

Εθνικό Μετσοβίο Πολύτεχνείο Σχολή Ηλεκτρολογών Μηχανικών και Μηχανικών Υπολογιστών Τομέας Τεχνολογίας Πληροφορικής και Υπολογιστών

Σύνδεση Εικονικής και Πραγματικής Πλατφόρμας Υλοποίησης Αρχιτεκτονικών Συστήματος σε Ψηφίδα

ΔΙΠΛΩΜΑΤΙΚΗ ΕΡΓΑΣΙΑ

Γεώργιος Χ. Μπρισκόλας

Επιβλέπων : Γεώργιος Οικονομάκος

Επίκουρος Καθηγητής Ε.Μ.Π.

Αθήνα, Ιούλιος 2013

ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ Σχολή Ηλεκτρολογών Μηχανικών και Μηχανικών Υπολογιστών Τομέας Τεχνολογίας Πληροφορικής και Υπολογιστών

Σύνδεση Εικονικής και Πραγματικής Πλατφόρμας Υλοποίησης Αρχιτεκτονικών Συστήματος σε Ψηφίδα

ΔΙΠΛΩΜΑΤΙΚΗ ΕΡΓΑΣΙΑ

Γεώργιος Χ. Μπρισκόλας

Επιβλέπων : Γιώργος Οικονομάκος Επίκουρος Καθηγητής Ε.Μ.Π.

Εγκρίθηκε από την τριμελή εξεταστική επιτροπή την 25^η Ιουλίου 2013.

.....

.....

.....

Γιώργος Οικονομάκος Επ. Καθηγητής Ε.Μ.Π. Κιαμάλ Πεκμεστζή Καθηγητής Ε.Μ.Π. Δημήτρης Σούντρης Επ. Καθηγητής Ε.Μ.Π.

Αθήνα, Ιούλιος 2013

.....

Γεώργιος Χ. Μπρισκόλας

Διπλωματούχος Ηλεκτρολόγος Μηχανικός και Μηχανικός Υπολογιστών Ε.Μ.Π.

Copyright © Γεώργιος Μπρισκόλας, 2013. Με επιφύλαξη παντός δικαιώματος. All rights reserved.

Απαγορεύεται η αντιγραφή, αποθήκευση και διανομή της παρούσας εργασίας, εξ ολοκλήρου ή τμήματος αυτής, για εμπορικό σκοπό. Επιτρέπεται η ανατύπωση, αποθήκευση και διανομή για σκοπό μη κερδοσκοπικό, εκπαιδευτικής ή ερευνητικής φύσης, υπό την προϋπόθεση να αναφέρεται η πηγή προέλευσης και να διατηρείται το παρόν μήνυμα. Ερωτήματα που αφορούν τη χρήση της εργασίας για κερδοσκοπικό σκοπό πρέπει να απευθύνονται προς τον συγγραφέα.

Οι απόψεις και τα συμπεράσματα που περιέχονται σε αυτό το έγγραφο εκφράζουν τον συγγραφέα και δεν πρέπει να ερμηνευθεί ότι αντιπροσωπεύουν τις επίσημες θέσεις του Εθνικού Μετσόβιου Πολυτεχνείου.

Περίληψη

Σκοπός της διπλωματικής εργασίας καθίσταται η σύνδεση μιας εικονικής και μιας πραγματικής πλατφόρμας υλοποίησης αρχιτεκτονικών συστήματος σε ψηφίδα. Αντικείμενο της σύνδεσης αυτής είναι ο σχεδιασμός περιφερειακών μονάδων τόσο στην εικονική όσο και στην πραγματική πλατφόρμα μέσω εργαλείων Σύνθεσης Υψηλού Επιπέδου για επιτάχυνση της διαδικασίας. Αρχικά, η σχεδίαση της εικονικής πλατφόρμας πραγματοποιήθηκε στο περιβάλλον εικονικής προσομοίωσης Open Virtual Platforms (OVP). Αφού επιλέχθηκε η εφαρμογή που θέλουμε να έχει το ενσωματωμένο σύστημα δημιουργήσαμε ένα περιφερειακό, στο οποίο τοποθετήθηκαν οι πιο πολύπλοκοι υπολογισμοί αυτής της εφαρμογής ώστε να υλοποιηθούν σε hardware για μεγαλύτερη ταχύτητα εκτέλεσης. Στην συνέχεια, χρησιμοποιήσαμε αυτό το περιφερειακό και μετά από Σύνθεση υψηλού επιπέδου (High Level Synthesis), με τη βοήθεια του εργαλείου της Xilinx VivadoHLS, μετατρέψαμε άμεσα και με βέλτιστη υλοποίηση τον κώδικα του από C σε Γλώσσα Περιγραφής Υλικού (HDL). Μετά από αυτό το βήμα, σχεδιάσαμε την πραγματική πλατφόρμα χρησιμοποιώντας την ομάδα εργαλείων του Embedded Development Kit (EDK) και του PlanAHead της Xilinx και να προσθέσουμε το περιφερειακό που παράχθηκε από το VivadoHLS στο σύστημα. Με αυτόν τον τρόπο το περιφερειακό που σχεδιάσαμε στο εικονικό περιβάλλον, το χρησιμοποιούμε και στο πραγματικό με τη σύνδεση εικονικής και πραγματικής πλατφόρμας να πραγματοποιείται επιτυχώς.

Η διπλωματική εργασία χωρίζεται σε έξη κεφάλαια. Αρχικά, γίνεται μία εισαγωγή στα ενσωματωμένα συστήματα και μετά μία σύνδεσή αυτών με την διπλωματική εργασία. Στο πρώτο κεφάλαιο γίνεται μία περιγραφή των FPGAs και εν συνεχεία αναλύονται το Virtex-7, που είναι το FPGA που χρησιμοποιούμε, και ο επεξεργαστής MicroBlaze, ο οποίος αποτελεί τον επεξεργαστή που θα έχουν η εικονική αλλά και η πραγματική πλατφόρμα. Στο δεύτερο κεφάλαιο περιγράφεται αναλυτικά το περιβάλλον εικονικής προσομοίωσης Open Virtual Platforms και παρουσιάζεται λεπτομερώς η διαδικασία σχεδίασης της εικονικής πλατφόρμας. Στο κεφάλαιο τρία βρίσκεται η περιγραφή του εργαλείου VivadoHLS της Xilinx και τα βήματα που ακολουθήθηκαν για τη μετατροπή του κώδικα του περιφερειακού σε Γλώσσα Περιγραφής Υλικού. Επίσης, η διαδικασία σχεδίασης της πραγματικής πλατφόρμας ξεκίνησε στο κεφάλαιο τέσσερα με το εργαλείο Planahead και συνεχίστηκε στο πέμπτο κεφάλαιο με τα εργαλεία σχεδίασης του EDK. Τέλος, στο έκτο κεφάλαιο συνοψίζονται κάποιες προτάσεις για μελλοντική εργασία.

Λέξεις Κλειδιά

Ενσωματωμένα συστήματα, MicroBlaze, OvpWorld, Vivado HLS, EDK, SDK, XPS, PlanAhead, Virtex-7, FPGA, Εικονική Πλατφόρμα, Πραγματική Πλατφόρμα.

Abstract

The purpose of the present diploma thesis is to integrate Implementation and Virtual Prototyping SoC Architecture Platforms. The way of achieving this integration is to design peripherals for both virtual and real platform by using High Level Synthesis tools for speeding up the process. Initially, the design of virtual platform held in a virtual simulation environment called Open Virtual Platforms (OVP). Having chosen the application we wanted to integrate in the embedded system, we created a peripheral, which performed the most complicated and time consuming functions of this application. Integrating those function as hardware we achieved more speed in application execution. After using the Xilinx tool, VivadoHLS, for High Level Synthesis we converted peripheral 's C code into hardware description language (HDL) extremely quick and efficienty. Moreover, we designed a real platform with that peripheral by using the appropriate set of Xilinx tools like Embedded Development Kit (EDK) and PlanAHead. As a result the peripheral we designed in the virtual environment has been used in the real platform which means that both virtual and real platform have been connected successfully.

The diploma thesis is divided into six chapters. To begin with, the introduction refers to the embedded systems and the linking to my diploma thesis. The first chapter contains a description of FPGAs in generall, Virtex-7, which is the FPGA we use in the real platform, and MicroBlaze processor, which is the processor of both the virtual and the real platform. The second chapter describes in detail the virtual environment simulation Open Virtual Platforms and the design process of a virtual platform. Chapter three is a description of the tool VivadoHLS of Xilinx and the steps followed to convert peripheral's C code into hardware description language. The detailed design process of the real platform starts by using the Xilinx Planahead tool in chapter four and continued by the use of EDK tools in the fifth chapter. Finally, the sixth chapter not only summarizes and comments the results obtained but also provides some suggestions for future work.

KeyWords

Embedded systems, MicroBlaze, OvpWorld, Vivado HLS, EDK, SDK, XPS, PlanAhead, Virtex-7, FPGA, virtual platform, real platform

Ευχαριστίες

Για την εκπόνηση της παρούσας διπλωματικής εργασίας θα ήθελα να ευχαριστήσω κατά κύριο λόγο τον επίκουρο καθηγητή κ. Γεώργιο Οικονομάκο, για τις συμβουλές και τις ιδέες τους σε όλη την διάρκεια της εργασίας. Επίσης, θα ήθελα να ευχαριστήσω όλα τα μέλη του Εργαστηρίου Μικροϋπολογιστών και Ψηφιακών Συστημάτων, και ιδιαίτερα τον Ευστάθιο Σωτηρίου- Ξανθόπουλο, του οποίου η συμβολή υπήρξε καθοριστική για την ολοκλήρωση της εργασίας. Τέλος θεωρώ χρέος μου να ευχαριστήσω την οικογένειά μου και το φιλικό μου περιβάλλον, καθώς στάθηκαν δίπλα μου, με στήριξαν, και συνέβαλαν τα μέγιστα τόσο στην ολοκλήρωση της εργασίας όσο και καθ' όλη τη διάρκεια των σπουδών μου.

Πίνακας Περιεχομένων

Περίληψη	6
Abstract	8
Ευχαριστίες	9
Πίνακας Περιεχομένων	
Ευρετήριο Σχημάτων	

Εισαγωγή

Σύγχρονα Ενσωματωμένα Συστήματα και FPGAs	18
Σύνδεση με την εργασία	20

Κεφάλαιο 1: FPGA, Xilinx Virtex-7, MicroBlaze

1.1 Επί-Τόπου Προγραμματιζόμενος Πίνακας Πυλών (FPGA)	22
1.1.1 Γεννήτριες Συναρτήσεων	23
1.1.2 Στοιχεία Αποθήκευσης	23
1.1.3 Λογικά Κελιά	23
1.1.4 Λογικά Blocks	23
1.1.5 Blocks Εισόδου/Εξόδου	24
1.1.6 Blocks Ειδικού Σκοπού	24
1.2 Πλεονεκτήματα και μειονεκτήματα των FPGA	25
1.2.1 Πλεονεκτήματα των FPG	25
1.2.2 Μειονεκτήματα των FPGA	26
1.3 Γλώσσες Περιγραφής Υλικού	26
1.4 Xilinx Virtex 7	27
1.4.1 Look-Up Table	27
1.4.2 Slice	28
1.4.3 Προγραμματιζόμενα Λογικά Blocks (CLBs)	29
1.4.4 Block RAM (BRAM)	29
1.4.5 DSP Slices	29
1.4.6 Επιλογή Ι/Ο	30
1.4.7 Ρολόγια	30
1.5 MicroBlaze	31
1.5.1 Αναλυτική περιγραφή	32
1.5.2 Εντολές	33
1.5.3 Pipeline	37
1.5.4 Γρήγορη Μνήμη	37
1.5.5 Διεπαφή FSL (Fast Simplex Link)	40
1.5.6 Διάδρομοι Δεδομένων του MicroBlaze	41

Κεφάλαιο 2: Open Virtual Platforms

2.1.Εισαγωγή- Γενικά για το OVP	44
2.2. Περιγραφή δημιουργίας ενσωματωμένου συστήματος	.45
2.2.1 Σχεδιασμός εικονικής πλατφόρμας	45
2.2.2 Σχεδιασμός περιφερειακού	48
2.2.3 Σχεδιασμός εφαρμογής	52
2.3. Προσομοίωση- Αποτελέσματα- Συγκρίσεις	52
2.4 Σύγκριση με υλοποίηση της εφαρμογής ως software – profiling	.54
2.5 Η Εφαρμογή JPEG2000	55
2.5.1 Διαχωρισμός Hardware/Software	55

Κεφάλαιο 3: Vivado HLS

3.1 Εισαγωγή στο VivadoHLS	59
3.2 High Level Synthesis	59
3.3 RTL Synthesis	62
3.4 Δημιουργία Περιφερειακού - Χρήση του εργαλείου	62
3.4.1 Δημιουργία νέου project	62
3.4.2 Σύνθεση	66
3.4.3 Export RTL	69
3.5 Ενσωμάτωση του Pcore	70

Κεφάλαιο 4: PlanAhead

4.1 Εισαγωγή	72
4.2 Δημιουργία νέου project	73
4.3 Εφαρμογή	78

Κεφάλαιο 5: Embedded Development Kit

5.1 Εισαγωγή στο Embedded Development Kit (EDK)	81
5.1.1 Ροή Σχεδίασης Ένθετου Συστήματος	.83
5.2 Xilinx Platform Studio (XPS)	84
5.2.1 Εισαγωγή	84
5.2.2 Διαχείριση του Project	84
5.2.3 Η διεπαφή του XPS	85
5.2.4 Διαχείριση των πλατφόρμων υλικού, λογισμικού και προσομοίωσης	.86
5.2.5 Ιδιότητες του Project	88
5.3 Βοηθός δημιουργίας συστήματος, Base System Builder	.88
5.4 Βοηθός δημιουργίας / εισαγωγής περιφερειακού	89
5.4.1 Εισαγωγή	89

5.5 Software Development Kit (SDK)	92
5.6 Συνέχεια Εφαρμογής	92
5.6.1 Εφαρμογή του Βοηθού για προσθήκη του περιφερειακού	
fib στον Microblaze	95
5.6.2 Δημιουργία software application στο SDK	

Κεφάλαιο 6: Σύνοψη, Συμπεράσματα και Μελλοντική Εργασία

6.1 Σύνοψη και συμπερασματα	105
6.2 Μελλοντική εργασία	109

Παράρτημα	
Βιβλιογραφία	

Ευρετήριο Σχημάτων

<u>Εισαγωγή</u>

Σχήμα 1.1 : Τα ενσωματωμένα στην κοινωνία	18
Σχήμα 1.2 : marketing picture- virtual platforms are being connected to	
everything	20

<u>Κεφάλαιο 1</u>

Σχήμα 1.3 - FPGA	22
Σχήμα 1.4 – Virtex7	27
Σχήμα 1.5 – Look Up Table	28
Σχήμα 1.6 – Slice	28
Σχήμα 1.7 – Virtex-7 CLB	29
Σχήμα 1.8 – Dsp Slices	30
Σχήμα 1.9 – Επιλογή Ι/Ο	30
Σχήμα 1.10 – Clock Regions	
Σχήμα 1.11 – Διάγραμμα του πυρήνα του Mcroblaze	31
Σχήμα 1.12 – Ο καταχωρητής MSR	32
Σχήμα 1.13 – Σύνοψη των εντολών του MicroBlaze	
Σχήμα 1.14 – Κάθε εντολή εκτελείται σε τρεις κύκλους	
Σχήμα 1.15 – Παράλληλη εκτέλεση τριών εντολών	37
Σχήμα 1.16 – Η οργάνωση της instruction cache	
Σχήμα 1.17 – Διαδικασία εγγραφής στην γρήγορη μνήμη	
Σχήμα 1.18 – Η οργάνωση της data cache	39
Σχήμα 1.19 – Διαδικασία εγγραφής στην γρήγορη μνήμη	40
Σχήμα 1.20 – Οι έξι τρόποι διαμόρφωσης των διαδρόμων δεδομένων του	
MicroBlaze	41
Σχήμα 1.21 – Οι έξι διαμορφώσεις των διαδρόμων δεδομένων του	
MicroBlaze	41
Σχήμα 1.22 – Η πρώτη περίπτωση Διαμόρφωσης	42
Σχήμα 1.23 – Η δομή των συνδέσεων FSL	42
Σχήμα 1.24 – Οι τύποι δεδομένων του MicroBlaze	43

<u>Κεφάλαιο 2</u>

Σχήμα 2.1- OVP	44
Σχήμα 2.2- Memory Map	45
Σχήμα 2.3- Connecting Bus	47
Σχήμα 2.4- Προσβάσιμοι και μη Προσβάσιμοι Καταχωρητές στο Περιφερειακό	49
Σχήμα 2.5- Integration in Hardware	53
Σχήμα 2.6- Integration in Software	54
Σχήμα 2.7 - JPEG2000 Simulation	56
Σχήμα 2.8 – Αριθμός Εντολών των κομματιών του JPEG2000	57
Σχήμα 2.9 – bar chart	.57
Σχήμα 2.10 – most time-consuming functions	58

<u>Κεφάλαιο 3</u>

Σχήμα 3.1- VivadoHLS	59
Σχήμα 3.2- Το βασικό μοντέλο High Level Synthesis	60
Σχήμα 3.3- Απαραίτητα βήματα HLS	61
Σχήμα 3.4- Open New Project	63
Σχήμα 3.5- Project Configuration	63
Σχήμα 3.6- Add/Remove Files	64
Σχήμα 3.7- Solution Configuration	65
Σχήμα 3.8- Hls Environment	66
Σχήμα 3.9- Source C Code	67
Σχήμα 3.10- Synthesis Task Bar Button	67
Σχήμα 3.11- HLS Results (1)	68
Σχήμα 3.12- HLS Results (2)	68
Σχήμα 3.13- Export RTL	69
Σχήμα 3.14- Pcore Copy	70
Σχήμα 3.15- My New IP	71

<u>Κεφάλαιο 4</u>

Σχήμα 4.1- PlanAhead	72
Σχήμα 4.2- Το βασικό μοντέλο του PlanAhead	73
Σχήμα 4.3- New Project	73
Σχήμα 4.4- Create New PlanAhead Project	74
Σχήμα 4.5- Project Name	74
Σχήμα 4.6- Add Sources	75
Σχήμα 4.7- Add Constrains	75
Σχήμα 4.8- FPGA Choice	76
Σχήμα 4.9- New Project Summary	76
Σχήμα 4.10- Κεντρικό Παράθυρο Σχεδίασης του PlanAhead	77
Σχήμα 4.11- Flow Navigato	78

Σχήμα 4.12- How To Add Sources	79
Σχήμα 4.13- Add Sources	79
Σχήμα 4.14- Add or Create Embedded Sources	80
Σχήμα 4.15- Module Name	80

<u>Κεφάλαιο 5</u>

Σχήμα 5.1 – Ροή Σχεδίασης με το EDK	83
Σχήμα 5.2 – Xilinx Platform Studio (XPS)	84
Σχήμα 5.3 – Περιβάλλον Σχεδίασης στο ΧΡS	85
Σχήμα 5.4 – Bus Interface	86
Σχήμα 5.5 – Ports	87
Σχήμα 5.6 – Addresses	87
Σχήμα 5.7 – Project Options	88
Σχήμα 5.8 – Peripheral Components	89
Σχήμα 5.9 – Οι λειτουργίες της διεπαφής ΙΡΙΕ	91
Σχήμα 5.10 – Xilinx SDK	92
Σχήμα 5.11 – Base System Builder	92
Σχήμα 5.12 – AXI System	93
Σχήμα 5.13 – Board and System Selection	94
Σχήμα 5.14 – Processor, Cache and Peripheral Configuration	94
Σχήμα 5.15 – Peripheral Flow	95
Σχήμα 5.16 – Repository or Project	96
Σχήμα 5.17 – Name and Version	96
Σχήμα 5.18 – Name and Version	97
Σχήμα 5.19 – HDL Source Files	98
Σχήμα 5.20 – HDL Analysis Information	98
Σχήμα 5.21 – Bus Interferances	99
Σχήμα 5.22 – S_AXI4LITE PORT	100
Σχήμα 5.23 – Parameter Attributes	100
Σχήμα 5.24 – Peripheral Design Summary	101
Σχήμα 5.25 – XPS IP Catalog	102
Σχήμα 5.26 – SDK Environment	103
Σχήμα 5.21 – Target Software Application	103

<u>Κεφάλαιο 6</u>

Σχήμα 6.1 – FIBONACCI H/S Partitioning	106
Σχήμα 6.2 – JPEG2000 Parts	107
Σχήμα 6.3 – VivadoHLS Results (1)	
Σχήμα 6.4 – VivadoHLS Results (2)	
Σχήμα 6.5 – XPS Results	

<u>Εισαγωγή</u>

Σύγχρονα Ενσωματωμένα Συστήματα και FPGAs

Από τα smart phones μέχρι τον ιατρικό εξοπλισμό και από τους φούρνους μικροκυμάτων μέχρι τους "εγκεφάλους" των σημερινών αυτοκινήτων, τα σύγχρονα project ενσωματωμένων συστημάτων αναπτύσσουν υπολογιστικές μηχανές που αποτελούν αναπόσπαστο κομμάτι της κοινωνίας μας. Για την ανάπτυξη αυτών των προϊόντων, ηλεκτρολόγοι μηχανικοί επιστρατεύουν μια γκάμα εργαλείων και τεχνολογιών για την υλοποίηση ενσωματωμένων συστημάτων από hardware και software στοιχεία. Ένα τέτοιο στοιχείο, ο επί τόπου προγραμματιζόμενος πίνακας πυλών (Field-Programmable Gate Array, FPGA) χρησιμοποιείται σήμερα όλο και περισσότερο. Άτυπα, ένα FPGA θα μπορούσε να θεωρηθεί ως μια "κενή κατάσταση" (blank state), στην οποία μπορεί να υλοποιηθεί κάθε ψηφιακό κύκλωμα. Εν συντομία, το FPGA παρέχει στον σχεδιαστή ενσωματωμένων συστημάτων, ένα "προγραμματιζόμενο υλικό".

Σχήμα 1.1 : Τα ενσωματωμένα στην κοινωνία

Ο ρόλος των συσκευών FPGA έχει εξελιχθεί με την πάροδο των χρόνων. Αρχικά, χρησιμοποιήθηκαν με σκοπό να αντικαταστήσουν κάποιες συσκευές ολοκληρωμένων κυκλωμάτων μικρής και μεσαίας κλίμακας, με μία μόνο συσκευή FPGA. Με τις γνωστές βελτιώσεις και εξελίξεις στην τεχνολογία των ημιαγωγών, ο αριθμός των τρανζίστορ ανά IC-chip αυξήθηκε εκθετικά. Αυτό ήταν μια θετική εξέλιξη για τις συσκευές FPGA, οι οποίες αύξησαν δραματικά τόσο την χωρητικότητα προγραμματιζόμενης λογικής, όσο και τη λειτουργική τους ικανότητα. Με τον όρο χωρητικότητα, αναφερόμαστε στον αριθμό των διαθέσιμων λογικών πυλών, ενώ με τον όρο ικανότητα εννοούμε μια ποικιλία σταθερών, ειδικού σκοπού blocks.

Ως αποτέλεσμα αυτής της ανάπτυξης, τα σύγχρονα FPGA είναι σε θέση να υποστηρίξουν επεξεργαστές, διαύλους, ελεγκτές μνήμης και διεπαφές δικτύου, καθώς και έναν όλο και αυξανόμενο αριθμό κοινών περιφερειακών, όλα σε μία μόνο συσκευή. Με την προσθήκη ενός σύγχρονου λειτουργικού συστήματος, όπως τα Linux, τα FPGA αρχίζουν να εμφανίζονται όλο και περισσότερο σαν ένας σταθερός προσωπικός υπολογιστής όσον αφορά τη χρηστικότητα και την λειτουργικότητα.

Γενικά, τα FPGA προσφέρουν τεράστιες δυνατότητες και προοπτικές στους σχεδιαστές ενσωματωμένων συστημάτων. Πέρα από το ότι απλά μειώνουν των αριθμό των τσιπ που χρησιμοποιούνται σε μια υλοποίηση, προσφέρουν στον σχεδιαστή τεράστια ευελιξία. Όπως αποδεικνύεται, η ευελιξία είναι εξαιρετικά πολύτιμη κατά των σχεδιασμό συστημάτων ώστε να ανταποκριθούν στις σύνθετες και απαιτητικές ανάγκες των ενσωματωμένων υπολογιστικών συστημάτων. Συχνά, αυτή η ευελιξία είναι που κάνει τα FPGA τόσο ελκυστικά σε σχέση με τις λύσεις με παραδοσιακούς μικροεπεξεργαστές, ASIC και άλλες System-on-a-Chip (SoC) λύσεις.

Όμως μαζί με τα πλεονεκτήματα της τεχνολογίας των FPGA εμφανίζεται και μια σειρά από νέες προκλήσεις. Παλαιότερα, ένα από τα κυριότερα διλήμματα για τον σχεδιαστή ενσωματωμένων συστημάτων, ήταν η επιλογή του κατάλληλου μικροεπεξεργαστή. Η επιλογή αυτή ήταν που καθόριζε σε μεγάλο βαθμό την υπόλοιπη αρχιτεκτονική (ή τουλάχιστον περιόριζε το φάσμα των επιλογών σχεδιασμού). Με τις πλατφόρμες FPGA, οι σχεδιαστές συστημάτων είναι αναγκαίο να μπορούν να συνδυάσουν γνώσεις αρχιτεκτονικής υπολογιστών, ψηφιακών κυκλωμάτων και προγραμματισμού ώστε να κατορθώσουν τελικά να αξιοποιήσουν πλήρως τις δυνατότητες των συσκευών αυτών.

<u>Σύνδεση με την εργασία</u>

Όπως μπορεί κανείς εύκολα να καταλάβει τα ενσωματωμένα συστήματα παίζουν πολύ σημαντικό ρόλο στην ζωή του ανθρώπου. Συνεπώς, η ανάγκες για δημιουργία τέτοιων συστημάτων αυξάνονται με ραγδαίους ρυθμούς και ως αποτέλεσμα η σχεδίασή τους πρέπει να γίνεται ταχύτατα και ολοένα και περισσότερο αυτοματοποιημένα. Αυτή η αυτοματοποίηση λοιπόν, είναι ο βασικός στόχος της εργασίας. Ο συνηθισμένος τρόπος σχεδίασης ενσωματωμένων συστημάτων συμπεριλαμβάνει δύο ξεχωριστά μεταξύ τους στάδια: Την εικονική σχεδίαση και προσομοίωση του συστήματος, και την πραγματική του σχεδίαση. Αυτά τα δύο στάδια προσπαθήσαμε να συνδέσουμε και το πετύχαμε αυτό μέσω High Level Synthesis.

Σχήμα 1.2 : marketing picture- virtual platforms are being connected to everything

Έτσι λοιπόν, σκοπός της διπλωματικής εργασίας καθίσταται η σύνδεση μιας εικονικής και μιας πραγματικής πλατφόρμας υλοποίησης αρχιτεκτονικών συστήματος σε ψηφίδα. Αντικείμενο της σύνδεσης αυτής είναι ο σχεδιασμός περιφερειακών μονάδων τόσο στην εικονική όσο και στην πραγματική πλατφόρμα μέσω εργαλείων Σύνθεσης Υψηλού Επιπέδου για επιτάχυνση της διαδικασίας.

Αρχικά, η σχεδίαση της εικονικής πλατφόρμας πραγματοποιήθηκε στο περιβάλλον εικονικής προσομοίωσης Open Virtual Platforms (OVP). Αφού επιλέχθηκε η εφαρμογή που θέλουμε να έχει το ενσωματωμένο σύστημα δημιουργήσαμε ένα περιφερειακό, στο οποίο εκτελούνται οι υπολογισμοί αυτής της εφαρμογής και έτσι την υλοποιήσαμε σε hardware. Στην συνέχεια, χρησιμοποιήσαμε αυτό το περιφερειακό και μετά από Σύνθεση υψηλού επιπέδου (High Level Synthesis), με τη βοήθεια του εργαλείου της Xilinx VivadoHLS, μετατρέψαμε άμεσα και με βέλτιστη υλοποίηση τον κώδικα του από C σε Γλώσσα Περιγραφής Υλικού (HDL). Μετά από αυτό το βήμα, σχεδιάσαμε την πραγματική πλατφόρμα χρησιμοποιώντας την ομάδα εργαλείων του Embedded Development Kit (EDK) και του PlanAHead της Xilinx και να προσθέσουμε το περιφερειακό που παράχθηκε από το VivadoHLS στο σύστημα. Με αυτόν τον τρόπο το περιφερειακό που σχεδιάσαμε στο εικονικό περιβάλλον, το χρησιμοποιούμε και στο πραγματικό με τη σύνδεση εικονικής και πραγματικής πλατφόρμας να πραγματικό με τη σύνδεση εικονικής και πραγματικής πλατφόρμας στο εικονικό τον τρόπο το περιφερειακό που σχεδιάσαμε στο εικονικό περιβάλλον, το χρησιμοποιούμε και στο

Όλα τα παραπάνω αναλύονται λεπτομερέστατα στα κεφάλαια που ακολουθούν.

- Στο πρώτο κεφάλαιο γίνεται μία περιγραφή των FPGAs και εν συνεχεία αναλύονται το Virtex-7, που είναι το FPGA που χρησιμοποιούμε, και ο επεξεργαστής MicroBlaze, ο οποίος αποτελεί τον επεξεργαστή που θα έχουν η εικονική αλλά και η πραγματική πλατφόρμα.
- Στο δεύτερο κεφάλαιο περιγράφεται αναλυτικά το περιβάλλον εικονικής προσομοίωσης Open Virtual Platforms και παρουσιάζεται λεπτομερώς η διαδικασία σχεδίασης της εικονικής πλατφόρμας.
- Στο τρίτο κεφάλαιο βρίσκεται η περιγραφή του εργαλείου VivadoHLS της Xilinx και τα βήματα που ακολουθήθηκαν για τη μετατροπή του κώδικα του περιφερειακού σε Γλώσσα Περιγραφής Υλικού.
- <u>Στο τέταρτο κεφάλαιο</u> ξεκινάει η διαδικασία σχεδίασης της πραγματικής πλατφόρμας με χρήση του εργαλείου Planahead.
- <u>Στο πέμπτο κεφάλαιο</u> συνεχίζεται και ολοκληρώνεται η σχεδίαση της πραγματικής πλατφόρμας, αλλά με τα εργαλεία σχεδίασης του Embedded Development Kit (EDK).
- Στο έκτο κεφάλαιο συνοψίζονται και σχολιάζονται τα αποτελέσματα που προέκυψαν, καθώς επίσης παρατίθενται κάποιες προτάσεις για μελλοντική εργασία.

Κεφάλαιο 1

FPGA, Xilinx Virtex-7, MicroBlaze

1.1 Επί-Τόπου Προγραμματιζόμενος Πίνακας Πυλών (FPGA)

Ένα σύγχρονο FPGA (Σχήμα 1.3), αποτελείται από έναν δισδιάστατο πίνακα από προγραμματιζόμενα λογικά blocks (CLBs), από blocks σταθερής λειτουργίας και πηγές δρομολόγησης υλοποιημένες στη τεχνολογία CMOS. Κατά μήκος της περιμέτρου του FPGA υπάρχουν ειδικά λογικά blocks συνδεδεμένα με εξωτερικές συσκευασίες ακροδεκτών Ι/Ο. Τα λογικά blocks αποτελούνται από πολλαπλά λογικά κελιά, ενώ τα λογικά κελιά περιέχουν γεννήτριες συναρτήσεων και αποθηκευτικά στοιχεία.

Σχήμα 1.3 - FPGA

1.1.1 Γεννήτριες Συναρτήσεων

Οι συσκευές FPGA χρησιμοποιούν γεννήτριες συναρτήσεων για την υλοποίηση της Boolean λογικής και όχι φυσικές πύλες σε αντίθεση με τις υπόλοιπες συσκευές προγραμματιζόμενης λογικής (PLAs, PALs, CPLDs). Για τις εισόδους μιας Boolean συνάρτησης δημιουργείται αρχικά ένας πίνακας αλήθειας. Για κάθε είσοδο ο πίνακας αλήθειας περιγράφει την τιμή της εξόδου της συνάρτησης. Κάθε bit της εξόδου της συνάρτησης αποθηκεύεται σε ξεχωριστό κελί μιας στατικής μνήμης. Τα κελιά αυτά συνδέονται ως είσοδοι σε έναν πολυπλέκτη όπου ανάλογα με την είσοδο επιλέγεται η κατάλληλη έξοδος. Το αποτέλεσμα είναι γνωστό ως **Look-Up Table** (LUT). Αντίθετα με τα ψηφιακά κυκλώματα που υλοποιούνται με λογικές πύλες, η καθυστέρηση διάδοσης στα LUT είναι σταθερή. Αυτό σημαίνει ότι ανεξάρτητα από την πολυπλοκότητα του Boolean κυκλώματος, εφόσον "χωράει" σε ένα LUT, η καθυστέρηση διάδοσης είναι η ίδια. Αυτό επίσης ισχύει και για κυκλώματα που εκτείνονται σε περισσότερα LUT, αλλά εδώ η καθυστέρηση διάδοσης εξαρτάται και από των αριθμό των LUT που χρησιμοποιούνται.

1.1.2 Στοιχεία Αποθήκευσης

Ενώ οι γεννήτριες συναρτήσεων αποτελούν το βασικό block για την υλοποίηση

συνδυαστικών κυκλωμάτων, τα FPGA διαθέτουν επιπρόσθετα στοιχεία παρέχοντας έτσι ένα πλούτο λειτουργιών. Όπως και στα block των PLA, D Flip-Flop ενσωματώνονται επίσης και στα FPGA. Τα Flip-Flops μπορούν να χρησιμοποιηθούν με διάφορους τρόπους, με πιο απλό, την αποθήκευση δεδομένων. Συνήθως, μια έξοδος του LUT συνδέεται με την είσοδο ενός Flip-Flop. Επίσης, το Flip-Flop μπορεί να χρησιμοποιηθεί και ως μανδαλωτής που λειτουργεί είτε σε θετική είτε σε αρνητική λογική.

1.1.3 Λογικά Κελιά

Συνδυάζοντας ένα LUT και ένα D Flip-Flop προκύπτει αυτό που αναφέρεται ως λογικό κελί. Τα λογικά κελιά αποτελούν το χαμηλότερου επιπέδου δομικό block σε ένα FPGA. Τόσο η συνδυαστική όσο και η ακολουθιακή λογική μπορούν να υλοποιηθούν από ένα λογικό κελί ή μια συλλογή από αυτά.

