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Abstract

The scope of this thesis was the development of a performance analysis method-
ology of heap managers using Pin from Intel, a dynamic binary instrumentation
framework. This thesis focuses on fragmentation and time cost metrics, though
it provides a generic framework through which additional measurements can
be derived. The code has been tailored to the specific behavior of regular glibc
memory manager as well as NTUA / ICCS dmmlib, a dynamic memory manage-
ment framework.

Keywords:heap manager,performance, fragmentation, metrics, pin, pintool, dy-
namic memory manager,glibc,parsec,spec,malloc
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Chapter 1

Introduction

1.1 Instrumentation

Instrumentation is an essential part of the software development process in
all stages, from prototyping to quality assurance. Having tools that extract as
much as information as possible with the least overhead and at minimum de-
ployment cost can be proven indispensable.

1.2 Subject

Dynamic memory management is a critical component of an operating sys-
tem. Its performance can extensively impact the responsiveness of the os, there-
fore optimal algorithms that efficiently manage the available virtual address space
have been an active area of research. This is especially true in the context of
embedded systems were such resources are scarce. A developer of an embed-
ded system often has to tailor the heap manager to the target appliance. A
heap manager instrumentation tool would enable him to make such decisions
accurately without resorting to complex instruction level emulation setups. Spe-
cifically, a dynamic binary instrumentation tool would require no knowledge of
the memory manager internals or even its source code. The tool would inter-
cept memory management request calls to construct its own representation of
the manager’s state and ,based on that, output the respective statistics.Such tool
could also prove useful while developing a heap manager or in an educational
context.



1.3 Document structure

« Chapter 2 introduces us to dynamic binary instrumentation and the pin
framework.

+ Chapter 3 familiarizes the reader with dynamic memory management.
+ Chapter 4 describes the design and implementation of our tool.
+ Chapter 5 presents the resultant data.

+ Chapter 6 summarizes this document providing areas of future improve-
ment.



Chapter 2

Dynamic binary instrumentation

2.1 Why dynamic binary instrumentation?

Instrumentation is the act of measuring the performance of an application.
Dynamic instrumentation refers to such an act at runtime. Static analysis can-
not reveal the whole program behavior when it’s dependent on dynamic context.
Binary instrumentation is done using unaltered compiled code as opposed to
source based instrumentation which requires editing the program’s source code.
Source code based instrumentation is obviously more flexible however instru-
menting a binary is more convenient or even the only option when the source
code isn’t available. The convenience offered by dynamic binary instrumentation
has also drawbacks. One must always keep in mind that the very act of instru-
menting potentially alters the behavior of the program being measured especially
the temporal one. Therefore for such cases where the noise being inserted by in-
strumentation is comparable to the measured value hardware emulation should
be preferred. However such setups are orders of magnitude slower and far from
trivial to configure relative to applying a precompiled instrumentation tool.

2.2 Intel pin

Pin’s[1] behavior is analogous to the function of a jit compiler. It consumes
the original binary assembly and outputs instrumented assembly based on the
instrumentation rules (instrumentation routines ) that the pin tool provides. Pin
instruments basic instruction blocks just before they get executed and caches
the resulting code. Instrumented assembly contains replaced or injected routines
called analysis routines provided by the pintool.

In detail, when a binary loads, the pin framework injects itself in an appropriate
position in the binary’s address space. Instead of the original instructions the



framework executes instrumented code from the code cache, passing static and
runtime data (state) to analysis routines.

Pin offers various levels of instrumentation granularity, that is, instrumentation
routines can be triggered upon entering a code section, a routine, an instruction
block or a single instruction. Analysis routines themselves can be placed relative
to individual instructions, instruction blocks, or routines of the original binary
code.

It is obvious, that since instrumentation routines get executed once, while ana-
lysis routines get executed many times, it makes sense to try to shift compu-
tationally intensive code from analysis to instrumentation routines whenever
possible.

As we mentioned before, analysis routines can be passed runtime data. This data
can be CPU state, instruction operands, routine arguments and return values as
well as threading environment state, presented in a platform agnostic way.
Analysis routines make the bulk of the computational burden. Therefore pin of-
fers fast call linkages and, even more importantly, analysis routine inlining when
a routine has no jump instructions. The later can be effectively combined with
the conditional instrumentation API, where an analysis routine is split into an
inlineable one that gets called every time and a noninlineable that gets condi-
tionally called.

Great attention must be paid when dealing with multithreaded code. Pin analysis
routines are not allowed to use native threading facilities. Instead they must rely
on locking primitives, thread management and thread local storage provided by
the framework. That’s why pin links to special non thread safe standard library
routines.



