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Περίληψη 

Μία από τις βασικότερες εργασίες των κινουμένων ρομπότ είναι η απόκτηση μοντέλων 

του περιβάλλοντος. Τα τελευταία χρόνια η έρευνα έχει επικεντρωθεί στο πρόβλημα της 

ταυτόχρονης χαρτογράφησης και εκτίμησης θέσης για το ρομπότ (simultaneous 

localization and mapping - SLAM) και ειδικά στο 3D SLAM. Η σημαντικότερη 

υποεργασία του SLAM είναι η διαδικασία ταυτοποίησης διαδοχικών σαρώσεων του 

χώρου που λαμβάνεi το ρομπότ (scan registration), που ασχολείται με τον προσδιορισμό 

της κίνησης του ρομπότ μεταξύ διαδοχικών λήψεων δεδομένων, βάσει του σχήματος 

επικαλυπτόμενων τμημάτων των σαρώσεων. Μία ακριβής εκτίμηση της στάσης (pose, 

θέσης και προσανατολισμού) του ρομπότ ενισχύει επίσης την αυτονομία του 

επιτρέποντάς του να πλοηγηθεί στην επιθυμητή θέση-στόχο στο χάρτη. Έχουν προταθεί 

διάφορες προσεγγίσεις για επίλυση προβλημάτων SLAM σε άγνωστα περιβάλλοντα. 

Ωστόσο, οι περισσότερες από αυτές χρησιμοποιούν ταυτοποίηση σαρώσεων που 

βασίζεται σε 3D σημεία και οδομετρικές μετρήσεις ως αρχική υπόθεση καθιστώντας τες 

μη αποδοτικές σε θέματα υπολογιστικού χρόνου και κατανάλωσης μνήμης και μη 

αποστάσεις, ειδικά σε ένα τραχύ περιβάλλον. Σε αυτή την εργασία, θα επικεντρωθούμε 

στην ακριβή και αποδοτική εξαγωγή επιπέδων τμημάτων από τριδιάστατα νέφη σημείων 

(3D point clouds) και στην εκτίμηση της στάσης του ρομπότ με βάση τεχνικές 

ταυτοποίησης επιπέδων, αφού ο μικρότερος αριθμός επιπέδων οδηγεί σε μεγαλύτερη 

αποδοτικότητα. Προς αποφυγή του οδομετρικού σφάλματος, δεν θα χρησιμοποιηθούν 

πληροφορίες οδομετρικών μετρήσεων. Αντί αυτού, δημιουργούμε αντιστοιχήσεις 

μεταξύ επιπέδων διαδοχικών σαρώσεων. Γίνονται συγκεκριμένες υποθέσεις 

αβεβαιότητας για τη στάση του ρομπότ, που παράγουν μία αβεβαιότητα στα 

χαρακτηριστικά των επιπέδων, η οποία μοντελοποιείται ως μία κατανομή Gauss. Στη 

συνέχεια, το πρόβλημα της ταυτοποίησης διαμορφώνεται ως μία επαναληπτική 

βελτιστοποίηση στις αντιστοιχήσεις των επιπέδων σε κάθε βήμα. 
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Ταυτοποίηση σαρώσεων,Ταυτοποίηση επιπέδων, Τριδιάστατα επίπεδα, Αβεβαιότητες   
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Abstract 

Acquiring models of the environment belongs to the fundamental tasks of mobile robots. 

In the last few years several researchers have focused on the problem of 3D 

simultaneous localization and mapping (SLAM). The most important SLAM subtask is 

the scan registration procedure, which deals with the deduction of the movement of the 

robot between consecutive scans, based on the shape of overlapping portions of the 

scans. An accurate pose estimate also enhances the autonomy of the robot by allowing it 

to navigate to the desired goal position in the map. Different approaches for SLAM of 

unknown environments have been proposed. However, most of them utilize point-based 

scan registration using also odometry information as initial guess, which can be 

inefficient in terms of time and memory and inaccurate, since the odometry 

measurements deviate extensively, even over short distances, especially in rough 

environments. In this thesis, we will focus on the accurate and efficient extraction of 

planar segments from 3D point clouds and on pose estimation based on plane 

registration techniques, since the smaller number of planes leads to greater efficiency. In 

order to avoid the error of odometry information, no odometry is used in this work. 

Instead, we establish correspondences of planes between consecutive scans. Certain 

uncertainty assumptions about the pose of the robot are made, which produce an 

uncertainty in the planar attributes that is modeled as a Gaussian distribution. The 

registration problem is then formulated as an optimization problem, which iteratively 

refines the planar correspondences at each optimization step. 

 

Key Words 

 

Autonomous mobile robots, Robotics, Simultaneous localization and mapping – SLAM, 

Scan registration, Plane registration, 3D planar segments, Uncertainties. 
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Introduction 

The advance of technology the recent years, especially in computer science and in the 

field of robotics, has increased the capabilities of robot navigation and mapping and the 

motivation for it. Several approaches to the 2D SLAM problem have been proposed the 

last decade and even more researchers extend their work to 3D SLAM. Navigation in 

unknown 3D environments demands accurate estimation of the robot’s pose and 

mapping of the surrounding area, things that cannot be achieved by the sole use of 

odometry. Most algorithms that have been suggested so far consider the use of 3D 

points. The most common among them are the Iterative closest point (ICP) and the 3D 

Normal distribution transform (NDT) algorithms, introduced in [1] and [2], respectively. 

However, due to the fact that these algorithms adopt pointwise techniques, the 

computation time and memory complexity can be very high, as the number of points 

received from the recently developed sensors is usually significantly large. For this 

reason, an extension to 3D Plane SLAM is necessary. The number of planar segments 

that are extracted from point clouds is comparatively smaller than the amount of points, 

since they are formulated by groups of the latter, and that makes the use of plane-based 

algorithms much more efficient in terms of time and memory. In addition, planar 

segments provide a more intuitive representation of the environment. Moreover, the 

exploitation of odometry measurements for the 3D SLAM problem is presented in 

several algorithms, in order to register pairwise scans; that is, align consecutive scans 

over time, either of points or of planar segments. In [3] and [4] a lightweight orthogonal 

3D SLAM algorithm is presented. However, their work does not apply for many 

environments, focusing mostly on indoor ones. In [5] a plane-based solution is 

suggested, using also unknown correspondences, i.e. similar attributes between planes of 

consecutive scans. In it, the plane parameters uncertainty is also taken into account. A 

very comprehensive discussion on finding correspondences between two sets of planar 

or quadratic patches using attribute-graphs is found in [6]. In [7] an approach is 

considered utilizing correspondences without the use of odometry as an initial guess. 

The accurate plane extraction can be considered as the core of the 3D Plane SLAM idea, 

since it has a great impact on the result. This procedure has an increased level of 

difficulty both in indoor and outdoor environments. Especially in the latter case, the 

plane parameters estimation, such as the normal vector and the offset, is very 

challenging, as the point clouds received by several types of sensors are noisy and the 

structure of the environment can be of high complexity (e.g. complex objects such as 

trees are contained). Several approaches for plane fitting algorithms have been proposed 

in [8], [9] and [10].  

