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Abstract 

Energy consumption of modern computing devices is becoming an 
increasingly important topic, especially for battery-powered mobile devices that run 
on reserved power. As the progress in the field of battery capacity seems unable to 
follow the increase in processors power needs for performance, power aware 
scheduling problem has been a recent issue, as it could have a vital role on portable 
devices running life. Recent commodity processors support multiple operating points 
running under various supply voltage levels, giving programmers the ability to adjust 
their system power consumption level according to their current needs. 
Consequentially, the Dynamic Voltage-Frequency Scaling (DVFS) has become a 
popular technique and several scheduling algorithms have been developed. Those 
algorithms are aiming to propose ways to reduce power consumption by imposing 
appropriate frequency and voltage levels to the system, in order to avoid unnecessary 
energy expenses. 

If the Operating System (OS) is aware of the power consumption on the 
various processes within the system, it can schedule processes based on the constrains 
derived by the thermal analysis and the remaining power of the system. In addition, 
OS can balance the resource allocation of each process to remain within a given 
power envelope. However, obtaining the processor and the system power 
consumption is a non-trivial task. Existing power meters generally report only the 
power consumption on the whole system and are unable to provide detailed 
information for each processor individually. As a result it is very hard to expose a 
task’s runtime power consumption, if multiple tasks are running in the system at the 
same time. The estimation of the power consumption on the thread level for every 
running process is a crucial requirement in designing power efficient schedulers. 

In this work we analyze the power consumption of the target system, running 
a Non-Uniform-Memory-Access (NUMA) processor, and formulate a single power 
consumption model. Then, we examine the relationship between application’s 
scalability and its power consumption by running our benchmark suite with different 
thread counts. The importance of the frequency scaling (DVFS) techniques is 
explored by measuring the performance of each benchmark on all the available 
frequencies supported by the system. We use Energy Delay Product (EDP) and 
Energy Delay Squared Product (!"!!) as metrics to evaluate our results and create 
Pareto graphs to reflect our benchmark’s power profile. We choose a suite that 
includes benchmarks with different characteristics regarding their needs in memory 
and CPU and use them to compare different proposed scheduling policies. We attempt 
to reduce the power consumption of the benchmark applications by applying the 
previous results on them. A significant reduction on the power consumption is shown. 
Finally, we examine techniques to reduce the cache and background memory conflicts 
and propose a memory balancing power aware scheduling algorithm. 
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1 Introduction 
 

1.1&Problem&definition&
 

In the previous decade, computer architects were focused on designing simple 
uniprocessor systems. Performance improvements were obtained by increasing the 
operating frequency and by designing fat cores that could better exploit instruction-
level parallelism (ILP). . However, power constraints and heat dissipation problems 
have caused a shift in the design paradigm. Nowadays the focus is on designing 
multicore systems that exploit thread level parallelism. In these systems cores are 
sharing resources, ranging from functional units to different levels of memory 
hierarchy, under the same power source. That enforced software developers to 
abandon serial programming and adapt parallel programming methods in order to 
obtain a better use of the currently available chip multi-processors (CMPs). Parallel 
execution systems gave system developers the opportunity to write multithreaded 
applications that benefit from the simultaneous thread execution and obtain better 
system usage and significant performance increase. 

In order to deal with the problem of the allocation of scarce resources, a 
significant amount of research focuses on developing efficient OS task scheduling 
algorithms. The first approaches focused on sharing the available resources across the 
running processes for discrete time quanta. Although, as these time-sharing policies 
scheduled only one task for a time quantum, they left the system’s cores underutilized 
for significant periods of time. So, many space-sharing methods have been suggested, 
that co-schedule different tasks in the same time quantum to fill the available 
resources. These approaches involve a wide range of performance criteria, such as 
execution time, to provide efficient schedules and increase the overall systems 
performance. The majority of these operating system schedulers treat the cores of a 
multiprocessor chip as distinct physical processors that have no knowledge about 
other cores running simultaneously under the same resources. Their goal is to take 
advantage of the benefits that multithreaded applications can gain, while running in 
multicore platforms, and produce efficient schedules.   

Nowadays, the previous scheduling approaches that focus on the overall 
performance are no longer capable to fill the modern systems’ needs. Many modern 
systems, such as portable devices that run under limited battery power or large server 
farms that run on a certain budget, need to execute under low power consumption 
rates, in order to extend their running life or lower their expenses. As a result, 
research now focuses on using scheduling in such ways as to ensure low power 
consumption, without of course totally sacrificing the performance of the system. 
Hence, managing the power consumption and the performance of processors became 
an important aspect of the chip design and consequentially power-aware scheduling 
became a hot topic of research. 

The main objectives of power aware scheduling are:  
• lowering processor’s power consumption level 
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• maintaining the system within an allowable power envelope  
• supporting hot-spot elimination and 
• balancing the power consumption across processors. 
 

Reducing the total energy consumption for a given series of multithreaded 
applications running on a CMP is the problem studied in this work. The main 
objective is to schedule a given list of processes to be executed in a power saving way 
without drastically affecting the overall performance of the system. To achieve our 
objective, this study creates power profiles for the selected benchmarks and classifies 
them according to their scaling ability and their memory requirements. Finally, this 
work deals with the problem of space sharing to reduce the conflicts due to the 
sharing of resources, such as the memory bus and the Last Level Caches (LLC).   

 
 
 

&
!
  

1.2&Motivation&
 

Since modern supercomputers became popular and widely used, scheduling 
has been a topic of interest in a large number of research papers. The main objective 
of a scheduling algorithm is to share a system’s resources between different processes 
that currently run on it. As mentioned before, the first scheduling approaches aimed to 
produce simple time-sharing schedules for the given for execution tasks. The majority 
of the used systems contained simple uniprocessors and as a result the schedulers 
focused on sharing the whole resources across running tasks for certain time quanta. 
So, they only produced time-sharing schedules mainly based on the waiting time of 
each task, in order to decide which one would be able to use the available resources 
the next time quantum. 

As multiprocessor systems arrived and became widely popular, time-sharing 
scheduling methodologies were unable to provide efficient solutions to the scheduling 
problem. Researchers focused on space-sharing techniques, along with time-sharing, 
in order to schedule more than one processes at a time and increase the overall 
system’s performance. Several scheduling algorithms were created, proposing 
different ways to distribute the running tasks among the system’s available CPUs and 
schedule them simultaneously in order to complete the execution of a given workload 
of tasks faster. Although these methods provided efficient schedulers, the power 
limits enforced computer architects to create processors that contain more than one 
cores that share certain resources (memory hierarchies) and run under the same power 
source (chip multiprocessors CMPs). 
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As a result several problems occurred to the existing scheduling policies. 
Schedulers, in order to run on the new machines, treated cores as distinct processors 
and apply on them the already used scheduling methods. This agnostic resource aware 
approach led co-scheduled tasks to compete for the shared resources, such as the last 
level caches and the memory bus, and in many cases had catastrophic effects on the 
whole execution. For that reason, scientific research turned on creating contention 
aware scheduling policies that use different performance criteria to ensure that all the 
co-scheduled processes run efficiently on the system. Over the past few years, 
research in performance optimization on CMPs has gone a long and accomplished 
great results. 

On the other hand, research on the aspect of power consumption in modern 
CMPs has been mostly neglected. Power aware scheduling aims to reduce the energy 
consumption for the execution of a given workload of tasks, without significantly 
affect the overall systems performance. In most cases there is a trade-off between 
performance and energy consumption. When a system runs in high frequency values 
it would report great power consumption and small execution times, while a system 
running in low frequencies would result in less power consumption but high 
execution times that may increase the total energy consumption. Generally power 
aware scheduling policies’ target is to provide the lowest possible energy 
consumption for executing a certain job, while staying above an average performance. 

Nowadays, reducing energy consumption has become a necessity in many 
different cases and power aware scheduling has become a real issue. Power saving is 
necessary both for small, embedded devices and large computer clusters and servers. 
Embedded systems include lots of different, widely spread portable devices that run a 
multicore processor under reserved battery power and are in constant need to save 
power, in order to run as long as possible. On the large scale reducing energy 
consumptions also definitely beneficial for computer clusters or large server farms 
that consume significant amounts of energy, where power reduction could lead in 
lowering their running cost and prevent them from using expensive cooling 
equipment. In both domains the excessive power consumption could result in high 
thermal dissipation that could be harmful for the devices. 

For all these reasons the industry started producing chips that support DVFS 
and thermal monitoring policies in order to adjust frequency and voltage level of the 
on-chip cores when they remain underutilized, or lower voltage levels when thermal 
monitor reports that system temperature exceed an undesired threshold. The current 
focus for the researchers is on combining performance with power aware scheduling 
strategies to balance their system between good performance and small energy 
expense. 
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1.3&Goal&of&this&work&<&Contribution&
 
In order to deal with the problem of power aware scheduling on multicore 

systems there are some issues that must be addressed. First of all, in order to obtain 
power measurements we use an Intel Sandy Bridge processor, which is based on the 
Non-Uniform Memory Access (NUMA) architecture, so it is necessary to obtain 
detailed information about the number and the organization of the available CPUs, 
along with the organization of the memory subsystem. Also, we need to deal with the 
memory allocation issues on a NUMA machine and study scalability of applications 
when the number of threads exceeds the available cores in a single package and 
placement issues due to interconnection between different packages. Moreover, we 
introduce a simple power consumption model for our system by studying the power 
consumption of the cores, the Dram and the memory controllers.    

Furthermore, we use Energy Delay Product (EDP) and Energy Delay Squared 
Product (!!!!), in order to study the effects of scaling techniques on reducing the 
energy expense to run a process and the influence of dynamic frequency scaling on 
reducing the total power consumption without sacrificing performance in the cases of 
memory-bound applications. Based on the previous, we determine a power profile for 
the NAS and Polybench benchmarks. Then we use these results on widely used 
scheduling policies, such as gang scheduling and bin-packing gang scheduling, and 
report a significant reduction on the energy consumption. 

The rest of the thesis deals with contention issues on scheduling. We study the 
importance of co-scheduling applications with different characteristics in order to 
reduce the number of conflict on the shared caches and the memory bus. We divide 
our applications on categories according to their behavior and memory needs and we 
design a scheduler to co-schedule different applications in the same time quantum in 
order to produce a power and performance efficient scheduler and finally we compare 
different scheduler implementations according to their fairness and the overall system 
throughput.  
 
 

&

&

&
!

&
!
!
!
!
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2 Background 
&
!

2.1&Scheduling&–&single&processor&system&approaches&
  
 Since multitasking systems appeared, the schedulers have become a vital part 
of every modern operating system. In computer science, scheduling is defined as the 
method by which threads, processes or data flows are given access to system 
resources, such processor time, memory access or communications bandwidth [1]. 
This is usually done to distribute workloads across the system resources effectively or 
to achieve quality of service. The need for a scheduling algorithm in every operating 
system arises from the requirement for most modern systems to execute more than 
one process at a time and transmit multiple flows simultaneously (multiplexing). 

A scheduler’s main target may differ from one system to another. Although 
usually its major target is to achieve a combination of high system throughput, small 
system latency and fairness for the running processes. Throughput represents the total 
number of processes that the system is able to complete their execution in a certain 
time unit. Latency illustrates the system response time, which is the total time 
between a job submission and its completion and finally, fairness represents the total 
amount of time a ready for execution process would have to wait in a queue due to 
unavailable system resources to run. In practice, most of the times these goals conflict 
(for example higher throughput results in small latency or fairness), thus the scheduler 
should be able to take crucial decisions and implement suitable compromises among 
running tasks in order to fulfill the desired needs and objectives of the execution 
system.  

Until recently, the excessive use of simple uniprocessor systems enforced OS 
schedulers to mainly focus on time multiplexing of tasks. As there was only one 
processing unit available in the system, every ready for execution process was added 
to a run-queue and the scheduler decided the amount of time to be make the system 
resources available to it, based on several different factors, such as waiting time and 
priority of each process. Linux earlier schedulers were implemented using an 
algorithm with O(n) complexity, in order to decide which task to be scheduled next 
[2]. In this type of scheduler, the time it takes to schedule a task is a function of the 
number of tasks in the system, so the more tasks (n) are active on the system, the 
longer it takes to schedule a task. As a result these schedules lacked scalability, 
because at very high workloads the processor could spend more time deciding which 
process to schedule next and less time to execute the processes themselves. 
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2.2&Scheduling&in&multicore&systems&&
!

Uniprocessor systems were followed by symmetric multiprocessing systems 
(SMPs). SMP is a multiprocessor architecture that consists of multiple identical 
processors that connect to a common shared memory. Each processor of a SMP is 
independent from the others and the only contention point between them is the shared 
interconnection network to the memory. The Linux scheduler still used one run-queue 
for the SMP, which meant that every task could be scheduled on any processor of the 
system. This scheduling policy may have been effective for load balancing but it 
created problems regarding to caches. For example, if a task was executed on cpu-1 
and allocated all its memory on that processor’s cache, moving the task from cpu-1 to 
cpu-2 would require moving all its data to from one cache to the other. The prior 
scheduler also used a single run-queue lock so, in an SMP system, the act of choosing 
a task to execute locked out any other processors from manipulating the run-queues. 
This resulted on idle processors waiting a release of the queue lock and decreased 
efficiency. 

Because of the importance of the task scheduling problem on multiprocessing 
systems lot of research was made by the computer science community and Linux was 
able to develop a completely O(1) algorithm for wakeup, context-switch, and timer 
interrupt scheduling decisions [3]. O(1) scheduler used run-queues consisting of 
priority lists for different priority processes and implemented interactivity heuristics 
to decide which process has the highest priority and should be scheduled next. So, the 
scheduler used a different run-queue for every processor of the SMP and a load-
balancing algorithm to fairly distribute the load among the available CPUs. As a 
result this scheduler resolved the primary issues found on the O(n) scheduler.  

Even though O(1) scheduler proved to be very successful it has been replaced 
by the Completely Fair Scheduler (CFS) as the scheduler of the Linux OS [4]. CFS 
uses a red-black tree to describe the “need” for cpu-time of every task in every 
processor’s run-queue instead of keeping priority lists. The scheduler keeps for every 
running process its waiting time and decides which one will run for a time-quantum 
on the next available CPU according to the highest waiting time. That policy proved 
to be very efficient on improving the systems overall performance and its used by 
many modern computing systems. 

In order to deal with the communication latency problem between different 
processors and reduce the chip’s power needs computer architect turned from SMPs 
to chip multiprocessors (CMPs). Processors based on CMP architecture include 
multiple cores on a single chip, running under the same power supply and sharing the 
upper level of cache memory (usually the L3 cache). As a result this architecture is 
able to achieve faster on-chip communication between cores, but in addition to time-
sharing cores among different running tasks it introduces the concept of space 
sharing, because multiple cores are trying to use the same shared resources (Last 
Level Cache, memory bus) at the same time.  

Using the previous schedulers based on SMPs on the new architecture created 
a lot of new problems for the OS programmers to deal with. The existing scheduling 
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policies treated every core of a CMP as an independent processor, based on previous 
approaches, and space-sharing problem came to the surface. Different processes were 
competing for resources under the common shared memory and bus interconnection 
and affected each other even in catastrophic ways sometimes. As parallel 
programmers and OS schedulers has to deal with the resource contention problem. 
Depending on the mix of tasks that execute concurrently in the multiprocessor the 
level of contention can vary greatly. Mixing jobs that require heavy use of the 
memory resources could result in poor system performance. On the other hand 
choosing CPU intensive jobs with small memory needs to execute concurrently would 
result in great performance but also in an underutilized system, which is in most cases 
undesirable. So the scheduler has to make the right choices to avoid unpredictable 
performance behaviors of the running processes and ensure that the system would 
always perform over a significant performance baseline. 