1.1.4 Λογικά Blocks

Ενώ τα λογικά κελιά μπορούν να θεωρηθούν ως τα βασικά δομικά blocks των εφαρμογών FPGA, στην πραγματικότητα είναι σύνηθες να ομαδοποιούμε μερικά λογικά κελιά σε blocks και να προσθέτουμε κυκλώματα ειδικού σκοπού με σκοπό να δημιουργήσουμε ένα λογικό block. Αυτό επιτρέπει σε μια ομάδα από λογικά κελιά, τα οποία βρίσκονται κοντά μεταξύ τους, να έχουν γρήγορα μονοπάτια επικοινωνίας, μειώνοντας έτσι την καθυστέρηση διάδοσης και βελτιώνοντας την υλοποίηση του σχεδίου. Για παράδειγμα, η οικογένεια Virtex-7 της Xilinx ομαδοποιεί τέσσερα λογικά κελιά σε ένα slice. Δυο slices και ένα carry-logic σχηματίζουν ένα προγραμματιζόμενο λογικό block (Configurable Logic Block, CLB). Τα λογικά κελιά, συνδέονται με ένα δίκτυο διασυνδέσεων ώστε να παρέχουν υποστήριξη για πιο πολύπλοκες υλοποιήσεις κυκλωμάτων. Αυτό το δίκτυο διασυνδέσεων αποτελείται από switch boxes. Ένα switch box χρησιμοποιείται για τη δρομολόγηση μεταξύ των εισόδων/εξόδων ενός λογικού κελιού με το γενικό δίκτυο δρομολόγησης του τσιπ. Είναι επίσης υπεύθυνο για τη διέλευση σημάτων από ένα τμήμα καλωδίωσης σε ένα άλλο. Τα τμήματα καλωδίωσης μπορεί να είναι του τσιπ.

1.1.5 Blocks Εισόδου/Εξόδου

Tα blocks εισόδου/εξόδου (Input/Output Blocks – IOBs), που βρίσκονται περιμετρικά του τσιπ, συνδέουν τον πινάκα των λογικών blocks και τις πηγές δρομολογήσεων με τους εξωτερικούς ακροδέκτες της συσκευής.

1.1.6 Blocks Ειδικού Σκοπού

Πολλά σχέδια απαιτούν την χρήση κάποιου ποσού της On-Chip μνήμης. Χρησιμοποιώντας λογικά κελιά είναι δυνατή η κατασκευή στοιχείων μνήμης διάφορων μεγεθών. Ωστόσο, όσο αυξάνονται οι απαιτήσεις για μνήμη τόσο μειώνονται οι διαθέσιμοι πόροι. Η λύση βρίσκεται στην ύπαρξη ενός σταθερού ποσού ενσωματωμένης on-chip μνήμης μέσα στο σώμα του FPGA που ονομάζεται Block Ram (BRAM). Τοπικές on-chip αποθηκευτικές μονάδες όπως μνήμες RAM, ROM ή Buffers μπορούν να κατασκευαστούν από BRAMs. Οι τελευταίες μπορούν να συνδυαστούν μεταξύ τους ώστε να σχηματίσουν μεγαλύτερες BRAMs. Είναι επίσης μνήμες dual-ported, επιτρέποντας την ανεξάρτητη ανάγνωση και εγγραφή από κάθε port συμπεριλαμβανομένων και των ανεξάρτητων ρολογιών. Πολλές συσκευές FPGA, θέλοντας να επιτρέπουν πιο σύνθετα σχέδια, συμπεριλαμβανομένης της ψηφιακής επεξεργασίας σήματος ή μιας γκάμας πολλαπλασιασμών, συμπεριλαμβάνουν στο σώμα τους Blocks Ψηφιακής Επεξεργασίας Σήματος (Digital Signal Processing Block, DSP). Όπως και με τις BRAMs, είναι δυνατό να υλοποιήσουμε αυτά τα στοιχεία χρησιμοποιώντας την προγραμματιζόμενη λογική, αλλά είναι πιο αποδοτικό από άποψη απόδοσης και κατανάλωσης ισχύος να ενσωματώσουμε πολλά από αυτά τα στοιχεία κατευθείαν στο σώμα του FPGA. Είναι δυνατό να συνδυάσουμε μεταξύ τους DSP Blocks ώστε να εκτελέσουμε μεγαλύτερες πράξεις όπως πρόσθεση, αφαίρεση, πολλαπλασιασμό, διαίρεση και τετραγωνική ρίζα floating point αριθμών απλής και διπλής ακρίβειας. Αναμφισβήτητα, μία από τις πιο σημαντικές προσθήκες στο σώμα των FPGA είναι η προσθήκη ενσωματωμένων επεξεργαστών. Υπάρχει ένας μεγάλος αριθμός διεπαφών για τη διασύνδεση των επεξεργαστών με την προγραμματιζόμενη λογική των FPGA ώστε να είναι δυνατή η επικοινωνία με τους hardware πυρήνες. Τα περισσότερα συστήματα διαθέτουν ένα μόνο εξωτερικό ρολόι που παράγει μια σταθερή συχνότητα ρολογιού. Παρόλα αυτά, υπάρχουν διάφοροι λόγοι για τους οποίους ένας σχεδιαστής μπορεί να επιθυμεί οι hardware πυρήνες του να λειτουργούν σε διαφορετικές συχνότητες. Ο Manager Ψηφιακού Ρολογιού (Digital Clock Manager, DCM), επιτρέπει την παραγωγή διαφορετικών συχνοτήτων ρολογιού από ένα μόνο ρολόι αναφοράς. Είναι δυνατό να διαιρέσουμε το υπάρχων σήμα ρολογιού ώστε να πετύχουμε παλμούς χαμηλότερης συχνότητας. Το πλεονέκτημα της χρήσης των DCMs είναι ότι οι παραγόμενοι παλμοί θα έχουν μικρή απόκλιση από την επιθυμητή τιμή (Jitter) και μια προκαθορισμένη σχέση φάσης.

1.2 Πλεονεκτήματα και μειονεκτήματα των FPGA

Τα FPGA παρέχουν στις σχεδιάσεις και εφαρμογές μας πληθώρα πλεονεκτημάτων αλλά παρουσιάζουν και σημαντικά μειονεκτήματα συγκρινόμενα με τους επεξεργαστές ψηφιακού σήματος. Τα κυριότερα από τα πλεονεκτήματα και τα μειονεκτήματα αυτά παρουσιάζονται παρακάτω.

1.2.1 Πλεονεκτήματα των FPGA

Τα FPGA (Field Programmable Gate Arrays) είναι μία ειδική κατηγορία ολοκληρωμένων κυκλωμάτων. Τα κύρια πλεονεκτήματα που προσφέρουν τα FPGA είναι:

 Απόδοση: Λόγω του hardware παραλληλισμού, τα FPGA υπερβαίνουν την υπολογιστική δύναμη των DSP, σπάζοντας το πρότυπο της ακολουθιακής εκτέλεσης και επιτυγχάνοντας περισσότερους κύκλους ανά παλμό του ρολογιού. Επίσης ελέγχοντας τις εισόδους και τις εξόδους στο hardware επίπεδο πετυχαίνουμε γρηγορότερους χρόνους απόκρισης και εξειδικευμένη λειτουργία για να ταιριάζει σχεδόν ακριβώς στις απαιτήσεις του συστήματος.

2) Time to Market: Η FPGA τεχνολογία προσφέρει ευελιξία και ταχεία προτυποποίηση για να ανταπεξέλθει στις προσδοκίες της αγοράς. Μπορούμε να τεστάρουμε μία ιδέα και να την επαληθεύσουμε στο hardware χωρίς να μπούμε στην μακρά διαδικασία της ASIC σχεδίασης. Μπορούμε μετά να υλοποιήσουμε σταδιακές αλλαγές και να επανελέγξουμε την FPGA σχεδίαση μέσα σε ώρες αντί για εβδομάδες. Είναι επίσης διαθέσιμο Commersial Off The Self (COTS) hardware με διαφορετικού τύπου εισόδους – εξόδους οι οποίες είναι ήδη ενωμένες στο FPGA chip. Τέλος η αυξανόμενη διαθεσιμότητα software εργαλείων υψηλού επιπέδου μειώνει την απαραίτητη προγραμματιστική γνώση με αρκετά επίπεδα αφαίρεσης και συχνά προσφέρει IP Cores (προκατασκευασμένες συναρτήσεις) για προηγμένο έλεγχο και ανάλυση σήματος.

3) Κόστος: Το NRE (Non Recurring Engineering) κόστος της ASIC σχεδίασης ξεπερνά κατά πολύ αυτό των βασισμένων σε FPGA hardware λύσεων. Το μεγάλο αρχικό κόστος επένδυσης στα ASICs αποσβένεται για εφαρμογές που πουλούν χιλιάδες chip το χρόνο, αλλά κάποιοι χρήστες χρειάζονται συγκεκριμένη hardware λειτουργία για δεκάδες ή εκατοντάδες συστήματα. Επίσης η φύση αυτή του προγραμματιζόμενου πυριτίου του FPGA σημαίνει μηδενικό κόστος κατασκευής όπως και συναρμολόγησης. Επειδή οι απαιτήσεις του συστήματος συχνά αλλάζουν με το χρόνο, το κόστος για μικρές αλλαγές του hardware στο FPGA είναι αμελητέο συγκρινόμενο με αυτό της ανακατασκευής του ASIC.

4) **Αξιοπιστία:** Τα Processor – based συστήματα συχνά περιλαμβάνουν αρκετά στρώματα αφαίρεσης για να βοηθήσουν την χρονοδρομολόγηση των εργασιών και τον διαμοιρασμό των πόρων ανάμεσα στις πολλαπλές διαδικασίες. Για κάθε δοσμένο πυρήνα επεξεργαστή, μία μόνο εντολή μπορεί να εκτελεστεί ανά φορά. Στα Processor – based συστήματα είναι συνεχώς σε κίνδυνο οι time – critical εργασίες να επηρεάζουν η μία την άλλη. Τα FPGA από την άλλη ελαχιστοποιούν τους κινδύνους αξιοπιστίας με την πραγματική παράλληλη εκτέλεση και το ντετερμινιστικό hardware κομμάτι το οποίο είναι αποκλειστικά αφιερωμένο για την κάθε εργασία.

5) Μακροπρόθεσμη Διατήρηση: Τα FPGA chip είναι Field – Upgradable και δεν χρειάζονται τον χρόνο και τα έξοδα που σχετίζονται με την ASIC επανασχεδίαση. Τα ψηφιακά πρωτόκολλα επικοινωνίας, για παράδειγμα, θέτουν στα συστήματα διάφορες προδιαγραφές οι οποίες μπορεί να αλλάζουν με τον καιρό. Άρα οι αναπροσαρμοστικότητα των FPGA τους επιτρέπει να ακολουθούν τις μελλοντικές, απαραίτητες αλλαγές. Τέλος καθώς το προϊόν ή το σύστημα ωριμάζει, μπορούμε να κάνουμε λειτουργικές βελτιώσεις χωρίς να σπαταλούμε χρόνο για την επανασχεδίαση του hardware ή την τροποποίηση του ήδη υπάρχοντος όπως θα απαιτούνταν στα ASIC.

1.2.2 Μειονεκτήματα των FPGA

1) Μεγαλύτερη κατανάλωση ισχύος.

2) Λιγότερο αποδοτική χρήση του πυριτίου.

3) Είναι τάξεις μεγέθους πιο δύσκολο να προγραμματιστούν.

4) Το 70% του κόστους ανάπτυξης λογισμικού προέρχεται από την ανάπτυξη της Εισόδου/Εξόδου διεπαφής (αντί από αλγόριθμους).

5) Δεν είναι η καταλληλότερη λύση για εφαρμογές που εμπεριέχουν υπολογισμούς αριθμών κινητής υποδιαστολής. Ακόμα και οι υπολογισμοί με σταθερής υποδιαστολής αριθμούς υψηλής ακρίβειας χρειάζονται μεγάλη ποσότητα λογικών κυττάρων για να υλοποιηθούν.

1.3 Γλώσσες Περιγραφής Υλικού

Χρησιμοποιούμε τις Γλώσσες Περιγραφής Υλικού (Hardware Description Language, HDL), ως γλώσσες υψηλού επιπέδου για την περιγραφή ενός κυκλώματος που πρόκειται να υλοποιηθεί σε FPGA. Οι απαρχές των γλωσσών περιγραφής υλικού, έχουν τις ρίζες τους στην ανάγκη να τεκμηριωθεί η συμπεριφορά του υλικού. Με την πάροδο του χρόνου, αναγνωρίστηκε πως οι περιγραφές θα μπορούσαν να χρησιμοποιηθούν για την προσομοίωση hardware κυκλωμάτων σε έναν επεξεργαστή γενικής χρήσης. Αυτή η διαδικασία μετάφρασης ενός κώδικα HDL σε μια μορφή κατάλληλη για έναν τέτοιο επεξεργαστή ώστε να μιμηθεί το hardware που περιγράφεται, ονομάζεται προσομοίωση (simulation). Η προσομοίωση έχει αποδειχθεί πως είναι ένα εξαιρετικά χρήσιμο εργαλείο για την ανάπτυξη του υλικού και την επαλήθευση της λειτουργικότητας πριν τη φυσική κατασκευή του υλικού. Δυστυχώς, ενώ η προσομοίωση παρέχει ένα μεγάλο αριθμό δομών ώστε να βοηθήσει τον σχεδιαστή στον έλεγχο και την ανάλυση του σχεδίου, πολλές από αυτές εκτείνονται πέρα από τη φυσική υλοποίηση του υλικού ή συνθέτουν αναποτελεσματικά τους πόρους του FPGA. Ως εκ τούτου, μόνο ένα υποσύνολο μιας HDL

1.4 Xilinx Virtex 7

Στο παρόν κεφάλαιο, ακολουθεί μια περιγραφή των χαρακτηριστικών του Xilinx Virtex-7 XC7VX485T καθώς και του μικροεπεξεργαστή Microblaze που χρησιμοποιήθηκε στο σύστημά μας.

Xilinx's Virtex-7 2000T FPGA is currently the highest-capacity programmable-logic device.

Σχήμα 1.4 – Virtex7

Η οικογένεια Virtex 7 της Xilinx, αποτελείται από αρκετές όμοιες μεν, αλλά μεταξύ τους διαφορετικές συσκευές. Οι διαφορετικές αυτές συσκευές δηλώνονται με τα σύμβολα LX, SX, TX και FX. Τα σύμβολα αυτά, αναφέρονται σε διαφορετικούς συνδυασμούς των προγραμματιζόμενων λογικών blocks και των hardware πυρήνων της συσκευής. Το LX (και κάθε παραλλαγή του, όπως LXT) αναφέρεται σε συσκευές που περιέχουν μεγάλο αριθμό προγραμματιζόμενων λογικών blocks σε σχέση με τους hardware πυρήνες της συσκευής. Οι πόροι στο FPGA είναι κυρίως προσανατολισμένοι στην προγραμματιζόμενη λογική, σε αντίθεση με έναν ενσωματωμένο επεξεργαστή στο σώμα του FPGA. Το SX αναφέρεται στις συσκευές της σειράς που σχετίζεται με την επεξεργαστά σήματος, διαθέτοντας τους περισσότερους πόρους για εφαρμογές ψηφιακής επεξεργασίας σήματος. Το σύμβολο TX, αναφέρεται σε εκείνες τις συσκευές οι οποίες διαθέτουν επιπλέον σειριακούς, υψηλής ταχύτητας πομποδέκτες για συνδέσεις με χωρητικότητα υψηλού bandwidth. Τέλος, το FX αναφέρεται στα FPGA.

1.4.1 Look-Up Table

Η Xilinx αναφέρει τις γεννήτριες συναρτήσεων στο σώμα του FPGA ως Look-Up Tables (LUT). Τα FPGA της σειράς Virtex 7 δομούνται από LUTs 6 εισόδων. Αυτά τα LUTs των 6 εισόδων μπορούν να χρησιμοποιηθούν είτε ως άπλα 6-LUTs, είτε ως δυο 5-LUTs εφόσον τα τελευταία μοιράζονται τις ίδιες εισόδους (Σχήμα 1.5).

Σχήμα 1.5 – Look Up Table

1.4.2 Slice

Στο προηγούμενο κεφάλαιο αναφέρθηκε ο όρος λογικό κελί για να περιγράψει τη δομή που αποτελείται από ένα LUT και ένα Flip-Flop. Τα Virtex 7 συνδυάζουν 4 τέτοια λογικά κελιά, μαζί με τα flip-flops στις εξόδους των κελιών, για να δημιουργήσουν ένα slice. Με τέσσερα 6-LUTs και τέσσερα D Flip-Flops να βρίσκονται σε κοντινή απόσταση, είναι δυνατή η κατασκευή πιο σύνθετων σχεδίων (Σχήμα 1.6). Εκτός από τη Boolean λογική, ένα slice μπορεί να χρησιμοποιηθεί για αριθμητικές πράξεις καθώς και για την κατασκευή μνημών RAM και ROM. Μερικά slices συνδέονται με τέτοιο τρόπο ώστε μπορούν να χρησιμοποιηθούν για αποθήκευση δεδομένων, όπως διανεμημένες RAM και καταχωρητές ολίσθησης. Αυτό είναι δυνατό συνδυάζοντας πολλά LUTs σε ένα slice. Σε όλες αυτές τις δυνατές χρήσεις, τα D Flip-Flops μπορούν να χρησιμοποιηθούν για διαδικασία της σύγχρονης ανάγνωσης. Το Virtex-7 XC7VX485T διαθέτει συνολικά 75.900 slices.

Σχήμα 1.6 - Slice

1.4.3 Προγραμματιζόμενα Λογικά Blocks (CLBs)

Στα Virtex 7, ένα CLB περιέχει δύο slices και ένα carry-logic για τη σύνδεση των γειτονικών slices. Ένα CLB θεωρείται ως το υψηλότερο επίπεδο αφαίρεσης για το προγραμματιζόμενο σώμα του FPGA. Τα δύο slices του CLB δεν είναι άμεσα συνδεδεμένα, αλλά βρίσκονται σε διαφορετικές στήλες slices. Κάθε CLB συνδέεται σε έναν switch matrix, παρέχοντας με αυτόν τον τρόπο τη δυνατότητα στα προγραμματιζόμενα σχέδια να εκτείνονται σε πολλά CLBs. O switch matrix αποτελείται από μακριές και κοντές καλωδιώσεις (long and short wires) ώστε να παρέχει άμεσες, point-to-point συνδέσεις μεταξύ των CLBs. Ένα Virtex 7 CLB παρουσιάζεται στο Σχήμα 1.7

1.4.4 Block RAM (BRAM)

Ένα Block Ram αναφέρεται στις μνήμες τυχαίας προσπέλασης που ομαδοποιούνται σε blocks των 36Kbit στα FPGA της οικογένειας Virtex 7. Η BRAM παρέχει μνήμη εντός του τσιπ, που μπορεί να χρησιμοποιηθεί για τον σχηματισμό μεγάλων LUTs, buffer δεδομένων (FIFOs) και στην τοπική αποθήκευση. Κάθε τέτοιο block έχει δύο ανεξάρτητες θύρες πρόσβασης οι οποίες ανταλλάσσουν δεδομένα μόνο με τα κελιά της μνήμης. Τα ρολόγια σχετίζονται με κάθε θύρα ξεχωριστά. Κάθε 36Kbit BRAM, μπορεί να ρυθμιστεί ως 32K×1 (32.768 δεδομένα του ενός Bit), 16K×2, 8K×4, 4K×9, 2K×18, ή 1K×36. Οι BRAM μπορούν να συνδυαστούν μεταξύ τους ώστε να δημιουργήσουν μεγαλύτερες (τόσο στο βάθος-depth όσο και στο πλάτος-width) BRAMs. Ομοίως, μια BRAM μπορεί να διαιρεθεί σε δύο ανεξάρτητες 16Kb BRAMs. Αυτό δίνει τη δυνατότητα στα FPGA Virtex 7 να αξιοποιούν τους πόρους τους περισσότερο αποτελεσματικά. Το Virtex-7 XC7VX485T διαθέτει 1030× 36Kb BRAMs ή 2060 x 18Kb BRAMs.

1.4.5 DSP Slices

Μια κύρια χρήση των FPGA είναι η ψηφιακή επεξεργασία σήματος. Για την βελτίωση της απόδοσης, ορισμένα FPGA διαθέτουν ενσωματωμένα ειδικά DSP Blocks. Στα Virtex 7, τα DSP slices περιλαμβάνουν έναν 25×18 πολλαπλασιαστή συμπληρώματος του δύο, έναν συσσωρευτή, έναν αθροιστή/αφαιρέτη για πράξεις συνεχούς διοχέτευσης (pipelined) και λογικές πράξεις σε επίπεδο bit. Ενσωματώνοντας αυτή τη λειτουργία μέσα στα slices, μπορούμε να πετύχουμε σημαντική εξοικονόμηση των πόρων του FPGA, αφού η υλοποίηση του σχεδίου μόνο σε LUTs είναι αρκετά "ακριβή". Το Virtex-7 XC7VX485T διαθέτει 2800 DSP Slices.

1.4.6 Επιλογή I/O

Η Xilinx χρησιμοποιεί τον όρο Select I/O για να αναφερθεί στις προγραμματιζόμενες εισόδους και εξόδους, οι οποίες υποστηρίζουν μια ποικιλία από τυποποιημένες διεπαφές (HT, SSTL, LVDS, κτλ). Όπως φαίνεται και στο Σχήμα 1.8 κάθε I/O συνδέεται σε ένα pad το οποίο με τη σειρά του συνδέεται σε έναν ακροδέκτη της συσκευής. Το Select I/O επωφελείται επίσης από το Digitally Controlled Impedance (DCI) για την εξάλειψη των πρόσθετων αντιστάσεων στους ακροδέκτες της συσκευής, πράγμα αναγκαίο για την αποφυγή της υποβάθμισης του σήματος. Το DCI μπορεί να ρυθμίσει τις αντιστάσεις εισόδου και εξόδου ώστε να ταιριάζουν με το ίχνος της αντίστασης τόσο στην οδήγηση, όσο και στη λήψη. Το Virtex-7 XC7VX485T διαθέτει 700 user I/O.

Σχήμα 1.9 – Επιλογή Ι/Ο

1.4.7 Ρολόγια

Είναι δυνατόν, διάφοροι hardware πυρήνες να λειτουργούν με διαφορετικές μεταξύ τους συχνότητες. Στον παραδοσιακό σχεδιασμό, κάθε ρολόι παράγεται εκτός του τσιπ και συνδέεται ως είσοδος στο σύστημα. Στις υλοποιήσεις με FPGA είναι δυνατό να δημιουργήσουμε διαφορετικούς ρυθμούς ρολογιών από ένα ή περισσότερα ρολόγια. Ο αριθμός των clock regions στα FPGA Virtex7 κυμαίνεται από 4 σε 24 (Σχήμα 1.10). Για να βοηθήσει στον σχεδιασμό, τη χρήση και τη διαχείριση αυτών των ρολογιών η Xilinx χρησιμοποιεί τους Μάνατζερ Ψηφιακού Ρολογιού (Digital Clock Managers, DCMs). Γενικά, ένας DCM παίρνει ένα ρολόι εισόδου και δημιουργεί ένα ρυθμιζόμενο ρολόι εξόδου.

Σχήμα 1.10 – Clock Regions

1.5 MicroBlaze

To Virtex-7 XC7VX485T διαθέτει έναν ενσωματωμένο μικροεπεξεργαστή MicroBlaze. Ο επεξεργαστής MicroBlaze είναι ένας 32-bit RISC επεξεργαστής, που προορίζεται ειδικά για υλοποιήσεις σε FPGAs. Το διάγραμμα του πυρήνα του παρουσιάζεται παρακάτω:

Σχήμα 1.11 – Διάγραμμα του πυρήνα του MicroBlaze

Τα κυριότερα από τα χαρακτηριστικά του MicroBlaze παρουσιάζονται παρακάτω:

- Διαθέτει 32 καταχωρητές γενικού σκοπού και δύο καταχωρητές ειδικού σκοπού, όλοι μήκους 32bit
- Το μήκος της εντολής του MicroBlaze είναι 32 bit και χρησιμοποιεί μέχρι τρεις τελεστές και δύο μεθόδους διευθυνσιοδότησης
- Διαθέτει ξεχωριστούς διαδρόμους δεδομένων, των 32 bit, για τις εντολές και για τα δεδομένα, που ακολουθούν τις προδιαγραφές του διαδρόμου δεδομένων OPB (On-chip Peripheral Bus) της IBM
- Διαθέτει ξεχωριστούς διαδρόμους δεδομένων, των 32 bit, για τις εντολές και για τα δεδομένα, με άμεση σύνδεση με block RAM, μέσω του διαδρόμου δεδομένων LMB (Local Memory Bus)

- Το μήκος των διευθύνσεων που χρησιμοποιεί είναι 32 bit
- Εφαρμόζει την παράλληλη, μέσω pipeline, εκτέλεση εντολών, με το pipeline να χωρίζεται σε τρία στάδια
- Διαθέτει γρήγορη μνήμη τόσο για τις εντολές όσο και για τα δεδομένα
- Υποστηρίζει την γρήγορη, σημείο με σημείο σύνδεση μέσω της διεπαφής FSL (Fast Simplex Link)
- Διαθέτει hardware πολλαπλασιαστή

1.5.1 Αναλυτική περιγραφή

Καταχωρητές

Ο MicroBlaze διαθέτει 32 καταχωρητές γενικού σκοπού και δύο καταχωρητές ειδικού σκοπού. Οι καταχωρητές γενικού σκοπού έχουν τις ονομασίες R0 έως R31, με τον R0 να είναι πάντοτε μηδενικός αγνοώντας οτιδήποτε γράφεται σε αυτόν. Οι δύο καταχωρητές ειδικού σκοπού είναι ο Program Counter (PC) και ο Machine Status Register (MSR). Όπως μαρτυρά η ονομασία του, ο PC δείχνει σε κάθε στιγμή την διεύθυνση της επόμενης εντολής που πρόκειται να φορτωθεί για εκτέλεση. Ο MSR περιλαμβάνει το flag για το κρατούμενο υπερχείλισης και τα bits ενεργοποίησης για τις διακοπές, για την γρήγορη μνήμη (cache), για την διακοπή λειτουργίας του OPB καθώς και άλλες πληροφορίες κατάστασης και ελέγχου. Μια πλήρης περιγραφή της χρήσης των bits του MSR γίνεται στο σχήμα 1.12

Bits	Name	Description	Reset Value
0	CC Arithmetic Carry Copy		0
		Copy of the Arithmetic Carry (bit 29). Read only.	
1:23	Reserved		
24	DCE	Data Cache Enable	0
		0 Data Cache is Disabled	
		1 Data Cache is Enabled	
25	DZ	Dvision by Zero	0
		0 No divison by zero has occured	
		1 Division by zero has occured	
26	ICE	Instruction Cache Enable	0
		0 Instruction Cache is Disabled	
		1 Instruction Cache is Enabled	
27	FSL	FSL Error	0
		0 FSL get/put had no error	
		1 FSL get/put had mismatch in instruction type and value type	
28	BIP	Break in Progress	0
		0 No Break in Progress 1 Break in Progress	
		Source of break can be software break instruction or hardware break from Ext_Brk or Ext_NM_Brk pin.	

Σχήμα 1.12 – Ο καταχωρητής MSR

1.5.2 Εντολές

Όλες οι εντολές του MicroBlaze έχουν μήκος 32 bit και χωρίζονται σε δύο κατηγορίες, τις εντολές τύπου Α και τις εντολές τύπου Β. Οι εντολές τύπου Α χρησιμοποιούν δύο καταχωρητές προέλευσης και έναν καταχωρητή προορισμού, ενώ οι εντολές τύπου Β έναν καταχωρητήπροέλευσης μαζί με ένα άμεσο όρισμα των 16 bit και έναν καταχωρητή προορισμού. Όλες οι εντολές με την σημασιολογία (semantics) τους αναφέρονται στο σχήμα 1.13.

Type A	0-5	6-10	11-15	16-20	21-31	Somenties
Type B	0-5	6-10	11-15		16-31	Semanucs
ADD Rd,Ra,Rb	000000	Rd	Ra	Rb	000000000000	Rd := Rb + Ra
RSUB Rd,Ra,Rb	000001	Rđ	Ra	Rb	000000000000	$Rd := Rb + \overline{Ra} + 1$
ADDC Rd,Ra,Rb	000010	Rđ	Ra	Rb	00000000000	Rd := Rb + Ra + C
RSUBC Rd,Ra,Rb	000011	Rđ	Ra	Rb	000000000000	$Rd := Rb + \overline{Ra} + C$
ADDK Rd,Ra,Rb	000100	Rđ	Ra	Rb	000000000000	Rd := Rb + Ra
RSUBK Rd,Ra,Rb	000101	Rđ	Ra	Rb	000000000000	$Rd := Rb + \overline{Ra} + 1$
ADDKC Rd,Ra,Rb	000110	Rđ	Ra	Rb	00000000000	Rd := Rb + Ra + C
RSUBKC Rd,Ra,Rb	000111	Rđ	Ra	Rb	000000000000	$Rd := Rb + \overline{Ra} + C$
CMP Rd,Ra,Rb	000101	Rđ	Ra	Rb	00000000001	Rd := Rb cmp Ra (signed)
CMPU Rd,Ra,Rb	000101	Rđ	Ra	Rb	00000000011	Rd := Rb cmp Ra (unsigned)
ADDI Rd,Ra,Imm	001000	Rđ	Ra		Imm	Rd := s(Imm) + Ra
RSUBI Rd,Ra,Imm	001001	Rđ	Ra		Imm	$Rd := s(Imm) + \overline{Ra} + 1$
ADDIC Rd,Ra,Imm	001010	Rd	Ra		Imm	Rd := s(Imm) + Ra + C
RSUBIC Rd,Ra,Imm	001011	Rd	Ra		Imm	$Rd := s(Imm) + \overline{Ra} + C$
ADDIK Rd,Ra,Imm	001100	Rd	Ra		Imm	Rd := s(Imm) + Ra
RSUBIK Rd,Ra,Imm	001101	Rd	Ra		Imm	$Rd := s(Imm) + \overline{Ra} + 1$
ADDIKC Rd,Ra,Imm	001110	Rd	Ra		Imm	Rd := s(Imm) + Ra + C
RSUBIKC Rd,Ra,Imm	001111	Rđ	Ra		Imm	$Rd := s(Imm) + \overline{Ra} + C$
MUL Rd,Ra,Rb	010000	Rđ	Ra	Rb	00000000000	Rd := Ra * Rb
BSRL Rd,Ra,Rb	010001	Rđ	Ra	Rb	00000000000	Rd := Ra >> Rb
BSRA Rd,Ra,Rb	010001	Rđ	Ra	Rb	01000000000	Rd := Ra[0], (Ra >> Rb)
BSLL Rd,Ra,Rb	010001	Rd	Ra	Rb	10000000000	Rd := Ra << Rb
MULI Rd,Ra,Imm	011000	Rđ	Ra		Imm	Rd := Ra * s(Imm)
BSRLI Rd,Ra,Imm	011001	Rd	Ra	0000	0000 Imm	Rd := Ra >> Imm
BSRAI Rd,Ra,Imm	011001	Rd	Ra	0000	0100 Imm	Rd := Ra[0], (Ra >> Imm)
BSLLI Rd,Ra,Imm	011001	Rd	Ra	0000	1000 Imm	Rd := Ra << Imm
IDIV Rd,Ra,Rb	010010	Rd	Ra	Rb	000000000000	Rd := Rb/Ra, signed
IDIVU Rd,Ra,Rb	010010	Rd	Ra	Rb	00000000001	Rd := Rb/Ra, unsigned
GET Rd,FSLx	011011	Rd	00000	0000	FSLx	Rd := FSLx (blocking data read)
PUT Ra,FSLx	011011	00000	Ra	1000	FSLx	FSLx := Ra (blocking data write)
nGET Rd,FSLx	011011	Rd	00000	0100	FSLx	Rd := FSLx (non-blocking data read)
nPUT Ra,FSLx	011011	00000	Ra	1100	FSLx	FSLx := Ra (non-blocking data write)

Туре А	0-5	6-10	11-15	16-20	21-31	Somenties
Type B	0-5	6-10	11-15		16-31	Semanucs
cGET Rd,FSLx	011011	Rd	00000	0010	FSLx	Rd := FSLx (blocking control read)
cPUT Ra,FSLx	011011	00000	Ra	1010	FSLx	FSLx := Ra (blocking control write)
ncGET Rd,FSLx	011011	Rd	00000	0110	FSLx	Rd := FSLx (non-blocking control read)
ncPUT Ra,FSLx	011011	00000	Ra	1110	FSLx	FSLx := Ra (non-blocking control write)
OR Rd,Ra,Rb	100000	Rd	Ra	Rb	00000000000	Rd := Ra or Rb
AND Rd,Ra,Rb	100001	Rd	Ra	Rb	000000000000	Rd := Ra and Rb
XOR Rd,Ra,Rb	100010	Rd	Ra	Rb	00000000000	Rd := Ra xor Rb
ANDN Rd,Ra,Rb	100011	Rd	Ra	Rb	00000000000	$Rd := Ra and \overline{Rb}$
SRA Rd,Ra	100100	Rd	Ra	00000	0000000000000001	Rd := Ra[0], (Ra >> 1); C := Ra[31]
SRC Rd,Ra	100100	Rd	Ra	00000	00000100001	Rd := C, (Ra >> 1); C := Ra[31]
SRL Rd,Ra	100100	Rd	Ra	00000	00001000001	Rd := 0, (Ra >> 1); C := Ra[31]
SEXT8 Rd,Ra	100100	Rd	Ra	00000	000001100000	Rd[0:23] := Ra[24];
						Rd[24:31] := Ra[24:31]
SEXT16 Rd,Ra	100100	Rd	Ra	00000	000001100001	Rd[0:15] := Ra[16];
						Rd[16:31] := Ra[16:31]
WIC Rd,Ra	100100	Ra	Ra	Rb	01101000	ICache_Tag := Ra, ICache_Data := Rb
WDC Rd,Ra	100100	Ra	Ra	Rb	01100100	DCache_Tag := Ra, DCache_Data := Rb
MTS Sd,Ra	100101	00000	Ra	11000	b0000000000d	Sd := Ra , where S1 is MSR
MFS Rd,Sa	100101	Rd	00000	10000	00000000000000a	$Rd \coloneqq Sa$, where S0 is PC and S1 is MSR
BR Rb	100110	00000	00000	Rb	000000000000	PC := PC + Rb
BRD Rb	100110	00000	10000	Rb	00000000000	PC := PC + Rb
BRLD Rd,Rb	100110	Rd	10100	Rb	000000000000	PC := PC + Rb; Rd := PC
BRA Rb	100110	00000	01000	Rb	00000000000	PC := Rb
BRAD Rb	100110	00000	11000	Rb	000000000000	PC := Rb
BRALD Rd,Rb	100110	Rd	11100	Rb	000000000000	PC := Rb; Rd := PC
BRK Rd,Rb	100110	Rd	01100	Rb	000000000000	PC := Rb; Rd := PC; MSR[BIP] := 1
BEQ Ra,Rb	100111	00000	Ra	Rb	000000000000	if $Ra = 0$: PC := PC + Rb
BNE Ra,Rb	100111	00001	Ra	Rb	000000000000	if Ra /= 0: PC := PC + Rb
BLT Ra,Rb	100111	00010	Ra	Rb	000000000000	if Ra < 0: PC := PC + Rb
BLE Ra,Rb	100111	00011	Ra	Rb	000000000000	if Ra <= 0: PC := PC + Rb
BGT Ra,Rb	100111	00100	Ra	Rb	00000000000	if $Ra > 0$: PC := PC + Rb
BGE Ra,Rb	100111	00101	Ra	Rb	00000000000	if $Ra \ge 0$: PC := PC + Rb
BEQD Ra,Rb	100111	10000	Ra	Rb	00000000000	if $Ra = 0$: PC := PC + Rb

