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Περίληψη 

Ο διαχειριστής δυναμικής μνήμης αποτελεί μηχανή πεπερασμένων 

καταστάσεων. Προορίζεται για να διαχειρίζεται τη δυναμική μνήμη την  

οποία απαιτεί κάθε διεργασία για να εκτελεστεί ορθά και πάντοτε με 

κύριο στόχο τη μεγιστοποίηση της ευρωστίας του όλου συστήματος.  

Σήμερα οι εφαρμογές απαιτούν όλο και περισσότερη μνήμη. Επιπλέον ο 

ρυθμός συναλλαγών μεταξύ εφαρμογής και δυναμικά δεσμευμέν ης 

μνήμης, αυξάνει ραγδαία, ως αποτέλεσμα της ραγδαίας αύξησης των 

χρηστών και των προς στις εφαρμογές απαιτήσεων τους.  

Σημειωτέον  είναι το γεγονός ότι οι διαχειριστές δυναμικής μνήμης είναι 

σχεδιασμένοι να συνδιαλλάσσονται με ασφαλείς εφαρμογές προερχόμενες από 

υπεύθυνο προγραμματισμό. Ωστόσο, σήμερα η πλειοψηφία των εφαρμογών δεν είναι 

ασφαλής λόγω τον χρηστοκεντρικών συστημάτων και των άναρχων γλωσσών 

προγραμματισμού. 

Συνεπώς δημιουργούνται κενά ασφαλείας που οδηγούν σε επιθέσεις κατά τις καίριας 

οντότητας του σωρού. Αντικείμενο λοιπόν της παρούσης διπλωματικής εργασίας 

είναι η μελέτη σεναρίων επιθέσεων και η ανάπτυξη μηχανισμών καταπολέμησής 

τους. 
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Abstract 

Dynamic memory manager is a finite state machine. It is designed to manage the 

dynamic memory that an application demands in order to work robustly, as well as 

efficiently. 

Nowadays applications demand large memory portions. Moreover the transaction 

ratio between applications and dynamic allocated memory increases rapidly due to the 

swift growth of users’ number and demands.  

On the other hand dynamic memory managers is a mechanism implemented in order 

to interact with trusted applications, meaning applications that are self secured 

resulting from responsible programming. However, nowadays, the majority of 

applications are not self secured. The combination of scripting languages, fast 

development and user centralized environments, ends up with applications full of 

security flaws. 

Many of these flaws can lead to attacks that are based on the betrayed vulnerabilities 

by the application dynamic memory manager, which assumes the robustness of 

application‘s security.  

Consequently the purpose of this paper is to find out the golden section between the 

security issue and the dynamic memory manager’s performance request. Thus it 

introduces several protection schemas as well as it presents in detail their internal 

implementation. Moreover it evaluates the specific security mechanisms through a 

series of benchmarking tests.  
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Key Words 

Data: The raw information that is used by any process in producer-consumer schema 

Metadata: Data used to define structures and organization of data 

Chunk: Portion of memory 

Block: Portion of memory (see chunk) 

Raw block: Huge portion of memory 

Page: The fixed size portion that kernel divides memory, in order to manage it 

properly 

System call: Functions running in kernel space, called by user space processes, in 

order to take care of critical management or hardware distribution issues 

Hack: Cheating a DFA defined mechanism causing a behavior that the constructor 

hadn’t predict aiming to take the “control of a system” 

Memory leaks: Using more than the needed memory or never returning portions of 

memory back to the system 

Security flaw: A defect of a software application or component that, when combined 

with the necessary conditions, can lead to a software vulnerability 

Vulnerability: Set of conditions that allows violation of an explicit or implicit 

security policy 

Exploit: The way to take advantage of vulnerability  

Buffer: Memory portion in physical or virtual layer 

Buffer overflow: Accessing and changing a specific buffer’s content without 

permissions by using the continuous memory property 

NOP-padding: NOP instructions (No OPeration) padding 

ASLR: Address Space Layout Randomization 
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Adaptor morpheme: Term being lent from software engineering fields meaning a 

mechanism that converse with different implementation and APIs offering the same 

functionality 

OS: Operating System 

Process’ Memory Footprint: Total memory requests and returns that took place by a 

process in a specific OS  
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1 INTRODUCTION 

 

1.1 Process’ Memory 

Address Space defines the discrete addresses which can be used by system’s 

processes for loading/storing operations.  

Virtual Address Space (VAS) is the mechanism that distinguishes the physical 

address space that the system affords, from the address space that the applications use. 

This mechanism offers to every process the illusion of being able to use the entire 

address space that ranges according to the processor’s word’s length
1
. This results to 

processes having the same address space while running in the same system. An extra 

benefit is the idea of the continuous process memory, fact not true because of the 

ASLR. 

 

1.1.1 Process’ Memory Segmentation
2
 

Process memory is divided to five main segments:  

1. text  

2. data 

3.  bss 

4. stack  

5. heap 

 Each segment represents a special portion of memory that is set aside for a certain 

purpose and has specific read/write permissions.  

                                                           

 

1
 Modern systems having processor’s word length 64+ bit, offers the illusion that process can use 

practically infinite memory space 
 
2
 Process’ address space and memory are two distinct concepts. The first one is fixed for every 

process being practically an infinite set (ranges according to the processor’s word length thanks to 
VAS). The second one is agile conforming to the application’s needs.  
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Figure  1-1: Process’ memory segmentation defined in the virtual address space 

 

1.1.2 Segments Exploration 

Text or code segment: Contains the assembled machine language instructions that are 

to be executed. The execution of the instructions in the specific segment is non-linear, 

thanks to braches resulting from the well known high level control structures and 

function calls. 

Write permission for the specific segment is disabled as it is not aimed to be used to 

store variables but only code segments which remain the same during any 

application’s execution. In this way people are prevented from actually modifying the 

program code. Moreover any attempt to write directly to this segment of memory will 

cause the program to alert that something malicious happened and usually to be 

terminated. Finally as it is displayed in Figure 1.1, text segment consists of the lowest 

addresses lain on process memory organization. 
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Data and bss segments store global and static program variables and are placed 

consecutively after the text segment (Figure 1.1). On one hand the data segment is 

filled with the initialized global variables, strings and any other constants that are used 

by the process. On the other hand the bss stores all the uninitialized counterparts.  

Both segments are writable due to the fact that global variables’ values usually alter 

during the execution. However because of the constant crowd of all global variables, 

strings and constants, during execution, both segments have fixed size. 

The stack segment is the first from the two segments whose size is variable, meaning 

it can grow larger or shrink smaller depending on the execution’s needs. It is used as a 

temporary scratchpad to store context info between function calls, giving the process 

the ability to remember caller’s context after every internal context switch.  

When a process calls a function, that function contains its own set of passed variables 

and its code is placed at a different memory location in the text segment than the 

expected one pointed by the program counter register. Consequently a new record has 

to be generated, containing the program counter’s current value (pc/eip register) and 

the essential context before the switch ordered by function call mechanism.  

After its generation, the new stack record is placed (push) in the stack (FILO) 

segment whose size grows. When the called function ends the record is used to return 

to the hardware to the state of the caller one. At this moment we got the pop 

functionality, decreasing the size of the stack. 

 Of course the size of the stack segment is not exactly the same as the stack’s one 

because this would not be efficient, however, generally the stack segment size 

“follows the stack’s size” by reserving or returning, the necessary amounts of 

memory. It is notable that stack increases upwards form higher to lower memory 

addresses and shrinks downwards as pointed in Figure  1-1: Process’ memory 

segmentation defined in the virtual address space. 

Last but not least, the heap segment is used for the rest of the program variables, 

meaning all the dynamic allocated objects whose sizes are usually runtime estimated. 

It is the second segment that has not fixed size as the stack segment does.  
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All of the memory within the heap segment is managed by the allocating and 

deallocating algorithms – mechanisms, which respectively reserve regions of memory 

in the heap for use, or release reservations to allow portions of memory to be reused 

for later ones. Moreover, according to Figure 1.1, heap segment instead of growing 

upwards likes stack segments does, it grows downwards to higher memory addresses. 