The main goal of this topic is the extension of the 3D NDT algorithm utilizing 

correspondences of planar segments without the use of odometry as an initial guess to 

perform scan registration. The pipeline of Fig. 1.1 summarizes the above procedure. 
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Although the plane extraction step is not the main goal of the thesis, it is crucial for the 

accuracy of the scan registration procedure. For that reason, a new algorithm is 

introduced. The rest of the topic is organized as follows: 

Chapter 2 mainly focuses on a brief presentation of several plane extraction algorithms. 

Furthermore, the basic idea of a new algorithm is featured and experimentally evaluated 

in real world data sets. 

Chapter 3 presents the most common point-based 3D registration algorithms and 

attempts a comparison of them. In addition, the concept of 3D plane registration is 

analysed and the extension of the 3D NDT algorithm considering the use of planes and 

correspondences without any odometry information is presented.  

 

 

 

 

Figure 1.1: Registration Pipeline  
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Segmentation 

Many 3D robotic applications commonly utilize the basic primitive of 3D points mostly 

for the representation of the surrounding environment but for other tasks as well. Until 

now points have been used in most 3D scan registration algorithms and autonomous 

exploration tasks of unknown environments. However, one could say that this kind of 

environmental representation is far from human intuition. Furthermore, due to the fact 

that the amount of points received is usually significantly large, the computational cost 

in several procedures becomes prohibitive for on-line applications. Therefore, the use of 

plane polygons and rectangles is considered as a better alternative. The transition from 

points to plane polygons is of high significance for all the robotic applications, 

especially for 3D plane SLAM, which is the main goal of this topic. Planes offer a more 

intuitive representation of the environment, clearly contain much more information than 

points do, such as the normal vector of the plane, through which the orientation 

knowledge of it is obtained, contributing to the localization problem. Moreover, planes 

require much less memory space than points do, since they are formed by groups of 

points, a fact that makes their use more efficient.  

A variety of algorithms have been proposed the recent years for efficient extraction of 

planes from 3D point cloud received from various types of sensors, such as laser range 

finders. Due to the fact that planes play a very important role in 3D scan registration, it 

is critical that the results must strictly correspond and fit to the planes of the 

environment in the real world. The noise caused by the sensors makes the plane 

extraction procedure significantly difficult, since the estimation of the plane parameters 

such as the normal vector and the offset is not accurate. Moreover, an outdoor 

environment has more complicated structure and the plane fitting process is more 

challenging than it would be in an indoor environment. For these reasons, several types 

of errors must be considered, such as the mean square error of the points that form each 

plane. The prior knowledge of the sensor employed allows the modelling of the noise in 

the plane extraction procedure using calibration techniques. This Chapter is organized as 

follows. Section 2.1 provides some mathematical background and overview of related 

work. In Section 2.2 we propose a segmentation algorithm whose main idea is based on 

the octree data structure.  

 

 

 

 



  8 

Mathematical background and related work  

 

Mathematical background 

 

The basic context behind the plane fitting procedure is the estimation of the plane 

parameters; that is, the normal vector and the offset. The normal vector is represented by 

the eigenvector that corresponds to the minimum eigenvalue of the covariance matrix C 

of the n points that form the plane. The covariance matrix C is computed using the 

equation:  

           (2.1) 

 

where , a, b is the notation for {x, y, z}and  is the 3D 

centroid of n points: 

 

, n ≥ 3,  = (xi, yi , zi), i = 1,…,n     (2.2) 

 

The minimum number of points must be 3 so that a plane can be formed uniquely in the 

3D space. The offset of the plane is computed according to the formula: 

 

      (2.3) 

 

where nx, ny, nz are the coordinates of the normal vector assuming that the centroid 

computed satisfies the plane equation: 

 

 
 

More detailed information about planes can be found in [8]. [11] gives information about 

eigenvalues and eigenvectors and [12] about the covariance matrix computation. 

 

Related work 

 

1. PCL Region growing segmentation  
 

This algorithm is described in [8] and this is how it works. First of all it sorts the points 

by their curvature value. This needs to be done because the region begins its growth 

from the point that has the minimum curvature value. The reason for this is that the point 

with the minimum curvature is located in the flat area (growth from the flattest area 

allows to reduce the total number of segments). 
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So we have the sorted cloud. Until there are unlabeled points in the cloud, the algorithm 

picks up the point with minimum curvature value and starts the growth of the region. 

This process occurs as follows: 

- The selected point is added to the set called seeds 

- For every seed point the algorithm finds neighbor points 

  Every neighbor is tested for the angle between its normal and the 

normal of the current seed point. If the angle is less than a threshold value 

then the current point is added to the current region.  

  After that every neighbor is tested for the curvature value. If the 

curvature is less than a threshold value then this point is added to the 

seeds.  

  Current seed is removed from the seeds 

 

If the seed set becomes empty this means that the algorithm has grown the region and 

the process is repeated from the beginning. . 

 

2. Fast plane detection in noisy 3D range images  

 

The second plane extraction algorithm is described in [9] and its implementation is 

slightly different than the one presented above. Firstly the input pointcloud is 

transformed to a range image to achieve the notion of vicinity. A random point p1 and its 

nearest neighbor p2 from point cloud data PC are taken through the range image. This is 

the initial set of points – region Π. Then an extension of this region by considering 

points in increasing distance from set Π is done. Now suppose point p’ is such that the 

distance between it and the region is less than the distance δ. Then if the mean square 

error (MSE) to the optimal plane Ω of the region Π∪ p’ is less than ϵ and if the 
distance between the new point and the optimal plane Ω is less than γ, then p’ is 

added to the current region Π. This region is expanded until no points can be added. 

Afterwards if the region size is more than θ it is added to the set of regions R, else these 

points are treated as unidentified and are added to the set R’. This is repeated until each 

point from PC is either in R or in R’.  

The key part of this region growing algorithm is that the computation of the mean square 

error is being done in an incremental way. In particular, if C is the covariance matrix 

described above and Cij are its elements, then each time a new point is added to the 

region, the update formula for the new Cij (n + 1) is: 

 

    (2.5) 

 

Where  is the sum of n points in the i-th coordinate and the i-th coordinate of the 

centroid of n points. 

The general formula for the mean square error computation is: 

 

        (2.6) 
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where k is the number of points, pi is the 3D point, n is the plane normal vector and d is 

the plane offset. Expanding this equation gives a form which is suitable for incremental 

calculation: 

 

        (2.7) 

 

where a, b is the notation for {x, y, z}. 

The mean square error and the distance between the point and the optimal plane are two 

factors that enhance the performance of the algorithm, making it suitable even for noisy 

pointclouds. Another advantage one could notice from the above description is that the 

incremental way of calculating essential attributes makes the algorithm efficient in terms 

of computational time, despite the point-based region growing procedure.  

 

3. Fast plane detection for SLAM from noisy range images in both structured 

and unstructured environments  

 

Two segmentation algorithms are suggested in the particular paper, which are described 

thoroughly in [10]. The first one is a slight variant of the algorithm introduced by [9] and 

briefly described above. The basic differences lie in the initialization of each region and 

in the computation of the mean square error each time a new point is added to a region. 