Type A	0-5	6-10	11-15	16-20	21-31	Somantics
Type B	0-5	6-10	11-15		16-31	Semantics
BNED Ra,Rb	100111	10001	Ra	Rb	000000000000	if Ra /= 0: PC := PC + Rb
BLTD Ra,Rb	100111	10010	Ra	Rb	000000000000	if Ra < 0: PC := PC + Rb
BLED Ra,Rb	100111	10011	Ra	Rb	000000000000	if Ra <= 0: PC := PC + Rb
BGTD Ra,Rb	100111	10100	Ra	Rb	000000000000	if $Ra > 0$: PC := PC + Rb
BGED Ra,Rb	100111	10101	Ra	Rb	000000000000	if $Ra \ge 0$: PC := PC + Rb
ORI Rd,Ra,Imm	101000	Rd	Ra		Imm	Rd := Ra or s(Imm)
ANDI Rd,Ra,Imm	101001	Rd	Ra		Imm	Rd := Ra and s(Imm)
XORI Rd,Ra,Imm	101010	Rd	Ra		Imm	Rd := Ra xor s(Imm)
ANDNI Rd,Ra,Imm	101011	Rd	Ra		Imm	$Rd := Ra and \overline{s(Imm)}$
IMM Imm	101100	00000	00000		Imm	Imm[0:15] := Imm
RTSD Ra,Imm	101101	10000	Ra		Imm	PC := Ra + s(Imm)
RTID Ra,Imm	101101	10001	Ra		Imm	PC := Ra + s(Imm); MSR[IE] := 1
RTBD Ra,Imm	101101	10010	Ra		Imm	PC := Ra + s(Imm); MSR[BIP] := 0
BRID Imm	101110	00000	10000		Imm	PC := PC + s(Imm)
BRLID Rd,Imm	101110	Rd	10100		Imm	PC := PC + s(Imm); Rd := PC
BRAI Imm	101110	00000	01000		Imm	PC := s(Imm)
BRAID Imm	101110	00000	11000		Imm	PC := s(Imm)
BRALID Rd,Imm	101110	Rd	11100		Imm	PC := s(Imm); Rd := PC
BRKI Rd,Imm	101110	Rd	01100		Imm	PC := s(Imm); Rd := PC; MSR[BIP] := 1
BEQI Ra,Imm	101111	00000	Ra		Imm	if Ra = 0: PC := PC + s(Imm)
BNEI Ra,Imm	101111	00001	Ra		Imm	if Ra /= 0: PC := PC + s(Imm)
BLTI Ra,Imm	101111	00010	Ra		Imm	if Ra < 0: PC := PC + s(Imm)
BLEI Ra,Imm	101111	00011	Ra		Imm	if Ra <= 0: PC := PC + s(Imm)
BGTI Ra,Imm	101111	00100	Ra		Imm	if Ra > 0: PC := PC + s(Imm)
BGEI Ra,Imm	101111	00101	Ra		Imm	if Ra >= 0: PC := PC + s(Imm)
BEQID Ra,Imm	101111	10000	Ra		Imm	if Ra = 0: PC := PC + s(Imm)
BNEID Ra,Imm	101111	10001	Ra		Imm	if Ra /= 0: PC := PC + s(Imm)
BLTID Ra,Imm	101111	10010	Ra		Imm	if Ra < 0: PC := PC + s(Imm)
BLEID Ra,Imm	101111	10011	Ra		Imm	if Ra <= 0: PC := PC + s(Imm)
BGTID Ra,Imm	101111	10100	Ra		Imm	if $Ra > 0$: PC := PC + s(Imm)
BGEID Ra,Imm	101111	10101	Ra		Imm	if Ra >= 0: PC := PC + s(Imm)
LBU Rd,Ra,Rb	110000	Rd	Ra	Rb	00000000000	Addr := Ra + Rb;
						Rd[0:23] := 0, Rd[24:31] := *Addr

Type A	0-5	6-10	11-15	16-20	21-31	Somenties
Type B	0-5	6-10	11-15	16-31		Semantics
LHU Rd,Ra,Rb	110001	Rd	Ra	Rb	000000000000	Addr := Ra + Rb;
						Rd[0:15] := 0, Rd[16:31] := *Addr
LW Rd,Ra,Rb	110010	Rd	Ra	Rb	000000000000	Addr := Ra + Rb;
						Rd := *Addr
SB Rd,Ra,Rb	110100	Rd	Ra	Rb	000000000000	Addr := Ra + Rb;
						*Addr := Rd[24:31]
SH Rd,Ra,Rb	110101	Rd	Ra	Rb	00000000000	Addr := Ra + Rb;
						*Addr := Rd[16:31]
SW Rd,Ra,Rb	110110	Rd	Ra	Rb	000000000000	Addr := Ra + Rb;
						*Addr := Rd
LBUI Rd,Ra,Imm	111000	Rd	Ra		Imm	Addr := Ra + s(Imm);
						Rd[0:23] := 0, Rd[24:31] := *Addr
LHUI Rd,Ra,Imm	111001	Rd	Ra		Imm	Addr := Ra + s(Imm);
						Rd[0:15] := 0, Rd[16:31] := *Addr
LWI Rd,Ra,Imm	111010	Rd	Ra		Imm	Addr := Ra + s(Imm);
						Rd := *Addr
SBI Rd,Ra,Imm	111100	Rd	Ra		Imm	Addr := Ra + s(Imm);
						*Addr := Rd[24:31]
SHI Rd,Ra,Imm	111101	Rd	Ra		Imm	Addr := Ra + s(Imm);
						*Addr := Rd[16:31]
SWI Rd,Ra,Imm	111110	Rd	Ra		Imm	Addr := Ra + s(Imm);
						*Addr := Rd

Σχήμα 1.13 - Σύνοψη των εντολών του MicroBlaze

Όταν ενεργοποιηθεί το σήμα Reset ή το Debug_Rst, ο MicroBlaze ξεκινά να εκτελεί την εντολή που βρίσκεται στην διεύθυνση Ο, ακολουθούμενη από τις εντολές που καθορίζει το πρόγραμμα που είναι φορτωμένο στην μνήμη. Εκτός όμως από τις εντολές που εκτελούνται μέσω του software, ιδιαίτερη μνεία αξίζει να γίνει στις εντολές που εκτελούνται όταν συμβαίνουν διακοπές (interrupts), εξαιρέσεις (exceptions) και σταμάτημα λειτουργίας (break), που οφείλονται στο υλικό (hardware).

Όταν συμβεί μία διακοπή, ο MicroBlaze αναβάλλει την εκτέλεση της επόμενης εντολής προκειμένου να την εξυπηρετήσει. Η διεύθυνση της επόμενης εντολής που επρόκειτο να εκτελεστεί αποθηκεύεται στον καταχωρητή γενικού σκοπού R14 και ο MicroBlaze διακλαδίζεται στην διεύθυνση 0x00000010. Παράλληλα απενεργοποιεί τυχόν μελλοντικές διακοπές θέτοντας το κατάλληλο flag, bit 30, '0' στον καταχωρητή MSR. Όταν το bit αυτό είναι 0 οι διακοπές αγνοούνται, όπως συμβαίνει και στην περίπτωση που το bit 28 του MSR είναι '1', καθώς τα breaks έχουν μεγαλύτερη προτεραιότητα από τις διακοπές.

Ομοίως με τις διακοπές, όταν συμβεί μία εξαίρεση ο MicroBlaze αναβάλλει την εκτέλεση της επόμενης εντολής προκειμένου να την χειριστεί. Η διεύθυνση της επόμενης εντολής που επρόκειτο να εκτελεστεί αποθηκεύεται στον καταχωρητή γενικού σκοπού R17 και ο MicroBlaze διακλαδίζεται στην διεύθυνση 0x00000008.

Τέλος έχουμε τα break υλικού που οδηγούνται μέσω των ακροδεκτών Ext_Brk και Ext_NM_Brk. Και στις δύο περιπτώσεις ο MicroBlaze αναβάλλει την εκτέλεση της επόμενης εντολής προκειμένου να χειριστεί το break. Η διεύθυνση της επόμενης εντολής που επρόκειτονα εκτελεστεί αποθηκεύεται στον καταχωρητή γενικού σκοπού R16 και ο MicroBlaze διακλαδίζεται στην διεύθυνση 0x00000018. Παράλληλα ο MicroBlaze αποκλείει τυχόν μελλοντικά break θέτοντας το bit 28 του MSR '1' ώστε να δείχνει ότι υπάρχει ήδη ένα break σε εξέλιξη. Μονάχα όταν το bit αυτό έχει την τιμή '0', είναι δυνατόν να χειριστεί ενα break οδηγούμενο από το σήμα Ext_Brk, στην περίπτωση όμως που το break προκαλείται από το σήμα Ext_NM_Brk, τότε ο MicroBlaze το χειρίζεται άμεσα.
1.5.3 Pipeline

Το pipeline του MicroBlaze χωρίζεται σε τρία στάδια:

- Ανάκληση της εντολής
- Αποκωδικοποίηση της εντολής
- Εκτέλεση της εντολής

Γενικά κάθε στάδιο χρειάζεται έναν κύκλο ρολογιού για να ολοκληρωθεί, επομένως χρειάζονται τρεις κύκλοι ρολογιού, χωρίς να υπολογίζονται οι καθυστερήσεις ή οι αναβολές, για να εκτελεστεί μία εντολή.

cycle 1	cycle 2	cycle 3
Fetch	Decode	Execute

Σχήμα 1.14 - Κάθε εντολή εκτελείται σε τρεις κύκλους

Στο παράλληλο pipeline του MicroBlaze κάθε στάδιο είναι ενεργό σε κάθε κύκλο ρολογιού. Τρεις εντολές είναι δυνατόν να εκτελούνται ταυτόχρονα, μία σε κάθε ένα από τα τρία στάδια του pipeline. Παρά το ότι χρειάζονται τρεις κύκλοι για την εκτέλεση μιας εντολής, κάθε στάδιο του pipeline μπορεί να είναι απασχολημένο με διαφορετική εντολή. Σε ένα κύκλο ρολογιού γίνεται ανάκληση μιας νέας εντολής, μία άλλη αποκωδικοποιείται και μία τρίτη ολοκληρώνει την εκτέλεσή της. Με τον τρόπο αυτό επιτυγχάνεται η εκτέλεση μιας εντολής ανά κύκλο ρολογιού.

	cycle 1	cycle 2	cycle 3	cycle4	cycle5
instruction 1	Fetch	Decode	Execute		
instruction 2		Fetch	Decode	Execute	
instruction 3			Fetch	Decode	Execute

Σχήμα 1.15 – Παράλληλη εκτέλεση τριών εντολών

Όπως συμβαίνει με όλα τα pipeline των επεξεργαστών υπάρχουν εντολές που αλλάζουν την ροή του προγράμματος, εντολές διακλαδώσεων, και κατ' επέκταση τον ρυθμό εκτέλεσης των εντολών. Όταν μια εντολή διακλάδωσης βρεθεί στο στάδιο της εκτέλεσης, τότε η δουλειά που έχει γίνει στα προηγούμενα δύο στάδια δεν έχει καμία χρησιμότητα. Η δουλειά αυτή απορρίπτεται και το pipeline αδειάζει. Προκειμένου το pipeline να ξαναγεμίσει με τις σωστές εντολές, και δεδομένου ότι η εκτέλεση της εντολής διακλάδωσης χρειάζεται τρεις κύκλους ρολογιού, υπάρχει μία καθυστέρηση δύο κύκλων ρολογιού. Κάποιες εντολές διακλάδωσης καθιστούν δυνατό να μειωθεί ο χρόνος καθυστέρησης από δύο κύκλους σε έναν. Αυτό γίνεται με το να απορρίπτεται μόνο η εργασία που γίνεται στο πρώτο στάδιο του pipeline, ανάκλησηεντολής. Με τον τρόπο αυτό η εντολή που βρίσκεται μετά την εντολή διακλάδωσης, εκτελείται κανονικά και χάνεται μονάχα ένας κύκλος ρολογιού.

1.5.4 Γρήγορη Μνήμη

Ο MicroBlaze χρησιμοποιεί γρήγορη μνήμη, τόσο για τις εντολές, instruction cache, όσο και για τα δεδομένα, data cache. Η γρήγορη μνήμη για τις εντολές χρησιμοποιείται για καλύτερη επίδοση όταν υπάρχει εκτελέσιμος κώδικας που ανήκει σε μνήμες πέραν του εύρους διευθύνσεων του LMB. Στην περίπτωση αυτή ο χώρος της μνήμης χωρίζεται σε δύο μέρη, το ένα δύναται να εγγράφεται στην γρήγορη μνήμη, ενώ το άλλο, στο οποίο πρέπει να ανήκουν και οι διευθύνσεις του LMB, όχι. Το πρώτο

τμήμα καθορίζεται από δύο παραμέτρους, C_ICACHE_BASEADDR και C_ICACHE_HIGHADDR. Όλες οι διευθύνσεις μέσα σε αυτό το εύρος χωρίζονται σε δύο τμήματα, στο τμήμα cache line και στο τμήμα tag address. Τα μεγέθη των δύο τμημάτων καθορίζονται από τον χρήστη, ενώ το τμήμα μεταξύ του bit 0 και του tag address αγνοείται και τα bit 30 και 31 είναι δεσμευμένα. Το μέγεθος του cache line είναι μεταξύ 10 και 14 bit, που μεταφράζεται σε μέγεθος γρήγορης μνήμης που κυμαίνεται μεταξύ 4 Kbytes και 64 Kbytes. Δεν υπάρχει περιορισμός στο μέγεθος του tag address.

Σχήμα 1.16 – Η οργάνωση της instruction cache

Στο στάδιο της ανάκλησης της εντολής, ο MicroBlaze γράφει την διεύθυνση της επόμενης εντολής στον αντίστοιχο διάδρομο δεδομένων και περιμένει το σήμα επιβεβαίωσης. Για οικονομία χρόνου το αίτημα της ανάκλησης γίνεται ταυτόχρονα και στον LMB και στον OPB. Αν το σήμα επιβεβαίωσης έρθει από τον LMB στον επόμενο κύκλο, τότε ακυρώνεται η πρόσβαση στον OPB. Κάθε φορά η γρήγορη μνήμη των εντολών ανιχνεύει εάν η διεύθυνση της εντολής ανήκει στο εύρος των εντολών που δύνανται να εγγράφονται στην γρήγορη μνήμη. Αν κάτι τέτοιο δεν συμβαίνει, τότε η γρήγορη μνήμη αφήνει την διεκπεραίωση της αίτησης στους LMB ή OPB. Αν ισχύει το αντίθετο τότε η γρήγορη μνήμη ελέγχει αν έχει την εντολή που ζητείται. Αυτό συμβαίνει όταν το tag address της ζητούμενης εντολής είναι το ίδιο με αυτό που έχει η γρήγορη μνήμη, αντιστοιχίζοντας το cache line, και εάν το bit εγκυρότητας είναι ενεργοποιημένο. Εάν η εντολή βρίσκεται στην γρήγορη μνήμη, τότε θα στείλει το σήμα επιβεβαίωσης στον MicroBlaze και μαζί την εντολή. Εάν όμως δεν την έχει θα περιμένει έως ότου η αίτηση διεκπεραιωθεί από τον OPB, και έπειτα θα ενημερώσει το περιεχόμενό της με τις νέες πληροφορίες.

Σχήμα 1.17 – Διαδικασία εγγραφής στην γρήγορη μνήμη

Η ενεργοποίηση ή μη της γρήγορης μνήμης, για τις εντολές, ελέγχεται από το bit 26 του MSR. Τα δεδομένα της γρήγορης μνήμης διατηρούνται ανέπαφα μετά την απενεργοποίησή της, παρ' όλ' αυτά υπάρχει η δυνατότητα μέσω της εντολής

WIC Ra, Rb

να αλλάξει το περιεχόμενο της γρήγορης μνήμης, στην διάρκεια μόνο που αυτή είναι απενεργοποιημένη. Ο καταχωρητής Rb περιέχει την εντολή. Ο καταχωρητής Ra περιέχει τα τμήματα cache line και tag address, καθώς και το bit εγκυρότητας, Ra(31), με το bit κλειδώματος, RA(30). Το bit κλειδώματος, επιτρέπει την μόνιμη παραμονή μιας εντολής στην γρήγορη μνήμη, με αποτέλεσμα τον εγγυημένο χρόνο εκτέλεσής της. Η συγκεκριμένη τεχνική όμως έχει ως αποτέλεσμα την μείωση του μεγέθους της γρήγορης μνήμης και κατ' επέκταση τον αριθμό των επιτυχημένων αναζητήσεων στην γρήγορη μνήμη (hits). Για το λόγο αυτό είναι προτιμότερο οι εντολές αυτού του τύπου να βρίσκονται στην μνήμη του LMB.

Η οργάνωση και η λειτουργία της γρήγορης μνήμης για τα δεδομένα είναι σχεδόν η ίδια με αυτήν της γρήγορης μνήμης για τις εντολές. Και σε αυτήν την περίπτωση η μνήμη χωρίζεται σε δύο τμήματα, εκ των οποίων το ένα, που οριοθετείται από τις παραμέτρους C_DCACHE_BASEADDR και C_DCACHE_HIGHADDR, περιλαμβάνει διευθύνσεις δεδομένων που είναι δυνατό να βρίσκονται στην γρήγορη μνήμη. Στο τμήμα αυτό δεν πρέπει να περιλαμβάνονται οι διευθύνσεις που αντιστοιχούν στην μνήμη του LMB. Οι διευθύνσεις χωρίζονται σε δύο τμήματα, tag address και cache line, και το μέγεθος της γρήγορης μνήμης κυμαίνεται από 4 Kbytes έως 64 Kbytes.

Όταν εκτελείται μία εντολή αποθήκευσης δεδομένων, η διαδικασία ακολουθείται κανονικά με την διαφορά ότι εάν η διεύθυνση αποθήκευσης ανήκει στο τμήμα που αναφέρθηκε παραπάνω, τότε γίνεται και ενημέρωση των δεδομένων στην γρήγορη μνήμη. Στην περίπτωση που ο MicroBlaze εκτελεί μια εντολή φόρτωσης δεδομένων, πρώτα ελέγχεται εάν η διεύθυνση ανήκει στην ομάδα των διευθύνσεων που είναι δυνατό να βρίσκονται στην κύρια μνήμη, και μετά ελέγχεται εάν το ζητούμενο δεδομένο βρίσκεται στην γρήγορη μνήμη. Εάν η γρήγορη μνήμη διαθέτει το δεδομένο τότε στέλνει ένα σήμα επιβεβαίωσης στον MicroBlaze και μαζί τα δεδομένα. Αντιθέτως εάν η γρήγορη μνήμη δεν έχει το δεδομένο, αφήνει την διεκπεραίωση της φόρτωσης στον ΟΡΒ.

Σχήμα 1.19 – Διαδικασία εγγραφής στην γρήγορη μνήμη

Η ενεργοποίηση και η απενεργοποίηση της γρήγορης μνήμης δεδομένων ελέγχονται από το bit 24 του MSR. Τα δεδομένα διατηρούνται και μετά την απενεργοποίηση της γρήγορης μνήμης, ενώ τον ρόλο της εντολής WIC, που χρησιμοποιείται για την γρήγορη μνήμη εντολών, παίζει η WDC Pa. Ph

WDC Ra, Rb

τα ορίσματα της οποίας περιέχουν ότι και τα αντίστοιχα της WIC με την διαφορά ότι ο καταχωρητής Rb περιέχει δεδομένα και όχι εντολές.

1.5.5 Διεπαφή FSL (Fast Simplex Link)

Ο MicroBlaze διαθέτει 16 διεπαφές FSL, οκτώ εισόδου και οκτώ εξόδου. Οι διεπαφές αυτές είναι αποκλειστικές συνδέσεις σημείου προς σημείο μεταξύ του MicroBlaze και των περιφερειακών. Το μήκος του διαδρόμου δεδομένων του FSL είναι 32 bit, τα οποία μπορεί να είναι είτε εντολές ελέγχου, είτε δεδομένα. Ένα ξεχωριστό bit καταδεικνύει πότε μία λέξη που εκπέμπεται ή λαμβάνεται, είναι δεδομένο ή εντολή ελέγχου.

Ο MicroBlaze διαβάζει από μια είσοδο FSL με τέσσερις εντολές, δύο για τα δεδομένα και δύο για τις εντολές ελέγχου. Η εντολή get παγώνει το pipeline του MicroBlaze μέχρις ότου δεδομένα να γίνουν διαθέσιμα στην είσοδο της FSL σύνδεσης. Η εντολή nget επίσης περιμένει δεδομένα στην είσοδο της FSL σύνδεσης αλλά, δεν μπλοκάρει το pipeline. Αντί για αυτό θέτει την τιμή '0' στο bit 29 του MSR όταν τα δεδομένα είναι διαθέσιμα ώστε να διαβαστούν. Και στις δύο εντολές αν επιχειρηθεί να περαστούν εντολές ελέγχου και όχι δεδομένα ενεργοποιείται το bit λάθους του FSL, που αντιστοιχεί στο bit 27 του MSR. Αντίστοιχες ιδιότητες και λειτουργίες με τις εντολές get και nget, έχουν οι εντολές cget και ncget, με την μόνη διαφορά ότι αφορούν αποκλειστικά εντολές ελέγχου και όχι δεδομένα. Οι τέσσερις εντολές ανάγνωσης από την διεπαφή FSL ολοκληρώνονται σε δύο κύκλους ρολογιού από την στιγμή που τα δεδομένα είναι διαθέσιμα. Ανάλογη είναι και η λογική των εντολών που χρησιμοποιούνται για την εγγραφή μέσω μιας σύνδεσης FSL. Υπάρχουν δύο εντολές για την εγγραφή δεδομένων, η put που γράφει μπλοκάροντας το pipeline του MicroBlaze μέχρις ότου τα δεδομένα να μπορέσουν να προωθηθούν, και η nput που δεν μπλοκάρει το pipeline αλλά θέτει την τιμή 'Ο' στο bit 29 του MSR όταν η εγγραφή ολοκληρωθεί επιτυχώς. Και οι δύο εντολές χειρίζονται μονάχα δεδομένα. Για τις εντολές ελέγχου χρησιμοποιούνται οι εντολές cput, που μπλοκάρει το pipeline, και η ncput που δεν το μπλοκάρει και χρησιμοποιεί και αυτή το bit 29 του καταχωρητή MSR. Ομοίως οι δύο παραπάνω εντολές χειρίζονται αποκλειστικά εντολές ελέγχου, ενώ όλες οι εντολές εγγραφής χρειάζονται δύο κύκλους ρολογιού για να ολοκληρωθούν από την στιγμή που τα δεδομένα για εγγραφή είναι διαθέσιμα.

1.5.6 Διάδρομοι Δεδομένων του MicroBlaze

Οι δύο κύριοι διάδρομοι δεδομένων του MicroBlaze, είναι ο Local Memory Bus (LMB), ο οποίος παρέχει πρόσβαση σε μία dual-port μνήμη BRAM που είναι προσπελάσιμη σε ένα κύκλο ρολογιού, και ο On-chip Peripheral Bus (OPB), που παρέχει σύνδεση με εσωτερικά και εξωτερικά περιφερειακά και μνήμη. Οι LMB και OPB χωρίζονται περαιτέρω στους DLMB, Data interface LMB, DOPB, Data interface OPB, που χειρίζονται μόνο δεδομένα και στους ILMB, Instruction interface LMB, IOPB, Instruction interface OPB, που χειρίζονται μόνο εντολές. Εδώ πρέπει να τονιστεί ότι όλα τα περιφερειακά συνδέονται στον DOPB. Εκτός από τους LMB και OPB ο MicroBlaze διαθέτει και οκτώ κύριες (Master) και οκτώ εξαρτημένες (Slave) διεπαφές, για συνδέσεις FSL.

Η δομή του MicroBlaze όσον αφορά τους διαδρόμους δεδομένων είναι δυνατόν να διαμορφωθεί με έξι διαφορετικούς τρόπους, όπως φαίνεται στο σχήμα 1.20 και στο σχήμα 1.21. Σε αυτούς τους έξι τρόπους δεν συνυπολογίζεται η χρησιμοποίηση ή μη των συνδέσεων FSL.

Σχήμα 1.20 - Οι έξι τρόποι διαμόρφωσης των διαδρόμων δεδομένων του MicroBlaze

Η επιλογή κάθε ενός από τους έξι τρόπους διαμόρφωσης εξαρτάται από το μέγεθος του εκτελέσιμου κώδικα, την ανάγκη σε χώρο για αποθήκευση δεδομένων και στην απαίτηση για γρήγορη πρόσβαση στην εσωτερική μνήμη BRAM.

	Διαμόρφωση	Μέγιστη Συχνότητα	Υποστηριζόμενο Μοντέλο Μνήμης	Τυπικές Εφαρμογές
1	IOPB+ILMB+DOPB+DLMB	110	Μεγάλη εξωτερική μνήμη Γρήγορη εσωτερική μνήμη	Για εφαρμογές που χρειάζονται μνήμη μεγαλύτερη από αυτή που προσφέρει η BRAM. MPEG αποκωδικοποιητές, ελεγκτές επικοινωνιών
2	IOPB+DOPB+DLMB	125	Μεγάλη εξωτερική μνήμη Γρήγορη εσωτερική μνήμη για δεδομένα (BRAM)	Παρόμοιες με την περίπτωση 1 Επιτυγχάνεται μεγαλύτερη συχνότητα αλλά η λειτουργία είναι πιο αργή λόγω απουσίας ΙLMB
3	ILMB+DOPB+DLMB	125	Μεγάλη εξωτερική μνήμη για δεδομένα Γρήγορη εσωτερική μνήμη (BRAM)	Για εφαρμογές που αρκούνται στην μνήμη BRAM για τον εκτελέσιμο κώδικα Μικρές ή μεσαίες μηχανές καταστάσεων
4	IOPB+ILMB+DOPB	110	Μεγάλη εξωτερική μνήμη Γρήγορη εσωτερική μνήμη για εντολές (BRAM)	Παρόμοιες με την περίπτωση 1
5	IOPB+DOPB	125	Μεγάλη εξωτερική μνήμη	Παρόμοιες με την περίπτωση 2
6	ILMB+DOPB	125	Μεγάλη εξωτερική μνήμη για δεδομένα Γρήγορη εσωτερική μνήμη για εντολές (BRAM)	Εφαρμογές όπου η BRAM είναι αρκετή για τον εκτελέσιμο κώδικα, αλλά όχι για τα δεδομένα Μικροί ελεγκτές, μικρές ή μεσαίες μηχανές καταστάσεων

Σχήμα 1.21 – Οι έξι διαμορφώσεις των διαδρόμων δεδομένων του MicroBlaze

Το σχήμα 1.22 απεικονίζει την πρώτη περίπτωση διαμόρφωσης, από την οποία βέβαια απορρέουν και οι υπόλοιπες.

Σχήμα 1.22 - Η πρώτη περίπτωση διαμόρφωσης

Όπως αναφέρθηκε παραπάνω είναι δυνατόν σε κάθε έναν από τους έξι τρόπους διαμόρφωσης να υπάρχουν και συνδέσεις FSL μεταξύ του MicroBlaze και των περιφερειακών, που καθιστούν την επικοινωνία ταχύτερη και είναι ιδανικές για εφαρμογές επεξεργασίας σημάτων και ελέγχου δικτύων.

Σχήμα 1.23 - Η δομή των συνδέσεων FSL

Οι διάδρομοι δεδομένων του MicroBlaze μεταφέρουν δεδομένα τριών τύπων (σε παρένθεση οι αντιστοιχίσεις αυτών με assembly και C), word (data8 και char), half word (data16 και short, pointer) και byte (data32 και int, long int, enum, pointer). Οι τύποι δεδομένων και η συμβάσεις ονοματολογίας που χρησιμοποιούνται από τους διαδρόμους δεδομένων του MicroBlaze φαίνονται στο σχήμα 1.24.

Word Data Type

Byte address	n	n+1	n+2	n+3
Byte label	0	1	2	3
Byte significance	MSByte			LSByte
Bit label	0			31
Bit significance	MSBit			LSBit

Half Word Data Type

Byte address	n	n+1	
Byte label	0	1	Halfword
Byte significance	MSByte	LSByte	
Bit label	0	15	
Bit significance	MSBit	LSBit	

Byte Data Type

Σχήμα 1.24 – Οι τύποι δεδομένων του MicroBlaze

Κεφάλαιο 2

Open Virtual Platforms

2.1.Εισαγωγή- Γενικά για το ΟVP

Το σκεπτικό που βρίσκεται στο επίκεντρο του OVP είναι να επιταχυνθεί η υιοθέτηση ενός νέου τρόπου ανάπτυξης ενσωματωμένων συστημάτων - ειδικά για System-On-Chip (SoC) και MultiProcessor System-On-Chip (MPSoC) πλατφόρμες. Πολλές φορές, ωστόσο, η ανάγκη για πολλαπλούς επεξεργαστές ή πυρήνες στην σχεδίαση κρίνεται επιτακτική. Συνεπώς, αυτό που χρειάζεται είναι το μοντέλο της πλατφόρμας που χρησιμοποιούμε για το σύστημα μας να περιλαμβάνει όχι μόνο τα μοντέλα όλων των επεξεργαστών ή πυρήνων που χρειαζόμαστε, αλλά και την περιγραφή των περιφερειακών και της συμπεριφοράς τους, ώστε να πραγματοποιείται η επικοινωνία τους με το software. Αυτή είναι η έννοια της εικονικής πλατφόρμας, ή πιο απλά ένα μοντέλο προσομοίωσης της σχεδίασής μας.

To OVP, λοιπόν, παρέχει βιβλιοθήκες του επεξεργαστή με πρότυπα συμπεριφοράς και Διεπαφή Προγραμματισμού Εφαρμογών (Application Programming Interface-APIs), επιτρέποντας τον σχεδιασμό σε software του δικού μας επεξεργαστή, με συγκεκριμένα περιφερειακά στην κατάλληλη πλατφόρμα. Όλα αυτά είναι ακριβώς ό, τι χρειάζεται κανείς για να χρησιμοποιήσει τα υπάρχοντα μοντέλα ή να δημιουργήσει το σύστημα της επιλογής του. Το OVP είναι αρκετά εύκολο στη χρήση, ανοικτό, ευέλικτο, και το σημαντικότερο, δωρεάν για μη εμπορική χρήση.

Σχήμα 2.1- OVP

Τα βασικότερα χαρακτηριστικά του ΟVP συγκεντρώνονται παρακάτω:

- Εύκολη δημιουργία εικονικής πλατφόρμας πολλών περιφερειακών και πολλών επεξεργαστών.
- Εύκολη δημιουργία των δικών μας επεξεργαστών, περιφερειακών και πλατφόρμας.
- Βιβλιοθήκη με μοντέλα επεξεργαστών και περιφερειακών.
- Μοντελοποίηση μόνο όσων χρειάζονται στα περιφερειακά.
- Οι προσομοιώσεις είναι Instruction Accurate, υψηλής ταχύτητας.
- Αποτελεσματικό, ολοκληρωμένο περιβάλλον για embedded software development.

2.2. Περιγραφή δημιουργίας ενσωματωμένου συστήματος

Σύμφωνα με τις ανάγκες της εργασίας, χρησιμοποιήσαμε το OVP, ως το καταλληλότερο εργαλείο ανάπτυξης του δικού μας συστήματος. Οι βιβλιοθήκες, τα μοντέλα επεξεργαστών, περιφερειακών και τα παραδείγματα που μας παρέθεσε, βοήθησαν καθοριστικά στη δημιουργία μίας εικονικής πλατφόρμας με επεξεργαστή τον Microblaze της Xilinx και ένα περιφερειακό με συγκεκριμένη λειτουργία. Η δουλειά που έγινε ήταν αφού επιλεγεί η εφαρμογή του συστήματος μας, να εντοπίσουμε μετά από profiling τις πιο βαριές συναρτήσεις της και να τις υλοποιήσουμε σε hardware βάζοντάς τες στο περιφερειακό. Τα βήματα που ακολουθήσαμε για να χτίσουμε το δικό μας σύστημα περιγράφονται αναλυτικότερα στη συνέχεια.

2.2.1 Σχεδιασμός εικονικής πλατφόρμας

Αρχικά, έγινε η επιλογή του επεξεργαστή που θα χρησιμοποιήσουμε στην εικονική πλατφόρμα. Επειδή η πραγματική πλακέτα που θα χρησιμοποιήσουμε θα έχει τον Microblaze της Xilinx για επεξεργαστή, για να γίνει επιτυχής η σύνδεση της με την εικονικής, διαλέξαμε να βάλουμε τον ίδιο επεξεργαστή και στις δύο πλατφόρμες. Εν συνεχεία, χωρίσαμε την μνήμη σε διαστήματα ώστε να υπάρχει χώρος για τους καταχωρητές, το περιφερειακό, αλλά και την εφαρμογή.

