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Iepiinyn

H «xotaokevn piog okpipovg avamapdotaons tov mepiBdAlovtog eivor pio omd TIg
Baocwotepeg epyaciec yo €va oTOVOHO Kvntd poumdt, dedopévov OtL 1 vmapén evog
TETOLOL YaPTN €ival OLGLOGTIKA Pociky] TPobmdHeoN Yo TNV AVATTLEN ATOTEAECUATIKOV
OTPOUTNYIKOV POUTOTIKNG &Egpevvnong kKot mAonynong. Ot mePLoGOTEPEG POUTOTIKES
epapuoyés PaoiCovrar o yapteg 2D 1 vyopetpikovg yaptec (2.5D height maps), agov ot
TPLOOIIOTATOL YOPTEC AMOUTOVV UEYAAN TOGA VTOAOYIGTIKOV YPOVOL KOl KOTUVAAW®GONG
pviung. Qotéco, n xpnon 3D yaptdv Yo v avamapdotact evog TepPAAAOVTOC Eival To
Kovtd oty ovOpomvn dwicOnon kot mo Asmtopepng. Ov mepiocodtepeg texvikég 3D
YOPTOYPAPNONG YPNoomoovy amevbeiag v péBodo tov vépouvg onueimv (point clouds),
®0TOG0, AAAEG OTPATNYIKEG, TOL Pacilovial o€ d1AQopeg SOUES OEdOUEVMY, UTOPOVV Vi
EMTOYOLY  YPNYOpPOVLS YPOVOLS El0OY®OYNG Kol Tpoomélaong Tov dedouévov. H
GLYKEKPIUEVT] OUTAMUATIKY] €PYACIO EMKEVIPMVETAL otV avolTnon Kot T GUYKPLoN
SopOp®V SoU®Y dESOUEVOV OGOV APOPH VITOAOYLIGTIKOVS XPOVOLG KOl KATUVAAMGT LVAUNG,
omwg oktadevtpa (octrees), mivakeg katakeppotiopod (hash-tables) kot dévipov K-d ya
mv axpPfq 3D avamapdotacn tov mepiPdAlovtog, ypnowomoidviag 3D onueio.
EmmpocHétmg, mapovoidletor m wé€a TG TPoGEYYIoNg Tov TEPPAAAOVIOS pE ypNon
opBoyoviov (rectangles) wg “RMAP” ko g€etdleton n ypron ¢ doung dedopévov R-
dévipov (R-tree). H mpocéyyion RMAP 6a mapovciactel 1660 pe mboavotikd tpomo g
mA&ypo kotaAnyng (occupancy grid) 6co kot pio Tpocéyyion Paciopévn 6TV TUKVOTNTO
tov onueiov yio 3D pointclouds ko eninedo TufpaTo.

Aé&Eerg Kieona

Tpuwidotatn avamoapdotacn, Xoptoypdenon, Avtdvopa kwvntd poundt, Poumotikn,
Aopéc dedopévav, Oxtadevtpo (octree), Ilivaxag wotokeppotiopotd (hash-tables),
Aévtpo K-d (K-d tree), Opboyamvio, R-3évtpo (R-tree)



Abstract

Building an accurate representation of an environment is essential for a robot since an
accurate map can lead to efficient and precise exploration and navigation strategies.
Most robotic applications rely on 2D maps or 2.5D height maps since 3D maps require a
large amount of computation time and memory consumption. However, the use of 3D
maps for the representation of an environment is much more intuitive and accurate. Most
3D mapping techniques directly utilize a point cloud. However, using several other
strategies, which rely on different data structures, both fast insertion/extraction times and
efficient memory usage can be achieved. This topic focuses on searching and comparing,
in terms of computational time and memory complexity, different data structures such as
octrees, hash-tables and K-d trees to build an accurate 3D representation of the
environment using the basic primitive of points. Furthermore, the concept of an
environmental approximation referred to as “RMAP” is presented, which utilizes
rectangles as basic geometric primitives, and the use of the R-tree data structure will be
considered. The RMAP approach will be presented both in a probabilistic manner as an
occupancy grid and as a point density-based approximation for 3D point-clouds and
planar segments.

Key Words

3D representation, Mapping, Autonomous mobile robots, Robotics, Data structures,
Octree, Hash- table, K-d tree, Rectangle, R-tree
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1 Introduction

An accurate 3D map of the environment is an essential requirement for all autonomous
robots. It can be considered a prerequisite for the autonomy of the robot since it is
utilized in most navigation algorithms and the accuracy of the map is crucial for most
collision avoidance algorithms. Also, many mobile robotic applications including land
vehicles, planetary and underwater explorers require high environmental representation
accuracy.

One of the most commonly used environment representation is an occupancy grid. 2D
occupancy grids [1], [2], [3] can be considered the de facto standard. Besides 2D
environment representations, some grid structures also store the height corresponding to
each cell leading to the so called 2.5D height maps [4]. 2D NDT [5] is another grid
representation which models cell centers and their uncertainty using Gaussian
distributions. In addition to grid representations some approaches model the 2D
environment using geometric primitives such as lines [6] which are computationally less
expensive compared to grid representations.

The recent surge in the 3D sensing technology with the influx of Kinect and Velodyne
has shifted the focus of the robotics society from 2D to 3D environment representations
which are more intuitive, natural and useful in cases the environment is no longer planar.
The most common approach for 3D environment representation is utilizing raw point
clouds and operating directly on them or utilizing a 3D occupancy grid.

This thesis is mainly divided in two parts. The first part considers the representation of
3D environments utilizing points. Due to the fact that a great variety of data structures
are offered in the computer science field and no rule of thumb exists to decide which
data structure to use and in which scenario, a search and comparison of different data
structures that can correspond to the aforementioned requirements will be conducted.
The comparison is conducted in terms of computation time, memory consumption and
accuracy of mapping result. A detailed presentation of data structures that are suitable
for spatial applications can be found in [7]. In [8] a comparison of strategies that utilize
different data structures for the nearest-neighbor-search (NNS) problem is featured.

The second part of the thesis considers a rectangular approximation of environments
titled “RMAP”. The presented framework is very generic as it can be used as an
occupancy grid to represent the environment in a probabilistic framework or to find
rectangular approximations of environments using a splitting algorithm based on point
density. In addition, the approach can be utilized for approximation of polygons as well.
In case of polygonal approximation, the presented approach is used as a post processing
step of standard segmentation algorithms. The proposed approach is highly flexible and
offers the advantage that any arbitrary rectangular cuboid can be used as a grid cell for



environment representation. Also the resolution can be adapted according to the
application (navigation or registration) or computational resources available.

Chapter 2 deals with environment representation using points. Data structures that store
points are briefly presented and compared theoreticaly. Also, a practical comparison in
terms of time and memory complexity between an octree, a hash table and a K-d tree is
conducted.

In Chapter 3 we present the RMAP rectangular approximation of an environment which
considers the environmental representation using rectangles. Firstly, the probabilistic
aspect of the approach is featured, as it is used as an occupancy grid. Secondly, a
rectangle approximation of 3D environments is suggested, employing a splitting
algorithm based on the point density. The approach is tested both on simulation and real
world data sets.

Chapter 4 deals with an extension of the RMAP approach to 2D pointclouds and convex
polygons.

Finally, in Chapter 5 we discuss several robotic applications for which an accurate
environmental representation is required and Chapter 6 presents conclusions and future
work.



2 Environment representation using points

In this section a brief presentation of the basic data structures that are suitable for storing
points will be attempted, such as lists, hash tables and several types of trees. Then a
comparison will follow, both theoretically and practically using experimental results.
The comparison will be conducted in terms of memory consumption and computational
complexity for several robotic applications, such as 3D mapping and navigation
techniques, and procedures they include, such as inserting and accessing the points in the
data strucure.