Regarding the initialization part, a characterization is assigned to each point, depending 

on the eigenvalue of the covariance matrix that is calculated by it and its neighbors. As 

initial points to each region, those characterized as planar are chosen and expanded using 

the same procedure that is described in the previous algorithm.  The mean value 

computation is done in a much faster way resulting in high efficiency in terms of time 

and memory. In particular, a plane can be described by the equation: 

 

          (2.8) 

 

where n  is the normal vector of the plane, p is an arbitrary point on the plane and d is 

the plane offset. Assuming that the centroid m of the points that form the plane is part of 

the plane, it derives that: 

 

         (2.9) 

 

Hence, using (2.9), (2.6) can be rewritten as: 

 

             (2.10) 

 

which is 

 

            (2.11) 

 

The normal n is  the eigenvector of C that corresponds to the minimal eigenvalue, as 

mentioned above. Therefore, the MSE can be derived: 
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           (2.12) 

 

where λ stands for the minimum eigenvalue of C. 

 

The second algorithm considers a grid based growing segmentation. Initially, the same 

procedure as in the above algorithm is followed. The growing procedure now is done 

using planar grids instead of points. The normal vectors of these small grids that resulted 

from the initialization are compared in order to check the difference in their orientation. 

Moreover, the perpendicular distance of the centroid of each grid to the current plane is 

checked in order to decide whether this grid should be added to the plane or not. Finally, 

if two planar grids are merged, a further check on the mean square error of the resulted 

plane is conducted.  

 

 

Plane extraction using the octree data structure 

 

This algorithm was implemented for the purposes of this topic. Its main idea consists of 

two parts, an initialization part and a merging one. The initialization part exploits the 

advantages of the octree data structure, for which information can be gained in [13] and 

[14]. This is done by fitting initial planes in small neighborhoods of points already 

stored in the octree. In the octree data structure the sense of space is conceived therefore 

the notion of vicinity has direct correspondence to the physical environment. Each leaf 

node of the octree corresponds to a certain volume defined by the resolution of the tree. 

For example, the leaves of an octree with resolution 0.05 correspond to a cube with edge 

of 0.05m. Every node other than the leaves divides the space into eight octants and its 

volume equals to the sum of the volumes of its children. Utilizing these two properties, it 

is possible to extract planes locally from points that are contained in small 

neighborhoods. These neighborhoods are described by a certain volume which is defined 

by the initialization level chosen in the tree (certain height of the tree). Moreover, the 

octree data structure can perform a down sampling of points due to its resolution (e.g., 

two different points whose distance is less than the resolution will both be assigned to 

the same node), resulting in higher efficiency. In addition, the noise that the sensors 

cause can be reduced by checking the density of each volume that is used for the plane 

fitting technique. Areas with small point density (determined by a threshold value) and 

with large mean square error are ignored. 

The second part of the algorithm consists of merging the initial planes into bigger ones 

in order for their number to be decreased and to gain a clearer and a more compact 

representation of the environment. The initial planes are inserted in a 3D array structure 

using their centroids to determine the position they will be assigned to. This provides an 

efficient neighbor search, as nearby planes will be assigned to nearby cells of the array.  

For the neighbor planes, a test is conducted between the angle of their normal vectors, 

and their perpendicular distance. If two or more planes have similar orientation and 
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small perpendicular distance, they are candidates for merging. After that, three more 

checks are conducted. Firstly, the mean square error of the merged plane must be under 

a certain threshold value. Secondly, the total number of points that the merged plane 

contains must be over a threshold value so that small planes or planes with small point 

density are rejected. Finally, the maximum eigenvalue of the plane covariance matrix is 

checked. This value describes the radius which forms a hypothetic circle around the 

centroid of the planar segment that contains all of its points. Hence, it gives an 

estimation of its size. This is described analytically in [15]. So in order to reject small 

planes, this value must overcome a certain threshold. In Fig. 2.1 a pseudocode of the 

above algorithm is presented. 

 

 
Figure 2.1(a): Pseudocode of the plane extraction algorithm using octree 
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Figure 2.1(b): Pseudocode of the merging function  

 

Experimental Evaluation 

 

This Section focuses on the evaluation of the suggested algorithm in real world data sets. 

Specifically, three data set were tested, the Bremen city center data set
1
, the Freiburg 

campus data set
2
 and an indoor environment data set

3
. For the first data set a noise model 

was also employed to estimate the uncertainty of the points imposed by the sensor. The 

octree implementation from [34] was employed. The experiments mentioned in this 

section were carried out on an Intel® Core i5-2500K, 3.30 GHz processor with 16GB 

memory. 

Concerning the Bremen city center data set, it consists of 14 files containing pointcloud 

data, with an average number of 295000 points per file. The Freiburg Campus data set 

consists of 78 files containing pointcloud data, with an average number of 159000 points 

per file. Finally, the indoor environment data set consists of 60 files, with an average 

number of 112498 points.  

The algorithm was tested in the first file of the Bremen city center data set, which 

contains 233399 points. Fig. 2.2 shows the number of initial planes, the initialization 

time and the merging time for different values of the height h of the tree at which the 

                                                 
1
 Courtesy of Dorit Borrmann and Jan Elseberg available at the Osnabrueck robotic 3D scan repository, 

http://kos.informatik.uniosnabrueck. de/3Dscans/ 
2
 Courtesy of B. Steder and R Kuemmerle, available at http://ais.informatik.uni-

freiburg.de/projects/datasets/octomap/ 
3
 Courtesy of Martin Magnusson, available at the Osnabrueck robotic 3D scan repository, 

http://kos.informatik.uni-osnabrueck.de/3Dscans/ 
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initial planes are constructed. It must be pointed out that h must be a number that is 

power of two. The values used for the extraction of these results are h  = 64, 128 and 256 

with octree resolution r = 2cm. That is, for h = 64, we extract initial planes in cubic cells 

of size 2*64 = 128x128x128 cm
3
. For the other cases, this size can be calculated 

respectively. The other parameters of the algorithm (e.g., mean square error threshold 

value) are chosen using the sensor features and calibration techniques.  

In Fig. 2.2 (a) and (c) we see that the number of planes and the merging time increase as 

h decreases. That is an expected outcome, because the lower the value of h, the smaller 

the cells in which initial planes are constructed. Hence we expect the initial planes to be 

more as the same space is described by a larger number of them when the value of h is 

smaller. Also, the larger the number of the initial planes, the higher the time taken to 

merge them. Fig. 2.2 (b) shows that the time needed to construct the initial planes does 

not change with respect to h. This can be explained by the fact that the same octree 

resolution was utilized for all three values of h so the total number of the octree nodes 

that has to be traversed is almost the same. 