0xFFFFFFF
Application memory (stack)
0xC0000000
0xBFFFFFFF
Unmapped
0x80000140
0x8000013F
memory-mapped registers
00000008z0
0x7FFFFFF
Main application memory
000000020

Σχήμα 2.2- Memory Map

Όσων αφορά στον κώδικα, δημιουργήσαμε τον δίαυλο δεδομένων πάνω στον οποίο θα συνδεθούν τα διάφορα μέρη για να επικοινωνούν μεταξύ τους.

// create the processor bug

```
icmBusP bus = icmNewBus("busMain", 32);
```

Στην συνέχεια, ακολούθησε η δημιουργία των συσκευών μνήμης και η σύνδεσή τους με τον δίαυλο. Οι διευθύνσεις βάσης των μνημών καθορίζονται όταν συνδέονται με το δίαυλο, ενώ το μέγεθος τους ορίζεται, όταν αυτές δημιουργηθούν.

// create two memory regions mapping all memory except the DMAC registers

```
icmMemoryP mem1 = icmNewMemory("mem1", ICM_PRIV_RWX, 0x3fffffff);
```

```
icmMemoryP mem2 = icmNewMemory("mem2", ICM_PRIV_RWX, 0x7fffffff);
```

// connect memories to the bus

icmConnectMemoryToBus(bus, "sp", mem1, 0xc000000);

icmConnectMemoryToBus(bus, "sp", mem2, 0x0000000);

Δημιουργούμε τον επεξεργαστή που θα χρησιμοποιήσουμε, δηλαδή τον Microblaze:

// create a processor instance

icmProcessorP cpu1_c = icmNewProcessor(

"microblaze", // CPU type

0, // CPU cpuId

0, // CPU model flags

32, // address bits

microblazeModel, // model file

"modelAttrs", // morpher attributes

SIM_ATTRS, // attributes

cpu1_attr, // user-defined attributes

microblazeSemihost, // semi-hosting file

"modelAttrs" // semi-hosting attributes

Συνδέουμε τον Microblaze με τον δίαυλο:

// connect the processor instruction and data busses to the bus

icmConnectProcessorBusses(cpu1_c, bus, bus);

Μετα φορτώνουμε την εφαρμογή στη μνήμη :

// load the application executable file into processor memory space

if(!icmLoadProcessorMemory(cpu1_c, appName, False, False, True)) {

return False;

}

Ουσιαστικά, μέχρι αυτό το σημείο έχει δημιουργηθεί ο επεξεργαστής, η μνήμη και ο δίαυλος που τα συνδέει:

Αυτό που λείπει είναι να δηλώσουμε το περιφερειακό στην πλατφόρμα και να το συνδέουμε στο bus.

// instantiate the peripheral

icmPseP dmac = icmNewPSE("dmac", "pse.pse", NULL, NULL, NULL);

// connect the peripheral slave port on the bus and define the address range it occupies

icmConnectPSEBus(dmac, bus, "DMACSP", False, 0x80000000, 0x8000013f);

2.2.2 Σχεδιασμός περιφερειακού

Η δημιουργία του περιφερειακού ήταν αρκετά πιο πολύπλοκη από αυτήν της πλατφόρμας με τον επεξεργαστή. Αρχικά, έπρεπε να καθοριστεί η δομή και οι πόροι που θα χρησιμοποιεί το περιφερειακό, όμως για να το κάνουμε αυτό έπρεπε πρώτα να καθορίσουμε την κύρια λειτουργία που θα εκτελεί. Επιλέξαμε, λοιπόν, για αρχή μία εύκολη εφαρμογή, η οποία υπολογίζει και εμφανίζει έναν αριθμό Fibonacci. Στο σημείο αυτό αξίζει να προσθέσουμε ότι το περιφερειακό που θα δημιουργήσουμε πρέπει να περιλαμβάνει μονάχα ένα thread, καθώς για να μπορέσουμε να περάσουμε τον κώδικα από High Level Synthesis η περιφερειακή μονάδα πρέπει να είναι single-threaded.

Το περιφερειακό, γενικά, μπορεί να είναι μία συσκευή slave, η οποία είναι συνδεδεμένη με τον δίαυλο και εκθέτει τους καταχωρητές της ή τη μνήμης της ώστε να μπορούν να προσπελαστούν από τον δίαυλο αυτόν. Οι προσπελάσεις σε αυτή την περιοχή που εκτίθεται, ελέγχουν την συμπεριφορά του περιφερειακού και, συγχρόνως, επιστρέφουν πληροφορίες για την κατάσταση του. Τυπικά, αυτή η επικοινωνία μπορεί να επιτευχθεί μέσω καταχωρητών αποθηκευμένων στην μνήμη, οι οποίοι διοχετεύουν και επιστρέφουν πληροφορίες σχετικά με το περιφερειακό.

<u>i.Παράθυρο Μνήμης</u>

Για να δημιουργήσουμε την διεπαφή τύπου slave του περιφερειακού με τον δίαυλο πρέπει να δημιουργήσουμε μία περιοχή στη μνήμη όπου θα αποθηκευτούν οι καταχωρητές που θα χρησιμοποιεί το περιφερειακό. Συμπερασματικά η θύρα του περιφερειακού slave θα καταλαμβάνει ένα παράθυρο μνήμης στο χώρο διευθύνσεων του συστήματος. Το μέγεθος του παραθύρου μνήμης ορίζεται ως τμήμα του περιφερειακού και η θέση ορίζεται ως μέρος του σχεδιασμού στον οποίο το περιφερειακό χρησιμοποιείται.

Το παράθυρο προϋποθέτει ότι υπάρχει μια περιοχή αποθήκευσης που ορίζεται εντός του περιφερειακού. Αυτή η περιοχή είναι η πηγή και ο προορισμός όλων των προσβάσεων τύπου σκλάβου στο περιφερειακό και στον κώδικα δηλώνεται με αυτόν τον τρόπο:

```
static unsigned char DMACSP_Window [0x140];
```

Το παράθυρο μνήμης στο περιφερικό εκτίθεται στο υπόλοιπο σύστημα κατά το άνοιγμα ενός διαύλου θύρας τύπου slave χρησιμοποιώντας την PPM ppmOpenSlaveBusPort εντολή ως εξής:

```
static void installSlavePorts(void) {
```

```
handles.DMACSP = ppmCreateSlaveBusPort("DMACSP", 320);
```

```
if (!handles.DMACSP) {
```

bhmMessage("E", "PPM_SPNC", "Could not connect port 'DMACSP"");

}

Η θύρα αυτή επιτυγχάνει την σύνδεση μεταξύ της πλατφόρμας και του software του περιφερειακού και επιτρέπει την πρόσβαση στην μνήμη αυτή.

<u>ii. Καταχωρητές</u>

- Μια εγγραφή στο εκτεθειμένο παράθυρο του περιφερικού από έναν δίαυλο θα έχει ως αποτέλεσμα την αποθήκευση της τιμής που έχουν στον πίνακα μνήμης.
- Μια ανάγνωση από το παράθυρο θα επιστρέψει την τιμή από την εκτιθέμενη μνήμη που αντιστοιχεί στη διεύθυνση πρόσβασης.

Όταν μια ανάγνωση ή εγγραφή στο παράθυρο μνήμης συγκεκριμένης διεύθυνσης, απαιτεί εκτός των άλλων λειτουργικότητα, για παράδειγμα, μια εγγραφή σε έναν καταχωρητή ελέγχου, τότε προσθέτουμε συναρτήσεις επανάκλησης (callback functions), οι οποίες πραγματοποιούν την επιθυμητή λειτουργία.

Κατά τη δημιουργία ενός καταχωρητή σε ένα περιφερειακό μοντέλο, η συνιστώμενη προσέγγιση είναι να χρησιμοποιήσετε τις συναρτήσεις API ppmCreateRegister ή ppmCreateInternalRegister. Και οι δύο συναρτήσεις δημιουργούν καταχωρητές στο περιφερειακό μοντέλο, οι οποίοι μάλιστα, όταν χρησιμοποιηθούν για read ή write, προκαλούν ένα "γεγονός", το οποίο είναι ικανό να "ξυπνήσει" το περιφερειακό που περιμένει.

Η παρακάτω εικόνα δείχνει δύο είδη καταχωρητών εκ των οποίων το πρώτο είναι προσβάσιμο μέσω του παραθύρου μνήμης του περιφερειακού, ενώ το άλλο είναι προσβάσιμο μονάχα από το ίδιο το περιφερειακό.

Σύμφωνα με τα παραπάνω δημιουργήσαμε τους αναγκαίους καταχωρητές ως εξής:

ppmCreateRegister("srcAddr",

"channel 0 source address",

handles.DMACSP,

256,

```
4,
regRd32,
regWr32,
view32,
&(DMACSP_ab32ch0_data.srcAddr.value),
True
);
```

Όπου ο καταχωρητής που δημιουργούμε βρίσκεται στην θέση της βάσης της μνήμης που φτιάξαμε πριν συν 256 θέσεις και καταλαμβάνει 4 bytes. Επίσης, οι λειτουργίες που θα πραγματοποιηθούν όταν γράψουμε (regWr32) ή διαβάσουμε τους καταχωρητές (regRd32) καθορίζονται καθαρά και μόνο από το περιεχόμενο των callback συναρτήσεων.

Για παράδειγμα, η callback function του regWr32 είναι:

```
PPM_REG_WRITE_CB(regWr32) {
```

printf("im in the callback data/n");

bhmTriggerEvent(DMAState.ch[channel].start);

```
*(Uns32*)user = byteSwap(data);
```

}

Και οι λειτουργίες που κάνει, ουσιαστικά ενεργοποιούν το περιφερειακό, το οποίο αρχίζει να εκτελείται μέχρι να ξανασυναντήσει κάποια εντολή που θα το "παγώσει", και γράφουν στην μνήμη του περιφερειακού την τιμή που περιέχει.

iii.Nήματα-Threads

Ένα αρχικό νήμα δημιουργείται από την κύρια ρουτίνα main () εντός του περιφερειακού. Τυχόν επιπλέον νήματα που απαιτούνται εντός του περιφερειακού δημιουργούνται χρησιμοποιώντας την συνάρτηση bhmCreateThread.

Μία περιοχή που θα χρησιμοποιείται ως στοίβα για κάθε επιπλέον νήμα πρέπει να οριστεί. Στο περιφερειακό επίσης, ορίζεται και μία δομή που περιλαμβάνει έναν πίνακα χαρακτήρων για κάθε νήμα, και χειρίζεται το νήμα όταν δημιουργείται και όταν γίνεται κάποιο συμβάν.

#define THREAD_STACK (8*1024)
typedef struct {
 bhmThreadHandle thread;
 bhmEventHandle start;
 Bool busy;
 char stack[THREAD_STACK];
 } channelState;

Κάθε ένα από τα κανάλια δημιουργούνται με τον ίδιο τρόπο. Ένα συμβάν ορίζεται στη δομή που θα επιτρέψει στο κανάλι να ξεκινήσει και το νήμα να δημιουργηθεί.

```
// Create threads for the channels
for (i=0; i<NUM_CHANNELS; i++) {
    // Event to start the thread
    DMAState.ch[i].start = bhmCreateEvent();
    DMAState.ch[i].busy = False;
    sprintf(threadName, "ch%u", i);
    DMAState.ch[i].thread = bhmCreateThread(
    channelThread,
    (void*) i,
    threadName,
    &DMAState.ch[i].stack[THREAD_STACK] // top of downward
    growing stack
    );
  }
</pre>
```

Τα γεγονότα που ενεργοποιούν ένα νήμα αποσκοπούν στον καλύτερο συγχρονισμό και έλεγχο των threads, καθώς όταν είναι πολλά πρέπει με κάποιο τρόπο η σειρά εκτέλεσής τους να είναι ελεγχόμενη.

Αρκεί λοιπόν για την δημιουργία ενός event να γράψουμε

```
// Event to start the thread
DMAState.ch[i].start = bhmCreateEvent();
```

Και για την αναμονή ενός event αρκεί:

```
static void channelThread(void *user)
{
Uns32 ch = (Uns32) user;
for (;;) {
... code ...
bhmWaitEvent(DMAState.ch[ch].start);
... code ...
}
}
```

Όπως προαναφέρθηκε, η κυρίως λειτουργία του περιφερειακού είναι ο υπολογισμός ενός αριθμού Fibonacci. Συνεπώς, το νήμα μόλις ξυπνήσει καλεί μία συνάρτηση, την dmaburst(); όπου και γίνεται ο ζητούμενος υπολογισμός, όπως φαίνεται από τον παρακάτω κώδικα:

```
static Uns32 dmaBurst(Uns32 ITERATIONS){
    int prev = -1;
    int result = 1;
    int sum;
        int i;
        for (i=0; i<=ITERATIONS; ++i) {
            sum = result + prev;
        prev = result;
        result = sum;
        }
}</pre>
```

return result;}

2.2.3 Σχεδιασμός εφαρμογής

Η εφαρμογή που δημιουργήσαμε για να τρέξει στην πλατφόρμα μας το μόνο που κάνει είναι να ενεργοποιεί το περιφερειακό ώστε να πραγματοποιηθεί ο υπολογισμός του ζητούμενου αριθμού Fibonacci. Ο τρόπος που ενεργοποιεί το περιφερειακό είναι γράφοντας σε έναν καταχωρητή που ανήκει στο παράθυρο μνήμης που ορίσαμε πριν για το περιφερειακό.

```
writeReg32(DMA_BASE, DMA_C0_CONFIGURATION, 10);
```

Έτσι καλείται μια callback function η οποία παράγει ένα event ξυπνώντας έτσι το περιφερειακό. Ο κώδικας της εφαρμογής θα παρουσιαστεί μαζί με τα υπόλοιπα προγράμματα της προσομοίωσης στην ενότητα Παράρτημα.

2.3. Προσομοίωση- Αποτελέσματα- Συγκρίσεις

Για να γίνει η προσομοίωση σε λειτουργικό Windows 7 χρειάστηκε να κατεβάσουμε το MinGW environment. Αυτό το περιβάλλον χρησιμοποιεί τα Imperas tools και το OVPsim ώστε να επιτευχθεί η δημιουργία του συστήματος που σχεδιάσαμε.

Έτσι, λοιπόν, αφού κάναμε compile στα προγράμματα, δοκιμάσαμε να τα τρέξουμε και πατώντας στο τερματικό ./platform.Windows32.exe dmaTest.elf, πήραμε τα εξής αποτελέσματα:

©peripheral is waiting im in the callback peripheral triggered My peripherals result fib(10) = 55 peripheral is waiting nfn Info Info PSE SIMULATION TIME STATISTICS Info 0.01 seconds: PSE THREAD 'dmac' Info 0.01 seconds: PSE 'dmac' (and 1 terminated callback) nfo nfo nfo nfo CPU 'CPU1' STATISTICS : microblaze : 100 : 0x1718 : 137 Type Nominal MIPS nfo nfo Final program counter : Simulated instructions: Simulated MIPS : nfo nfo : run too short for meaningful result ıfo nfo fo SIMULATION TIME STATISTICS fo Simulated time : 0.00 seconds 0.02 seconds ıfo User time System time fo seconds 0.00 seconds ıfo Elapsed time 0.02 seconds nfo OVPsim finished: Fri Jul 19 19:04:13 2013 0VPsim (32-Bit) v20130315.0 Open Virtual Platform simulator from www.0VPworld.or Visit www.IMPERAS.com for multicore debug, verification and analysis solutions

Σχήμα 2.5- Integration in Hardware

Η πρώτη προσομοίωση που παρουσιάζεται στο προηγούμενο σχήμα αντιπροσωπεύει την υλοποίηση της εφαρμογής μας σε hardware, δηλαδή στο περιφερειακό.

Όπως φαίνεται από την προσομοίωση παρατηρούμε ότι το περιφερειακό, μόλις δεχθεί σήμα από την εφαρμογή για να ξεκινήσει, υπολογίζει και εμφανίζει τον δέκατο αριθμό Fibonacci που είναι ο 55.

Εν συνεχεία, παρουσιάζει κάποιες χρήσιμες πληροφορίες όπως:

- Final program counter Simulated instructions: Όπως εξηγήσαμε στα παραπάνω το OVP Simulation μας παρέχει instruction accurate πληροφορίες και μας δίνει τον program counter
- Simulated time System time Elapsed time: Παρέχει επίσης και πληροφορίες για τους χρόνους εκτέλεσης του συστήματος.

Από αυτές τις πληροφορίες, παρατηρούμε το αποτέλεσμα των εκτελούμενων εντολών είναι Hardware Simulated Instructions = 137.

Κρατάμε αυτή την τιμή, καθώς τώρα θα επιχειρήσουμε να σχεδιάσουμε την εφαρμογή εξολοκλήρου σε software και θα πρέπει να συγκρίνουμε την αντίστοιχη τιμή της νέας προσομοίωσης. Αξίζει να σημειώσουμε σε αυτό το σημείο ότι αν χρησιμοποιούσαμε μία πιο βαριά εφαρμογή θα χρησιμοποιούσαμε και άλλες παραμέτρους που μας παρέχει η προσομοίωση για συγκρίσεις.

2.4 Σύγκριση με υλοποίηση της εφαρμογής ως software - profiling

Όπως επισημάνθηκε και στην εισαγωγή, το περιφερειακό εκτελεί τις πιο βαριές συναρτήσεις της εφαρμογής έτσι ώστε να προσθέσει ταχύτητα στο σύστημα. Αυτή η διαδικασία είναι από τις σημαντικότερες κατά την σχεδίαση ενσωματωμένων συστημάτων και ονομάζεται profiling. Οι σύγχρονοι σχεδιαστές, λοιπόν, πρωτού περάσουν στην πραγματική υλοποίηση του συστήματος που θέλουν να σχεδίασουν, δημιουργούν μία εικονική πλατφόρμα και δοκιμάζουν διάφορους τρόπους σχεδίασης επιλέγοντας πάντα τον πιο αποδοτικό. Η επικρατούσα ιδέα καλής σχεδίασης είναι η εξής: στην εικονική προσομοίωση του συστήματος εντοπίζονται οι πιο πολύπλοκες και χρονοβόρες συναρτήσεις της εφαρμογής. Αυτές απομονώνονται από τις υπόλοιπες και εν συνεχεία υλοποιούνται ως hardware μέσα σε ένα περιφερειακό της πλατφόρμας. Με αυτόν τον τρόπο εξασφαλίζεται η βέλτιστη υλοποίηση με τον καλύτερο δυνατό χρόνο εκτέλεσης.

Στην προκειμένη περίπτωση, δοκιμάσαμε την εφαρμογή υπολογισμού του δέκατου αριθμού Fibonacci να υλοποιηθεί εξολοκλήρου ως software, καθώς η εφαρμογή δεν αποτελείται από άλλες συναρτήσεις. Ουσιαστικά το περιφερειακό δεν κάνει κάποιο υπολογισμό.

Η προσομοίωση έδωσε τα παρακάτω αποτελέσματα:

⊖peri	ipheral is waiting	
My so)ftware result fib(10)	> = 55
im ir	n the callback	
perip	pheral triggered	
perip	pheral is waiting	
Info		
Info		
Info	PSE_SIMULATION TIME	STATISTICS
Info	0.00 seconds: PSE	THREAD 'dmac'
Info	0.01 seconds: PSE	'dmac' (and 1 terminated callback)
Info		
Info		
Info		
Info	CPU 'CPU1' STATISTIC	5
Info	Туре	: microblaze
Info	Nominal MIPS	= 100
Info	Final program count	ter : 0x1848
Info	Simulated instruct:	ions: 4,736
Info	Simulated MIPS	: run too short for meaningful result
Info		
Info		
Info		
Info	SIMULHIIUN IIME SIHI.	
iuto	Simulated time	= 0.00 seconds
Info	User time	: 0.03 seconds
iuto	System time	= 0.00 seconds
Into	Elapsed time	: 0.03 seconds
Into		
AUD - 4	- Ci-i-b-d. R.i I.l.	10 10-00-4(0010
UVPSI	im finished: Fri Jul :	19 19:00:46 2013
		A Owen Hinturl Platform simulator from one AllPushid or
ovrs.	UN (32-DIC) 020130313	.o open virtual riaciore simulator from www.ovrworlu.or
y. Hisit	LULU IMPERAS com for	multicove debug uewification and analysis solutions
ATOTO	www.init.nno.com ioi	Marcheole acoug, verification and analysis solutions.

Σχήμα 2.6- Integration in Software

Παρατηρούμε, λοιπόν σε αυτό το σημείο ότι οι εντολές που εκτελέστηκαν είναι :

Software Simulated Instructions = 4.736

Όπως φαίνεται και από την προσομοίωση στο OVP η υλοποίηση αυτή δεν είναι συμφέρουσα και για αυτό τον λόγο απορρίφθηκε. Αυτή είναι και η διαδικασία που ακολουθείται στην αγορά, συγκρίνοντας βέβαια πιο πολλές παραμέτρους καθώς οι εφαρμογές είναι μεγαλύτερες και πιο απαιτητικές.

2.5 Η Εφαρμογή JPEG2000

Μια πιο μεγάλη εφαρμογή με την οποία ασχοληθήκαμε είναι ο JPEG2000, ένα πρότυπο συμπίεσης εικόνας και σύστημα κωδικοποίησης που δημιουργήθηκε με την πρόθεση να αντικατασταθεί το βασισμένο στον μετασχηματισμό συνημιτόνου (discrete cosine transform) πρότυπο JPEG με μία νέα μέθοδο σχεδίασης κυμάτων (Discrete Wavelet Transform).

Έτσι λοιπόν, εφαρμόσαμε μια στρατηγική διαχωρισμού του software και του hardware σε μία αρκετά μεγαλύτερη εφαρμογή από την Fibonacci, ώστε να αποδώσουμε καλύτερα την μεθοδολογία που ακολουθείται και δεν μπορέσαμε να αποτυπώσουμε πλήρως στο προηγούμενο παράδειγμα.

Η μεθοδολογία που οδήγησε σε μια συγκεκριμένη στρατηγική διαχωρισμού υλικού/ λογισμικού παρουσιάζεται, περιλαμβάνοντας την ανάλυση προδιαγραφών και χαρακτηριστικών του Τζάσπερ, ενός open-source software-based για την εφαρμογή του κωδικοποιητή JPEG2000. Ένα λεπτομερές σύνολο των χαρακτηριστικών χρονισμού παρουσιάζεται για τον κώδικα του Jasper. Η ανάλυση αυτών των χαρακτηριστικών οδήγησε στην απόφαση για την επιλογή του Inverse Discrete Wavelet Transform για την εφαρμογή του υλικού.

2.5.1 Διαχωρισμός Hardware/Software

Όπως γνωρίζουμε, οι βασικοί υπολογισμοί της εφαρμογής αυτής είναι η κωδικοποίηση και η αποκωδικοποίηση. Αρχικά, προσπαθήσαμε να βρούμε ποια από τις δύο διαδικασίες είναι πιο χρονοβόρα και γιαυτό προσθέσαμε στον κώδικα του jasper.c κάποιες εντολές, με τη βοήθεια των οποίων μετρήσαμε το πλήθος εντολών που εκτελούνται σε αυτές. Μετά την προσομοίωση στο OVP τα αποτελέσματα που πήραμε παρουσιάζονται στην παρακάτω εικόνα:

ENCODING: 398505592
??? 128
my_function_time: 52628644
DECODING: 53881884
APPLICATION MESSAGE: decoding time = 1102561462.000000
APPLICATION MESSAGE: encoding time = 1099542913.000000
APPLICATION MESSAGE: total time = 1102771993.000000
processorLØJ has executed 452444333 instructions
Info
luto CPU, cpu0, SIAIISIICS
Info lype : arm
Info Nominal MIPS : 100
Info Final program counter : 0x761b0
Info Simulated instructions: 452,444,333
Info Simulated MIPS : 402.9
1010
INTO SIMULATION TIME STATISTICS
Info Simulated time : 4.53 Seconds
Info User time : 1.07 seconds
Into System time : 0.02 Seconds
Into Elapsea time - 1.12 Seconds
AllPaim finished, Sun Jul 24 20-06-20 2012
ovrsin fillisheu. Sun dui 21 20-00-27 2013
00Psim (32-Bit) v20130315.0 Onen Virtual Platform simulator from www.00Pworld.or
g.
Visit www.IMPERAS.com for multicore debug, verification and analysis solutions.
Σχήμα 2.7 - JPEG2000 Simulation

Από την προσομοίωση βλέπουμε ότι

- Encoding: 398505592
- Decoding: 53881884

Ένα πρώτο σημαντικό συμπέρασμα που παρατηρήθηκε είναι ότι η διεργασία συμπίεσης (κωδικοποιητή) είναι πιο χρονοβόρα σε σχέση με της αποσυμπίεσης (αποκωδικοποιητής). Πιο συγκεκριμένα, ο χρόνος που δαπανάται κατά την αποκωδικοποίηση της εικόνας περίπου 70% του συνολικού χρόνου που καταναλώνεται στην κωδικοποίσηση της εικόνας.

Εν συνεχεία, αυτό που κάναμε ήταν να χωρίσουμε την κώδικοποίηση σε κομμάτια και κάνουμε την ίδια διαδικασία για να βρούμε ποιες συναρτήσεις είναι οι πιο απαιτητικές από άποψη χρόνου. Και καταλήξαμε στα εξής:

	128x96
PART1 [TILE CREATION]	6093862
PART2	1258745
PART3	19
PART4[MCT]	654618
PART5 [DWT]	6912706
PART6 [QUANTIZATION]	1671667
PART7	3945
PART8	99
PART9	1348

PART10 [TIER 1 (EBCOT+AEC)] PART11 PART12a [TIER-2 I] PART12b [TIER-2 II] PART12c [STREAM OUT]	32438658 535 2642649 1374235 1242394
 \ /	100.00
	128v06
	120,30
TILE CREATION	7352607
TILE CREATION	7352607
MCT	654618
TILE CREATION	7352607
MCT	654618
DWT	6912706
TILE CREATION	7352607
MCT	654618
DWT	6912706
QUANTIZATION	1671667
TILE CREATION	7352607
MCT	654618
DWT	6912706
QUANTIZATION	1671667
TIER1	32403461
TILE CREATION	7352607
MCT	654618
DWT	6912706
QUANTIZATION	1671667
TIER1	32403461
TIER1 [AEC]	35197
TILE CREATION	7352607
MCT	654618
DWT	6912706
QUANTIZATION	1671667
TIER1	32403461
TIER1 [AEC]	35197
TIER2	4016884
TILE CREATION	7352607
MCT	654618
DWT	6912706
QUANTIZATION	1671667
TIER1	32403461
TIER1 [AEC]	35197
TIER2	4016884
I/O	1242394

Σχήμα 2.8 – Αριθμός Εντολών των κομματιών του JPEG2000

Αυτά τα αποτελέσματα φαίνονται πιο καλά στο διάγραμμα:

Σχήμα 2.9 – bar chart

Και οι βασικές συναρτήσεις που χωρίζουν τα μέρη του encoder και του decoder μπορούν να περιοριστούν στις παρακάτω συναρτήσεις:

Category	Encoder	Decoder	
Utilities	<pre>bitstoint() inttobits()</pre>	<pre>bitstoint() inttobits()</pre>	
	pgxwordtoint()	pgxwordtoint()	
	jasmalloc()	jasmalloc()	
Image Transfer	jas_image_writecmpt()	jas_image_writecmpt()	
	jas_image_readcmpt()	jas_image_readcmpt()	
EBCOT	jpc_encsigpass()	jpc_decsigpass()	
	jpc_encrefpass()	jpc_decrefpass()	
	jpc_encclnpass()	jpc_decclnpass()	
DWT	jpc_ft_analyze()	jpc_ft_synthesize()	
AEC	jpc_mqenc_codelps()	jpc_mqdec_codelps()	
	jpc_mqenc_codemps2()	jpc_mqdec_codemps2()	

Σχήμα 2.10 – most time-consuming functions

Σύμφωνα, λοιπόν και με τα προηγούμενα αποτελέσματα τα δύο πιο time-consuming μέρη του αλγορίθμου είναι το EBCOT (Coefficient Bit Modelling Routines) και το DWT (Wavelet Transform Routines). Συμπεραίνουμε λοιπόν, ότι οι βασικές συναρτήσεις που υλοποιούν το EBCOT και το DWT είναι αυτές που θα πρέπει να βάλουμε στο περιφερειακό μας ώστε η κωδικοποίηση JPEG2000 να επιταχυνθεί σημαντικά.

Η διαδικασία του hardware/software partitioning έφτασε στο τέλος της. Τώρα πια αυτό που απομένει έιναι να υλοποίησουμε τις πιο βαριές συναρτήσεις σε hardware. Μόλις τις βάλουμε στο περιφερειακό και λειτουργήσει η προσομοίωση τότε θα έχουμε ολοκληρώσει την εικονική πλατφόρμα. Εν συνεχεία, θα περάσουμε τις συναρτήσεις αυτές από High Level Synthesis και αφού δημιουργήσουμε το περιφερειακό γραμμένο σε HDL Language μπορούμε πλέον να πραγματοποιήσουμε το implementation του Fpga με τη βοήθεια των εργαλείων τις Xilinx.

Τώρα πλέον η διαδικασία του partitioning περιγράφηκε αναλυτικά και αποτυπώνει πλήρως τον τρόπο με τον οποίο μπορούμε να εργαζόμαστε σε κάθε εφαρμογή. Ωστόσο ο στόχος της διπλωματικής είναι η σύνδεση της εικονικής με την πραγματική πλατφόρμα και όχι η εφαρμογή. Για το λόγο αυτό θα προχωρήσουμε με την εφαρμογή Fibonacci, η οποία είναι ένα πολύ πιο απλό και αντιπροσωπευτικό παράδειγμα.

<u>Κεφάλαιο 3</u>

Vivado HLS

Σχήμα 3.1- VivadoHLS

3.1 Εισαγωγή στο VivadoHLS

Τα εργαλεία σύνθεσης υψηλού επιπέδου (High Level Synthesis - HLS) είναι εξαιρετικά χρήσιμα καθώς μας βοηθούν να μετατρέψουμε ένα software design σε hardware design (Register Transfer Level) πολύ γρήγορα. Γενικά, με την χρήση ενός HLS εργαλείου, οι περιορισμοί του χρήστη μπορούν να οριστούν αυτόματα και ο χρόνος προς την αγορά να μειωθεί. Συγκεκριμένα, το Vivado High-Level-Synthesis είναι ένα HLS εργαλείο για FPGAs και ASICs το οποίο επιταχύνει την σύνθεση του design. Δέχεται έναν κώδικα γραμμένο σε C/C++ ή SystemC και τον μετατρέπει αμέσως σε RTL level ώστε να επιτευχθεί η σύνθεσή του σε ένα FPGA.

3.2 High Level Synthesis

To High-Level Synthesis(HLS) ή διαφορετικά electronic system level synthesis(ESL) είναι μια αυτοματοποιημένη διαδικασία σχεδίασης κατά την οποία μια αλγοριθμική περιγραφή περνάει από το στάδιο της μετάφρασης προκειμένου να δημιουργηθεί hardware που υλοποιεί τον ίδιο αλγόριθμο. Στα σύγχρονα εργαλεία hls η σύνθεση γίνεται σε ANSI C/C++/SystemC.

Κατά τη σύνθεση υψηλού επιπέδου ως είσοδοι στο σύστημα δίνονται:

- o behavioral προσδιορισμός
- σχεδιαστικοί περιορισμοί (κόστος, απόδοση, κατανάλωση ισχύος)
- μια βιβλιοθήκη που δείχνει το υλικό που έχουμε διαθέσιμο

Ως έξοδο παίρνουμε την RTL υλοποίηση καθώς και κάποιες πληροφορίες που αφορούν την γεωμετρία της σχεδίασης. Το βασικό μοντέλο που ακολουθήθηκε κατά την Σύνθεση Υψηλού Επιπέδου φαίνεται παρακάτω:

Σχήμα 3.2- Το βασικό μοντέλο High Level Synthesis

Βασικά βήματα:

Για την διαδικασία της σύνθεσης υψηλού επιπέδου απαιτούνται κάποια βήματα. Αυτά είναι:

- Λεξική επεξεργασία
- Αλγοριθμική βελτιστοποίηση
- Dataflow ανάλυση
- Κατανομή των πόρων
- Scheduling
- Binding
- Επεξεργασία εξόδου

Σχήμα 3.3- Απαραίτητα βήματα HLS

Τα διάφορα hls εργαλεία κάνουν τα παραπάνω βήματα με διαφορετική σειρά το καθένα, ανάλογα με τον αλγόριθμο που χρησιμοποιούν. Πολλές φορές μπορεί να γίνει συνδυασμός των παραπάνω βημάτων ή και επανάληψη τους προκειμένου τελικά να συγκλίνουμε στην επιθυμητή υλοποίηση.

Μερικά βασικά θέματα τα οποία αποτελούν και θεμελιώδης έννοιες της hls:

1)Χρονοδρομολόγηση

Κατά την χρονοδρομολόγηση καθορίζεται ποιές διεργασίες θα τρέξουν σε κάθε κύκλο.

2)Κατανομή πόρων

Επιλογή των τύπων των στοιχείων υλικού και του αριθμού των στοιχείων για κάθε τύπο που πρέπει να περιλαμβάνονται στην τελική εφαρμογή.

3)Binding

η διαδικασία κατά την οποία καθορίζεται ποιός πόρος υλικού ή ποιός πυρήνας θα χρησιμοποιηθεί για κάθε χρονοδρομολογημένη διεργασία

4)Σύνθεση ελεγκτήΣχεδιασμός του τρόπου ελέγχου και χρονισμού.

5)Compilation της γλώσσας προδιαγραφής εισόδου στην εσωτερική αναπαράσταση.

6)Δυνατότητα παραλληλισμού

Λαμβάνοντας υπόψιν και τα παραπάνω θέματα, στόχος του High-Level Synthesis είναι η δημιουργία μιας RTL σχεδίασης, η οποία θα έχει την επιθυμητή συμπεριφορά, ενώ παράλληλα θα ικανοποιεί τους σχεδιαστικούς περιορισμούς που έχουν τεθεί και θα βελτιστοποιεί την δοσμένη συνάρτηση κόστους

3.3 RTL Synthesis

Στην ψηφιακή σχεδίαση κυκλωμάτων, Register Transfer Level (RTL) σχεδίαση είναι η σχεδίαση που μοντελοποιεί ένα σύγχρονο ψηφιακό κύκλωμα από την άποψη της ροής των ψηφιακών σημάτων (δεδομένα) μεταξύ των καταχωρητών του υλικού, καθώς και τις λογικές πράξεις που εκτελούνται στα εν λόγω σήματα.

