16d on: %3d | %16d to go\n", procIDbuf+1, coreIDbuf, --jobs_remaining);
164 readyToSpawn.pop_front();
165 available_cores.pop_front();
166 }
167 ++i;
168 }
169 }
170 printf("\n");
171 for(; processesCurrentlyRunning > 0; processesCurrentlyRunning--)
172 {
173 waitpid(-1, &status, 0);
174 }
175
176 return 0;
177 }

1 int run_on_SCC(int core,const char *command)
2 {
3 char cmd[COMMAND_SIZE];
4 char dir[COMMAND_SIZE];
5 getcwd(dir,COMMAND_SIZE);
6 snprintf(cmd,COMMAND_SIZE,"ssh root@rck%02d 'cd %s && %s' ",core , dir, command);
7 return system(cmd);
8 }
9
10 int run(const char *command)
11 {
12 return system(command);
13 }

1 #ifndef EXEC_NODE_H
2 #define EXEC_NODE_H
3
4 #include <vector>
5 #include <string>
6 #include <cstring>
7 #include <iostream>
8 #include <iterator>
9
10 class execNode {
11 std::string command;
12 int dependencies;
13 std::vector<int> children;
14 public:
15 execNode(const execNode &N);
16 execNode(int deps, std::string cmd);
17 ~execNode();
18 bool decDeps();
19 bool ready();
20 void addChild(int i);
21 const char *getCmd();
22 int childrenN();
23 std::vector<int> getChildren();
24 void print();
25
26 };
27 #endif

Grigorios N. Lyras Page 60 of 78

APPENDIX B: SOURCE CODE

Sapp

1 #include <stdio.h>
2 #include <stdlib.h>
3 #include "sapp_common.h"
4 #include "replace.h"
5 #include "signal.h"
6 #include <sys/times.h>
7 #include <sys/timeb.h>
8 #include <time.h>
9
10
11
12 int main(int argc, char** argv)
13 {
14 int circID;
15 int timeslice;
16 int timesliceDuration;
17 int Ninputs;
18 int Noutputs;
19 int spice_ret;
20 double dtime;
21 FILE *timelog;
22 char timelog_buf[CIR_NAME_SIZE];
23 struct timeb start,end;
24 signal *tslices;
25 ftime(&start);
26
27 char **inputs;
28 char **outputs;
29 int i;
30 char *gen_cir;
31 char my_cir[CIR_NAME_SIZE];
32 char buf1[COMMAND_SIZE];
33 char buf2[COMMAND_SIZE];
34 char btifile[BTI_NAME_SIZE];
35
36 if (argc == 2)
37 {
38 sscanf(argv[1], "%d", &circID);
39 if(circID == 0)
40 {
41 exit(EXIT_SUCCESS);
42 }
43 }
44 if (argc < 8)
45 {
46 help(argv[0]);
47 exit(EXIT_FAILURE);
48 }
49
50 /*
51 * Here be input parsing
52 */
53 sscanf(argv[1], "%d", &circID);
54 sscanf(argv[2], "%d", ×lice);
55
56 sscanf(argv[3], "%d", &Ninputs);
57
58 if (7+Ninputs > argc)
59 {

Grigorios N. Lyras Page 61 of 78

APPENDIX B: SOURCE CODE

60 error(ERR_INPUT_SIZE);
61 help(argv[0]);
62 exit(EXIT_FAILURE);
63 }
64
65 inputs = (char **) malloc(Ninputs * sizeof(char*));
66 for(i = 0; i < Ninputs; i++)
67 inputs[i] = argv[i+4];
68
69 sscanf(argv[4+Ninputs], "%d", &Noutputs);
70
71 if (Noutputs+Ninputs+6 > argc)
72 {
73 error(ERR_OUTPUT_SIZE);
74 help(argv[0]);
75 exit(EXIT_FAILURE);
76 }
77
78 outputs = (char **) malloc(Noutputs * sizeof(char*));
79 for(i = 0; i < Noutputs; i++)
80 outputs[i] = argv[i+5+Ninputs];
81
82 gen_cir = argv[5+Ninputs+Noutputs];
83 /*
84 * End of input parsing
85 */
86
87
88 /*
89 * copy the file and rename it
90 * format: timeslice_circuitID.cir
91 */
92
93 snprintf(timelog_buf, CIR_NAME_SIZE, "timelogs/%04d_%05d.log", timeslice, circID);
94 timelog = fopen(timelog_buf,"w");
95
96 snprintf(my_cir, CIR_NAME_SIZE, "%04d_%05d.cir", timeslice, circID);
97 my_cir[CIR_NAME_SIZE-1]='\0';
98 copy(gen_cir, my_cir);
99
100 /*
101 * replace all INPUT in generic circ
102 * so that they correspond to the output
103 * of previous executions
104 */
105 for(i = 0; i < Ninputs ; i++)
106 {
107 create_input_file(timeslice, circID, i, inputs[i]);
108 snprintf(buf1, COMMAND_SIZE, ".include INPUT%03d", i+1);
109 buf1[COMMAND_SIZE-1] = '\0';
110 snprintf(buf2, COMMAND_SIZE, ".include %04d_%05d_%03d.in", timeslice, circID, i);
111 buf2[COMMAND_SIZE-1] = '\0';
112 replace_line_in_file(my_cir, buf1, buf2);
113 }
114
115
116 tslices = read_sig("tslices.out");
117 timesliceDuration = (int)(tslices->value[timeslice-1]*1e9);
118 delete_sig(tslices);
119 snprintf(buf2, COMMAND_SIZE, ".tran %dns %dns", timesliceDuration, timesliceDuration);
120 buf2[COMMAND_SIZE-1] = '\0';
121 replace_line_in_file(my_cir, ".tran", buf2);