Figure 2.1: Representation of the Freiburg campus using an octree data structure

2.1 Basic structures for storing points

2.1.1 List

A list or sequence is an abstract data type that implements an ordered collection of
values, where the same value may occur more than once. Each instance of a value in the
list is called item, entry or element. In our case, an entry may consist of a 3D vector that



contains the coordinates of the 3D point that is to be stored. Typical procedures include
insertion, access and deletion of a point. Every time a point is to be inserted, a check has
to be made to see whether the point is already in the list or not, so that it is not inserted
again. Therefore, for the insertion proceure the whole list would have to be traversed
making the total time O(n), where n is the total number of entries already stored in the
list. For the accessing and deletion procedure, when a certain point has to be found, the
worst-case scenario suggests that the point will be the last entry in the list, making the
running time again O(n). The total memory consumed is proportional to the number of
entries, that is, O(n). More specifically, assuming that three floats (4 bytes each) and 8
bytes are allocated for the point coordinates and the pointer respectively, the total
amount of memory would be 20-n bytes. A double-linked list could be employed to
reduce the time for these procedures, using for example, two directional search
algorithms, without having significant improvement though. More detailed information
about the list data structure can be found in [9].

2.1.2 Array

An array is a data structure consisting of a collection of elements (values or variables),
each identified by at least one array index or key. An array is stored so that the position
of each element can be computed from its index tuple by a mathematical formula. In our
case, three instances of the array data structure could be used. The first one considers an
array that contains pointers to vectors of the 3D points, which is similar to the list data
structure described above. Secondly, a 2,5D array could be used storing the z-coordinate
in specific positions defined by the other two coordinates x and y which are the two
indices of the array. Finally, the third array that could be employed is a 3D one, where
all three indices correspond to the three coordinates X,y and z of the 3D point. This latter
array instance is closer to a 3D grid and can conceive better the concept of 3D space. In
the first case, due to the fact that the data structure is like a linked list, the times for
insertion, accessing and deletion and the memory consumption will be the same, O(n) in
all three procedures. In the second and third case, all that it needs to be done is to find
the corresponding indices x and y (and z in the third case). So the insertion time would
be constant, O(1), as only one multiplication and one addition are required. The same
process is followed in the accessing and deletion procedures as well, requiring O(1)
running time. However, accessing all the elements in the array would take O(n) time.
The memory that needs to be consumed is O(n) by allocating space for n-k, where k is
the size of the type of the entry in bytes. For example, if integers are stored in the array,
4-n will be the total memory amount required. More information about the array data
structure can be found in [10].

2.1.3 Hash Table

A hash table (also hash map) is a data structure used to implement an associative array, a
structure that can map keys to values. A hash table uses a hash function to compute an
index into an array of buckets or slots, from which the correct value can be found. In our



case, the values in the buckets could be a vector of the 3D points. The running time for
inserting a point is constant, like in the array data structure case, O(1). The accessing
time is O(1), simply because in our case the number of entries is the same as the number
of buckets. The same stands for the deletion time. One can conclude that employing a
simple hash-table data structure like the above, the complexity of the running times is
significantly low. The memory consumed is proportional to the number of entries, O(n).
If the entries describe the coordinates of a 3D point as assumed above, total memory of
n-3-8 = 24-n has to be allocated, as 3 doubles of 8 bytes each are required for each entry
. Modifications of the standard hash-table structure can also be used for better
performance, such as seperate chaining, linked lists at each bucket, open addressing and
coalesced hashing. A detailed analysis regarding the hash table data structure can be
found in [10] and [11]. In [12] hash-tables have been used in intra-logistics tasks by
mobile robots.

2.1.4 Trees

Binary Trees

Binary trees are the most common tree data structures used in computer science.
A binary tree is atree data structure in which each node has at most two child nodes,
usually distinguished as "left" and "right". Nodes with children are parent nodes, and
child nodes may contain references to their parents. Outside the tree, there is often a
reference to the "root" node (the ancestor of all nodes), if it exists. Any node in the data
structure can be reached by starting at root node and repeatedly following references to
either the left or right child. General information about binary trees can be found in [13]
and [14]. There exists a great variety of binary trees, from which the most commonly
utilized in the field of robotics is the k-d tree, which is briefly presented below.

K-d Tree

A Kk-d tree is a space-partitioning (SP) binary tree data structure for organizing points in
a k-dimensional space. Each leaf node is a k-dimensional point and every non-leaf node
can be thought of as implicitly generating a splitting hyperplane that divides the space
into two parts. Points to the left of this hyperplane represent the left subtree of that node
and points to the right of the hyperplane are represented by the right subtree. The
hyperplane direction is chosen in the following way: every node in the tree is associated
with one of the k-dimensions, with the hyperplane perpendicular to that dimension's
axis. So, for example, if for a particular split the "x" axis is chosen, all points in the
subtree with a smaller "x" value than the node will appear in the left subtree and all
points with larger "x" value will be in the right subtree. In such a case, the hyperplane
would be set by the x-value of the point, and its normal would be the unit x-axis. In our
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case, a 3-d tree could be used for the storage of 3D points at the leaf nodes, conceiving
in that way the sense of space. The time complexity is O(logn) for the insertion, access
and deletion procedures both in the average and worst case, where n is the total number
of nodes. The memory complexity is O(n). In particular, the branch nodes contain two
pointers to their two children, that is, 8 bytes. The leaf nodes contain a value whose type
depends on the application that uses the tree. In [15] they exploit k-d trees for ray-
tracing. In [16] and [17] it is described explicitly how k-d trees are involved in
applications in the field of robotics and especially in spatial pattern search and the ICP
algorithm. More detailed information can also be found in [18].

Octree

An Octree is a space-partitioning tree data structure in which the root (father) and each
internal node have exactly eight children. Octrees are mostly used to partition three
dimensional spaces by recursively subdividing them into eight octants, as depicted in
Fig. 2.2. Each octant is considered to be a node and each node represents the space
contained in a cubic volume. So each node contains pointers to eight other nodes, its
children, and a value, depending on the needs of its use. The recursive subdivision stops
as soon as a minimum size is reached, which determines the resolution of the octree. In
our case, when a 3D point needs to be stored, the value of the node that corresponds to
the x,y,z — coordinates is increased, or set.

a

+

Figure 2.2: The octree data structure

Depending on the resolution of the octree, more than one point may correspond to the
same node, carrying out in that way a down sampling of the whole amount of the
received points. In Fig. 2.3, 2.4 and 2.5 the first scan of the Freiburg campus dataset” is
featured for three different resolutions, 0.05m, 0.2m and 0.8m, respectively. The time
complexity here would be the same as in the k-d tree, O(logn) both in the average and in
the worst case for the three standard procedures, with n being the total number of nodes.

! Courtesy of B. Steder and R Kuemmerle, available at http://ais.informatik.uni-

freiburg.de/projects/datasets/octomap/
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The memory requirements are similar to that of the k-d tree, with the main difference
lying in the fact that the branch nodes have eight pointers that point to their children,
instead of two. The use of octrees for modeling was originally proposed in [19]. In [20] a
probabilistic way of modeling occupied and free space was introduced. A similar
approach titled “Octomap” is also considered in [21]. Furthermore, in [22] an octree-
based 3D map representation was designed that can efficiently perform map updates and
copies, especially in the context of particle filter SLAM. More detailed analysis
regarding the octree data structure can be found in [23].

T

Figure 2.3: 1% scan of the Freiburg campus data éet using resolution 0.05

Figure 2.4: 1% scan of the Freiburg campus data set using resolution 0.2



12

N
Figure 2.5: 1% scan of the Freiburg campus data set using resolution 0.8

2.2 Theoretical comparison

As one can conclude from the above, there exists a great variety of data structures that
can be used for storing points. For this reason, a comparison is necessary in order to be
able to choose the most appropriate one for the needs of 3D mapping. That is, low
insertion and access times are preferable, as well as low memory consumption,
especially in dynamically changing environments, such as urban ones and on-line
applications where points are received at very high frequencies. Moreover, of high
significance is a multi-resolutional representation of the environment, as it offers
adaptability of the computer systems employed, and navigational advantages. In Table
2.1 such a comparison is presented in terms of big O notation for the needs of the
specific topic. The notation n is used to describe the number of points stored in each data
structure. The access time depicted applies for the access of one single point in the data
structure.