Research made on this important manner has shown that an efficient way to 
deal with the problem is execute threads of the same applications concurrently on the 
available cores, in order to increase the applications’ throughput. Because 
multithreaded applications usually contain threads that communicate and share data, 
executing them simultaneously on the system cores could prevent a thread from 
waiting to send or receive messages from another sleeping thread and allow threads to 
use data pre-fetched by others of the same application. 

However, modern OS schedulers, in order to achieve great responsive time for 
their users, lack the ability to treat threads efficiently. OS’s threats every applications 
threads as independent running processes that run on the system and so they are 
unable to recognize them and force them to operate at the same time. Moreover 
schedulers used on modern operating systems does not use and available performance 
monitors to take scheduling decisions so they seem unable to apply resource aware 
policies that could be beneficial for the system.  

In the last few years, researchers have made several approaches to resource 
aware co-scheduling techniques for CMPs and suggested many different policies. 
Their main goals are use the knowledge of their system’s hardware to increase the 
overall throughput and to balance processes among the existing resources to produce 
power efficient schedules that would consume less power to get the desired job done. 
 
 

2.3&Power&Aware&Scheduling&–&Current&Approaches&
 
Generally, modern CMPs contain power monitoring tools that report the actual 

energy usage of the chip, and also support DVFS mechanisms that could be used to 
change the total system’s frequency, or in some cases the individual frequency of 
each running core. This gave researchers the opportunity to study the power 
consumption of their systems, as long as to design power aware scheduling strategies 
that could reduce the overall system’s energy needs for executing a job. Research 
made on power aware scheduling usually aims at the following similar goals: The first 
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one is to estimate the execution power of different available thread counts of a 
parallel application based on performance metrics, such as cache misses and 
instructions retired, and use the best combination to fill the entire system in order to 
consume as less energy as possible to complete a requested job. The second goal is to 
balance the running processes among the system’s cores to reduce conflicts in caches 
and the memory bus and run the system under a specified power envelope. 

One of the first approaches on power-aware scheduling was made by Major 
Bhadauria and Sally McKee [5]. While creating a greedy scheduler for resource aware 
co-scheduling of applications, they introduced Normalized Thread Throughput per 
Watt as a metric ( !""!"## =

!"#$%&!!"!!"#$%&'$()"#!!"#$%"&
!!!"#$%!×!!"#$%&'(!!!"#$!×!!"##$) and used it for extensive 

benchmark profiling, in order to find the thread count that maximizes the throughput 
per Watt in every used benchmark, and created a greedy bin-packing gang scheduler, 
that claimed to be very efficient for both performance and power. The scheduler is 
static as it creates gangs according to the power profiles of the applications that needs 
to be scheduled and does not make any changes during the execution, because it is 
unable to make real-time power estimations.  

Estimating the power consumption for different number of threads is a very 
difficult manner, because the existing hardware only offers power monitors for the 
whole CMP socket and the DRAM. Cores share the same power planes and so it is 
not possible to measure the power consumption for each independent core. For that 
purpose Singh, Bhadauria and McKee implemented a power estimation algorithm [6] 
that could help the OS to estimate the real-time power consumption of every process 
without actually simulating it and make better real-time scheduling decisions. The 
main goal of the algorithm is to achieve accurate per-core estimates of multithreaded 
and multiprogrammed workloads on a CMP with shared resources (an L3 cache, 
memory controller, memory channel, and communication bushes) and a real-time 
power estimation, without the need for off-line benchmarking, in order to schedule 
task efficiently.  

The proposed algorithm uses performance counters to capture the L2 cache 
misses (event1), the retired memory operations (event2), the retired instructions 
(event3) and the stalls (event4) on every CPU core and use the acquired information 
to predict the core and system power. It normalizes every event by dividing it with the 
total cycle count of the core (!! = !"!"#! (!"!#$!!"#$%)) and calculates the core 

power with the following power model: !!"#$ = !!! + !!×!!(!!)+⋯+ !!×!!(!!), 
where !! are constants defined measured results of their experiments. They claim that 
model to achieve median errors of 5.8%, 3.9% and 7.2% for the NAS, SPEC-OMP, 
and the SPEC 2006 benchmark suites, respectively.  

Moreover, they study the effects of temperature on the system power. Static 
power is a function of voltage, process technology and temperature, so increasing 
temperature leads to increasing leakage power and adds to total power. They 
monitored the temperature and power of the CMP and observe that they affect each 
other and not accounting for temperature could lead to increased error in power 
estimates. However, not all systems support temperature sensors on the die area, or 
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per core, so omitting information about temperature could be really hard to deal with 
in most cases.  

Another important issue discussed in literature is balancing the available 
resources among all processes in order to minimize the system’s power consumption 
rate and at the same time increase performance by avoiding unnecessary cache and 
bus conflicts. Balancing power consumption could be a critical design parameter for 
many modern data centers and enterprise environments as it is has a direct influence 
on the cost. On that scope Dhiman, Marchetti and Rosing introduced an algorithm for 
placing the running processes across the available resources in order to balance the 
overall machines power [7]. 

Their work is built on a virtualized environment called “vGreen”, which is a 
multi-tiered software system to manage virtual machine (VM) scheduling across 
different physical machines (PMs) with the objective of managing the overall energy 
efficiency and performance. It is based on a client server model, where a central 
server perform the scheduling of VMs across the PMs. Every PM is referred as a 
virtual node and every VM contains several number of virtual CPUs. 

From their experiments they indicate that co-scheduling VMs with similar 
characteristics is not beneficial from energy efficiency and power consumption point 
of view at high utilization rates. That’s because when a PM is running similar 
processes it may result in undesirable cache conflicts and so it contributes to higher 
system energy consumption, since it runs longer. Then they use performance counters 
to count the following events: 1) Instructions Retired (INST), 2) Clock Cycles (CLK), 
3) Memory accesses (MEM) and 4) CPU utilization (Util), and use them to estimate 
the MPC (MEM/CLK) and the IPC (INST/CK) for every VCPU and every VM. 
Finally, they propose an algorithm from balancing MPC, IPC and CPU utilization 
across their system. 

For the purposes of their algorithm, in order to efficiently estimate the impact 
of the previous metrics on the VCPU power consumption and performance, they use 
weighted values of MPC and IPC: !"#$ = !"#×!"#$%&',!"#$ = !"#×
!"#$%&', and then calculate the aggregate metrics for each VM by adding up the 
corresponding metrics of its consistent VCPUs. Also they specify thresholds for 
MPC, IPC and CPU utilization, which are representative of whether high values of 
these metrics are affecting the performance of the VMs. The algorithm runs at a 
constant time quantum to ensure that every VM runs in acceptable values for these 
metrics (under the threshold), which indicates that the MPC and IPC is balanced 
across all the virtual nodes in the system for better overall energy consumption and 
performance. If a VM exceeds the threshold the algorithm try to rearrange the VCPUs 
across the VMs to balance the overall system again. 

A similar approach on the subject was made by Merkel and Bellosa[8]. In 
their research they also observed that in order to optimize a schedules runtime and 
expended energy, the main goal must me to avoid contention by combining tasks with 
different characteristics. Thus, co-scheduling memory-bound and CPU-bound 
applications together, is proven to be beneficial for the system, because applications 
do not waste time competing for system resources. In the extreme scenario that 
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nothing but memory-bound applications are available for scheduling they use 
frequency scaling policies to reduce the energy consumption without affecting the 
performance. So, they propose a policy for timeslice-based multitasking, 
multiprocessor scheduling, where frequency scaling is used only if contention cannot 
be avoided. 

The policy is based on performance monitoring. Whenever the CPU executes 
a task for a timeslice the scheduler uses the processor’s performance counters to 
determine the memory intention of the task by counting the number of memory 
transactions. Then the scheduler uses this characterization to sort the tasks in each 
processor’s run-queue by the memory intension. The tasks of cores with even 
processor numbers are sorted descendingly, while the tasks of cores with odd 
processor numbers are sorted ascendingly, so that the scheduler is able to co-schedule 
tasks of different memory intensities at the same time quantum. To achieve this co-
scheduling, the scheduler ensures that the cores process their run-queues 
synchronously. Moreover, to make sure that tasks of different memory intensity levels 
are available on each core, they employ a balancing mechanism that migrates tasks if 
needed. 

Frequency scaling is used only in cases where contention cannot be avoided. 
On modern processors switching the frequency introduces delays in the order of 
microseconds, which is several orders of magnitude smaller than the granularity of 
scheduling, so the scheduler is allowed to select a suitable frequency on every task 
without introducing noticeable overhead. In their work they study the effects of 
frequency scaling on tasks with different memory bus utilization, by determining the 
values of Energy Delay Product (EDP) for different frequencies. They introduce a 
model where the EDP factor is calculated by the equation: !"!!"#$%& = 1.4− 0.8!, 
where x represents the bus utilization and check whether the average EDP factor of 
the tasks currently selected for execution on the cores is smaller than one. If so, the 
scheduler engages frequency scaling, else it disables it. 

In conclusion, researchers that deal with power aware scheduling first of all 
focus on designing contention aware scheduling policies, which ensure that 
applications with different profiles and memory needs are co-scheduled together. 
Furthermore, they use DVFS methods to prevent the system from unnecessary energy 
expenses when dealing with memory intensive applications, and explore different 
ways to correlate performance metrics with the best execution frequencies.     
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3 Tools 
3.1&Platform&Characteristics&–&Analysis&&
!

3.1.1&Experimental&Platform&
!

The!table!below!describes!the!characteristics!of!the!platform!on!which!we!
conducted! our! experiments.! Our! system! contains! an! Intel! Sandy!Bridge! family!
processor.! It! is! a!NonsUniform!Memory!Access! (NUMA)! architecture! processor!
that!contains!four!sockets,!and!each!one!of!them!consisting!of!8!cores.!Every!core!
has! its! own!private!L1! cache,! two! cores!of! the! socket! share! a!L2! cache!and!all!
core!of!the!socket!share!the!L3!cache.!Every!socket!has!its!own!memory!node!and!
the! sockets! use! the! QPI! interconnection! network! to! communicate! with! each!
other.!

!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!

Table!3.1.1s1!Experimental!Platform!
!

! We!executed!our!experiments!on!a!Debian!GNU/Linux!system,!with!3.7.10!
kernel! version.!We! also! used! gcc! version! 4.4.5!with!O2! optimization! level! and!
OpenMp!standard!version!3.0!in!order!to!compile!Scaff..!
!

3.1.2&Power&Monitoring&
!

For our experiments, Sandy Bridge offers 4 power monitors for every physical 
package, as shown in the figure below [14]. We! can! only!measure! package,! core!
and!DRAM!power,!as!the!graphics!are!not!available!on!server!parts. 

!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!Platform!Model:!
!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!Intel(R)!Xeon(R)!CPU!E5s4620!

name! !!!!!!!!!!!!!!!!Sandman!
#Packages! 4!

#Cores/Package! 8!
#Threads/Core! 2!
CPU!frequency! 2.2GHz!
CPU!available!
frequencies!

1.1s2.2GHz!

L1i!cache! 32KB!
L1d!cache! 32KB!
L2!cache! 256KB!
L3!cache! 16384KB!
RAM! 24!GB!per!package!



!

!20!

!
Figure 3.1.2-1 NUMA Power Monitoring  

!
!

In! our! experiments! we! calculate! the! core,! the! uncore! and! the! DRAM!
power.! The! core! part! contains! package! cores! and! L1! and! L2! caches! for! each!
individual!core! in!the!package,! the!uncore!part!contains!power!consumed!from!
Last!Level!Caches!and!Memory!Controllers!and! the!DRAM!part! contains!power!
consumed!only!on!the!memory!connected!to!the!package.!
! For!obtaining!our!measurements!we!read!the!information!written!on!the!
following!registers:!!
!
• MSR_PKG_ENERGY_STATUS: reports the measured actual energy usage of the 

whole package (core and uncore parts). 
• MSR_PP0_ENERGY_STATUS: reports the actual energy usage on a power plane. 
• MSR_DRAM_ENERGY_STATUS: reports measured actual energy usage on the 

DRAM. 
 

Those! are! readsonly! registers! provided! by! the! Intel’s! chipset,! which!
reports the actual energy usage for the package, the core and the DRAM domain. 
They are updated every 1msec and have a wraparound time of around 60 seconds 
when power consumption is high, so on our experiments we obtain samples every 30 
seconds to avoid any data loss. The content of these registers is an unsigned long 64-
bit integer. 

To use the content of the above registers we also need related information 
stored in the MSR_RAPL_POWER_UNIT register. In this register there are exposed 
units for the power (expressed in Watts), energy (expressed in Joules) and time 
(expressed in seconds). Thus in order to calculate the actual core energy consumed 
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between 2 discrete times (t1, t2) we need to obtain the difference of the 
MSR_PP0_ENERGY_STATUS register’s content between t2 and t1 and then 
multiply it with the energy units. 

Finally we can use the MSR_PKG_POWER_INFO register to gain 
information about the average power usage limit of the package domain, the power 
limits of the package and the time window for our power limits. 

 Running a simple test on our system on a single 8-core package of our 
system we found that the values of the needed units are: 

• Power units = 0.125W 
• Energy units = 0.00001526J 
• Time units = 0.00097656s 

the package limitations are: 
• Package average power: 95.000W 
• Package minimum power: 52.000W 
• Package maximum power: 150.000W 
• Package maximum time window: 0.046s 

and the power consumed from 1 core (core #0) sleeping 1 second was:  
• Package energy: 10.250595J consumed 
• PowerPlane0 (core) for core 0: 1.681656J consumed 
• DRAM energy: 2.230789J consumed 

&

&

3.1.3&NUMA&Memory&Allocation&<&Limitations&

 
 As mentioned before for the purposes of this work we use an Intel processor 
based on Intel’s microarchitecture code name Sandy Bridge, in order to obtain 
information from the power monitoring registers included in such a processor. As the 
processor is built based on the Non-Uniform Memory Access (NUMA) design 
technique we need to study the NUMA characteristics! NUMA is a computer 
memory design used in multiprocessing, where the memory access time depends on 
the memory location relative to a processor [10]. Under NUMA, a processor can 
access its own local memory faster than non-local memory (memory local to another 
processor or memory shared between processors). An example of NUMA memory 
architecture is shown in the figure below:  
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Figure 3.1.3 - NUMA Architecture 

 
 Modern CPUs operate considerably faster than the main memory they use and 
as a result, in many cases they may found themselves running on “idle” state as they 
have to stall while waiting for data to arrive from the memory. Multi-processor 
systems without NUMA make the problem considerably worse, as they frequently 
keep several processors in idle state waiting for data at the same time, notably because 
only one processor can access the computer's memory at a time. On the other hand, 
NUMA attempts to address this problem by providing separate memory for each 
processor, as shown in the figure above, in order to avoid the performance hit when 
several processors attempt to address the same memory node. Of course, not all data 
ends up confined to a single task, which means that more than one processor may 
require the same data. To handle these cases, NUMA systems include additional 
hardware interconnection to move data between memory banks of different packages. 
Thus, moving data between different NUMA packages slows down the processors of 
the involved packages and result in poor performance, so the overall speed increase 
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due to NUMA depends heavily on the nature of the running tasks and it’s the software 
developers responsibility to develop and run parallel applications with NUMA-aware 
memory allocation in order to exploit the advantages of the architecture. 

As mentioned before in a typical NUMA based multiprocessor system each 
package (or CPU) has its own memory, so maintaining cache coherence across the 
whole system’s memory has a significant overhead. NUMA uses inter-processor 
communication between cache controllers to keep a consistent memory image when 
more than one cache stores the same memory location, allowing one package to 
transparently access memory connected to another package [11]. This mechanism 
solves the problem of cache coherence but it may result in poor performance when 
multiple processors attempt to access the same memory area. 