Grigorios N. Lyras Page 62 of 78

APPENDIX B: SOURCE CODE

122
123 snprintf(buf1, COMMAND_SIZE, NGSPICE_CMD_LINE, my_cir, timeslice, circID, timeslice, circID);
124
125 /*
126 * Setup the environment variable for the BTI output filename
127 * used in dimitris stamoulis' version
128 */
129 snprintf(btifile, BTI_NAME_SIZE, BTI_FILENAME, circID);
130 if (setenv(BTI_FILENAME_VAR, btifile, 1) != 0)
131 {
132 perror("Failed to set BTI_FILENAME");
133 exit(1);
134 }
135
136 buf1[COMMAND_SIZE-1] = '\0';
137 spice_ret = system(buf1);
138 if(spice_ret != 0)
139 {
140 perror("SPICE Failed...");
141 exit(spice_ret);
142 }
143
144
145 parse_spice_output(timeslice, circID, Noutputs, outputs);
146
147 clean_files(timeslice, circID, Ninputs, inputs);
148
149
150 free(inputs);
151 free(outputs);
152
153 ftime(&end);
154 dtime = (end.time-start.time)*1e6+(end.millitm-start.millitm);
155
156
157 fprintf(timelog,"%lf\n", dtime/1e6);
158 fclose(timelog);
159 exit(EXIT_SUCCESS);
160
161 }

Microsig library
1 #ifndef SIGNAL_H
2 #define SIGNAL_H
3
4 #include <math.h>
5 #include "filter_common.h"
6
7 #define SIG_INIT_SIZE 100
8 #define SIG_REALLOC_STEP 2
9 #define FILE_DATA_WIDTH 2
10
11 #define SIG_AVG_STEPPING 1
12 #define SIG_RMSE_STEPPING 1
13
14 #define SIG_SLOPE_LIMIT 1e-3
15
16 struct _signal {

Grigorios N. Lyras Page 63 of 78

APPENDIX B: SOURCE CODE

17 uint32_t len;
18 uint32_t alloc;
19 double *time;
20 double *value;
21 };
22
23 typedef struct _signal signal;
24
25 /*
26 * SIG utils
27 */
28 signal *create_sig(uint32_t init);
29 signal *delete_sig(signal *sig);
30 void extend_sig(signal *sig, double t, double v);
31 void append_sig(signal *sig1, signal *sig2);
32 void trim_sig(signal *sig);
33 signal *add_sig(signal *sig1, signal *sig2);
34 double slope(signal *sig, uint32_t i);
35 double interpolate(signal *sig, uint32_t p1, uint32_t p2, double t);
36 double average(signal *sig);
37 double rmse(signal *errors);
38 signal *resample_sig(signal *sig, uint32_t points);
39 signal *zeros(double step, uint32_t points);
40 void invert_sig(signal *sig);
41 void shift_sig(signal *sig, double offset);
42
43
44 /*
45 * SIG IO
46 */
47 signal *read_sig(const char *fname);
48 signal *read_n_filter_sig(const char *fname);
49 signal *read_n_filter_pwl_sig(const char *fname);
50 signal *read_pwl_sig(const char *fname);
51 void print_sig(signal *sig);
52 void fprint_sig(FILE *f, signal *sig);
53 void write_sig(const char *fname, signal *sig);
54
55 #endif