Chapter 3

Dynamic memory management

In all but the simplest of programs the exact size of memory required for
data storage is only known at runtime. Therefore most programming languages
offer facilities for dynamic memory allocation. In the C language this is accom-
plished by the malloc family of routines. In simple terms, the program requests
more memory by calling malloc and, when the memory block isn’t needed any
more, calls free to release it. Implementation of these routines is the job of a
dynamic memory manager or otherwise called as heap manager. In turn, the
heap manager draws its available memory from two sources. The first source is
the traditional heap, a contiguous portion of the data segment, the end of which
is pointed to by the program break pointer. The traditional heap size can be
manipulated by the brk/sbrk system calls. The second source is memory mapped
regions. This is accomplished by the mmap system call which maps new memory
pages in the process’ virtual address space. From now on these sources will be
referred to as mapped objects. The heap manager allocates this pool of avail-
able memory (from both sources) to the received malloc requests by balancing
between low fragmentation of space and quick response time according to vari-
ous algorithms. The returned chunks will be referred to as memory objects in
this paper.

The following sections list excerpts from the official documentation. The listed
functions and its arguments/options are extensively used in our code.



3.1 malloc() manpage - Excerpts[10] of interest

3.1.1 Name

malloc, free, calloc, realloc - allocate and free dynamic memory

3.1.2 Synopsis

#include <stdlib.h>

void *malloc(size_t size);

void free(void *ptr);

void *calloc(size_t nmemb, size_t size); void *realloc(void *ptr, size_t size);

3.1.3 Description

The malloc() function allocates size bytes and returns a pointer to the allocated
memory. The memory is not initialized. If size is 0, then malloc() returns either
NULL, or a unique pointer value that can later be successfully passed to free().

The free() function frees the memory space pointed to by ptr, which must have
been returned by a previous call to malloc(), calloc() or realloc(). Otherwise, or if
free(ptr) has already been called before, undefined behavior occurs. If ptr isNULL,
no operation is performed.

The calloc() function allocates memory for an array of nmemb elements of size
bytes each and returns a pointer to the allocated memory. The memory is set to zero.
If nmemb or size is 0, then calloc() returns either NULL, or a unique pointer value
that can later be successfully passed to free().

The realloc() function changes the size of the memory block pointed to by ptr
to size bytes. The contents will be unchanged in the range from the start of the
region up to the minimum of the old and new sizes. If the new size is larger than
the old size, the added memory will not be initialized. If ptr is NULL, then the call
is equivalent to mal- loc(size), for all values of size; if size is equal to zero, and ptr
is not NULL, then the call is equivalent to free(ptr). Unless ptr is NULL, it must
have been returned by an earlier call to malloc(), cal-loc() or realloc(). If the area
pointed to was moved, a free(ptr) is done.

3.1.4 Return Value

The malloc() and calloc() functions return a pointer to the allocated memory
that is suitably aligned for any kind of variable. On error, these functions return
NULL. NULL may also be returned by a successful call to malloc() with a size of
zero, or by a successful call to cal- loc() with nmemb or size equal to zero.



The free() function returns no value.

The realloc() function returns a pointer to the newly allocated memory, which
is suitably aligned for any kind of variable and may be different from ptr, or NULL
if the request fails. If size was equal to 0, either NULL or a pointer suitable to be

passed to free() is returned. If realloc() fails the original block is left untouched; it
is not freed or moved.



3.2 mmap() manpage - Excerpts[10] of interest

3.2.1 Name

mmap, munmap - map or unmap files or devices into memory

3.2.2 Synopsis

#include <sys/mman.h>
void *mmap(void *addr, size_t length, int prot, int flags, int fd, off t offset);
int munmap(void *addr, size_t length);

3.2.3 Description

mmap() creates a new mapping in the virtual address space of the call- ing
process. The starting address for the new mapping is specified in addr. The length
argument specifies the length of the mapping.

If addr is NULL, then the kernel chooses the address at which to create the map-
ping; this is the most portable method of creating a new map- ping. If addr is not
NULL, then the kernel takes it as a hint about where to place the mapping; on
Linux, the mapping will be created at a nearby page boundary. The address of the
new mapping is returned as the result of the call.

The contents of a file mapping (as opposed to an anonymous mapping; see
MAP_ANONYMOUS below), are initialized using length bytes starting at offset
offset in the file (or other object) referred to by the file descriptor fd. offset must be
a multiple of the page size as returned by sysconf(_SC_PAGE_SIZE).