Η σχεδίαση RTL χρησιμοποιείται σε γλώσσες περιγραφής υλικού (HDLs), όπως είναι η Verilog και η VHDL για υψηλού επιπέδου αναπαραστάσεις ενός κυκλώματος, από το οποίο μπορούν να προκύψουν χαμηλότερου επιπέδου αναπαραστάσεις και τελικά καλωδίωση.

3.4 Δημιουργία Περιφερειακού - Χρήση του εργαλείου

Ο κύριος στόχος μας είναι η δημιουργία του ενσωματωμένου συστήματος, που σχεδιάσαμε εικονικά στο OVP, σε πραγματική πλατφόρμα και συγκεκριμένα στην Xilinx Virtex-7 FPGA VC707 Evaluation Kit. Συνεπώς, θα χρειαστούμε τον κώδικα C που υπολογίζει τον αριθμό Fibonacci. Αυτό το πρόγραμμα είναι το ίδιο με αυτό της συνάρτησης dmaburst() που γράψαμε για το περιφερειακό του OVP και περιγράφουμε σε προηγούμενο κεφάλαιο. Μέσω του Vivado HLS θα το μετατρέψουμε σε Vhdl ώστε να μπορούμε να προγραμματίσουμε ως περιφερειακό στο FPGA.

Η διαδικασία που ακολουθήθηκε περιγράφεται αναλυτικά στα επόμενα.

3.4.1 Δημιουργία νέου project

Αρχικά, αφού ανοίξουμε το Vivado HLS, επιλέγουμε create new project για να αρχίσει η δημιουργία του δικού μας project.

Σχήμα 3.4- Open New Project

Στην συνέχεια, αφού ονομάσουμε το project μας πατάμε Browse και διαλέγουμε την τοποθεσία όπου θα αποθηκεύονται τα αρχεία του. Επίσης, επιλέγουμε C/C++ αφού ο κώδικας είναι γραμμένος σε C.

💫 New Vivado HLS Project	
Project Configuration Create Vivado HLS project of selected type	AG
Project name: fibonacci	
Location: C:\Users\George Top Level	Browse
 C/C++ SystemC 	
Rack Next S	Finish
A Dack Next >	Cancel

Σχήμα 3.5- Project Configuration

Πατώντας Next φτάνουμε στο σημείο που πρέπει να καθορίσουμε τα αρχεία που θα χρησιμοποιήσουμε για τη σύνθεση.

p Function: fib		
esign Files		
Name	CFLAGS	Add Files
fib.c		New File
		Edit CFLAGS
		Remove

Σχήμα 3.6- Add/Remove Files

Η συνάρτηση fib.c παρατίθεται παρακάτω:

```
/*non recursive fibonacci function*/
```

```
int fib(int i)
{
    int prev = -1;
    int result = 1;
    int sum;
    int j;
    for(j = 0;j <= i;++ j)
    {
        sum = result + prev;
        prev = result;
        result = sum;
    }
    return result;
}</pre>
```

Αφού καθορίσουμε την top function που θα συντεθεί μετά, αν υπάρχουν, μπορούμε να προσθέσουμε αρχεία TestBench τα οποία ουσιαστικά ελέγχουν εάν ο κώδικας που κάναμε σύνθεση δουλεύει σωστά. Εμείς δεν χρησιμοποιούμε testbench, συνεπώς το συγκεκριμένο πεδίο παραμένει άδειο.

		New Vivado HLS Project
H	technology	Solution Configuration Create AutoESL solution for selected techr
	Uncertainty:	Solution Name: solution1 Clock Period: 10
	-	Part Selection Part: xc7vx485tffg1761-2
sh Cancel	Back Finish	< Back
sł	Back Finisl	< Back

Σχήμα 3.7- Solution Configuration

Τέλος, ονομάζουμε την λύση που θα προκύψει με συγκεκριμένο όνομα, καθώς στη συνέχεια μπορεί να προκύψουν και άλλες λύσεις του ίδιου project με διαφορετικό FPGA, περιορισμούς, ταχύτητα ή άλλα τεχνικά χαρακτηριστικά. Επίσης επιλέγουμε το FPGA που θα χρησιμοποιήσουμε, στην προκειμένη περίπτωση το Virtex7. Πατώντας Finish, η δημιουργία του project ολοκληρώνεται και ανοίγει το περιβάλλον του Vivado HLS μαζί με όλες τις πληροφορίες και τα αρχεία που ορίσαμε κατά τη δημιουργία του.

Σχήμα 3.8- Hls Environment

3.4.2 Σύνθεση

Προς το παρών όμως, θα επικεντρωθούμε στα βήματα που θα ακολουθήσουμε ώστε να δημιουργήσουμε ένα Pcore με AXI bus από το Vivado HLS.

Όπως γνωρίζουμε το Pcore θα υπολογίζει την τιμή ενός αριθμού Fibonacci, ωστόσο θα πρέπει να επικεντρωθούμε ιδιαιτέρως στη δημιουργία του AXI bus που θα ενώνει τον επεξεργαστή με το Pcore για να επικοινωνούν. Για αυτό το λόγο προσθέσαμε στον κώδικα Fibonacci τα παρακάτω:

// Define the RTL interfaces

#pragma AP interface ap_hs port=i

#pragma AP interface ap_ctrl_hs port=return register

//Define the pcore interfaces and group into AXI4 slave "slv0"

#pragma APresource core=AXILiteS metadata="-bus_bundle slv0" variable=i

#pragma APresource core=AXILiteS metadata="-bus_bundle slv0" variable=return

Σχήμα 3.9- Source C Code

Πατώντας λοιπόν την επιλογή synthesis από τη γραμμή εργαλείων,

Σχήμα 3.10- Synthesis Task Bar Button

η σύνθεση ξεκινάει και μόλις ολοκληρωθεί επιτυχώς εμφανίζονται τα αποτελέσματά της :

💫 Viv	vado HLS - fibonacc	i (C:\Users\Geo	orge\fibonad	ci)					-	x
File	Edit Project Sol	ution Windo	w Help							
 *≱ D	ebug 💦 Synthesi	5 🖳 院	12 💩	@ %	5° <i>Q</i>	≪ - ₹	猕 ▾ ⊘ ▾│ ▶ ▾ ☑ ⊕│ íîì ▾ ☴│ ᅊ	9		
·····	💽 *fib.c 📄 fi	ib.rpt 🔀							8	
Å	Solution: so	olution1 /ed Jun 19 21:0	1:36 2013						^	
	User Assignmen	ts								\square
	 □□ Product Fan □□ Part: ◆ Top Model n ③ Target clock ③ Clock uncer 	nily: 5 name: f : period (ns): 1 tainty (ns): 1	virtex7 xc7vx485tffg fib L0.00 L.25	1761-2						
	Performance Es	timates							=	
	 Summary of Estimated of Summary of Best-case la Average-ca Worst-case Summary of Loop 1 Area Estimates 	timing analysi clock period (n: overall latence atency: ? se latency: ? latency: ? loop latency (is s): 1.63 sy (clock cyc clock cycle:	cles) s)						
	Summary									
		BRAM_18K	DSP48E	FF	LUT	SLICE				
	Component	-	-	-	-	-				
	Expression	-	-	0	103					
	FIFO	-	-	-	-	-				
	Memory	-	-	-	-	-				
	Multiplexer	-	-	-	98	-				
	Register	-	-	162	-	-				
	Total	0	0	162	201	0			-	

Σχήμα 3.11- HLS Results (1)

$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	A 153 194 44	olution	Window Help	,		-		-				_	 		-	-
bebug Synthesis * Tib.c ftb.rpt & * Hierarchical Multiplexer Count Power Estimate • Summary Component - Expression 10 FIFO - Multiplexer 9 Register 16 Total 2000 Below Synthesis • Hierarchical Register Count Interface Summary • Joint 100 FIFO - Multiplexer 9 Register 163 Total 2000 Bilterarchical Register Count Interface Summary • Interface Summary • Joint factor Interface Summary • Interface Summ	95 III II X		. 🐚 🗄 🕋 🐮	a 💿	🍓 🕾 🛛 📿 🤉	≪ - ☆ -	0.	· 🕨	- 🔽	H	e î	-	Ð			
$ \begin{array}{c} \bullet & \bullet $	oug 🔊 Synthe	sis .					-			-		, ,				
$ \begin{array}{c} \hline \textbf{bl} \textbf{keyster} \\ \hline \textbf{keyster} \\ \hline \textbf{Hierarchical Multiplexer Count} \\ \hline \hline \textbf{Power Estimate} \\ \hline \hline \textbf{Summary} \\ \hline \hline \hline \textbf{Component} & - \\ \hline \textbf{Expression} & 10 \\ \hline \textbf{FIFO} & - \\ \hline \textbf{Keyster} & \textbf{9} \\ \hline \textbf{Register} & 16 \\ \hline \textbf{Total} & \textbf{35} \\ \hline \textbf{Hierarchical Register Count} \\ \hline \hline \textbf{Iterface Summary} \\ \hline \hline \textbf{Iterface Summary} \\ \hline \hline \textbf{Object} & \underline{Type} & \underline{Scope} & \underline{IO Protocol} & \underline{IO Config} & \underline{Dir} & \underline{Bits} \\ \hline \textbf{ap_clk} & \underline{fib} & \underline{return value} & - & ap_ctrl_hs & \underline{register} & in & 1 \\ \hline \textbf{ap_start} & - & - & - & in & 1 \\ \hline \textbf{ap_cdne} & - & - & - & out & 1 \\ \hline \textbf{ap_return} & - & - & - & out & 1 \\ \hline \textbf{ap_return} & - & - & - & out & 1 \\ \hline \textbf{ap_return} & - & - & - & out & 32 \\ \hline \textbf{i} & \textbf{i} & \underline{scalar} & - & \underline{ap_hs} & - & in & 32 \\ \hline \end{array} $	*#bc [3]	fib rot S												_		2
B Hierarchical Multiplexer Count Power Estimate Summary $\boxed{Component \ 0}$ Expression 10 FFO FO Multiplexer 9 Register 16 Total 35 B Hierarchical Register Count Interface Summary Image: State in the intervalue int	± Kegister	IID.IPC ~											 _			
B Interactional Wultiplexer Count Power Estimate Summary																
Power Estimate Power Power Component Expression 10 FIFO Memory Multiplexer 9 Register 16 Total 35 B Hierarchical Register Count Interface Summary - 10 p_clk fib return value - ap_ctk fib return value - ap_start - - in ap_idle - - out 1 ap_return - - out 1 ap_idle - - out 1		n wurupie	exer Count													
Summary Component - Expression 10 FIFO - Multiplexer 9 Register 16 Total 35 Iterarchical Register Count Interface Summary - ap_ctrl_hs register 1 ap_rst - - - ap_start - - - ap_done - - - ap_idle - - - ap_irturn - - - i scalar	Power Estimat	e														
Power ComponentPower ExpressionExpression10EFFO-Memory-Multiplexer9Register16Total35Interface SummaryInterface SummaryInterface SummaryImage: Second State Sta	Summary															
Component-Expression10FIFO-Memory-Multiplexer9Register16Total35Interface SummaryInterface Summa		Power														
Expression10FIFO-Memory-Multiplexer9Register16Total35Interface SummaryInterface Summary	Component	-														
FIFO- MemoryMultiplexer9 RegisterRegister16 35Total35Befracchical Register CountInterface SummaryInterface Summ	Expression	10														
Memory- Multiplexer9 RegisterRegister16Total35Interface Register CountInterface SummaryInterfaces ap_clk fibreturn value- ap_ctrl_hs register ap_start - ap_actart - ap_idle - ap_idle - ap_return - ap_return - ap_actart - ap_idle - ap_actart - $ap_actart-ap_actart-ap_actart-ap_actart-ap_actart-ap_actart-ap_ac$	FIFO	-														
Multiplexer9 RegisterRegister16 35Hierarchical Register CountInterface SummaryInterface SummaryInterface SummaryScopeIO ProtocolIO ConfigDir Bits ap_ctlkBits nap_clkfib return value- ap_ctrl_nbs registerin1ap_startin1ap_idleout1ap_returnout1ap_idleout32iiscalar-ap_hs-in	Memory	-														
Register16Total35Hierarchical Register CountInterface Summary \bigcirc Interfaces \bigcirc ObjectTypeScopeIO ProtocolIO ConfigDirBitsap_clkfibreturn value-ap_ctri_hsregisterin1ap_startin1ap_idleout1ap_idleout32iiscalar-ap_hs-in	Multiplexer	9														
Total35Hierarchical Register CountInterface Summary \bigcirc Interfaces $\boxed{ap_clk}$ \boxed{Dip} ScopeIO ProtocolIO ConfigDirBits ap_clk \boxed{Dip} return value- ap_ctrl_hs registerin1 ap_rst in1 ap_start out1 ap_done out1 ap_idle out1 ap_return out32iiscalar- ap_hs -in	Register	16														
Hierarchical Register Count Interface Summary Interface Summary Interfaces	Total	35														
ap_clk fib return value - ap_ctrl_hs register in 1 ap_rst - - - - in 1 ap_start - - - - in 1 ap_done - - - in 1 ap_idle - - - out 1 ap_return - - - out 32 i i scalar - ap_hs - in	Interface Sum	Object	Туре	Scope	IO Protocol	IO Config	Dir	Bits								
ap_rst - - - - in 1 ap_start - - - in 1 ap_done - - - out 1 ap_idle - - - out 1 ap_idle - - - out 1 ap_return - - - out 32 i i scalar - ap_nb - in 32	ap_clk	fib	return value	-	ap_ctrl_hs	register	in	1								
ap_start - - - in 1 ap_done - - - out 1 ap_idle - - - out 1 ap_return - - - out 32 i i scalar - ap_hs in 32	ap rst	-	-	-	-	-	in	1								1
ap_done - - - out 1 ap_idle - - - out 1 ap_return - - - out 32 i i scalar - ap_hs - in 32		-	-	-	-	-	in	1								
ap_fore - - - - out 1 ap_return - - - - out 32 i i scalar - ap_hs - in 32	ap_start	-	-	-	-	-	out	1								
i i scalar - ap_hs - in 32	ap_start ap_done		-	-	-	-	out	22								
	ap_start ap_done ap_idle	-		-	an hs		in	32								
lapyid In 1	ap_start ap_done ap_idle ap_return	-	scalar		up_ns	-	in	1							1	2
i ap ack out 1	ap_start ap_done ap_idle ap_return i i ap_vld	- i	scalar	-	-											
	ap_start ap_done ap_idle ap_return i i_ap_vld i ap_ack	- i -	scalar -	-	-	-	out	1								
Export the report(.html) using the Export Wizard	ap_start ap_done ap_idle ap_return i i_ap_vld i_ap_ack	- i -	scalar - -	-	-	-	out	1								U.
Open the corresponding Design Viewer	ap_start ap_done ap_idle ap_return i i_ap_vld i_ap_ack Export the repo	- i - t(.html) u	scalar - - sing the <u>Expor</u> t	- - t Wizard	-	-	out	1								
Copyright (C) 2012 Xilinx Inc. All rights reserved.	ap_start ap_done ap_idle ap_return i i_ap_vld i_ap_ack Export the repo Open the corres	- i - t(.html) u	scalar - sing the <u>Expor</u> Design Viewer	- - t Wizard	-	-	out	1								

Σχήμα 3.12- HLS Results (2)

πλέον ο χρήστης μπορεί να ενημερωθεί για τα αποτελέσματα της σύνθεσης και γενικότερα να ελέγξει όποια παράμετρο επιθυμεί.

3.4.3 Export RTL

Έχοντας κάνει σύνθεση, πατάμε το πλήκτρο Export RTL και εμφανίζεται το παράθυρο:

Export RTL Dialog	X
Export RTL	#
Format Selection Pcore for EDK	▼ Identification
Options Image: Options	•
	Do not show this dialog box again.

Σχήμα 3.13- Export RTL

Επιλέγουμε Pcore for EDK, και για γλώσσα ανάλογα με το τι θέλουμε verilog ή vhdl και πατώντας ok δημιουργείται το Pcore στον impl φάκελο της πρώτης λύσης (solution_1).

Όταν ολοκληρωθεί η διαδικασία του export RTL, αμέσως θα δημιουργηθεί ένα Pcore, το οποίο στη συνέχεια και θα συνδέσουμε στον Microblaze μέσω ενός άλλου εργαλείου της Xilinx, του Platform Studio (XPS), όπως θα αναλύσουμε σε επόμενο κεφάλαιο.

Με την δημιουργία του Pcore, λοιπόν, μπορούμε να κλείσουμε το VivadoHLS, έχοντας πλέον δημιουργήσει ένα περιφερειακό σε γλώσσα περιγραφής υλικού, το οποίο μπορούμε να συνδέσουμε κατευθείαν με το υπόλοιπο ενσωματωμένο σύστημα. Οι κώδικες που δημιούργησε το VivadoHLS παρατίθενται στο παράρτημα.

3.5 Ενσωμάτωση του Pcore

Για να ενσωματώσουμε το Pcore που δημιουργήσαμε στον Microblaze επεξεργαστή χρησιμοποιώντας το εργαλείο XPS ακολουθούμε την διαδικασία:

 Αντιγράφουμε τον φάκελο με το Pcore που φτιάξαμε από τον φάκελο του Vivado HLS στον φάκελο του XPS, όπως φαίνεται στο σχήμα.

Σχήμα 3.14- Pcore Copy

Στο XPS, προσθέτουμε το Pcore από τον IP catalog επιλέγοντας το. Το νέο Pcore εμφανίζεται κάτω από το Project Local Pcores και ουσιαστικά περιλαμβάνει το περιφερειακό που σχεδιάσαμε στο OVP σε Γλώσσα Περιγραφής Υλικού και συγκεκριμένα σε Verilog. Ουσιαστικά λοιπόν, σε αυτό ακριβώς το σημείο επιτυγχάνεται η ένωση της εικονικής με την πραγματική πλατφόρμα.

Η παραπάνω εικόνα παρουσιάζει την πραγματική πλατφόρμα την οποία θα αρχίσουμε να δημιουργούμε στο επόμενο κεφάλαιο με τη βοήθεια του εργαλείου της Xilinx Planahead.

<u>Κεφάλαιο 4</u>

Planahead

Σχήμα 4.1- PlanAhead

4.1 Εισαγωγή

Μία από τις βασικότερες λειτουργίες κατά το σχεδιασμό ψηφιακών συστημάτων είναι η σύνθεση. Η σύνθεση μετασχηματίζει με μοναδικό τρόπο μια αφαιρετική γλωσσική περιγραφή σε κυκλωματική περιγραφή, αρχικά ανεξάρτητα από την τεχνολογία υλοποίησης (σύνθεση επιπέδου μεταφορών καταχωρητών – RTL), και στη συνέχεια βασισμένη στην τεχνολογία υλοποίησης (τεχνολογική σύνθεση). Η πρώτη, χρησιμοποιεί ως δομικές μονάδες συνηθισμένα ψηφιακά κυκλώματα, συνδυαστικά και ακολουθιακά (πύλες, πολυπλέκτες, κωδικοποιητές, καταχωρητές, μετρητές, κ.α.). Η δεύτερη χρησιμοποιεί ψηφιακά κυκλώματα που υπάρχουν στην τεχνολογική βιβλιοθήκη που παρέχεται από τον τελικό κατασκευαστή, όπως γεννήτριες συναρτήσεων LUT και flip-flop για τεχνολογίες FPGA ή τυπικά κελιά για τεχνολογίες ASIC.

Από τα πλέον διαδεδομένα περιβάλλοντα σύνθεσης στη βιομηχανία σήμερα είναι το περιβάλλον ISE Design Suite και περιλαμβάνει μια σειρά εργαλείων για υλοποίηση σε τεχνολογία Xilinx FPGA μέσα στα οποία βρίσκεται και το εργαλείο PlanAhead. Το PlanAhead είναι ένα προϊόν σχεδίασης και ανάλυσης λογισμικού που χρησιμοποιείται για τη σχεδίαση μεγάλων διατάξεων FPGA. Η τεχνολογία πυρήνα περιλαμβάνει ένα ιεραρχικό εργαλείο floorplanning που μπορεί να διασπάσει την φυσική σχεδίαση σε μικρότερα και πιο εύκολα διαχειρήσιμα κομμάτια, μειώνοντας έτσι τον χρόνο για την κατανόηση , την σχεδίαση, την επαλήθευση και την υλοποίηση του FPGA. Παρουσιάζει δηλαδή, με εποπτικό τρόπο τόσο της τεχνολογικής όσο και της μη τεχνολογικής σύνθεσης, και μπορεί να αποτελέσει χρήσιμη βοήθεια στην εκμάθηση των γλωσσών περιγραφής υλικού.

Σχήμα 4.2- Το βασικό μοντέλο του PlanAhead

4.2 Δημιουργία νέου project

Το εργαλείο PlanAhead υποστηρίζει τη δημιουργία διαφορετικού τύπου έργων, ανάλογα με τα διαθέσιμα αρχεία κώδικα. Η αρχική εκτέλεσή του (καλώντας planAhead σε περιβάλλον Linux ή πατώντας το αντίστοιχο εικονίδιο σε περιβάλλον Windows), έχει ως αποτέλεσμα την εμφάνιση της αρχικής οθόνης του σχήματος 4.3, από την οποία ξεκινάει η διαδικασία δημιουργίας νέου έργου με την εντολή Create New Project.

PlanAhead	14.2			£ XILINX.
Getting	Started	Docume	ntation	
	Create New Project New Project Wizard will guide you through the process of selecting design sources and a target device for a new project.		Release Notes Guide Information about installation and new IDS features in this release.	
	Open Project Open any previously created project.		User Guide More detailed info on PlanAhead commands, dialogs, and buttons.	
(<u>)</u>	Open Recent Project Open one of the most recently used projects.	P	Methodology Guides Further assistance adopting PlanAhead flows.	
	Open Example Project Open one of the tutorial projects.		PlanAhead Tutorials Invaluable for first time users or to try new features.	
1 Console				

Σχήμα 4.3- New Project

Το αποτέλεσμα της εντολής είναι η εμφάνιση του εισαγωγικού παραθύρου του σχήματος 4.4, και στη συνέχεια του παραθύρου του σχήματος 4.5, στο οποίο καθορίζονται το όνομα και η θέση (υποκατάλογος) του νέου έργου. Ο υποκατάλογος αυτός δεν είναι απαραίτητο να περιέχει αρχεία κώδικα, αυτά αντιγράφονται αυτόματα από το εργαλείο στην κατάλληλη θέση.

New Project	×
	Create a New PlanAhead Project This wizard will guide you through the creation of a new project To create a PlanAhead project you will need to provide a name and a location for your project files. Next, you will specify the type of flow you'll be working with. Finally, you will specify your project sources and choose a default part.
PlanAhead	To continue, click Next.
	< Back Next > Finish Cancel

Σχήμα 4.4- Create New PlanAhead Project

💽 New Project	×
Project Name Enter a nam	e for your project and specify a directory where the project data files will be stored
Project name:	project_2
Project location:	C:/Users/George
🔽 Create Proje	ect Subdirectory
Project will be cre	eated at: C:/Users/George/project_2
	< Back Next > Finish Cancel

Σχήμα 4.5- Project Name

Στη συνέχεια εμφανίζεται το παράθυρο του σχήματος 4.6, όπου επιλέγονται τα αρχεία που επιθυμούμε να συμπεριλάβουμε στο project σε γλώσσα Verilog ή Vhdl. Τα αρχεία αυτά θα περάσουν από σύνθεση και μέσω του Planahead θα διαμορφώσουν το FPGA.

New Pro	ject r ces	_						
Specify and add	HDL and d it to you	netlist files, Ir project. Y	or directories cont ou can also add an	aining HDL a d create so	nd netlist files, to add to your p rces later.	roject. Create a ne	w source file on disk	K
Id	Name	Library	HDL Source for	Location				
								×
								•
								F
			Add Files.		Add Directories	reate File		
Scan	and Add F	RTL Include	Files into Project					
🗸 Сору	Sources i	nto Project						
V Add S	ources fr	om Subdire	ctories					
Target	Language	e: Verilog	~					
					< Back	Next >	Finish	Cancel

Σχήμα 4.6- Add Sources

Πατώντας την επιλογή Next εμφανίζεται το παράθυρο προαιρετικής εισαγωγής αρχείου περιορισμών (σχήμα 4.7), που έχει να κάνει με την τελική υλοποίηση και αρχικά μπορεί να μείνει κενό.

Constraint File	Location					7
						2
		Add Fi	es Creat	te File		

Σχήμα 4.7- Add Constrains

Ακολουθεί το παράθυρο επιλογής μονάδας υλοποίησης (σχήμα 4.8), όπου επιλέγεται η μονάδα FPGA στην οποία θα γίνει υλοποίηση. Επιλέγοντας στοιχεία όπως οικογένεια μονάδων (Family) ή συσκευασία (Package), η λίστα μονάδων περιορίζεται σημαντικά και μπορούμε ευκολότερα να εντοπίσουμε αυτή που μας ενδιαφέρει.

Choose a	't default Xilin)	part or bo	oard for your proje	ct. This can be c	hanged late	r.			4
									E
Specify	Filter								
Parts	Product	t category	All		*	Package	All Remaining		-
Pearde		Eamily	Virtex-7			Speed grade			-
Doarus		r enniny Sub-⊏aasiluu	Virtex-7			Town mode	Air Keinaining	Air Remaining	
	2	Sub-Hamily	virtex-7		· · · ·	Temp grade	C		-
					Reset All Fi	Iters			
Search: Q-									
Device		I/O Pin	Available	LUT	ElinElons	Block	DSPs	Gb	PCI
o e nee		Count	IOBs	Elements	i upi iopo	RAMs	00.0	Transceivers	Buse
촂 xc7vx485t	ffg1157-1	1,157	600	303600	607200	1030	2800	20	4
xc7vx485t	ffg1158-3	1,158	350	303600	607200	1030	2800	48	4
촂 xc7vx485t	ffg1158-2	1,158	350	303600	607200	1030	2800	48	4
촂 xc7vx485t	ffg1158-2L	1,158	350	303600	607200	1030	2800	48	4
xc7vx485t	ffg1158-1	1,158	350	303600	607200	1030	2800	48	4
촂 xc7vx485t	ffg1761-3	1,761	700	303600	607200	1030	2800	28	4
👂 xc7vx485t	ffg1761-2	1,761	700	303600	607200	1030	2800	28	4
xc7vx485t	ffg1761-2L	1,761	700	303600	607200	1030	2800	28	4
xc7vx485t	ffg1761-1	1,761	700	303600	607200	1030	2800	28	4
	ffa 1927-3	1,927	600	303600	607200	1030	2800	56	4
> xc7vx485t									

Σχήμα 4.8- FPGA Choice

Τέλος, εμφανίζεται το παράθυρο περίληψης επιλογών (σχήμα 4.9), μετά το οποίο και πατώντας Finish δημιουργείται το νέο έργο και εμφανίζεται η αρχική οθόνη του, όπως εικονίζεται στο σχήμα 4.10.

New Project	×
	New Project Summary
	A new RTL project named 'project_2' will be created.
	No source files or directories will be added. Use Add Sources to add them later.
	No Configurable IP files will be added. Use Add Sources to add them later.
	No constraints files will be added. Use Add Sources to add them later.
	 The default part and product family for the new project: Default Part: xc7vx485tffg1761-2 Product: Virtex-7 Family: Virtex-7 Package: ffg1761 Speed Grade: -2
PlanAhead	To create the project, dick Finish
	< Back Next > Finish Cancel

Σχήμα 4.9- New Project Summary

Η αρχική οθόνη του νέου έργου είναι πολύ πλούσια σε εργαλεία και πληροφορίες.

Σχήμα 4.10- Κεντρικό Παράθυρο Σχεδίασης του PlanAhead

Συνοπτικά, στο κέντρο εμφανίζεται το παράθυρο κώδικα, το οποίο περιέχει όλα τα αρχεία κώδικα και περιορισμών του έργου. Πατώντας δεξί κουμπί πάνω σε αυτά, εμφανίζεται ένα μενού πλούσιο σε εντολές. Για παράδειγμα, η εντολή Find in Files. μπορεί να μας βοηθήσει να βρούμε φράσεις (π.χ. ονόματα σημάτων ή θυρών Ε/Ε) κοινές σε όλα τα αρχεία του έργου (πολύ χρήσιμο για μεγάλα σχέδια). Αριστερά, όπως εικονίζεται στο σχήμα 4.11 είναι το παράθυρο διαχείρισης έργου, από το οποίο δίνονται εντολές για τα βήματα που επιθυμεί να κάνει ο σχεδιαστής και χωρίζεται σε τρία πεδία που αντιστοιχούν σε αντίστοιχες φάσης σχεδιασμού: Synthesis (μη τεχνολογική σύνθεση), Implementation (τεχνολογική σύνθεση) και Programm and Debug (δημιουργία αρχείου Bitstream - υλοποίηση). Τέλος, δεξιά στην αρχική οθόνη νέου έργου, βρίσκεται το παράθυρο πολλαπλών πληροφοριών, στο οποίο παρουσιάζονται όλα τα αποτελέσματα.

Flow Navigator	~
🔍 🛣 🖨	
4 Project Manager	
🏀 Project Settings	
🔂 Add Sources	
💶 IP Catalog	
🔍 Run Behavioral Simulation	
A RTL Analysis	
Open Elaborated Design	
 Synthesis 	
🍪 Synthesis Settings	
📚 Run Synthesis	
Open Synthesized Design	
 Implementation 	
🏀 Implementation Settings	
Run Implementation	
Open Implemented Design	
Program and Debug	
🚳 Bitstream Settings	
🔚 Generate Bitstream	
😔 Launch ChipScope Analyzer	
퉬 Launch iMPACT	
Σχήμα 4.11- Flow Navigator	

<u>4.3 Εφαρμογή</u>

Στην δική μας εφαρμογή, αφού φτιάξαμε το νέο project με τη βοήθεια του Planahead, το επόμενο βήμα είναι να δημιουργήσουμε την πλατφόρμα με τον επεξεργαστή Microblaze, κάνοντας χρήση ενός άλλου εργαλείου της Xilinx, το Xilinx Platform Studio, που είναι ειδικό για αυτή τη δουλειά όπως αναλύεται σε επόμενο κεφάλαιο.

Για να το πετύχουμε αυτό κάνουμε δεξί κλικ στο Design Source, που βρίσκεται στο παράθυρο με τα Sources και επιλέγουμε από τις επιλογές που παρουσιάζονται Add Sources.

Σχήμα 4.12- How To Add Sources

Όπως αναφέραμε και στην αρχή θέλουμε να δημιουργήσουμε ένα ενσωματωμένο σύστημα. Ως συνέπεια, επιλέγουμε Add or Create Embedded Sources. Αυτή η επιλογή θα επιτρέψει την προσθήκη του Microblaze στο σύστημά μας.

Add Sources	
	Add Sources This guides you through the process of adding and creating sources for your project Add or Create Constraints Add or Create Design Sources Add or Create Simulation Sources Add or Create DSP Sources Add or Create Embedded Sources Add or Create Embedded Sources Add Existing IP Specify embedded sub-design units by selecting XMP source files
PlanAhead	To continue, dick Next < Back Next > Finish Cancel

Σχήμα 4.13- Add Sources

Αμέσως εμφανίζεται ένα παράθυρο στο οποίο ο χρήστης έχει δύο επιλογές. Ή να προσθέσει ένα σύστημα ή να δημιουργήσει καινούριο. Επειδή εμείς δεν έχουμε δημιουργήσει κάποιο ακόμη, θα επιλέξουμε Create Sub-Design.

Add So	urces					-	-			×
dd or (Specify	Create Er y embedde	nbedded Sour d sub-design unit	r ces s by selecting	XMP source files						
Id	Name	Location			 					
										× •
										F
			(Add Sub-Design	Create Sul	o-Design				
						Create Sub Create an < Back	-Design embedded su Next >	ub-design un Finish	it and add i	t to your Cancel

Σχήμα 4.14- Add or Create Embedded Sources

Ένα μικρό παράθυρο ζητάει να ονομάσουμε το embedded source που θα δημιουργήσουμε:

	a new embedded source and	add it to your project	
Module name:	module_new		0
		ОК	Cancel

Σχήμα 4.15- Module Name

Μέχρι αυτό το σημείο έχουμε επιλέξει όλα τα βασικά στοιχεία που απαιτούνται για τη δημιουργία της πραγματικής πλατφόρμας και πλέον αρχίζουμε να εργαζόμαστε στο Xilinx Platform Studio, όπως ακριβώς θα περιγράψουμε στο κεφάλαιο 5.

<u>Κεφάλαιο 5</u>

Embedded Development Kit (EDK)

5.1 Εισαγωγή στο Embedded Development Kit (EDK)

Το EDK, Embedded Development Kit, αποτελεί μία συλλογή σχεδιαστικών εργαλείων, καθώς και πολλών περιφερειακών, με τα οποία είναι δυνατόν να χτιστεί ένα ενσωματωμένο σύστημα επεξεργαστή, χρησιμοποιώντας τον MicroBlaze ή τον PowerPC. Τα σχεδιαστικά εργαλεία χωρίζονται σε δύο μεγάλες κατηγορίες, μία που αφορά τα εργαλεία σχεδιασμού του υλικού (hardware) και μία που αφορά το λογισμικό (software). Όλα τα εργαλεία λειτουργούν σε συνεργασία με το XPS, Xilinx Platform Studio. Το κομμάτι του σχεδιασμού του υλικού περιλαμβάνει την αυτόματη δημιουργία μιας πλατφόρμας υλικού, hardware platform, και την μετέπειτα τροποποίηση και επέκταση αυτής, ώστε να περιλαμβάνει τις επιθυμητές hardware λειτουργίες του χρήστη. Στο σημείο αυτό, το EDK διαθέτει επίσης ιδιοκτησίας πνευματικής ενσωματωμένους πυρήνες (Intellectual Property) συμπεριλαμβανομένων επεξεργαστών και περιφερειακών. Τέλος, στο κομμάτι που αφορά το λογισμικό, ο χρήστης προσθέτει τις δικές του software εφαρμογές μέσω του Software Development Kit (SDK).

Συνοπτικά, το EDK περιλαμβάνει τα εξής εργαλεία και λειτουργίες:

Hardware Development and Verification

•Xilinx Platform Studio: Ένα ολοκληρωμένο σχεδιαστικό περιβάλλον στο οποίο μπορεί να δημιουργηθεί ένα ενσωματωμένο hardware σχέδιο.

•<u>Base System Builder Wizard</u>: Επιτρέπει την γρήγορη δημιουργία ενός 24λειτουργικού ενσωματωμένου συστήματος χρησιμοποιώντας όλα τα διαθέσιμα χαρακτηριστικά της αναπτυξιακής πλακέτας.