1 #include "signal.h"
2 #include "filter.h"
3
4 signal *create_sig(uint32_t init)
5 {
6 signal *sig = NULL;
7
8 sig = (signal *) malloc(sizeof(signal));
9 ASSERT(sig != NULL);
10
11 sig->len = 0;
12 sig->alloc = init;
13 sig->time = (double *) malloc(init*sizeof(double));
14 sig->value = (double *) malloc(init*sizeof(double));
15 return sig;
16 }
17
18 signal *delete_sig(signal *sig)
19 {
20 free(sig->time);
21 free(sig->value);
22 free(sig);

Grigorios N. Lyras Page 64 of 78

APPENDIX B: SOURCE CODE

23 return NULL;
24 }
25
26 void *my_realloc(void *p, size_t size)
27 {
28 void *buf = NULL;
29 ASSERT(p != NULL);
30 buf = realloc(p, size);
31 ASSERT(buf != NULL);
32 return buf;
33 }
34
35 /*
36 * There may be points we dont want in the signal
37 * YOU SHALL NOT PASS!
38 */
39 static bool gandalf_point(signal *sig, double t, double v)
40 {
41 return ((t == sig->time[sig->len-1]) && (v != sig->value[sig->len-1])) || \
42 (t < sig->time[sig->len-1]);
43 }
44
45 void extend_sig(signal *sig, double t, double v)
46 {
47 ASSERT(sig != NULL);
48 if(sig->len > 0)
49 {
50 if (gandalf_point(sig, t, v))
51 {
52 debug("error in signal input ignoring entries...:\n");
53 debug("times: %le (ignored) %le\n", t, sig->time[sig->len-1]);
54 debug("values: %le (ignored) %le\n", v, sig->value[sig->len-1]);
55 return;
56 }
57 }
58 if(sig->len == sig->alloc)
59 {
60 sig->alloc *= SIG_REALLOC_STEP;
61 debug("need to extend to %d\n", sig->alloc);
62 ASSERT(sig->alloc > sig->len);
63 sig->time = (double *) my_realloc(sig->time, (sig->alloc) * sizeof(double));
64 sig->value = (double *) my_realloc(sig->value, (sig->alloc) * sizeof(double));
65 }
66 sig->time[sig->len] = t;
67 sig->value[sig->len] = v;
68 sig->len++;
69 }
70
71 void trim_sig(signal *sig)
72 {
73 return;
74 ASSERT(sig != NULL);
75 ASSERT(sig->time != NULL);
76 ASSERT(sig->value != NULL);
77 sig->time = my_realloc(sig->time, (sig->len)*sizeof(double));
78 sig->value = my_realloc(sig->value, (sig->len)*sizeof(double));
79 sig->alloc = sig->len;
80 }
81
82 double interpolate(signal *sig, uint32_t p1, uint32_t p2, double t)
83 {
84 double v1 = 0;

Grigorios N. Lyras Page 65 of 78

APPENDIX B: SOURCE CODE

85 double v2 = 0;
86 double t1 = 0;
87 double t2 = 0;
88 double rate = 0;
89
90 if(p1 < sig->len)
91 {
92 t1 = sig->time[p1];
93 v1 = sig->value[p1];
94 }
95 else
96 {
97 t1 = 0;
98 v1 = 0;
99 }
100
101 if(p2 < sig->len)
102 {
103 t2 = sig->time[p2];
104 v2 = sig->value[p2];
105 rate = (v2 - v1)/(t2-t1);
106 }
107 else
108 {
109 t2 = 0;
110 v2 = 0;
111 rate = 0;
112 }
113
114
115 return v1 + (t-t1)*rate;
116 }
117
118 signal *add_sig(signal *sig1, signal *sig2)
119 {
120 uint32_t i1, i2, i3;
121 double t1, t2;
122 double v1, v2;
123 double ts, vs;
124 signal *sum_sig = NULL;create_sig(SIG_INIT_SIZE);
125 i1 = 0;
126 i2 = 0;
127 i3 = 0;
128 t1 = t2 = ts = 0;
129 v1 = v2 = vs = 0;
130
131 sum_sig = create_sig(SIG_INIT_SIZE);
132 /*
133 * Ok here we create a signal with all the timestamps of each of sig1 sig2
134 * this will be used as a buffer to add the signals and it will be returned
135 */
136 while(i1 < sig1->len && i2 < sig2->len)
137 {
138 t1 = sig1->time[i1];
139 t2 = sig2->time[i2];
140 if(t1 < t2)
141 {
142 extend_sig(sum_sig, t1, 0);
143 i1++;
144 }
145 else if (t1 > t2)
146 {