 

1.2 Memory Transactions Leading To Dynamic Memory 

Managers 

According to aforementioned schema, every process needs an amount of memory. 

The first three segments are defined absolutely by the kernel when the process is born. 

Also the starting points of both stuck and heap segments are defined in the same time 

and way. A specific amount of minimal memory is also given to the process by kernel 

for its stack segment implementation which later can be adjusted according to the 

function call depth of the process.  

The heap segment however is not treated in the same way. Let us consider the fact 

that any process and the kernel as entities of the same environment, implement a 

scheme of consumer – producer respectively. This means that kernel offers amounts 

of memory and process consumes them to satisfy its needs. Moreover the scheme 

works vice versa when the process returns amounts of memory, that is are not useful 

anymore, back to system in order to be redistributed. 
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Figure  1-2: Requesting memory by using immediate system calls 

In order to be implemented this communication – transaction mechanism, a set of 

special system calls exists (mmap, munmap, sbrk etc.). However the specific family 

of system calls manages memory in large portions, whose actual size varies through 

kernels and hardware platform implementations. Moreover, large system calls ratio 

leads to enormous delays, especially in modern multiprocessing systems. 

The solution to these problems is the introduction of the dynamic memory mangers, 

which implement an extra mid-layer in the aforementioned scheme.  Their job is to 

request and return memory portions, using system calls in an optimal and transparent 

way for the process and the system too. 

 

Figure  1-3: Dynamic memory manger implementing the mid-layer memory exchange 

 

1.3 Dynamic memory mangers’ overview 

The functions that support memory management for C and C++ (malloc and free, new 

and delete respectively) are implemented in the C runtime library. Different operating 

systems and platforms implement these functions differently, with varying design 

designs and features. In nearly all cases, the algorithms underpinning these allocators 

were primarily designed to provide rapid allocation and deallocation while 
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maintaining low fragmentation aiming to efficient memory usage and entire host 

system’s robustness.   

Before continuing it is essential for the reader to clarify that heap has different 

semantics for the allocator and the core process itself. Process do use and modify the 

content of the memory blocks setting data as the center of its attention. On the other 

side, the DMM is oriented to the memory blocks administration independently from 

their content. 

 

1.3.1 Free-list based allocators 

The memory managers used by both Windows and Linux are freelist-based: they 

manage freed (and in use) space in linked lists, generally organized into bins 

corresponding to a range of object sizes. Figure 1-4 illustrates a fragment of freelist-

based heap as it is organized by the Doug Lea allocator (DLmalloc). Version 2.7 of 

the Lea allocator forms the basis of the allocator in GNU libc. 

 

Inline metadata 

Like most freelist-based allocators, the Lea allocator prepends a header to each 

allocated object that contains its size and the size of the previous object. This 

metadata allows it to efficiently place freed objects on the appropriate free list (since 

these are organized by size), and to coalesce adjacent freed objects into a larger chunk 

In addition, freelist-based allocators typically thread the freelist through the freed 

chunks in the heap. Freed chunks thus, contain the size information (in the headers), 

as well as pointers to the next and previous free chunks on the appropriate freelist 

(inside the freed space itself). This implementation has the significant advantage over 

external free-lists of requiring no additional memory to manage the linked list of free 

chunks. Unfortunately, inline metadata also provides an excellent attack surface. Even 

small overflows from application objects are likely to overwrite and corrupt allocator 

metadata. This metadata is present in all applications, allowing application-agnostic 

attacks techniques. 

Numerous ways have been implemented exploiting the inherent weakness of freelist 

based allocators occurring from process corruption until arbitrary code execution (see 

Section 2.5) 
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Figure  1-4: A fragment of a freelist-based heap, as used by Linux and Windows. 

Object headers precede each object, which make it easy to free and coalesce objects 

  

1.3.2 BiBOP-style allocators 

In contrast to Windows and Linux, FreeBSD’s PHKmalloc [10] and OpenBSD’s 

current allocator (derived from PHKmalloc) employ a heap organization known as 

segregated-fits BiBOP-style. Figure 1-5 provides a pictorial representation of part of 

such a heap. The allocator divides memory into contiguous areas that are multiple of 

the system page size (typically 4K). This organization into pages gives rise to the 

name “Big Bag of Pages”, or “BiBOP”. BiBOP allocators were originally used to 

provide cheap access to type data for high-level languages, but they are also suitable 

for general purpose allocation. In addition to dividing the heap into pages, both 

PHKmalloc and OpenBSD’s allocator ensure that all objects in the same page have 

the same size, in other words, objects of different sizes are segregated from each 

other. The allocator stores object size and other information in metadata structures 

either placed at the start of each page (for small size classes), or allocated from the 

heap itself. A pointer to this structure is stored in the page directory, an array of 

pointers to each managed page. The allocator can locate the metadata for individual 

pages in constant time by masking off the low-order bits and computing an index into 

the page directory. On allocation, PHKmalloc first finds a page containing an 

appropriately sized free chunk. It maintains a list of non-full pages within each size 

class. These freelists are threaded through the corresponding page metadata structures. 

Upon finding a page with an empty chunk, it scans the page’s bitmap to find the first 

available free chunk, marks it as allocated, and returns its address. [3] 
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Page-resident metadata: 

 

As opposed to freelist-based heaps, BiBOP-style allocators generally have no inline 

metadata: they maintain no internal state between allocated objects or within freed 

objects. However, they often store heap metadata at the start of pages, or within 

metadata structures allocated adjacent to application objects. This property can be 

exploited to allow arbitrary code execution when a vulnerable application object 

adjacent to heap metadata can be overflowed. 

 

 

 

 

 

Figure  1-5: A fragment of a segregated-fits BiBOP-style heap, as used by the BSD 

allocators (PHKmalloc and OpenBSD). Memory is allocated from page-aligned 

chunks, and metadata (size, type of chunk) is maintained in a page directory. The 

light lines indicate the list of free objects inside the chunk and the thick one indicates 

the owner of the chunk’s interior. 
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1.3.3 Allocators’ functionality 

As it has been aforementioned, allocators as mechanisms have been implemented 

aiming to increase application’s performance and to assist the production of 

platform independent code. 

The last “functionality” is obvious.  Having an allocator to play the role of the 

adaptor morpheme among so many kernel implementations, the compatibility 

problems, at least for memory management routines, are absolutely vanished. 

The issue of performance is the next in priority request that allocator as mechanism 

fulfills. Investigating the way that the heap increases and decreases, reserving and 

returning to the system portions of memory respectively, two things are noteworthy: 

the number of system calls that take place and the utilization of the reserved 

memory. 

 Starting with the system calls, every memory exchange, without any dmm manager 

implementation, between process and kernel would lead to one system call at least. 

This should end up saturating the whole system due to locks and hardware conflicts.  

The way that an allocator solves the specific problem is that it collects all the memory 

requests, interacts with the OS through a large size system call and then it serves the 

small initial requests
3
. 

Moreover the memory footprint of any application in case of dynamic memory 

allocator absence should be enormous compared with the one resulting by the same 

application using the allocator. This results from the fact that the quantum for any 

memory exchange between process and OS is the one system page (page), portion of 

memory larger than almost any single memory request coming from a process
4
.   

Finally the extra functionalities that allocators offer vary from one to another. Some 

of them do split or merge free memory blocks in order to reuse them in a more 

                                                           

 

3
 Actually instead of gathering requests it  triggers a system call and because system call returns more 

space than it needs, every following request is served immediately from this extra space. 
4
 This is not always true. There may be process that request memory to allocate objects having 

multiple of the page size but this is not rule. 
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efficient way, others prefer to return free blocks back to system as soon as possible 

instead of others which try to apply spatial locality techniques in order to maximize 

the efficiency of memory reuse etc. 

  

1.4 Need for Security 

“Memory management is the act of managing computer memory. The essential 

requirement of memory management is to provide ways to dynamically allocate 

portions of memory to programs at their request, and freeing it for reuse when no 

longer needed. This is critical to any computer system.” 

“Heap is actually a set of data contained in a specific memory space, described, 

defined and organized by specific metadata placed in the same address space.” 