It can be seen that the list data structure has the worst insertion and access times. This is
an expected result, as lists are naive data structures and multiple traversals need to be
conducted for each procedure. The computational times for the array data structure are
constant, as discussed in Section 2.1. Although this is a great advantage, the size of a 3D
array data structure must be set in advance and memory is allocated for all of its
elements. Hence, the memory consumption is expected to be high, since memory for
both occupied and free cells will be allocated. This can be partially avoided by using the
hash table data structure, for which the average cases of insertion and access times are
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also constant, making it computationally efficient. However, its performance is highly
dependent on the hash function and the general implementation employed. The tree data
structure gives the advantage of finding a needed entry in O(logn) time both in the
average and the worst case. If n is the number of points stored in the tree, then its height
h is logn. K-d trees are the adaptation of binary trees in the requirements of storing 3D
points. However, due to the fact that they are binary trees, many splits have to be carried
out in order to reach the level of a point and that results in a large tree height. The
implementation of a K-d tree, however, has a great impact on its performance. On the
other hand, an octree data structure is expected to have smaller height, as each inner
node has eight children, resulting in lower insertion and access times. Moreover, the
greatest advantage of the octree towards the other data structures is that it conceives at
the maximum the sense of 3D space due to the fact that the division of each node is
carried out by eight (2° = 8). For that reason, a multi-resolutional approach to the
representation of the environment can be achieved, traversing the tree at a certain level I.
For example, if the leaf nodes are at | = 1 and each cell describes a cubic volume of edge
0.05m (Fig. 2.3), at | = 4 each node will describe a cubic volume of edge 4:0.05 = 0.2m
and the representation of the environment would be like in Fig. 2.4. Finally, Table 2.1
also shows that the memory consumption is the same in terms of big O notation for all
the data structures. For the latter three structures, the memory is highly dependent on the
implementation utilized, as will be featured in the next Section.

Data Structure Insertion Access Memory
Average | Worst | Average | Worst
case case case case
List O(n) O(n) O(n) O(n) O(n)
3D Array 0(1) 0(1) 0(1) 0(1) O(n)
Hash Table 0(1) O(n) O(1) O(n) O(n)
K-d tree O(logn) | O(logn) | O(logn) | O(logn) O(n)
Octree O(logn) | O(logn) | O(logn) | O(logn) O(n)

Table 2.1: Data structures theoretical comparison (big O notation) in terms of inserton,
access time and memory consumption

2.3 Practical comparison

In order for the theoretical results that are shown above to be verified, some experiments
were carried out. More specifically, three implementations of an octree, a k-d tree and a
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hash table were employed, briefly described below. In all three approaches, the
probabilistic manner of describing the 3D space was incorporated, making the data
structures appropriate for dynamically changing environments. In each implementation,
an occupancy grid structure is modeled. In the tree structures, the nodes where the
information is stored represent a 3D cubic cell of the environment, whose size depends
on the resolution used. The same applies for the entries of the hash table. That implies
that a cell is represented by the coordinates of a 3D point that describe its centroid. Ray
tracing is done along the path beam to update the occupancy values of each cell. Let z
represent the observation and the lower subscripts represent the time instances. The
probability of any grid r; of being occupied can be estimated by the formula:

1 —P(ri|z:) 1 = P(r;
P{I‘; ;r} P[:.i“;

L1 ])

PI:?‘;';];?): l+

AN I}

given the case that the initial occupancy of each cell being occupied or free is the same.
In order to prevent each cell of being over confident about its state we utilize a
clamping/saturation threshold a after which the cell is not updated. The values of anin
and amax Were set to 0.05 and 0.95 respectively. After the brief description of the data
structures below, an evaluation of them is conducted for randomly generated points and
for the real data sets of Freiburg campus and Bremen city center.

Hash Table

The main structure of the hash table that was implemented is an one-dimensional array.
The x-coordinates of the cells that describe a certain 3D space are addressed to the
indices of this array, using the resolution of the map. Each element of the array contains
a vector of y-nodes. A y-node consists of a key that corresponds to the y-coordinate of
the cell and another vector of z-nodes. Finally, a z-node is also identified by its key that
describes the z-coordinate of the cell and contains the probability of this cell being
occupied. The y- and z- keys are obtained from the original y- and z- coordinates,
respectively, employing a hash function that utilizes the resolution of the map. During
the insertion procedures, if two 3D points correspond to the same cell, the probability of
this cell being occupied is updated according to the above formula. To access a cell, the
X,Y,Z- coordinates of a point inside this cell are given as input. Using the x-coordinate,
the corresponding element of the array is determined and then an exhaustive search of
the corresponding y- and z- nodes is conducted. The matching is done using the keys in
each node. That is, only the x-array is an associative one. The y- and z- values are
arbitrarily stored as keys in the y- and z-nodes respectively. If this specific cell does not
exist, it is considered as unknown space. An example for an access procedure is shown
in Fig. 2.6. The memory consumption is given by the formula:

MemOryuash Table = 24 X X-nodes + 28 x y-nodes + 8 x z-nodes

The structure of a vector (contained in a bucket of the x-array) contains 24 bytes. So a y-
node will contain, except for these bytes, an integer for the value of the y-coordinate (4
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bytes). Finally, each z-node contains an integer for the value of the z-coordinate (4
bytes) and a float for the probability of being occupied (4 bytes).

X - array y - nodes 2 - nodes
1
0 ' Py Pl 2 o905
2
1 y 2 |oss
* Fd 0.9
. ¥
X

Figure 2.6: Example of accessing a cell in the hash table
K-d Tree

The K-d tree implementation used can be found in [24]. We modified it appropriately to
adopt the probabilistic properties described above. Each node of the tree contains a 3D
point that is the centroid of the corresponding cell and its probability of being occupied.
For inserting and accessing a single node, a heuristic function is used. More
specifically, every node can be thought of as implicitly generating a splitting
hyperplane that divides the space into two parts, known as half-spaces. Points to the left
of this hyperplane represent the left subtree of that node and points right of the
hyperplane are represented by the right subtree. The fact that the information is stored in
each node of the tree makes the data structure much more efficient in terms of memory.
Other K-d tree variants could store the information only in the leaf nodes giving in that
way to the data structure a sense of space. However, due to the fact that the K-d tree
structure is binary, many splits have to be made resulting in a great number of inner
nodes and large tree height. The memory requirements in this case would be higher. In
addition, an octree data structure conceives much better the sence of 3D space, having a
greater performance than a K-d tree implementation that stores all the information in the
leaf nodes. For this specific implementation, the formula below gives the memory
consumption in bytes:

Memoryk.q tree = 64 X Nodes + 88,

where each node contains 2 pointer to its children (16 bytes), a float for the probability
of being occupied (4 bytes), an integer that determines the axis that the division is made
(4 bytes), a pointer to a specific data of the node and an array of 3 doubles for the 3D
point storage (1 pointer and 3 doubles = 32 bytes as an array structure contains also a
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pointer) resulting in 64 bytes. For the initilization of the tree some structures are required
such as an integer that determines the dimension (4 bytes), a pointer pointing to the root
node (8 bytes) and a pointer to a hyperectangle structure (8 bytes), which contains the
same dimension integer (4 bytes) and two arrays of doubles for the minimum and
maximum values of the hyperectangle (16 + 48 = 64 bytes), resulting in 88 bytes.