Grigorios N. Lyras Page 66 of 78

APPENDIX B: SOURCE CODE

147 extend_sig(sum_sig, t2, 0);
148 i2++;
149 }
150 else
151 {
152 extend_sig(sum_sig, t1, 0);
153 i1++;
154 i2++;
155 }
156 }
157 while(i1 < sig1->len)
158 {
159 t1 = sig1->time[i1];
160 extend_sig(sum_sig, t1, 0);
161 i1++;
162 }
163 while(i2 < sig2->len)
164 {
165 t2 = sig2->time[i2];
166 extend_sig(sum_sig, t2, 0);
167 i2++;
168 }
169
170 i1 = 0;
171 i2 = 0;
172 i3 = 0;
173
174 t1 = sig1->time[i1];
175 t2 = sig2->time[i2];
176 v1 = sum_sig->value[i1];
177 v2 = sum_sig->value[i2];
178
179 vs = v1+v2;
180 sum_sig->value[i3] = vs;
181 ts = sum_sig->time[i3];
182 if(t1 <= ts)
183 {
184 i1++;
185 }
186 if(t2 <= ts)
187 {
188 i2++;
189 }
190
191 for(i3 = 1; i3 < sum_sig->len && i1 < sig1->len && i2 < sig2->len; ++i3)
192 {
193 t1 = sig1->time[i1];
194 t2 = sig2->time[i2];
195 ts = sum_sig->time[i3];
196
197 v1 = sig1->value[i1];
198 v2 = sig2->value[i2];
199
200 if(t1 > ts)
201 {
202 ASSERT(ts == t2);
203 vs = v2 + interpolate(sig1, i1-1, i1, ts);
204 sum_sig->value[i3] = vs;
205 i2++;
206 }
207 else if (t2 > ts)
208 {

Grigorios N. Lyras Page 67 of 78

APPENDIX B: SOURCE CODE

209 ASSERT(ts == t1);
210 vs = v1 + interpolate(sig2, i2-1, i2, ts);
211 sum_sig->value[i3] = vs;
212 i1++;
213 }
214 else
215 {
216 ASSERT(ts == t1 && ts == t2);
217 vs = v1 + v2;
218 sum_sig->value[i3] = vs;
219 i1++;
220 i2++;
221 }
222 }
223
224 v2 = sig2->value[sig2->len-1];
225 while(i1 < sig1->len)
226 {
227 vs = v2 + sig1->value[i1];
228 sum_sig->value[sig2->len - 1 + i1] = vs;
229 i1++;
230 }
231
232 v1 = sig1->value[sig1->len-1];
233 while(i2 < sig2->len)
234 {
235 vs = v1 + sig2->value[i2];
236 sum_sig->value[sig1->len - 1 + i2] = vs;
237 i2++;
238 }
239
240 trim_sig(sum_sig);
241 return sum_sig;
242 }
243
244 void shift_sig(signal *sig, double offset)
245 {
246 uint32_t i;
247
248 for(i = 0; i < sig->len; ++i)
249 {
250 sig->time[i] += offset;
251 }
252 }
253
254
255 signal *read_n_filter_sig(const char *fname)
256 {
257 signal *sig = NULL;
258 signal *rsig = NULL;
259 sig = read_sig(fname);
260 rsig = filter(sig);
261 delete_sig(sig);
262 return rsig;
263 }
264 signal *read_n_filter_pwl_sig(const char *fname)
265 {
266 signal *sig = NULL;
267 signal *rsig = NULL;
268 sig = read_pwl_sig(fname);
269 rsig = filter(sig);
270 delete_sig(sig);