The combination of the two paragraphs above, the definition of memory management 

and the description of the heap “vulnerable” organization, results to how essential is 

the heap protection against any evil wills. Moreover the variety of the already 

defined heap attack model is an extremely indicative clue justifying why security is 

essential. 

As it mentioned before heap consist of data and metadata. Each one of this content 

class is the module of memory of two different finite state machines which actually 

corporate with, application and allocator respectively. However the huge problem is 

that application’s and allocator’s behaviors have different risk thresholds for the 

entire system. Allocator’s behavior and metadata maintenance are more critical, with 

its corruption to create large system vulnerabilities. Moreover data’s nature make 

them more vulnerable compared with metadata because of the probable security flaws 

due to application’s interaction with external entities (users). Considering the fact that 

data and metadata are located in the same memory segment it is obvious the need for 

a mechanism that primarily secures the maintenance of metadata and secondly protect 

the application’s data, in a memory field full of transaction and modifications. 

 

 

https://en.wikipedia.org/wiki/Computer_memory
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2 Heap Attack Models 

 

The specific section describes the meaning of a vulnerable and exploitable landscape 

for heap attacks, and presents some of the most common heap-attack techniques. 

 

2.1 Basic heap attack factors 

It is obvious that any kind of attack request a specific landscape to take place into. 

Consequently the power of potential heap attacks is affected by numerous factors such 

as the presence of memory errors, the type of application being attacked and mainly 

of the ability of the attacker to launch repeated attacks. 

 

2.1.1 Presence of memory errors 

First of all it must be mentioned that dynamic memory mangers are not vulnerable 

themselves. However because of the fact that they are finite state machines dedicated 

to operate efficiently and unmistakably with invulnerable applications, they provide 

important security flaws leaving the whole responsibility for security issues to 

applications’ layer programmers. Consequently the most important factor for an 

application to be heap vulnerable is a memory error existence. Moreover this is not 

enough. It has to be combined with the attacker’s ability to trigger the code path 

leading to the error. 

  

2.1.2 Applications class 

The attacker’s ability to control heap operations is determined by the kind of the 

application. Many attacks require plenty of object allocations in order to force the 

heap into a predictable and vulnerable state. Other attack strategies assume 

unfragmented heap where the effects of heap operations are predictable. For example 
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the lack of holes between existing objects indicates new objects allocations on a fresh 

page. 

Nowadays attacking in web browsers is something just less than trivial. The web 

browser attackers choose to “feed” browser with Javascript or Flash written scripts 

because in most current browsers, Javascript objects are allocated in the same heap 

as the internal browser data, which are essential for browsers natural functionality. 

Heap Feng Shui  is a sophisticated technique that allows attacks to browsers running 

Javascript to ensure predictable behavior. 

On the other hand server applications are generally less cooperative. This is because 

of the fact that application limits the number of allocation and deallocations. 

Moreover because of the fact that servers are implemented very carefully there is not 

much vulnerability to abuse.  However the heap may be placed in a predictable state 

under a large or, better defined, a specific number of concurrent requests forcing the 

application to create a corresponding amount of contemporaneously live objects. 

Finally the last class of application forbidding multiple object allocations limiting the 

attacker to exploits based on command line arguments in order to lead heap to an 

exploitable transformation.  

 

2.1.3 Window of repeated attacks 

A great factor in every effort to illegally gain control of a particular system is the 

amount of the repeated attacks the attacker can launch, until the attainment of its 

target.  For example the most common server attack (not heap based) is the flooding 

aiming to the denial of service. Its implementation assumes plenty of clients to send 

at least ping requests to the server again and again. In other words the vulnerability 

that flooding server attack is based on, is that it permits large trial and client 

windows. Of course modern server systems recognize these attacks limiting both trial 

and client windows. 

In order to create the heap proportional scheme, let us consider again the web browser 

example. In a web browser, if the first attempt fails causing the browser corruption 

(assumed that attacker wants to implement a malicious code injection in order to gain 
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a specific system’s component control), the user may not attempt to reload the page. 

In this case the attack has only one chance to succeed per target. Moreover consider 

the attacks whose success depends on mid-target success. In this case if repeated 

attack window is not large enough there will not be any success.  

On contradiction to web browsers where the attacks are user dependent, web servers 

restart after any corruption in order to ensure availability of service. This provides the 

attacker with more than one opportunity. Even if a server assumes that an attack is 

being occurred refusing to restart the attacker succeeded a denial of service. 

Well, in case of large enough repeated attacks window, an attacker with probability of 

success will eventually succeed. This is obvious due to the fact that even if the 

attacker predicts heap organization wrongly, after many attack trials, his predictions 

will be closer to the reality making the application more and more vulnerable until its 

exploitation. However if the allocator decreases this probability the system maintainer 

got the time to analyze the attack and fix the security flaw before the attacker will 

succeed. 

Such unpredictability is provided by randomization techniques such as ASLR 

(Address Space Randomization). The exact way that ASLR supports security 

philosophy is by involving heap consistence of randomly arranging pages. Thus the 

system pages that the heap consists of, are not literally continuous forbidding 

overflows or any predictability in system page layer. For example, Shacham et al. 

showed that ASLR on 32-bit systems provides 16 bits of entropy for library address 

and can thus be circumvented after about 216 seconds [3]. On 64-bit systems 

providing 32 bits of entropy, however, the attack would require an expected 163 days. 

During this time, it would be feasible to fix the underlying error and redeploy the 

system.  

 

Despite this is not enough, as system pages grow enormous while the platforms are 

evolving, being multiple of applications’ usual memory requests. The vulnerabilities 

that ASLR vanishes in system page layer are moving down in the interior of every 

reserved by the application page. Consider the fact that every system page can be 

segmented to many heap entities described by metadata entities. Consequently the 

vulnerabilities move to the internal of system pages. 
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 While one imagines a hypothetical supervisor program detecting incoming attacks, 

such a system would be hard even unpractical to be made. This is why despite the fact 

that it would be able to detect a series of crashes launched by a single source, 

attackers control large sophisticated distributed networks allowing them to coordinate 

large number of attack requests from random for the process sources.  Shacham et al. 

discuss the limitations of such systems in more detail [3]. 

 

2.2 Basic heap attack schema 

Before introducing the attack models, is essential to be described the stage sequence 

and the structural ingredients schema of any heap attack. 

Starting with the structural ingredients schema there are three main attack entities to 

consider, the security flaw, the vulnerability and the exploit. These entities are 

fundamental for every attack in a way that their absence forbids any kind of heap 

attack setting the running process purely “untouchable”.  

 As security flaw is defined any defect of a software application or component 

that, when combined with the necessary conditions, can lead to a software 

vulnerability. 

 Vulnerability is a set of conditions that allows violation of an explicit or 

implicit security policy 

 Exploit is a piece of software or a technique that abuse  vulnerability to 

violate an explicit or implicit security policy 

Continuing to the attack “schedule” the following three stages describe the philosophy 

and the steps that are vital for an attack to be launched correctly having the planned 

side-effects: 

1) the exploitation stage:  vulnerabilities are located and exploitation mechanism is 

set up ready to be triggered 

2) the activation stage: exploitation mechanism is triggered occurring illegal 

modifications to the process, its environment or causing malicious code execution 

on behalf of running process or even having administrator’s credentials 
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3) the influence stage: the final stage of the attack, it is not always the one have 

been predicted by the attacker but  it is sure that the system has been influenced in 

some illegal way  

As well as any heap-attack is a coordination of attacker’s “movements” and allocators 

behavior first and third of the tree following stages depends on the “traps” 

(exploitable states) that the attacker creates while the second stage involves the ability 

of allocator to avoid them.  

 

2.3 Dynamic Memory Manager’s vulnerability 

As mentioned before dynamic memory managers offer efficiency in the manner of 

memory utilization and system resources consumption. This is succeeded through 

an internal organization extremely “fragile” and attack sensitive. This is because the 

coexistence of data and metadata in the same address space
5
 made up from literally 

continuous portions of memory
6
. Moreover, because of the fact that DMM is actually 

the mid-layer between application and kernel layer, in the manner of memory 

transactions, it actually accesses variables and memory portions critical for the 

running process and the system itself. 