The flags argument determines whether updates to the mapping are visi- ble to
other processes mapping the same region, and whether updates are carried through
to the underlying file. This behavior is determined by including exactly one of the
following values in flags:

MAP_PRIVATE | Create a private copy-on-write mapping. Updates to the map- ping are not
visible to other processes mapping the same file, and are not carried through
to the underlying file. It is unspecified whether changes made to the file after
the mmap() call are visible in the mapped region.

In addition, zero or more of the following values can be ORed in flags:

MAP_ANONYMOUS | The mapping is not backed by any file; its contents are initial- ized to zero.
The fd and offset arguments are ignored; however, some implementations re-
quire fd to be -1 if MAP_ANONYMOUS (or MAP_ANON) is specified, and
portable applications should ensure this. The use of MAP_ANONYMOUS in
conjunction with MAP_SHARED is supported on Linux only since kernel 2.4.



munmap()

The munmap() system call deletes the mappings for the specified address range,
and causes further references to addresses within the range to generate invalid
memory references. The region is also automatically unmapped when the process
is terminated. On the other hand, closing the file descriptor does not unmap the
region.

The address addr must be a multiple of the page size. All pages con- taining a
part of the indicated range are unmapped, and subsequent ref- erences to these pages
will generate SIGSEGV. It is not an error if the indicated range does not contain any
mapped pages.

3.2.4 Return Value

On success, mmap() returns a pointer to the mapped area. On error, the value
MAP_FAILED (that is, (void *) -1) is returned, and errno is set appropriately. On
success, munmap() returns 0, on failure -1, and errno is set (probably to EINVAL).



3.3 sbrk() manpage - Excerpts[10] of interest

3.3.1 Name

brk, sbrk - change data segment size

3.3.2 Synopsis

#include <unistd.h>
int brk(void *addr);
void *sbrk(intptr_t increment);

3.3.3 Description
brk() and sbrk() change the location of the program break, which defines the

end of the process’s data segment (i.e., the program break is the first location after
the end of the uninitialized data segment). Increasing the program break has the
effect of allocating memory to the process; decreasing the break deallocates memory.

brk() sets the end of the data segment to the value specified by addr, when that
value is reasonable, the system has enough memory, and the process does not exceed
its maximum data size (see setrlimit(2)).

sbrk() increments the program’s data space by increment bytes. Calling sbrk()
with an increment of 0 can be used to find the current location of the program break.

3.3.4 Return Value

On success, brk() returns zero. On error, -1 is returned, and errno is set to
ENOMEM. (But see Linux Notes below.)

On success, sbrk() returns the previous program break. (If the break was in-
creased, then this value is a pointer to the start of the newly allocated memory). On
error, (void *) -1 is returned, and errno is set to ENOMEM.



Chapter 4

Design and implementation

We used image instrumentation mode to wrap with analysis code the malloc
and mmap family of routines. The analysis code before each routine captures the
call arguments and stores them into thread local storage, while the code after uses
these arguments plus the return value to deduce the exact event details. It then pro-
ceeds to update the global representation of dynamic memory state. For storing said
state, we use two binary search trees, one for the areas allocated by malloc referred
to as mem objects(Listing 4.1) and one for the areas allocated by the Mmap family
referred to as mmap objects(Listing 4.2). Each object contains the starting address
(which is the key of the object) and the respective size. The binary search tree, even
though slower on average than a hash map in search and insertion, is advantageous
in traversal and range searches, operations that are used the most by our pin tool.
We also monitor sbrk calls to keep up to date info on heap extents(Listing 4.3).

The variants of malloc, realloc and calloc are often implemented by dynamic memory
managers as calls to malloc itself. Therefore, depending on the memory manager
to be instrumented, we emulate realloc and calloc as malloc events, suppressing
the respective analysis code due to internal calls to malloc by the memory man-
ager(Listing 4.4). The same technique has also been used for the mremap function.

Our image instrumentation code ignores the LINUX loader library, because the con-
tained internal bootstrapping malloc functions would be seen as regular dynamic
memory management calls (Listing 4.5).

We have also wrapped the memory management routines around timing analysis
functions using the TSC CPU register (Listing 4.6). In CPUs with the constant TSC
feature, that register can be used as a wall time clock.[3] If power management is
turned off (frequency scaling) that in turn can be used as a total cycle count. How-
ever the routine to be measured will be intertwined with idle user processes as well
as kernel mode cycles. The actual usefulness of this metric will be checked in the
results.

