
Αθανάσιος Χ. Δομέτιος  
 

Τριδιάστατη Αναπαράσταση για Ρομποτική Χαρτογράφηση 

σε Αστικό Περιβάλλον  

 

ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ 

ΣΧΟΛΗ ΗΛΕΚΤΡΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ 

ΚΑΙ ΜΗΧΑΝΙΚΩΝ ΥΠΟΛΟΓΙΣΤΩΝ 

ΤΟΜΕΑΣ ΣΗΜΑΤΩΝ ΕΛΕΓΧΟΥ ΚΑΙ ΡΟΜΠΟΤΙΚΗΣ    

ΔΙΠΛΩΜΑΤΙΚΗ ΕΡΓΑΣΙΑ 
 

Επιβλέπων : Κωνσταντίνος Σ. Τζαφέστας 

Επίκουρος Καθηγητής 

Αθήνα, Ιούλιος 2013





Αθανάσιος Χ. Δομέτιος  

 

Τριδιάστατη Αναπαράσταση για Ρομποτική Χαρτογράφηση 

σε Αστικό Περιβάλλον  

 

 

ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ 

ΣΧΟΛΗ ΗΛΕΚΤΡΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ 

ΚΑΙ ΜΗΧΑΝΙΚΩΝ ΥΠΟΛΟΓΙΣΤΩΝ 

ΤΟΜΕΑΣ ΣΗΜΑΤΩΝ ΕΛΕΓΧΟΥ ΚΑΙ ΡΟΜΠΟΤΙΚΗΣ 

ΔΙΠΛΩΜΑΤΙΚΗ ΕΡΓΑΣΙΑ 

 

Επιβλέπων : Κωνσταντίνος Σ. Τζαφέστας 

Επίκουρος Καθηγητής 

 

Εγκρίθηκε από την τριμελή εξεταστική επιτροπή την 15
η 

Ιουλίου 2013. 

Αθήνα, Ιούλιος 2013

............................ 
Κωνσταντίνος Τζαφέστας  

Επίκουρος Καθηγητής 

............................ 
Πέτρος Μαραγκός 

Καθηγητής  

............................ 
Στέφανος Κόλλιας  

Καθηγητής 



................................... 

Αθανάσιος Χ. Δομέτιος  

Διπλωματούχος Ηλεκτρολόγος Μηχανικός και Μηχανικός Υπολογιστών Ε.Μ.Π. 

 

Copyright © Αθανάσιος Δομέτιος 2013. 

Με επιφύλαξη παντός δικαιώματος. All rights reserved. 

 
Απαγορεύεται η αντιγραφή, αποθήκευση και διανομή της παρούσας εργασίας, εξ ολοκλήρου ή 

τμήματος αυτής, για εμπορικό σκοπό.  Επιτρέπεται η ανατύπωση, αποθήκευση και διανομή για 

σκοπό μη κερδοσκοπικό, εκπαιδευτικής ή ερευνητικής φύσης, υπό την προϋπόθεση να αναφέρεται 

η πηγή προέλευσης και να διατηρείται το παρόν μήνυμα.  Ερωτήματα που αφορούν τη χρήση της 

εργασίας για κερδοσκοπικό σκοπό πρέπει να απευθύνονται προς τον συγγραφέα. 

Οι απόψεις και τα συμπεράσματα που περιέχονται σε αυτό το έγγραφο εκφράζουν τον συγγραφέα 

και δεν πρέπει να ερμηνευθεί ότι αντιπροσωπεύουν τις επίσημες θέσεις του Εθνικού Μετσόβιου 

Πολυτεχνείου. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 

 

3D REPRESENTATION FOR 

MAPPING URBAN ENVIRONMENT 

 
     

eingereichte 

MASTERARBEIT 

von 

cand. ing. Athanasios Dometios 

geb. am 15.01.1990 

wohnhaft in: 

Landsbergerstrasse 289 

80687 München 

Tel.: 0176 98420963 

 

 

Lehrstuhl für 

STEUERUNGS- UND REGELUNGSTECHNIK 

Technische Universität München 

Univ.-Prof. Dr.-Ing../Univ. Tokio Martin Buss 

Univ.-Prof. Dr.-Ing. Sandra Hirche 

 

 

 

 

 

 

 

Betreuer: M.Sc. Sheraz Khan 

Beginn: 15.10.2012 

Zwischenbericht: 06.02.2013 

Abgabe: 15.04.2013  





 
1 

Περίληψη 

Η κατασκευή μίας ακριβούς αναπαράστασης του περιβάλλοντος είναι μία από τις 

βασικότερες εργασίες για ένα αυτόνομο κινητό ρομπότ, δεδομένου ότι η ύπαρξη ενός 

τέτοιου χάρτη είναι ουσιαστικά βασική προϋπόθεση για την ανάπτυξη αποτελεσματικών 

στρατηγικών ρομποτικής εξερεύνησης και πλοήγησης. Οι περισσότερες ρομποτικές 

εφαρμογές βασίζονται σε χάρτες 2D ή υψομετρικούς χάρτες (2.5D height maps), αφού οι 

τρισδιάστατοι χάρτες απαιτούν μεγάλα ποσά υπολογιστικού χρόνου και κατανάλωσης 

μνήμης. Ωστόσο, η χρήση 3D χαρτών για την αναπαράσταση ενός περιβάλλοντος είναι πιο 

κοντά στην ανθρώπινη διαίσθηση και πιο λεπτομερής. Οι περισσότερες τεχνικές 3D 

χαρτογράφησης χρησιμοποιούν απευθείας την μέθοδο του νέφους σημείων (point clouds), 

ωστόσο, άλλες στρατηγικές, που βασίζονται σε διάφορες δομές δεδομένων, μπορούν να 

επιτύχουν γρήγορους χρόνους εισαγωγής και προσπέλασης των δεδομένων. Η 

συγκεκριμένη διπλωματική εργασία επικεντρώνεται στην αναζήτηση και τη σύγκριση 

διαφόρων δομών δεδομένων όσον αφορά υπολογιστικούς χρόνους και κατανάλωση μνήμης, 

όπως οκτάδεντρα (octrees), πίνακες κατακερματισμού (hash-tables) και δέντρων K-d για 

την ακριβή 3D αναπαράσταση του περιβάλλοντος, χρησιμοποιώντας 3D σημεία. 

Επιπροσθέτως, παρουσιάζεται η ιδέα της προσέγγισης του περιβάλλοντος με χρήση 

ορθογωνίων (rectangles) ως “RMAP” και εξετάζεται η χρήση της δομής δεδομένων R-

δέντρου (R-tree). Η προσέγγιση RMAP θα παρουσιαστεί τόσο με πιθανοτικό τρόπο ως 

πλέγμα κατάληψης (occupancy grid) όσο και μία προσέγγιση βασισμένη στην πυκνότητα 

των σημείων για 3D pointclouds και επίπεδα τμήματα. 
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Abstract 

Building an accurate representation of an environment is essential for a robot since an 

accurate map can lead to efficient and precise exploration and navigation strategies. 

Most robotic applications rely on 2D maps or 2.5D height maps since 3D maps require a 

large amount of computation time and memory consumption. However, the use of 3D 

maps for the representation of an environment is much more intuitive and accurate. Most 

3D mapping techniques directly utilize a point cloud. However, using several other 

strategies, which rely on different data structures, both fast insertion/extraction times and 

efficient memory usage can be achieved. This topic focuses on searching and comparing, 

in terms of computational time and memory complexity, different data structures such as 

octrees, hash-tables and K-d trees to build an accurate 3D representation of the 

environment using the basic primitive of points. Furthermore, the concept of an 

environmental approximation referred to as “RMAP” is presented, which utilizes 

rectangles as basic geometric primitives, and the use of the R-tree data structure will be 

considered. The RMAP approach will be presented both in a probabilistic manner as an 

occupancy grid and as a point density-based approximation for 3D point-clouds and 

planar segments. 

 

Key Words 

  

3D representation, Mapping, Autonomous mobile robots, Robotics, Data structures, 

Octree, Hash- table, K-d tree, Rectangle, R-tree
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1 Introduction 

 

An accurate 3D map of the environment is an essential requirement for all autonomous 

robots. It can be considered a prerequisite for the autonomy of the robot since it is 

utilized in most navigation algorithms and the accuracy of the map is crucial for most 

collision avoidance algorithms. Also, many mobile robotic applications including land 

vehicles, planetary and underwater explorers require high environmental representation 

accuracy.  

One of the most commonly used environment representation is an occupancy grid. 2D 

occupancy grids [1], [2], [3] can be considered the de facto standard. Besides 2D 

environment representations, some grid structures also store the height corresponding to 

each cell leading to the so called 2.5D height maps [4]. 2D NDT [5] is another grid 

representation which models cell centers and their uncertainty using Gaussian 

distributions. In addition to grid representations some approaches model the 2D 

environment using geometric primitives such as lines [6] which are computationally less 

expensive compared to grid representations.  