Octree

A publically available octree implementation [25] was also slightly modified to a
probabilistic approach for the needs of the experiments. As described in Chapter 2.1,
each node divides the cubic cell it describes into eight nodes that correspond to eight
smaller and equally sized cells. The resolution of the octree and the fact that each node
contains exactly eight children (3D space, 2° = 8) offer a multiresolutional representation
of the environment depending on the level of traversal of the tree. The leaf level renders
the most detailed representation that the resolution of the tree imposes. In contrast to the
other data structures, the probability of each non-leaf node of the octree has to be
updated with the mean value of the probabilities of its children, each time a new
insertion is carried out. The memory requirements of this implementation is computed as
follows:

Memoryoctree = 80 X InnerNodes+ 8 x LeafNodes + 16

An inner node contains an integer and a float determining its type and its probability of
being occupied respectively (4+4 = 8 bytes) and an array of 8 pointers to its children
nodes (1+8 pointers = 8x9 = 72 bytes) resulting in 80 bytes. A leaf node contains a float
determining its probability of being occupied and an integer determining its type (4+4 =
8 bytes). For the initialization of the tree, a pointer to the root node is needed (8 bytes),
an integer for the size of the tree (4 bytes) and a float to determine non-occupied nodes
(4 bytes), resulting in 16 bytes.

Both real-world data and randomly distributed points were used as input data. In the first
case, the Freiburg campus dataset from [21] and the Bremen city center dataset from
[REF] were used, whereas in the latter case a stepwise modifying number of random
points (simulation) was generated. In both cases the memory consumption and the times
for inserting and accessing the total number of points were examined.

The experiments mentioned in this section, as well as the rest evaluations of this thesis,
were carried out on an Intel(R) Core i5-2500K, 3.30 GHz processor with 16 GB
memory.

1) Simulation data:
The focus of this test is to evaluate and compare insertion and access times as well as the
memory consumption between the three different data structures described above.
Different number of points (30,000, 70,000, 100,000, 300,000 and 500,000) were
generated using different resolution values. Moreover, two different ranges of points
were used ([-1000,1000] and [-150, 150]).
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Fig. 2.7 (a)-(c) shows the total insertion and access times of the points in the data
structures as well as the memory consumption for random points in range [-
1000,1000]m and grid resolution 10cm. The insert times for the hash table are
remarkably low, as it is an array structure as discussed in Section 2.2. The
corresponding values for the octree data structure are the highest. This can be attributed
to the fact that the octree has the sense of the 3D space and stores all the information in
the leaf nodes. In that way many inner nodes are built, increasing the height of the tree
and making its traversal slower. For example, whenever a point is to be inserted, the
octree will generate all the inner nodes to reach it, whereas the other data structures
would arbitrarily store it. This is the reason why the K-d tree insertion times are lower,
as the information is stored in every node for the implementation used. The above
arguments apply also for the access times, which feature a similar behaviour to the
insertion ones. However, one could notice that both insertion and access times are
significantly low, making these data structures appropriate for online applications.
Furthermore, it makes total sense the fact that the octree structure consumes the largest
amount of memory, for the aforementioned reason regarding the conception of 3D space.
The small memory difference between the K-d tree and the hash table can be attributed
to the more complicated structure of the first (e.g., pointers pointing to decendant
nodes).

Fig. 2.8 (a)-(c) shows the same results for random points in range [-150,150]m.
Remarkable is the difference in memory consumption for the octree structure. As we can
see from the graph, for the same number of points, the corresponding values are lower.
That is an expected performance, as the total space is smaller and so the inner nodes that
the octree creates are less. Moreover, using the same argument as above, one could
explain how different grid resolution values affect the time and memory complexity of
the octree. Using lower resolution values, the size of each occupancy cell is smaller. In
order then to describe the same 3D map, more inner and leaf nodes are created. This can
be verified by Fig. 2.9(a)-(c).
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Figure 2.7: (a)-(c) Computational time and memory comparison between Octree, K-d
tree and Hash Table (10cm resolution) for randomly generated points between [-1000,
1000]m
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Figure 2.9: (a)-(c) Computational time and memory for the Octree data structure for
different grid resolutions and 500,000 randomly generated points between [-
1000,1000]m

2) Real World Data Sets:

This section focuses on the comparison of the three data structures in terms of
computational time and memory consumption for the real world data sets of Freiburg
campus and Bremen city center” (Fig 2.10(a) and 2.10(b). The Freiburg campus data set
consists of 77 files, each one containing approximately 155829 points. The Bremen city
center data set consists of 13 files, each one containing approximately 295000 points.

Fig. 2.11(a) shows the average insertion time for each file of the Freiburg campus data
set regarding the three data structures. Different grid resolution values are used.

2 Courtesy of Dorit Borrmann and Jan Elseberg available at the Osnabrueck robotic 3D scan repository,
http://kos.informatik.uniosnabrueck. de/3Dscans/
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Remarkable here is the performance of the octree data structure, which, in contrast to the
simulation tests, achieves the lowest insertion times. The data set corresponds to a
structured environment and the octree capability of modelling the 3D space significantly
decreases these times. More specifically, each time a new point is to be inserted, the
corresponding leaf node of the octree will be automatically reached. If the node is
already occupied then its probability will be updated. On the other hand, the K-d tree
and hash table structures, not having this advantage, will have to search for the new
point more exhaustively to check whether it already exists or not, leading in larger
complexity. More explicitly, regarding the hash table, there are many points that have
similar x-coordinate (e.g., part of the ground) whose y-value will be stored as key in the
vector corresponding to this x-coordinate. This can be seen in Fig. 2.6 above. In that
way, the search for such points may be more complex in terms of time. However, the
direct associativity of the hash table makes it faster than the K-d tree. For this reason, the
time to access the whole data set is much lower for the hash table strucure, as shown in
Fig. 11(b). Fig. 2.11 (c) shows the memory performance of the three data structures. The
behaviour is similar to the one shown for the simluation tests above, as the same
arguments apply. Finally, the K-d Tree has proven to be more efficient for nearest
neighbor serch algorithms as mentioned in [48].

In Fig. 2.12(a)-(c) we can see the same results for the Bremen city center data set. In
comparison with the Freiburg data set, we notice that the average insert times per file are
higher, since the number of points per file is larger. However, the total number of points
of this data set is less than of the Freiburg one, contributing to lower memory
consumption and access times for the K-d tree and hash table. Nevertheless, noteworthy
is the higher memory consumption of the octree structure. This can be attributed to the
bigger map of the Bremen city center. Thus, the number of the inner nodes of the octree
will be greater.

(a) Freiburg campus at 2cm resolution (b) Bremen city center at 2cm
(292m x 167m x 28m) resolution (778m x 870m x
154)

Figure 2.10: (a),(b) Freiburg campus and Bremen city center visualizations at 2cm
resolution
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3 RMAP: Environment representation
using rectangles

The most common approach for 3D environment representation is utilizing raw point
clouds and operating directly on them or utilizing a 3D occupancy grid. The extension of
2D occupancy grid concepts directly to 3D leads to a large over head in terms of
memory and computational cost due to the explicit calculation of free space in standard
approaches. In this Chapter a rectangle approximation of 3D pointclouds titled “RMAP”
is proposed. The presented approach can be used either as an occupancy grid for the
representation of the environment or as an approximation using point density. The
capability of grouping points in arbitrary shapes, such as rectangles, both in 2D and 3D
space can lead to high computational efficiency. We use the concept of the bounding
box to form rectangles around groups of points. In that way, except for the savings we
achieve in terms of time and memory, as the number of rectangles is significantly less
than the total number of points, the environment can be approximated to any arbitrary
resolution, according to the application (navigation or registration) or computational
resources available. Moreover, flexibility is gained as any arbitrary axis aligned
rectangle can be utilized. Appropriate data structures for the needs of environment
representation with rectangles would be the R-trees with its variants [26], [27]. A brief
description about R-tree is presented below.