 

 

 

 

 
 (a) Number of Planes            (b) Initialization time  (c) Merging time 

 

Figure 2.2: (a) Number of initial planes, (b) Time to construct initial planes and (c) Time 

to merge the initial planes, with respect to the height of the octree that the initialization 

is conducted 

 

 

 

Fig. 2.3 shows the segmentation procedure for the 1
st
 scan of the Bremen city center data 

set. In Fig. 2.3 (a) we see two views of the input pointcloud. Fig. 2.3 (b) and (c) show 

the same views using the initial and final planes, respectively. The algorithm parameters 

and runtimes are depicted in Table 2.1(a) and (b) respectively. 
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Octree Resolution (m) 0.05 

Initialization height h 32 

Local MSE threshold(m) 8x10
5
 

Local points threshold 10 

MSE threshold(m) 6x10
6 

Angle threshold(
o
) 15 

Perpendicular distance threshold(m) 0.1 

Points threshold 80 

Max eigenvalue threshold 0.25 

 

Table 2.1 (a): Parameters of the segmentation algorithm for the 1
st
 file of the Bremen 

city center data set 

 

 

Input Pointcloud points 233399 

Time to insert in octree (s) 0.08 

Initialization time (s) 0.11 

Number of initial planes 5807 

Merging time (s) 1.53 

Number of resulted planes  216 

Total time (s) 1.72 

 

Table 2.1 (b): Times and number of planes for the 1
st
 file of the Bremen city center data 

set 

 

 

 

 
(a): Initial pointcloud of the 1

st
 scan of the Bremen city center data set 
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(b): Planes after initialization  

 
(c): Final planes  

 

Figure 2.3: Segmentation procedure for the 1
st
 scan of the Bremen city center data set. 

(a) initial pointcloud, (b) planes after initialization, (c) final planes 

 

 

Fig. 2.4 shows the segmentation procedure for the first file of the Freiburg campus data 

set, which consists of approximately 176251 points. The algorithm parameters utilized 

are depicted in Table 2.2(a). The runtimes and number of planes are depicted in Table 

2.2(b).  

 

Octree Resolution (m) 0.02 

Initialization height h 32 

Local MSE threshold(m) 10
-2

 

Local points threshold 5 

MSE threshold(m) 7x10
-2 

Angle threshold(
o
) 15 

Perpendicular distance threshold(m) 0.1 

Points threshold 100 

Max eigenvalue threshold 0.35 

 

Table 2.2 (a): Parameters of the segmentation algorithm for the 1
st
 file of the Freiburg 

campus data set 
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Input pointcloud points 176251 

Time to insert in octree (s) 0.06 

Initialization time (s) 0.09 

Number of initial planes 2417 

Merging time (s) 0.3 

Number of resulted planes  66 

Total time (s) 0.45 

 

Table 2.2 (b): Runtimes and number of planes for the 1
st
 file of the Freiburg campus data 

set 

 

 
       (a) Initial pointcloud         (b) Initial planes        (c) Merged planes 

 

Figure 2.4: Segmentation procedure for the 1
st
 scan of the Freiburg campus data set. (a) 

initial pointcloud, (b) planes after initialization, (c) final planes 

 

 

 

In order to get a more compact view of the Freiburg campus, the algorithm was also 

tested in the first 7 files of the specific data set. Fig. 2.5 shows the results. The runtimes 

and number of planes are depicted in Table 2.3. The algorithm parameters are the same 

as in Table 2.2(a).  

 

 

 

 

Input pointcloud points 1141086 

Time to insert in octree (s) 0.84 

Initialization time (s) 0.82 

Number of initial planes 9701 

Merging time (s) 4.95 

Number of resulted planes  319 

Total time (s) 6.61 

 

Table 2.3: Runtimes and number of planes for the first 7 files of the Freiburg campus 

data set 
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 (a): Initial pointcloud of the first 7 scans of the Freiburg campus data set 

 

 
 (b): Planes after initialization  

 

 
 (c): Final planes  

 

Figure 2.5: Segmentation procedure for the first 7 scans of the Freiburg campus data set. 

(a) initial pointcloud, (b) planes after initialization, (c) final planes 
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Finally, the algorithm was also evaluated for the first 4 scans of the indoor dataset. Table 

2.4(a) and (b) show the algorithm parameters and results respectively. Fig. 2.6 depicts 

the initial pointcloud (a) and the final planar segments (b). We can see from the 

visualization that the results are clearer and more compact. This can be explained by the 

fact that indoor environments are more structured and consist mainly of big planar 

segments. 

 

Octree Resolution (m) 0.02 

Initialization height h 16 

Local MSE threshold(m) 8x10
-3

 

Local points threshold 5 

MSE threshold(m) 10
-2 

Angle threshold(
o
) 10 

Perpendicular distance threshold(m) 0.05 

Points threshold 100 

Max eigenvalue threshold 0.35 

 

Table 2.4 (a): Parameters of the segmentation algorithm for the first 4 files of the indoor 

data set 

 

Input pointcloud points 449992 

Time to insert in octree (s) 0.05 

Initialization time (s) 0.08 

Number of initial planes 3908 

Merging time (s) 0.6 

Number of resulted planes  47 

Total time (s) 0.73 

 

Table 2.4: Runtimes and number of planes for the first 4 files of the indoor data set 

 

 

 

 
(a) Initial pointcloud    (b) Final planes 

 

Figure 2.6: Segmentation results for the first 4 scans of the indoor data set. (a) Initial 

pointcoud and (b) Final planes  
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One could notice from the above results that the algorithm is suitable for online 

applications, such as 3D SLAM and navigation procedures, as the runtimes are fairly 

low. This can be attributed mainly to the octree structure, which allows for fast plane 

initialization. 
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3D Scan registration 

The 3D simultaneous localization and mapping, widely known as SLAM problem, has 

been one of the most popular research issues in the field of robotics and particularly of 

mobile robots the last few years. The main part of the SLAM procedure is the scan 

registration. That is, the procedure of aligning two consecutive scans received from a 

sensor in order to achieve the proper calculation of the transformation of the robot 

between the two scans. Many approaches to the problem have been proposed so far not 

only utilizing a 3D point-based representation of the environment but also a plane-based 

representation. In [16] and [17] ICP based algorithms are presented and the 3D NDT 

approach is featured in [2]. Plane-based techniques are suggested in [5] and in [18].  

In the following subsections, the two approaches to the scan registration problem using 

points and planar segments are considered. In 3.1 the most commonly used point-based 

algorithms are presented and compared, the ICP and 3D NDT. Subsequently, 3.2 deals 

with the advantages of 3D scan registration using planes and the concept of applying the 

use of planes in the 3D NDT algorithm. Moreover, a way of establishing 

correspondences is suggested, as no odometry information is used. Finally, in Section 

3.3 the algorithm is evaluated for the indoor and the dwelling scenario
4
 data sets.   

3D scan registration using points 

Most 3D SLAM algorithms that have been implemented so far are based on the ability 

of registering two range scans or a range to a map, using 3D points. The goal of two 

range scans registration is to find the relative pose between the two positions, at which 

the scans were taken. The basis of most successful algorithms is the establishment of 

correspondences between the primitives of the two scans (e.g. points). Out of this, an 

error can be derived and minimized. The most general approach, using points, is the ICP 

algorithm introduced in [1] and a variant of it introduced in [19]. These approaches 

require an establishment of explicit correspondences between points (points that 

correspond to the same physical point in the real world). Another approach is the 

Normal Distribution Transform (NDT) algorithm, which was introduced for 2D SLAM 

in [20] and an extension of it for 3D SLAM that can be found in [2] and in [21]. In the 

following subsection, the ICP and 3D-NDT are briefly presented, as they are considered 

to be two of the most significant scan registration algorithms using the primitive of 

points in the 3D space and a comparison is made. 