Grigorios N. Lyras Page 68 of 78

APPENDIX B: SOURCE CODE

271 return rsig;
272 }
273
274 signal *read_pwl_sig(const char *fname)
275 {
276 FILE *f = NULL;
277 signal *sig = NULL;
278 double stamp = 0;
279 double value = 0;
280 char dump = '\0';
281
282 f = fopen(fname, "r");
283 if(f == NULL)
284 {
285 perror("read_pwl_signal failed");
286 exit(EXIT_FAILURE);
287 }
288
289 sig = create_sig(SIG_INIT_SIZE);
290 if(sig == NULL)
291 {
292 perror("failed to initialize sig");
293 exit(EXIT_FAILURE);
294 }
295
296 while((dump = fgetc(f)) != '(' && dump != EOF)
297 ;
298
299 if ((fscanf(f, "%le", &stamp) == 1) && (fscanf(f, "%le\n", &value) == 1))
300 {
301 extend_sig(sig, stamp, value);
302 }
303 else
304 {
305 perror("read_pwl_signal failed");
306 exit(EXIT_FAILURE);
307 }
308
309 while((fscanf(f, "+%c", &dump) == 1) && (fscanf(f, "%le", &stamp) == 1) && (fscanf(f, "%le\n", &value) == 1))
310 {
311 extend_sig(sig, stamp, value);
312 }
313 trim_sig(sig);
314 fclose(f);
315 return sig;
316 }
317
318 signal *read_sig(const char *fname)
319 {
320 FILE *f;
321 signal *sig;
322 double stamp;
323 double value;
324
325 f = fopen(fname, "r");
326 if(f == NULL)
327 {
328 fprintf(stderr, "read_signal failed %s\n", fname);
329 exit(EXIT_FAILURE);
330 }
331
332 sig = create_sig(SIG_INIT_SIZE);

Grigorios N. Lyras Page 69 of 78

APPENDIX B: SOURCE CODE

333
334 while((fscanf(f, "%le", &stamp) == 1) && (fscanf(f, "%le", &value) == 1))
335 {
336 extend_sig(sig, stamp, value);
337 }
338 trim_sig(sig);
339 fclose(f);
340 return sig;
341 }
342
343 void write_sig(const char *fname, signal *sig)
344 {
345 FILE *f = NULL;
346
347 f = fopen(fname, "w");
348 if(f == NULL)
349 {
350 perror("write_sig failed");
351 exit(EXIT_FAILURE);
352 }
353 fprint_sig(f, sig);
354 fclose(f);
355 }
356
357 void print_sig(signal *sig)
358 {
359 fprint_sig(stdout, sig);
360 }
361
362 void fprint_sig(FILE *f, signal *sig)
363 {
364 uint32_t i = 0;
365 fprintf(f, "%le %le\n", sig->time[0], sig->value[0]);
366 for(i = 1; i < sig->len; ++i)
367 {
368 fprintf(f, "%le %le\n", sig->time[i], sig->value[i]);
369 }
370 }
371
372 double slope(signal *sig, uint32_t i)
373 {
374 ASSERT(i < sig->len);
375 double v1, v2;
376 double t1, t2;
377
378 v1 = sig->value[i-1];
379 v2 = sig->value[i];
380 t1 = sig->time[i-1];
381 t2 = sig->time[i];
382 if(t1 == t2)
383 {
384 debug("%le %le %le %le\n", t1, v1, t2, v2);
385 ASSERT(v1 == v2);
386 return 0;
387 }
388
389 return (v2-v1)/(t2-t1);
390 }
391
392 void append_sig(signal *sig1, signal *sig2)
393 {
394 uint32_t i;

Grigorios N. Lyras Page 70 of 78

APPENDIX B: SOURCE CODE

395 for(i = 0; i < sig2->len; ++i)
396 {
397 extend_sig(sig1, sig2->time[i], sig2->value[i]);
398 }
399 }
400
401 void invert_sig(signal *sig)
402 {
403 uint32_t i;
404 for(i = 0; i < sig->len; ++i)
405 {
406 sig->value[i] *= -1;
407 }
408 }
409
410 double average(signal *sig)
411 {
412 uint32_t i;
413 double avg = 0;
414 double avg_buff = 0;
415 for(i = 0; i < sig->len; ++i)
416 {
417 avg_buff = sig->value[i];
418 avg += avg_buff/sig->len;
419 }
420 return avg;
421 }
422
423 double rmse(signal *errors)
424 {
425 uint32_t i;
426 double mse = 0;
427 double mse_buff = 0;
428 double diff = 0;
429 for(i = 0; i < errors->len; ++i)
430 {
431 diff = errors->value[i];
432 mse_buff = diff*diff;
433 mse += mse_buff;
434 }
435 return sqrt(mse/errors->len);
436 }
437
438 signal *zeros(double step, uint32_t points)
439 {
440 double curr;
441 uint32_t i;
442 signal *sig;
443
444 sig = create_sig(SIG_INIT_SIZE);
445 curr = 0;
446 for(i = 0; i < points; ++i)
447 {
448 extend_sig(sig, curr, 0);
449 curr += step;
450 }
451 trim_sig(sig);
452 return sig;
453 }
454
455 signal *resample_sig(signal *sig, uint32_t points)
456 {