Section 3.1 considers the framework of the occupancy grid for representing 3D
environments, whereas Section 3.2 deals with the approximation of 3D pointclouds by
introducing a density-based splitting algorithm. The concept of RMAP is extended to
rectangular approximation of 2D pointclouds and polygonal convex segments, presented
in Chapter 4.
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Figure 3.1: (a), (b) 3D and 2D R-tree structure

R-trees

R-trees are tree data structures used for spatial access methods. The idea here is to group
nearby objects (e.g. nearby points) and represent them with their minimum bounding
rectangle in the next higher level of the tree. At the leaf level, each rectangle describes a
single object whereas at higher levels the aggregation of an increasing number of
objects. The R-tree is a balanced search tree, so all the leaves are at the same height, and
every node (apart from the leaf nodes) contains information about its bounding box and
pointers to its children, whose bounding boxes lie inside the bounding box of their
parent node. The bounding box is defined by four values (the minimum and maximum x,
y coordinates) for a rectangle in the 2D space or six values (the minimum and maximum
X, Y, z coordinates) for a cube in the 3D space. These values are sufficient for describing
all the vertices of a rectangle or a cube, since we deal with axis-aligned bounding boxes.
The insertion of a new rectangle is done by using a heuristic such as choosing the
rectangle that requires least enlargement and the search is done based on overlapping
rectangles. The searching algorithms of an R-tree (usually based on intersection) use the
bounding boxes to decide whether or not to search inside a subtree. The time complexity
here is O(logn) for the procedures of insertion, accessing and deletion of a rectangle both
in the average case and in the worst case, where n is the number of nodes (e.g.
rectangles) in the tree. The memory complexity is O(n). Furthermore, variants of the R-
tree could be employed, like the R*-tree and the R+-tree, which try to minimize the
overlap at leaf and internal level, respectively. [26] and [27] give more detailed
information about R-trees and its variants. The use of R*-trees for storing points and
rectangles efficiently can be found in [28].
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3.1 Occupancy grid framework

For this approach, a small rectangle is fitted around each point and stored in the R-tree.
The size of the rectangle depends on the desired resolution. Each rectangle represents an
occupancy cell with a certain probability, which is updated, either by ray-casting or by
encountering a 3D point that belongs to the same occupancy rectangle (that is, the
rectangles of two different points overlap) in a similar way to the octree data structure
presented in Section 2.3. That means that if the rectangle to be inserted overlaps with a
rectangle in the leaf nodes, it is not inserted. Instead, the probability of the specific node
is updated. Fig. 3.2(a) and 3.2(b) show the first scan of the Freiburg campus at different
resolutions with cubic grid cells. Fig. 3.2(c) shows the case when the basic grid cell has
a greater length along one axis. This flexibility property can be exploited in cases where
there is a prior information about the structure of the environment and the movement of
the robot.

(@) 4 cm resolution with (b) 20 cm resolution with
one

cube shaped cells cube shaped cells larger axis

Figure 3.2: Different resolution views of the 1% scan of the Freiburg campus data set

Experimental Evaluation

This section focuses on the evaluation of the approach, mainly in terms of insertion and
extraction times as well as memory consumption. Furthermore, a comparison will be
conducted to the implementation of the octree structure employed in Section 2.3. A
publically available implementation of the R-tree data structure [29] was employed. It
was also properly modified to integrate probabilistic properties, as the data structures
discussed in Section 2.3. The evaluation was conducted both for simulation data by
inserting randomly generated (30,000, 70,000, 100,000 and 300,000) points in range [-
1000, 1000]m and retrieving all occupied grid cells and for real world data sets (Freiburg
campus data set). The memory of the R-tree in both cases was computed according to
the following formula (in bytes):

Memoryr.iree = INNnerNodes x (18 + Branches x 36) + LeafNodes x (18 + Branches x 28)
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and was derived as follows. Each node consists of 2 integers (one for the number of its
branches and one for the current level (height) of the Rtree), 2 booleans (to check
whether it is an inner node or a leaf node) and a pointer to an array of branches, leading
to 18 bytes. Each branch contains 6 integers describing the bounding box, 1 integer
describing the probability of being occupied and a pointer to the next node, if the branch
is inner. In total, inner branches consume 36 and leaf branches 28 bytes.

1) Simulation results:

Fig. 3.3(b) shows the insertion times for the R-tree and the octree structures for
randomly distributed points. For small number of points the times for the two structures
are comparable but as the number of points increases the insertion time for the R-tree
becomes larger. This can be mainly attributed to more computationally expensive
heuristics for the insertion procedure such as the least expansion, used in the R-tree data
structure. As discussed in the data structure description, each time a rectangular cuboid
Is inserted, the structure tries to find the best inner node which leads to minimum
expansion of the tree structure. If there exist no overlapping bounding boxes at the inner
nodes, the choice is obvious, but if bounding boxes of inner nodes overlap, this process
can be computationally expensive. Secondly if an inner node overflows (the number of
branches exceeds the maximum), the node has to be split and the bounding boxes of all
intermediate nodes need to be recomputed. Elimination of the ‘least expansion’ process
in this approach can lead to large computational savings (however it also leads to an
unbalanced tree) as can be seen from Fig. 3.3(b). There exist variants of the basic R-tree
structure such as the R+ tree and the R* tree [30], [31], [32], which can handle this
scenario better and can lead to better computation times. Most 3D sensors (such as
Kinect) provide 300,000 points per frame, however in most cases the data is
downsampled or ignored after some distance (mainly 4-5 m for Kinect due to increasing
error with distance), leading to a more manageable number of points (assuming between
30,000 to 100,000) for the RMAP approach. Fig. 3.3(c) shows the memory consumption
(with increasing number of random points) of both approaches which is directly
dependent on the depth/height of the tree structure. It can be seen from the figure that
RMAP utilizes less memory than the Octree approach. This can be explained by a
simple example by considering the insertion of a single point. The Octree would
generate all intermediate branches and nodes to insert the point at a specific resolution
whereas the R-tree structure would insert a single rectangular cuboid around the point.
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Figure 3.3: (a)-(c) Computational time and memory comparison between Octree and R-
tree (20cm resolution) for randomly generated points between [-1000, 1000]m

2) Real World Datasets:

The first section dealt with simulated data. In order to extensively evaluate the approach,
different scans of the Freiburg campus were used. A comparison of RMAP with the
same implementation of an octree structure was done for computational costs on 70
scans of the Freiburg campus. Fig. 3.4(a) presents the access time of all occupied cells
(for an average number of points i.e. 155829) for different resolutions and reinforces the
results of the simulation (presented in previous subsection) setup that RMAP can be
used for online motion planning in 3D environments. Fig. 3.4(b) shows the insertion
time (for the same number of points) for different resolutions. At low resolutions, the
computational times are quite comparable, but at high resolutions the least expansion
aspect can lead to larger computational costs. However, in a real world environment like
the Freiburg campus data set the least expansion procedure cannot be avoided, since it
organizes the inner nodes in such a way that the structure of the environment is
conceived in the tree. Fig. 3.4(c) shows the memory (as per the formula in the previous
section) usage of both approaches for different resolutions. The difference in memory
consumption can be explained based on the same argument given in the previous
subsection. To be more explicit, consider the memory consumption corresponding to 10
cm resolution shown in Fig. 3.4(c) for which the height of the Octree structure is 13 in
comparison to 7 for the RMAP approach.
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Figure 3.4: (a)-(c) Computational time and memory comparison between Octree and R-
tree with respect to grid resolution for the first 70 files of the Freiburg campus data set

The proposed approach does not differentiate between free and unknown space for the
entire grid (only dynamic cells). This is not a critical issue for most robotic applications
such as navigation and registration, however it can be problematic for some exploration
algorithms which generally use the unknown and free space in calculating the utility of a
frontier. This issue can be addressed from two perspectives. Firstly, most robotic
architectures utilize two layers for navigation (global and local representations of the
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environment). RMAP can be used to make a global map, whereas the exploration
strategy can be based on generating frontiers on the local map which can explicitly
model free space and unknown space. These frontiers can be marked on the global map
to stop the algorithm from exploring already explored areas. Secondly there exist
exploration algorithms [33] which place frontiers on the global map corresponding to a
certain radius based on the robot position or the maximal field of view of the sensor and
thus do not require explicit free and unknown space modeling.