In the NUMA architecture the memory access time is not constant.  For 
example on the figure above, a core inside Package0 can access the local memory in 
bank 0 much faster than it can access memory connected to Package1 in bank 1, 
where only one hop over the interconnection is required.  Moreover, accessing 
memory connected to Package 2 from the same core is even slower as it requires two 
hops over interconnection links. So it is obvious that the increased cost of accessing 
remote memory over local memory can affect the performance and the farther the 
requested data is stored the slower it would be available. In other words, software 
should try to allocate memory efficiently and increase the usage of local memory to 
result in better performance. For example, if we run a multithreaded application on 
packages 0 and 1 we must ensure that threads running on Package0 allocate and use 
data from Memory0 and threads running on Package1 use data from Memory1.  

In order to deal with that, modern operating systems usually offer tools that 
help developers to control where each thread of their program will allocate its 
memory [12]. For example, Linux offers a library called “libnuma” that includes 
functions for allocating memory on specific NUMA-nodes. Well-designed NUMA-
aware software carefully allocates memory and manages threads to maximize the 
local memory usage.  However, it is a very difficult task to determine the topology of 
the system and allocate memory from specific memory banks to ensure that data is 
being manipulated by threads running only on the local package. 

Moreover, another problematic case is running older software, not designed 
for NUMA machines, on a NUMA processor. Modern operating systems use virtual 
memory and give applications limited control over the mapping of virtual to physical 
memory. When an application allocates a memory block it is assigned a virtual 
memory region. The OS maps that virtual memory region to some physical memory 
location, but the OS typically retains a full control over when that happens or what 
physical memory range to use. Most of the existing operating systems use a “first 
touch” allocation policy, which means that when an application requests memory, that 
its virtual address is not mapped to any physical memory, the OS allocates a physical 
memory region and maps the virtual address to the physical range. The OS typically 
allocates physical memory from the same NUMA node as the core that executed the 
thread that first accessed the virtual memory block. 



!

!24!

In order to study this policy let us consider 3 applications from the NAS 
parallel benchmarks with different characteristics. We choose bt.A (workload set 
class A), which is a block tri-diagonal solver, as a pseudo-application with significant 
memory needs, ep.A (embarrassingly parallel with small workload, class A) as a cpu-
bounded application with small memory needs that could be meet by L1 and L2 
caches, and is.C (Integer Sort, large workload class C) as an application that makes 
random memory accesses. We run each one alone with 4 threads and then change the 
placement of the running threads across the existing packages to report the differences 
in execution time for completing the job. We normalize the measured execution time 
over the single package’s execution. Our NUMA processor contains 4 packages so 
every one has 2 neighbor packages and one distant, like the previous figure, so we 
obtain the following results: 

 
 

 
Chart 3.1.3-2 NUMA Placement Issues 

 
 Spreading the execution threads across packages is expected to lead in 
performance improvements, as each thread has more resources to run. For example 
placing 4 threads in 4 different packages instead of 1 would reduce cache conflicts 
between them, because each thread stores data in a different last level cache, and also 
reduce the completion among them for the memory bus, so the overall performance 
would be improved. However, in NUMA architectures that is not always the case. In 
the chart above we can observe that only is.C is able to gain from using more than one 
packages and report a speedup, while ep.A has almost the same execution time in 
every case and bt.A reports a significant slowdown when executed on multiple 
different packages. 
 That behavior is mainly a result of the NUMA-allocation policies. In an 
application like bt.A, where the first thread allocates a 3-dimensional array and the 
there is a parallel for loop that executes the tri-diagonal solver, all the useful data is 
“touched” at the beginning by the one thread and as a result of the Linux “first-touch” 
policy it is allocated on the memory node of this thread’s package. So, as we can 
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observe from the above chart, running bt.A on neighbor packages or 1 thread on each 
package (which includes 2 neighbor and 1 distant package) results in a 1.1 slowdown 
rate, while running the same application on distant packages makes the execution 
more than 1.2 times slower. The same behavior but in a smaller amount is reported by 
ep.A, where the application’s threads share less data and so the slowdown of the 
spreaded execution is below 1.1 in every case. 
 On the other hand, is.C, which allocates random data from the memory, 
succeeds in distributing the needed data between threads and results in performance 
improvements for “spreaded” execution. From the results above we observe that 
placing is.C threads in 2 packages, neighbor or distant, results in faster execution than 
placing all the treads inside the same package, while the best case scenario is using all 
4 packages of our system in order to obtain the best performance for the application. 
 Another important problem is the way the NUMA memory organization and 
the dependencies between different threads of the same application affect the ability 
of a parallel application to scale efficiently. In order to deal with this issue we choose 
cg (with workload class B) from the NAS benchmarks, which is an application with 
great scaling ability on a Uniform Memory Access (UMA) processor system and 
execute it with 1 to 16 threads in both a UMA and a NUMA machine. We obtain the 
following results:  
 

 
Chart 3.1.3-3 cg.B scaling between UMA and NUMA machines 

 
 In the chart above both UMA and NUMA contains 8 cores per package. 

Uniform Memory Access architectures contain multiple processors, with several cores 
each, but only one memory node. So every core has an almost constant memory 
access time based only on the competition for the shared memory bus. As we can see 
from the chart above that gives the chance to parallel applications with great scaling 
ability, like cg.B , to scale efficiently while using cores from multiple packages. On 
the other hand, NUMA allocation issues prevent the application from scaling when 
the number of threads exceed the available cores inside one single package (8 cores in 
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our case), because useful data is allocated only on one memory node and threads 
running outside that node’s package waste a lot of time waiting for data. 

In conclusion, NUMA architecture chips are designed to include individual 
memory nodes for every physical processor in order to reduce complexity and 
memory access time and provide a great boost to the overall performance of the 
system. Although, writing NUMA-aware code is a very difficult task for parallel 
software developers, because of the problems and limitations that may occur when 
running applications that are unaware of the system’s topology, and random memory 
allocations of data may result in undesirable software performance slowdowns. 
 

 

3.2&Scheduling&Infrastructure&<&Scaff&
 

For the purposes of this work we need handle processors performance 
monitoring, in order to read information from power and performance counters, and 
create different scheduler implementations to study their efficiency towards system’s 
throughput and fairness. For that reason we modify and use Scaff runtime system 
provided by the CSLab. 

 
 
 

3.2.1&Scaff&Architecture&
 

Scaff is a runtime system that orchestrates the execution of a workload of 
multithreaded programs. It operates at user-level, on top of Linux based systems, and 
its task is to let the user bypass the Linux scheduler and apply his own scheduling 
implementations on a workload of programs that need to be executed.  Scaff consists 
of two main subsystems: the executor and the scheduler. The executor is responsible 
for handling events regarding the execution, such as creating or terminating a program 
and freezing or thawing programs in the commands of the scheduler, while the 
scheduler is responsible for making execution decisions about time and space sharing 
of applications among the existing resources. 

The executor is always running on the system awaiting the appearance of 
various kinds of events, in order to trigger the appropriate function of the scheduler. 
These events are the creation and termination of a program, the completion of a time 
quantum and the scheduler decisions in order to execute a program or put it on 
“freeze” state to wait in the waiting list. On the other hand, the scheduler takes all the 
scheduling decisions about when a program will execute, on which cores and whether 
some programs will co-execute. On the following pages there are more information 
about the executor, the scheduler and the complete Scaff architecture, which is 
illustrated on the following figure: 
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Figure 3.2.1-1 Scaff Architecture 

 
 
Executor: 
  
 The executor keeps information about the programs of the workload and 
certain kinds of events that occur during the execution, in order to call the appropriate 
scheduler functions. Every program can be in one of the following states: 
 

• WATING: waiting to arrive to the scheduler 
• NEW: just arrived and is ready to start execution 
• RUNNING: executing 
• FINISHED: program has finished its execution 
 

Programs of the workload as given as an argument to the executor, in a 
configuration text file, which also includes the time each program must start and the 
number of requested threads for its execution. Until their starting time comes, they are 
in WAITING state and then the NEW state begins in order to highlight to the 
scheduler that they are ready to be executed for the first time. A list (pnew_l) of 
programs in NEW state is given by the executor to the scheduler, so that it will begin 
their execution and add them to a list of handled by the scheduler programs. These 
programs that are executing and their execution is handled by the scheduler are in 
RUNNING state. Finally, a program enters the FINISHED state, either when it has 
finished its execution, or it got “killed” by another process. The executor adds all 
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programs in FINISHED state to a list (pfinished_l) and gives it to the scheduler, in 
order to remove finished programs from the execution schedule, while the executor 
cleans-up every structure that was created for handling and executing the finished 
programs. 

Also, the executor keeps for every given program information about its cpuset, 
the number of cores that the program has requested for its execution, a shared 
memory area used for communication between the program and the scheduler, and the 
frequency requested for execution. The cpuset of a program is necessary, in order for 
the executor to decide on which cores the program will execute and which memory 
nodes is allowed to use for allocating memory pages, and the frequency tells the 
executor what frequency to apply on the execution cores, of course if the requested 
frequency is available for the system. 

While a program is in RUNNING state, it can be either FROZEN, which 
means that it is stopped for the current time-quantum, or THAWED, which indicates 
that the program is currently running. So the executor needs to handle the two 
following events: 

• EVNT_NEWPROG'

• EVNT_QEXPIRED'

'
EVNT_NEWPROG' is created every time a program starts its execution and 
EVNT_QEXPIRED' is created at the expiration of a time-quantum. Each event is 
associated with a timestamp, at which it must be processed by the executor. The 
executor uses a priority heap to keep truck of this events and during the execution it 
checks for events that their time has come to be processed and calls the appropriate 
scheduler function to handle them. 
 
 
Scheduler: 
 
 A scheduler is used in order for Scaff to be able to manage the execution of 
the requested programs and handle the events that are created during the execution. 
The scheduler includes several functions to implement a specific scheduling policy 
and is responsible for sharing the available resources among the running programs, 
according to every programs demands and make important decisions about time and 
space sharing of running programs.  
 Every Scaff scheduler must implement the following functions: 
 

• void'*init(void): This function is called ate the beginning of the execution by 
the executor in order to initialize the scheduler. Its returned value is stored by 
the executor and used by the executor and the scheduler in later time intervals. 

• void' rebalance(void' *sched_data): rebalance is called either when one or 
more programs are ready to be executed, so pnew_l is not empty and there are 
programs in NEW state, or, one or more programs are in the pfinished_l list 
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because the completed their execution and are now in FINISHED state. So 
rebalance is responsible for handling new programs, adding them in the 
execution schedule and giving them resources to run, and removing finished 
ones from the execution list and de-allocating their used resources and 
structures. 

• voidqexpired(void' *sched_data,' structtimeval' *now): this function is called 
whenever a time-quantum has finished. The scheduler must add 
aEVNT_QEXPIRED event in the priority heap, in order to implement time-
sharing. 

• intprog_changed(void' *sched_data,' aff_prog_t' *prog,' intnr_threads): this 
function is called whenever a program’s requirements for resources have 
changed and it is responsible for handling the new information and make the 
necessary changes to the execution schedule.   

 
 
 
 

3.2.2&Design&and&Operation&of&Scaff&
 
 The design of Scaff aims to assist a scheduler implementation that will interact 
with the workload of programs it is handling during execution time. It provides the 
means of communication between the two ends, and the necessary mechanisms to 
control the execution of programs. 
 In order to provide communication between the programs and the scheduler 
Scaff keeps information about every single program, the schedule and the system on 
which both are running on. The most significant piece of information that is kept is 
the number of cores that each program require for its execution as long as the number 
of cores that the scheduler allocated for it and the number of the available cores on the 
system. Moreover, Scaff must deal with the running programs’ needs to send requests 
to the executor, as well as the need for synchronous communication. For that purpose 
it uses two pipes for every program, one for the program to make requests to the 
executor and another for the program to wait the executors response. So, whenever a 
program wants to make requests to the executor, it sends from the write-end of the 
pipe an identifier and waits for the executor to read the read-end of the pipe. This pipe 
is unique for all programs in order for the executor to keep a priority on the request 
arrived from different programs, and is stored in Scaff’s structure describing the 
execution. Then the program is waiting on the read-end of another pipe for the 
executor to write some arbitrary value to the write-end, after it has processed the 
program’s request. The second pipe is individual for every running program and is 
stored on the programs data. 
 When an execution begins, the first thing that Scaff must take care of is the 
initialization phase. This includes allocating the priority heap that keeps events during 
the execution, allocating a hash table, which maps the structures that describe 
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programs, with their process id’s (pids), and creating the pnew_l and pfinished_l lists 
that are used to keep the new and the finished programs. Then Scaff must allocate an 
appropriate structure for every program of the workload that is to be executed. The 
workload is given as a command line argument in a configuration file, so Scaff parses 
the configuration file and allocates and initializes a structure (aff_prog_t) that is 
necessary in order to store all the useful data for every program. The main purpose of 
this structure is to keep stored a cpuset_t field, which is used as a handler for the 
program’s cpuset and a pointer to the shared memory that will be used for 
communication with the executor for every program. It also contains information such 
as the requested cores and frequency that could be used by the scheduler during the 
execution. 
 After the new program’s aff_prog_t structure is initialized, the executor will 
fork() a new process for it. The new process will then use execl()to begin the 
program’s execution on a new shell. The executor will wait for the program to freeze 
itself, and then it attaches it to its new cpuset, which at first will contain all the cpus 
of the system. Finally it pushes on the heap an EVNT_NEWPROG event. The new 
program will remain in FROZEN state until it is time for this EVNT_NEWPROG to be 
handled. The scheduler will then take over responsibility for its execution.  
 After handling the programs include in the configuration file, Scaff needs to 
initialize a structure for the scheduler that will be used, which is given as an argument 
from the command line. Also it needs to install signal handlers to handle SIGCHLD and 
SIGTERM signals, for normal and unexpected program termination, respectively. A 
SIGCHLD'would inform the scheduler for the normal termination of a running program 
and add the program in the pfinished_l list in order for the scheduler to deal with it 
and rearrange the existing execution schedule, and a SIGTERM signal will implement 
an execution error and will cause the execution to abort. 

 After the initialization phase is completed every program is in a WAITING 
state until its time comes to run for the first time, so it moves to the RUNNING state. 
Then the scheduler is responsible for deciding whether and whenever to “freeze” it or 
“thaw” it. While applications are executed by the scheduler, they are able to write to 
the write-end of Scaff’s pipe, for programs communication, in order to make several 
requests to the executor. After a request the application remains blocked and waits for 
the executor to fulfill its request and write to its pipe an arbitrary value to unblock it 
and let it know that the request was filled. In order to relieve the applications from 
having to deal with the executor’s specific implementation and data Scaff provides a 
function called affhook_region_notify(), which writes in the shared memory area and 
then sends the application’s data structure (aff_prog_t) through the write-end of the 
executor’s pipe. 
 Furthermore, during the execution Scaff’s duties reduce to handling execution 
events, programs notifications and signals. The executor pops events from the priority 
heap until it becomes empty. Every event is associated with a timestamp that indicates 
the exact time quantum that must be handled by the executor. The executor selects the 
event with the highest priority and compares the current timestamp with the event’s 
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timestamp and if its time to be processed has arrived the executor pops it from the 
heap and handles it. Handling these events requires different types of action to be 
taken depending on the nature of the event. For example handling an 
EVNT_NEWPROGevent requires adding a program to the pnew_l, while handling an 
EVNT_QEXPIRED event indicates that a time-quantum expired and requires calling the 
qexpired() function from the scheduler. 
 When no other events are to be handled for the current time being, if there are 
new programs, so that thepnew_l list is not empty, the scheduler’s function 
rebalance() is called. In this procedure the scheduler handles scheduling issues that 
may appear by a new or a finished program and the returns the amount of time until 
the next event in the heap must be handle. Until that point of time the executor waits 
for program notifications. These notifications are in fact an aff_prog_t structure of the 
program that makes a request and a number of requested threads written on the shared 
memory. If implemented, the prog_changed() function is called, so that the scheduler 
takes into account the program’s requests. 