The recent surge in the 3D sensing technology with the influx of Kinect and Velodyne 

has shifted the focus of the robotics society from 2D to 3D environment representations 

which are more intuitive, natural and useful in cases the environment is no longer planar. 

The most common approach for 3D environment representation is utilizing raw point 

clouds and operating directly on them or utilizing a 3D occupancy grid. 

This thesis is mainly divided in two parts. The first part considers the representation of 

3D environments utilizing points. Due to the fact that a great variety of data structures 

are offered in the computer science field and no rule of thumb exists to decide which 

data structure to use and in which scenario, a search and comparison of different data 

structures that can correspond to the aforementioned requirements will be conducted. 

The comparison is conducted in terms of computation time, memory consumption and 

accuracy of mapping result. A detailed presentation of data structures that are suitable 

for spatial applications can be found in [7]. In [8] a comparison of strategies that utilize 

different data structures for the nearest-neighbor-search (NNS) problem is featured.  

The second part of the thesis considers a rectangular approximation of environments 

titled “RMAP”. The presented framework is very generic as it can be used as an 

occupancy grid to represent the environment in a probabilistic framework or to find 

rectangular approximations of environments using a splitting algorithm based on point 

density. In addition, the approach can be utilized for approximation of polygons as well. 

In case of polygonal approximation, the presented approach is used as a post processing 

step of standard segmentation algorithms. The proposed approach is highly flexible and 

offers the advantage that any arbitrary rectangular cuboid can be used as a grid cell for 
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environment representation. Also the resolution can be adapted according to the 

application (navigation or registration) or computational resources available. 
Chapter 2 deals with environment representation using points. Data structures that store 

points are briefly presented and compared theoreticaly. Also, a practical comparison in 

terms of time and memory complexity between an octree, a hash table and a K-d tree is 

conducted.  

In Chapter 3 we present the RMAP rectangular approximation of an environment which 

considers the environmental representation using rectangles. Firstly, the probabilistic 

aspect of the approach is featured, as it is used as an occupancy grid. Secondly, a 

rectangle approximation of 3D environments is suggested, employing a splitting 

algorithm based on the point density. The approach is tested both on simulation and real 

world data sets.   

Chapter 4 deals with an extension of the RMAP approach to 2D pointclouds and convex 

polygons. 

Finally, in Chapter 5 we discuss several robotic applications for which an accurate 

environmental representation is required and Chapter 6 presents conclusions and future 

work. 
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2 Environment representation using points  

 

In this section a brief presentation of the basic data structures that are suitable for storing 

points will be attempted, such as lists, hash tables and several types of trees. Then a 

comparison will follow, both theoretically and practically using experimental results. 

The comparison will be conducted in terms of memory consumption and computational 

complexity for several robotic applications, such as 3D mapping and navigation 

techniques, and procedures they include, such as inserting and accessing the points in the 

data strucure.  

 

 

Figure 2.1: Representation of the Freiburg campus using an octree data structure 

 

2.1 Basic structures for storing points 

2.1.1 List 

 

 

A list or sequence is an abstract data type that implements an ordered collection of 

values, where the same value may occur more than once. Each instance of a value in the 

list is called item, entry or element. In our case, an entry may consist of a 3D vector that 
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contains the coordinates of the 3D point that is to be stored. Typical procedures include 

insertion, access and deletion of a point. Every time a point is to be inserted, a check has 

to be made to see whether the point is already in the list or not, so that it is not inserted 

again. Therefore, for the insertion proceure the whole list would have to be traversed 

making the total time O(n), where n is the total number of entries already stored in the 

list. For the accessing and deletion procedure, when a certain point has to be found, the 

worst-case scenario suggests that the point will be the last entry in the list, making the 

running time again O(n). The total memory consumed is proportional to the number of 

entries, that is, O(n). More specifically, assuming that three floats (4 bytes each) and 8 

bytes are allocated for the point coordinates and the pointer respectively, the total 

amount of memory would be 20·n bytes. A double-linked list could be employed to 

reduce the time for these procedures, using for example, two directional search 

algorithms, without having significant improvement though. More detailed information 

about the list data structure can be found in [9]. 

   

2.1.2 Array 

 

An array is a data structure consisting of a collection of elements (values or variables), 

each identified by at least one array index or key. An array is stored so that the position 

of each element can be computed from its index tuple by a mathematical formula. In our 

case, three instances of the array data structure could be used. The first one considers an 

array that contains pointers to vectors of the 3D points, which is similar to the list data 

structure described above. Secondly, a 2,5D array could be used storing the z-coordinate 

in specific positions defined by the other two coordinates x and y which are the two 

indices of the array. Finally, the third array that could be employed is a 3D one, where 

all three indices correspond to the three coordinates x,y and z of the 3D point. This latter 

array instance is closer to a 3D grid and can conceive better the concept of 3D space. In 

the first case, due to the fact that the data structure is like a linked list, the times for 

insertion, accessing and deletion and the memory consumption will be the same, O(n) in 

all three procedures. In the second and third case, all that it needs to be done is to find 

the corresponding indices x and y (and z in the third case). So the insertion time would 

be constant, O(1), as only one multiplication and one addition are required. The same 

process is followed in the accessing and deletion procedures as well, requiring O(1) 

running time. However, accessing all the elements in the array would take O(n) time.  

The memory that needs to be consumed is O(n) by allocating space for n·k, where k is 

the size of the type of the entry in bytes. For example, if integers are stored in the array, 

4·n will be the total memory amount required. More information about the array data 

structure can be found in [10]. 

 

2.1.3 Hash Table 

 

A hash table (also hash map) is a data structure used to implement an associative array, a 

structure that can map keys to values. A hash table uses a hash function to compute an 

index into an array of buckets or slots, from which the correct value can be found. In our 
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case, the values in the buckets could be a vector of the 3D points. The running time for 

inserting a point is constant, like in the array data structure case, O(1). The accessing 

time is O(1), simply because in our case the number of entries is the same as the number 

of buckets. The same stands for the deletion time. One can conclude that employing a 

simple hash-table data structure like the above, the complexity of the running times is  

significantly low. The memory consumed is proportional to the number of entries, O(n). 

If the entries describe the coordinates of a 3D point as assumed above, total memory of 

n·3·8 = 24·n has to be allocated, as 3 doubles of 8 bytes each are required for each entry 

. Modifications of the standard hash-table structure can also be used for better 

performance, such as seperate chaining, linked lists at each bucket, open addressing and 

coalesced hashing. A detailed analysis regarding the hash table data structure can be 

found in [10] and [11]. In [12] hash-tables have been used in intra-logistics tasks by 

mobile robots. 

 

2.1.4 Trees 

  

 
 

Binary Trees  

 
Binary trees are the most common tree data structures used in computer science. 

A binary tree is a tree data structure in which each node has at most two child nodes, 

usually distinguished as "left" and "right". Nodes with children are parent nodes, and 

child nodes may contain references to their parents. Outside the tree, there is often a 

reference to the "root" node (the ancestor of all nodes), if it exists. Any node in the data 

structure can be reached by starting at root node and repeatedly following references to 

either the left or right child. General information about binary trees can be found in [13] 

and [14]. There exists a great variety of binary trees, from which the most commonly 

utilized in the field of robotics is the k-d tree, which is briefly presented below. 

 

 

K-d Tree 

 

A k-d tree is a space-partitioning (SP) binary tree data structure for organizing points in 

a k-dimensional space. Each leaf node is a k-dimensional point and every non-leaf node 

can be thought of as implicitly generating a splitting hyperplane that divides the space 

into two parts. Points to the left of this hyperplane represent the left subtree of that node 

and points to the right of the hyperplane are represented by the right subtree. The 

hyperplane direction is chosen in the following way: every node in the tree is associated 

with one of the k-dimensions, with the hyperplane perpendicular to that dimension's 

axis. So, for example, if for a particular split the "x" axis is chosen, all points in the 

subtree with a smaller "x" value than the node will appear in the left subtree and all 

points with larger "x" value will be in the right subtree. In such a case, the hyperplane 

would be set by the  x-value of the point, and its normal would be the unit x-axis. In our 
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case, a 3-d tree could be used for the storage of 3D points at the leaf nodes, conceiving 

in that way the sense of space. The time complexity is O(logn) for the insertion, access 

and deletion procedures both in the average and worst case, where n is the total number 

of nodes. The memory complexity is O(n). In particular, the branch nodes contain two 

pointers to their two children, that is, 8 bytes. The leaf nodes contain a value whose type 

depends on the application that uses the tree.  In [15] they exploit k-d trees for ray-

tracing. In [16] and [17] it is described explicitly how k-d trees are involved in 

applications in the field of robotics and especially in spatial pattern search and the ICP 

algorithm. More detailed information can also be found in  [18].   