3.2 3D Rectangle Approximation

A formulation like the one discussed in the previous Section allows a probabilistic
framework for 3D mapping, however it does not justify the full potential of the RMAP
approach. The occupancy grid framework from Section 3.1 could be considered a naive
one, since despite the fact that flexibility is achieved, storing a rectangle for each single
point (according to the grid resolution) does not necessarily lead to great computational
savings in time and memory. In contrast, the extraction of large rectangular sections
from a 3D point cloud would be a much more efficient approach in comparison to an
occupancy grid. Rectangles would be formed by groups of points, hence their number
would be smaller, resulting in lower computational times and memory consumptions. In
that way, the basic R-tree property and advantage of storing any arbitrary axis-aligned
rectangles would be fully exploited.

In this section we discuss a formulation that splits the maximal bounding box of the
pointcloud corresponding to its density to obtain rectangular approximations of the
environment. Since the algorithm is dependent on density, we utilize a fully registered
pointcloud. This approach can be used as a post processing step after registration to
reduce computational and memory complexity of point cloud storage.

The pseudocode used for the 3D rectangle approximation is shown in Fig. 3.5. The input
to the algorithm is the point cloud p to be approximated and the density and minimum
volume ¢, w respectively. The threshold & is transformed into the threshold g, as
discussed below. The output is a set of rectangles R which approximate the point cloud.
The algorithm starts by checking if the number of points is less than four in line 1 (at
least four points are required to define a volume). If so, these points are considered to be
undefined. If not, the maximal bounding box for the point cloud is calculated based on
the minimal and maximal points (line 2). In addition the algorithm calculates the volume
V of the bounding box and the point density (line 3 and 4). The volume and density are
compared to the density and minimum volume threshold g, w. If the density is greater
than g or the volume is less than w, the bounding box is stored in the set R, otherwise the
algorithm splits the point cloud into 8 equal parts with respect to the center (line 7). Each
split point cloud is recursively passed to the algorithm (Fig. 5) until the threshold is
satisfied (line 8). The formulation presented in this section can be extended to work on
point cloud data provided by segmentation algorithms. An incremental version of this
approach can also be formulated however it would be more sensitive as the 3D point
cloud density would change as more scans are accumulated and would require merging
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along with splitting, further increasing the computation time of the algorithm. g is
derived from the initial density (points/m®) of the pointcloud according to the formula:

S = initial density /(1 —¢),

where ¢ is the input normalized threshold and takes values in the range (0,1). In the case
where ¢ = 0, then it would be g = initial density and no approximation would be
conducted. In the case where ¢ = 1, it would be = o and the threshold would never be
satisfied. Hence, the algorithm would continue running until the threshold  is reached
and all the points until that point would be undefined. So we can conclude that the
higher the threshold ¢ is, the more accurate is the approximation.

3DRectangle_approximation(p, ¢, @)

Input:
Point cloud p,
Approximation percentage EI:d i of
Density threshold p = intia “efil?’ 0 p.
Minimum volume threshold w '
Output:
Set of rectangles R = {r;.r;...1,}
Procedure:

1 if (pointsinp < 3)
store as undefined points;

2 Compute bounding box b of point cloud p;
3 Compute volume V of bounding box b;
: . pointsin p
4 Compute point density d, where d = —
5 if (d=p) or(V <) then
6 R=R+b
else
7 split p into 8 equal parts {p,.p>...Ps}
with respect to the center
for all p; do
8 3le{ectangIe_approximalion{pj, £, @);
end
end

Figure 3.5: 3D rectangle approximation pseudocode

Experimental evaluation

In this section we evaluate the approach on simulation and real datasets based on
memory and computational complexity. The algorithm is capable of approximating
complex 3D environments however the computational complexity for now limits it for
offline application.

1) Simulation datasets:
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The algorithm was evaluated on simulated 3D pointclouds. Fig. 3.6 shows the
approximation of sphere utilizing different thresholds & which define the detail of the
approximation. It can be seen from the images that as ¢ is increased the rectangles
generate a more accurate approximation.

e=40% e =80% e =90%

Figure 3.6: Sphere shaped point cloud rectangle approximation using different
thresholds

Apart from the artificially created sphere, the algorithm was also tested on the Stanford
repository bunny and dragon data sets® which consist of 35947 and 437645 points
respectively. Fig. 3.7 and 3.9 show the approximation results for these two data sets for
different approximation thresholds ¢, leading from a coarse to a finer approximation.
Fig. 3.8 and 3.10 depict the approximation time, the memory consumption, the number
of rectangles and the number of undefined points (Fig. 3.5 -line 1) for these two data
sets. Regarding the approximation time, we can tell from Fig. 3.8(a) and 3.10(a) that,
except for the threshold, it is highly dependent on the number of points, as for the dragon
data set the time needed can be over 45 seconds for high ¢ values whereas for the bunny
dataset the time does not exceed the 1 second. The memory consumption for the two
datasets depends on the number of rectangles that need to be stored which increases as
the threshold ¢ increases. However, the total number of rectangles (maximum of 60000
for the dragon data set) is much lower than the points that consist the initial 3D
pointcloud achieving great memory savings. Fig. 3.8(c) and 3.10(c) depict the loss of
information (undefined points) for the two data sets, which also increases as the
threshold ¢ increases. That is an expected outcome, as discussed above in the
pseudocode explanation. Nevertheless, we can see that the number of undefined points is
not large, especially in high density pointclouds such as the dragon data set.

® Courtesy of Stanford University Computer Graphics Laboratory, available at The Stanford 3D Scanning
repository, http://graphics.stanford.edu/data/3Dscanrep/
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(e) e =98% (F) e =98%

Figure 3.7: Rectangle approximation of the Stanford repository bunny for different
density thresholds.
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B =98.9%

Figure 3.9: Rectangle approximation of the Stanford repository dragon for different

density thresholds.
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2) Real world datasets:

The algorithm was also evaluated on real world data sets. More specifically, different
scans of the Freiburg campus and the Bremen city center data sets were utilized. Fig
3.11 shows the rectangular approximation of a specific section (a tree and pole) of the
Freiburg campus. The image shows that the algorithm adapts the size of the rectangles
according to the density of the point cloud. Fig 3.12(a) and Fig 3.12(b) show the
rectangular approximation of 10 scans of the Freiburg campus for ¢ = 98% and w =
1mm? and 4 scans of the Bremen city center for ¢ = 95% and o = 1 mm® respectively.
Fig. 3.13 shows the approximation time, the memory consumption, the number of
rectangles required for representation and the undefined points for the first 10 scans of
the Freiburg campus dataset. As the approximation threshold is increased the algorithm
is able to build a finer approximation of the environment as can be observed with the
increase in the number of rectangles and memory. Another important observation is that
the loss of information is at most 3.5% of the actual point cloud size.