 Finally, the execution stops when there are no programs left in any available 
state, so that Scaff exits. For communication between Scaff and the user before 
exiting Scaff uses functions from a stats.c file included in the implementation to 
report statistics about the whole execution in an exit test file that is given as a 
command line argument. Scaff is able to write data in this file during the execution 
time too in order to report the scheduler’s decisions and information related to the 
programs statistics during the execution. 
 
 
 
 

3.3&Benchmarks&&
 
 For the purposes of this work we use benchmarks from the Polybench [16] and 
the NAS Parallel Benchmark [15] suites. In this section we present the two suites and 
the benchmarks we selected for our experiments. 

PolyBench: is a collection of benchmarks containing static control parts. The 
purpose is to uniform the execution and monitoring of kernels. PolyBench features 
include: 
 

• A single file, tunable at compile-time, used for the kernel instrumentation. It 
performs extra operations such as cache flushing before the kernel execution, 
and can set real-time scheduling to prevent OS interference. 

• Non-null data initialization, and live-out data dump. 
• Syntactic constructs to prevent any dead code elimination on the kernel. 
• Parametric loop bounds in the kernels, for general-purpose implementation. 
• Clear kernel marking, using #pragma scop and #pragma end scop delimiters. 
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The chosen benchmark applications explored in the current work are presented below:  
 

1. Cholesky: In linear algebra, the Cholesky decomposition is a decomposition of 
a Hermitian, positive-definite matrix into the product of a lower triangular 
matrix and its conjugate transpose. It is an efficient tool for solving systems of 
linear equations. 

2. atax: This application includes algorithms for matrix transpose and vector 
multiplication. 

3. gemver: This application includes algorithms for vector multiplication and 
matrix addition. 

4. syr2k: This application  performs one of the symmetric rank 2k operations. It 
is given by the formula: C := alpha*A’*B + alpha*B’*A + beta*C where   
alpha  and beta  are scalars, C is an  n by n  symmetric matrix and  A and B  
are  n by k  matrices  in the  first  case  and  k  by  n matrices in the second 
case. 

5. jacobi-1D: This application contains the 1-D Jacobi stencil computation 
algorithm. Stencil codes are a class of iterative kernels[1] which update array 
elements according to some fixed pattern, called stencil 

6. mvt: This application includes algorithms for matrix vector product and 
transpose. 

 
 The Numerical Aerodynamic Simulation (NAS) benchmark suite is a set of 
benchmarks that has been developed for the performance evaluation of highly parallel 
super-comput-ers. These benchmarks consist of five "parallel kernel" benchmarks and 
three "simulated application" bench- marks. Together they mimic the computation 
and data movement characteristics of large-scale computational fluid dynamics 
applications. 
 
The chosen benchmark kernels explored in the current work are presented below: 
 

1. BT: Solution of multiple, independent systems of non diagonally dominant, 
block tri-diagonal equations with a (5 X 5) block size. 

2. LU: A regular-sparse, block (5 x 5) lower and upper triangular system 
solution.. This problem represents the computations associated with the 
implicit- operator of a newer class of implicit CFD algorithms, typified at 
NASA Ames by the code "INS3D-LU". 

3. CG: A conjugate gradient method is used to compute an approximation to the 
smallest eigenvalue of a large, sparse, symmetric positive definite matrix. This 
kernel is typical of unstructured grid com-putations in that it tests irregular 
long distance communication, employing unstructured matrix vector 
multiplication. 

4. IS: A large integer sort. This kernel performs a sorting operation that is 
important in "particle method" codes. It tests both integer computation speed 
and communication performance. 

5. FT: A 3-D partial differential equation solution using FFTs. This kernel 
performs the essence of many "spectral" codes. It is a rigorous test of long- 
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distance communication performance. 
6. EP: An "embarrassingly parallel" kernel, which evaluates- an integral by 

means of pseudorandom trials. This kernel, in contrast to others in the list, re- 
quires virtually no inter-processor communication. 

 
!
!
!

3.4 Power Metrics 
!
! The metric of interest in power studies varies depending on the goals of the 
work and the type of platform being studied [13]. Well know and widely used on 
previous works metrics are: 

• Energy (E): Energy, in joules, is often considered the most fundamental of the 
possible metrics. The value of this metric represents the total amount of joules 
consumed while executing a certain task. 

• Power (P): Power, in watts (joules/sec), represents the rate of energy 
dissipation. 

• Energy Delay Product (EDP): While low power often used to be viewed as 
synonymous with lower performance, that is no longer the case. In many 
cases, application runtime is of significant relevance even in energy- or 
power-constrained environments. With the dual goals of low energy and fast 
runtimes in mind, energy-delay product (EDP) was proposed as a useful 
metric. Its value is given by multiplying the energy consumed (joules) with the 
execution time (seconds). Some ways of computing EDP are listed below: 

Delay = execution time 
Energy = Watts ∗execution time 

EDP = Watts ∗execution time ∗execution time 
Execution time = Instruction Count / MIPS 

EDP = Watts ∗(ICount / MIPS)^2 
EDP = ICount^2 ∗1/(MIPS^2/Watt) 

If either energy or delay increases, the EDP will increase. Thus, lower EDP values are 
desirable. 

• Energy-delay-squared and beyond: Following on the original EDP proposal, 
other work has suggested alternative metrics, such as energy-delay-squared 
product (ED^2P) or energy- delay-cubed product (ED^3P). These alternatives 
aim to highlight the importance of keeping the performance over a baseline in 
our try to make an energy saving model. 

• NTT/Watt : Normalized per Thread Throughput per Watt is defined as : 
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The problem with this metric that it should be used only on a fully utilized system, 
where no cores are left idle, because otherwise higher thread count leads in higher 
Watt consumption and lower NTT/Watt values. As a result this metric is better used 
from a scheduler on a system with no idle cores left or an execution with a fixed 
thread count. 

 In this work we consider Energy Delay Product to be the most useful metric 
when we need to highlight the energy of executing a workload or study benchmarks 
behaviors on different thread counting and DVFS (Dynamic Voltage and Frequency 
Scaling) and Energy Delay Squared Product when we want to give performance 
priority against energy savings. 
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4 Power Consumption 
!

In this section we use the previous mentioned power monitoring tools to 
obtain power measurements and introduce a simple power consumption model for our 
system. Then we study the power consumption rate of applications according to the 
available resources and placement and deal with the influence of scaling on the EDP 
of an application. We also study the importance of dynamic voltage and frequency 
scaling (DVFS) when dealing with programs with large datasets, and finally we study 
the power profile of the NAS and the Polybench benchmarks and create pareto chards 
for their EDP.    

 
 
 

4.1&Power&Model&
 
 Running different applications from the NAS parallel benchmarks 
demonstrated that every application has a different rate of power consumption, based 
on its cpu intensity and memory needs of the application. Each application based on 
its behavior has different needs in core, uncore and DRAM power.  For example 
consider the table below, which contains measured core, uncore and DRAM power 
for the applications bt.A, cg.B, ep.A and lu.A (included in the NAS parallel 
benchmarks) running on 1 core and the power consumption when our system remains 
idle: 
 
 
 

application' idle' bt.A' cg.B' ep.A' lu.A'

Pcore(Watt)' 0.43' 9.72' 9.49' 8.26' 9.38'

Puncore(Watt)' 13.5' 14.07' 13.77' 13.5' 13.6'

Pdram(Watt)' 3.2' 6.56' 6.36' 4.41' 5.04'

P'(Watt)' 17.13' 30.35' 29.62' 26.17' 28.02'
Table 4,1-1 Single Threaded Power Measurements  
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Chart 4.1-1 Single Threaded Power Measurements 

 
 
 

When our system is empty each one of the idle cores has a power consumption 
of 0.43W and Dram need 3.2W while the uncore parts of our package need 13.5 W, a 
significant higher amount from core and Dram. That’s because memory controllers 
and LLC are never switched off or run on an idle state and they are in constant need 
for power. Then running different application results in different power behavior for 
each one. For instance bt.A and cg.B, which are memory bound, have a higher need 
for DRAM power and even core power from ep.A and lu.A, which exploit higher 
level of parallelism  and less need for memory. As a result we can characterize bt.A to 
be the more power “hungry” of our 4 benchmarks needing 30.35W to execute on a 
single core, while our system needs 17.13W when it is empty. Finally the uncore parts 
need 13.5-14W for the controllers to run regardless the current running application. 

From the above measurement we can conclude that every application has a 
different power/energy profile based on memory or the cpu intensity while executing. 
For that purpose we build 2 corner case applications using the STREAM benchmark 
[18]. This is a pseudo-benchmark designed to make streaming memory access without 
any cache reuse, in order to constantly transfer data from memory to LLC and define 
the limits of the system’s memory bandwidth. Our System reported a top transaction 
rate around 15000 MBs/second for every physical package. We make the following 
adjustments to the tuned_STREAM_Triad() function to add arithmetic operations to the 
computational kernel: 
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voidtuned_STREAM_Triad(STREAM_TYPE'scalar)'
{'
' ssize_tj,k;'
' #pragmaomp'parallel'for'shared'(val)'
' for'(j=0;'j<STREAM_ARRAY_SIZE;'j++){'
' ' a[j]'='b[j]+scalar*c[j];'
' ' for'(k=o;'k<ARITHMETIC_OPS;'k++){'
' ' ' val'='val'+'scalar;'
' ' }'
' }'
}'

Code 4.1.1-1 Stream Software Triad Function  
 

We need the first one to be memory-bounded so it is designed to use the whole 
memory bandwidth of one package in our system, and the second to be cpu intensive, 
so it is designed to perform 1000 arithmetic operations between every memory 
transaction. We first run each one on a single core and then on 4 and 8 cores to fill at 
first half and then the entire package and we obtain the following results: 

 
 

' 1'core' 4'cores' 8'cores'

application' Cpu'

intensive'

Memory'

bound'

Cpu'

intensive'

Memory'

bound'

Cpu'

intensive'

Memory'

bound'

Pcore(Watt)' 7,98' 11,61' 18,95' 24,17' 33,89' 40,79'

Puncore(Watt)' 13,45' 15,28' 13,47' 15,96' 13,54' 16,05'

Pdram(Watt)' 4,76' 9,2' 4,79' 11,02' 4,84' 11,51'

P'(Watt)' 26,19' 36,09' 37,21' 51,15' 52,27' 68,35'

Table 4.1-2 Power Consumption of the Stream Benchmarks 
 
 

From the above results we conclude that running an 8-core package may 
require power consumption of 8~12Watts per core (making a total 64~96W for all 8 
cores), 3.2~12 Watts for DRAM purposes and 13~17 Watts for the needs of the Last 
Level Caches and the Memory Controllers. That indicates that for every package of 
our NUMA-processor we can assume a simple power model as shown in the chart 
below: 
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Chart 4.1-2 Power Model 

 
. Where for every execution our package power consumption rate should be inside the 
grey area of the chart. 

As we are interested in the total energy consumption for a job execution we 
need to consider our system’s power rate along its performance to get the total energy 
consumption. For example running bt.A on 1 core requires our system to use 
33.7Watts(12.73W core power, 14.07W uncore and  6.57W DRAM) and has a total 
execution time of 147.84 seconds, consuming a total amount of 33.7*147.84 = 
4982.21Joules, while running on 2 cores requires our system to use 39.88Watts 
(17.25W core power, 14.64W uncore and  7.99W DRAM) and has an execution time 
of 78.62 seconds, which lead us in a total energy consumption of 39.88 * 78.62 = 
3135.37 Joules. In that case the scaling ability of our application is very crucial for 
our scheduling decision because letting the application to run on 2 cores instead of 
one leads to an increase of 7.18 Watts in the total power consumption but also it 
almost doubles the performance and result in consuming almost 37% less energy (in 
Joules) to perform the requested job. 
 So it is quite obvious that it is not always necessary for a power efficient 
scheduler to try keeping the average package power on the left side of the grey area in 
our chart above, which contains lower values of package power consumption rates, 
but it should consider a lot of other factors that could lead to a more power friendly 
execution, such as scalability of our applications and, as we will mention bellow 
memory transactions, stalls, cache misses and more. 
 
 

4.2&Thread&Scheduling&<&Scaling&
  
 There are many studies about different ways to obtain a power friendly thread 
scheduling and many different scheduling policies suggested. Most of them aim to 
make a power estimation of different available thread counts for running an 
application, based on certain performance counters, and use the best combination to 
fill the available resources of a system. The main purposes of these scheduling 
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policies are to run a list of requested jobs under a certain power envelope or try to 
achieve as less energy consumption as possible. 
 Running an application on different thread counts results in different 
performance and power behavior. For example, giving more cores to an application 
with good scalability will result in better performance, but higher power consumption 
too. Also running a 2-threaded application on 2 cores in 1 package may perform 
worse compared to execution in 2 packages (1 core on each package), because more 
packages offer more resources such as larger cache capacity, which results in fewer 
last level cache misses, but it would be harmful from a power wasting point of view, 
because 2 packages will double the use of memory, Last Level Caches and memory 
controllers on a NUMA processor. 
 First of all it is an obvious fact that giving more resources to an application to 
run would result in higher power consumption rates. On the chart below we illustrate 
the power of ft.B, from the NAS Parallel Benchmarks, while running on 1 to 8 cores: 
 
 

 
Chart 4.2-1 ft.B Power consumption with increasing thread count 

 
 

From the chart we can see that only the uncore part of our package seem to 
consume power in an almost steady rate, while DRAM power slightly increases as we 
use more cores and as expected core power increases proportionally to the number of 
cores. But what’s important here is to decide which thread count is better for 
execution in a power saving manner. So we measure the execution time and the total 
energy consumption until ft.A exits and calculate the Energy Delay Product (EDP) of 
every execution: 
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cores' 1' 2' 3' 4' 5' 6' 7' 8'

exec'time' 80.8083' 44.2010' 32.8540' 28.4949' 23.9559' 21.1219' 20.0673' 21.0738'

energy'until'

execution' 2352.26' 1528.45' 1301.77' 1241.17' 1144.55' 1088.20' 1110.99' 1226.19'

EDP'
190082.

3' 67559.2' 42768.5' 35367.1' 27418.8' 22984.9' 22294.6' 25840.6'

Table 4.2-1 EDP for ft.B 
 

 
Chart 4.2-2 ft.B EDP with increasing thread count 

 
From the above chart we observe that the best Energy Delay Product values 

are given by running ft.B on 6-7 cores (EDP lower values are better, as mentioned 
before). Running ft.B on 1 core gives us the highest EDP value and then as we 
increase the number of cores on which ft.B is executed the value of EDP is decreasing 
until it reaches a minimum for running our benchmark on 6 or 7 cores. Also from the 
execution time row of our table we observe a corresponding behavior on the time the 
benchmark needs to complete its execution. Giving the application more cores to run 
results in smaller execution times until the core count reaches 6 cores. Then ft.B 
seems to be unable to benefit from larger number of available cores to run and result 
in execution times close to 20-21 seconds. As a result we conclude that scalability 
may be a very important part of a power aware scheduling model. 