We also implemented optional instrumentation of memory access instructions that

15



Listing 4.1: mem objects

class memobject{
public:
memobject (ADDRINT retaddr,int reqsize ,int thread_id)
:addr (retaddr),size(reqsize),reads(0),writes (0),
is_critical (0),creator_thread(thread_id) ,owner (NULL)

{
}
memobject ()
{
// InitLock (&(this ->lock));
}

inline int is_parent (ADDRINT addr) {
return ((this->addr<=addr)&&(addr <(this ->addr+this->size)));

}

ADDRINT addr;

int size;

int reads;

int writes;

int is_critical;

unsigned int creator_thread;
PIN_LOCK lock;

*

mmapobject owner ;



Listing 4.2: mmap objects

class mmapobject{
public:
mmapobject (ADDRINT retaddr ,int reqsize ,int thread_id)
:addr (retaddr),size(reqsize) ,reads (0) ,writes (0),
is_critical (0),creator_thread (thread_id)

{

}
mmapobject ()
{
// InitLock (&(this ->lock));
}

ADDRINT addr;
size t size;

int reads;

int writes;

int is_critical;
int creator_thread;
PIN LOCK lock;

correspond to dynamically managed memory. In this mode, analysis code is placed
before executing an instruction that operates on a memory address that tries to
match it to a memory object before updating its total read and write counts. This
code is guarded by a pin specific in-line conditional check that returns true if this
memory address might be related to dynamic memory. This fast guard function en-
sures that there is minimal slowdown from certainly unrelated memory operations.
Since the guard function must contain no jump instructions in order to be inlined
we had to manually tweak the returned Boolean expression to nudge the compiler
into not using jump instructions (Listing 4.7)(Listing 4.8). Another optimization we
applied was the implementation of a cache structure in front of the tree of memory
objects.We also used atomic increments where possible(Listing 4.9). However it was
quickly realized that the overhead of locking the data structures for multithreaded
access led to a slowdown in the crude order of 50x thus rethinking was needed. That,
plus the fact that this function was borderline in scope with the rest of the project
means our results won’t deal with it even though it’s mostly functional.

Our heap profiler offers full multi-threading support. On thread start we allocate
space in the TLS. On thread finish we aggregate the accumulated thread metrics
into the global process metrics. Since our data structures are not inherently thread
safe(and even if they were pin would link to non-thread safe variants) we protect



Listing 4.3: Monitoring sbrk

VOID AfterSbrk (ADDRINT ret ,THREADID threadid)

{

thread_data_t* tdata = get_tls(threadid);
if ((void ™) ret==MAP_FAILED) {
if (debug)
fprintf (out,"thread %d AfterSbrk FAILED\n",threadid);
ReleaseLock(&Heap::lock);
return ;
}
Heap :: size +=(tdata ->sbrk_size);
if (Heap::address==0){
if (debug)
fprintf(out, "thread %d AfterSbrk First exec\n",threadid);
Heap :: address=ret;
}
if (debug){
fprintf(out, "thread %d AfterSbrk addr (%p)\n",threadid ,(void
*)ret);
}
ReleaseLock(&Heap::lock);



Listing 4.4: Emulating realloc by using free/malloc analysis code

VOID BeforeRealloc (ADDRINT ptr,size_t size ,THREADID threadid)
{

if (((void™)ptr==NULL) ||( size==0))

return; //Nothing to see here!

thread_data_t* tdata = get_tls(threadid);

tdata->realloc_size=size;

tdata ->realloc_ptr=ptr;

tdata ->inbetween_realloc =1;

}

VOID AfterRealloc (ADDRINT ret ,THREADID threadid)
{
thread_data_t* tdata = get_tls(threadid);
if (tdata->inbetween_realloc==0)
return ;
tdata->inbetween_realloc=0;
if ((void *)ret==NULL)
return; //Nothing to see here!
BeforeFree (tdata->realloc_ptr ,threadid);
BeforeMalloc (tdata ->realloc_size ,threadid);
AfterMalloc(ret ,threadid);

Listing 4.5: Ignoring unwanted images

VOID ImageLoad (IMG img, VOID *)
{
fprintf(out, "Image %s loaded\n", IMG_Name(img).c_str());
// if (!'IMG_IsMainExecutable (img))
// return ;
string img_str=(IMG_Name(img).c_str());
//if (img_str. find ("ld-linux")!= string ::npos)
//  return;
if ((!(img_str.find ("libdmm")!= string ::npos))&&(!(img_str.
find("libc.so")!= string ::npos)))
return;