 

 

 

  

                                                           

 

5
 Address space must not be confused with sequential address space. Address space in the specific 

sentence means a large portion of memory where the applications have the higher possible 
credentials such as accessing and modifying all the contents of this area even metadata. 
 
6
 Memory is not literally continuous. Address space in continuous. However some sequential 

addressees are assigned to continuous memory space, e.g. the internal of a reserved system page.  
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2.4 Attack Models Classification Based On Its Immediate 

Target 

Investigating section 1.3 it is expected to classify the attacks to as many categories as 

the semantics of the heap. 

Attacking heap metadata is the first class, containing every attack aiming to change 

the allocator’s behavior through heap’s metadata illegal modification. 

The second class, attacking the application’s data, consists of attack models aiming 

to offer the attacker an easily exploitable environment though a special behavior of a 

running process that the programmer has not forecasted.  

Both attack model classes use memory manager and application vulnerabilities and 

success similar influences to the applications and to the systems that they were tried 

to. Their difference is only in semantics
7
. 

 

2.5 Heap Attacks Presentation 

Formally the target of almost every attack in the heap is the malicious code injection, 

meaning to obligate CPU to execute a sequence of instructions not intended to do. 

There are barely some times that attack aims to process corruption causing denial of 

service. Every other attack types, like those aiming to just commit illegal 

modifications, are vestibules to process corruption or code injection attacks.   

Despite the fact that attacking to vulnerabilities is a formally defined procedure 

aiming to specific mid targets until the ultimate one, it contains a pinch of art also. 

Moreover a specific type of vulnerability can be used in different ways in different 

attack scenarios. Consequently the vulnerability and attack sets are not connected 

                                                           

 

7
 For example a buffer overflow can occur either on heap metadata aiming to exploit allocator 

routines or on application’s data aiming to exploit application’s routines. Both mechanisms have the 
same target, to take control of a subsystem of the main system, both implement the same attack but 
they have different semantics!  
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by a one to one function. That is why it is essential attack models, vulnerabilities and 

exploits to be presented side by side in a scheme indicating how the vulnerability is 

exploited leading to a successful attack. 

 

2.5.1 Daggling Pointer Vulnerability (DPV) Attacks 

To justify the claim lain out in section Σφάλμα! Το αρχείο προέλευσης της αναφοράς 

δεν βρέθηκε., consider the daggling pointer vulnerability. Dangling pointers are 

pointers to memory locations that are no longer allocated. In most cases 

dereferencing a dangling pointer will lead to a program crash. 

However in heap memory, it could also lead to a double free vulnerability, where a 

memory location is freed twice. Such a double free vulnerability could be misused by 

an attacker to modify the management information associated with a memory chunk 

(chunk’s metadata) and as a result could lead to a code injection attack. 

This kind of vulnerability is not present in all memory managers, as some will check 

if a chunk is free or not before freeing it a second time. It may also be possible to 

write to memory which has already been reused, while the program think it is still 

writing to the original object. 

This can also lead to further vulnerabilities which usually are much harder to be 

exploited in general programs than a double free. The possibility of exploiting them 

will most likely rely on the way the program uses the memory rather than by using the 

memory manager to the attacker’s advantage. 

  

2.5.2 Buffer Overflows Attacks 

Buffer overflows exploits are the most common vulnerability abuse resulting in code 

injection attack. It requires knowledge or extremely accurate prediction of the heap 

organization and the allocator functionalities’ side-effects.  

The main goal of the specific technique is to overwrite essential heap fields by taking 

advantage of continuous memory in chunks, or by abusing indirectly allocator’s 
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functionalities such as memcopy, defragmentation techniques etc. The content and 

the type of the modified memory cells
8
 depend on the goal and the class 

(data/metadata attack) of the tried attack. 

The first choice to launch a data attack aiming to overflow some critical for the 

application data.  By this way the application will change its behavior and may create 

a larger vulnerability in the whole system organization. This is an application 

centered attack meaning it can be launched against only a specific application or 

application class and maybe for a restricted number of times.  

The second strategy, more common and global than the first one, is to focus on 

metadata aiming to pointer subterfuge or other critical memory cells 

modifications. Pointer subterfuge, in other words pointer overwriting, is a very 

common exploit targeting to illegally change pointers values.  

 

Figure  2-1: Buffer overflow example using the embedded to the allocator copy 

functionality. The allocator mistakenly copies a larger buffer’s content to a smaller 

one and as a result it overwrite the following fields. In case that the tree overwritten 

bytes are heap’s metadata the corruption is close. 

Buffer overflows family contains two worthy to be presented attack schemes, forward 

consolidation and backward consolidation attacks. 

                                                           

 

8
 Memory portions of having specific size and specific significance such as an integer variable a string 

buffer etc.  
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2.3.1.1 Forward consolidation  

The specific attack’s target is to inject indirectly malicious code into the text or to the 

stack segment of the process’s memory. By this way the attacker obliges the system to 

let its malicious code to be executed on behalf of the process, offering it the process’s 

credentials. The idea is to illegally modify the values of fd and bk pointers (see 

Figure 2-2) so the allocator will do the job changing the text or stack segment’s 

chosen field of the allocated by the application memory. 

Investigating a real example in detail, let us consider the UNIX’s free-list based 

allocator, the DL-allocator (aka Doug Lea allocator). Moreover we consider a 

snapshot of its state involving four memory chunks A, B, C and D. Assuming that 

chunk B is a free memory chunk, it has to be connected with C and D belonging to the 

maintained by the allocator free-list. Moreover chunk B is continuous with chunk A 

having its start just after the end of the data segment of A (buffer), while A is in use. 

Moreover a user’s input is pending to be stored in buffer of chunk A. 

 

Figure  2-2: Memory Chunks A, B, C, D organized in a vulnerable way just before the 

attack to DL-allocator is launched. Size: chunk’s size, PU: previous chunk in use, fd: 

points the next free chunk, bk points the previous free chunk 

When the application requests an allocation, the chunk B is chosen to be removed 

from the free-list changing its state to “in use”.  Consequently the following code 

lines stored in the text segment will be executed: 
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b->fd->bk=B->bk; 

b->bk->fd=b->fd; 

as it is expected. 

However imagine that, before the allocation of chunk B the attacker fed the 

application with an input that was to be stored in the buffer contained in chunk A, 

having size larger than the appropriate. In this way he could easily overwrite the two 

pointers fd, bk of free chunk B with an existing legal function’s address that would be 

called later by the process and with a pointer to a heap area (maybe in the same 

buffer) containing a malicious code segment, respectively. Consequently when 

allocators try to remove from free-list chunk B, it will end up linking a pointer located 

in the text segment, with a malicious routine.  

 

Figure  2-3: Malicious code injection through indirect pointer overwriting. Allocator 

overwrite text area. In the left half it is presented the buffer overflow exploitation and 

its result is obvious in the right half. 

Finally, the attack succeeds when the application calls the pointed by the overwritten 

pointer function. Consequently there should be a malicious code execution instead of 

the legal function routine expected one.  
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2.3.1.2 Backward Consolidation 

The second notable attack scheme, the backward consolidation, is similar to the 

aforementioned forward consolidation scheme. The target of the attack is once again 

the malicious code injection to the text segment through the modifications of fd and 

bk pointers of some free chuck before its allocation by the process. The distinguishing 

difference although of the two models, is that in backward consolidation attacks there 

is not actual overflow in any free chunks metadata. Having a large size buffer in his 

hands, the attacker creates a fake free memory chunk. Its metadata is customized by 

the attacker, who assigns fd and bk pointers the values that will connect a function 

pointer located in the text segment, with a malicious code routine, resulting to 

malicious code execution on behalf of the attacked process. 