 When a parallel application has good scalability it means that it is capable to 
benefit from using more resources and execute in significant smaller time. In that case 
giving more cores may require higher power consumption rate (Watts), but the time 
reduction will result in less power consumption until completing the execution and of 
course lower Energy Delay Product values. On the other hand when our application 
exhibits low levels of scalability it means that giving more resources to run on may 
have small effect on reducing the execution time but a great impact on energy 
consumption, as our system requires more power to run, and results in higher energy 
consumption to complete our job. 
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 Another important fact is that, from a power saving point of view, we can 
sometimes benefit from letting some cores to run idle for a while, in contrast to 
performance aware scheduling policies, which always try to obtain a fully utilized 
system. For example when we have to run an application, with good scalability 
between 1 and 4 threads and then stops, alone on an 8-core processor a power aware 
policy would be to use only 4 cores and leave the remaining idle so that we pay a 
small performance loss but also achieve a smaller energy consumption than using the 
whole system. 
 To obtain a better image about the issues discussed above we run all the NAS 
[15] and Polybench[16] benchmarks on 1 to 8 cores, in order to stay inside a single 
package and avoid unexpected scaling behaviors of the benchmarks due to the 
NUMA architecture characteristics, we measure the speedup (scalability) and the 
EDP. The charts below contain the acquired results: 
 
 
 
 

 
Chart 4.2-3 NAS Benchmarks Scalability 
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Chart 4.2-4 NAS Benchmarks EDP 

 
 
 
 
 
 

 
Chart 4.2-5 Polybench Scalability 
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Chart 4.2-6 Polybench EDP 

 
 

From the above charts we observe that allocating more cores for an application 
is beneficial for EDP only if the application exhibits good scalability. For example, in 
NAS benchmarks only ep, lu and cg, the three application with the greater scaling 
ability on 6 to 8 cores, would result in a more power efficient execution when they 
allocate 7 or 8 cores, while the other applications, which fail to scale efficiently above 
6 cores would result in wasting power if executed on such threadcounts. So the most 
power-efficient execution would include allocating 6 cores for both bt and ft. Finally, 
is, which fails to scale above 2 or 3 threads, should be executed only on 2 or 3 cores 
in order to avoid unnecessary waste of energy. 

Similar results are obtained with the Polybench suite. As we can see, jacobi, 
which fails to scale efficiently, requires only 2 cores in order to consume less energy 
as possible for its execution, while on the other hand, applications like syr2k would 
benefit by allocating more cores and this would result in better performance and EDP 
as well. The rest of the benchmarks scalability characteristics lies between jacobi and 
syr2k and their best EDP values could be obtained by executing them on 6 to 8 cores. 

In conclusion, changing the placement and the available cores of an 
application in the system will result, as expected, in different power consumption 
rates as well as different performance. So it is very important to know the scaling 
ability of an application in order to make decisions that would lead to more power 
efficient executions without negatively affecting the overall execution performance. 
Moreover, in most of the cases the most power efficient choice is included on a list of 
choices that result in better performance and it is the choice that allocates as less cores 
as possible. 
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4.3&Dynamic&Voltage&and&Frequency&Scaling&
 

As mentioned before, modern CPUs operate considerably faster than the main 
memory they use. That gap between memory and CPU speed often forces the CPU to 
stall and wait for requested data to come, and results in significant performance 
decrease. Even though a scheduler is not able to deal with this problem from a 
performance point of view, an energy efficient scheduler should try to identify such 
cases and use dynamic voltage and frequency scaling techniques in order to reduce 
the systems total energy consumption. 

This problem could be enlarged when different applications compete for the 
same resources, like the LLC, and result in cache conflicts that enforce them to 
transfer the same data blocks from memory multiple times. There are many reasons 
that could cause memory contention in the execution of a workload. Most of them are 
related with the competition between running applications for shared resources, which 
on our system would be the L2 and L3 caches and of course the memory bus. As L2 
cache is shared by only two cores, its contribution on the overall memory contention 
is small and for the purposes of this work could be ignored. But competition for the 
L3 cache and the memory bus may be harmful and sometimes catastrophic for the 
running applications. Moreover, memory contention might be a problem for 
applications running alone on the system if their dataset is too large. Applications 
with large dataset usually experience problems because even if the bus bandwidth can 
fulfill their requests for data fast enough, caches may not be large enough to service 
the processor’s needs and the system is forced to load the same data from main 
memory to the last level caches over and over again.  

In order to study this issue let us consider again the STREAM benchmark 
mentioned before. For our purposes we now create 5 different instances of the 
STREAM application, each one of them using approximately 0%, 30%, 60%, 80%, 
100% of the total memory bandwidth, respectively. We run each application with 8 
threads, in order to fill an entire package and avoid measuring power from unused 
cores, for all the available system frequencies, from 1.2GHz to 2.2GHz with step 
0.1GHz, and calculate the EDP for every different run. We made the previous choices 
of bandwidth because our applications reported gain by DVFS on EDP for bandwidth 
60% and higher. The charts below contain all the EDP values for every different 
instance of STREAM created: 
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Chart 4.3-1 Stream 0% EDP 

 
 
 
 

 
Chart 4.3-2 Stream 30% EDP 
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Chart 4.3-3 Stream 60% EDP 

 

 
Chart 4.3-4 Stream 80% EDP 

 

 
Chart 4.3-5 Stream 100% EDP 
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From the results we observe that for the extremely cpu-bound applications 

EDP report an almost linear drop for increasing frequencies, as shown by the 
STREAM-0%, because in such applications the processors need significant small 
amount of data, that could be filled in many cases by the first level caches, and spend 
most of the time inside the core rather than waiting for data. As a result changes in the 
cores frequency have a great effect in the overall system performance and thus to the 
final EDP. As we increase the memory bandwidth usage we observe this almost linear 
behavior to change into a curve and for bandwidth usage of 60% and more the EDP 
line reports a lower bound curve value. 

This lower bound implies that the best power-aware execution is obtained by 
running our cores in lower frequency values than the system’s available max 
frequency, and that such an execution would result in lower power consumption 
without significantly affecting the performance. Another interesting fact is that the 
lower bound values on our curves move from right to left, from high to low 
frequencies, as the memory bandwidth usage increase. For example, the lowest EDP 
value for STREAM-60% is reported for execution in 2.0 GHz, while STREAM-80% 
reports a low at 1.6-1.7GHz and finally, the original STREAM application, which is 
designed to use the total package’s memory bandwidth report the best EDP value 
when running at 1.3GHz. Moreover, in the last case we observe that running our 
application with the highest available frequency is significantly worse that running it 
with the lowest frequency available, from a power saving point of view. 

As a result we see that knowing the memory needs of an application is very 
important when using DVFS techniques on our execution. In [8] the authors propose 
an equation for calculating the effects of the total memory bandwidth usage in an 
execution. The equation for calculation an EDP factor is:  

!"#!!"#!"# = 1.4− 0.8 ∗ ! 
. Where x is the total memory usage bandwidth rate of the execution. Applying this on 
our experiments we calculate that for 60% of bandwidth the equation gives us an EDP 
factor = 0.92, which indicate a frequency of 2.024 GHz, for 80% of bandwidth EDP 
factor = 0.76, indicating an execution frequency of 1.672GHz, and for 100% of 
bandwidth EDP factor = 0.6 and the proposed running frequency is 1.32GHz. So we 
observe that this equation gives us an almost accurate assessment of the spot where 
the lower bound of the EDP curve lies, and as a result the execution frequency to 
obtain the lowest value of EDP. 

To obtain a better view of the importance of memory bandwidth usage on the 
overall execution’s EDP, we normalize the measured EDP values to the measure for 
the lowest frequency and produce the following chart: 
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Chart 4.3-6 Stream EDP Normalized to lowest frequency values 

 
From this chart we report that the EDP line starts with an almost linear 

decreasing form, for STREAM-0%, and as the usage of the total memory bandwidth 
increases the line moves higher and finally, for full memory bandwidth usage results 
in an almost reverse form than the first one. 

In conclusion, for many reasons related to the memory access and transfer 
speed, the knowledge of memory needs is necessary to produce a power efficient 
scheduler, which includes frequency scaling techniques to balance the consumed 
power. This knowledge would help the scheduler make crucial decisions based on the 
currently executed workload and apply different frequencies to the used system cores 
to prevent unnecessary energy expenses. 
 
 
 
 
 

4.4&Placement&Issues&
 
 

Another issue that needs to be studied is the importance of placement in 
performance as well as power consumption. As mentioned earlier there is not a big 
difference between a performance and a power aware scheduler, because when a 
scheduler lacks performance efficiency, and make selections that may increase the 
contention between running applications, in most cases results in long executions that 
are harmful for both performance and power.  
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For that purpose lets consider once more the STREAM application and create 
three instances: one cpu intensive with very little memory usage, one with medium 
memory usage and one that uses the whole memory bandwidth capacity. To highlight 
the importance of placement we run each one with 4 threads and co-schedule it with 
itself and each other inside the same package, and then run both of them in 2 different 
packages. In order to obtain more valid results we design each one of them to run for 
approximately 27-28 seconds when running with 4 threads at the maximum available 
frequency, and we report the stand-alone energy consumption of every application, as 
well as the energy consumption and the execution time of co-scheduling compared to 
the same metrics for simultaneous execution in two different packages. We assume 
that when we run applications on only one package, the others are powered off and 
have no contribution to the system’s overall energy consumption. So we obtain the 
following results: 

 
 

 
Chart 4.4-1 Stream versions energy usage 4 threads for each application and 

approx. 40 secs execution time 
 
 

 As it was expected we see that the more memory bound an application is the 
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higher computational ratio. 
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Chart 4.4-2 Slowdown According to Placement 

 
 
 
 

 
Chart 4.4-3 Total energy consumption of different placements 
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execution. So in cases like that it would be beneficial for both energy and 
performance to schedule the applications on different packages, as shown on the 
previous page. Even when we co-schedule 2 instances of the medium memory 
application, we observe a slowdown of 1.5 for each one, and a slightly greater energy 
consumption that running the two applications on two separated packages. On the 
other hand, co-scheduling applications with different characteristics inside the same 
package is beneficial for the total energy consumption, while it reports significant low 
values of slowdown, so the performance is slightly affected. For example, running the  
memory bounded and the cpu-intensive application inside the same package, reports a 
slowdown less than 1.1 for each application but a great reduction on the consumed 
energy. 

Actually, the cpu-intensive application that we created seems to be rather 
“friendly” to every other application, as all the experiments that included this 
application, reported very low values of slowdown and benefited from co-scheduling 
in the same package because of the smaller energy consumption until the completion 
of the job. The main reason for this behavior is that our cpu-intensive allocation has a 
very small usage of the shared system resources, such as the L3 cache and the 
memory bus, and mainly its execution is bounded inside the allocated cores and their 
private L1 and L2 caches, so it does not affect any other application that is running 
under the shared resources of the used package. 

In conclusion, co-scheduling applications with different characteristics inside 
the same NUMA package reduces the contention level between them and results in a 
significant decrease in the system’s energy consumption, while not really affecting 
the overall performance. So a useful power-aware scheduling policy would be to 
separate the applications according to their memory profiles and use this information 
to combine applications, in order to reduce the memory contention and as a result the 
total energy consumption. 
 
 
 

4.5&Power&Profiling&
 

Based on the previous sections of this chapter we create a power profile for 
each one of the Polybench and the NAS benchmarks we use in this work. Also we 
study the profiles of 2 artificial applications made with the STREAM benchmark 
implementation, one with almost 0% and one with almost 100% usage of the total 
memory bandwidth, and the energy profile of the Floyd-Warshall solver application, 
which proved to be very useful for our experiments. For that purpose we run each 
benchmark for 1 to 8 threads, so that we do not exceed the number of cores inside a 
single package, with all the available system frequencies and calculate the EDP for 
each run. We use the obtained information to produce a pareto chart for each 
benchmark, where the lowest points of each graph represent the best combination of 
threads and frequency, for each application, that reports the lower values of EDP.
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Charts 4.5-1 NAS Benchmarks Power Profiles (1)
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Charts 4.4-2 NAS Benchmarks Power Profiles (2) 
 

 

 
 

Charts 4.5-3 Polybench Suite Power Profiles (1) 
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Charts 4.5-4 Polybench Suite Power Profiles (2) 
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Chart 4.5-5 Stream “Corner Cases” Power Profiles 
 
 

 
 
                     Chart 4.5-6 Floyd-Warshall Power Profile
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! In!conclusion,!we!observe! that!every!application!according! to! its!scaling!
ability! and!memory!needs! have! a! different! power! profile,! as! illustrated! on! the!
above! charts.! For! example,! Floyd>Warshall! Jacobi! and! bt.A! report! their! lower,!
and! thus! better,! EDP! values! for! frequencies! lower! than! the! highest! system’s!
value,!while!ep.A,!lu.A!and!cholesky,!which!are!cpu>intensive!applications!benefit!
from! higher! frequencies! and! threadcounts! and! report! almost! the! same! EDP!
pareto! graphs.! In! the! following! chapters,! where! we! explore! and! evaluate!
different! scheduling! policies,! we! will! create! workloads! of! applications! that!
request! thread!numbers!and!frequencies!according!to!their!best!EDP!values!on!
this!section’s!charts.!
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5 Scheduling Policies 
 
 
 

 In this chapter we explore different scheduling methodologies that could be 
useful for our problem. First of all we analyze the gang scheduling methodology and 
study the positive effects and advantages that offers compared to the current Linux 
scheduling implementation. Then we explore two static state-of-the-art scheduling 
policies, one thread aware policy and one contention aware, and create a dynamic 
contention aware scheduler, based on the applications’ miss rate. Finally, we classify 
our applications in four different categories and create a greedy application aware 
scheduling policy, which aims to maximize the overall system throughput and apply 
DVFS methods in order to prevent from unnecessary energy expenses. Because on 
modern processors like the Sandy Bridge, switching the frequency introduces delays 
in the order of microseconds, which is several orders of magnitude smaller than the 
used time quantum, selecting a suitable frequency on every task does not introduce a 
noticeable overhead 

All these scheduling policies are based on gang scheduling. So for each 
scheduler we create gangs of applications and run each one for a time quantum, to 
complete a whole round. In every scheduling implementation we define and use 1 
second as a time quantum. It is very important to highlight that due to NUMA-
memory allocation issues, we limit our problem in scheduling inside one single 
NUMA package, which contains 8 cores sharing the last level cache and using a 
single memory node. This is important in order to discuss scheduling policies for 
CMPs generally and not focus on implementations to provide memory allocation only 
for systems using sandy bridge processors.  
 
 
 
 
 
 
 

5.1$Gang$Scheduling$(GANG)$
 
 Gang scheduling is a scheduling algorithm for parallel systems that schedules 
related threads or processes to run simultaneously on different processors [17]. In 
most cases these will be threads all belonging to the same process, but they may also 
be from different processes, for example when the processes have a producer-
consumer relationship, or when they all come from the same Message Passing 
Interface (MPI) program. Gang scheduling is used so that if two or more threads or 
processes communicate with each other, they will be ready to communicate at the 
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same time. If they were not gang-scheduled, then one could wait to send or receive a 
message to another while it is sleeping, and vice-versa. When processors are over-
subscribed and gang scheduling is not used within a group of processes or threads, 
which communicate with each other, it can lead to situations where each 
communication event suffers the overhead of a context switch. 
 Our GANG scheduler does not implement space sharing, which means that 
every application is scheduled alone on the system for one time quantum and then 
wait for all the other applications to run once before it is scheduled again in a round 
robin fashion. We divide GANG scheduling into the three following scenarios:  
 

• Full threads – Full frequency: on that case the scheduler has absolutely no 
information for the applications to be scheduled, so it creates gangs and fit 
one application on each gang that will run with 8 cores in the higher system 
frequency for its time quantum. 