 

                                                 
4
 Courtesy of Jacobs University Robotics department, available at: http://robotics.jacobs-

university.de/node/293 
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ICP algorithm 

The Iterative Closest Point (ICP) algorithm was developed by P.Besl and N.McKay [1] 

and is usually used to register two consecutive clouds of points in a common coordinate 

system. The ICP algorithm has commonly been used for many robotic applications 

including SLAM, as described in [22]. The basic idea here is to minimize the difference 

between the points of the two sets. The procedure is done iteratively. That is, in each 

step, the algorithm selects the correspondence points according to the minimum distance 

and calculates the transformation (R,t) using an initial guess (odometry estimation) for 

minimizing a certain heuristic mean square error function, usually  

        (3.1) 

where Nm and Nd represent the number of points in the two sets and wi,j are the weights 

for a point match, which are either equal to 1 when the points i and j are the closest ones 

between the two scans and 0 otherwise. According to the above equation, the 

transformation can be calculated using a variety of algorithms, as suggested in [23], [24] 

and  [25]. 

 

Figure 3.1: Example of the ICP algorithm 

3D-NDT algorithm 

 

The Normal Distributions Transform can be described as a method for compactly 

representing a surface. As mentioned above, its 2D variant was introduced by Biber and 

Strasser in [20] and an extension for 3D applications can be found in [21]. The transform 

maps a point cloud to a smooth surface representation, described as a set of local 

probability density functions (PDFs), each of which describes the shape of a section of 

the surface. The algorithm firstly divides the occupied 3D space into a grid of cells (i.e. 

cubes) and a PDF is assigned to each cell, based on the point distribution within it. An 

appropriate PDF could be a normal distribution such as the following  

        (3.2) 
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where D is the dimension notation and  and  denote the mean vector and covariance 

matrix of the reference scan surface points within the cell where  lies, or a mixture of a 

normal and a uniform distribution. 

By using NDT for scan registration, the goal is to find the pose of the current scan that 

maximizes the likelihood that the points of the current scan lie on the reference scan 

surface. This likelihood is expressed by the function 

           (3.3) 

where  are the k points from the current scan,  is a pose and  is a spatial 

transformation function that moves the point by the pose . The best pose  should be 

the one that maximizes the above function. Given the above parameters, the NDT score 

function is  

          (3.4) 

which corresponds to the likelihood that the points  lie on the surface of the reference 

scan, when transformed by   

Newton’s algorithm can be employed to find the parameters  that optimize . 

Newton’s method iteratively solves the equation  where H and  are the 

Hessian matrix and gradient vector of  . The increment  is added to the current 

pose estimate in each iteration, so that . As initial transformation for the 

algorithm, the one estimated with the use of odometry is commonly used. More detailed 

information about Newton’s algorithm can be found in [26] and about the maximization 

of the above likelihood function in [21]. 

 

Comparison 

 

The basic difference between the NDT and ICP algorithm is that using the first, no 

explicit correspondences have to be found between points or features. Moreover, NDT is 

done in a probabilistic manner and that makes it more efficient in “difficult” scans; that 

is, scans with few prominent geometric features, little overlap, and high noise level. 

However, one could say that the complexity of the PDF and the Newton’s algorithm 

computation may result in an increase in time and memory complexity. On the other 

hand, most ICP algorithms employ tree data structures (usually k-d trees as in [27]) for 

storing the points facilitating the establishment of the correspondences using a nearest 

neighbor search. An explicit comparison between the two algorithms was conducted in 

[28]. 

 

3D plane registration 

Point-based algorithms used for 3D scan registration, such as the ICP algorithm and its 

variants, apart from being computationally expensive and slow for large point clouds, 



  24 

also suffer from premature convergence to local minima, especially when the overlap 

between scene-samples decreases. By using more abstract primitives, such as planes, 

instead of points, complexity problems can be overcome and more efficient solutions to 

the scan registration problem can be achieved. Planar segments are less in number than 

points, providing an advantage in terms of computational cost and memory 

consumption. Furthermore, the plane parameters, such as the normal vector and the 

offset provide useful information about the environment the robot moves.  

The problem of estimating the robot’s pose using planar segments can be formulated as 

follows: 

If the robot moves from the frame F1 to the frame F2 and observes the coordinates of the 

same physical point as p1 and p2 respectively, these coordinates are related by the 

equation 

       (3.5) 

Where  and  are the rotation matrix and translation vector from F1 to F2, 

respectively. More information can be found in [29]. 

Now we wish to extend this equation for planes. Let’s assume that sets of planar 

segments P1  and P2 are extracted from F1 and F2 and the planes P1,i  and P2,i correspond 

to the same physical plane. Then using equation (2.8) that describes a plane, equation 

(3.5) becomes 

      (3.6) 

         (3.7) 

The problem consists of estimating  and . 

The main goal of this topic is to modify the 3D NDT algorithm so that it can support the 

use of planar segments in order to estimate the above rotation and translation parameters. 

The uncertainty of the robot’s pose estimation will produce an uncertainty in the 

attributes of the planes extracted from the reference scan. This error in the estimation of 

the robot translation and rotation is introduced by either the error of odometry 

measurements, if used, or by certain assumptions that can be made for the robot 

movement (e.g., distance between two consecutive scans should not be greater than 5 

meters). 
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(a) Plane detection in scan i       (b) Plane detection in scan i + 1 

Fig. 3.2: Simplified 2D scan registration using plane uncertainty. (a) Initial pose of the 

robot in frame i with two planes detected and (b) Pose of the robot in the next frame. 

The ellipsoid around the robot models the uncertainty of the pose. This uncertainty 

implies the uncertainty of the plane features which is modeled as a normal distribution. 

 

The main idea of the NDT algorithm is adopted here, by assigning normal distributions 

to approximate the uncertainties of the plane parameters. In particular, a 4-dimensional 

multivariate Gaussian can be employed to describe the uncertainty in the three 

coordinates of the normal vector and the offset of the plane, which is produced from the 

robot rotation and translation error, respectively, as depicted in Fig. 3.2. [30] gives 

detailed information about multivariate normal distributions. The procedure followed for 

the estimation of R and t is similar to the one followed in the point based 3D NDT. 

Initially the planar segments P2 of the current scan are transformed back to the reference 

scan using odometry information (the notation here suggests that the current scan is the 

second one and the reference scan the first one). Then checks are held between the 

transformed segments P2
*
 and the reference scan segments P1. Particularly, the plane 

parameters of each transformed segment P2,i
*
 are compared to all the segments P1 of the 

reference scan. The probability that two examined planes are similar (i.e. have similar 

normal vectors and offset values) can be calculated utilizing the gaussian distributions 

assigned to each plane P1. More explicitly, in an 1-dimensional simplified case, the 

below calculation would be conducted: 

         (3.8) 

where a can be one of the three coordinates x, y, z of the normal vector or the offset 

value d of the examined plane P2,i
*
 of the current scan, μ is the mean value of the 
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corresponding attribute in the reference scan and σ the deviation expressing the 

uncertainty of the specific plane attribute. The similarity between the two examined 

planes is more likely when the maximum of these probabilities is observed. The sum of 

all maximum value  forms the score function 

        (3.9) 

which has to be maximized. This maximization can be achieved employing Newton’s 

method as described for the point based 3D NDT in section 3.1, using the Hessian 

matrix and the gradient vector of the score function.  

The pseudocode describing the above idea is presented in Fig. 3.3, presenting the 

notation first. Odometry measurements are used as an initial guess. 