Grigorios N. Lyras Page 71 of 78

APPENDIX B: SOURCE CODE

457 double duration = 0;
458 double step = 0;
459 signal *resample = NULL;
460 signal *ans = NULL;
461
462
463 duration = sig->time[sig->len - 1];
464 step = duration/points;
465 resample = zeros(step, points);
466
467 ans = add_sig(sig, resample);
468 return ans;
469 }

1 #include "filter.h"
2
3 static state in_thresolds(signal *sig, uint32_t p)
4 {
5 double v;
6 ASSERT(sig != NULL);
7 ASSERT(p <= sig->len);
8 v = sig->value[p];
9 /*
10 if(v > VALUE_HIGH_OVER_THRESHOLD || v < VALUE_LOW_UNDER_THRESHOLD)
11 {
12 return STATE_ERROR;
13 }
14 else
15 */
16 if(v <= VALUE_LOW_OVER_THRESHOLD)
17 {
18 return STATE_LOW;
19 }
20 else if(v >= VALUE_HIGH_UNDER_THRESHOLD)
21 {
22 return STATE_HIGH;
23 }
24 else
25 {
26 return STATE_MID;
27 }
28
29 }
30 static void quantinise(signal *sig)
31 {
32 state s;
33 uint32_t i;
34 for(i = 0; i < sig->len; ++i)
35 {
36 s = in_thresolds(sig, i);
37 switch(s)
38 {
39 case STATE_ERROR:
40 fprintf(stderr, "value out of bounds %lf\n", sig->value[i]);
41 case STATE_LOW:
42 sig->value[i] = VALUE_LOW;
43 break;
44 case STATE_HIGH:
45 sig->value[i] = VALUE_HIGH;
46 break;
47 default:
48 break;

Grigorios N. Lyras Page 72 of 78

APPENDIX B: SOURCE CODE

49 }
50 }
51 }
52
53 static bool pass(signal *sig, uint32_t p1, uint32_t p2, uint32_t p3)
54 {
55 state s1, s2, s3;
56 s1 = in_thresolds(sig, p1);
57 s2 = in_thresolds(sig, p2);
58 s3 = in_thresolds(sig, p3);
59
60 ASSERT(s1 != STATE_ERROR);
61 ASSERT(s2 != STATE_ERROR);
62 ASSERT(s3 != STATE_ERROR);
63
64 /*
65 * XXX: for now we will not filter out any STATE_MID points
66 */
67 return s1 == s2 && s2 == s3 && s1 != STATE_MID;
68
69 }
70
71 static uint32_t same(signal *sig, uint32_t start)
72 {
73 uint32_t stop;
74
75 stop = start+1;
76 while(stop < sig->len-1 && pass(sig, start, stop, stop + 1))
77 {
78 stop++;
79 }
80 return stop;
81 }
82
83 signal *filter(signal *sig)
84 {
85 signal *fsig;
86 uint32_t start;
87 uint32_t stop;
88
89 ASSERT(sig != NULL);
90
91 fsig = create_sig(SIG_INIT_SIZE);
92
93 ASSERT(fsig != NULL);
94
95
96 start = 0;
97 while(start < sig->len)
98 {
99 extend_sig(fsig, sig->time[start], sig->value[start]);
100 stop = same(sig, start);
101 extend_sig(fsig, sig->time[stop], sig->value[stop]);
102 start = stop + 1;
103 }
104
105 trim_sig(fsig);
106 quantinise(fsig);
107 return fsig;
108 }
109
110 signal *crude_filter(signal *sig)

Grigorios N. Lyras Page 73 of 78

APPENDIX B: SOURCE CODE

111 {
112 signal *fsig;
113 signal *rsig;
114 state s;
115 uint32_t i;
116 ASSERT(sig != NULL);
117
118 fsig = filter(sig);
119 rsig = create_sig(SIG_INIT_SIZE);
120
121 ASSERT(fsig != NULL);
122 ASSERT(rsig != NULL);
123
124
125 for(i = 0; i < fsig->len; ++i)
126 {
127 s = in_thresolds(fsig, i);
128 if(s == STATE_LOW || s == STATE_HIGH)
129 {
130 extend_sig(rsig, fsig->time[i], fsig->value[i]);
131 }
132 }
133 trim_sig(rsig);
134 quantinise(rsig);
135 delete_sig(fsig);
136 return rsig;
137 }