• Best threads – Full frequency: on that case every application arrives to the 
scheduler requesting the optimal number of threads according to its scaling 
ability. So the scheduler creates gangs that contain only one application 
again, but in this case each application is granted the requested cores and not 
all the available system cores. 

• Best threads – Best Frequency: this is almost like the previous case with the 
difference that every application, except from threads, requests the optimal 
frequency to run too, so the scheduler enforces the system to run on the 
requested frequency when executing each application. 

 
For example lets consider a given workload containing four different 

applications that request 8,6,4 and 2 threads, respectively. On the first scenario the 
gang scheduler will create the schedule illustrated on Figure 5.1-1, while the second 
scenario is depicted on the Figure 5.1-2.The second and the third implementations of 
Gang scheduling are, of course, more efficient for power and performance, as they 
exploit the provided information for an application’s scalability and frequency 
scaling, but one the other hand, they require profiling for every application before it is 
submitted to the scheduler for execution. 
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Figure 5.1-1 Gang Scheduling: Full Threads – Full Frequency 

 
 

 
Figure 5.1-2 Gang Scheduling: Best Threads – Full Frequency 
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5.1.1$GANG$versus$Linux$Scheduler$
 
 Modern scheduler implementations, like the Linux CFS scheduler [4], are 
designed to treat the threads of an application as single separate entities and distribute 
them across the available cpus, in order to provide a balanced execution. In this way 
the Linux scheduler avoids leaving any cores idle for a certain time-quantum. 
Although this scheduling policy achieves very high cpu utilization, it also results in 
threads of the same application being scheduled in different time-quanta, which in 
many cases undermines the progression of the application. On the other hand, Gang 
scheduling requires that threads of the same application must be scheduled in the 
same time-quantum. Therefore, applications gain from the benefits of simultaneously 
scheduling threads, such as avoiding large waiting periods in synchronization events 
(barriers), and locks better exploitation of data locality under shared-cache 
configurations, etc. 
 To see the difference between the Linux and the GANG scheduler we choose 
a representative workload of applications from our benchmarks and the ones we 
created with the STREAM software, according to their energy profile in section 4.5, 
that includes at least one application for every different power behavior.  
 
 

workload$
application) requested)threads)
stream_cpu) 8)

ft.B) 6)
floyd9
warshal) 4)
ep.A) 8)
is.C) 3)

stream_mem) 2)
jacobi) 3)
bt.A) 8)

Table 5.1.1-1 Random Workload 
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Chart 5.1.1-1 Linux vs Gang scheduling performance 

 
 In the above experiment we re-spawn every application that completes its 
execution to keep the system fully loaded all the time. As we observe not many 
applications of the workload benefit significantly from the execution with the gang 
scheduler. However, applications like bt.A result in extremely poor performance, 
which indicates a poor overall throughput for large executions. In contrast, gang 
scheduling seems to manage our applications more efficiently and reports small 
slowdown for some applications, while it helps others, like bt.A and is.C, to perform 
significantly faster. As a result, the total execution time to get our job done in a fully 
loaded system is about 5 times faster with gang scheduling than using the Linux 
scheduler. 

Even though the gang scheduling methodology has been proved to provide 
higher throughput for multithreaded applications, it requires information about the 
applications’ scaling ability and leaves many cores idle for long time, which decreases 
the total system utilization. So, we need to study gang-scheduling implementations 
that include space-sharing methods in order to fill our system’s resources and increase 
the cpu utilization.  
 
 

5.2$Proposed$StateAofAtheAArt$Scheduling$Policies$
 
 In this section we explore two different proposed scheduling methodologies. 
The first on is thread aware scheduler that tries to achieve the highest possible system 
utilization, and the second one is a contention aware scheduler, which aims to co-
schedule applications with different characteristics, in order to gain from the 
advantages of co-scheduling such applications. 
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5.2.1$Greedy$Thread$Scheduler$(Static)$
 
 This is a scheduler suggested by McKee and Bhadauria [5] that tries to employ 
space-sharing in gang scheduling in order to utilize the available cores at the 
maximum degree. For that purpose, it implements a greedy bin-packing placement of 
applications into gangs, so that the percentage of unutilized cores in one round is 
minimized. The greedy thread scheduling algorithm takes the following steps: 
 

1. It chooses the best-scaling program (the one that requests the most threads for 
its execution) from a set of sampled programs, and schedules it on the 
available system cores. If there are no remaining idle cores, it cannot find any 
more programs that could run in the current time quantum, so it runs the 
currently scheduled ones and repeats Step 1 for the next program on the list, 
and time quantum. If there are remaining cores, it proceeds to the next step. 

2. If the set of unscheduled applications is empty, scheduling is finished. 
Otherwise, the scheduler chooses the next best scaling program from the set 
whose minimum processor requirement s met by the available idle cores on 
the system, and schedules it concurrently. 

3. If there are empty cores remaining, Step 2 repeats, otherwise co-scheduling is 
finished for this set. If there are insufficiently many idle cores for any 
application, then thread counts of the currently scheduled programs are 
increased. The best scaling program’s thread count is increased until 
performance stops to improve. The scheduler chooses the best scaling program 
since it has higher throughput with increasing number of threads and is less 
likely to overtly consume shared resources. 

 
Figure 5.2.1-1 is illustrates the way that the greedy thread scheduler would 

handle the applications of the previous example. The scheduler chooses to co-
schedule application 2 with application 4 and so it needs one time quantum less than 
the gang scheduler in order to execute every application for one time. If application 2 
and application 4 run efficiently when co-scheduled together this schedule could give 
us an increased performance by 25% compared to the gang scheduler. 
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Figure 5.2.1-1 Thread Aware Scheduling Example 

 
Even though this scheduler provides high utilization of the system’s cores, its 

decisions are completely unaware of the contention the co-scheduling creates, since 
its decisions are based only on the level of parallelism for every application. As a 
result, this scheduler may experience significant performance problems when co-
scheduling memory-bound applications together. So we need to study ways to 
efficiently co-schedule applications to reduce contention and make sure that the 
applied scheduling policy would improve the overall execution’s performance. 
 
 
 
 
 
 

5.2.2$Miss$Rate$Balance$Scheduler$(Static)$
 
 This scheduler tries to enforce a contention aware co-scheduling methodology, 
based on the profiles of the applications that need to be executed. It uses the last level 
cache (LLC) misses per thousand instructions ratio as a metric to evaluate the 
applications and create efficient gangs, which contain applications with different 
characteristics. The scheduler chooses the LLC miss ratio as an indicator of the 
contention an application causes, because LLC is the last on-chip shared resource, so 
misses in the LLC reflect the contention caused in LLC as well as in every off-chip 
subsystem, such as the memory bus and the DRAM controller. In that way it tries to 
separate applications into memory-bound (the ones with high last level miss rate) and 
compute-bound (the ones that report low last level miss rate because they rarely use 
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memory outside their private L2 cache) and combine them, so that they slightly affect 
each other during execution.  
 This scheduler is static, as it create its gangs at the beginning of the execution 
and never changes them during the execution, and it is completely based on previous 
profiling of the applications that was made before they enter the scheduling phase. So 
every application should be able to provide to the scheduler information about its miss 
rate. The scheduler’s first step is to sort the applications according to their miss ratio, 
from higher to lower values. Then it chooses the application with the higher ratio and 
creates a gang to schedule it, and searches in the bottom of the sorted list of 
applications to find the application with the lowest ratio that could fit this gang, in 
order to co-schedule it with the already selected one. These two applications are 
removed from the list of applications that are waiting to be scheduled and the 
scheduler repeats the previous step until there are no applications left in the list. The 
following algorithm shows how the scheduler creates its gangs at the beginning of the 
execution. 
 
 
Program)List)progs;)) //List)of)programs)to)be)executed)
) ) ) ) //contains)all)the)programs)
Gang)List)gangs;))//List)of)gangs)
) ) ) ) //initially)empty)
)
progs.quicksort();) //sort)the)programs)list)according))
) ) ) ) //to)their)LLC)misses/thousand)instructions)ratio)
)
while)()!progs.empty())))do)
) Program)prog)=)progs.head();)) //)Get)the)head)of)the)program’s)list))
) Gang)gang)=)Gang.create();) //)Create)a)new)gang)
) gang.add(prog);) ) ) //)Add)program)to)the)gang)
) gang9>cores_allocated)=)prog9>cores_needed;)//)update)the))
) ) ) ) ) ) //)gang’s)allocated)cores)
) progs.remove(prog);) ) //)remove)the)selected)program))
) ) ) ) ) ) //)from)the)program's)list)
)
) //search)for)the)suitable)program)with)the)lowest)possible)miss)rate)
) for_each_entry_bottom_up(Program)temp):)progs)):)
) ) if)()temp9>cores_needed)+)gang9>cores_allocated<=)system_cores))then)
) ) ) gang.add(temp);) //)add)it)to)the)created)gang)
) ) ) progs.remove(temp);) ) //)remove)it)from)the)programs)list)
) ) ) break;)
end)if)
)
done; 

Code 5.2.2-1 Miss rate balance scheduling algorithm 
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 For example, lets consider the scenario where we have to schedule 6 
applications with increasing LLC miss rates, from application 1 to application 6. 
Every application requires 4 cores to run on, and our system provides 8 cores. The 
above scheduler would decide to co-schedule application 6 together with application 
1, application 5 together with application 2, and application 4 together with 
application 3, creating that way 3 gangs for each round as illustrated on Figure 5.2.2-
1. 
 
 
 

 
Figure 5.2.2-1 Miss Rate Balance Scheduling Example 

 
 The above policy is proven to be very effective because it exploits the 
advantages of co-scheduling applications with different characteristics and memory 
needs. Nevertheless, it allows only two applications per gang, which in cases of low 
threaded applications may result in leaving the system underutilized. 
 
 

5.3$Miss$Rate$Bound$Scheduler$(Dynamic)$
 
 This is a dynamic contention aware gang scheduler that uses the LLC misses 
per thousand instructions rate (MPI), in order to detect contention based problems and 
deal with them during the execution. The main concept of this scheduling 
implementation is that it keeps a total LLC miss rate for every gang, which is 
measured as the sum of the individual rates of the applications of the gang, and 
ensures that this rate is below a defined threshold. This threshold is representative of 
whether high MPI values in a gang are affecting the performance of the applications 
running in it.  



!

!66!

 In order to define an appropriate threshold for our scheduler we create 5 
different versions of the STREAM benchmark, and create gangs with increasing 
number of instances for every version. The different STREAM versions are designed 
to use 20%, 40%, 60%, 80% and 100% of the total memory bandwidth, respectively. 
Each instance is defined as the used application running with one thread on one single 
core in our system. We run the created gangs alone in the system and measure the 
execution time and the total gangs MPI for every execution. Then we report the 
slowdown of every execution according to the stand-alone execution time of one 
instance compared to the total gang’s MPI. We assume that slowdown values greater 
than 2 are catastrophic because in such cases splitting the gang into separated ones 
would result in a better overall execution time. The following charts show the result 
we obtained: 
 
 
 
 

 
Chart 5.3-1 Stream Versions Slowdown 
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Chart 5.3-2 Miss per Instruction rates for gangs created with stream instances 

 
 

 
From the results we assume values of MPI between 12 and 15 to be a 

representative threshold for cases that the MPI affects catastrophically the overall 
execution. Experiments with the NAS and the Polybench benchmark suites showed us 
that the best values for our threshold are actually a bit lower and lie between 10-12.5, 
according to every different workload. In our experiments we use 12.0 as the defined 
threshold for our scheduler. 

The most interesting fact of the Miss Rate Bound scheduler is that when the 
execution begins, the only information needed is the requested threads by each 
application of the given workload. The first step of the scheduler is to randomly create 
gangs with zero gang MPI values and start its execution. While the applications are 
executing into gangs, the scheduler tracks information about every applications MPI 
value for every time quantum, in order to update the gangs MPI value. This value is 
obtained by the following equations: 
 

!"#!.!"#!"##$%& = !"#$"%&.!"!
!"#$"%&!∈!"#!

 

!"#!.!"# = ! ∗ !"#!.!"#!"##$%& − 1− ! ∗ !"#!.!"#!"#$%&'( 
 

, where the value of the gang’s MPI is calculated as an exponential average of the 
previous MPI value and the gang’s MPI value for the current time quantum. The 
factor !  determines the weight of the current value and the history. In our 
implementation we use ! = 1 2, in order to give equal weight to both. 
 When the MPI value of a gang exceeds the defined threshold the scheduler 
chooses the gang’s application with the lowest MPI value that its removal would 
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cause the gang to run under the defined threshold, and search for another existing 
gang that the selected application could fit in. If that is not possible the scheduler 
chooses the highest MPI application and allocates a new gang for it. Finally, when the 
scheduler find gangs that contain only 1 application, it searches for an appropriate 
gang to schedule it, in order to de-allocate that gang and reduce the total gangs 
number. The previous are illustrated in the Algorithms 5.3-1 and 5.3-2: 
 
program_fits_gang(gang,)prog))
) if)((gang9>cores_allocated)+)prog9>cores_needed))&&)(gang9>MPI)+)prog9>MPI)
<=)threshold)))then)
) ) ) return)true;)
) else)
) ) ) return)false;)
) end)if)
 

Code 5.3-1 Checks if a program could fit into a gang 
 

 
 
 
Gang)List)gangs;)) ))))))))))//List)of)gangs)
) ) ) ) //initially)empty)
)
for_each()Gang)gangs):)g):)
//)if)the)gang)contains)only)1)program)
//)search)for)a)another)gang)that)could)be)fitted)in)
) if)(g9>progs_nr)==)1))then)
) ) for_each()Gang)gangs)9){g}):)temp))do)
) ) if)()program_fits_gang(temp,prog_min))then)
) ) ) g.remove(prog_min);)
) ) ) temp.add(prog_min);)
) ) ) return;)
) ) end)if)
) ) done)
) end)if)
) //)if)the)gang's)MPI)is)below)the)threshold)then)do)bothing)
) if)(g9>MPI)<)threshold))then)
) ) return;)
) end)if)
) //)if)it)is)higher)then))
) //)find)the)lowest)MPI)program)in)the)gang)and)removing)it)would)
) //)cause)the)gang)to)run)below)threshold)
) prog_min)=)g.programs9>head();)
) for_each()Program)g.programs):)p))do)
) ) if)((p9>MPI)<prog_min9>MPI))&&)(g9>MPI)9)p9>MPI)<)threshold)))then)
) ) ) prog_min)=)p;)
) ) end)if)
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) done)
) //)and)fit)an)appropriate)gang)to)mere)it)into)
) for_each()Gang)gangs)9){g}):)temp))do)
) ) if)()program_fits_gang(temp,prog_min))then)
) ) ) g.remove(prog_min);)
) ) ) temp.add(prog_min);)
) ) ) return;)
) ) end)if)
) done)
) //)if)the)previous)couldn't)be)done)
) //)find)the)highest)MPI)program)
) prog_max)=)g.programs9>head();)
) for_each()Program)g.programs):)p))do)
) ) if)(p9>MPI)>prog_max9>MPI))then))
) ) ) prog_max)=)p)
) ) end)if)
) done)
) //)and)create)a)new)gang)for)it)
) Gang)gang)=)Gang.create();) //)Create)a)new)gang)
) gang.add(prog_max);) ) ) //)Add)program)to)the)gang)
) gang9>cores_allocated)=)prog_max9>cores_needed;)//)update)the))
) ) ) ) ) ) //)gang’s)allocated)cores)
) gang9>MPI)=)prog_max9>MPI;)//)update)the)gang's)MPI)
) g.remove(prog_max);) ) //)remove)the)selected)program))
) ) ) ) //)from)the)program's)list)

Code 5.3-2 MPI gang balance algorithm 
 

 The above algorithms run at the end of every round of gangs in order to keep 
the execution gangs balanced. The main advantages of this scheduling 
implementation are that it is a completely dynamic scheduler that does not require 
much information about the given workload and that it can schedule more than 2 
applications in a gang at the same time quantum. Moreover it can capture the behavior 
of the applications dynamically and take critical decisions to help the execution. 
However, this scheduling implementation may exhibit interior performance compared 
to the previous static one, because it could spend lot of time adjusting the gangs until 
it results in an efficient schedule. 
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5.4$ApplicationAAware$Scheduler$
 
 In this section we develop a greedy application-aware scheduler based on all 
the previous observations. First of all, we divide our applications into 4 different 
categories, according to their memory behavior, and study the effects f co-scheduling 
different applications at the same time quantum. Then we create a scheduling policy 
based on the slowdown every different application causes to each other and finally, 
we study the effects of frequency scaling on the available scheduling decisions. 