•<u>Create and Import Peripheral Wizard:</u> Βοηθάει τον σχεδιαστή να προσθέσει τα δικά του περιφερειακά στο σύστημα.

•<u>Coprocessor Wizard:</u> Επιτρέπει την προσθήκη ενός coprocessor σε μια CPU.

•<u>Platform Generator (PlatGen)</u>: Δομεί το προγραμματιζόμενο σύστημα στο τσιπ στη μορφή μιας HDL και συνθέτει τα αρχεία netlist.

•<u>XPS Command Line</u>: Επιτρέπει την εκτέλεση των ροών ενσωματωμένων σχεδίων από το command line.

•<u>Bus Functional Model</u>: Βοηθάει στην απλοποίηση της επαλήθευσης ενός περιφερειακού δημιουργώντας ένα μοντέλο του περιβάλλοντος του διαύλου.

•Simulation Model Generator (Simgen): Δημιουργεί το μοντέλο προσομοίωσης του υλικού.

•Simulation Library Compiler (Compxlib): Συνθέτει τις βιβλιοθήκες προσομοίωσης του EDK για τον προσομοιωτή.

Software Development and Verification

•Software Development Kit: Είναι ένα ολοκληρωμένο σχεδιαστικό περιβάλλον που επιτρέπει την ανάπτυξη software εφαρμογών.

•Library Generator (Libgen): Κατασκευάζει ένα BSP (Board Support Package) που περιλαμβάνει μια προσαρμοσμένη συλλογή βιβλιοθηκών λογισμικού, drivers και ΛΣ.

•GNU Compiler Tools: Δημιουργεί μια software εφαρμογή βασιζόμενη στις πλατφόρμες που δημιουργήθηκαν από το Libgen.

•<u>Xilinx Microprocessor Debugger:</u> Χρησιμοποιείται για download του λογισμικού και αποσφαλμάτωση.

•<u>GNU Debugger:</u> Είναι ένα ολοκληρωμένο σχεδιαστικό περιβάλλον που χρησιμοποιείται για την αποσφαλμάτωση του λογισμικού.

•<u>Bitstream Initializer (Bitinit)</u>: Ανανεώνει ένα Bitstream για να αρχικοποιήσει την on-chip μνήμη εντολών με το εκτελέσιμο του software.

• <u>Debug Configuration Wizard</u>: Αυτοματοποιεί τις διαδικασίες αποσφαλμάτωσης τόσο της πλατφόρμας υλικού όσο και λογισμικού.

•System ACE File Generator (GenACE): Δημιουργεί ένα αρχείο Xilinx System ACE που βασίζεται στο Bitstream και το εκτελέσιμο του software.

•Flash Memory Programmer: Επιτρέπει τη χρήση του επεξεργαστή για τον προγραμματισμό της on-board Common Flash Interface (CFI).

•<u>Format Revision Tool and Version Management Wizard</u>: Ανανεώνει τα αρχεία του project στο τελευταίο format. Ο Version Management Wizard βοηθάει στη μετατροπή παλαιότερων project στην παρούσα έκδοση.

<u>•Platform Specification Utility (PsfUtility) and PSF2Edward Program:</u> Η PsfUtility επιτρέπει την αυτόματη δημιουργία Microprocessor Peripheral Definition (MPD) αρχείων.

<u>• Microprocessor Peripheral Definition Translation tool (MPDX)</u>: Το MPDX είναι ένα εργαλείο μετάφρασης.

Από τα παραπάνω εργαλεία που παρουσιάστηκαν, θα επεκταθούμε σε εκείνα που χρησιμοποιήθηκαν για τη σχεδίαση και την υλοποίηση του συστήματος μας.

5.1.1 Ροή Σχεδίασης Ένθετου Συστήματος

Το παρακάτω διάγραμμα δείχνει τη γενική ροή σχεδίαση ενός ολοκληρωμένου ένθετου συστήματος.

Σχήμα 5.1 – Ροή Σχεδίασης με το ΕDΚ

Όπως φαίνεται και στο σχήμα τα βασικά στάδια κατά τη διαδικασία της σχεδίασης είναι τα εξής:

- Ανάπτυξη του Hardware τμήματος της σχεδίασης
- Ανάπτυξη του Software τμήματος της σχεδίασης
- Έλεγχος της λειτουργικότητας της σχεδίασης
- Διαμόρφωση της διάταξης που θα "φορτωθεί" η σχεδίαση

5.2 Xilinx Platform Studio (XPS)

Σχήμα 5.2 – Xilinx Platform Studio (XPS)

5.2.1 Εισαγωγή

Το XPS είναι ένα ολοκληρωμένο περιβάλλον για την προδιαγραφή των ροών του λογισμικού και του υλικού ενός ενσωματωμένου συστήματος με επεξεργαστή. Προσφέρει αρχικά τη δυνατότητα να προσθέσουμε πυρήνες όπως επεξεργαστές και περιφερειακά, να μεταβάλουμε τις παραμέτρους αυτών των πυρήνων και να κατασκευάσουμε συνδέσεις διαύλων και σημάτων για την δημιουργία ενός αρχείου MHS. Επιτρέπει επίσης τη δημιουργία και την παρακολούθηση του διαγράμματος block και της αναφοράς του συστήματος. Τέλος, επιτρέπει την εξαγωγή των αρχείων προδιαγραφών του υλικού στο SDK.

5.2.2 Διαχείριση του Project

Ένα νέο project μπορεί να ξεκινήσει με δύο τρόπους, όσες και οι επιλογές του υπόμενού New Project του μενού File. Επιλέγοντας Base System Builder, εμφανίζεται ένας βοηθός που παρέχει καθοδήγηση βήμα προς βήμα για την εκκίνηση του project, για περιορισμένο όμως αριθμό καρτών μεταξύ των οποίων είναι και η κάρτα Virtex 7 VC707 Evaluation Kit, ενώ με την επιλογή Platform Studio το νέο project πρέπει να συσταθεί από τον χρήστη μέσω του XPS ή να φορτωθεί από ένα ήδη υπάρχων αρχείο MHS. Ένα αρχείο XMP κρατάει πληροφορίες του project για λογαριασμό του XPS, όπως για παράδειγμα την θέση των πηγαίων αρχείων κώδικα μιας εφαρμογής. Εάν η υλοποίηση πρόκειται να γίνει σε κάρτα διαφορετική από αυτές που υποστηρίζει ο βοηθός υπάρχει και η δυνατότητα να αλλάξει είτε η συσκευή, είτε το πακέτο επιλέγοντας Project Options στο μενού Options.

5.2.3 Η διεπαφή του XPS

Στο σχήμα φαίνεται ότι το XPS χωρίζεται σε τέσσερα παράθυρα.

Σχήμα 5.3 – Περιβάλλον Σχεδίασης στο XPS

- Στο αριστερό μέρος του παραθύρου του XPS, το flow είναι χωρισμένο σε τρεις κατηγορίες. Το Design Flow με επιλογή το Run DRCs, το Implement Flow, όπου μπορούμε να δημιουργήσουμε το Netlist, το BitStream ή να κάνουμε Export το SDK και το Simulation Flow, όπου υπάρχει η δυνατότητα για Generate HDL Files και Simulator.
- Δίπλα ακριβώς, υπάρχει μία καρτέλα που ονομάζεται IP Catalog, όπου είναι δυνατόν να προστεθούν και να αφαιρεθούν cores (IPs) από το σύστημα, να ορισθούν οι συνδέσεις των επιλεχθέντων cores στους αντίστοιχους διαδρόμους δεδομένων, να ορισθούν οι θύρες των cores και τα χαρακτηριστικά τους, και τέλος να ορισθούν οι παράμετροι λειτουργίας για τα ίδια τα cores. Αξίζει να σημειωθεί

ότι τα Pcores που βρίσκονται σε αυτόν τον κατάλογο μπορεί είτε να είναι έτοιμα και να παρέχονται από το ίδιο το εργαλείο είτε να τα έχει δημιουργήσει ο ίδιος ο χρήστης, ανάλογα με τις απαιτήσεις και τις ανάγκες που έχει.

- Το κεντρικό και μεγαλύτερο παράθυρο ουσιαστικά απεικονίζει το όλο το ενσωματωμένο σύστημα μαζί με τα βασικά χαρακτηριστικά του και λεπτομέρειες, όπως τα Bus Interfaces, τα Ports και τις Addresses όλων των components, με Design Summary και με Graphical Design View.
- Το τρίτο από τα παράθυρα του XPS είναι αυτό που βρίσκεται στο κάτω μέρος, και το οποίο χρησιμεύει για την εμφάνιση των ενεργειών του XPS και μηνυμάτων που αφορούν λάθη ή ειδοποιήσεις του XPS ή των εργαλείων που αυτό καλεί.

5.2.4 Διαχείριση των πλατφόρμων υλικού, λογισμικού και προσομοίωσης

Προκειμένου ο χρήστης να τροποποιεί της πλατφόρμες υλικού, λογισμικού, και προσομοίωσης, το XPS διαθέτει μια σειρά από λειτουργίες που αλλάζουν τα χαρακτηριστικά και τις παραμέτρους του συστήματος.

Στο αρχείο System Assembly εμφανίζονται τρεις καρτέλες :

• Bus Interface

Στην καρτέλα αυτή βρίσκονται τα περιφερειακά που αποτελούν το σύστημα.Είναι δυνατόν να προστεθούν και να αφαιρεθούν cores (IPs) από το σύστημα, να ορισθούν οι συνδέσεις των επιλεχθέντων cores στους αντίστοιχους διαδρόμους δεδομένων και τέλος να ορισθούν οι παράμετροι λειτουργίας για τα ίδια τα cores.

Xilinx Platform Studi	io (EDK_P.28xd) - C:\Users\George\fib_new\fib_ne	w.srcs\sources_1\edk\module_ne	w\module_new.xmp - [System As	sembly View]		
The Edit View	Project Mardware Device Configuration	bebug simulation window		-		
i 🛄 📂 🔚 🔐 🛸	3 ⊆	1 🥹 🖭 📑 🔝 🗠 🗉	📴 📷 📾 📾 🔣 🕼	Tre.		
Navigator 🗙	IP Catalog ↔ □ ♂ ×	AALL	Bus Interfaces Ports	Addresses		Bus Interface Filters
		X X M M	Name Bus Name	IP Type	IP Version	By Connection
Design Flow	Description		axi4_0	🚢 axi_interco	1.06.a	Connected
	🖶 🐔 EDK Install		axi4lite_0	axi_interco	1.06.a	By Bus Standard
S	Analog	•	microblaze	Imb_v10	2.00.6	DXA 🔍
Run DRCs	Arithmetic	· · · · · · · · · · · · · · · · · · ·	microbiaze	microblaza	2.00.B	📝 LMB
iter broos	B-Bus and Bridge		microblaze_0	bram block	1.00.a	👜 📝 Xilinx Point To Point
	Clock, Reset and Interrupt		microblaze	🚟 Imb bram i	. 3.10.a	VIL_BRAM
Implement Flow	Communication Low-Speed		microblaze	💥 Imb_bram_i	. 3.10.a	XIL_BSCAN
4 m	DMA and Timer	· · · · · · · · · · · · · · · · · · ·	Linear_Flash	💥 axi_emc	1.03.a	
	- Debug		DDR3_SDRAM	💥 axi_7series	1.05.a	VIL MBIRACE2
Generate Natiet	EPGA Reconfiguration	l 🖌 k	debug_mod	🚢 mdm	2.10.a	By Interface Type
Generate Reality	General Purpose IO	1 *	DIP_Switche	axi_gpio	1.01.6	V Slaves
400	Interprocessor Communication	*	Dush Butto	axi_gpio	1.01.6	📝 Masters
1010	Memory and Memory Controller		B IC MAIN	axi_gpio	1.02.a	Master Slaves
Generate BitStream	B. Peripheral Controller		+ RS232 Uart 1	🚟 axi uartlite	1.02.a	- V Monitors
	Processor	I II.	fib_top_0	fib_top	1.00.a	✓ Targets
\frown	- USER		clock_gener	Clock_gene	4.03.a	V Initiators
EDK	Utility		proc_sys_re	≚ proc_sys_re	. 3.00.a	
Export Design	Verification					
	Video and Image Processing					
Circulation Class	Project Local PCores					
Simulation How	Project Peripheral Repository					
Generate HDL Files						
	۲ <u> </u>	Legend Master @Slave @Master/Sl	ave ⊯Target ≤Initiator ●Conne	acted OUnconnected	M Monitor	4 [III) b
	Search IP Catalog: Clear	Production License (pair Logenseded ODiscontinu	l) 🐴 License (eval) 😤 Loca ied	Pre Production	Beta 🕮 Development	
	Sector Project IP Catalog	System Assembly View	🔀 🛛 🔀 Design Sum	mary 🔛 🍪	Graphical Design View	2
	Console					++□8:
	A MARNING:EDK:4092 - IPNAME: ax MARNING:EDK:4092 - IPNAME: ax MARNING:EDK:4092 - IPNAME: ax	i_iig, INSTANCE: IIC_M i_gpio, INSTANCE: DIP_ i_7series_ddrx, INSTAN	AIN - Pre-Production v Switches_8Bits - Pre-P CE: DDR3_SDRAM - Pre-P	ersion not verif roduction versio roduction versio	ied on hardware for ar m not verified on hard m not verified on hard	chitecture 'virtex7' - <u>Ci\U</u> Ware for architecture 'virt Ware for architecture 'virt •
	Console \Lambda Warnings 🙆 Errors					
						EN 6:08 PM

Σχήμα 5.4 – Bus Interface

• Ports

Εδώ ορίζονται οι θύρες όλων των cores και τα χαρακτηριστικά τους, και μπορούμε να κάνουμε οποιεσδήποτε αλλαγές με δεξί κλικ πάνω στην κάθε θύρα.

😵 Xilinx Platform Studi	o (EDK_P.28xd) - C:\Users\George\fib_new\fib_r	new.srcs\sources_1\edk\module_new\module_new.xn	np - [System Assembly View]	the second s	
🍪 File Edit View	Project Hardware Device Configuration	Debug Simulation Window Help			_ @ ×
D 🖻 🕞 🖓 🔛	M M M M M M M	19 🐵 🖬 🟥 🕋 🗉 z z 🛛 🛤 🚂 鍕 👔	🗑 🍻 🛛 🕞 📼		
	IP Catalog ↔ □ 중 3	Bus Interfaces Ports Addresses			Port Filters
Navigator 🔨		Nume Connected Dark	Direction Remov	Class Erenud	By Interface
Design Flow		Invanie Connected Port	Direction Range	Class Freque	BUS
and the second se	Description	External Ports			IO IO
THE SA	EDK Install	(i) dxi4_0			By Connection
6	H Analog	(e) DAtaine_0			Defaults
Run DRCs	Arithmetic	(E) - microbiaze,			Connected
rear press	Bus and Bridge	microbiaze			Unconnected
	Glock, Reset and Interrupt	microbiaze_o			By Class
	Communication High-speed	microblaze			Clocks Only
	Dhat and Times	microblaze			Clocks
1 m	Debug	(i) Linear Flash			Resets Only
i i i i i i i i i i i i i i i i i i i	CDCA Passatismentian	ID DORS SORAM			- V Resets
Generate Netlist	B. General Purpose IO	(i) debug mod			Interrupts Only
	D International Communication	DIP Switche			- V Interrupts
400	Memory and Memory Controller	E LEDS BBits			V Others
1010	D. PCI	Push Butto			By Direction
Generate BitStream	Berinheral Controller	III IIC MAIN			Inputs
	B Processor	B R5232 Uart 1			✓ Outputs
	CD FIGURATION	(=) fib top 0			InOuts
BDK	CEL UNIES	interrupt	/ 0	INTERRUPT	
	Verification	(BUS_IF) Connected to BUS axi4lite_0			
Export Design	Video and Image Processing	aclk clock_generator_0::CLKOUT3	/ 1	CLK	
	Project Local PCores	(i) clock_gener			
Simulation Flow	Project Peripheral Repository0	• proc_sys_re			
Generate HDL Files					
	< <u> </u>	دا			к. <u>ш</u> . р
	Search IP Catalog: Clear	Master Slave Master/Slave Target (Ini Production License (paid) License (ev Superseded Discontinued	(al)	M Monitor Beta WDevelopment	
	Service Project Breaking	System Assembly View 🔀 🔀	Design Summary 🔝 🍪	Graphical Design View	×
	Console				+□ 8 3
	A MARNING:EDK:4092 - IPNAME: a MARNING:EDK:4092 - IPNAME: a MARNING:EDK:4092 - IPNAME: a	<pre>xi_ic, INSTANCE: IIC_MAIN - Pre-Pr xi_gpio. INSTANCE: DIP_Suitches_88: xi_7series_ddrx, INSTANCE: DDR3_SDR;</pre>	oduction version not verif ts - Pre-Production versio AM - Pre-Production versio	ied on hardware for a n not verified on har n not verified on har	chitecture 'virtex7' - <u>C:\U</u> ware for architecture 'virt ware for architecture 'virt ,
	Console 📣 Warnings 🔞 Errors				
	🧿 🥹 S 🛃	🥙 🛷 📄			EN 🔺 🙀 🎦 🌒 😽 6:36 PM 6/20/2013

Σχήμα 5.5 – Ports

• Addresses

Σε αυτήν την καρτέλα φαίνεται η διεθυνσιοδότηση του κάθε περιφερειακού. Μπορούμε να αλλάξουμε τη διεύθυνση μνήμης που καταλαμβάνει το κάθε περιφερειακό αλλάζοντας την high και base address του.

Σχήμα 5.6 – Addresses

5.2.5 Ιδιότητες του Project

Η επιλογή από το μενού Options του XPS, Options \rightarrow Project Options, ανοίγει ένα παράθυρο διαλόγου που επιτρέπει στον χρήστη να ορίσει διάφορες επιλογές του project.

Design	Flow			
Target Device				
Architecture	Device Size	Package	Speed Gra	de
virtex7	▼ xc7vx485t	✓ ffg1761	-2	
Show License Stat	us Dialog			
Show dialog w	when evaluation cores	are detected		
Show dialog v	when evaluation cores	are detected		
Advanced Options	(Optional)			
Advanced Options Project Peripheral	: (Optional) Repository Search Pa	ith		
Advanced Options Project Peripheral pcores	; (Optional) I Repository Search Pa	ith	Bri	owse
Advanced Options Project Peripheral pcores Custom Makefile (: (Optional) I Repository Search Pa (instead of XPS genera	ith ited Makefile)	Bri	owse
Advanced Options Project Peripheral pcores Custom Makefile (: (Optional) I Repository Search Pa înstead of XPS genera	ith ited Makefile)	Bro	owse
Advanced Options Project Peripheral pcores Custom Makefile (: (Optional) I Repository Search Pa (instead of XPS genera	ith ited Makefile)	Bra	owse
Advanced Options Project Peripheral pcores Custom Makefile (: (Optional) I Repository Search Pa înstead of XPS genera	ith ited Makefile)	Bri	owse

Σχήμα 5.7 – Project Options

5.3 Βοηθός δημιουργίας συστήματος, Base System Builder

Ο βοηθός Base System Builder (BSB), οδηγεί στην εύκολη και γρήγορη δημιουργία του project του XPS ενός συστήματος, το οποίο απευθύνεται σε μία συγκεκριμένη αναπτυξιακή κάρτα. Βασιζόμενο στην επιλογή της κάρτα, ο βοηθός BSB προσφέρει μια σειρά από επιλογές σχετικές με αυτό, που οδηγούν στην δημιουργία ενός βασικού και στοιχειώδους συστήματος. Με το πέρας του βοηθού, έχει δημιουργηθεί ένα αρχείο MHS του συστήματος αυτού, που περιέχει τις ιδιότητές του, το οποίο φορτώνεται σε ένα project του XPS. Από εκείνο το σημείο, είναι στην ευχέρεια του χρήστη να βελτιώσει περαιτέρω το σύστημα πριν την υλοποίηση.

Ο βοηθός ξεκινάει με την επιλογή File → New Project → Base System Builder.

Η φύση του βοηθού BSB είναι τέτοια ώστε να επιτρέπει την δημιουργία απλών και βασικών συστημάτων, χωρίς προχωρημένες αρχιτεκτονικές και ειδικές διαμορφώσεις, όπως χρήση άνω του ενός επεξεργαστή ή επεξεργασία του χάρτη διευθύνσεων. Παρά το γεγονός αυτό μετά την ολοκλήρωση του βοηθού υπάρχει η δυνατότητα επέκτασης και βελτίωσης του συστήματος μέσω του XPS. Επομένως το σύστημα που παράγει ο βοηθός BSB μπορεί να θεωρηθεί σαν την αφετηρία για την κατασκευή ενός πιο πολύπλοκου συστήματος.

5.4 Βοηθός δημιουργίας / εισαγωγής περιφερειακού

5.4.1 Εισαγωγή

Ο Create and Import Peripheral Wizard (CIP) βοηθάει στη δημιουργία περιφερειακών και στην εισαγωγή τους στο συμβατό project του XPS. Δημιουργεί επίσης οδηγούς, που βοηθούν στην υλοποίηση του περιφερειακού χωρίς να απαιτείται λεπτομερής κατανόηση των πρωτοκόλλων διαύλων,των συμβάσεων της ονοματολογίας ή των μορφών των ειδικών αρχείων διεπαφών που χρησιμοποιούνται στο XPS. Στην λειτουργία εισαγωγής περιφερειακού, το συγκεκριμένο εργαλείο δημιουργεί τα αρχεία διεπαφής και τις δομές καταλόγου που είναι απαραίτητα ώστε το περιφερειακό να είναι ορατό στα διάφορα εργαλεία του XPS. Μετά την εισαγωγή του, το περιφερειακό είναι διαθέσιμο στη βιβλιοθήκη των περιφερειακών του XPS. Με την εισαγωγή ή την δημιουργία ενός περιφερειακού, δημιουργούνται αυτόματα τα αρχεία Microprocessor Peripheral Definition (MPD) και Peripheral Analyze Order (PAO). Το αρχείο MPD καθορίζει την διεπαφή για το περιφερειακό ενώ το αρχείο PAO, ορίζει στο Platgen και το Simgen ποια αρχεία HDL απαιτούνται για τη σύνθεση ή την προσομοίωση του περιφερειακού καθώς και τη σειρά αυτών των αρχείων.

Για τις ανάγκες των εφαρμογών που σχεδιάστηκαν και υλοποιήθηκαν, ο βοηθός χρησιμοποιήθηκε με σκοπό την δημιουργία νέων περιφερειακών, όπως για παράδειγμα το περιφερειακό που χρησιμοποιούμε και υπολογίζει έναν αριθμό Fibonacci. Η διαδικασία της δημιουργίας ενός περιφερειακού μέσω του βοηθού αποτελείται από διαδοχικά παράθυρα διαλόγου τα οποία καθοδηγούν τον χρήστη. Στην καλύτερη περίπτωση το μόνο που απαιτείται από τον χρήστη είναι ο συγγραφή του σώματος ενός αρχείου HDL, στο οποίο περιγράφεται η λειτουργία του περιφερειακού. Ακόμα όμως και για την συγγραφή του κομματιού αυτού υπάρχουν κατευθύνσεις που δεν καθιστούν αναγκαία την πλήρη γνώση των σημάτων και της δομής που χρησιμοποιείται.

Κάθε περιφερειακό που είναι συμμορφώσιμο με τις συμβάσεις του EDK περιέχει τα τρία παρακάτω μέρη (components):

Σχήμα 5.8 – Peripheral Components

- Μία διεπαφή με τον διάδρομο στον οποίο συνδέεται. Η σύνδεση πραγματοποιείται μέσω των θυρών που διαθέτει το περιφερειακό, για να επικοινωνεί με το υπόλοιπο σύστημα
- Την διεπαφή IPIF, IP Interface. Μέσω της IPIF συνδέεται το περιφερειακό με το προηγούμενο component. Εκτελεί όλες τις βασικές λειτουργίες που χρειάζεται για την διαχείριση ενός περιφερειακού, όπως αποκωδικοποίηση διευθύνσεων, διαχείριση καταχωρητών, διαχείριση διακοπών, υποστήριξη DMA. Από όλες τις λειτουργίες που υποστηρίζει υλοποιούνται μονάχα όσες απαιτούνται από το περιφερειακό του χρήστη.
- Το τελευταίο component αποτελεί την ειδική λογική που χρησιμοποιεί το περιφερειακό για τις εφαρμογές του, και η οποία δεν καλύπτεται από την IPIF. Το κομμάτι αυτό αποκαλείται user-logic.

Η ένωση του user-logic με την IPIF γίνεται με την βοήθεια μιας σειράς από θύρες, που ονομάζονται IPIC, IP Interconnect, και απλουστεύουν την υλοποίηση του user-logic.

Συμπερασματικά, ένα από τα σημαντικότερα components κάθε νέου περιφερειακού, είναι η διεπαφή IPIF. Η μία πλευρά της συνδέεται με την διεπαφή ενός από τους διαθέσιμους διαδρόμους δεδομένων και η άλλη με την διεπαφή IPIC, την οποία υλοποιεί το περιφερειακό του χρήστη. Η IPIC δεν διαφοροποιείται ανάλογα με τον διάδρομο δεδομένων που χρησιμοποιείται και είναι ειδικά σχεδιασμένη για να συνεργάζεται με ευκολία με το περιφερειακό. Η διεπαφή IPIF προσφέρει μία σειρά από βασικές, και άλλες πιο σύνθετες, λειτουργίες οι οποίες είναι στην διάθεση του χρήστη για να τις επιλέξει. Μια περιγραφή των λειτουργιών που προσφέρονται από την διεπαφή IPIF δίνεται στο σχήμα 5.9.

Λειτουργίες IPIF	Περιγραφή
Μηδενισμός (reset) από εφαρμογή, και καταχωρητής πληροφορίας, Module Information Register (MIR)	Το περιφερειακό διαθέτει μία ειδική διεύθυνση, μόνο για γράψιμο, όπου όταν γράφεται μία συγκεκριμένη λέξη, η διεπαφή IPIF δημιουργεί ένα σήμα μηδενισμού για το περιφερειακό. Με τον τρόπο αυτό το περιφερειακό μπορεί να μηδενιστεί από μία εφαρμογή λογισμικού. Το περιφερειακό έχει επίσης έναν καταχωρητή, μόνο για ανάγνωση που προσδιορίζει την έκδοση του περιφερειακού
Μεταφορά δεδομένων κατά ριπές (burst transaction) και μεταφορές Cacheline	Η λειτουργία αυτή επιτρέπει, με μία μόνο αίτηση, την μεταφορά μεγάλου όγκου δεδομένων. Η μεταφορά Cacheline υποστηρίζεται μόνο για περιφερειακά που συνδέονται στον LMB
DMA	Η διεπαφή IPIF του περιφερειακού υποστηρίζει την απευθείας πρόσβαση της μνήμης, Direct Memory Access, χωρίς την παρέμβαση του επεξεργαστή Ισχύει μόνο για περιφερειακά συνδεδεμένα στον LMB
FIFO	Η διεπαφή IPIF του περιφερειακού υποστηρίζει την λειτουργία ουράς FIFO Ισχύει μόνο για περιφερειακά συνδεδεμένα στον LMB
Μηχανισμός διακοπών στο περιφερειακό	Το περιφερειακό διαθέτη μηχανισμό συλλογής και διαχείρισης διακοπών. Το user-logic και η διεπαφή IPIF, παράγουν μία γραμμή εξόδου διακοπών, προερχόμενη από το περιφερειακό
Καταχωρητές ελεγχόμενοι από το λογισμικό	Το περιφερειακό διαθέτει έναν αριθμό καταχωρητών, οι οποίοι είναι προσβάσιμοι μέσω των εφαρμογών λογισμικού, με δικές τους διευθύνσεις.
Λειτουργία του user-logic σαν κυρίαρχο (master) περιφερειακό	Περιλαμβάνει τα σήματα της διεπαφής IPIC που αφορούν τις λειτουργίες κυρίαρχου (master) περιφερειακού. Συνοδεύεται και από απλό παράδειγμα, σε HDL, για το πως ελέγχεται ένα κυρίαρχο user-logic Ισχύει μόνο για περιφερειακά συνδεδεμένα στον LMB
Πολλαπλές περιοχές διευθύνσεων στο user-logic	Γεννά σήματα επίτρεψης για κάθε περιοχή διευθύνσεων, σε αντίθεση με το σήμα επίτρεψης που γεννάτε για κάθε καταχωρητή πυο ελέγχεται από λογισμικό. Η λειτουργία είναι χρήσιμη για περιφερειακά που χρησιμοποιούν πολλές περιοχές διευθύνσεων

Σχήμα 5.9 – Οι λειτουργίες της διεπαφής IPIF

5.5 Software Development Kit (SDK)

Σχήμα 5.10 – Xilinx SDK

To SDK παρέχει ένα αναπτυξιακό περιβάλλον για εφαρμογές λογισμικού και βασίζεται στο open-source standard του Eclipse. Υποστηρίζει την ανάπτυξη εφαρμογών λογισμικού σε συστήματα ενός ή δύο επεξεργαστών σε ομαδικό περιβάλλον (team environment). Εισάγει την περιγραφή της hardware πλατφόρμας που δημιουργεί το XPS. Επίσης το SDK έχει τη δυνατότητα να δημιουργεί και να τροποποιεί Board Support Packages (BSPs) για τρίτα ΛΣ παρέχοντας παράλληλα παραδείγματα για τον έλεγχο της λειτουργικότητας τόσο του hardware όσο και του software. Τέλος, διαθέτει ένα ολοκληρωμένο περιβάλλον για την απρόσκοπτη αποσφαλμάτωση και χαρακτηρισμό ενσωματωμένων συστημάτων.

5.6 Συνέχεια Εφαρμογής

Στο προηγούμενο κεφάλαιο είχαμε διακόψει την περιγραφή του flow στο σημείο όπου αρχίζουμε να δουλεύουμε με το Xilinx Platform Studio. Ξεκινώντας θα επιλέξουμε να βοηθηθούμε από τον Base System Builder.

Σχήμα 5.11 – Base System Builder

Και σε νέα καρτέλα θα επιλέξουμε το σύστημα που θα δημιουργηθεί να χρησιμοποιεί το AXI System για να επικοινωνεί με τα περιφερειακά του. Στην ουσία είναι και η μόνη επιλογή αφού το Platform Studio δεν αφήνει να επιλεγεί κάτι διαφορετικό.

New Proj Project I	ect
Select ar	Interconnect Type
۲	AXI System
	AXI is an interface standard recently adopted by Xilinx as the standard interface used for all current and future versions of Xilinx IP and tool flows. Details on AXI can be found in the AXI Reference Guide on Xilinx.com.
	PLB System
	PLB is the legacy bus standard used by Xilinx that supports current FPGA families, including Spartan6 and Virtex6. PLB IP will not support newer FPGA families, so is not recommend for new designs that may migrate to future FPGA families. Details on PLB can be found in the PLBv46 Interface Simplifications document on xilinx.com.
Select Ex	isting .bsb Settings File(saved from previous session)
	Browse
Set Proje	ct Peripheral Repository Search Path
	Browse

Σχήμα 5.12 – AXI System

Στην συνέχεια, μέσω του βοηθού δημιουργίας συστήματος και των στοιχείων που είχαμε δώσει στο Planahead, εντοπίζεται η πλατφόρμα που θα χρησιμοποιήσουμε και επίσης επιλέγουμε και τον επεξεργαστή που θα ενσωμματώσουμε.

🍪 Base System Builder AXI flow	ि <u>×</u>
Board and System Selection	
Select a target development board and a System Template.	
Board	
Oreate a System for the Following Development Board (Pre-se	ected Device Info)
Board Vendor Xilinx Board Name Virter	-7 VC707 Evaluation Platform 💌 Board Revision B
Create a System for a Custom Board	
Board Configuration	
Architecture virtex7 💌 Device xc7vx485t 💌	Reference Clock Frequency 200.00 💌 MHz
Package ffg1761 v Speed Grade -2 v	Reset Polarity Active High 👻 🔲 Use Stepping 🔍
Select a System	
Single MicroBlaze Processor System	tem Information
Dual MicroBlaze Processor System Th	s system consists of one instance of MicroBlaze with external memory and
co	including used peripherals such as GART, GEO, FIC, Ethernet etc. Peripherals are inected on a shared AXI interconnect, while DDR memory is connected on a AXI
int Cu	connect configured as a crossbar. Click Next to modify the default system. stom boards do not have default peripherals and need to be selected on the
ne	d page.
Op	imization Strategy
۲	Area 💿 Throughput
Related Information	
Vendor's Website	<u> </u>
Vendor's Contact Information	
Third Party Board Definition Files Download Website	E
The VC707 board is intended to showcase and demonstrate virte	c-7 technology. The vc707 board utilizes Xilinx Vintex-7 XC7VX485T-FF1761
Distform Elseb 1KB TIC FEDROM CDU Debug connectors and PSC	22 cerial port '
More Info	Next > Cancel

Σχήμα 5.13 – Board and System Selection

Στο επόμενο βήμα διαλέγουμε απλώς κάποια by default περιφερειακά που θέλουμε να έχει το σύστημά μας και πατώντας Finish ολοκληρώνεται η δημιουργία του.

Base System Builder AXI flow Processor, Cache, and Peripheral Configuration Configure the processor(s). To add a peripheral, drag it from parameter, click on the peripheral.	n the "Available	Peripherals" list to the Included Per	ripherals list. To co	nfigure a core
Processor Frequency 100 MHz				
Processor Configuration				
Select a Processor		microblaze_0		
microblaze_0		Enable Floating Point Unit		
		Local Memory Size	8 KB	•
		Instruction Cache Size	8 KB	
		Data Cache Size	8 KB	
Peripheral Names → IO Devices → Internal Peripherals → axi_bram_ctrl → axi_timebase_wdt → axi_timer	Add > < Remove	Core DDR3_SDRAM (Cached) Core DIP_Switches_BBits Core: axi_gpio IC_MAIN Core: axi_gpio LEDz_BBits Core: axi_gpio Linear_Flash Core: axi_emc Push_Buttons_5Bits Core: axi_gpio RS232_Uart_1 Core: axi_uartlite, Baud Rate	te: 9600, Data	Parameter axi_7series_ddrx
NOTE: Base System Builder always enables MicroBlaze cach	nes, All memorie	es connected to the AXI4 interconne	ect are cached.	
More Into		< Ba	ack Finis	sh Cancel

Σχήμα 5.14 – Processor, Cache and Peripheral Configuration

5.6.1 Εφαρμογή του Βοηθού για προσθήκη του περιφερειακού fib στον Microblaze

Στην συγκεκριμένη ενότητα θα περιγράψουμε αναλυτικά την ένωση του Pcore που δημιουργήθηκε από το εργαλείο VivadoHLS με την πλατφόρμα στην οποία έχουμε συνθέσει τον Microblaze.