It is interesting to compare the RMAP rectangular approximation framework with the
occupancy grid framework to determine the advantages/disadvantages of each
formulation. However defining a criterion for comparison is quite difficult, since the
former approach utilizes different sized grid cells based on density whereas a fixed cell
size (for a specific resolution) is used in the occupancy grid framework making it
difficult to determine the equivalency of representation. Another important factor is that
the rectangular approximation framework also rejects points, hence making it difficult

to quantify the loss of information in comparison to the loss of information of a multi
resolution occupancy grid. Hence in order to roughly compare both approaches, a
conclusion which follows intuition and is based on a wide variety of possible
approximations achievable by both approaches can be considered. Fig. 3.14 shows the
computation time, number of rectangles required for representation and the memory
consumption for the both approaches on 70 files of the Freiburg campus which contains
10984515 points (almost 292m x 167m x 28m). The approximation time in Fig. 3.14(a)
shows the computation time for the presented approach as well as for the insertion of the
rectangles into the R-tree. The comparison shows that for large point clouds, the
rectangular approximation is computationally expensive (limiting it to an offline
approach) compared to an occupancy grid formulation (computation time based on
average number of points per file). The number of rectangles required for the rectangular
approximation Fig. 3.14(c) is less than the number of rectangles required for an
occupancy grid formulation (Fig. 3.14(d)) which is fairly intuitive if Fig. 3.14(a) is kept
in mind. A similar intuition follows for the memory consumption as can be seen in Fig.
3.14(e) and Fig. 3.14(f).
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Figure 3.11: Rectangular approximation of a tree and a pole from the first scan of the
Freiburg campus data set (¢ = 98%, & = 1mm°)

ol

(a) Rectangular approximation  of (b) Rectangular approximation of
the first 10 scans of the Freiburg the first 4 scans of the Bremen
campus dataset (¢ = 98%, w = 1mm®) city center dataset

(¢ = 95%, w = 1mm°®)

Figure 3.12: Rectangular approximation of the first (a) 10 files of the Freiburg campus
dataset and (b) 4 scans of the Bremen city center dataset
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4 RMAP: Environment representation
using planar convex polygons

Many robotic applications utilize plane extraction algorithms [34] from 3D pointclouds.
These planar segments are used in several scenarios, such as 3D mapping, navigation
and registration. These procedures require high representation accuracy and efficiency in
terms of computational time and memory. The points that form the planar segments are
utilized for their polygonization, calculating the convex hull and formulating the planar
convex polygons. The latter are described by the planar attributes, such as the normal
vector and the offset and the vertices of the polygon. Hence, their use leads to
computational savings in memory in comparison to the use of 3D points. Furthermore,
representing an environment using such polygons can be more intuitive in the sense that
a human being does not perceive the real-world as points, but more like planar surfaces
and polygons, especially in structured environments.

However, due to the complexity of convex polygons (inconstant and large number of
vertices required for the description of the convex hull), until now no data structure that
can store them efficiently has been found. In this Chapter we discuss the effectiveness of
the extension of the RMAP approach to approximate convex polygons using rectangles,
exploiting the advantages of the R-tree data structure. This approach is divided in two
main parts. In Section 4.1 we introduce a splitting algorithm to approximate efficiently a
convex polygon and in Section 4.2 we discuss an extension of the 3D approximation
algorithm presented in Section 3.2 to planar segments.

4.1 Rectangle approximation of convex polygons

The application of RMAP approach presented in Section 3.1 is not just limited to an
occupancy grid formulation using rectangular cuboids. It can be extended to
approximate polygonal regions extracted by standard segmentation algorithms [34],
[35], [36] in order to represent the 3D environment. Quadtrees (2D environments) have
been used before for approximation of convex polygons, however R-trees have been
shown to be more efficient in terms of memory and computation time [37]. Although the
discussion presented in this section and the experimental evaluation section are in
context of convex planar polygons (hence we use the word rectangle instead of
rectangular cuboid as one axis is degenerate), RMAP is more general and can be utilized
for any polygonal set. A polygonal approximation of convex polygons is also considered
in [38].
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Fig. 4.1 shows the polygonal approximation pseudocode utilized in the RMAP approach.
The robot utilizes a segmentation algorithm to extract the convex hull of planar
segments denoted as p; (i-th planar segment). The bounding box denoted as b; for the
convex hull can be created from the minimum and maximum values of the segment in
each axis. Since the R-tree structure only allows axis aligned rectangles, the planar
polygons are first projected along a specific axis (storing the values required for
projection) and then calculating the bounding box. The arguments passed to the
pseudocode are the convex hull of the i-th planar segment p;, the area ratio threshold ¢
and the minimum permissible area y. The threshold { denotes the ratio between the area
of the bounding box and the convex hull of the polygon. Hence { can be termed as the
resolution parameter, since varying this parameter allows a very fine or rough
approximation of the planar polygons. The parameter y defines the minimum area that
can be used to represent the regions of the convex hull. A large value for this parameter
leads to a very coarse approximation. The algorithm starts by computing the bounding
box of the input segment (line 1). If the area of the segment’s convex hull is larger than y
(line 2), the convex hull is compared to the area of the bounding rectangle (line 3). If the
overlapping area between them is lower than the resolution parameter ¢, the planar
segment is split into four parts (line 5) with respect to its centre and the function is called
recursively for all of them (lines 6). The process continues until the bounding boxes
approximate the planar segments desirably (depending on the resolution parameter) or
until the minimum area y is reached. In general the overall detail captured by the
polygonal approximation algorithm is highly dependent on the results of the
segmentation algorithm.

Approximate_polygon(p’, ¢, 7)
Input:
i'" Planar segment p’,
Area ratio threshold £,
Minimum segment area ¥
Output:
Polygon approximation b*P™* = {b; b,...b, }
Procedure:
1 Compute bounding box b of planar segment p’;

2  ifarea(p’) > ydo
3 if area_ratio(p’,b) > { do
4 store b
else .
5 split p' into 4 equal parts {pflpfgb;}
for all pff. do
6 Approximate_polygon(p_’j, g.y);

Figure 4.1: Polygonal approximation pseudocode
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Experimental evaluation

The RMAP polygonal approximation framework is evaluated for simulation as well as
real world datasets. The details captured by this framework are dependent on the results
of the segmentation algorithm as well as on {"and y thresholds.

1) Simulation results

Triangles and circles were chosen for this subsection as they can be considered to be the
most difficult shapes to check the effects of different thresholds ({ and y). Fig. 4.2(a),
4.2(b) and Fig. 4.2(c), 4.2(d) show the results of varying { threshold for a fixed value of
y. As (is increased the polygonal approximation becomes more accurate. Fig. 4.3 shows
the effect of y, which leads to a coarse approximation of the polygon as can be seen by
comparing the edges of the circle and the triangle of Fig. 4.2 (y = 10 cm?) to the circles
and triangles in Fig. 4.3 (where y = 10 mm?). The colors of the rectangles shown in these
images are assigned randomly to aid visualization.

In order to evaluate the time complexity of the algorithm, an increasing number of
circles was approximated. Fig. 4.4(a)-(b) shows the runtime of the algorithm for this
simulation scenario, for two different values of y (10cm? and 10mm?) and fixed ¢ = 95%.
We can see that the time increases linearly with respect to the number of circles.
Furthermore, even for the case where 500 circles are approximated for y = 10mm? the
time does not exceed the value of two seconds, which verifies the computational
efficiency of the algorithm.

() C=80% (b) ¢ = 95%



(c) £=70% (d) ¢ = 90%

Figure 4.2: Effect of ¢ for fixed y = 10mm? for 2D circle and triangle

(@) =95%

(b) ¢ = 90%

Figure 4.3: Effect of y = 10cm? for 2D circle and triangle

£ =95% and y= 10 mm®

[ =95% andy = 10 cm®
0.4 : . : . .
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(a) £ =95% .y = 10 mm? (b) £ =95% , y= 10 cm?

Figure 4.4: (a)-(b) Time for splitting algorithm (Fig. 4.1) with increasing number of
circles (fixed and varying y)
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2) Real world data sets

The RMAP formulation was also tested on real world datasets. Fig. 4.5 shows results of
a few accumulated scans in a specific scenario for the indoor data set* to make the effect
of the approximation more apparent (since larger point clouds lead to a very cluttered
visualization). It can be seen that adapting the threshold { leads to better approximation
for a fixed value of y = 10 mm?.