Partitioner
1 #include "signal.h"
2 #include "filter.h"
3 #include "party.h"
4
5 #define CWD_SIZE 1024
6
7 #include <math.h>
8 #include <dirent.h>
9 #include <unistd.h>
10 #include <fnmatch.h>
11
12 char *pattern = NULL;
13
14 static int files_filter(const struct dirent *d)
15 {
16 int r = d->d_type == DT_REG && !fnmatch(pattern, d->d_name, 0);
17 return r;
18 }
19
20 int main(int argc, char **argv)
21 {
22
23 signal *aggregated_sig = NULL;
24 signal *profile = NULL;
25 uint32_t available_timeslices = 0;
26 uint32_t slices = 0;
27 int file_cnt = 0;
28 char cwd[CWD_SIZE] = "";
29 struct dirent **file_names = NULL;

Grigorios N. Lyras Page 74 of 78

APPENDIX B: SOURCE CODE

30 int i = 0;
31
32 if(argc != 3)
33 {
34 fprintf(stderr, "Usage: party #slices <fname patern>\n");
35 exit(EXIT_FAILURE);
36 }
37 sscanf(argv[1], "%u", &slices);
38
39 pattern = argv[2];
40
41 getcwd(cwd, CWD_SIZE);
42 printf("%s\n", cwd);
43
44 file_cnt = scandir(cwd, &file_names, files_filter, alphasort);
45
46
47 debug("So I have to process %d files... hmm...\n", file_cnt);
48 for(i = 0; i < file_cnt; ++i)
49 debug("Filename %s\n", file_names[i]->d_name);
50
51 aggregated_sig = party_prof(file_cnt, file_names);
52 if(aggregated_sig == NULL)
53 {
54 exit(EXIT_FAILURE);
55 }
56 write_sig("aggregated_sig.out", aggregated_sig);
57 profile = party_times(aggregated_sig);
58
59 /*
60 * At this point sig1 holds the indices that the addition of signals can be
61 * partitioned. More specifically the right end of those signal slices
62 */
63 available_timeslices = profile->len;
64 slices = slices < available_timeslices ? slices : available_timeslices;
65 printf("Available timeslices: %u Slices to be applied: %u\n", \
66 available_timeslices, slices);
67 write_sig("times.out", profile);
68
69
70 for(i = 0; i < file_cnt; ++i)
71 {
72 debug("processing signal %s...\n", file_names[i]->d_name);
73 party(file_names[i]->d_name, profile, slices);
74 }
75
76 delete_sig(aggregated_sig);
77 delete_sig(profile);
78 for(i = 0; i < file_cnt; ++i)
79 {
80 free(file_names[i]);
81 }
82 free(file_names);
83
84 exit(EXIT_SUCCESS);
85 }

1 #include <math.h>
2 #include <string.h>
3
4 #include "signal.h"
5 #include "filter.h"

Grigorios N. Lyras Page 75 of 78

APPENDIX B: SOURCE CODE

6 #include "party.h"
7
8 /*
9 * Generates the profile signal used later on for slicing
10 */
11 signal *party_prof(int file_cnt, struct dirent **file_names)
12 {
13 signal *sig1 = NULL;
14 signal *sig2 = NULL;
15 signal *asig = NULL;
16 signal *fsig = NULL;
17 int i;
18
19 if(file_cnt == 0)
20 {
21 return NULL;
22 }
23
24
25 debug("profiling signal %s...\n", file_names[0]->d_name);
26 sig1 = read_pwl_sig(file_names[0]->d_name);
27 fsig = crude_filter(sig1);
28 sig1 = delete_sig(sig1);
29 sig1 = fsig;
30 asig = sig1;
31
32 for(i = 1; i < file_cnt; ++i)
33 {
34 debug("profiling signal %s...\n", file_names[i]->d_name);
35 sig2 = read_pwl_sig(file_names[i]->d_name);
36 fsig = crude_filter(sig2);
37 sig2 = delete_sig(sig2);
38 sig2 = fsig;
39
40 asig = add_sig(sig1, sig2);
41 sig1 = delete_sig(sig1);
42 sig2 = delete_sig(sig2);
43 sig1 = asig;
44 }
45 return asig;
46 }
47
48 /*
49 * Used to generate the times that the signal can be cut
50 */
51 signal *party_times(signal *profile)
52 {
53 signal *sig1;
54 uint32_t i;
55 double dt;
56 double s;
57
58 sig1 = create_sig(SIG_INIT_SIZE);
59 extend_sig(sig1, 0, 0);
60 for(i = 1; i < profile->len; ++i)
61 {
62 s = fabs(slope(profile, i));
63 dt = profile->time[i] - profile->time[i-1];
64 if(s < SIG_SLOPE_LIMIT && (dt > PARTY_MIN_DURATION))
65 {
66 //extend_sig(sig1, i, asig->time[i] - asig->time[i-1]);
67 extend_sig(sig1, 0.5 * (profile->time[i] + profile->time[i-1]), 0);