 

Figure 2-4: Buffer overflow: Backward Consolidation scheme. Note that fake chunk 

must be denoted as free. This can be done in two ways. The first is overflowing the 

following chunk’s metadata and unset “previous in use” attribute while the second 

one, in case of large enough buffer, is to create another continuous fake chunk 

pretending to be in use, and denoting to its PU attribute that the early one is free. 
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2.5.3 Off by one errors 

An off by one error is a special case of the buffer overflow. When an off by one 

occurs, the adjacent memory location is overwritten by exactly one byte. This 

often happens when a programmer loops through an array but typically ends at 

the array’s size rather than stopping at the preceding element (because arrays 

start at 0). In some cases these errors can also be exploitable by an attacker. A more 

generally exploitable version of the off by one for memory allocators is an off by five, 

while these do not occur as often in the wild, they demonstrate that it is possible to 

cause a code injection attack when little memory is available. These errors are 

usually only exploitable on little endian machines because the least significant byte of 

an integer is stored before the most significant byte in memory. 

 

2.5.4 Format string attacks  

The Format String exploit occurs when the submitted data of an input string is 

evaluated as a command by the application. In this way, the attacker could execute 

code, read the stack, or cause a segmentation fault in the running application, 

provoking side-effects able to compromise the security or the stability of the system. 

To understand the attack, it’s necessary to understand the components that constitute 

it. 

 the Format Function is an ANSI C conversion function, like printf, fprintf, 

which converts a primitive variable of the programming language into a 

human-readable string representation 

 the Format String is the argument of the Format Function and is an ASCII Z 

string which contains text and format parameters, like:  

printf ("The magic number is: %d\n", 1912); 

 the Format String Parameter, like %x %s defines the type of conversion of 

the format function 
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The attack could be executed when the application doesn’t properly validate the 

submitted input. In this case, if a Format String parameter, like %x, is inserted into the 

posted data, the string is parsed by the Format Function, and the conversion specified 

in the parameters is executed. However, the Format Function is expecting more 

arguments as input, and if these arguments are not supplied, the function could read or 

write the stack. 

In this way, it is possible to define a well-crafted input that could change the behavior 

of the format function, permitting the attacker to cause denial of service or to execute 

arbitrary commands. 

If the application uses Format Functions in the source-code, which is able to interpret 

formatting characters, the attacker could explore the vulnerability by using many 

already developed tools. [7] 

  

2.5.5 Heap spraying attacks 

A heap spray does not actually exploit any security issues but it can be used to make a 

security issue easier to exploit. A heap spray by itself cannot be used to break any 

security boundaries: a separate security issue is needed. 

Exploiting security issues is often hard because various factors can influence this 

process. Chance alignments of memory and timing introduce a lot of randomness 

(from the attacker's point of view). A heap spray can be used to introduce a large 

amount of order to compensate for this and increase the chances of successful 

exploitation. Heap sprays take advantage of the fact that on most architectures and 

operating systems, the start location of large heap allocations is predictable and 

consecutive allocations are roughly sequential. This means that the sprayed heap will 

roughly be in the same location each and every time the heap spray is run. 

Exploits often use specific bytes to spray the heap, as the data stored on the heap 

serves multiple roles. During exploitation of a security issue, the application code can 

often be made to read an address from an arbitrary location in memory. This address 

is then used by the code as the address of a function to execute. If the exploit can 

force the application to read this address from the sprayed heap, it can control the 

flow of execution when the code uses that address as a function pointer and redirect it 
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to the sprayed heap. If the exploit succeeds in redirecting control flow to the sprayed 

heap, the bytes there will be executed, allowing the exploit to perform whatever 

actions the attacker wants. Therefore, the bytes on the heap are restricted to represent 

valid addresses within the heap spray itself, holding valid instructions for the target 

architecture, so the application will not crash. It is therefore common to spray with a 

single byte that translates to both a valid address and a NOP instruction on the target 

architecture. This allows the heap spray to function as a very large NOP sled. 

A common example of heap sprays for web browsers which are implemented 

in JavaScript and spray the heap by creating large strings. The most common 

technique used is to start with a string of one character and concatenating it with itself 

over and over. This way, the length of the string can grow exponentially up to the 

maximum length allowed by the scripting engine. Depending on how the browser 

implements strings, either ASCII or Unicode characters can be used in the string. The 

heap spraying code makes copies of the long string with shellcode and stores these in 

an array, up to the point where enough memory has been sprayed to ensure the exploit 

works. 

 

 

Figure  2-5: Heap spraying attacks scheme. When the indirect call will happen it is 

extremely possible that the malicious code will be executed instead of the “called” 

method. 

http://en.wikipedia.org/wiki/NOP
http://en.wikipedia.org/wiki/NOP_sled
http://en.wikipedia.org/wiki/JavaScript
http://en.wikipedia.org/wiki/String_(computer_science)
http://en.wikipedia.org/wiki/Concatenation
http://en.wikipedia.org/wiki/Exponential_growth
http://en.wikipedia.org/wiki/Scripting_engine
http://en.wikipedia.org/wiki/ASCII
http://en.wikipedia.org/wiki/Unicode
http://en.wikipedia.org/wiki/Shellcode
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2.5.6 Type overflows 

Type overflows or illegal type casting attacks refer to attacks that aim to change the 

value of a counter that manages a loop or any other essential for the execution 

variable.  

This offers the attacker from the opportunity to gain extra time until the next attack is 

ready to be fired, up to succeed the denial of service.  

The specific attack can easily take place by feeding any variable which expect “input” 

of a certain type, with input belonging to larger type group (e.g. instead of unsigned 

int, -1 is fed). 
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3 RELATED WORK 

In this section there are described in detail, the most successful heap security 

mechanisms according to bibliography. However, before moving on, it is essential to 

distinguish the protection policies to active and passive like vehicles’ manufactures 

do. 

 The class of passive security mechanisms consists of all the security 

mechanisms that aim to interact with the attack in way that they lead 

application or allocators to corrupt without being informed the reason why. 

Almost every passive heap security mechanism results in indirect 

segmentation fault corruption in case it is triggered by an attack. There are 

although some cases that the application does not corrupt because of 

segmentation fault but actually it starts behaving unpredictably.  

 On the other hand, active security mechanisms react differently. They detect 

the launched attack as soon as possible and they either alert the allocator or the 

application about it, or they handle the danger themselves using special 

routines that they afford. Many times active security mechanisms cause 

program termination using segmentation fault. However this must not be 

misunderstood as program corruption
9
 because it does not signaled by the OS 

but from the security mechanism that is a module of the application’s 

allocator. 

 

 

 

 

                                                           

 

9
 For the needs of the specific paper program corruption is consider equivalent to program’s irregular 

termination by the OS because of being dangerous for the system’s behavior. 
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3.1 Canaries  

The first described mechanism is the canaries or canary words. Canaries where 

introduced as stack’s security mechanism. The terminology is a reference to the 

historic practice of using canaries in coal mines, since they would be affected by toxic 

gases earlier than the miners, thus providing a biological warning system. They are 

known words, from the application’s internal mechanisms (stack implementation 

libraries), that are placed between buffers and control data in stack in order to monitor 

buffer overflows. In this way, any buffer overflow is barely possible to take place 

without corrupting the guarding canary leading to a canary verification failure which 

respectively will raise an overflow alarm. 

Bibliography indicates three types of canaries in use: Terminator, Random and 

Random XOR. Current stack protection mechanisms use all three kinds. 

3.1.1 Terminator Canaries 

The majority of buffer overflow attacks are based on certain string operations. This 

observation resulted to terminator canaries. Actually they are built by NULL 

terminators, CR, LF and -1. The undesirable result is that the canary in known. 

Consequently terminator canaries do protect stack from application or system failures, 

however any attacker can easily violate the specific security mechanism by potentially 

overwriting its known value and control information with mismatched values passing 

the canary verification.  

 

3.1.2 Random Canaries 

Random canaries are randomly generated, usually by an entropy-gathering daemon, 

in order to prevent an attacker to predict its value. Usually it is not plausible to read 

the canary for exploiting as well as only the buffer overflow protection mechanism 

knows its value. 

Normally, a random canary is generated at program initialization, and stored in a 

global variable. This variable is usually padded by unmapped pages, so that 

http://en.wikipedia.org/wiki/Animal_sentinels#Canaries_in_coal_mines
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attempting to read it using any kinds of tricks that exploit bugs to read off RAM 

results to segmentation fault, terminating the program. It may still be possible to read 

the canary, if the attacker knows where it is, or can get the program to read from the 

stack. 