Listing 4.6: Time wrapping

VOID time (RTN rtn,uint32_t index)
{
RTN _InsertCall(rtn ,IPOINT_BEFORE , AFUNPTR(Before_time) ,
IARG_TSC,IARG_UINT32, index ,IARG_ADDRINT,
UINT64 MAX,IARG_THREAD ID,
IARG_CALL_ORDER, CALL_ORDER_LAST,IARG_END) ;
RTN_InsertCall (rtn ,IPOINT_AFTER ,AFUNPTR( After_time) ,
IARG_TSC,IARG_UINT32, index ,IARG_ADDRINT,
UINT64_ MAX,IARG_THREAD ID,
IARG_CALL_ORDER, CALL_ORDER_FIRST ,IARG_END) ;

Listing 4.7: Nudging the compiler to produce the desired expression without jmp

instructions

ADDRINT _seglow=__sync_fetch_and_add(&seglow ,0) ;

ADDRINT _seghigh=__sync_fetch_and_add(&seghigh ,0) ;

ADDRINT diff1=addr-_seglow;

ADDRINT diff2=_seghigh -addr;

ADDRINT compl=(_seglow -1);

ADDRINT comp2=(_seghigh -1);

ADDRINT bor=diff1 | diff2 |compl|comp2;

ADDRINT result2=(bor>>63)"1;//FIXME x86_64 specific

/*(_seglow!=0)&&(_seghigh!=0)&&(addr>=_seglow )&&(addr <=
_seghigh)



Listing 4.8: Resulting asm

00000000000668b0 <_Z7LSCheckm >:

668Db0 : mov 0x54b0c9(%rip) ,%rax
668b7: xor %ecx ,%ecx

668b9: lock xadd %rcx,(%rax)
668be: mov 0x54ele3(%rip),%rax
668c5: XOor %edx ,%edx

668c7: lock xadd %rdx,(%rax)
668cc: mov %rdx ,%rax

668 cf: sub $0x1,%rdx

668d3: sub %rdi ,%rax

668d6 : sub %rcx ,%rdi

668d9 : sub $0x1,%rcx

668dd : or %rdi ,%rax

668e0: or %rcx ,%rax

668¢e3: or %rdx ,%rax

668¢€6 : shr $0x3f,%rax

668ea: xor $0x1,%rax

668ee: retq

668ef: nop

Listing 4.9: Using atomic increment

inline void mem_access(memobject *obj,int isstore ,THREADID
threadid) {
if (isstore)
obj->writes++;//From program correctness;
//__sync_fetch_and_add(&obj->writes ,1);
else
//obj->reads ++;
__sync_fetch_and_add(&obj->reads ,1);
if ((obj->creator_thread)!=threadid)
//obj->is_critical =1;
__sync_lock_test_and_set(&obj->is_critical ,1);
|



Listing 4.10: Wrapping fprintf for thread safe access

*

inline void wrap_fprintf(FILE stream , const char *fmt, ...)

{

if (debug)
PIN_MutexLock(&printlock);

va_list args;

va_start (args, fmt);

viprintf(stream ,fmt, args);

va_end(args);

if (debug){
fflush (stream) ;
PIN_MutexUnlock(&printlock);

}
}

them with pin provided locks. The same is true for the fprintf function(Listing 4.10).
At a user configurable interval of memory management events we iterate over the
entire tree of mmap objects (Listing 4.11). For each object we find the corresponding
memory objects and calculate the respective spatial metrics. If the memory man-
ager uses the traditional heap we calculate the spatial metrics using the unmatched
memory objects of the previous step and the known heap extents. Finally we calcu-
late the aggregate metrics for the whole allocated space.

Listing 4.11: Iterating over mapped regions

std :: map<ADDRINT, mmapobject >:: iterator next=mmapobjectmap .
begin();
for (next=mmapobjectmap. begin (); next!=(mmapobjectmap.end());
next++)
{
float fragmentation;
int allocedsize =0;
int memobjnum=0;
int totalspace=0;
mmapobject * mmobj=&next->second;
int isempty=1;
int foundbegin=0;
int foundend=0;
memobjectmap_class :: iterator memit, membegin, memend,
membeforebegin ;
memit=memobjectmap . upper_bound (mmobj->addr+mmobj->size);
//FIX_ME provide hints



if (memit!=memobjectmap.end()){ //find end
memobject *mobj=&(memit)->second;
if ((mobj->addr+mobj->size)<=(mmobj->addr+mmobj->size

I
memend=memit ;
foundend =1;