$

5.4.1$Categories*of*Applications$
 
 Every application has a different computational and memory profile and thus, 
different needs for the system’s resources. In gang scheduling policies the most 
important characteristic a scheduler should be aware of for every application is its 
usage on shared resources, such as the last level caches and the memory bus. In this 
section we divide applications in four different categories according to their memory 
and computational behavior, in order to study the results of co-scheduling different 
categories together. For every one of the following categories we create an artificial 
application that represents the category and use it to study the contention between 
applications from different categories and create a greedy application–aware 
scheduler.  
 According to its needs we assume that every application could be classified in 
one of the following categories: 
 

• CPU-Intensive: applications with high computational needs and low memory 
needs that could be satisfied by the first and second level caches. Applications 
included in this category often show great scaling abilities because they lack 
memory dependencies between threads. We choose as a representative 
application for this category ep (embarrassingly parallel) from the NAS 
benchmarks suite with the smallest available working set (class = A). 

• Limited Memory Usage: applications with memory requirements that exceed 
the size of the low level caches and usually allocate small amounts of space in 
the system’s last level cache (LLC). As a representative we create an 
application using the STREAM benchmark that uses about 25% of the 
system’s memory bandwidth and performs 10 arithmetic operations for every 
memory transaction. This means that our application needs to transfer around 
4 MBs from main memory to caches every second, which results in exceeding 
the capacity of the available L1 and L2 caches and stores a small amount of 
data in the LLC too.   

• Memory-Intensive:  applications with high memory needs that could even 
exceed the size of the LLC. As a representative we create an application using 
the stream software that uses about 80% of the total system’s memory 
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bandwidth and performs only 1 arithmetic operation for every memory 
transaction. This application requires more than half of the LLC’s capacity to 
store its data.  

• Random Memory Access: applications with random memory access patterns. 
Applications in this category differ from the previous because they are unable 
to use the processor’s prefetcher efficiently, and every cache miss results in 
large penalty times. As a representative for this category we create an 
application that allocates an array of integers with size that equals half the 
LLC size and create a random pattern to access every element of the array 
1000 times. When this application runs alone on our system the first access 
would results in a “miss” for every element with a high penalty and every one 
of the next accesses would result in a “hit” and no penalty time. So it is vital 
for this application to reuse the data it stores in the LLC, because increasing its 
miss rates would result in dramatically increasing its execution time.  

 
Based on the above categorization we run each one of the representative 

applications alone in our system, as long as together with each other one, in order to 
report the effects of co-scheduling applications from different categories. In the Chart 
5.4.1-1 we report the slowdown of every execution compared to the stand-alone time 
for every application. 

 

 
Chart 5.4.1-1 Artificial Applications Slowdown 

 
 

As shown on the chart every category has a different behavior. For example, 
cpu-intensive applications run efficiently with an almost zero slowdown with every 
other application, while limited-memory-usage applications slowdown by a factor of 
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1.25 when running with memory intensive applications or applications from their own 
category. On the other hand, running together memory-intensive applications at the 
same time reports an almost 2 times slower execution, and running random memory 
access applications with limited-memory or memory-intensive ones could be 
catastrophic for their overall performance. As a result, it would be reasonable to 
assume that every one of our categories has certain co-scheduling preferences that are 
unique for every different category. 

 
 
 

 

5.4.2$A$Greedy$ApplicationAAware$Scheduler$
 
 Based on the above analysis we create a table that contains each applications 
preferences for co-scheduling. In the table lower values represent higher preference 
rates and dashes mark the undesirable co-scheduling combinations: 
 
 
 

matching 
cpu-

intensive 
limited 

memory 
memory-
intensive 

random 
access 

cpu-intensive 1 1 1 1 
limited memory 1 2 3 - 

memory-
intensive 1 2 - - 

random access 2 - - 1 
Table 5.4.2-1 Application Aware Preferences 

 
 

Based on this table we create a greedy bin packing scheduler that tries to 
leverage this co-scheduling information, in order to create gangs that could lead to 
increased execution throughput. For that purpose the algorithm divides programs into 
4 lists according to their category and gives priority to the random memory access 
applications, as they are more likely to report performance problems. Then it handles 
the memory intensive applications by allocating a new gang for each one and 
schedules it there alone. After that, the scheduler accesses the list of cpu-intensive 
applications in order to fill the previously created gangs. If all the existing gangs have 
2 applications and there are still programs left in the cpu-intensive list the algorithm 
creates new gangs for them. Finally, the scheduler deals with the limited-memory-
usage programs list the same way it did with the cpu-intensive list. The exact way the 
scheduler schedules its programs into gang is presented on the Code 5.4.2-1. 
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Program)List)cpu9intensive;)))//)List)of)cpu)intensive)programs)
Program)List)mem9intensive;)) //)List)of)memory)intensive)programs)
Program)List)mem9limited;)) //)List)of)limited)memory)access)programs)
Program)List)random9access;)//)List)of)random)access)programs)
)
Gang)List)gangs;) //)List)of)gangs)9)initially)empty)
)
//)First)of)all)we)handle)the)random9access)applications))
while)(not_empty.random9access()))do)
) //)For)every)program)check)if)there)is)an)existing)gang)
) //)necessarily)with)random9access)applications)because))
) //)they)are)the)first)ones)we)handle)
) Program)p)=)extract_head.random9access();)
) flag)=)false;)
) for_each(Gang)gangs):)g):)
) ) ifprogram_fits_gang(p,g))then)
) ) ) remove.random9access(p);)
) ) ) g.add(p);) ) //)and)add)the)application)to)this)gang)if)fits;)
) ) ) flag)=)true;)
) ) end)if)
) if)(!flag))then)) ) //)else)create)a)new)gang)
) ) Gang)g)=)Gang.create();)
) ) g.add(p);) ) //)and)place)the)application)
) end)if)
done)
)
//)Next)handle)the)mem9intensive)programs)
//)and)create)a)new)gang)for)each)one)
while)(not_empty.mem9intensive()))do)
) Program)p)=)extract_head.mem9intensive();)
) Gang)g)=)Gang.create();)
) remove.mem9intensive(p);)
) g.add(p);)
done)
)
//)Next)handle)the)cpu9intensive)programs)and)
//)search)for)existing)gangs)they)could)fit)in)
while)(not_empty.cpu9intensive()))do)
) Program)p)=)extract_head.cpu9intensive();)
) for_each(Gang)gangs):)g):)
) ) ifprogram_fits_gang(p,g))then)
) ) ) remove.cpu9intensive(p);)
) ) ) g.add(p);) ) //)and)add)the)application)to)this)gang)if)fits;)
) ) ) flag)=)true;)
) ) end)if)
) if)(!flag))then)) ) //)else)create)a)new)gang)for)our)application))



!

!74!

) ) Gang)g)=)Gang.create();)
) ) g.add(p);) ) //)and)place)tit)
) end)if)
done)
)
//)Finally)repeat)the)same)process)for)the)limited))
//)memory)access)programs)list)
while)(not_empty.mem9limited()))do)
) Program)p)=)extract_head.mem9limited();)
) for_each(Gang)gangs):)g):)
) ) ifprogram_fits_gang(p,g))then)
) ) ) remove.mem9limited(p);)
) ) ) g.add(p);) ) //)and)add)the)application)to)this)gang)if)fits;)
) ) ) flag)=)true;)
) ) end)if)
) if)(!flag))then)) ) //)else)create)a)new)gang)for)our)application))
) ) Gang)g)=)Gang.create();)
) ) g.add(p);) ) //)and)place)tit)
) end)if)
done)
)
Code 5.4.2-1 Greedy Application-Aware Scheduler’s Algorithm for Creating Gangs 

 
 For example, lets assume that we need to execute a workload with 12 

programs, 3 from each category, each one of them requiring 4 cores to run. Our 
system offers 8 cores under the same memory node for the execution. Figure 5.4.2-1 
illustrates the way our scheduler will separate them into gangs, where rand stands for 
the random-memory access, mem for the memory-intensive, lim for the limited 
memory access, and cpu for the cpu-intensive programs’ type.  

 
 

 
Figure 5.4.2-1 Greedy Application Aware Scheduling 
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5.4.3$Frequency$Scaling$
 
 

 In this section we study the effects of dynamic frequency scaling on the gangs, 
which are possibly created from the above scheduler. As mentioned in section 4.3 the 
only cases that need to be studied are those where the executed programs use 60% or 
more of the memory bandwidth. Thus, in our implementation, because we use 
artificial applications created by us, the only cases where frequency scaling needs to 
be studied are: 1) co-scheduling random access programs together, 2) co-scheduling 
memory intensive programs with memory limited ones, and 3) co-scheduling memory 
intensive and cpu intensive programs. For that purpose we run each one of these three 
cases separately for all the available processor’s frequencies and report the following 
results: 
 
 
 
 

 
Chart 5.4.3-1 Random Memory Access Gang’s EDP 
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Chart 5.4.3-2 Memory intensive – Limited Memory Access Gang’s EDP 

 
 
 
 
 
 
 

 
Chart 5.4.3-2 Memory intensive –Cpu intensive Gang’s EDP 
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From the results we deduce that our random memory access application 
benefits from higher frequencies, because it stores all the needed data in the system’s 
caches and leverages the system’s speed to process it faster. On the other hand, gang’s 
where our memory intensive is involved in seem to gain from lower frequency values, 
because the higher the processor’s frequency is the more cycles they would have to 
pay as “miss penalty” each time the application stalls and waits for useful data to 
come. Although, in both such cases above, only the memory intensive application is 
benefited from frequency scaling and reports lower EDP values for 0.7 of the highest 
system frequency. So frequency scaling should probably be used only on the cores 
that our memory intensive program runs on, in order to achieve better results.  
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6 Experimental Evaluation 
 
 In this chapter we introduce some performance metrics and use them to 
compare the scheduling implementations that were presented on the previous chapter. 
Also we evaluate the importance of frequency scaling and measure the total energy 
that every scheduler consumes in a given time window. 
 
 

6.1$Evaluation$Metrics$
 
 In this section we define some metrics, which will help us compare schedulers 
and evaluate their characteristics. The metrics aim to highlight the overall throughput 
for the whole workload and the fairness towards all programs that are executed. 
Moreover, we consider the responsiveness of the system, by measuring the time a 
program waits for available cores and finally we compare the total energy 
consumption of every different scheduling policy. The used metrics for these 
purposes are the following: 
 
1) Execution Time: we define as execution time for a program the time that the 

program needs in order to complete its execution in a fully loaded system. This 
include the time the program actually runs on some cores, and the time that it 
spends waiting for cores to become available. 

!!"!# ! = ! !!"##$#% ! + !!"#$#%& !  
 

2) Throughput: we define throughput as the number of times that a program 
completed its execution during a certain window of time. On our experiments we 
chose time windows big enough that allow every application to complete its 
execution at least 10 times, in order to obtain a better picture of the overall 
scheduler’s throughput.  
 

3) Fairness: we define fairness as the time that a program actually runs until it 
completes its execution in a scheduling implementation, compared to the time 
that the program needs in order to finish its execution alone in the system. So 
fairness is given by the following equation: 

!"#$%&'' ! = !!"##$#%(!)
!!"#$%!!"#$%(!)

 

, where lower values (near 1) are better. 
 
4) Average Waiting Time: we define as waiting time the time that a program 

spends waiting for system cores to run on. 
 



! 79!

5) Energy Consumption:  we define energy consumption as the total energy in 
Joules that was consumed in order to finish a requested job. This metric contains 
the energy consumed by the cores, the caches, the DRAM, and the memory 
controllers during the execution. 

 
 

6.2$Importance$of$DVFS$–$Preliminary$evaluation$
 

 In this section we use a workload that contains applications that could benefit 
from frequency scaling in order to report the reduction in energy consumption when 
applying DVFS during the execution. All the experiments below were made in the 
evaluation platform described in section 3.1. 

 

6.2.1$Evaluation$Workload$
 
 We create our workload by selecting applications based on their power 
profiling made in section 4.5. We chose 3 benchmarks that benefit by running on 
lower frequencies and 4 benchmarks that require the maximum available frequency. 
Moreover, we measure the LLC misses per thousand instructions (MPI), which is 
needed by the miss rate balance scheduler, and also categorize the selected 
applications based on their behavior when running along the categories representative 
applications mention in section 5.4.1. The table below presents all the needed 
information about our workload: 
 

Application 
Requested 
Threads 

Requested 
frequency 

(MHz) 
MPI Category 

Floyd Warshall 4 1400 2.32 
Memory 
intensive 

Bt.A 8 1500 4.94 
Memory 
Intensive 

Jacobi 3 1600 5.07 
Memory 
Intensive 

Lu.A 4 2200 1.43 CPU Intensive 
Ep.A 5 2200 0.01 CPU Intensive 

Is.C 3 2200 37.46 
Random 
Memory 
Access 

Atax_parallel 4 2200 5.81 
Limited 
Memory 
Access 

Table 6.2.1-1 Evaluation Workload 
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The requested threads by every application in the workload are based on the 
lower EDP values of the charts in section 4.5, and moreover, in benchmarks with 
great scaling ability, such as the ep and the lu, have been alternations from the best 
values in order to help our scheduling implementations to achieve high cpu 
utilization. At this point we mainly want to highlight the power consumption to 
solution, so these changes does not affect our results. 
 

6.2.2$Frequency$Scaling$A$Power$Evaluation$
 
 In order to test the effects of frequency scaling on the needed energy to 
complete a given job, we use the workload in Table 6.2.1-1 and submit it to each 
scheduler twice. The first time we use the default system’s frequency, which is the 
highest available, and the second we alternate our schedulers in order to enforce the 
system run every application at its requested frequency. As mentioned before the 
processors overhead to switch frequencies is of the order of milliseconds and our 
scheduling implementations use 1 second as a defined time quantum. So this overhead 
would not significantly affect our experiments. Moreover, we run the applications in 
the workload until each one finishes its execution at least one time, and re-spawn 
every application that finishes before that time in order to keep the system fully 
loaded all the time. Thus, we measure the energy consumption of each scheduling 
policy with and without frequency scaling, until the completion of a requested job in a 
fully loaded system.  
 First of we lets consider Chart 6.2.2-1 and Chart 6.2.2-2, where “ff” stands for 
full frequency and “bf” stands for best frequency that equals the frequency column on 
Table 6.2.1-1. 