 

 

 

Octree 
 

An Octree is a space-partitioning tree data structure in which the root (father) and each 

internal node have exactly eight children. Octrees are mostly used to partition three 

dimensional spaces by recursively subdividing them into eight octants, as depicted in 

Fig. 2.2. Each octant is considered to be a node and each node represents the space 

contained in a cubic volume. So each node contains pointers to eight other nodes, its 

children, and a value, depending on the needs of its use. The recursive subdivision stops 

as soon as a minimum size is reached, which determines the resolution of the octree. In 

our case, when a 3D point needs to be stored, the value of the node that corresponds to 

the x,y,z – coordinates is increased, or set. 

 

 
Figure 2.2: The octree data structure 

 

Depending on the resolution of the octree, more than one point may correspond to the 

same node, carrying out in that way a down sampling of the whole amount of the 

received points. In Fig. 2.3, 2.4 and 2.5 the first scan of the Freiburg campus dataset
1
 is 

featured for three different  resolutions, 0.05m, 0.2m and 0.8m, respectively. The time 

complexity here would be the same as in the k-d tree, O(logn) both in the average and in 

the worst case for the three standard procedures, with n being the total number of nodes. 

                                                 
1
 Courtesy of B. Steder and R Kuemmerle, available at http://ais.informatik.uni-

freiburg.de/projects/datasets/octomap/ 
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The memory requirements are similar to that of the k-d tree, with the main difference 

lying in the fact that the branch nodes have eight pointers that point to their children, 

instead of two. The use of octrees for modeling was originally proposed in [19]. In [20] a 

probabilistic way of modeling occupied and free space was introduced. A similar 

approach titled “Octomap” is also considered in [21]. Furthermore, in [22] an octree-

based 3D map representation was designed that can efficiently perform map updates and 

copies, especially in the context of particle filter SLAM. More detailed analysis 

regarding the octree data structure can be found in [23]. 

 

 
Figure 2.3: 1

st
 scan of the Freiburg campus data set using resolution 0.05 

 
Figure 2.4: 1

st
 scan of the Freiburg campus data set using resolution 0.2 
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Figure 2.5: 1

st
 scan of the Freiburg campus data set using resolution 0.8 

 

2.2 Theoretical comparison 

As one can conclude from the above, there exists a great variety of data structures that 

can be used for storing points. For this reason, a comparison is necessary in order to be 

able to choose the most appropriate one for the needs of 3D mapping. That is, low 

insertion and access times are preferable, as well as low memory consumption, 

especially in dynamically changing environments, such as urban ones and on-line 

applications where points  are received at very high frequencies. Moreover, of high 

significance is a multi-resolutional representation of the environment, as it offers 

adaptability of the computer systems employed, and navigational advantages. In Table 

2.1 such a comparison is presented in terms of big O notation for the needs of the 

specific topic. The notation n is used to describe the number of points stored in each data 

structure. The access time depicted applies for the access of one single point in the data 

structure. 

It can be seen that the list data structure has the worst insertion and access times. This is 

an expected result, as lists are naive data structures and multiple traversals need to be 

conducted for each procedure.  The computational times for the array data structure are 

constant, as discussed in Section 2.1. Although this is a great advantage, the size of a 3D 

array data structure must be set in advance and memory is allocated for all of its 

elements. Hence, the memory consumption is expected to be high, since memory for 

both occupied and free cells will be allocated. This can be partially avoided by using the 

hash table data structure, for which the average cases of insertion and access times are 
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also constant, making it computationally efficient. However, its performance is highly 

dependent on the hash function and the general implementation employed. The tree data 

structure gives the advantage of finding a needed entry in O(logn) time both in the 

average and the worst case. If n is the number of points stored in the tree, then its height 

h is logn. K-d trees are the adaptation of binary trees in the requirements of storing 3D 

points. However, due to the fact that they are binary trees, many splits have to be carried 

out in order to reach the level of a point and that results in a large tree height. The 

implementation of a K-d tree, however, has a great impact on its performance. On the 

other hand, an octree data structure is expected to have smaller height, as each inner 

node has eight children, resulting in lower insertion and access times. Moreover, the 

greatest advantage of the octree towards the other data structures is that it conceives at 

the maximum the sense of 3D space due to the fact that the division of each node is 

carried out by eight (2
3
 = 8). For that reason, a multi-resolutional approach to the 

representation of the environment can be achieved, traversing the tree at a certain level l. 

For example, if the leaf nodes are at l = 1 and each cell describes a cubic volume of edge 

0.05m (Fig. 2.3), at l = 4 each node will describe a cubic volume of edge 4·0.05 = 0.2m 

and the representation of the environment would be like in Fig. 2.4. Finally, Table 2.1 

also shows that the memory consumption is the same in terms of big O notation for all 

the data structures. For the latter three structures, the memory is highly dependent on the 

implementation utilized, as will be featured in the next Section. 

 

 

 

 

 

 

Data Structure Insertion  Access Memory 

 Average 

case 

Worst 

case 

Average 

case 

Worst 

case 

 

List O(n) O(n) O(n) O(n) O(n) 

3D Array O(1) O(1) O(1) O(1) O(n) 

Hash Table O(1) O(n) O(1) O(n) O(n) 

K-d tree O(logn) O(logn) O(logn) O(logn) O(n) 

Octree O(logn) O(logn) O(logn) O(logn) O(n) 

 

Table 2.1: Data structures theoretical comparison (big O notation) in terms of inserton, 

access time and memory consumption  

 

 

2.3 Practical comparison 

 

In order for the theoretical results that are shown above to be verified, some experiments 

were carried out. More specifically, three implementations of an octree, a k-d tree and a 
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hash table were employed, briefly described below. In all three approaches, the 

probabilistic manner of describing the 3D space was incorporated, making the data 

structures appropriate for dynamically changing environments. In each implementation, 

an occupancy grid structure is modeled. In the tree structures, the nodes where the 

information is stored represent a 3D cubic cell of the environment, whose size depends 

on the resolution used. The same applies for the entries of the hash table. That implies 

that a cell is represented by the coordinates of a 3D point that describe its centroid. Ray 

tracing is done along the path beam to update the occupancy values of each cell. Let z 

represent the observation and the lower subscripts represent the time instances. The 

probability of any grid ri of being occupied can be estimated by the formula: 

 

 
 

given the case that the initial occupancy of each cell being occupied or free is the same. 

In order to prevent each cell of being over confident about its state we utilize a 

clamping/saturation threshold a after which the cell is not updated. The values of amin 

and amax were set to 0.05 and 0.95 respectively. After the brief description of the data 

structures below, an evaluation of them is conducted for randomly generated points and 

for the real data sets of Freiburg campus and Bremen city center. 

 

Hash Table 

 

The main structure of the hash table that was implemented is an one-dimensional array. 

The x-coordinates of the cells that describe a certain 3D space are addressed to the 

indices of this array, using the resolution of the map. Each element of the array contains 

a vector of y-nodes. A y-node consists of a key that corresponds to the y-coordinate of 

the cell and another vector of z-nodes. Finally, a z-node is also identified by its key that 

describes the z-coordinate of the cell and contains the probability of this cell being 

occupied. The y- and z- keys are obtained from the original y- and z- coordinates, 

respectively, employing a hash function that utilizes the resolution of the map. During 

the insertion procedures, if two 3D points correspond to the same cell, the probability of 

this cell being occupied is updated according to the above formula. To access a cell, the 

x,y,z- coordinates of a point inside this cell are given as input. Using the x-coordinate, 

the corresponding element of the array is determined and then an exhaustive search of 

the corresponding y- and z- nodes is conducted. The matching is done using the keys in 

each node. That is, only the x-array is an associative one. The y- and z- values are 

arbitrarily stored as keys in the y- and z-nodes respectively. If this specific cell does not 

exist, it is considered as unknown space. An example for an access procedure is shown 

in Fig. 2.6. The memory consumption is given by the formula: 

  

MemoryHash Table = 24 x x-nodes + 28 x y-nodes + 8 x z-nodes 

 

The structure of a vector (contained in a bucket of the x-array) contains 24 bytes. So a y-

node will contain, except for these bytes, an integer for the value of the y-coordinate (4 
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bytes). Finally, each z-node contains an integer for the value of the z-coordinate (4 

bytes) and a float for the probability of being occupied (4 bytes). 

 

 
Figure 2.6: Example of accessing a cell in the hash table 

 

K-d Tree 

 

The K-d tree implementation used can be found in [24]. We modified it appropriately to 

adopt the probabilistic properties described above. Each node of the tree contains a 3D 

point that is the centroid of the corresponding cell and its probability of being occupied. 

For inserting and accessing a single node, a heuristic function is used. More 

specifically, every node can be thought of as implicitly generating a splitting 

hyperplane that divides the space into two parts, known as half-spaces. Points to the left 

of this hyperplane represent the left subtree of that node and points right of the 

hyperplane are represented by the right subtree. The fact that the information is stored in 

each node of the tree makes the data structure much more efficient in terms of memory. 