However if a canary remains constant during many system cycles then it offers the 

attacker a large window of thought and attacks, Consequently it is possible for the 

attacker to be informed for its actual value by exploiting other application’s 

vulnerabilities in order to gain read access in the stack locating and reading its value.  

Moreover a possible scenario should be that somehow the attacker locates the variable 

where the original canary value is stored to. Again it is extremely possible that the 

launched attack will eventually succeed. 

 

3.1.3 Random XOR Canaries  

Random XOR Canaries are random canaries produced in the aforementioned way 

(subchapter 3.1.2) that are XOR scrambled using all or a part of the protected buffer 

data. In this way once buffer’s data is clobbered, the canary value mismatches the 

expected one, resulting to verification failure.  

Random XOR Canaries have actually the same vulnerabilities. The distinguishing 

difference is that Random XOR Canaries makes the “read from stack” method much 

more complicated. This is because the fact that the attacker has to get the canary, the 

algorithm as well as the buffer contents in order to generate the original canary for re-

encoding into the canary he needs to spoof the protection. 

In addition Random XOR Canaries offer security against a larger set of exploits 

than Random Canaries. Certain types of attacks, not avoided by Random Canaries, 

such as overflowing a buffer in a structure into a pointer to change the pointer to point 

illegally a piece of control data, can be prevented. This is because of the XOR 

encoding which involves the actual content of the buffer to the canary assertion. 

Consequently buffer’s content corruption will lead to canary corruption even if the 

corruption is occurred without immediate overflowing over canary (dangling pointer 

vulnerability can lead to this type of attacks in heap – see also 2.5.1 & 2.5.2).  
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3.1.4  Changing target not philosophy: From stack to heap 

Despite the fact that canary’s mechanisms were introduced for stack security they 

actually behave being applied to the heap organization too. However its reaction is a 

bit more complicated. In order to clarify this fact let us consider the way that actually 

canaries work applied to heap. 

 As it mentioned in section 1.4 heap contains data and metadata. The second entity’s 

security is more critical to the system maintenance. Moreover the majority of the 

attacks, targeting metadata, are based in transactions, which modify data, between 

application and heap. Thus the need to restrict primarily the overflows form data to 

metadata fields as well as secondly generally any kind of overflow. 

Actually this restriction is implemented in a large scale by canary use by many 

modern allocators. The key difference in the way that they implement the canary 

mechanism is the algorithm
10

 that they use and the position of the guards they set. For 

example, list-based allocators use canaries to secure metadata fields by setting canary 

guards in the boundaries of memory chunks. On the other hand BiBOP style may use 

canaries for securing data sections setting guards between allocated objects located in 

the same system page as figure 3-1 presents. 

As well as the attacker is not aware of the canary’s value it is hard enough to predict 

it. Most of modern allocators, implementing the specific mechanism, produce canary 

guards runtime, using pseudo random mechanisms, making actually impossible any of 

their values to be predicted. However, the efficiency of the canary security model 

depends on the algorithm it is based on and the attack windows that it allows. 

                                                           

 

10
 The algorithm that a canary mechanism implements “describes” the way that the secondary 

structures (random seeds etc) are stored in the address space, the randomization techniques and the 
algorithms that the canary-guards are being produces. 



33 
 

 

Figure  3-1: In left canary mechanism application in free-list based allocator. In right 

canary mechanism application in BiBOP-style allocator. 

 

3.2 Metadata pointer encoding (Encrypted Pointers) [8] 

3.2.1 Pointer encoding in mono-linked lists schema 

The specific technique was introduced, mainly to protect any list-based allocator. The 

springboard of its creation is the large vulnerabilities set existing in free-list based 

allocators and especially in Doug Lea’s dynamic memory manager which is mainly 

adopted by almost any DebIan based Linux distribution.  

In case of free-list based allocators, bins for free chunks are either singly or doubly 

linked lists. If a bin is constructed as a singly linked list, only the forward link fd is 

used. For doubly linked lists, both fd and bk pointers are used. Thus buffer overflow 

attacks to the specific pointers abuse allocator’s functionality to overwrite other more 

significant pointers (usually correlated with text segment’s contents). In any case, link 

pointers can protect themselves by encryption. 

In this scheme, the DMM encrypts a pointer linking free chunks immediately after its 

definition. The pointer is decrypted only when it is necessary the assigned address to 

be revealed in order to access its contents before the dereferencing.  When the link 

pointer is simply copied to other structures, it is neither encrypted nor decrypted. 
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Consequently in case of the attacker wants to modify link pointers value, overwriting 

is not enough. Attacker must possess the key value and the algorithm, also, to encrypt 

it correctly so as latter decryption will not give unpredictable values.  

 

 

Figure 3-2:  Operation of singly linked lists. The encoding function is symbolized as 

e, while the decrypting one as d and key as k. Left half: the operation of insertion. 

Right half: the operation of deletion. 

 

For insertion the encoded address of the bin is copied into the fd cell of chunk New in 

order to be inserted, and the bin is set to the address of chunk New. Deletion also 

occurs at the head of the bin. The fd field of the first chunk is decrypted and assigned 

to the bin. 

 

Other bins have the structure of a doubly linked list with a header element, where both 

the fd and the bk link fields are encrypted. Fig. 3-3 shows the insertion and deletion 

operations. For insertion, chunk New is inserted between two chunks, in which one or 

both of FD and BK are given. The address of chunk New is encoded by an encoding 

function e and a key k.  Given the decrypted address of a chunk both previous and 

next chunks in the linked list can be accessed by decrypting the fd and bk pointers of 

the initial one. Deletion of chunk New simply copies encrypted pointers’ values to the 

destinations as shown in Fig. 3-3. It needs to decode only two of the pointers’ values 

to get the real target addresses. 

 

For encryption and decryption, it is used the exclusive-OR (XOR) operation. The 

decision is made by considering performance as well as security, since too much 
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overhead renders data pointer encoding impractical. Guessing two (a and b) algorithm 

components from the third (e) is difficult given that e = a XOR b. With 32-bit keys, 

the probability of a successful break is 
 

 

  
. XOR operations can be done by a single 

instruction in microprocessors counting no overhead.  

 

 

 

 

Figure 3-3: Operation of double linked lists. The encoding function is symbolized as 

e, the decrypting one as d and key as k. Insertion functionality is displayed. Deletion 

happens in similar way. 

 

Obviously Pointer encoding in mono-linked lists schema is a passive security 

technique. This is because in case of any attack to heap’s freelist linking pointers, 

application is modified in way that is extremely possible to corrupt due to 

segmentation fault, without “being alerted“ about the reason why the corruption 

occurred.  
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3.2.2 Pointer encoded in dual-linked list schema 

Traditional linked lists have mono-link fields for each node in order to access next or 

previous one. With a data pointer encoding mono-linked lists being attacked will end 

up probably with a segmentation fault or in worst case scenario with a truly 

unpredictable behavior. Thus Kyungtae Kim and Changwoo Pyo upgraded the pointer 

encoded to mono-linked list scheme that they have introduced, to pointer-encoded to 

dual-linked scheme, using instead of the traditional list element structure the updated 

one figured out in figure 3-4. 

Free chunks of dual-linked lists use two link fields that process independently 

encrypted values coming from the same address. In this way it is implemented active 

security instead of the passive scheme that mono-linked lists offer. Any illegal 

modification of the encrypted fields can be perceived, by decrypting and comparing 

both fields. The verification of the two encrypted pointers takes place whenever a 

chunk changes state being inserted and removed from the freelist.  

 

Figure  3-4: Left: list element structure for dual linked lists.  