B I —

(a) Original polygons (b) Approximation using { = 80%

(c) Approximation with { = 90%

Figure 4.5: (a)-(c) Approximation of polygonszusing rectangles (varying ¢ for fixed y =
10 mm®)

The polygonal approximation framework can be very useful for navigation in a
polygonal map. In general most navigation algorithms utilize a parameter corresponding
to ‘inflation of obstacles’ which increases the size of the obstacles to bias the trajectory
away from the obstacles. In case of RMAP the parameter { can be used to vary the size
of the ‘inflated obstacles’. An extended maximal bounding box (corresponding to the
maximal inflation required) can be put around the obstacles. A low value of {would bias
the trajectories away from the obstacles, whereas high values would lead to a very close
approximation of the polygons and allow the trajectories to get closer to the obstacles.

* Courtesy of Martin Magnusson, available at the Osnabrueck robotic 3D scan repository,
http://kos.informatik.uni-osnabrueck.de/3Dscans/
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4.2 2D Rectangle approximation

Most segmentation algorithms do not consider convexity constraints and the most
common approach to deal with output of planar segmentation algorithms is to form a
convex planar polygonal representation [35], [39]. In cases the output point cloud of a
segmentation algorithm is not convex a convex planar polygonal representation leads to
an over approximation. In this Section we discuss an extension of the 3D rectangle
approximation algorithm presented in Section 3.2 which is applied to the points of the
planar segments extracted from a segmentation algorithm. In that way planar segments
that are not convex are approximated more accurately. Like the 3D rectangle
approximation, the rectangle approximation is done based on the density of points. In
this approach, however, instead of the volume of the initial pointcloud, the area is
considered, since we are dealing with 2D points.

Fig. 4.6(a) shows the assumed point cloud output of a segmentation algorithm and the
approximation developed by the algorithm. Fig. 4.6(b) shows the convex approximation
which leads to an over approximation since the shape in not convex. In such case the
presented approach gives better approximation in comparison to convex planar
polygonal approximation. This case could simulate passages of real world scenarios,
such as doors in indoor environments, in which the better approximation would give also
navigational advantages in comparison to the convex hull approximation.

(a) 2D rectangle approximation (b) Convex approximation of
of random points (¢ = 0.65) random points

Figure 4.6: Example test case for 2D approximation in comparison to convex hull

In Fig. 4.7 and 4.8 two examples of simulation data are shown. Fig. 4.7 shows two
approximations of a triangle shaped pointcloud with different threshold values and Fig.
4.8 shows two approximations of a disc shaped pointcloud with different threshold
values.
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@e= 0.25 (b) 8= 05

Figure 4.7: 2D rectangle approximation of triangle shaped pointcloud using different
thresholds

Figure 4.8: 2D rectangle approximation of disk shaped pointcloud using different
thresholds

Furthermore, the algorithm was tested in real world scenarios as well. In Fig. 4.9(a) and
4.10(a) we see the points that form two different planar segments from the 1% scan of the
Freiburg campus data set. These planar segments were extracted using a segmentation
algorithm. Fig. 4.9(b) and 4.10(b) depict the convex hull of these points which over-
approximates the initial pointcloud. The results of our algorithm are depicted in Fig.
4.9(c)-(d) and 4.10(c)-(d) utilizing two different visualizations. It is clear that our
approach approximates much more accurately the pointclouds than the convex hull does.
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(b) Convex hull of the pointcloud

(c) 2D rectangle approximation of the pointcloud

Figure 4.9: (a) Initial pointcloud, (b) Convex planar polygonal approximation of
the pointcloud, (c) 2D rectangle approximation of the pointcloud using different
visualizations

(c) 2D rectangle approximation of the pointcloud

Figure 4.10: (a) Initial pointcloud, (b) Convex planar polygonal approximation of
the pointcloud, (c) 2D rectangle approximation of the pointcloud using different
visualizations
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In Fig. 4.11 and 4.12 the same procedure is depicted for the 1% scan of the indoor data
set. More specifically, the algorithm is applied to the points of two of the planar
segments that were extracted utilizing a segmentation algorithm.

&-..’. s
e S S

S
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-,

(a) Initial pointcloud (b) Convex hull of the
pointcloud

(c) 2D rectangle approximation of the pointcloud
Figure 4.11: (a) Initial pointcloud, (b) Convex planar polygonal

approximation of the pointcloud, (c) 2D rectangle approximation of the
pointcloud using different visualizations

e

(@) Initial pointcloud (b) Convex hull of the pointcloud
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[
-

(c) 2D rectangle approximation of the pointcloud

Figure 4.12: (a) Initial pointcloud, (b) Convex planar polygonal

approximation of the pointcloud, (c) 2D rectangle approximation of the
pointcloud using different visualizations
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5 Applications in robotics

The progress that has been made the recent years in the field of robotics has allowed the
integration of mobile robots in more and more applications. Many of these applications
include the use of mobile robots in environments where a human being could not survive
or could be exposed to several dangers, such as disaster areas, volcano and underwater
exploration or even outer space missions. In such cases it is crucial that the robot can
build a 3D map of the surrounding environment, as it is the most important prerequisite
for all the procedures it is called to do. In [40] one can find useful information about
NASA’s rover for the exploration of Mars. In [41] an efficient representation in 3D
environment modeling for planetary robotic exploration is presented and in [4] they
consider terrain mapping for a roving planetary explorer. Moreover, mobile rescue
robots were employed for the fall of the twin towers at 11 of September 2001, for which
information can be gained in [42] and [43]. In [44] it is described how mobile robots
advance on Disaster City in Texas. In [45] an algorithm of 3D-plane SLAM experiment
was performed at Disaster city , whereas in [46] a 3D-NDT test was conducted using an
Atlas Copco drill rig in a mining environment. More information about Atlas Copco
robots can be found in [47]. Utilizing efficient data structures in terms not only of time
and memory but also of accurate environmental representation for the mapping in
scenarios as the above ones is very critical for the tasks of a mobile robot. On-line
procedures in environments that are not known in advance, such as those mentioned
above, require quick insertion and extraction of the primitives used (e.g. points) making
the choice of the data structure that is to be used very significant.
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6 Conclusion and future work

In this thesis the concept of representing 3D environments is considered. Firstly, the use
of 3D points is featured. Different data structures that can store points are compared both
theoretically and practically in terms of insertion and access times and memory
consumption. Hash tables provide fast computational times exploiting the array’s direct
mapping property and low memory consumption since the allocation for modelling the
free space is avoided. Octrees however, except for being efficient in terms of time and
memory, also provide a multi-resolutional representation of a 3D environment which is
crucial for several applications. Furthermore, a rectangular approximation of the 3D
environment is presented. This is done firstly by utilizing an occupancy grid framework
which allows a large amount of flexibility in terms of shape of the grid cell that can be
chosen for the environmental representation and resolution adaption. Secondly, the idea
of approximating the environment with rectangles based on point density is presented,
which can lead in great memory savings, being however limited to an offline procedure
due to high computational time. Moreover, this concept is extended to planar segments
extracted from a segmentation algorithm by approximating efficiently both points of
concave shapes and any arbitrary shaped convex hull. All the instances of the approach
allow adaptation of the environment representation using different parameters. Finally,
the above ideas were extensively tested in simulation and real world data sets for
computational and memory costs as well as other criterion (such as resolution), verifying
their flexibility and advantages in 3D mapping.

As future work the further development or modification of the RMAP framework could
be considered. More specifically, the approach could be extended to apply also for
oriented bounding boxes (OBB) instead of axis-aligned ones (AABB), since the axis-
aligned constraint makes the approximation of 3D environment objects that have a
certain orientation very coarse. However, OBBs cause an increase in computational and
memory complexity. An increase in memory complexity occurs, since in RMAP only
the minimum and maximum point of the bounding box are stored whereas in case of
OBBs either all points have to be stored or transformation angles need to be stored. An
increase in computational cost occurs as the test for bounding box overlap becomes
more complex in case of OBBs. The choice between AABBs and OBBs is a mere trade-
off between computational and memory complexity. Moreover, the concept of bounding
boxes can be extended to moving boxes using TPR*-trees which can model moving
objects and dynamic environments [30].
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