Other K-d tree variants could store the information only in the leaf nodes giving in that 

way to the data structure a sense of space. However, due to the fact that the K-d tree 

structure is binary, many splits have to be made resulting in a great number of inner 

nodes and large tree height. The memory requirements in this case would be higher. In 

addition, an octree data structure conceives much better the sence of 3D space, having a 

greater performance than a K-d tree implementation that stores all the information in the 

leaf nodes. For this specific implementation, the formula below gives the memory 

consumption in bytes: 

 

 MemoryK-d Tree = 64 x Nodes + 88, 

 

where each node contains 2 pointer to its children (16 bytes), a float for the probability 

of being occupied (4 bytes), an integer that determines the axis that the division is made 

(4 bytes), a pointer to a specific data of the node and  an array of 3 doubles for the 3D 

point storage (1 pointer and 3 doubles = 32 bytes as an array structure contains also a 
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pointer) resulting in 64 bytes. For the initilization of the tree some structures are required 

such as  an integer that determines the dimension (4 bytes), a pointer pointing to the root 

node (8 bytes) and a pointer to a hyperectangle structure (8 bytes), which contains the 

same dimension integer (4 bytes) and two arrays of doubles for the minimum and 

maximum values of the hyperectangle (16 + 48 = 64 bytes), resulting in 88 bytes. 

 

 

Octree 

 

A publically available octree implementation [25] was also slightly modified to a 

probabilistic approach for the needs of the experiments. As described in Chapter 2.1, 

each node divides the cubic cell it describes into eight nodes that correspond to eight 

smaller and equally sized cells. The resolution of the octree and the fact that each node 

contains exactly eight children (3D space, 2
3
 = 8) offer a multiresolutional representation 

of the environment depending on the level of traversal of the tree. The leaf level renders 

the most detailed representation that the resolution of the tree imposes. In contrast to the 

other data structures, the probability of each non-leaf node of the octree has to be 

updated with the mean value of the probabilities of its children, each time a new 

insertion is carried out. The memory requirements of this implementation is computed as 

follows: 

 

MemoryOctree = 80 x InnerNodes+ 8 x LeafNodes + 16 

 

An inner node contains an integer and a float determining its type and its probability of 

being occupied respectively (4+4 =  8 bytes) and an array of 8 pointers to its children 

nodes (1+8 pointers = 8x9 = 72 bytes) resulting in 80 bytes. A leaf node contains a float 

determining its probability of being occupied and an integer determining its type (4+4 = 

8 bytes). For the initialization of the tree, a pointer to the root node is needed (8 bytes), 

an integer for the size of the tree (4 bytes) and a float to determine non-occupied nodes 

(4 bytes), resulting in 16 bytes. 

 

Both real-world data and randomly distributed points were used as input data. In the first 

case, the Freiburg campus dataset from [21] and the Bremen city center dataset from 

[REF] were used, whereas in the latter case a stepwise modifying number of random 

points (simulation) was generated. In both cases the memory consumption and the times 

for inserting and accessing the total number of points were examined. 

The experiments mentioned in this section, as well as the rest evaluations of this thesis, 

were carried out on an Intel(R) Core i5-2500K, 3.30 GHz processor with 16 GB 

memory. 

 

 

1) Simulation data: 
The focus of this test is to evaluate and compare insertion and access times as well as the 

memory consumption between the three different data structures described above. 

Different number of points (30,000, 70,000, 100,000, 300,000 and 500,000) were 

generated using different resolution values. Moreover, two different ranges of points 

were used ([-1000,1000] and [-150, 150]).  
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Fig. 2.7 (a)-(c) shows the total insertion and access times of the points in the data 

structures as well as the memory consumption for random points in range [-

1000,1000]m and grid resolution 10cm. The insert times for the hash table are 

remarkably low, as it is an array structure  as discussed in Section 2.2. The 

corresponding values for the octree data structure are the highest. This can be attributed 

to the fact that the octree has the sense of the 3D space and stores all the information in 

the leaf nodes. In that way many inner nodes are built, increasing the height of the tree 

and making its traversal slower. For example, whenever a point is to be inserted, the 

octree will generate all the inner nodes to reach it, whereas the other data structures 

would arbitrarily store it. This is the reason why the K-d tree insertion times are lower, 

as the information is stored in every node for the implementation used. The above 

arguments apply also for the access times, which feature a similar behaviour to the 

insertion ones. However, one could notice that both insertion and access times are 

significantly low, making these data structures appropriate for online applications. 

Furthermore, it makes total sense the fact that the octree structure consumes the largest 

amount of memory, for the aforementioned reason regarding the conception of 3D space. 

The small memory difference between the K-d tree and the hash table can be attributed 

to the more complicated structure of the first (e.g., pointers pointing to decendant 

nodes). 

Fig. 2.8 (a)-(c) shows the same results  for random points in range [-150,150]m. 

Remarkable is the difference in memory consumption for the octree structure. As we can 

see from the graph, for the same number of points, the corresponding values are lower. 

That is an expected performance, as the total space is smaller and so the inner  nodes that 

the octree creates are less. Moreover, using the same argument as above, one could 

explain how different grid resolution values affect the time and memory complexity of 

the octree. Using lower resolution values, the size of each occupancy cell is smaller. In 

order then to describe the same 3D map, more inner and leaf nodes are created. This can 

be verified by Fig. 2.9(a)-(c). 

 
(a) Insert Time  (b) Access Time        (c) Memory 

consumption 

   

Figure 2.7: (a)-(c) Computational time and memory comparison between Octree, K-d 

tree and Hash Table (10cm resolution) for randomly generated points between [-1000, 

1000]m 
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(a) Insert Time  (b) Access Time        (c) Memory 

consumption 

 

Figure 2.8: (a)-(c) Computational time and memory comparison between Octree, K-d 

tree and Hash Table (10cm resolution) for randomly generated points between [-150, 

150]m 

 

 

 
(a) Insert Time  (b) Access Time        (c) Memory 

consumption 

 

Figure 2.9: (a)-(c) Computational time and memory for the Octree data structure for 

different grid resolutions and 500,000 randomly generated points between [-

1000,1000]m 

 

 

 

2) Real World Data Sets: 

This section focuses on the comparison of the three data structures in terms of 

computational time and memory consumption for the real world data sets of Freiburg 

campus and Bremen city center
2
 (Fig 2.10(a) and 2.10(b). The Freiburg campus data set 

consists of 77 files, each one containing approximately 155829 points. The Bremen city 

center data set consists of 13 files, each one containing approximately 295000 points.  

Fig. 2.11(a) shows the average insertion time for each file of the Freiburg campus data 

set regarding the three data structures. Different grid resolution values are used. 

                                                 
2
 Courtesy of Dorit Borrmann and Jan Elseberg available at the Osnabrueck robotic 3D scan repository, 

http://kos.informatik.uniosnabrueck. de/3Dscans/ 
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Remarkable here is the performance of the octree data structure, which, in contrast to the 

simulation tests, achieves the lowest insertion times. The data set corresponds to a 

structured environment and the octree capability of modelling the 3D space significantly 

decreases these times. More specifically, each time a new point is to be inserted, the 

corresponding leaf node of the octree will be automatically reached. If the node is 

already occupied then its probability will be updated. On the other hand, the K-d tree 

and hash table structures, not having this advantage, will have to search for the new 

point more exhaustively to check whether it already exists or not, leading in larger 

complexity. More explicitly, regarding the hash table, there are many points that have 

similar x-coordinate (e.g., part of the ground) whose y-value will be stored as key in the 

vector corresponding to this x-coordinate. This can be seen in Fig. 2.6 above. In that 

way, the search for such points may be more complex in terms of time.  However, the 

direct associativity of the hash table makes it faster than the K-d tree. For this reason, the 

time to access the whole data set is much lower for the hash table strucure, as shown in 

Fig. 11(b). Fig. 2.11 (c) shows the memory performance of the three data structures. The 

behaviour is similar to the one shown for the simluation tests above, as the same 

arguments apply. Finally, the K-d Tree has proven to be more efficient for nearest 

neighbor serch algorithms as mentioned in [48]. 

In Fig. 2.12(a)-(c) we can see the same results for the Bremen city center data set. In 

comparison with the Freiburg data set, we notice that the average insert times per file are 

higher, since the number of points per file is larger. However, the total number of points 

of this data set is less than of the Freiburg one, contributing to lower memory 

consumption and access times for the K-d tree and hash table. Nevertheless, noteworthy 

is the higher memory consumption of the octree structure. This can be attributed to the 

bigger map of the Bremen city center. Thus, the number of the inner nodes of the octree 

will be greater.  