Pi and Pj, j = i +1, denote the planes extracted from the consecutive frames Fi and Fj, 

respectively. With Pj
*
 we denote the planes extracted at Fj that are transformed with 

respect to Fi.  Also, let Σp be the planar attributes uncertainty derived from the odometry 

uncertainty, p the maximum probability discussed above and Ti 


 j the transformation 

matrix from Fi to Fj (that is, rotation Ri 


 j and translation ti 


 j). Finally, g and H are the 

gradient and the Hessian required for Newton’s algorithm. 

 

 

 

 

Figure 3.3(a): pseudocode of plane based 3D-NDT using odometry 
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Figure 3.3(b): Optimization procedure of the 3D-NDT 

The gradient and Hessian entries are derived as follows: 

 

 (3.10) 

 (3.11) 

 

where Ji is the i
th

 entry of the Jacobian matrix [34]. 

 

 

Correspondences 

 

The key difference between the algorithm presented above and the algorithm that 

consists the main goal of this topic is the initial transformation of the planes from the 

current scan to the reference one. Unlike the approach presented, there will not be used 

any odometry information, since the deviation of its measurements from the real robot 

movement can be significantly large. Instead, an attempt to establish correspondences 

between planes of two consecutive scans will be made. The idea is to find characteristics 

of the planes of each scan that identify each one of them (or groups of them) uniquely. 
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Using these features, we will try to determine approximately the plane (or the planes) of 

the reference scan that corresponds to each plane of the current scan; that is, refer to the 

same physical plane in the real world.  

Given an average of N planes per view, there are (N + 1)! possible correspondences, if 

we include the case when a plane in one view is not present in the other. Non-parallel 

planes’ correspondences have rotation information and parallel planes’ correspondences 

have only translation information. Due to the high number of possible correspondences 

that can be determined, the need to reduce the search space arises. Several properties of 

the planar segments could be exploited for that reason, such as the number of points of 

each plane or the angle between the normal vectors of the planes (that can be examined 

using the dot product). Such attributes and more can be found in [5] where the authors 

use the MUMC (minimally uncertain maximal consensus) algorithm to extract planar 

segments and find correspondences that reduce the uncertainty volume of pose estimate. 

In this Section we introduce an approach for the problem of establishing 

correspondences between planes of consecutive scans. More specifically, we create a 

fully connected graph ( [31] and [32]) for each scan where each node corresponds to a 

single planar segment. Such a graph can be seen in Fig. 3.4. Each node contains 

information about certain attributes of the plane it represents, such as the number of 

points it consists of, its normal vector and its centroid, the eigenvalues of the covariance 

matrix and its mean square error. If the graph contains N nodes, then it will contain N(N-

1)/2 edges connecting them. Each edge contains information about the relations between 

the planes of the nodes that it connects.  These relations are chosen to be the 

perpendicular distance between the two planes, the angle between their normal vectors 

and the distance of their centroids. Fig. 3.5 shows the information contained in the 

graph. Using the above idea, the problem of establishing correspondences is diminished 

to the problem of matching similar subgraphs between the graphs of two consecutive 

scans. This procedure is carried out as follows. After the graphs for two consecutive 

scans have been built, they are cross checked to determine which plane of the first graph 

should correspond to which of the second graph. This is done in a probabilistic manner. 

That is, all possible pairs of the planes between the two graphs are formed and they are 

given the probability of corresponding to the same physical plane. A pair of two planes i 

and j that correspond to the same physical plane should have the highest probability. 

This probability is computed according to the similarity of the nodes of the two planes 

and of their edges. 
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Figure 3.4: A fully connected graph of planes 

 

 

Figure 3.5: Information stored in each node and each edge of the graph 

 

Since no odometry information is used, the initial guess Xinit used in the pseudocode of 

Fig. 3.3 is set to zero and no initial transformation T is calculated. Furthermore, a 

procedure that establishes the necessary plane correspondences must be added, so that 

the optimization function uses only the correspondent planes (and not the whole amount) 

to calculate the optimal translation and rotation. The new pseudocode is shown in Fig. 

3.6. More specifically, Fig. 3.6(a) shows the main body, Fig. 3.6(b) shows the new 

updated optimization function and Fig. 3.6(c) shows the pseudocode for the function that 

establishes plane correspondences. The optimization function that employs Newton’s 

algorithm tries to align the correspondent planes through the score function. In that way, 

parallel correspondent planes between consecutive scans will determine the translation 

of the robot through their offset, whereas non-parallel ones will determine the rotation 

through their normal vector. Pi denotes the set of planes detected from the frame (scan) 

Fi. The notation {Pm, Pl} denotes the set of pairs of the plane correspondences, which is 

the output of the corresponding procedure. In Fig. 3.6(c) Gi and Gj denote the graphs of 

the two frames Fi and Fj, respectively. Moreover, ni, nj denote the nodes of the graphs 
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and en,i is the set of edges of the ni node. Finally, we use the notation pi,j for the 

probability of two nodes i and j to be correspondent. 

 

 

Figure 3.6 (a): pseudocode of plane based 3D-NDT without any odometry information 

 

 

Figure 3.6 (b): Optimization procedure of the 3D-NDT without any odometry 

information 
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Figure 3.6 (c): Pseudocode of function that finds correspondences between planes of 

consecutive scans 

 

 

 

 

Experimental evaluation 

 

This section mainly focuses on testing the approach in real world data sets in order to 

evaluate its efficiency. More specifically, the algorithm will be applied in the indoor data 

set and the dwelling scenario. In each scan planar segments are extracted using the plane 

extraction algorithm presented in Chapter 2 and the approach tries to establish 

correspondences between consecutive scans and align them by calculating the optimal 

rotation and translation of the robot. Moreover, an attempt to build a 3D map of the 

environment will be made. In the first case, where the indoor data set is used, odometry 

information is available and is utilized as a correction in cases where the registration 

fails, in order to be able to build a consistent 3D map. A comparison will also be made 

with the algorithm that utilizes odometry as an initial guess in terms of time and 

accuracy. In the latter case, where the dwelling scenario is used, no odometry 

information is available. Hence, examples of successful alignments and small consistent 

parts of the whole map will be shown.  Here it should be pointed out  that the 

performance of the approach is highly dependent on the segmentation aglorithm that 

extracts planar segments. The experiments mentioned in this section were carried out on 

an Intel® Core i5-2500K, 3.30 GHz processor with 16GB memory. 
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A) Indoor data set 

For this evaluation, the indoor data set that was used in Section 2.2 is also used here. For 

this specific scenario, we imposed an assumption in translation and rotation such that the 

plane overlap between two consecutive scans is at least 50%. These values were taken 

into account in the 4-dimensional normal distribution modelling the plane uncertainty, as 

discussed in Section 3.2.1. The choise of these thresholds is highly dependent on the 

current data set used, the range of the sensor and the density of the received pointcloud. 

Moreover, this choise has to do with the overlap of planes that correspond to the same 

physical planar segment between consecutive scans, which is indispensable for the 

accuracy of the registration algorithm.  

The algorithm was evaluated for the first 30scans of  the data set, which are depicted in 

Fig. 3.7(a)-(c) using the points of the planes of each scan for more clarity. Planes with 

same colours were found as correspondent between consecutive scans. In cases that the 

algorithm failed to align two frames, the odometry information was used as a correction. 