/
/
memit=memobjectmap . upper_bound (mmobj->addr) ;
if (memit!=memobjectmap.begin()){ //begin
memobject *mobj=&(--memit)->second;
if ((mobj->addr+mobj->size) <=((mmobj->addr)+(mmobj->
size))){
membegin=memit;
foundbegin=1;
/
/
if ((foundbegin==1)&&(foundend==1))
isempty =0;
if (isempty)
fragmentation =0;
elsef
membeforebegin=membegin; membeforebegin ++;

for (memit=memend; memit!=membeforebegin; memit++){
allocedsize+=memit->second. size;
memobjnum + +;
/
totalspace =(memend->second . addr+memend->second.size -1)
-mmobj->addr +1;
fragmentation=_totalspace -allocedsize)/(1.0" totalspace
);
emptyspace_aggr+=totalspace -allocedsize;
totalspace_aggr+=totalspace;
/
totalmmapedspace +=(mmobj->size);
totalmmapobj ++;
totalfragmentation_aggr+=fragmentation;
totalmemobj+=memobjnum;
/% fprintf(report, "(%p)=mmap(%zu) objnum(%d)
totalspace(%d) allocedsize(%d)"
"fragmentation (%f) percent\n",
(void *)mmobj->addr, mmobj->size ,
memobjnum , totalspace , allocedsize , fragmentation
*100); */



Chapter 5

Experimental Evaluation

5.1

Metrics

We calculated the following metrics:

5.2

Number of currently allocated memory objects,mmap objects

Total size of currently allocated memory objects, total size of currently alloc-
ated mapped objects (traditional heap and mmaped )

Mean and total fragmentation. Mean fragmentation gives equal weight to
each mapped object regardless of size while total weights them by size. Both
metrics ignore trailing free space. The above metrics are plotted in relation to
heap events.

Total number of malloc, free, calloc, realloc,mmap events, as well as total
cycle cost, mean cycle cost and the respective standard deviation.

Mean requested size of malloc, Mmap calls. Since we emulate calloc and real-
loc with the malloc analysis routine, their size arguments add to the malloc
mean requested size metric.

Lastly we calculate the instrumentation overhead.

Benchmarks

We used select benchmarks from the parsec[3] and spec' CPU 2006 [12] bench-
mark suites and profiled the performance of both libc and dmmlib[9] dynamic

The spec benchmarks have been used in a non-compliant manner
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memory managers. Parsing of the raw text data was done with numpy[11, 4, 5,

], a scientific python[13] library and Matplotlib[7] was used to plot them. If the
available samples are more than 200 we subsample them by simply discarding in
between data to improve rendering speed of the resulting encapsulated PostScript
files. In some benchmarks with big numbers of allocated objects or where memory
management events happen frequently enough, the calculation of fragmentation
metrics or the frequency at which said calculation was called respectively created a
prohibitively high instrumentation overhead. In these instances the calculation rate
was manually tweaked to produce acceptable results.






5.3 Functionality evaluation® > *
3.3.1 gcc

Figure 5.1: gcc plot a
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gcc plot b

Figure 5.2
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Table 5.1: gcc.dmmlib statistics

2388.517843
| 374890 |00 | 19331482676 | 51565.746422

54819046854 | 18822.41687  47649.964231

106061.245195

76700.596355 1565265969 | 36906.20506  17025.051259

Base running time(s)

Table 5.2: gcc.dmmlib debug statistics

Cmemap 00

Table 5.3: gcc.libc statistics

732187999 | 289.055619 19178.099256
| 374887 |00 | 1182072027 | 3153.142219
138161230769

25378.265279

2273206 162371.857143  191054.844442

Base running time(s)

Table 5.4: gcclibc debug statistics

Cmremap 0 0




5.3.2

parsec.bodytrack

Figure 5.3: parsec.bodytrack plot a
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Figure 5.4: parsec.bodytrack plot b
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Table 5.5: parsec.bodytrack.dmmlib statistics

9581.471982 15680764694 | 35852.565103 | 271484.761486

17316441 3463288.2 3237451.10571

295927.455805 1424173944 | 68890.530837 | 261930.036934

140490.459677

Base running time(s)

437368 9581.471982 655971136 | 1499.832258
5 oo isioss | s0a0i2es

305847196 | 46758.476686

3902492.38801

116175.145419




5.3.3 parsec.fluidanimate

Figure 5.5: parsec.fluidanimate plot a
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Figure 5.6: parsec.fluidanimate plot b
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Table 5.9: parsec.fluidanimate.dmmlib statistics

malloc 229913 411.797906 5490924562 | 23882.618912 | 253081.72558
calloc 4 oo | 41954641 10488660.25 | 16054176.8377

mmap 3410

Base running time(s) 188.319599

33357.775953 339735582 99221.840537 | 66617.999487

Table 5.10: parsec.fluidanimate.dmmlib debug statistics

1145.74466 58083.457738
4201284.5 6805182.2156

125430.0 206083.479554

411.797906 263417009

16805138

1038336.0 2006880

176.829302

Base running time(s)