Grigorios N. Lyras Page 76 of 78

APPENDIX B: SOURCE CODE

68 }
69 }
70 trim_sig(sig1);
71
72 return sig1;
73 }
74
75 /*
76 * Does the partitioning based on the signal profile generated previously
77 */
78 void party(const char *fname, signal *profile, uint32_t timeslices)
79 {
80 uint32_t available_timeslices = 0;
81 int step = 0;
82 uint32_t i = 0;
83 uint32_t j = 0;
84 double t1 = 0;
85 double t2 = 0;
86 double ts = 0;
87 double tprev = 0;
88 double v = 0;
89 double vprev = 0;
90 char newf[64];
91 signal *input = 0;
92 signal *output = 0;
93 FILE *slicelog = fopen("tslices.out", "w");
94
95
96 input = read_n_filter_pwl_sig(fname);
97 available_timeslices = profile->len;
98 step = (int) ceil((double) available_timeslices / (double) timeslices);
99
100
101 for(i = step, j = 0; i < available_timeslices; i += step)
102 {
103 output = create_sig(SIG_INIT_SIZE);
104 t1 = profile->time[i-step];
105 t2 = profile->time[i];
106 ts = input->time[j];
107 if(ts >= t1)
108 {
109 if (t1 == 0)
110 {
111 v = input->value[0];
112 }
113 else
114 {
115 v = interpolate(input, j - 1, j, t1);
116 }
117 extend_sig(output, t1, v);
118 }
119
120 for(; j < input->len && ts >= t1 && ts < t2; ts = input->time[++j])
121 {
122 v = input->value[j];
123 extend_sig(output, ts, v);
124 }
125
126 if(ts >= t2)
127 {
128 if (t2 == 0)
129 {

Grigorios N. Lyras Page 77 of 78

APPENDIX B: SOURCE CODE

130 v = input->value[0];
131 }
132 else
133 {
134 v = interpolate(input, j - 1, j, t2);
135 }
136 extend_sig(output, t2, v);
137 }
138
139 trim_sig(output);
140 #if SET_DEBUG
141 snprintf(newf, 48, "%04d_dbg_%s.prty", i/step, fname);
142 write_sig(newf, output);
143 #endif /* SET_DEBUG */
144 snprintf(newf, 48, "%04d_%s.prty", i/step, fname);
145 shift_sig(output, -t1);
146 fprintf(slicelog, "%le\t%le\n", t1, output->time[output->len-1]);
147 write_sig(newf, output);
148 delete_sig(output);
149 }
150
151 output = create_sig(SIG_INIT_SIZE);
152 t1 = profile->time[i-step];
153 ts = input->time[j];
154 if(ts >= t1)
155 {
156 v = interpolate(input, j - 1, j, t1);
157 extend_sig(output, t1, v);
158 }
159 for(; j < input->len; ts = input->time[++j])
160 {
161 v = input->value[j];
162 extend_sig(output, ts, v);
163 }
164 trim_sig(output);
165 #if SET_DEBUG
166 snprintf(newf, 48, "%04d_dbg_%s.prty", i/step, fname);
167 write_sig(newf, output);
168 #endif /* SET_DEBUG */
169 snprintf(newf, 48, "%04d_%s.prty", i/step, fname);
170 shift_sig(output, -t1);
171 fprintf(slicelog, "%le\t%le\n", t1, output->time[output->len-1]);
172 write_sig(newf, output);
173 delete_sig(output);
174 fclose(slicelog);
175 }

Grigorios N. Lyras Page 78 of 78

	Introduction
	Research Landscape
	Introduction
	State of the Art
	SPICE in general
	SPICE in Specific Hardware
	SPICE in Generic Hardware
	Industry Standard Tools

	Motivation
	SPICE in Variability Simulation
	SPICE in Time-Dependant Verification
	Summary

	Data Partitioning SPICE
	Introduction
	Principles
	Theoretics

	Implementation
	User Manual
	References to Source Code

	Benchmarks & Results
	Introduction
	Simulation Description
	Results
	First Benchmarking Session
	Second Benchmarking Session
	Results

	Conclusions & Future Work
	Conclusions
	Future Work

	Bibliography
	Appendix
	DATE 2013 Preprint
	Source Code