Ο βοηθός ξεκινά επιλέγοντας Hardware → Create or Import Peripheral Wizard. Επιλέγοντας το Import Existing Peripheral, ο χρήστης καλείται να αποφασίσει εάν θα αποθηκεύσει τα αρχεία, και την ειδική δομή φακέλου που ακολουθούν, μέσα στους φακέλους του τρέχοντος project ή σε κάποια τοποθεσία ειδική για όλα τα περιφερειακά του χρήστη.

8	Import Peripheral		×
	Peripheral Flow Indicate if you want to create a new peripheral of	or import an existing peripheral.	E3
	This tool will help you create templates for a new ED and directory structures required by EDK will be gene	CIP, or help you import an existing EDK IP into an XPS project or EDK repository. The interface f rated.	iles
		Select flow	-
	Create Templates	Oreate templates for a new peripheral	
	Ω	 Import existing peripheral 	
	Implement/Verify	Flow description	====
		This tool will help you import a fully implemented EDK compliant peripheral into an XPS project	t
	Import to YPS	or EDK repository. Such peripherals need to have ports and parameters that conform to the conventions required by EDK.	8.8
	import to AP3		
			_
(More Info	< Back Next > Can	cel

Σχήμα 5.15 – Peripheral Flow

😵 Create Peripheral		2 ×
Repository or Project Indicate where you want to store the new peripheral.		
A new peripheral can be stored in an EDK repository, or in an XPS project. When stored in an EDK repository, the peripheral can XPS projects.	be ac	cessed by multiple
To an EDK user repository (Any directory outside of your EDK installation path)		
Repository:	-	Browse
To an XPS project		
Project: C:\Users\George\fib_new\fib_new.srcs\sources_1\edk\module_new	-	Browse
Peripheral will be placed under:		
C:\Users\George\fib_new.fib_new.srcs\sources_1\edk\module_new\pcores		
More Info	ext >	Cancel

Σχήμα 5.16 – Repository or Project

Μετά την απόφαση για τον τόπο στον οποίο θα αποθηκευτούν τα αρχεία του νέου περιφερειακού, ο χρήστης πρέπει να δώσει την ονομασία του περιφερειακού που είναι ταυτόχρονα και αυτή του top-level HDL αρχείου στην ιεραρχία. Επίσης μπορούν να δοθούν αναγνωριστικά, όπως αριθμός κύριας και δευτερεύουσας αναθεώρησης και αναγνωριστικό συμβατότητας υλικού / λογισμικού.

lame and	Version	e of your peripheral	and if using the E	DK peripheral version nam	ing scheme.		2
00.00400.004			-		-		
Enter name	of the top	VHDL entity or Veri	log module of you	r peripheral.			
Name:	fibonacci						
√ Use ver	rsion: 1.0	00.a					
Major re	evision:	Minor revision:	Hardware/Sof	tware compatibility revision	n:		
1	÷	00 🚖	a				
Logical libr	rary name	: fibonacci_v1_00_a					
Logical libr All the file assumed	rary name es for this I to be avai	: fibonacci_v1_00_a peripheral are comp lable in the current ;	iled into the logica project or in the r	al library named above. If t	the peripheral refer ugh the current pro	rs to other logical libraries, oject settings, or will be imj	they are either ported along with
Logical libr All the file assumed the peripi	rary name es for this I to be avai heral. Sinc	: fibonacci_v1_00_a peripheral are comp lable in the current ; e all design files are	iled into the logica project or in the r compiled in the si	al library named above. If t epositories accessible thro ame directory, using logica	the peripheral refer ugh the current pro l libraries other than	s to other logical libraries, oject settings, or will be im n given above may cause n	they are either ported along with name space
Logical libr All the file assumed the peripi conflicts.	rary name es for this I to be avai oheral. Sinc	: fibonacci_v1_00_a peripheral are comp lable in the current; ie all design files are	iled into the logica project or in the r compiled in the si	l library named above. If epositories accessible thro ame directory, using logica	the peripheral refer ugh the current pro libraries other than	's to other logical libraries, oject settings, or will be im n given above may cause r	they are either ported along with name space
Logical libr All the file assumed the perip conflicts.	rary name es for this I to be avai heral. Sinc	: fibonacci_v1_00_a peripheral are comp lable in the current; e all design files are	iled into the logica project or in the r compiled in the si	al library named above. If t epositories accessible thro ame directory, using logica	the peripheral refer ugh the current pro libraries other than	s to other logical libraries, oject settings, or will be im n given above may cause r	they are either ported along with name space
Logical libr All the file assumed the peripi conflicts.	rary name es for this l to be avai sheral. Sinc	: fibonacci_v1_00_a peripheral are comp lable in the current ie all design files are	iled into the logica project or in the r compiled in the si	al library named above. If t epositories accessible thro ame directory, using logica	the peripheral refer ugh the current pro libraries other than	rs to other logical libraries, oject settings, or will be im n given above may cause r	they are either ported along with name space
Logical libr All the file assumed the peripi conflicts.	rary name es for this i to be avai wheral. Sinc	: fibonacci_v 1_00_a peripheral are comp lable in the current ie all design files are	iled into the logica project or in the r compiled in the si	al library named above. If f epositories accessible thro ame directory, using logica	the peripheral refer ugh the current pro libraries other than	s to other logical libraries, oject settings, or will be im n given above may cause r	they are either ported along with name space
Logical libr All the file assumed the perip conflicts.	rary name es for this to be avai wheral. Sinc	: fibonacd_v1_00_a peripheral are comp lable in the current re all design files are	iled into the logica project or in the r compiled in the si	al library named above. If 1 epositories accessible thro ame directory, using logica	the peripheral refer ugh the current pro libraries other than	s to other logical libraries, oject settings, or will be im n given above may cause r	they are either ported along with name space
Logical libr All the file assumed the perip conflicts.	rary name es for this to be avai heral. Sinc	: fibonacci_v1_00_a peripheral are comp lable in the current re all design files are	iled into the logica project or in the r compiled in the si	al library named above. If 1 epositories accessible thro ame directory, using logica	the peripheral refer ugh the current pro libraries other than	s to other logical libraries, oject settings, or will be im n given above may cause r	they are either ported along with name space

Σχήμα 5.17 – Name and Version

Επόμενο βήμα του χρήστη είναι η επιλογή του κώδικα σε Vhdl ή Verilog του Pcore που έχει δημιουργήσει και περιγράφουν τον τρόπο δημιουργίας του περιφερειακού.

Import Peripheral	
Source File Types Indicate the types of files that make up your peripheral.	
Indicate the types of files that make up your peripheral.	
I HDL source files (*.vhd, *.vhdl, *.v, *.vh)	
Netlist files (*.edn, *.edf, *.ngc, *.ngo)	
Documentation files (*.pdf, *.doc, *.bxt)	
More Info	< Back Next > Cancel

Σχήμα 5.18 – Name and Version

Μετά επιλέγουμε να ανεβάσουμε τα συγκεκριμένα αρχεία HDL στον βοηθό ώστε να χρησιμοποιηθούν για τη δημιουργία του περιφερειακού. Τα αρχεία αυτά δεν είναι άλλα από εκείνα που μας είχε η High Level Synthesis στο VivadoHLS.

HDL Source Files Indicate how this tool should locate the HDL files that make up your peripheral.	2
Use data (*.mpd) collected during a previous invocation of this tool	
	Browse
How to locate your HDL source files and dependent library files	
Use an XST project file (*.prj)	
This tool will input the HDL file-set and the logical libraries they are compiled into from the appropriate	lines in the project file.
	Browse
Use existing Peripheral Analysis Order file (*.pao)	
Use existing Peripheral Analysis Order file (*.pao)	Browse
O Use existing Peripheral Analysis Order file (*.pao)	Browse
Use existing Peripheral Analysis Order file (*.pao)	Browse

Σχήμα 5.19 – HDL Source Files

Και μόλις τα βρούμε τα προσθέτουμε πατώντας Add Files.

imp	ort Periphera	al				? ×
HDI	L Analysis In Indicate the H	form HDL ar	ation nalyze order and the I	gical libraries your HDL files are compiled into.		-
Use	the buttons o	n the	right to add and remo	ve files, indicate logical libraries and set the HDL ar	nalyze order. New sub-HDL libraries will also b	e imported.
	Languag	e	Logical Library	DL Source File Pat		t t et a
1	verilog	-	fibonacci_v1_0 👻	C:\Users\Georg	A	a Files
2	verilog	-	fibonacci_v1_0 🕶	C:\Users\Georg	Add	d Library
3	verilog	-	fibonacci_v1_0 👻	C:\Users\Georg		
4	verilog	-	fibonacci_v1_0 -	C:\Users\Georg		
						Remove Move Up

Σχήμα 5.20 – HDL Analysis Information

Επόμενο βήμα του βοηθού είναι η επιλογή του διαδρόμου δεδομένων στον οποίο θα συνδεθεί το περιφερειακό, προκειμένου να υλοποιηθεί η κατάλληλη διεπαφή. Εμείς στην σχεδίαση που υλοποιήσαμε ως Bus Interface χρησιμοποιήσαμε το AXI4Lite και μάλιστα με συμπεριφορά slave.

us Interfaces Identify the bus interfaces supported by your peripheral.	
bus interface is a group of related interface ports distinguish y your peripheral or indicate if there is no applicable bus inter	ed by a bus standard (i.e. PLBv46, DCR, or FSL). Select the bus interface(s) support face.
Select bus interface(s)	
AXI bus interface	
AXI4Lite	AXI4
Master	 Master
 Slave 	Slave
Processor Local Bus (version 4.6) interface	Fast Simplex Link bus interface
PLBV46 Master (MPLB)	ESL Master (MESL)
Generate burst	Est share (SESt)
PLBV46 Slave (SPLB)	
Device Control Register bus interface	
DCR Slave (SDCR)	

Σχήμα 5.21 – Bus Interferances

Ο βοηθός χρησιμοποιεί τον κώδικα HDL για να ορίσει τα bus interface ports για το AXI4Lite, ωστόσο κάποιοι ορισμοί πρέπει να γίνουν manually ή προσθέτοντας κάποιες παραπάνω γραμμές στον κώδικα, όπως περιγράψαμε στο τρίτο κεφάλαιο.

8	Impo	ort Peripheral			x
	5_A	XI4LITE : Port Define the S_AXI4LIT	'E bus interface port((s) for this peripheral.	S
	The has Bus I	S_AXI bus interface i automatically done th Interface Port(s): S_	s defined by a predef le selections for you. AXI	fined set of ports and parameters. If your peripheral follows the standard naming conventions, this tool Otherwise indicate the ports that correspond to the bus connectors.	
		AXI Bus Connect	Your Port		
	1	_ACLK	aclk 👻	The Wizard was not able to automatically map all bus interface ports for S_AXI.	
	2	_ARESETN	aresetn	Please manually select your ports or modify your HDL file.	
	3	_AWREADY	s_axi_slv1_AWR		
	4	_WREADY	s_axi_slv1_WRE	=	
	5	_BVALID	s_axi_slv1_BVALID		
	6	_ARREADY	s_axi_slv1_ARRE		
	7	_RDATA	s_axi_slv1_RDATA		
	8	_RVALID	s_axi_slv1_RVALID		
	9	_AWADDR	s_axi_slv1_AWA		
	10	_AWVALID	s_axi_slv1_AWV		
	11	_WDATA	s_axi_slv1_WDA		
	12	_WVALID	s_axi_slv1_WVA		
	13	_BREADY	s_axi_slv1_BREA		
	14	ARADDR	s axi slv1 ARA	▼	
	More	e Info		< Back Next > Cancel	

Σχήμα 5.22 – S_AXI4LITE PORT

Στην συνέχεια αρχικοποιούμε τις απαραίτητες παραμέτρους

Import Peripheral		5 <mark>×</mark>
Parameter Attributes Identify the parameters that r	equire special handling.	
Select the parameter on the left ar the system it is instantiated in.	nd fill in the attribute values t	to the right. These attributes help the various tools in EDK to integrate this peripheral into
- List User Parameters only -	Attributes:	
RESET_ACTIVE_LOW	Parameter Name	e RESET_ACTIVE_LOW
	Default Value	0x0000001
	Display advance	ced attributes
More Info		< Back Next > Cancel

Σχήμα 5.23 – Parameter Attributes

Ο βοηθός δεχόμενος σαν είσοδο όλες τις επιλογές που κάνει ο χρήστης, εισάγει την αντίστοιχη πληροφορία στα αρχεία που δημιουργεί. Μια περίληψη του περιφερειακού και των λειτουργιών του γίνεται στο τελευταίο παράθυρο διαλόγου του βοηθού, καθώς και μία αναφορά στα αρχεία που δημιουργούνται.

Congratulations!

Your peripheral will now be added to the current XPS project. You can now instantiate this peripheral in your system just as you instantiate other peripherals. Thank you for using Create and Import Peripheral Wizard! Please find your imported peripheral under C: \Users\George\fib_new\fib_new.srcs\sources_1\edk\module_new\pcores\fib_top_ v1_00_a. Summary: Logical library : fib_top_v1_00_a Version : 1.00.a Bus interface(s) : S_AXI4LITE The following sub-directories will be created: - fib_top_v1_00_a\data - fib_top_v1_00_a\hdl - fib_top_v1_00_a\hdl\verilog - fib_top_v1_00_a\hdl\vhdl The following HDL source files will be copied into the fib_top_v1_00_a\hdl\verilog directory: - fib.v - fib_ap_rst_if.v - fib_slv1_if.v - fib top.v

Save previously generated files

Σχήμα 5.24 – Peripheral Design Summary

Μόλις ολοκληρωθεί η δημιουργία του περιφερειακού τότε αυτό προστίθεται στον IP κατάλογο όπως φαίνεται και στο σχήμα.

Όπως αναφέρθηκε και πιο πάνω το περιφερειακό θα πρέπει να ενσωματωθεί στο υπόλοιπο σύστημα. Για να γίνει η προσθήκη από τον χρήστη αρκεί αυτός να επιλέξει με αριστερό click το περιφερειακό fib_top και να πατήσει add στο αναδυόμενο παράθυρο.

Σχήμα 5.25 – XPS IP Catalog

Τέλος, επιλέγουμε Generate BitStream και Export Design->Export & Launch SDK έτσι ώστε να δημιουργήσουμε και το software application που θα τρέξει στο ενσωματωμένο σύστημα που δημιουργήσαμε.

5.6.2 Δημιουργία software application $\sigma \tau o$ SDK

Στο SDK δεν μας ενδιαφέρει η εφαρμογή που θα δημιουργήσουμε, καθώς οι επιθυμητοί υπολογισμοί γίνονται στο hardware μέσω του περιφερειακού. Γι' αυτό και επιλέγουμε να τρέξουμε στο Virtex-7 έναν έτοιμο κώδικα C, το Hello World.

Από το αρχικό μενού του εργαλείου, λοιπόν, επιλέγουμε Xilinx Tools->Repositories και στο παράθυρο Local Repositories πατάμε New και τοποθετούμε το subdirectory solution1/impl κάτω από το directory του project του Vivado HLS, ώστε να χρησιμοποιηθεί ο σωστός driver για το περιφερειακό που φτιάξαμε.

Preferences						
type filter text	Add, remove or change the order of SDK's software repositories.	$\Leftrightarrow \bullet \bullet \bullet \bullet \bullet$				
General	Local Repositories (available to the current workspace)					
Help		New				
Install/Update		Remove				
Run/Debug						
Team		Ор				
Lerminal Xilinx SDK		Down				
Boot Image		Relative				
Flash Programming Hardware Specification	Global Repositories (available across workspaces)	-				
Log Information Level		New				
Repositories Target Manager		Remove				
XMD Startup		Up				
	SDK Installation Repositories	1				
	C:\Xilinx\14.2\ISE_DS\EDK\sw\XilinxProcessorIPLib\					
	C:\Xilinx\14.2\ISE_DS\EDK\sw\ThirdParty\					
]				
	Rescan Repositories					
	Note: Local repository settings take precedence over global repository settings.					
	Restore Defaults Apply]				
4						
•	ОК	Cancel				

Σχήμα 5.26 – SDK Environment

Στη συνέχεια επιλέγουμε File->New->Xilinx C Project και από την λίστα με τις έτοιμες εφαρμογές επιλέγουμε την Hello World. Επιλέγοντας Finish το SDK κάνει build project και δημιουργεί ένα .elf file .

Target Software Software Platform: 🔘 Standalone 🛛 Linu	хц	
Select Project Template		
Dhrystone	Description	
Empty Application	Let's say 'Hello World' in C.	*
Hello World	-	
IwIP Echo Server		
Perinheral Tests		
SREC Bootloader		
Xilkernel POSIX Threads Demo		
Zynq FSBL		
		-

Σχήμα 5.21 – Target Software Application

Το ενσωματωμένο σύστημα που σχεδιάσαμε είναι πλέον έτοιμο να τρέξει στην πραγματική πλακέτα με το Fpga. Συνεπώς, ανοίγουμε την πλακέτα, της παιρνάμε το bitsream.bit αρχείο και πλέον η σχεδίαση της πραγματικής μας πλατφόρμας έφτασε στο τέλος. Αφού λοιπόν, έχουμε ολοκληρώσει την σχεδίαση και της εικονικής πλατφόρμας μπορούμε να προχωρήσουμε στο έκτο και τελευταίο κεφάλαιο, όπου θα συγκεντρώσουμε όλα τα αποτελέσματά μας και θα τα σχολιάσουμε.

<u>Κεφάλαιο 6</u>

Σύνοψη, Συμπεράσματα και Μελλοντική Εργασία

6.1 Σύνοψη και συμπερασματα

Στην συγκεκριμένη ενότητα αυτό που κάνουμε είναι να συγκεντρώσουμε όλα τα αποτελέσματα από όλη την εργασία και να τα σχολιάσουμε τι πετύχαμε.

Ο συνηθισμένος τρόπος σχεδίασης ενσωματωμένων συστημάτων συμπεριλαμβάνει δύο ξεχωριστά μεταξύ τους στάδια: Την εικονική σχεδίαση και προσομοίωση του συστήματος, και την πραγματική του σχεδίαση. Αυτά τα δύο στάδια προσπαθήσαμε να συνδέσουμε και το πετύχαμε αυτό μέσω High Level Synthesis. Εμείς στην εργασία αυτή καταφέραμε να τα συνδέσουμε πετυχαίνοντας αυτοματοποίηση, βέλτιστη υλοποίηση και ταχύτητα στη σχεδίαση.

Τα βήματα και η ροή που ακολουθήσαμε για την ολοκλήρωση της εργασίας παρουσιάζονται παρακάτω:

Εικονική Σχεδίαση

Καταρχήν, ξεκινήσαμε με την σχεδίαση της εικονικής πλατφόρμας, η οποία χρησιμοποιούσε τον επεξεργαστή Microblaze της Xilinx και ένα περιφερειακό.

Η εφαρμογή που επιλέξαμε να υλοποιήσουμε υπολογίζει και εμφανίζει έναν αριθμό Fibonacci. Για να διαλέξουμε τι υπολογισμούς θα εκτελεί το περιφερειακό δοκιμάσαμε δύο περιπτώσεις. Στην πρώτη, το περιφερειακό δεν κάνει κάποιο υπολογισμό και όλα γίνονται στο software. Στη δεύτερη περίπτωση όλοι οι υπολογισμοί γίνονται από το περιφερειακό και το software το μόνο που κάνει είναι να το ενεργοποιεί. Ύστερα από προσομοίωση και των δύο περιπτώσεων καταλήξαμε, όπως ήταν φυσικό ότι όταν οι υπολογισμοί υλοποιούνατι με hardware τότε η ταχύτητα εκτέλεσης της εφαρμογής μειώνεται σημαντικά.

©peripheral is waiting im in the callback peripheral triggered My peripherals result fib(10) = 55 peripheral is waiting Înfo Info Info PSE SIMULATION TIME STATISTICS Info 0.01 seconds: PSE THREAD 'dmac' Info 0.01 seconds: PSE 'dmac' (and 1 terminated callback) Info Info Info Info CPU 'CPU1' STATISTICS Info Type Info Nominal MIPS Info Final program counts Type : Nominal MIPS : Final program counter : Simulated instructions: Simulated MIPS : : microblaze : 100 : 0x1718 137 Info lnfo run too short for meaningful result Info Info : 0.00 seconds : 0.02 seconds : 0.00 seconds : 0.02 seconds OVPsim finished: Fri Jul 19 19:04:13 2013 OVPsim (32-Bit) v20130315.0 Open Virtual Platform simulator from www.OVPworld.or g. Visit www.IMPERAS.com for multicore debug, verification and analysis solutions. ©peripheral is waiting My software result fib(10) = 55 im in the callback peripheral triggered peripheral is waiting Info Info Info PSE SIMULATION TIME STATISTICS Info 0.00 seconds: PSE THREAD 'dmac' Info 0.01 seconds: PSE 'dmac' (and 1 terminated callback) Info Info Info Info CPU 'CPU1' STATISTICS Info Туре microblaze Nominal MIPS : 100 Final program counter : 0x1848 Simulated instructions: 4,736 Simulated MIPS : run too Info Info [nfo Info run too short for meaningful result Info Info [nfo Info SIMULATION TIME STATISTICS Info Simulated time : (Info User time : (0.00 seconds 0.03 seconds System time Elapsed time 0.00 Info seconds Info Info 0.03 seconds OVPsim finished: Fri Jul 19 19:00:46 2013 OUPsim (32-Bit) v20130315.0 Open Virtual Platform simulator from www.OUPworld.or Visit www.IMPERAS.com for multicore debug, verification and analysis solutions. Σχήμα 6.1 – FIBONACCI H/S Partitioning

Όμως επειδή η εφαρμογή Fibonacci είναι αρκετά μικρή, κάναμε hardware/software partitioning σε μία μεγαλύτερη εφαρμογή, την JPEG2000. Όπως αποδείχτηκε από την προσομοίωση τα μέρη που κατανάλωναν περισσότερο χρόνο για να εκτελεστούν είναι το EBCOT(Coefficient Bit Modeling stage) και το DWT (Discrete Wavelet Transform). Συνεπώς το επόμενο βήμα είναι να υλοποίσουμε σε hardware τις βασικότερες συναρτήσεις αυτών και να ελέγξουμε κατά πόσο μείωνεται ο χρόνος εκτέλεσης της εφαρμογής. Μετά περνάμε

με HLS στον σχεδιασμό της πραγματικής πλατφόρμας με τον ίδιο τρόπο με την εφαρμογή Fibonacci.

Σχήμα 6.2 – JPEG2000 Parts

High Level Synthesis

Επόμενο βήμα ήταν να βρούμε το συνδετικό εργαλείο που θα ενώνει την virtual με την real platform. Το εργαλείο αυτό ήταν το VivadoHLS μέσω του οποίου μετατρέψαμε τον κώδικα που βάλαμε στο περιφερειακό από C σε Verilog. Η σημασία αυτού του εγχειρήματος είναι τεράστια αν αναλογιστεί κανείς ότι η σύνδεση αυτή που πετύχαμε αποτελεί το επόμενο βήμα στην μεθοδολογία σχεδιασμού SoC, όπως μάλιστα δήλωσε ο Simon Davidmann, πρόεδρος και διευθύνων σύμβουλος, Imperas.

Area Estimates							
Summary							
	BRAM_18K	DSP48E	FF	LUT	SLICE	Power Estimate	e
Component	-	-	-	-	-	Summary	
Expression	-	-	0	103	-		Power
FIFO	-	-	-	-	-	Component	-
Memory	-	-	-	-	-	Expression	10
Multiplexer	-	-	-	98	-	FIFO	-
Register	-	-	162	-	-	Memory	-
Total	0	0	162	201	0	Multiplexer	9
Available	2060	2800	607200	303600	75900	Register	16
Utilization (%)	0	0	~0	~0	0	Total	35

Σχήμα 6.3 – VivadoHLS Results (1)

Interface Summary

Interfaces									
	Object	Туре	Scope	IO Protocol	IO Config	Dir	Bits		
ap_clk	fib	return value	-	ap_ctrl_hs	register	in	1		
ap_rst	-	-	-	-	-	in	1		
ap_start	-	-	-	-	-	in	1		
ap_done	-	-	-	-	-	out	1		
ap_idle		-	-	-	-	out	1		
ap_return	_	-	-	-	-	out	32		
i	i	scalar	-	ap_hs	-	in	32		
i_ap_vld	-	-	-	-	-	in	1		
i_ap_ack	-	-	-	-	-	out	1		

Σχήμα 6.4 – VivadoHLS Results (2)

Πραγματική Σχεδίαση

Από τη στιγμή που μετατρέψαμε τον κώδικα του περιφερειακού με το Fibonacci σε HDL Language περάσαμε αυτόματα στη σχεδίαση της πραγματικής πλατφόρμας και μέσω των εργαλέιων της Xilinx καταφέραμε να ολοκληρώσαμε επιτυχώς το implementation στο FPGA.

Σχήμα 6.5 – XPS Results
6.2 Μελλοντική Εργασία

Προφανώς, υπάρχουν περισσότερες ιδέες για να βελτιωθεί ή να διερευνηθεί περισσότερο αυτή η εργασία. Μελλοντικά, αυτό που μπορεί να γίνει είναι

- Η ολοκλήρωση της εφαρμογής JPEG2000 ώστε να επιτευχθεί η σύνδεση της εικονικής με την πραγματική πλατφόρμα σε μία εφαρμογή που είναι σαφώς πιο απαιτητική από αυτήν με τον Fibonacci.
- Η προσθήκη περισσοτέρων του ενός hardware accelerators. Όπως είναι λογικό όσο περισσότερα περιφερειακά υπάρχουν και περιέχουν τις πιο βαριές συναρτήσεις της εφαρμογής JPEG2000, τόσο ταχύτερη θα είναι και η εκτέλεσής της.

<u>Παράρτημα</u>

Α. Κώδικες ΟVP

A.1.platform.c

Παρατίθεται ο κώδικας που δημιουργεί έναν Microblaze επεξεργαστή πάνω στην πλατφόρμα του συστήματος μας.

* creation of platform with Microblaze processor */ #include <stdio.h> #include <string.h> #include <ctype.h> #include "icm/icmCpuManager.h" #define SIM ATTRS (ICM ATTR DEFAULT) 11 // Perform platform creation and application simulation using OVPsim 11 static Bool simulate(const char *appName) { // initialize OVPsim, enabling verbose mode to get statistics at end // of execution icmInit(ICM VERBOSE|ICM STOP ON CTRLC, 0, 0); // select library components icmAttrListP cpu1 attr = icmNewAttrList(); icmAddStringAttr(cpul_attr, "endian", "big"); icmAddDoubleAttr(cpu1 attr, "mips", 100.000000); const char *microblazeModel = icmGetVlnvString(NULL, "xilinx.ovpworld.org", "processor", "microblaze", " const char *microblazeSemihost = icmGetVlnvString(NULL, "1.0", "model"); "xilinx.ovpworld.org", "semihosting", "microblazeNewlib", "1.0", "model"); // create the processor bus icmBusP bus = icmNewBus("busMain", 32); // Memory $//\ {\rm create}$ two memory regions mapping all memory except the DMAC registers icmMemoryP mem1 = icmNewMemory("mem1", ICM_PRIV_RWX, 0x3ffffff); icmMemoryP mem2 = icmNewMemory("mem2", ICM PRIV RWX, 0x7fffffff); // connect memories to the bus icmConnectMemoryToBus(bus, "sp", mem1, 0xc000000);

icmConnectMemoryToBus(bus, "sp", mem2, 0x0000000);

// Processor

```
// create a processor instance
   icmProcessorP cpu1_c = icmNewProcessor(
       "cpu0",
                        // CPU name
       "microblaze",
                        // CPU type
       Ο,
                        // CPU cpuId
                        // CPU model flags
       Ο,
                        // address bits
// model file
// morpher attributes
       32,
       microblazeModel,
       "modelAttrs",
       SIM ATTRS,
                        // attributes
                        // user-defined attributes
       cpul attr,
       microblazeSemihost, // semi-hosting file
"modelAttrs" // semi-hosting attributes
   );
   // connect the processor instruction and data busses to the bus
   icmConnectProcessorBusses(cpu1 c, bus, bus);
   // load the application executable file into processor memory space
   if(!icmLoadProcessorMemory(cpul c, appName, False, False, True)) {
       return False;
   }
// DMAC Peripheral
// instantiate the peripheral
   icmPseP dmac = icmNewPSE("dmac", "pse.pse", NULL, NULL, NULL);
```

// connect the DMAC slave port on the bus and define the address range it occupies

icmConnectPSEBus(dmac, bus, "DMACSP", False, 0x80000000, 0x8000013f);

// Simulation of Platform

```
// simulate the platform
   icmProcessorP final = icmSimulatePlatform();
    // was simulation interrupted or did it complete
   if(final && (icmGetStopReason(final)==ICM SR INTERRUPT)) {
        icmPrintf("*** simulation interrupted\n");
   }
   icmTerminate();
   return True;
// Main routine
```

} 11

11

```
int main(int argc, char **argv) {
    Bool
                promptAtExit = False;
                appChars[1024];
    char
    const char *appName;
    // Check arguments for application to load
    if(argc==1) {
        // prompt for application to load
        promptAtExit = True;
        do {
            icmPrintf("Enter application elf file name > ");
            fgets(appChars, sizeof(appChars), stdin);
            // trim trailing <code>'\n'</code> and any trailing whitespace
            char *last = appChars + strlen(appChars) - 1;
            while((last>=appChars) && isspace(*last)) {
                 *last-- = '\0';
        } while(appChars[0] == '\0');
        appName = appChars;
    } else if(argc==2) {
        // application provided on command line
        appName = argv[1];
    } else {
        // incorrect arguments
        icmPrintf("Usage : %s <application name>\n", argv[0]);
        return -1;
    }
    //\ \mbox{call OVPsim} platform creation and run simulation
    Bool result = simulate(appName);
    \ensuremath{{\prime}}\xspace // wait for key press before terminating
    if(promptAtExit) {
        icmPrintf("Press enter to exit demo > ");
        fgets(appChars, sizeof(appChars), stdin);
    }
    return result ? 0 : -1;
```

A.2.peripheral.user.c

}

Εδώ παρατίθεται ο κώδικας που δημιουργεί το περιφερειακό, το οποίο εκτελεί του υπολογισμό του αριθμού Fibonacci.