As failures for  the translation of the robot are considered values of x-, y- and z- that 

diverge more than 20cm from the actual values. For the rotation, we consider as a failure 

a deviation more than 5
o
 from the actual rotation values (roll, pitch, yaw).  

 

 

 

(a) Top view           (b) Side view 
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(b) Side view 

Figure 3.7: (a)-(c) Map of the first 30 scans of the indoor data set.  

 

Table 3.1 depicts the percentage of successful scan registrations seperately for the 

translation and rotation of the robot both for the case that correspondences 

establishment is used without any odometry information and for the case that 

odometry measurements are used as an initial guess and no correspondences need to 

be found. Regarding the first case, we can see that for the rotation values (roll, pitch, 

yaw) the percentage of successful alignments is high. The failures can be attributed 

to the fact that the robot rotates more than the uncertainty value imposed in some 

cases, so the uncertainty assumptions are not satisfied. However, as one can notice in 

Fig. 3.7, the movement of the robot is mainly translational (it moves along a 

corridor), so these results for the rotational values are expected. In general, the 

failure percentages can be explained mainly by the symmetric space of the indoor 

environment. In such cases, the relations and the attributes of the planar segments are 

similar, so the algorithm fails to detect the correct correspondences. Fig. 3.8 depicts 

a simplified example of a symmetric space. For example, the plane extracted from 

the ceiling in frame Fi may have the same features as the plane extracted from the 

floor in frame Fi+1, infering misleading results. Moreover, to this outcome contribute 

the same relations between the planes in a symmetric space. In the previous example, 

the edges of the node that corresponds to the ceiling plane from the i-th scan are very 

similar to the edges of the node that corresponds to the floor plane from the i+1-th 

scan. The deviation in x- and z- coordinates can be attributed to the above reason. 
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 Furthermore, the deviation of the y-  value can be explained by the fact that in many 

cases no planes were detected perpendicular to the y-axis (it can be seen from Fig. 

3.7(c) that we have a big corridor along the y-axis). For that reason, the translation in 

the y-axis could not be computed properly.  In comparison to the case where 

odometry information is used as an initial guess, Table 3.1 shows that the algorithm 

with odometry has a better performance. This outcome is expected, since the 

odometry measurements used do not deviate much between two consecutive scans, 

leading to smaller uncertainty in the planar attributes.  

  

 No odometry used 

(correspondences 

establishment) 

Odometry information 

as initial guess  

Success in x 90% 100% 

Success in y 73.3% 96.7% 

Success in z 73.3% 96.7% 

Success in roll 96.7% 93.3% 

Success in pitch 100% 100% 

Success in yaw 86.7% 93.3% 

Total success 63.3% 80% 

 

Table 3.1: Percentage of successful alignments for the cases with and without 

odometry information 

 

 

Figure 3.8: Example of symmetric space 
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Finally, Table 3.2 shows the pipeline times for the cases with and without odometry 

information. The segmentation time refers to the average time taken for extracting 

planar segments from each scan. The registration time refers to the average time 

taken for aligning two consecutive scans. The average number of planes per scan is 

15.  Although the registration times are similar for the two algorithms, we can state 

that the approach that utilizes correspondences is faster, since the optimization 

algorithm in that case applies only for the correspondent pairs which is a less 

complex procedure than doing it for all the possible pairs of planar segments.   

 

 No odometry used 

(correspondences 

establishment) 

Odometry information 

as initial guess 

Segmentation Time 0.0436458 0.0436458 

Registration Time 0.0170526 0.03 

Total Time  0.061 0.074 

 

Table 3.2: Runtimes for the whole registration pipeline both for the case where no 

odometry information is used and for the case where odometry is utilized as initial 

guess. 

 

 

 

 

 

B) Dwelling scenario 

For this case, the algorithm was evaluated for the dwelling scenario. In this scenario, a 

laser sensor produces pointcloud data for 96 scans. The uncertainty values here for the 

normal vector and the offset of the planar segments are derived from the assumptions we 

make that impose the minimum plane overlap to be at least 60% between two 

consecutive scans. The uncertainty value here is stricter than in the indoor data set, as 

the dwelling environment is more unstructured and the need of plane overlaps is bigger.  

As no odometry information is available for this specific data set,  a whole map of the 

environment could not be built, because the error from failed alignments would 

accumulate in the next scans. A successful alignment between two consecutive scans is 

determined from the consistency of the map constructed using the transformation that 

the algorithm calculated. Like in the indoor environment evaluation, as failures for  the 

translation of the robot are considered values of x-, y- and z- that diverge more than 
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20cm from the actual values and for the rotation, we consider as a failure a deviation 

more than 5
o
 from the actual rotation values (roll, pitch, yaw).  

The whole amount of the 96 scans was tested and the percentage of successful 

alignments was approximately 60%. In the majority of the cases that the algorithm failed 

to perform the registration between two consecutive scans, the robot rotation is greater 

than uncertainty value imposed, so the uncertainty thresholds imposed are not satisfied. 

Unlike the evaluation for the indoor data set, a percentage for the translation and rotation 

values could not be given separately due to the lack of odometry information. Table 3.3 

depicts the average segmentation time for each scan, the average registration time for 

each scan pair and the average number of planes per scan. 

 

Segmentation time 0.126042 

Registration time 0.0541053 

Number of planes 21 

 

Table 3.3: Average segmentation and registration times, average number of planes per 

scan 

 

In the following, we present small consistent maps of successful alignments. The 

visualization is done both using the aligned pointclouds and the points of the aligned 

planar segments for clarity. Also, the images of the corresponding scans that are 

captured from the front camera of the robot are given. Fig. 3.9(a)-(g) shows the images 

for scans 60-66. One could notice that the overall movement in these scans consists of 

translations and rotations that satisfy the uncertainty restrictions. Figure 3.10(a) shows 

the aligned scans using the initial pointcloud and figure 3.10 (b) shows the aligned scans 

using the points of the aligned planar segments. Fig. 3.11(a)-(d) and 3.12(a)-(d) visualize 

the same results for scans 86-89. It can be concluded from the raw images that mainly 

small translations consist the movement of the robot. Two more examples for scans 70-

72 and 20-23 are depicted in Fig. 13-14and 15-16 respectively. 