 

Pointer encoded in dual-linked list schema is an active security scheme by the means 

that the attack is detected barely after its launch and special code routines undertake 

the responsibility of coping with it. 
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3.3 OpenBSD Allocator Schema 

OpenBSD originally used PHKmalloc. However 2008 it introduced a new allocator 

based in PHKmalloc but heavily modified aiming to security increment. The 

techniques that it employs in order to fulfill the security demand is the following 

three: 

 Data – metadata segregation: it maintains all of its metadata structures in a 

memory region completely isolated from the one that stores data 

 Sparse page layout: the amounts of memory that the allocator reserves 

consists of pages provided by the mmap, a system call offering randomization 

because it is based on the ASLR. Consequently the probability of  reserving 

two continuous pages limits to zero as the sophisticated computer systems 

afford lots of memory meaning plenty of system pages 

 Destroy-on-free: every time that a memory portion changes its state from “in 

use” to “freed” allocate scramble its contents. In this way dangling pointer 

exploitability is decreased dramatically (see section 2.5.1). 

 

3.4 DieHard: Probabilistic Memory Safety [2] 

3.4.1 Overview 

Die hard is a runtime system that provides probabilistic memory safety. Actually 

probabilistic memory safety is a way to create a dynamic memory allocator or to 

modify an existed one providing a mathematical proof using probabilities that certain 

error types are not possible to be occurred. So Emery D. Berger and Benjamin G. 

Zorn in their homonymous paper introduce Die Hard and prove that it offers 

extremely high security levels for specific errors. 

These errors fall into the following categories: 

Dangling pointers: If the program mistakenly frees a live object, the allocator may 

overwrite its contents with a new object or heap metadata. 
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Buffer overflows: Out-of-bound writes can corrupt the contents of live objects on the 

heap. Heap metadata overwrites: If heap metadata is stored near heap objects, an out-

of-bound write can corrupt it. 

Uninitialized reads: Reading values from newly-allocated or unallocated memory 

leads to undefined behavior. 

Invalid frees: Passing illegal addresses to free can corrupt the heap or lead to 

undefined behavior. 

Double frees: Repeated calls to free of objects that have already been freed cause 

freelist-based allocators to fail. 

Of course there are tools that allow programmer to pinpoint the exact location of these 

memory errors (Valgrind is an excellent example [13]). However they actually reveal 

only those bugs detected during testing. Consequently deployed programs remain 

vulnerable to crashes or attacks.  

Moreover there are other security policies that can protect application from 

vulnerabilities caused by the aforementioned error classes but they provide fail-stop 

services which of course is inadequate in front of the self-treat that DieHard affords. 

DieHard provides two modes of operation: a stand-alone mode that replaces the 

default memory manager, and a replicated mode that runs several replicas 

simultaneously. Both rely on novel randomization memory manger that allows 

computation of the exact probabilities of detecting or avoiding memory errors. 

 

 

3.4.2 Stand-alone-mode 

DieHard allocates objects in different segments according to their size. Each 

segment’s size is multiple of the object’s size that it stores. Objects of the same size 

are placed randomly in the same segment. The resulting spacing between objects 

makes it likely that buffer overflow will end up overwriting only empty space. 

Randomized allocation also makes it unlikely that a newly-freed object will soon be 

overwritten by a subsequent allocation, thus avoiding dangling pointer errors. It 

also improves application robustness by segregating all heap metadata from the heap 
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(avoiding most heap metadata overwrites) and ignoring attempts to free already-freed 

or invalid objects. 

 

3.4.2.1 Setting Memory Management Concerns 

However there are two main problems on standalone DieHard allocator. Allocator 

degrades the spatial locality and it use memory in an extremely inefficient way. In 

order to justify why these problems exist let us consider first of all the strength of the 

DieHard, the infinite heap approach.  

 

3.4.2.2 Probabilistic Memory Safety 

There actually is defined an idealized, but unrealizable, runtime system called infinite 

heap manager which provides infinite-heap semantics. In such a system, the heap 

area is infinitely large, so there is no risk of heap exhaustion. Objects are allocated 

infinitely far apart from each other. Consequently buffer overflows, in the way that 

are known, are benign –never overwrite live data. Moreover the problems of heap 

corruption and daggling pointers also vanish because frees are ignored and allocated 

objects are never overwritten. However uninitialized reads to heap remain 

undefined
11

. 

 

3.4.2.3 Infinite heap approximation 

While an infinite-heap memory manager is unimplementable, DieHard 

probabilistically approximates its behavior. By replacing the infinite heap with one 

that is M times larger than the maximum required, it obtains an M-approximation to 

infinite-heap semantics. By placing objects uniformly at random across the heap, 

DieHard get a minimum expected separation of E[minimum separation] = M−1 

objects, making overflows smaller than M−1 objects benign. Finally, by randomizing 

                                                           

 

11
 Unlike Java, C and C++ objects are not necessarily initialized to specific contents. 
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the choice of freed objects to reclaim, recently freed objects are highly unlikely to be 

overwritten. 

 

3.4.2.4 Justifying memory management concerns 

M times larger heap than the maximum required, is the justification for both concerns 

that described above. This is a fact indicting the inefficient memory usage. The side 

effects in restricted resources systems are obvious, as well as the saturation of spatial 

locality, offered by memory layer, because of the random space between data that 

should be managed simultaneously.  

 

3.4.3 Replicated Mode 

This memory manager approximates most aspects of infinite-heap semantics as M 

approaches infinity. However, it does not quite capture infinite-heap semantics, 

because it does not detect uninitialized reads. In order to detect these, another mode is 

implemented, the replicated mode.  

This mode requires the free portions of the infinite heap to be filled with random 

values. Thus it can then detect uninitialized reads by simultaneously executing at least 

two replicas with different randomized allocators and comparing their outputs. An 

uninitialized read will return different results across the replicas, and if this read 

affects the computation, the outputs of the replicas will differ. 
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Figure 3-5: DieHard ‘s heap layout. The heap is divided into separate regions 

allocating in random positions in each region, objects of the same size. Notice the 

different layouts across replicas. 

 

3.4.3.1 Replicas and Input 

DieHard spawns each replica in a separate process using LD_PRELOAD environment 

variable to redirect all calls to malloc and free in the application to DieHard’s memory 

manager. By this way more than one replicas of the same application runs 

simultaneously. However each replicas heap is actually initialized under different 

conditions and as memory manager pick a different random number seed in every 

invocation, all replicas execute with different sequences of random numbers.  

DieHard communicates with replicas using both of standard mechanisms, pipes and 

shared memory. Pipes are used in order to receive each replica its standard input from 

DieHard and then shared memory is used vise versa containing one communication 

buffer per replica.  

 

 

3.4.3.2 Voting scheme 

DieHard manages output from replicas by periodically synchronizing at barriers. 

Whenever all replicas finish or all shared memory gets full of their result the voter 

asserts the execution progress of the whole application by comparing replicas’ outputs 

stored in the communication buffers. If all buffers agree, no mistakes were occurred. 
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Consequently the contents of one of the buffers are sent to standard output and 

execution proceeds normaly. 

However, if there is no homophony in buffers, it means that at least one of replicas 

has at least one error. In this scenario, the voter chooses output buffer agreeing by at 

least two replicas, and send it to standard out. Two replicas suffice because odds are 

slim that two randomized replicas with memory errors would return the same error. 

 

 

 

 

 

Figure 3-6: Replicas voting mechanism as it is documented in [11][11] 
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3.5 Die Harder [11] 

3.5.1 Overview  

DieHarder is a bitmap-based fully randomized lighter allocator based on DieHard, 

implementing however only passive protection mode. Actually it can be classified as 

BiBOP-style allocator. It allocates memory from increasingly large chunks called 

miniheaps. Each miniheap contains objects of exactly one size having exactly the 

same sense of page entity, in BiBOP-style allocators. DieHarder allocates new 

miniheaps to ensure that, for each size, the allocated objects (positions in use) per 

total objects (positions that can be used for storage) is not more than 1/M (see infinite 

heap approximation, chapter 3.4.2.3). Moreover each new miniheap is twice as large 

as the previous one and thus it holds as many objects as the previous does.  

Of course the heart of the heap security that DieHarder offers to the application, is the 

random allocations. Every allocation randomly probes a miniheap’s bitmap for the 

given size class for an unset bit (0). In case of bit hit (meaning the bit is found) 

allocator changes its value to set (1) and allocates the respective position for the 

object. Otherwise it reserves extra space (system call) in the name of the application 

and assigns it to the respective size class. Afterwards it repeats the search for the 

newly allocated space where it is obvious that an unset bit hit will immediately take 

place. 