Table 5.12: parsec.fluidanimate.libc debug statistics




5.3.4 parsec.swaptions

Figure 5.7: parsec.swaptions plot a
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parsec.swaptions plot b

Figure 5.8
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Table 5.13: parsec.swaptions.dmmlib statistics

289645.086764

48001800 1825.823532 964763466572 | 20098.485194
oo oseoas | caaisnezs

34674365

3898758.51458

258763.91791 | 1130749.31667

319.226291 26987.457811

2463761.0 4259621.60378

158410.444444 | 272018.304786




3.3.5

splash2x.barnes

Figure 5.9: splash2x.barnes plot a
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suonerado aa15/20[[eA
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Table 5.17: splash2x.barnes.dmmlib statistics

1548870 193608.75 272997.625167

Base running time(s) 73.037892

Table 5.18: splash2x.barnes.dmmlib debug statistics

Table 5.19: splash2x.barnes.libc statistics

39.330304 54361232 o 620355.008778

0.0 6290514

nan 956137 239034.25 345477.474649

Base running time(s) 72.829441




Table 5.20: splash2x.barnes.libc debug statistics




53.3.6

splash2x.fmm

Figure 5.11:

splash2x.fmm plot a
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Table 5.21: splash2x.fmm.dmmlib statistics

malloc 134983027 | 61383.823101 | 1835930.59561

calloc ! 4495808 | 44958080 | 00 |

mmap d 1542750 192843.75 268787.663272

Base running time(s)

935065 233766.25 335361.76393

Base running time(s) 46.140648

Table 5.24: splash2x.fmm.libc debug statistics

calloc




5.3.7 tonto

Figure 5.13: tonto plot a
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Figure 5.14: tonto plot b
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Table 5.25: tonto.dmmlib statistics

1431146743323 | 1354.138669  3096.617367

1056868683 | 374.389887

26834038.0

25720546.9276

28262.324123

1675509 10171.691534

1179.066572

149606.905488

47353806691

Base running time(s)

Table 5.26: tonto.dmmlib debug statistics

Table 5.27: tonto.libc statistics

171.627764

975.028532

1056868683 | 374.389887 181388007657

1226753

4571540.0 3532113.0

136305.888889  239265.244157




We observe the expected positive correlation between memory objects and mapped
objects, either total size or population. We also observe the expected variance of heap
activity between different benchmarks. Instrumentation speed ranges between 1x
and 2.5x which we consider acceptable.

However we notice that the standard deviation of mean cost in cycles is very high.
We don’t know if this high variance is inherent in the memory management al-
gorithm or it is due to cycles noise, either idle processes or kernel mode cycles or
even instrumentation overhead.We also cant exclude the possibility of error in our
timing implementation.

In the splash family of benchmarks we observe that the total mapped memory is
slightly higher for the glibc allocator. This is because the glibc allocator pads sbrk
requests with additional bytes if they are smaller than M_TOP_PAD which has a
default value of 12871024, in aggreeance with the line of around 140000 bytes we
see in the graphs. In bodytrack and swaptions benchmarks the mapped memory ap-
pears to be significantly higher for the glibc allocator. Actually it’s an artifact that
appears because glibc allocates thread specific arenas by using MAP_NORESERVE
, speculating that it may never need the mapped space wholly. One may look up
such details in glibc source code [6].

Notice how in the tonto benchmark the currently mapped space of glibc stays signi-
ficantly higher.This is because for a small moment the program requires that much
memory (edge in currently allocated graph’).The glibc implementation, being heap
based, cannot release this memory back to the system.This behavior is examined in
detail in the next section.

5.4 Workload specific results

The above results suggested that our code produces sane output across a wide
selection of workloads. However comparing two different allocators only gives an-
swers regarding memory footprint and time cost. In order to gain more insight we
present three cases where , while keeping the other conditions constant, we change
a single allocator parameter iterating over a predefined range of values.