 
(a) Freiburg campus at 2cm resolution         (b) Bremen city center at 2cm                                                                  

 (292m x 167m x 28m)                resolution (778m x 870m x 

154) 

 

Figure 2.10: (a),(b) Freiburg campus and Bremen city center visualizations at 2cm 

resolution 
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(a) Insert Time  (b) Access Time        (c) Memory 

consumption 

 

Figure 2.11: (a)-(c) Computational time and memory comparison between Octree, K-d 

tree and Hash Table for the Freiburg campus with different grid resolution values 

 

 

 
(a) Insert Time  (b) Access Time        (c) Memory 

consumption 

 

Figure 2.12: (a)-(c) Computational time and memory comparison between Octree, K-d 

tree and Hash Table for the Bremen city center with different grid resolution values 
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3 RMAP: Environment representation 

using rectangles   

 

The most common approach for 3D environment representation is utilizing raw point 

clouds and operating directly on them or utilizing a 3D occupancy grid. The extension of 

2D occupancy grid concepts directly to 3D leads to a large over head in terms of 

memory and computational cost due to the explicit calculation of free space in standard 

approaches. In this Chapter a rectangle approximation of 3D pointclouds titled “RMAP” 

is proposed. The presented approach can be used either as an occupancy grid for the 

representation of the environment or as an approximation using point density. The 

capability of grouping points in arbitrary shapes, such as rectangles, both in 2D and 3D 

space can lead to high computational efficiency. We use the concept of the bounding 

box to form rectangles around groups of points. In that way, except for the savings we 

achieve in terms of time and memory, as the number of rectangles is significantly less 

than the total number of points, the environment can be approximated to any arbitrary 

resolution, according to the application (navigation or registration) or computational 

resources available. Moreover, flexibility is gained as any arbitrary axis aligned 

rectangle can be utilized. Appropriate data structures for the needs of environment 

representation with rectangles would be the R-trees with its variants [26], [27]. A brief 

description about R-tree is presented below.  

Section 3.1 considers the framework of the occupancy grid for representing 3D 

environments, whereas Section 3.2 deals with the approximation of 3D pointclouds by 

introducing a density-based splitting algorithm. The concept of RMAP is extended to 

rectangular approximation of 2D pointclouds and polygonal convex segments, presented 

in Chapter 4. 
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(a) Example of 3D R-tree   (b)  Example of 2D R-tree 

Figure 3.1: (a), (b) 3D and 2D R-tree structure 

 

R-trees  
 

R-trees are tree data structures used for spatial access methods. The idea here is to group 

nearby objects (e.g. nearby points) and represent them with their minimum bounding 

rectangle in the next higher level of the tree. At the leaf level, each rectangle describes a 

single object whereas at higher levels the aggregation of an increasing number of 

objects. The R-tree is a balanced search tree, so all the leaves are at the same height, and 

every node (apart from the leaf nodes) contains information about its bounding box and 

pointers to its children, whose bounding boxes lie inside the bounding box of their 

parent node. The bounding box is defined by four values (the minimum and maximum x, 

y coordinates) for a rectangle in the 2D space or six values (the minimum and maximum 

x, y, z coordinates) for a cube in the 3D space. These values are sufficient for describing 

all the vertices of a rectangle or a cube, since we deal with axis-aligned bounding boxes.  

The insertion of a new rectangle is done by using a heuristic such as choosing the 

rectangle that requires least enlargement and the search is done based on overlapping 

rectangles. The searching algorithms of an R-tree (usually based on intersection) use the 

bounding boxes to decide whether or not to search inside a subtree. The time complexity 

here is O(logn) for the procedures of insertion, accessing and deletion of a rectangle both 

in the average case and in the worst case, where n is the number of nodes (e.g. 

rectangles) in the tree. The memory complexity is O(n). Furthermore, variants of the R-

tree could be employed, like the R*-tree and the R+-tree, which try to minimize the 

overlap at leaf and internal level, respectively. [26] and [27] give more detailed 

information about R-trees and its variants. The use of R*-trees for storing points and 

rectangles efficiently can be found in [28]. 
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3.1 Occupancy grid framework 

 

For this approach, a small rectangle is fitted around each point and stored in the R-tree. 

The size of the rectangle depends on the desired resolution. Each rectangle represents an 

occupancy cell with a certain probability, which is updated, either by ray-casting or by 

encountering a 3D point that belongs to the same occupancy rectangle (that is, the 

rectangles of two different points overlap) in a similar way to the octree data structure 

presented in Section 2.3. That means that if the rectangle to be inserted overlaps with a 

rectangle in the leaf nodes, it is not inserted. Instead, the probability of the specific node 

is updated. Fig. 3.2(a) and 3.2(b) show the first scan of the Freiburg campus at different 

resolutions with cubic grid cells. Fig. 3.2(c) shows the case when the basic grid cell has 

a greater length along one axis. This flexibility property can be exploited in cases where 

there is a prior information about the structure of the environment and the movement of 

the robot.  

 

 

 
    (a) 4 cm resolution with        (b) 20 cm resolution with  (c) Grid cells with 

one 

 cube shaped cells     cube shaped cells   larger axis 

 

Figure 3.2: Different resolution views of the 1
st
 scan of the Freiburg campus data set 

 

 

Experimental Evaluation 

 

This section focuses on the evaluation of the approach, mainly in terms of insertion and 

extraction times as well as memory consumption. Furthermore, a comparison will be 

conducted to the implementation of the octree structure employed in Section 2.3. A 

publically available implementation of the R-tree data structure [29] was employed. It 

was also properly modified to integrate probabilistic properties, as the data structures 

discussed in Section 2.3. The evaluation was conducted both for simulation data by 

inserting randomly generated (30,000, 70,000, 100,000 and 300,000) points in range [-

1000, 1000]m and retrieving all occupied grid cells and for real world data sets (Freiburg 

campus data set). The memory of the R-tree in both cases was computed according to 

the following formula (in bytes):  

 

MemoryR-tree = InnerNodes x (18 + Branches x 36) + LeafNodes x (18 + Branches x 28) 
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and was derived as follows. Each node consists of 2 integers (one for the number of its 

branches and one for the current level (height) of the Rtree), 2 booleans (to check 

whether it is an inner node or a leaf node) and a pointer to an array of branches, leading 

to 18 bytes. Each branch contains 6 integers describing the bounding box, 1 integer 

describing the probability of being occupied and a pointer to the next node, if the branch 

is inner. In total, inner branches consume 36 and leaf branches 28 bytes.  

 

1) Simulation results: 

 

Fig. 3.3(b) shows the insertion times for the R-tree and the octree structures for 

randomly distributed points. For small number of points the times for the two structures 

are comparable but as the number of points increases the insertion time for the R-tree 

becomes larger. This can be mainly attributed to more computationally expensive 

heuristics for the insertion procedure such as the least expansion, used in the R-tree data 

structure. As discussed in the data structure description, each time a rectangular cuboid 

is inserted, the structure tries to find the best inner node which leads to minimum 

expansion of the tree structure. If there exist no overlapping bounding boxes at the inner 

nodes, the choice is obvious, but if bounding boxes of inner nodes overlap, this process 

can be computationally expensive. Secondly if an inner node overflows (the number of 

branches exceeds the maximum), the node has to be split and the bounding boxes of all 

intermediate nodes need to be recomputed. Elimination of the ‘least expansion’ process 

in this approach can lead to large computational savings (however it also leads to an 

unbalanced tree) as can be seen from Fig. 3.3(b). There exist variants of the basic R-tree 

structure such as the R+ tree and the R* tree [30], [31], [32], which can handle this 

scenario better and can lead to better computation times. Most 3D sensors (such as 

Kinect) provide 300,000 points per frame, however in most cases the data is 

downsampled or ignored after some distance (mainly 4-5 m for Kinect due to increasing 

error with distance), leading to a more manageable number of points (assuming between 

30,000 to 100,000) for the RMAP approach. Fig. 3.3(c) shows the memory consumption 

(with increasing number of random points) of both approaches which is directly 

dependent on the depth/height of the tree structure. It can be seen from the figure that 

RMAP utilizes less memory than the Octree approach. This can be explained by a 

simple example by considering the insertion of a single point. The Octree would 

generate all intermediate branches and nodes to insert the point at a specific resolution 

whereas the R-tree structure would insert a single rectangular cuboid around the point. 

      

 
(a) Access Time  (b) Insert Time        (c) Memory 

consumption 
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Figure 3.3: (a)-(c) Computational time and memory comparison between Octree and R-

tree (20cm resolution) for randomly generated points between [-1000, 1000]m 

 

2) Real World Datasets: 

 

The first section dealt with simulated data. In order to extensively evaluate the approach, 

different scans of the Freiburg campus were used. A comparison of RMAP with the 

same implementation of an octree structure was done for computational costs on 70 

scans of the Freiburg campus. Fig. 3.4(a) presents the access time of all occupied cells 

(for an average number of points i.e. 155829) for different resolutions and reinforces the 

results of the simulation (presented in previous subsection) setup that RMAP can be 

used for online motion planning in 3D environments. Fig. 3.4(b) shows the insertion 

time (for the same number of points) for different resolutions. At low resolutions, the 

computational times are quite comparable, but at high resolutions the least expansion 

aspect can lead to larger computational costs. However, in a real world environment like 

the Freiburg campus data set the least expansion procedure cannot be avoided, since it 

organizes the inner nodes in such a way that the structure of the environment is 

conceived in the tree. Fig. 3.4(c) shows the memory (as per the formula in the previous 

section) usage of both approaches for different resolutions. The difference in memory 

consumption can be explained based on the same argument given in the previous 

subsection. To be more explicit, consider the memory consumption corresponding to 10 

cm resolution shown in Fig. 3.4(c) for which the height of the Octree structure is 13 in 

comparison to 7 for the RMAP approach. 