 
Chart 6.2.2-1 Energy to solution for each scheduler 
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Chart 6.2.2-2 % Reduction of frequency scaling for each scheduler 

 
 
 We observe that applying dynamic frequency scaling to our execution results 
in energy savings that differ from 4% to 14%, and reports and average energy 
reduction close to 9% for our schedulers. Moreover, the miss rate balance and the 
application aware schedulers seem to gain more from the lower frequencies, as they 
report the greatest reduction percentage. Also, miss rate balance scheduler reports the 
lowest energy to completion, but that does not necessarily implies a better power 
balance across gangs. As mentioned before performance has also a vital role on the 
total energy consumption of a scheduler.  
 Chart 6.2.2-3 contains the execution times for every application of our 
workload, using each one of our schedulers, until it finishes for the first time. We can 
observe that the lower, and thus, better values are reported for the miss rate balance 
scheduler and the application-aware scheduler. Moreover, the miss rate balance 
scheduler finishes all the applications for at least one time each first (199 seconds), 
which explains the lower values of energy reported on Chart 6.2.2-1. The next one to 
exit was our implementation for the application-aware scheduler (230 seconds) 31 
seconds later, which led us in consuming approximately 1900 Joules more for the job. 
 Finally, Chart 6.2.2-4 illustrates the average reduction between full frequency 
and best frequency values for each scheduler. As we see the reduction values lie 
between 0.4% and 3.5%, and more important between 0.4% and 1.2% for the 
contention aware scheduling approaches, which means that the performance is only 
slightly affected. 
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Chart 6.2.2-3 Execution time of every application for each scheduler  
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Chart 6.2.2-4 Performance reduction caused by applying frequency scaling on each 

scheduler 
 
 
 In conclusion, applying dynamic frequency scaling is proven to be very 
efficient for an energy saving scheduling policy without affecting the overall systems 
performance. Furthermore, in contention aware scheduling the energy consumption 
could be reduced by more than 10% with sacrificing performance less than 1.5%. So, 
knowing the best frequency values for every application and dynamically adjusting 
the cores frequency to it is critical for power-aware scheduling and its usage could 
have very important results. 
 
 
 
 
 

6.3$Evaluation$of$Scheduling$Policies$
 
 In this section we evaluate the scheduling policies discussed in chapter 5. First 
of all we create an artificial workload that contains the applications created in section 
5.4.1, in order to highlight the performance of our application-aware scheduling 
model towards the other schedulers. Then we select applications from the 

0!

0.5!

1!

1.5!

2!

2.5!

3!

3.5!

4!

re
du
ct
io
n*
%
*

scheduler*

Performance*Reduction*with*DVFS*



!

!84!

Polybenchand the NAS benchmarks suites to create a new workload and use it to re-
evaluate our scheduling policies. 
 

6.3.1$Artificial$Workload$
 
 In order to highlight the overall performance of our scheduling 
implementation we create a workload based on the artificial applications in section 
5.4.1. The workload contains 3 different versions of each one of the categories 
representatives. These versions differ only in the amount of threads that each 
applications requests, in order for our schedulers to create different gangs during their 
execution. Table 6.3.1-1 contains the evaluation workload. 
 
 

Application Requested 
Threads MPI Requested 

Frequency (MHz) 
Cpu-intensive1 4 0.01 2200 
Cpu-intensive2 5 0.01 2200 
Cpu-intensive3 6 0.01 2200 

Limited-Memory1 4 1.66 2200 
Limited-Memory2 5 1.78 2200 
Limited-Memory3 6 1.99 2200 
Memory-Intensive1 3 5.02 1500 
Memory-Intensive2 4 5.38 1500 
Memory-Intensive3 5 5.57 1500 
Random-Access1 2 0.01 2200 
Random-Access2 3 0.01 2200 
Random-Access3 4 0.01 2200 

Table 6.3.1-1 Artificial Workload 
 
 

 The random memory access application has an almost zero stand-alone MPI 
value because it allocates a random access array and then access it 1000 times. So, 
running alone would result in only 1/1000 miss rate. Thus, it hides the information 
that running along a memory intensive application could be catastrophic for its 
execution. As a result, we expect that this workload would highlight the weaknesses 
of the state-of-art schedulers that use threads or miss rate as a metric to create their 
gangs. 
 

 
 

6.3.2$Evaluation$–$Artificial$Workload$
 

 We use the workload above to evaluate our schedulers. We make a 
configuration file that contains the workload and alternate the schedulers to re-spawn 
every application that finishes its execution, in order to keep our system fully loaded 
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for the whole execution time. We run every scheduler for two hours to ensure that 
every application of the workload completes its execution at least ten times. To 
evaluate the scheduler we use throughput, fairness, waiting time, and energy 
consumed as metrics. 
 
• Throughput: In order to measure the throughput for every program we keep track 

of the times that it completed its execution and re-spawned. The scheduler’s 
throughput is the average throughput value of the programs it executed. Chart 
6.3.2-1 contains the throughput values for every application for every different 
scheduling implementation, as long as the average value that represents the overall 
scheduler’s throughput. The results shown in the chart are normalized to the values 
obtained by executing the workload with the gang scheduler. Higher throughput 
values are better. 
 

 

 
Chart 6.3.2-1 Throughput Normalized to Gang Scheduling Values 

 
 

As we observe from the above chart, miss rate balance scheduler handles 
efficiently the memory intensive applications, but fails to handle the random access 
ones. Furthermore, in some cases, such as the second random access application, its 
decisions are catastrophic for the application’s execution. The main reason for that is 
the random-access application’s MPI that hides its actual behavior and leads the miss 
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rate balance scheduler to co-schedule it with a memory intensive application. On the 
other hand, the dynamic MPI bound scheduler captures the dynamic behavior of this 
application and re-schedules it alone in a new gang in order help its progress. As a 
result, the dynamic MPI bound scheduler reports throughput values over 1 and 
provides and efficient scheduling policy for the given workload. Finally, the 
application-aware scheduler produces the more efficient schedule for our applications 
and results in the higher throughput among the scheduling implementations with 1.65 
more throughput than the gang scheduler.  
 
• Fairness: In order to measure fairness for every application we keep track of its 

running time until its execution is completed. Moreover, because every application 
is re-spawned many times during the execution we store the average running time 
for each application. The fairness values are given by dividing the running time for 
each application, according to the current running scheduling implementation, with 
the running time reported when running with gang scheduler. We expect gang 
scheduler to give us lower running times because every application is scheduled 
alone for a time quantum in our system, and higher waiting times because of the 
more gangs it creates (equal to the number of applications).  
 
 

 
Chart 6.3.2-2 Fairness Normalized to Gang Scheduling Values 
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 Chart 6.3.2-2 shows that MPI balance scheduler treats our random memory 
access applications unfairly, as their running time until completion is from 3.35 to 4 
times higher than the gang scheduler’s values. As a result it reports highest, and thus 
the worst fairness values. On the other hand we observe that our dynamic MPI bound 
scheduler handles applications efficiently and results in only 1.16 fairness values. 
Although, on that case this may mean that the scheduler chooses to create a lot of 
gangs in order to stay under the desired MPI threshold. Finally, the application aware 
scheduler seems to handle application well and create the most efficient gangs among 
our schedulers, which leads in an average fairness value below 1.1. Moreover, all the 
individual applications report fairness below 1.2 when running with this scheduler.  
 
 
• Waiting Time: Our next step is to consider the average time each application 

stayed in our system waiting for cores to become available. A user-friendly 
scheduler should always report low levels of waiting time in order to respond to 
the user’s needs. Chart 6.3.2-3 shows the average waiting time in seconds for each 
program, as long as the average waiting time for every scheduling implementation.  

 
 

 
Chart 6.3.2-3 Average Waiting Time  
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 As expected application aware scheduler reports the lower waiting times 
because it has the best throughput and fairness values. The highest average waiting 
values are reported from the MPI balance scheduler, because of the high random 
memory access applications’ waiting times. Due to bad placement these applications 
need more running time to complete their execution and as a result more time quanta 
and more elapsed rounds, which increases the time they wait idle in the system for 
resources to become available. 
 
 
• Energy Consumption: Finally, we report the total energy that every scheduler 

consumed for the whole execution, which means for running 2 hours. Chart 6.3.2-4 
shows the reported values for the energy consumed in the core, the uncore, and the 
DRAM parts of the system: 
 

 

 
Chart 6.3.2-4 Total Energy Consumption 
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 Even though gang scheduler reports the lowest energy consumption, it left 
many cores unutilized every time quantum. So the lower energy values reflect that a 
great part of the system is left unutilized and less work is done inside the given time 
window. On the other hand we observe application aware scheduler and miss rate 
bound scheduler to work efficiently and result in consuming less energy than the 
others. The main reason for this behavior is that they handle applications efficiently 
and produce gangs with low contention levels. By that way they prevent unnecessary 
LLC misses which cause the execution to halt and go back to the memory to regain 
useful data and thus, the system lowers the usage of DRAM and its memory 
controllers. 

In conclusion, our implementation of the application aware scheduler reports 
the best values in all the previous evaluation metrics. In the defined 2 hours time 
window it does more job than the others (greater throughput), it is fair to every 
application and it reports the lowest average waiting time. Moreover, it reports the 
lowest energy for the whole 2 hours execution. Also the dynamic MPI bound 
scheduler seems to handle applications efficiently, given the fact that it is a dynamic 
scheduler with no knowledge for the applications before the execution. Because of its 
nature it captures the dynamic behavior of the random memory access applications 
and rearrange the produced gangs to place the with applications with low MPI rates, 
which are often cpu-intensive ones, or let them run alone inside a gang. 

On the other hand, the static implementation of the miss rate balance scheduler 
seems to handle our random memory access application rather inefficiently. Because 
its stand-alone MPI values hide useful information it choses to co-schedule 
applications from that category with applications that need much LLC space to 
allocate for their data. As a result, MPI values dramatically increase and the 
applications spend time transferring the same data from memory to the LLC over and 
over again. So, the scheduler’s decision force our applications to starve for data and 
reallocate the same data many times, which results in lower performance, as long as 
higher energy consumption. 

 
 
 
 
 

6.3.3$Benchmark’s$Workload$
 

 In order to obtain a better picture of our schedulers we create a workload that 
contains applications from the Polybench and the NAS benchmarks suites. The 
categorization of the applications is based on their behavior when they are co-
scheduled with each one of the categories representatives. We use is.C in three 
different versions (that request different number of threads) because it is the only 
random memory access application in both benchmark suites, and we want our 
workload to contain more than one application from each category. Table 6.3.3-1 
contains the evaluation workload: 
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Application Requested 
Threads MPI 

Requested 
frequency 

(MHz) 
Category 

bt.A 5 4.76 1900 Memory 
Intensive 

Floyd-
Warshall 3 2.28 1400 Memory 

Intensive 
ep.A 6 0.01 2200 CPU Intensive 
lu.A 5 1.43 2200 CPU Intensive 

cg.B 5 2.99 2200 Limited 
Memory 

is.C.2 2 36.43 2200 Random 
Access 

is.C.3 3 37.46 2200 Random 
Access 

is.C.4 4 38.28 2200 Random 
Access 

atax_parallel 4 5.81 2200 Limited 
Memory 

jacobi 3 5.07 1700 Memory 
Intensive 

Table 6.3.3-1 Evaluation Workload 
 
 
 
 
 
 
 

6.3.4$Evaluation$–$Benchmark’s$Workload$
 
 In this section we evaluate the above workload just like we did in section 
6.3.2. We report the total throughput, the average running time and the average 
waiting time for each application, as long as the average values for each scheduler. 
Also we report the total energy consumption for the execution. We keep the same 
time window for each one of our executions, which is 2 hours and we apply frequency 
scaling as requested by every application in table 6.3.3-1. 
 
• Throughput: Chart 6.3.4-1 contains the measured throughput, which is defined as 

the number of times each program finished its execution normalized to the same 
metric reported by gang scheduling. The results shows that each scheduling 
implementation favors different types of applications and all the static scheduling 
policies finally report close throughput values. The application aware scheduler is 
the only one that handles efficiently is.C versions and ends up with an average 1.5 
throughput for the whole execution, which is the highest reported on the chart. 
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Moreover, we observe that the dynamic MPI bound scheduler lacks the ability to 
create a large number of efficient gangs and ends up with the lowest average 
throughput, only 1.22 times higher that the gang scheduling. 

 
 

 

 
Chart 6.3.4-1 Throughput Normalized to Gang Scheduling Values 

 
 
 
 
 
• Fairness: Like in section 6.3.2 we report fairness as the time an application was 

executing on cores of the system divided to the same time reported by gang 
scheduler. We expect gang scheduling to give us smaller running time and higher 
waiting times for our applications, as it runs every application alone (so there is no 
competition for resources), but more gangs to run in every round. Chart 6.3.4-2 
illustrates the fairness values reported for every application with every different 
scheduling policy, and the average fairness values for each scheduler. 
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Chart 6.3.4-2 Fairness Normalized to Gang Scheduling Values 

 
 
 Even though MPI bound scheduler achieve the lower values for the majority 
of the application, this indicates that it results in creating lots of gang with just one 
application. Thus, we cannot assume that MPI bound scheduler is more efficient 
without being aware of the throughput values reported above. Moreover, we observe 
that all the scheduler finally report almost the same average fairness values, so it is 
hard to pick one of these schedulers based on that metric. 
 
 
 
• Waiting time: Moreover, we measure the average time each application had to wait 

until cores became available for its execution. As we see from Chart 6.4.3-3 
scheduling policies that create less gangs, such ass the thread aware, the MPI 
balance, and the application aware scheduler, report lower waiting times than the 
others. Moreover, application aware scheduler reports the lowest average waiting 
time, which may indicate that it creates the most efficient gangs among our 
schedulers that let applications complete their execution faster.   
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Chart 6.3.4-3 Average Waiting Time  

 
 
 

 
 
• Energy Consumption: Finally we report the total energy consumption, in Joules, 

for the whole 2 hours execution time in Chart 6.3.4-4. We observe that gang 
scheduler and MPI bound scheduler report the lowest energy consumption, but 
that’s due to the fact that they created more gangs than the others and left our 
system less utilized. The other three scheduling approaches report almost the same 
levels of energy needs for their execution. 

 
 

In conclusion, the benchmark’s workload led our schedulers into handling less 
corner cases, than the artificial one, and thus, lowered the differences between 
scheduling policies. Even thought, applications aware scheduler still managed to 
produce the most efficient schedule and report the higher throughput and the lower 
waiting time average values. On the other hand, our dynamic MPI bound scheduler 
lost a lot of time rearranging its gangs and resulted in higher gangs number than the 
static schedulers and as a result it  
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Chart 6.3.4-4 Total Energy Consumption 
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7 Conclusion and Future Work 
 As the number of used portable devices that run under reserved power is 

constantly increased and more servers are necessary to run continuously to support 
the needs of today’s huge networks, power aware scheduling is an emerging issue. In 
this work we explored scenarios where energy aware decisions could be made in 
order to prevent a system from unnecessary energy expenses and highlighted that the 
knowledge for an application’s scalability and memory needs could be very important 
for energy aware decisions. As modern processors contain multiple cores and support 
dynamic frequency and voltage scaling we found that applications could report 
significant differences in performance and energy consumption according to the 
allocated cores and the frequencies applied on them. Moreover, we explored the 
advantages of gang scheduling methodologies and studied ways to provide efficient 
schedules for execution. So, we categorized our applications and created a theoretical 
application aware scheduler, which proven to be efficient even in cases of non-
artificial application workloads compared to state-of-the-art policies. Finally, we 
made an approach to a dynamic miss rate balance gang scheduling methodology that 
tries to create efficient gangs by keeping their overall miss rate values below a 
defined threshold. 

As an expansion of this work we could study ways to dynamically identify 
different categories of applications and create a dynamic expansion of our application 
aware scheduler. Moreover, we could try to expand the defined applications’ 
categories and alternate our scheduling policy, in order to deal with more cases that 
could appear during an execution and created more efficient schedules. 
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