54.1 M_TOP_PAD

While keeping the other conditions constant we tweak M_TOP_PAD. M_TOP_-
PAD is a glibc allocator parameter that controls the minimum value of the size
argument passed to sbrk. Whenever glibc runs out of space, assuming the request
size isn’t eligible for allocation via mmap ,it enlarges the heap by calling sbrk. Since
sbrk is a system call, hence costly, it makes sense to preallocate space on the heap,

Snote that the edge actually reaches 35 * 10° but its not shown due to naive subsampling



in anticipation for more requests, minimizing the total number of sbrk calls. If the
sbrk request is smaller than M_TOP_PAD it is padded to that size. However this
may lead to a waste of space if the preallocated area is never actually used.



Figure 5.15: gcc plot a
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gec plot b

Figure 5.16
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Figure 5.17: gcc plot ¢
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The above graph proves our point. Increasing M_TOP_PAD leads to:

e Less objects allocated via mmap,since the heap is less often short of free space



e No significant changes in total fragmentation, showing that glibc packs chunks
efficiently even when there is surplus of free space.

e Less calls to sbrk since the line showing currently mapped space has less steps.

e Lowering of space utilization owing to more preallocated space.

e A downward trend of cycles spend in malloc, due to less system calls.

The best value for this workload seems to be 13107200 after which space utilization
dramatically worsens.

54.2 M_MAP_THRESHOLD

In our next case we tweak M_MAP_THRESHOLD. When the glibc allocator is
out of free space, if the request’s size is above M_MAP_THRESHOLD it uses mmap
instead of the heap. Mmaps are more expensive than sbrk and the fact that they
must be page aligned can lead to waste of space, but they offer the advantage that
they can be released back to the system upon freeing of the respective chunk without
leaving empty areas.



gec plot a

Figure 5.18
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gec plot b

Figure 5.19
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Figure 5.20: gcc plot ¢
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Let us observe the two apexes around point 30. These apexes represent mal-
loc “storms”, that is, brief moments were more memory is required and then freed.



Lowering M_MAP_THRESHOLD leads to these requests rising above the threshold
and thus an increase and subsequent decrease of mapped areas in parallel with the
storms. If these requests fall bellow the threshold , after the respective objects have
been freed they will leave a hole in the heap(where they had been allocated), an
event which is represented in the graphs by two spikes in the fragmentation graph
lagging behind the original storms. In contrast when the threshold is sufficiently
low these objects would leave the heap fragmentation unaffected and the respect-
ive mapped regions would be fully released back to the system. Note that ,in the
case of heap allocation ,the heap doesn’t shrink back to its original size, owing to
the fact that the heap can only shrink from the top plus the conservative trimming
policy. This is represented in both currently mapped space and space utilization
subplots. We can also clearly see how mmap call counts affect mean malloc cycles,
so whatever spatial gains we had are obviously negated.

5.4.3 SYSALLOC_SZ

By the same process of thought we attempted to experiment with dmmlib by
changing SYSALLOC_SZ which is the equivalent of glibc’s M_TOP_PAD but for
mmapped regions instead.



gec plot a

Figure 5.21
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Figure 5.22: gcc plot b
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Similarly to the former case mmap operations are decreased when increasing
SYSALLOC _SZ. However there is a dramatic decrease of space utilization that can’t



be explained by the waste inherent in pre-allocating. We conclude that possibly we
exposed a big blocks specific bug in that allocator.

5.5 Summary

Unremarkable spatial data across many workloads. Questionable accuracy of
temporal data. Utilizable insights in workload specific glibc allocator tuning .



Chapter 6

Conclusion

6.1 Summary

We used dynamic binary instrumentation to measure the performance of both
libc and dmmlib heap managers using pin from Intel. We successfully derived spa-
tial metrics as well as temporal metrics (the later of questionable accuracy). We
tested our methodology on select benchmarks from the parsec and spec CPU 2006
suites. We extracted the data using numpy and plotted them using matplotlib.

6.2 Future Additions

Most importantly we must validate the accuracy of our spatial data by com-
paring it to the output of built in statistics methods that memory allocators expose
(glibc provides such an interface). We should explore the use of kernel performance
counters instead of the naive timestamp counter. The kernel performance coun-
ters would allow us to exclude kernel mode time from our calculations as well as
noise from other idle processes, at the cost however of additional overhead and thus
noise caused by calling kernel facilities.Interfacing with an existing cache simulator
to obtain simulated cache statistics would be an interesting direction and mostly
trivial however at a huge performance cost. We could derive more specific spatial
metrics to properly distinguish between space overhead and empty space (fragment-
ation) which are both computed currently as a single fragmentation metric. The
current code base contains checks for the currently instrumented heap manager and
should preferably be refactored to be manager agnostic. Lastly we should investig-
ate in improving the currently unused memory access patterning to overcome the
threading related locking overhead by using lockless data structures.
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