 

 

 
(a) Access Time  (b) Insert Time        (c) Memory 

consumption 

 

Figure 3.4: (a)-(c) Computational time and memory comparison between Octree and R-

tree with respect to grid resolution for the first 70 files of the Freiburg campus data set 

 

The proposed approach does not differentiate between free and unknown space for the 

entire grid (only dynamic cells). This is not a critical issue for most robotic applications 

such as navigation and registration, however it can be problematic for some exploration 

algorithms which generally use the unknown and free space in calculating the utility of a 

frontier. This issue can be addressed from two perspectives. Firstly, most robotic 

architectures utilize two layers for navigation (global and local representations of the 
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environment). RMAP can be used to make a global map, whereas the exploration 

strategy can be based on generating frontiers on the local map which can explicitly 

model free space and unknown space. These frontiers can be marked on the global map 

to stop the algorithm from exploring already explored areas. Secondly there exist 

exploration algorithms [33] which place frontiers on the global map corresponding to a 

certain radius based on the robot position or the maximal field of view of the sensor and 

thus do not require explicit free and unknown space modeling. 

 

 

3.2 3D Rectangle Approximation 

A formulation like the one discussed in the previous Section allows a probabilistic 

framework for 3D mapping, however it does not justify the full potential of the RMAP 

approach. The occupancy grid framework from Section 3.1 could be considered a naive 

one, since despite the fact that flexibility is achieved, storing a rectangle for each single 

point (according to the grid resolution) does not necessarily lead to great computational 

savings in time and memory. In contrast, the extraction of large rectangular sections 

from a 3D point cloud would be a much more efficient approach in comparison to an 

occupancy grid. Rectangles would be formed by groups of points, hence their number 

would be smaller, resulting in lower computational times and memory consumptions. In 

that way, the basic R-tree property and advantage of storing any arbitrary axis-aligned 

rectangles would be fully exploited.   

In this section we discuss a formulation that splits the maximal bounding box of the 

pointcloud corresponding to its density to obtain rectangular approximations of the 

environment. Since the algorithm is dependent on density, we utilize a fully registered 

pointcloud. This approach can be used as a post processing step after registration to 

reduce computational and memory complexity of point cloud storage. 

The pseudocode used for the 3D rectangle approximation is shown in Fig. 3.5. The input 

to the algorithm is the point cloud p to be approximated and the density and minimum 

volume ε, ω respectively. The threshold ε is transformed into the threshold β, as 

discussed below. The output is a set of rectangles R which approximate the point cloud. 

The algorithm starts by checking if the number of points is less than four in line 1 (at 

least four points are required to define a volume). If so, these points are considered to be 

undefined. If not, the maximal bounding box for the point cloud is calculated based on 

the minimal and maximal points (line 2). In addition the algorithm calculates the volume 

V of the bounding box and the point density (line 3 and 4). The volume and density are 

compared to the density and minimum volume threshold β, ω. If the density is greater 

than β or the volume is less than ω, the bounding box is stored in the set R, otherwise the 

algorithm splits the point cloud into 8 equal parts with respect to the center (line 7). Each 

split point cloud is recursively passed to the algorithm (Fig. 5) until the threshold is 

satisfied (line 8). The formulation presented in this section can be extended to work on 

point cloud data provided by segmentation algorithms. An incremental version of this 

approach can also be formulated however it would be more sensitive as the 3D point 

cloud density would change as more scans are accumulated and would require merging 
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along with splitting, further increasing the computation time of the algorithm. β is 

derived from the initial density (points/m
3
) of the pointcloud according to the formula: 

 

β = initial density /(1 – ε), 

 

where ε is the input normalized threshold and takes values in the range (0,1). In the case 

where ε = 0, then it would be β = initial density and no approximation would be 

conducted. In the case where ε = 1, it would be β = ∞ and the threshold would never be 

satisfied. Hence, the algorithm would continue running until the threshold ω is reached 

and all the points until that point would be undefined. So we can conclude that the 

higher the threshold ε is, the more accurate is the approximation. 

 

 

 

 
Figure 3.5: 3D rectangle approximation pseudocode  

 

 

Experimental evaluation 

 

In this section we evaluate the approach on simulation and real datasets based on 

memory and computational complexity. The algorithm is capable of approximating 

complex 3D environments however the computational complexity for now limits it for 

offline application.   

 

1) Simulation datasets: 
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The algorithm was evaluated on simulated 3D pointclouds. Fig. 3.6 shows the 

approximation of sphere utilizing different thresholds ε which define the detail of the 

approximation. It can be seen from the images that as ε is increased the rectangles 

generate a more accurate approximation.  

 

 

 

 
        ε = 40%        ε = 80%   ε = 90% 

 

Figure 3.6: Sphere shaped point cloud rectangle approximation using different 

thresholds 

 

 

 

Apart from the artificially created sphere, the algorithm was also tested on the Stanford 

repository bunny and dragon data sets
3
 which consist of 35947 and 437645 points 

respectively. Fig. 3.7 and 3.9 show the approximation results for these two data sets for 

different approximation thresholds ε, leading from a coarse to a finer approximation. 

Fig. 3.8 and 3.10 depict the approximation time, the memory consumption, the number 

of rectangles and the number of undefined points (Fig. 3.5 -line 1) for these two data 

sets. Regarding the approximation time, we can tell from Fig. 3.8(a) and 3.10(a) that, 

except for the threshold, it is highly dependent on the number of points, as for the dragon 

data set the time needed can be over 45 seconds for high ε values whereas for the bunny 

dataset the time does not exceed the 1 second. The memory consumption for the two 

datasets depends on the number of rectangles that need to be stored which increases as 

the threshold ε increases. However, the total number of rectangles (maximum of 60000 

for the dragon data set) is much lower than the points that consist the initial 3D 

pointcloud achieving great memory savings. Fig. 3.8(c) and 3.10(c) depict the loss of 

information (undefined points) for the two data sets, which also increases as the 

threshold ε increases. That is an expected outcome, as discussed above in the 

pseudocode explanation. Nevertheless, we can see that the number of undefined points is 

not large, especially in high density pointclouds such as the dragon data set. 

 

 

                                                 
3
 Courtesy of Stanford University Computer Graphics Laboratory, available at The Stanford 3D Scanning 

repository, http://graphics.stanford.edu/data/3Dscanrep/ 
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  (a) ε = 60%       (b) ε = 60% 

 

                                                 

 
(a) ε = 90%           (b) ε = 90% 

 

        

 

 
      (e) ε = 98%           (f) ε = 98% 

 

Figure 3.7: Rectangle approximation of the Stanford repository bunny for different 

density thresholds. 
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 (a) Approximation time      (b) Number of rectangles          (c) Undefined points  

 
(d) Memory consumption 

 

Figure 3.8: (a) Approximation time, (b) Total number of rectangles, (c) Number of 

undefined points and (d) Memory consumption with respect the threshold β for the 

Stanford repository bunny 

 

 

 

 

 

          
      β= 94% 
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     β = 98.9% 

 

 

 

Figure 3.9: Rectangle approximation of the Stanford repository dragon for different 

density thresholds. 

 

 

 
(a) Approximation time      (b) Number of rectangles          (c) Undefined points  

 
(d) Memory consumption 

 

Figure 3.10: (a) Approximation time, (b) Total number of rectangles, (c) Number of 

undefined points and (d) Memory consumption with respect the threshold β for the 

Stanford repository dragon 
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2) Real world datasets: 

 

The algorithm was also evaluated on real world data sets. More specifically, different 

scans of the Freiburg campus and the Bremen city center data sets were utilized. Fig 

3.11 shows the rectangular approximation of a specific section (a tree and pole) of the 

Freiburg campus. The image shows that the algorithm adapts the size of the rectangles 

according to the density of the point cloud. Fig 3.12(a) and Fig 3.12(b) show the 

rectangular approximation of 10 scans of the Freiburg campus for ε = 98% and ω = 

1mm
3 

and 4 scans of the Βremen city center for ε = 95% and ω = 1 mm
3 

respectively. 

Fig. 3.13 shows the approximation time, the memory consumption, the number of 

rectangles required for representation and the undefined points for the first 10 scans of 

the Freiburg campus dataset. As the approximation threshold is increased the algorithm 

is able to build a finer approximation of the environment as can be observed with the 

increase in the number of rectangles and memory. Another important observation is that 

the loss of information is at most 3.5% of the actual point cloud size. 