 

 

(a) Scan 60   (b) Scan 61   (c) Scan 62 
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(d) Scan 63   (e) Scan 64   (f) Scan 65 

 

 

(g) Scan 66 

Figure 3.9 :(a)-(g) Scans 60-66 of the dwelling scenario environments as raw images 

 

 

(a) Visualization of the aligned    (b) Visualization of the aligned 

scans 

  scans(60-66) using points           (60-66) using planar segments 

Figure 3.10: Resulted alignment of scans 60-66. Visualization using points (a) 

and using points of the planar segments (b) 
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   (a) Scan 86     (b) Scan 87      (c) Scan 88 

        

      (d) Scan 89 

 Figure 3.11 :(a)-(d) Scans 86-89 of the dwelling scenario environments as raw image 

 

 

(a) Visualization of the aligned              (b)Visualization of the 

aligned          scans(86-89) using points                                scans(86-89) using 

planar                   segments 
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(c) Visualization of the aligned              (d)Visualization of the 

aligned               scans(86-89) using points                                scans(86-

89) using planar                   

segments 

Figure 3.12: Resulted alignment of scans 86-89. Visualization using points (a) 

and (c) and using points of the planar segments (b) and (d) 

 

 

 

 

 

 

             (a) Scan 70     (b) Scan 71      (c) Scan 72 

                    Figure 3.13 :(a)-(c) Scans 70-72 of the dwelling scenario environments as 

raw images 
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(a) Visualization of the aligned              (b)Visualization of the 

aligned                scans(70-72) using points                                scans(70-

72) using planar                   

segments 

Figure 3.14: Resulted alignment of scans 70-72. Visualization using 

points (a) and using points of the planar segments (b)  

 

 

 

 

                       

 

             (a) Scan 20     (b) Scan 21      (c) Scan 22 

 

             (d) Scan 23 
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                    Figure 3.15 :(a)-(d) Scans 20-23 of the dwelling scenario environments as 

raw images 

 

 

 

(a) Visualization of the aligned    (b) Visualization of the aligned 

scans 

  scans(20-23) using points           (20-23) using planar segments 

 

Figure 3.16: Resulted alignment of scans 20-23. Visualization using 

points (a) and using points of the planar segments (b)  

 

 

Fig. 3.17 and 3.18 below show the alignment of two consecutive scans for two cases. 

Fig. 3.17 refers to scans 4-5, where the transformation was calculated to be: 

{x, y, z} = {0.287011, -0.500638, 0.0662119}m 

{roll, pitch, yaw} = {-0.0243527, 0.019131, -0.663267}rad 

and Fig. 3.18 refers to scans 47-48, where the transformation was calculated to be: 

{x, y, z} = {0.887781, 0.0935841, -0.248495}m 

{roll, pitch, yaw} = {-0.00166798, 0.173416, 0.0452187}rad 
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  (a) Scan 4 -  image         (b) Scan 5 -  image 

 

  (c) Scan 4 -  planar segments   (d) Scan 5 -  planar segments 

 

 (e) Aligned scans 4-5 - Visualization     (f) Aligned scans 4-5-

Visualization          using points                      using planar 

segments 

Figure 3.17: (a),(b) images of scans 4 and 5, (c),(d) planar segments of scans 4 and 5. 

Visualization of the alignment using points (e) and planar segments (f)  
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  (a) Scan 47 -  image         (b) Scan 48 -  image 

 

 (c) Scan 47 -  planar segments  (d) Scan 48 -  planar segments 

(e) 

Aligned scans 47-48 - Visualization (f) Aligned scans 47-48-Visualization   using 

points          using planar segments 

Figure 3.18: (a),(b) images of scans 47 and 48, (c),(d) planar segments of scans 47 and 

48. Visualization of the alignment using points (e) and planar segments (f)  

 

 

The failed alignments can be attributed mainly to the big rotation of the robot in some 

cases and does not satisfy the corrseponding uncertainty value we impose. However, in 
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some cases even if the assumptions are satisfied, the algorithm fails to compute the 

correct transformation. In these cases the segmentation algorithm does not detect planes 

that can bound the movement along one axis, so the translation cannot be properly 

calculated. This can be mainly explained by the small pointcloud density in some 

regions or the complexity of the environment. Finally, there is also a small percentage of 

cases where the algorithm could not estabilsh the appropriate correspondences between 

planes of consecutive scans due to symmetric space (as discussed for the indoor data set) 

and due to the fact that no sufficient plane overlaps exist.   

Fig. 3.19 shows an example of failed alignment due to big rotation of the robot (scans 6-

7). The images in Fig. 3.19(a)-(b) show that the rotation is almost 90
o
. Fig. 3.19(c)-(d) 

show the planar segments from these scans and Fig. 3.19(e)-(f) depicts the failed 

alignment. 

Fig. 3.20 shows an example of failed alignment due to the segmentation algorithm. 

Insufficient number of planes perpendicular to the axis along which the robots moves (x- 

axis) was detected, so the optimization algorithm could not calculate the optimal 

translation along this axis. 

                          

 

  (a) Scan 6 -  image         (b) Scan 7 -  image 

 

  (c) Scan 6 -  planar segments   (d) Scan 7 -  planar segments 
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(e) Failed alignment of scans 6-7 – Visualization  (f) Failed alignment of scans        

using points                            6-7 – Visualization using

              planar segments 

Figure 3.19: (a),(b) images of scans 6 and 7, (c),(d) planar segments of scans 6 

and 7. Visualization of the failed alignment using points (e) and planar segments 

(f)  

 

 

  (a) Scan 19 -  image           (b) Scan 20 -  image 

 

  (c) Scan 19 -  planar segments         (d) Scan 20 -  planar segments 
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(e) Failed alignment of scans 19-20 - (f) Failed alignment of scans 19-20-  

Visualization using points               Visualization using planar                                      

           segments              

      

Figure 3.20: (a),(b) images of scans 19 and 20, (c),(d) planar segments of scans 

19 and 20. Visualization of the failed alignment using points (e) and planar 

segments (f)  

 

 

Summarizing, in several cases of the above evaluation, the proposed algorithm did not 

perform successfully and failed to calculate the correct transformation of the robot. As 

already discussed, this can be attributed mainly to the following drawbacks of the overall 

approach: 

 Segmentation algorithm accuracy 

 Symmetry of the environment that causes misleading plane correspondences 

 Assumptions about the movement of the robot are not satisfied  

 Corridor effect: lack of planar segments to bound the movement of the robot 
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Conclusion and future work 

In this thesis the aspect of 3D plane registration is examined. We present an approach 

that considers the use of planar segments instead of points for scan alignment without 

any use of odometry information in order to calculate the transformation of the robot 

between two consecutive scans and build a consistent 3D map. The uncertainty in the 

pose of the robot that is derived by certain assumptions is transformed to planar 

attributes uncertainty which is the main idea behind this framework. This uncertainty is 

modeled employing an extension to plane-based of 3D-NDT algorithm which utilizes 

Gaussian distribution functions. The approach was evaluated both in an indoor and an 

outdoor environment to evaluate its accuracy. Despite of the disadvantages of the 

algorithm, in both scenarios the success rate was over 50% and low computational times 

were achieved making it suitable for online applications. In addition, a plane extraction 

algorithm is introduced which exploits the advantages of the octree data structure (e.g. 

multi-resolutional representation of the environment) and is highly adaptive to different 

scenarios of 3D pointclouds. The experimental evaluation that was conducted showed 

that the use of this specific tree structure allows for low computational times, especially 

in the initialization procedure, making the algorithm computationally efficient. 

As future work, the further development of the algorithm that establishes 

correspondences could be considered. More explicitly, the topological properties of a 

fully connected graph could be exploited at a higher level, so that the algorithm would 

be more accurate and robust to the noise imposed by laser sensors and the deficiencies of 

the segmentation algorithm. Moreover, the achievement of more robustness could result 

in greater values in the initial assumptions, both in translation and rotation, making the 

algorithm suitable for more demanding scenarios. Finally, instead of a fully connected 

graph, other less complicated types could be utilized that would conceive better the 

structure and the relations between the planar segments. 
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