* peripheral creation */

#include <stdio.h> #include <string.h>

```
#include "dmacModel.h"
#include "dmacRegisters.h"
#define THREAD_STACK (8*1024)
#define NUM CHANNELS 1
#define BYTES_PER_ACCESS 8
// Give a 'nice' name to the default generated
#define controlRegs DMACSP ab8 dataT
#define channelRegs DMACSP ab32ch0 dataT
controlRegs *control;
channelRegs *ch[2];
typedef struct {
  bhmThreadHandle
                     thread;
  bhmEventHandle
                     start;
  Bool
              busy;
              stack[THREAD_STACK];
  char
} channelState;
typedef struct {
  ppmAddressSpaceHandle readHandle;
  ppmAddressSpaceHandle writeHandle;
                    intTCHandle;
  ppmNetHandle
  Bool
              intTCAsserted;
  Bool
              inReset;
  channelState
                  ch[NUM_CHANNELS];
} dmaState;
static dmaState DMAState;
static inline Uns32 byteSwap(Uns32 data){
#ifdef ENDIANBIG
  return
   ((data & 0xff000000) >> 24) |
   ((data & 0x00ff0000) >> 8) |
   ((data & 0x0000ff00) << 8) |
   ((data & 0x00000ff) << 24);
#else
  return data;
#endif
}
static void writeAndStart(Uns8 channel, Uns32 data)
{
  ch[channel]->config.value = byteSwap(data);
 // if(!ch[channel]->config.bits.halt && ch[channel]->config.bits.enable && !DMAState.ch[channel].busy) {
   bhmTriggerEvent(DMAState.ch[channel].start);
  //}
}
PPM REG WRITE CB(TCclearWr) {
  // YOUR CODE HERE (TCclearWr)
  *(Uns8*)user = data;
}
```

```
PPM_REG_WRITE_CB(configCh0Wr) {
    printf("im in the callback data= %d\n",data);
    writeAndStart(0, data);
```

```
*(Uns32*)user = byteSwap(data);
}
PPM_REG_WRITE_CB(configCh1Wr) {
  writeAndStart(1, data);
}
PPM REG WRITE CB(configWr) {
  control->config.value = byteSwap(data);
}
PPM_REG_WRITE_CB(errClearWr) {
  control->intErrStatus.value = 0;
}
PPM_REG_READ_CB(regRd32) {
  return byteSwap(*(Uns32*)user);
}
PPM_REG_READ_CB(regRd8) {
  // YOUR CODE HERE (regRd8)
  return *(Uns8*)user;
}
PPM_REG_WRITE_CB(regWr32) {
  *(Uns32*)user = byteSwap(data);
}
static inline void writeReg32(Uns32 address, Uns32 offset, Uns32 value)
{
  *(volatile Uns32*) (address + offset) = value;
}
static inline Uns32 readReg32(Uns32 address, Uns32 offset)
{
  return *(volatile Uns32*) (address + offset);
}
```

static Uns32 dmaBurst(Uns32 ITERATIONS){

```
int prev = -1;
  int result = 1;
  int sum;
         int i;
         for (i=0; i<=ITERATIONS; ++i) {
                   sum = result + prev;
    prev = result;
    result = sum;
         }
         printf ("reg32 %d\n",readReg32(DMA_BASE,DMA_C0_CONFIGURATION));
                   //writeReg32(DMA_BASE, DMA_C0_SRC_ADDR, 9);
         return result;
}
//
// Thread for each channel
// When it starts, it runs to the first 'wait' which is in this case bhmWaitEvent()
//
static void channelThread(void *user)
{
```

```
Uns32 ITERATIONS=10;
  Uns32 ch = (Uns32) user;
  for (;;) {
    if (diagnosticLevel >= 2) bhmMessage("I", "DMAC", "ch %u waiting\n", ch);
                  printf("peripheral is waiting\n");
    DMAState.ch[ch].busy = False;
    bhmWaitEvent(DMAState.ch[ch].start);
         printf("peripheral triggered\n");
    {
      DMAState.ch[ch].busy = True;
      if (diagnosticLevel >= 2) bhmMessage("I", "DMAC", "ch %u running\n", ch);
      // Perform DMA burst
      // dmaBurst(ITERATIONS);
                            printf("My peripherals result fib(%d) = %d\n", ITERATIONS, dmaBurst(ITERATIONS));
      control->rawTCstatus.value |= (1 << ch);
      if (diagnosticLevel >= 2) {
        bhmMessage("I", "DMAC",
           "ch %u status=0x%x\n",
          ch,
          control->rawTCstatus.value
        );
      }
    }
  }
}
void userInit(void)
{
  Uns32 i;
  char threadName[32];
  control = (controlRegs *)&DMACSP_ab8_data;
  ch[0] = (channelRegs *)&DMACSP_ab32ch0_data;
  ch[1] = (channelRegs *)((void *)&DMACSP_ab32ch1_data);
  DMAState.intTCAsserted = False;
  // Create threads for the channels
  for (i=0; i<NUM_CHANNELS; i++) {
    // Event to start the thread
    DMAState.ch[i].start = bhmCreateEvent();
    DMAState.ch[i].busy = False;
    // create the thread
    printf(threadName, "ch%u", i);
    DMAState.ch[i].thread = bhmCreateThread(
      channelThread,
      (void*) i,
      threadName,
      &DMAState.ch[i].stack[THREAD_STACK] // top of downward growing stack
    );
  }
}
PPM_CONSTRUCTOR_CB(constructor) {
  // YOUR CODE HERE (peripheral constructor)
  periphConstructor();
  // YOUR CODE HERE (post constructor)
  userInit();
```

```
}
PPM_DESTRUCTOR_CB(destructor) {
    // YOUR CODE HERE (destructor)
}
```

A.2.1.peripheral.c

Ο κώδικας αυτός ουσιαστικά δημιουργεί το παράθυρο μνήμης στο περιφερειακό και δημιουργεί του καταχωρητές που θα χρησιμοποιήσει.

```
/*
*create registers in peripheral 's memory
*/
```

DMACSP_ab8_dataT DMACSP_ab8_data;

DMACSP_ab32ch0_dataT DMACSP_ab32ch0_data;

DMACSP_ab32ch1_dataT DMACSP_ab32ch1_data;

handlesT handles;

// Test this variable to determine what diagnostics to output. // eg. if (diagnosticLevel > 0) bhmMessage("I", "dmac", "Example");

Uns32 diagnosticLevel;

```
static void setDiagLevel(Uns32 new) {
    diagnosticLevel = new;
```

}

static PPM_VIEW_CB(view8) { *(Uns8*)data = *(Uns8*)user; }

static PPM_VIEW_CB(view32) { *(Uns32*)data = *(Uns32*)user; }

```
static void installSlavePorts(void) {
    handles.DMACSP = ppmCreateSlaveBusPort("DMACSP", 320);
    if (!handles.DMACSP) {
        bhmMessage("E", "PPM_SPNC", "Could not connect port 'DMACSP'");
    }
}
```

}

static void installRegisters(void) {

```
ppmCreateRegister("intStatus",
  "internal status",
 handles.DMACSP,
 0,
  1,
 regRd8,
  0,
  view8,
  &(DMACSP_ab8_data.intStatus.value),
 True
);
ppmCreateRegister("intTCstatus",
  "internal TC status",
  handles.DMACSP,
  4,
  1,
 regRd8,
  TCclearWr,
  view8,
  &(DMACSP_ab8_data.intTCstatus.value),
  True
);
ppmCreateRegister("intErrStatus",
  "internal error status",
 handles.DMACSP,
 12,
 1,
 regRd8,
 errClearWr,
 view8,
  &(DMACSP_ab8_data.intErrStatus.value),
 True
);
ppmCreateRegister("rawTCstatus",
  "raw TC status",
 handles.DMACSP,
  20,
  1,
 regRd8,
 0,
  view8,
  &(DMACSP_ab8_data.rawTCstatus.value),
  True
);
ppmCreateRegister("rawErrStatus",
  "raw error status",
 handles.DMACSP,
  24,
  1,
 regRd8,
 0,
  view8,
 &(DMACSP_ab8_data.rawErrStatus.value),
  True
);
ppmCreateRegister("enbldChns",
  "enabled channels",
 handles.DMACSP,
  28,
  1,
  regRd8,
  0,
```

```
view8,
  &(DMACSP_ab8_data.enbldChns.value),
 True
);
ppmCreateRegister("config",
  "configuration",
  handles.DMACSP,
  48,
  1,
  regRd8,
  configWr,
  view8,
  &(DMACSP_ab8_data.config.value),
  True
);
ppmCreateRegister("srcAddr",
  "channel 0 source address",
  handles.DMACSP,
  256,
  4,
  regRd32,
  regWr32,
  view32,
  &(DMACSP_ab32ch0_data.srcAddr.value),
 True
);
ppmCreateRegister("dstAddr",
  "channel 0 dest address",
  handles.DMACSP,
  260,
  4,
  regRd32,
  regWr32,
  view32,
  &(DMACSP_ab32ch0_data.dstAddr.value),
 True
);
ppmCreateRegister("LLI",
  "channel 0 LLI",
 handles.DMACSP,
  264,
  4,
 regRd32,
  regWr32,
  view32,
 &(DMACSP_ab32ch0_data.LLI.value),
 True
);
ppmCreateRegister("control",
  "channel 0 control",
  handles.DMACSP,
  268,
  4,
 regRd32,
 regWr32,
  view32,
  &(DMACSP_ab32ch0_data.control.value),
 True
);
ppmCreateRegister("config",
  "channel 0 configuration",
  handles.DMACSP,
  272,
```

4, regRd32, configCh0Wr, view32, &(DMACSP_ab32ch0_data.config.value), True); ppmCreateRegister("srcAddr", "channel 1 source address", handles.DMACSP, 288, 4, regRd32, regWr32, view32, &(DMACSP_ab32ch1_data.srcAddr.value), True); ppmCreateRegister("dstAddr", "channel 1 dest address", handles.DMACSP, 292, 4, regRd32, regWr32, view32, &(DMACSP_ab32ch1_data.dstAddr.value), True); ppmCreateRegister("LLI", "channel 1 LLI", handles.DMACSP, 296, 4, regRd32, regWr32, view32, &(DMACSP_ab32ch1_data.LLI.value), True); ppmCreateRegister("control", "channel 1 control", handles.DMACSP, 300, 4, regRd32, regWr32, view32, &(DMACSP_ab32ch1_data.control.value), True); ppmCreateRegister("config", "channel 1 configuration", handles.DMACSP, 304, 4, regRd32, configCh1Wr, view32, &(DMACSP_ab32ch1_data.config.value), True);

}

```
PPM_CONSTRUCTOR_CB(periphConstructor) {
    installSlavePorts();
    installRegisters();
}
```

3


```
int main(int argc, char *argv[]) {
    diagnosticLevel = 0;
    bhmInstallDiagCB(setDiagLevel);
    constructor();
    bhmWaitEvent(bhmGetSystemEvent(BHM_SE_END_OF_SIMULATION));
    destructor();
    return 0;
}
```

A.2.2.peripheral.atts.c

Ο κώδικας αυτός ορίζει ό, τι χρειάζεται για την επικοινωνία του περιφερειακού με το υπόλοιπο σύστημα.

/*

```
* This file defines the peripheral interface in a form that other tools
```

* can read without connecting the model to a platform.

* It defines:

- * net ports,
- * bus ports,
- * parameters (formally known as attributes)
- * documentation nodes
- * intended library location

*

- * It is compiled with the PSE cross compiler and linked with the other
- * files of the peripheral model.

*/

```
#ifdef _PSE_
# include "peripheral/impTypes.h"
# include "peripheral/bhm.h"
# include "peripheral/ppm.h"
#else
# include "hostapi/impTypes.h"
#endif
static ppmBusPort busPorts[] = {
{}
```

```
.name = "DMACSP",
.type = PPM_SLAVE_PORT,
.addrHi = 0x13fLL,
.mustBeConnected = 1,
.remappable = 0,
.description = "DMA Registers Slave Port",
},
```

```
{0}
};
static PPM_BUS_PORT_FN(nextBusPort) {
  if(!busPort) {
    return busPorts;
  }
  busPort++;
  return busPort->name ? busPort : 0;
}
static ppmNetPort netPorts[] = {
  {0}
};
static PPM_NET_PORT_FN(nextNetPort) {
  if(!netPort) {
    return netPorts;
  }
  netPort++;
  return netPort->name ? netPort : 0;
}
static ppmParameter parameters[] = {
  {0}
};
static PPM_PARAMETER_FN(nextParameter) {
  if(!parameter) {
    return parameters;
  }
  parameter++;
  return parameter->name ? parameter : 0;
}
ppmModelAttr modelAttrs = {
  .versionString = PPM_VERSION_STRING,
            = PPM_MT_PERIPHERAL,
  .type
  .busPortsCB = nextBusPort,
  .netPortsCB = nextNetPort,
  .paramSpecCB = nextParameter,
  .vlnv
           = {
    .vendor = "ovpworld.org",
    .library = "peripheral",
    .name = "dmac",
    .version = "1.0"
  },
  .family = "ovpworld.org"
```

};

A.2.3.peripheral.h, peripheral.macro.h

Για την εκτέλεση του περιφερειακού που δημιουργήθηκε κρίνεται απαραίτητη η εισαγωγή των συγκεκριμένων αρχείων.

• peripheral.h: ορισμός καταχωρητών και call back functions.

```
/*
*peripheral.h
*/
```

#ifndef DMACMODEL_H #define DMACMODEL_H

#ifdef _PSE_
include "peripheral/impTypes.h"
include "peripheral/bhm.h"
include "peripheral/ppm.h"
#else
include "hostapi/impTypes.h"
#endif

extern Uns32 diagnosticLevel;

typedef struct DMACSP_ab8_dataS { union { Uns8 value; } intStatus; union { Uns8 value; } intTCstatus; union { Uns8 value; } intErrStatus; union { Uns8 value; } rawTCstatus; union { Uns8 value; } rawErrStatus; union { Uns8 value; } enbldChns; union { Uns8 value; struct { unsigned burstSize : 2; } bits; } config; } DMACSP_ab8_dataT, *DMACSP_ab8_dataTP; typedef struct DMACSP_ab32ch0_dataS { union { Uns32 value; } srcAddr; union { Uns32 value; } dstAddr; union { Uns32 value; } LLI; union { Uns32 value; } control; union {

```
Uns32 value;
    struct {
      unsigned enable : 1;
      unsigned __pad1 : 17;
      unsigned halt : 1;
   } bits;
 } config;
} DMACSP_ab32ch0_dataT, *DMACSP_ab32ch0_dataTP;
typedef struct DMACSP ab32ch1 dataS {
  union {
    Uns32 value;
  } srcAddr;
  union {
    Uns32 value;
  } dstAddr;
  union {
    Uns32 value;
  } LLI;
  union {
    Uns32 value;
  } control;
  union {
    Uns32 value;
    struct {
      unsigned enable : 1;
      unsigned __pad1 : 17;
      unsigned halt : 1;
   } bits;
  } config;
} DMACSP_ab32ch1_dataT, *DMACSP_ab32ch1_dataTP;
```


extern DMACSP_ab8_dataT DMACSP_ab8_data;

extern DMACSP_ab32ch0_dataT DMACSP_ab32ch0_data;

extern DMACSP_ab32ch1_dataT DMACSP_ab32ch1_data;

#ifdef _PSE_

typedef struct handlesS {
 void *DMACSP;
} handlesT, *handlesTP;

extern handlesT handles;

PPM_REG_WRITE_CB(TCclearWr); PPM_REG_WRITE_CB(configCh0Wr); PPM_REG_WRITE_CB(configCh1Wr); PPM_REG_WRITE_CB(configWr); PPM_REG_WRITE_CB(errClearWr); PPM_REG_READ_CB(regRd32); PPM_REG_READ_CB(regRd32); PPM_REG_WRITE_CB(regWr32); PPM_REG_WRITE_CB(regWr32); PPM_CONSTRUCTOR_CB(periphConstructor); PPM_CONSTRUCTOR_CB(periphDestructor); PPM_DESTRUCTOR_CB(constructor); PPM_DESTRUCTOR_CB(destructor); #endif

#endif

peripheral.macro.h: θέσεις μνήμης των macros.

```
/*
*peripheral.macro.h
*/
```

// DMAC peripheral model example 'creatingDMAC'

// Before including this file in the application, define the indicated macros // to fix the base address of each slave port. // Set the macro 'DMACSP' to the base of port 'DMACSP' #ifndef DMACSP #error DMACSP is undefined. It needs to be set to the port base address #endif #define DMACSP_AB8_INTSTATUS (DMACSP + 0x0) #define DMACSP_AB8_INTTCSTATUS (DMACSP + 0x4) #define DMACSP_AB8_INTERRSTATUS (DMACSP + 0xc) #define DMACSP AB8 RAWTCSTATUS (DMACSP + 0x14) #define DMACSP_AB8_RAWERRSTATUS (DMACSP + 0x18) #define DMACSP_AB8_ENBLDCHNS (DMACSP + 0x1c) #define DMACSP_AB8_CONFIG (DMACSP + 0x30) #define DMACSP AB8 CONFIG BURSTSIZE 0x3 #define DMACSP_AB32CH0_SRCADDR (DMACSP + 0x100) #define DMACSP AB32CH0 DSTADDR (DMACSP + 0x104) #define DMACSP_AB32CH0_LLI (DMACSP + 0x108) #define DMACSP_AB32CH0_CONTROL (DMACSP + 0x10c) #define DMACSP_AB32CH0_CONFIG (DMACSP + 0x110) #define DMACSP_AB32CH0_CONFIG_ENABLE 0x1 #define DMACSP AB32CH0 CONFIG HALT (0x1 << 18) #define DMACSP_AB32CH1_SRCADDR (DMACSP + 0x120) #define DMACSP_AB32CH1_DSTADDR (DMACSP + 0x124) #define DMACSP_AB32CH1_LLI (DMACSP + 0x128) #define DMACSP_AB32CH1_CONTROL (DMACSP + 0x12c) #define DMACSP_AB32CH1_CONFIG (DMACSP + 0x130)

#define DMACSP_AB32CH1_CONFIG_ENABLE 0x1 #define DMACSP_AB32CH1_CONFIG_HALT (0x1 << 18)

#endif

A.3.application.c

Ο κώδικας της εφαρμογής που τρέχει στο σύστημα μας:

```
/*
*application code
*/
```

```
#include <stdio.h>
#include <string.h>
#include <stdlib.h>
#include "dmacRegisters.h"
typedef unsigned int Uns32;
```

```
static inline void writeReg32(Uns32 address, Uns32 offset, Uns32 value)
{
 *(volatile Uns32*) (address + offset) = value;
}
static inline Uns32 readReg32(Uns32 address, Uns32 offset)
{
 return *(volatile Uns32*) (address + offset);
}
int main(int argc, char **argv)
{
 writeReg32(DMA_BASE, DMA_C0_CONFIGURATION, 10);
 return 1;
}
```

Registers.h: θέσεις μνήμης των καταχωρητών του application.

```
/*
*peripheralRegisters.h
*
*/
```

```
#ifndef DMAC_REGISTERS_H
#define DMAC_REGISTERS_H
```

#define DMA_BASE 0x8000000

#define DMA_INT_STATUS 0x00 #define DMA_INT_TC_STATUS 0x04 #define DMA_INT_TC_CLEAR 0x04 #define DMA_INT_ERROR_STATUS 0x0c #define DMA INT ERROR CLEAR 0x0c #define DMA_RAW_INT_TC_STATUS 0x14 #define DMA_RAW_INT_ERROR_STATUS 0x18 #define DMA EMBLD CHNS 0x1c #define DMA_CONFIGURATION 0x30 #define DMA C0 SRC ADDR 0x100 #define DMA C0 DST ADDR 0x104 #define DMA C0 LL1 0x108 #define DMA C0 CONTROL 0x10c #define DMA_C0_CONFIGURATION 0x110 #define DMA CHANNEL STRIDE 0x20 (DMA_C0_SRC_ADDR + DMA_CHANNEL_STRIDE) #define DMA_C1_SRC_ADDR #define DMA_C1_DST_ADDR (DMA_C0_DST_ADDR + DMA_CHANNEL_STRIDE) #define DMA_C1_LL1 (DMA_C0_LL1 + DMA_CHANNEL_STRIDE) #define DMA C1 CONTROL (DMA C0 CONTROL + DMA CHANNEL STRIDE) #define DMA_C1_CONFIGURATION (DMA_C0_CONFIGURATION + DMA_CHANNEL_STRIDE) // Bit manipulation #define MASK(BITS) ((BITS) == 32 ? -1U : (1U<<MIN((BITS),31))-1) #define PART_SELECT(_V,_LEFT,_RIGHT) (((_V)>>(_RIGHT)) & MASK((_LEFT)-(_RIGHT)+1)) #define BIT_SELECT(_V,_BIT) (((_V)>>(_BIT)) & 1) // Control Bits #define DMA_CONTROL_I(_R) BIT_SELECT(_R,31) #define DMA_CONTROL_TRAN_SIZE(_R) PART_SELECT(_R,11,0) // Configuration bits #define DMA CONFIG HALT(R) BIT SELECT(R,18) #define DMA CONFIG ACT(R) BIT SELECT(R,17) #define DMA CONFIG ITC(R) BIT SELECT(R,15)

#endif

Α. Κώδικες Pcore

#define DMA_CONFIG_ENA(_R)

Εδώ παραθέτουμε τους κώδικες που δημιουργήσαμε από το VivadoHLS σε Verilog:

<u>fib.v</u>

BIT_SELECT(_R,0)

```
`timescale 1 ns / 1 ps
```

(*

CORE_GENERATION_INFO="fib,hls_ip_2013_1,{HLS_INPUT_TYPE=c,HLS_INPUT_FLOAT=0,HLS_INPUT_FIXED=0,HL S_INPUT_PART=xc7vx485tffg1761-2,HLS_INPUT_CLOCK=10.000000,HLS_INPUT_ARCH=others,HLS_SYN_CLOCK=1.630000,HLS_SYN_LAT=-1,HLS_SYN_TPT=none,HLS_SYN_MEM=0,HLS_SYN_DSP=0,HLS_SYN_FF=128,HLS_SYN_LUT=199}" *)

module fib (ap_clk, ap_rst,

```
ap_start,
   ap_done,
   ap_idle,
   ap_ready,
   i,
   i_ap_vld,
   i ap ack,
   ap_return
);
input ap_clk;
input ap_rst;
input ap_start;
output ap_done;
output ap_idle;
output ap_ready;
input [31:0] i;
input i_ap_vld;
output i_ap_ack;
output [31:0] ap_return;
reg ap_done;
reg ap_idle;
reg ap_ready;
reg i_ap_ack;
reg [0:0] ap_CS_fsm = 1'b0;
reg [31:0] i_read_reg_91;
reg ap_sig_bdd_27;
wire [30:0] j_1_fu_79_p2;
wire [31:0] sum fu 85 p2;
wire [0:0] tmp_fu_74_p2;
reg [31:0] prev_reg_34;
reg [31:0] prev 1 reg 45;
reg [30:0] j_reg_58;
wire [31:0] j_cast_fu_70_p1;
reg [0:0] ap_NS_fsm;
parameter ap_const_logic_1 = 1'b1;
parameter ap_const_logic_0 = 1'b0;
parameter ap_ST_st1_fsm_0 = 1'b0;
parameter ap_ST_st2_fsm_1 = 1'b1;
parameter ap_const_lv1_0 = 1'b0;
parameter ap_const_lv32_1 = 32'b1;
parameter ap_const_lv31_1 = 31'b1;
parameter ap_true = 1'b1;
```

```
/// the current state (ap_CS_fsm) of the state machine. ///
always @ (posedge ap_clk)
begin : ap_ret_ap_CS_fsm
    if (ap_rst == 1'b1) begin
        ap_CS_fsm <= ap_ST_st1_fsm_0;
    end else begin
        ap_CS_fsm <= ap_NS_fsm;
    end
end</pre>
```

/// assign process. ///
always @(posedge ap_clk)
begin

```
if (((ap_ST_st1_fsm_0 == ap_CS_fsm) & ~ap_sig_bdd_27)) begin
    i_read_reg_91 <= i;</pre>
  end
end
/// assign process. ///
always @(posedge ap_clk)
begin
  if (((ap_ST_st2_fsm_1 == ap_CS_fsm) & (tmp_fu_74_p2 == ap_const_lv1_0))) begin
   j reg 58 <= j 1 fu 79 p2;
  end else if (((ap_ST_st1_fsm_0 == ap_CS_fsm) & ~ap_sig_bdd_27)) begin
   j_reg_58 <= ap_const_lv31_0;
  end
end
/// assign process. ///
always @(posedge ap_clk)
begin
  if (((ap_ST_st2_fsm_1 == ap_CS_fsm) & (tmp_fu_74_p2 == ap_const_lv1_0))) begin
    prev_1_reg_45 <= sum_fu_85_p2;
  end else if (((ap_ST_st1_fsm_0 == ap_CS_fsm) & ~ap_sig_bdd_27)) begin
    prev 1 reg 45 <= ap const lv32 1;
  end
end
/// assign process. ///
always @(posedge ap_clk)
begin
  if (((ap_ST_st2_fsm_1 == ap_CS_fsm) & (tmp_fu_74_p2 == ap_const_lv1_0))) begin
    prev reg 34 <= prev 1 reg 45;
  end else if (((ap_ST_st1_fsm_0 == ap_CS_fsm) & ~ap_sig_bdd_27)) begin
    prev reg 34 <= ap const lv32 FFFFFFF;
  end
end
/// ap_done assign process. ///
always @ (ap_CS_fsm or tmp_fu_74_p2)
begin
  if (((ap_ST_st2_fsm_1 == ap_CS_fsm) & ~(tmp_fu_74_p2 == ap_const_lv1_0))) begin
    ap_done = ap_const_logic_1;
  end else begin
    ap_done = ap_const_logic_0;
  end
end
/// ap_idle assign process. ///
always @ (ap_start or ap_CS_fsm)
begin
  if ((~(ap_const_logic_1 == ap_start) & (ap_ST_st1_fsm_0 == ap_CS_fsm))) begin
    ap_idle = ap_const_logic_1;
  end else begin
    ap_idle = ap_const_logic_0;
  end
end
/// ap ready assign process. ///
always @ (ap_CS_fsm or tmp_fu_74_p2)
begin
  if (((ap_ST_st2_fsm_1 == ap_CS_fsm) & ~(tmp_fu_74_p2 == ap_const_lv1_0))) begin
    ap_ready = ap_const_logic_1;
  end else begin
    ap_ready = ap_const_logic_0;
 end
```

end

```
/// i_ap_ack assign process. ///
always @ (ap_CS_fsm or ap_sig_bdd_27)
begin
  if (((ap_ST_st1_fsm_0 == ap_CS_fsm) & ~ap_sig_bdd_27)) begin
    i_ap_ack = ap_const_logic_1;
  end else begin
    i_ap_ack = ap_const_logic_0;
  end
end
always @ (ap_CS_fsm or ap_sig_bdd_27 or tmp_fu_74_p2)
begin
  case (ap_CS_fsm)
    ap_ST_st1_fsm_0 :
      if (~ap_sig_bdd_27) begin
        ap_NS_fsm = ap_ST_st2_fsm_1;
      end else begin
        ap_NS_fsm = ap_ST_st1_fsm_0;
      end
    ap_ST_st2_fsm_1:
      if (~(tmp_fu_74_p2 == ap_const_lv1_0)) begin
        ap_NS_fsm = ap_ST_st1_fsm_0;
      end else begin
        ap_NS_fsm = ap_ST_st2_fsm_1;
      end
    default :
      ap_NS_fsm = 'bx;
 endcase
end
assign ap_return = prev_1_reg_45;
/// ap_sig_bdd_27 assign process. ///
always @ (ap_start or i_ap_vld)
begin
 ap_sig_bdd_27 = ((i_ap_vld == ap_const_logic_0) | (ap_start == ap_const_logic_0));
end
assign j_1_fu_79_p2 = (j_reg_58 + ap_const_lv31_1);
assign j_cast_fu_70_p1 = $unsigned(j_reg_58);
assign sum_fu_85_p2 = (prev_1_reg_45 + prev_reg_34);
assign tmp_fu_74_p2 = ($signed(j_cast_fu_70_p1) > $signed(i_read_reg_91)? 1'b1: 1'b0);
```

endmodule //fib

fib_top.v

```
s_axi_slv1_WSTRB,
s_axi_slv1_WVALID,
s_axi_slv1_WREADY,
s_axi_slv1_BRESP,
s_axi_slv1_BVALID,
s_axi_slv1_BREADY,
s_axi_slv1_ARADDR,
s axi slv1 ARVALID,
s axi slv1 ARREADY,
s axi slv1 RDATA,
s_axi_slv1_RRESP,
s_axi_slv1_RVALID,
s_axi_slv1_RREADY,
interrupt,
aresetn,
aclk
);
parameter C_S_AXI_SLV1_ADDR_WIDTH = 5;
parameter C_S_AXI_SLV1_DATA_WIDTH = 32;
parameter RESET ACTIVE LOW = 1;
input [C_S_AXI_SLV1_ADDR_WIDTH - 1:0] s_axi_slv1_AWADDR ;
input s_axi_slv1_AWVALID ;
output s_axi_slv1_AWREADY ;
input [C_S_AXI_SLV1_DATA_WIDTH - 1:0] s_axi_slv1_WDATA ;
input [C_S_AXI_SLV1_DATA_WIDTH/8 - 1:0] s_axi_slv1_WSTRB ;
input s_axi_slv1_WVALID ;
output s_axi_slv1_WREADY;
output [2 - 1:0] s axi slv1 BRESP;
output s_axi_slv1_BVALID;
inputs axi slv1 BREADY;
input [C_S_AXI_SLV1_ADDR_WIDTH - 1:0] s_axi_slv1_ARADDR ;
input s_axi_slv1_ARVALID ;
output s_axi_slv1_ARREADY ;
output [C_S_AXI_SLV1_DATA_WIDTH - 1:0] s_axi_slv1_RDATA ;
output [2 - 1:0] s_axi_slv1_RRESP ;
output s_axi_slv1_RVALID ;
input s_axi_slv1_RREADY ;
output interrupt ;
input aresetn ;
input aclk;
wire [C_S_AXI_SLV1_ADDR_WIDTH - 1:0] s_axi_slv1_AWADDR;
wire s_axi_slv1_AWVALID;
wire s_axi_slv1_AWREADY;
wire [C_S_AXI_SLV1_DATA_WIDTH - 1:0] s_axi_slv1_WDATA;
wire [C_S_AXI_SLV1_DATA_WIDTH/8 - 1:0] s_axi_slv1_WSTRB;
wire s_axi_slv1_WVALID;
wire s_axi_slv1_WREADY;
wire [2 - 1:0] s_axi_slv1_BRESP;
wire s axi slv1 BVALID;
wire s axi slv1 BREADY;
wire [C_S_AXI_SLV1_ADDR_WIDTH - 1:0] s_axi_slv1_ARADDR;
wire s_axi_slv1_ARVALID;
wire s_axi_slv1_ARREADY;
wire [C_S_AXI_SLV1_DATA_WIDTH - 1:0] s_axi_slv1_RDATA;
wire [2 - 1:0] s_axi_slv1_RRESP;
wire s_axi_slv1_RVALID;
wire s_axi_slv1_RREADY;
```

wire interrupt; wire aresetn; wire [32 - 1:0] sig fib i; wire sig_fib_i_ap_vld; wire sig_fib_i_ap_ack; wire sig_fib_ap_start; wire sig fib ap ready; wire sig_fib_ap_done; wire sig_fib_ap_idle; wire [32 - 1:0] sig_fib_ap_return; wire sig_fib_ap_rst; fib fib U(.i(sig_fib_i), .i_ap_vld(sig_fib_i_ap_vld), .i_ap_ack(sig_fib_i_ap_ack), .ap_start(sig_fib_ap_start), .ap_ready(sig_fib_ap_ready), .ap_done(sig_fib_ap_done), .ap_idle(sig_fib_ap_idle), .ap_return(sig_fib_ap_return), .ap_rst(sig_fib_ap_rst), .ap_clk(aclk)); fib slv1 if #(.C_ADDR_WIDTH(C_S_AXI_SLV1_ADDR_WIDTH), .C_DATA_WIDTH(C_S_AXI_SLV1_DATA_WIDTH)) slv1_if_U(.ACLK(aclk), .ARESETN(aresetn), .I_i(sig_fib_i), .I_i_ap_vld(sig_fib_i_ap_vld), .I_i_ap_ack(sig_fib_i_ap_ack), .I_ap_start(sig_fib_ap_start), .O_ap_ready(sig_fib_ap_ready), .O ap done(sig fib ap done), .O_ap_idle(sig_fib_ap_idle), .O_ap_return(sig_fib_ap_return), .AWADDR(s_axi_slv1_AWADDR), .AWVALID(s_axi_slv1_AWVALID), .AWREADY(s_axi_slv1_AWREADY), .WDATA(s_axi_slv1_WDATA), .WSTRB(s_axi_slv1_WSTRB), .WVALID(s_axi_slv1_WVALID), .WREADY(s_axi_slv1_WREADY), .BRESP(s_axi_slv1_BRESP), .BVALID(s axi slv1 BVALID), .BREADY(s axi slv1 BREADY), .ARADDR(s_axi_slv1_ARADDR), .ARVALID(s_axi_slv1_ARVALID), .ARREADY(s_axi_slv1_ARREADY), .RDATA(s_axi_slv1_RDATA), .RRESP(s_axi_slv1_RRESP), .RVALID(s_axi_slv1_RVALID), .RREADY(s_axi_slv1_RREADY),

.interrupt(interrupt));

```
fib_ap_rst_if #(
    .RESET_ACTIVE_LOW(RESET_ACTIVE_LOW))
ap_rst_if_U(
    .dout(sig_fib_ap_rst),
    .din(aresetn));
```

endmodule

Βιβλιογραφία

Πηγές

[1] Ron Sass, Andrew G. Schmidt, 'Embedded Systems Design with Platform FPGAs, Principles and Practices', Morgan Kaufmann

[2] Volnei A. Pedroni, "Σχεδιασμός κυκλωμάτων με τη VHDL", Επιστημονική επιμέλεια ελληνικής έκδοσης: Γεώργιος Θεοδωρίδης, Λέκτορας Α.Π.Θ., Εκδόσεις Κλειδάριθμος, Αθήνα 2007

[3] Douglas L. Perry, 'VHDL: Programming by Example', McGraw-Hill

[4] Neil H. E. Weste, David M. Harris, "Σχεδίαση Ολοκληρωμένων Κυκλωμάτων, CMOS VLSI Design", Εκδόσεις Παπασωτηρίου, Αθήνα 2011

[5] Κ.Ζ. Πεκμεστζή Καθηγητής Ε.Μ.Π, "Ψηφιακά Συστήματα VLSI" Αθήνα 2003

[6] Ron Sass, Andrew G. Schmidt, 'Embedded Systems Design with Platform FPGAs, Principles and Practices', Morgan Kaufmann

[7] UG111 (v14.1), 'Embedded System Tools Reference Manual, EDK', Xilinx

Ηλεκτρονικοί σύνδεσμοι

[8] https://www.google.gr/

[9]http://net.pku.edu.cn/~course/cs101/2008/resource/The_C_Programming_Language.pdf

[10] <u>http://www.xilinx.com/support/documentation/sw_manuals/mb_ref_guide.pdf</u>

[11]http://www.xilinx.com/support/documentation/data_sheets/ds183_Virtex_7_Data_She et.pdf

[12] <u>http://www.ovpworld.org/</u>

[13] <u>http://www.ovpworld.org/documents/Imperas_Installation_and_Getting_Started.pdf</u>

[14] <u>http://www.ovpworld.org/documents/OVP_Guide_To_Using_Processor_Models.pdf</u>

[15] <u>http://www.ovpworld.org/documents/OVP_Processor_Modeling_Guide.pdf</u>

[16] <u>http://www.ovpworld.org/modeldocs/OVP_Model_Specific_Information_m16c_r8c.pdf</u>

[17] <u>http://www.ovpworld.org/documents/OVP_Peripheral_Modeling_Guide.pdf</u>

[18] <u>http://en.wikipedia.org/wiki/High-level_synthesis</u>

[19] <u>http://www.eetimes.com/document.asp?doc_id=1276220</u>

[20] <u>http://www.xilinx.com/support/documentation/sw_manuals/xilinx2012_2/ug871-vivado-high-level-synthesis-tutorial.pdf</u>

[21] <u>http://www.xilinx.com/support/documentation/sw_manuals/xilinx2012_2/ug902-vivado-high-level-synthesis.pdf</u>

[22]http://www.xilinx.com/support/documentation/sw_manuals/xilinx13_1/PlanAhead_Tut orial_Quick_Front-to-Back_Overview.pdf

[23]<u>https://wiki.ittc.ku.edu/ittc/images/archive/4/40/20070821143241!Edk_baseSystemBui</u> <u>Ider.pdf</u>

[24] http://www.xilinx.com/tools/platform.htm

[25] <u>https://wiki.ittc.ku.edu/ittc/images/4/4a/Edk_customCores.pdf</u>

[26] <u>http://www.ovpworld.org/necs-cyberworkbench-and-imperas-ovp-fast-processor-models-integrated-to-expand-hardware-software-co-verification-capabilities</u>

[27] http://www.imperas.com/kazutoshi-wakabayashi-senior-manager

[28] <u>http://www.cadence.com/Community/blogs/ii/archive/2011/06/29/q-amp-a-linking-virtual-prototypes-to-high-level-synthesis.aspx</u>

[29] <u>http://en.wikipedia.org/wiki/Software_development_kit</u>

[30]<u>http://www.xilinx.com/support/documentation/sw_manuals/xilinx11/SDK_doc/getting_started/sdk_tutorial_intro.htm</u>

[31]https://en.wikipedia.org/wiki/JPEG_2000

[32]<u>http://www.barco-silex.com/ip-cores/jpeg-</u> 2000?gclid=CKbS3YPCwbgCFYWN3godLjwAgw

[33]http://www.stanford.edu/class/ee398a/handouts/lectures/10-JPEG2000.pdf

[34]http://qss.stanford.edu/~godfrey/wavelets/wave_paper.pdf

[35]<u>http://ijcsi.org/papers/IJCSI-8-5-3-551-557.pdf</u>

[36]<u>http://ieeexplore.ieee.org/xpl/login.jsp?tp=&arnumber=1273240&url=http%3A%2F%2Fi</u> eeexplore.ieee.org%2Fxpls%2Fabs_all.jsp%3Farnumber%3D1273240