It is interesting to compare the RMAP rectangular approximation framework with the 

occupancy grid framework to determine the advantages/disadvantages of each 

formulation. However defining a criterion for comparison is quite difficult, since the 

former approach utilizes different sized grid cells based on density whereas a fixed cell 

size (for a specific resolution) is used in the occupancy grid framework making it 

difficult to determine the equivalency of representation. Another important factor is that 

the rectangular approximation framework also rejects points, hence making it difficult 

to quantify the loss of information in comparison to the loss of information of a multi 

resolution occupancy grid. Hence in order to roughly compare both approaches, a 

conclusion which follows intuition and is based on a wide variety of possible 

approximations achievable by both approaches can be considered. Fig. 3.14 shows the 

computation time, number of rectangles required for representation and the memory 

consumption for the both approaches on 70 files of the Freiburg campus which contains 

10984515 points (almost 292m x 167m x 28m). The approximation time in Fig. 3.14(a) 

shows the computation time for the presented approach as well as for the insertion of the 

rectangles into the R-tree. The comparison shows that for large point clouds, the 

rectangular approximation is computationally expensive (limiting it to an offline 

approach) compared to an occupancy grid formulation (computation time based on 

average number of points per file). The number of rectangles required for the rectangular 

approximation Fig. 3.14(c) is less than the number of rectangles required for an 

occupancy grid formulation (Fig. 3.14(d)) which is fairly intuitive if Fig. 3.14(a) is kept 

in mind. A similar intuition follows for the memory consumption as can be seen in Fig. 

3.14(e) and Fig. 3.14(f). 
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Figure 3.11: Rectangular approximation of a tree and a pole from the first scan of the 

Freiburg campus data set (ε = 98%, ω = 1mm
3
) 

 

 

 
(a) Rectangular approximation of  (b) Rectangular approximation of                 

the first 10 scans of the Freiburg        the first 4 scans of the Bremen

  

  campus dataset (ε = 98%, ω = 1mm
3
)            city center dataset  

(ε = 95%, ω = 1mm
3
) 

 

Figure 3.12: Rectangular approximation of the first (a) 10 files of the Freiburg campus 

dataset and (b) 4 scans of the Bremen city center dataset 
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(a) Approximation time      (b) Number of rectangles          (c) Undefined points  

 
(d) Memory consumption 

 

Figure 3.13: (a) Approximation time, (b) Total number of rectangles, (c) Number of 

undefined points and (d) Memory consumption with respect the threshold β for the first 

10 files of the Freiburg campus data set 

 

 

 

 

 
 (a) Runtime of approximation    (b) Insertion (to R-tree) time for  

  algorithm                  occupancy grid  
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 (c) Number of rectangles       (d) Number of rectangles for  

   of approximation algorithm               occupancy grid 

 

 
 (e) Memory consumption of      (f) Memory consumption for 

        approximation algorithm    occupancy grid

  

 

Figure 3.14: Computation time, number of rectangles and memory consumption in 

comparison to an occupancy grid formulation for 70 files of the Freiburg campus dataset 
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4 RMAP: Environment representation 

using planar convex polygons 

Many robotic applications utilize plane extraction algorithms [34] from 3D pointclouds. 

These planar segments are used in several scenarios, such as 3D mapping, navigation 

and registration. These procedures require high representation accuracy and efficiency in 

terms of computational time and memory. The points that form the planar segments are 

utilized for their polygonization, calculating the convex hull and formulating the planar 

convex polygons. The latter are described by the planar attributes, such as the normal 

vector and the offset and the vertices of the polygon. Hence, their use leads to 

computational savings in memory in comparison to the use of 3D points. Furthermore, 

representing an environment using such polygons can be more intuitive in the sense that 

a human being does not perceive the real-world as points, but more like planar surfaces 

and polygons, especially in structured environments.  

However, due to the complexity of convex polygons (inconstant and large number of 

vertices required for the description of the convex hull), until now no data structure that 

can store them efficiently has been found. In this Chapter we discuss the effectiveness of 

the extension of the RMAP approach to approximate convex polygons using rectangles, 

exploiting the advantages of the R-tree data structure. This approach is divided in two 

main parts. In Section 4.1 we introduce a splitting algorithm to approximate efficiently a 

convex polygon and in Section 4.2 we discuss an extension of the 3D approximation 

algorithm presented in Section 3.2 to planar segments. 

 

 

4.1 Rectangle approximation of convex polygons 

The application of RMAP approach presented in Section 3.1 is not just limited to an 

occupancy grid formulation using rectangular cuboids. It can be extended to 

approximate polygonal regions extracted by standard segmentation algorithms [34], 

[35], [36]  in order to represent the 3D environment. Quadtrees (2D environments) have 

been used before for approximation of convex polygons, however R-trees have been 

shown to be more efficient in terms of memory and computation time [37]. Although the 

discussion presented in this section and the experimental evaluation section are in 

context of convex planar polygons (hence we use the word rectangle instead of 

rectangular cuboid as one axis is degenerate), RMAP is more general and can be utilized 

for any polygonal set. A polygonal approximation of convex polygons is also considered 

in [38]. 
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Fig. 4.1 shows the polygonal approximation pseudocode utilized in the RMAP approach. 

The robot utilizes a segmentation algorithm to extract the convex hull of planar 

segments denoted as pi (i-th planar segment). The bounding box denoted as bi for the 

convex hull can be created from the minimum and maximum values of the segment in 

each axis. Since the R-tree structure only allows axis aligned rectangles, the planar 

polygons are first projected along a specific axis (storing the values required for 

projection) and then calculating the bounding box. The arguments passed to the 

pseudocode are the convex hull of the i-th planar segment pi, the area ratio threshold ζ 

and the minimum permissible area γ. The threshold ζ denotes the ratio between the area 

of the bounding box and the convex hull of the polygon. Hence ζ can be termed as the 

resolution parameter, since varying this parameter allows a very fine or rough 

approximation of the planar polygons. The parameter γ defines the minimum area that 

can be used to represent the regions of the convex hull. A large value for this parameter 

leads to a very coarse approximation. The algorithm starts by computing the bounding 

box of the input segment (line 1). If the area of the segment’s convex hull is larger than γ 

(line 2), the convex hull is compared to the area of the bounding rectangle (line 3). If the 

overlapping area between them is lower than the resolution parameter ζ, the planar 

segment is split into four parts (line 5) with respect to its centre and the function is called 

recursively for all of them (lines 6). The process continues until the bounding boxes 

approximate the planar segments desirably (depending on the resolution parameter) or 

until the minimum area γ is reached. In general the overall detail captured by the 

polygonal approximation algorithm is highly dependent on the results of the 

segmentation algorithm.  

 

 
Figure 4.1: Polygonal approximation pseudocode 
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Experimental evaluation 

 

The RMAP polygonal approximation framework is evaluated for simulation as well as 

real world datasets. The details captured by this framework are dependent on the results 

of the segmentation algorithm as well as on ζ and γ thresholds.  

 

 

 

1) Simulation results 

 

Triangles and circles were chosen for this subsection as they can be considered to be the 

most difficult shapes to check the effects of different thresholds (ζ and γ). Fig. 4.2(a), 

4.2(b) and Fig. 4.2(c), 4.2(d) show the results of varying ζ threshold for a fixed value of 

γ. As ζ is increased the polygonal approximation becomes more accurate. Fig. 4.3 shows 

the effect of γ, which leads to a coarse approximation of the polygon as can be seen by 

comparing the edges of the circle and the triangle of Fig. 4.2 (γ = 10 cm
2
) to the circles 

and triangles in Fig. 4.3 (where γ = 10 mm
2
). The colors of the rectangles shown in these 

images are assigned randomly to aid visualization. 

In order to evaluate the time complexity of the algorithm, an increasing number of 

circles was approximated. Fig. 4.4(a)-(b) shows the runtime of the algorithm for this 

simulation scenario, for two different values of γ (10cm
2
 and 10mm

2
) and fixed ζ = 95%. 

We can see that the time increases linearly with respect to the number of circles. 

Furthermore, even for the case where 500 circles are approximated for γ = 10mm
2
, the 

time does not exceed the value of two seconds, which verifies the computational 

efficiency of the algorithm. 

 

 
         (a) ζ = 80%             (b) ζ  = 95% 
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         (c) ζ = 70%             (d) ζ  = 90% 

 

Figure 4.2: Effect of ζ for fixed γ = 10mm
2
 for 2D circle and triangle  

 

 

 
     (a) ζ = 95%             (b) ζ  = 90% 

 

Figure 4.3: Effect of γ = 10cm
2
 for 2D circle and triangle  

 

 
Figure 4.4:  (a)-(b) Time for splitting algorithm (Fig. 4.1) with increasing number of 

circles (fixed ζ and varying γ) 
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2) Real world data sets 

 

The RMAP formulation was also tested on real world datasets. Fig. 4.5 shows results of 

a few accumulated scans in a specific scenario for the indoor data set
4
 to make the effect 

of the approximation more apparent (since larger point clouds lead to a very cluttered 

visualization). It can be seen that adapting the threshold ζ leads to better approximation 

for a fixed value of γ = 10 mm
2
. 

 

 
 

Figure 4.5: (a)-(c) Approximation of polygons using rectangles (varying ζ for fixed γ = 

10 mm
2
) 

 

 

 

The polygonal approximation framework can be very useful for navigation in a 

polygonal map. In general most navigation algorithms utilize a parameter corresponding 

to ‘inflation of obstacles’ which increases the size of the obstacles to bias the trajectory 

away from the obstacles. In case of RMAP the parameter ζ can be used to vary the size 

of the ‘inflated obstacles’. An extended maximal bounding box (corresponding to the 

maximal inflation required) can be put around the obstacles. A low value of ζ would bias 

the trajectories away from the obstacles, whereas high values would lead to a very close 

approximation of the polygons and allow the trajectories to get closer to the obstacles.  

 

 

                                                 
4
 Courtesy of Martin Magnusson, available at the Osnabrueck robotic 3D scan repository, 

http://kos.informatik.uni-osnabrueck.de/3Dscans/ 
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4.2 2D Rectangle approximation  

 

Most segmentation algorithms do not consider convexity constraints and the most  

common approach to deal with output of planar segmentation algorithms is to form a 

convex planar polygonal representation [35], [39]. In cases the output point cloud of a 

segmentation algorithm is not convex a convex planar polygonal representation leads to 

an over approximation. In this Section we discuss an extension of the 3D rectangle 

approximation algorithm presented in Section 3.2 which is applied to the points of the 

planar segments extracted from a segmentation algorithm. In that way planar segments 

that are not convex are approximated more accurately. Like the 3D rectangle 

approximation, the rectangle approximation is done based on the density of points. In 

this approach, however, instead of the volume of the initial pointcloud, the area is 

considered, since we are dealing with 2D points.  

Fig. 4.6(a) shows the assumed point cloud output of a segmentation algorithm and the 

approximation developed by the algorithm. Fig. 4.6(b) shows the convex approximation 

which leads to an over approximation since the shape in not convex. In such case the 

presented approach gives better approximation in comparison to convex planar 

polygonal approximation. This case could simulate passages of real world scenarios, 

such as doors in indoor environments, in which the better approximation would give also 

navigational advantages in comparison to the convex hull approximation. 

 

.  

 
           (a) 2D rectangle approximation       (b) Convex approximation of   

   of random points (ε = 0.65)      random points 

 

Figure 4.6: Example test case for 2D approximation in comparison to convex hull 

 

 

In Fig. 4.7 and 4.8 two examples of simulation data are shown. Fig. 4.7 shows two 

approximations of a triangle shaped pointcloud with different threshold values and Fig. 

4.8 shows two approximations of a disc shaped pointcloud with different threshold 

values. 
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           (a) ε =  0.25          (b) ε = 0.5 

   

 

Figure 4.7: 2D rectangle approximation of triangle shaped pointcloud using different 

thresholds 

 

 
                   (a) ε =  0.7       (b) ε = 0.9 

 

Figure 4.8: 2D rectangle approximation of disk shaped pointcloud using different 

thresholds 

 

 

 

 

Furthermore, the algorithm was tested in real world scenarios as well. In Fig. 4.9(a) and 

4.10(a) we see the points that form two different planar segments from the 1
st
 scan of the 

Freiburg campus data set. These planar segments were extracted using a segmentation 

algorithm. Fig. 4.9(b) and 4.10(b) depict the convex hull of these points which over-

approximates the initial pointcloud. The results of our algorithm are depicted in Fig. 

4.9(c)-(d) and 4.10(c)-(d) utilizing two different visualizations. It is clear that our 

approach approximates much more accurately the pointclouds than the convex hull does.  
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  (a) Initial pointcloud      (b) Convex hull of the pointcloud 

 

 
    (c) 2D rectangle approximation of the pointcloud 

 

Figure 4.9: (a) Initial pointcloud, (b) Convex planar polygonal approximation of 

the pointcloud, (c) 2D rectangle approximation of the pointcloud using different 

visualizations 

 

 

 
(a) Initial pointcloud    (b) Convex hull of the pointcloud 

 

 
(c) 2D rectangle approximation of the pointcloud 

 

Figure 4.10: (a) Initial pointcloud, (b) Convex planar polygonal approximation of 

the pointcloud, (c) 2D rectangle approximation of the pointcloud using different 

visualizations 
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In Fig. 4.11 and 4.12 the same procedure is depicted for the 1
st
 scan of the indoor data 

set. More specifically, the algorithm is applied to the points of two of the planar 

segments that were extracted utilizing a segmentation algorithm. 

 

 

 
                (a) Initial pointcloud         (b) Convex hull of the 

pointcloud 

 
 

(c) 2D rectangle approximation of the pointcloud 

 

Figure 4.11: (a) Initial pointcloud, (b) Convex planar polygonal 

approximation of the pointcloud, (c) 2D rectangle approximation of the 

pointcloud using different visualizations 

 

 

 

 
         (a) Initial pointcloud         (b) Convex hull of the pointcloud 
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(c) 2D rectangle approximation of the pointcloud 

 

Figure 4.12: (a) Initial pointcloud, (b) Convex planar polygonal 

approximation of the pointcloud, (c) 2D rectangle approximation of the 

pointcloud using different visualizations 
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5 Applications in robotics 

The progress that has been made the recent years in the field of robotics has allowed the 

integration of mobile robots in more and more applications. Many of these applications 

include the use of mobile robots in environments where a human being could not survive 

or could be exposed to several dangers, such as disaster areas, volcano and underwater 

exploration or even outer space missions. In such cases it is crucial that the robot can 

build a 3D map of the surrounding environment, as it is the most important prerequisite 

for all the procedures it is called to do. In [40] one can find useful information about 

NASA’s rover for the exploration of Mars. In [41] an efficient representation in 3D 

environment modeling for planetary robotic exploration is presented and in [4] they 

consider terrain mapping for a roving planetary explorer. Moreover, mobile rescue 

robots were employed for the fall of the twin towers at 11 of September 2001, for which 

information can be gained in [42] and [43]. In [44] it is described how mobile robots 

advance on Disaster City in Texas. In [45] an algorithm of 3D-plane SLAM experiment 

was performed at Disaster city , whereas in [46]  a 3D-NDT test was conducted using an 

Atlas Copco drill rig in a mining environment. More information about Atlas Copco 

robots can be found in [47]. Utilizing efficient data structures in terms not only of time 

and memory but also of accurate environmental representation for the mapping in 

scenarios as the above ones is very critical for the tasks of a mobile robot. On-line 

procedures in environments that are not known in advance, such as those mentioned 

above, require quick insertion and extraction of the primitives used (e.g. points) making 

the choice of the data structure that is to be used very significant. 
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6 Conclusion and future work 

In this thesis the concept of representing 3D environments is considered. Firstly, the use 

of 3D points is featured. Different data structures that can store points are compared both 

theoretically and practically in terms of insertion and access times and memory 

consumption. Hash tables provide fast computational times exploiting the array’s direct 

mapping property and low memory consumption since the allocation for modelling the 

free space is avoided. Octrees however, except for being efficient in terms of time and 

memory, also provide a multi-resolutional representation of a 3D environment which is 

crucial for several applications. Furthermore, a rectangular approximation of the 3D 

environment is presented. This is done firstly by utilizing an occupancy grid framework 

which allows a large amount of flexibility in terms of shape of the grid cell that can be 

chosen for the environmental representation and resolution adaption. Secondly, the idea 

of approximating the environment with rectangles based on point density is presented, 

which can lead in great memory savings, being however limited to an offline procedure 

due to high computational time. Moreover, this concept is extended to planar segments 

extracted from a segmentation algorithm by approximating efficiently both points of 

concave shapes and any arbitrary shaped convex hull. All the instances of the approach 

allow adaptation of the environment representation using different parameters. Finally, 

the above ideas were extensively tested in simulation and real world data sets for 

computational and memory costs as well as other criterion (such as resolution), verifying 

their flexibility and advantages in 3D mapping. 

As future work the further development or modification of the RMAP framework could 

be considered. More specifically, the approach could be extended to apply also for 

oriented bounding boxes (OBB) instead of axis-aligned ones (AABB), since the axis-

aligned constraint makes the approximation of 3D environment objects that have a 

certain orientation very coarse. However, OBBs cause an increase in computational and 

memory complexity. An increase in memory complexity occurs, since in RMAP only 

the minimum and maximum point of the bounding box are stored whereas in case of 

OBBs either all points have to be stored or transformation angles need to be stored. An 

increase in computational cost occurs as the test for bounding box overlap becomes 

more complex in case of OBBs. The choice between AABBs and OBBs is a mere trade-

off between computational and memory complexity. Moreover, the concept of bounding 

boxes can be extended to moving boxes using TPR*-trees which can model moving 

objects and dynamic environments [30]. 
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