 

3.5.2 Points analysis  

It is fact that by rendering the heap’s unpredictable organization and the way that it is 

used by the application, in order to satisfy its allocation and deallocation needs, the 

security levels, which are offered by, are increased radically.  

For this reason, DieHarder’s implementation targets to heap’s randomization. This is 

succeeded by randomizing the placement of allocated objects and the length of the 

time before freed objects are recycled. This technique is not prototype. It is applied in 

OpenBSD’s allocator. The key difference However is that DieHard randomizes 

placement and reuse to the largest practical extent instead of limited randomization, 

that OpenBSD offers.  
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3.5.2.1 Randomized Placement 

When choosing where to allocate a new object, DieHard choice may end up with a 

position belonging uniformly in anybody of free chunks having the proper size. 

Furthermore, DieHard’s overprovisioning ensures the existence of O(N) free chunks, 

with N denoting the number of allocated  objects. Thus DieHard provides O(logN) 

bits of entropy for the position of allocated objects, significantly improving on 

OpenBSD’s 4 bits. This entropy decreases the probability that overflow attacks will 

succeed. The probability depends upon the limitations of the specific application 

error. For example, small overflows (at most the size of a single chunk) require that 

the source object be allocated contiguously with the target chunk. 

 

Berger and Novak have justified the security level by introducing and proving the 

following theorem: 

“The probability of a small overflow overwriting a specific vulnerable target 

under DieHard is O(1/N), where N is the number of allocated heap objects when 

the later of the source or target chunk was allocated.” [11] 

 

To generalize the theorem’s point let us calculate the probability of X-chunk overflow 

attack to be successive, overwriting even one of the V objects contained in a larger set 

of N allocated ones. Also, consider that there are k objects slots following the source 

object (the one that the attack starts from) that can actually be overflowed.  [11] 

Because of the allocator’s policy, for N allocated objects, there are at least MN 

available positions. Consequently the probability for the first of the allocated objects, 

to be stored outside this slots area, is (MN-k)/MN, for the second one is (MN-k-

1)/MN, the third one is (MN-k-2)/MN, resulting to the fact that ith object’s 

possibility is (MN-i-1)/MN. Starting counting from 0 instead of 1, we got the 

generalized probability for the ith element, not belonging to the range attack area, to 

be (MN-i)/MN. 

Of course these probabilities are reserved and so their multiplication results to the 

probability of the case that “none of the allocated objects are placed in even one of 

the k slots after source object”: 
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And of course the opposite case, ”even one of the allocated objects is located in the 

attacked area”, is described by the possibility: 

   
       

               
 

And this is the probability the launched attack to success in a k-vulnerable
12

 

application. As soon as |V|<< N the probability of successful attack limits to 

   
    

  
 

   

 

 

3.5.2.2 Randomized Reuse 

Die harder chooses the newly-allocated chunks randomly across all free chucks of the 

proper size. The probability of returning the most-recently-freed chunk is at most 

1/MN. This bound holds even if the after s a single allocation, a large quantity of 

continuous allocations takes place because of the M overprovisioning factor. So 

attacks that exploits recently freed space has 1/MN probability to success. [11] 

 

Figure  3-7: Overview of DieHarder’s heap layout as it is documented in [11] 

                                                           

 

12
 An application is k-vulnerable that allows overflows having size k times or less than the source 

object 
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3.5.2.3 Concerns’ Justification 

The problem of the specific mechanism is the same having the one based on, memory 

usage efficiency and spatial locality degradation. The overprovisioning factor M 

points that memory efficiency does not belongs to DieHarder’s priorities. And 

considering that maximization of security probabilities demands maximization of M 

for constant N it is obvious the memory scalability problems that can be occurred. 

Moreover the 1/MN reuse probabilities, can exclude freed chunks from being reused, 

while many of them should be essential for spatial locality maintenance, as well as 

system call low ratio maintenance.    
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4 DEVELOPED METHODOLOGIES  

 

4.1 Dynamic memory managers’ perspectives  

Before starting with the security policies that were followed to offer security 

principals to dynamic memory manager, it is essential to clarify the way that dynamic 

memory mangers were generally treated in this paper. 

Dynamic memory mangers are nothing more than finite state machines that were 

introduced in order to service applications memory requests through managing 

specific memory portions. The memory resources that feed them with these portions 

are not a concern for the specific paper.  

Consequently there are two ways to treat dynamic memory managers, as servers, 

because they do serve application requests, and as finite-state monolithic resource 

managers, as they do mange internal memory resources and consisting of one module 

able to be depicted by a sequence of specific states. The first point of view is closer to 

web functionalities, while the second one closer to kernel layer. And these actually 

are the entities that we treat dynamic memory mangers like, defining our security 

issue’s approximation. 

 

Figure  4-1: Dynamic memory managers classification according to application’s 

and system point of views 
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4.1.1 Dynamic memory manager as server 

Every application requests object allocations and deallocations. These requests are 

“passed” to dynamic memory manger to be served according to its policy schemes. In 

this manner, despite the fact that dynamic memory manger is a module of the main 

process (mother process), it can be considered as a server providing its services to the 

application itself. Memory organization schemes and efficiency are allocator’s 

concerns, leaving application to worry only about the internal management of the 

allocated objects.  

The introduction of the described scheme, offers an extremely different security 

approximation. Allocators interact with mother application in a request-response 

scheme with application requesting allocation/deallocation of memory portions of 

specific size and allocator finding magically
13

 a way to serve them.  

Each application’s request to the allocator is considered to be a datagram consisting 

of two components, the request itself and a number denoting the size of the requested 

memory portion in bytes. Thus the allocator is not informed about the way that 

application aims to use the requested space but only for its size. This lack of 

information restricts security mechanisms that can be implemented around heap 

protection. 

However, by treating allocator as server it is obvious that security can be supported by 

a large quantity of special memory requests, treating memory according to its 

content and not only as a pure bit container.  

Thus, semantics are been provided to the heap, based on programming language’s 

type-systems and application’s demands, in order to identify block contents and to 

set clear restrictions that are based on and proved in formal mathematical way. In 

this way security moves on, from heap integrity to application’s data integrity.  

                                                           

 

13
 It actually maintains structures of free memory allocation or it interacts with kernel to request 

enough memory for serving the application’s demands. 
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Although this scheme provides the maximum of security it does not respect the 

transparency’s law. In case that someone will try to secure an allocator or to create a 

new one from the scratch as described in section 4.1.1, he would end up with a 

dynamic memory manager’s API mismatching the one used by the majority of the 

existing applications. 

 

 

 

Figure  4-2: Application allocation request providing semantics to dynamic memory 

manager.  

 

4.1.2 Dynamic memory manger as finite-state monolithic resource 

manager 

This is the way that dynamic memory mangers have been treated until now, from 

anyone occupied with their security issue, as expected because of the need for 

transparency (see previous subchapter and chapter). 

Every dynamic memory manager consisting of only one module, the manager itself, 

and can described by a set of finite states complementary to the process’s states. Each 

time the allocator’s routines are executed the main process’s routines, related with 
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allocation and deallocation scheme
14

, passes indirectly to “wait mode”. This 

consideration reminds the way that two process do corporate with, managed by the 

kernel’s scheduler. However this is not actually a corporation scheme as the executed 

allocating/deallocating routines belong to the process itself.  

 

Figure  4-3: Application request allocation from the dynamic memory manager, 

control passes to DMM and again in application.  

The above assumption helps us to understand the manners and the critical location 

that the security mechanisms can protect. Heap’s content investigation results to two 

classes, data and metadata. Source code investigation leads to two classes too, 

application instructions and dynamic memory manger instructions. As it has been 

clarified in subchapter 4.1.1, allocator is actually informed only about the size of 

requested objects. Thus we understand that any try to secure allocator should point to 

interaction between its instructions execution and heap’s metadata. 

 

 

 

 

                                                           

 

14
 There are multithread process so the assumption refers only to the thread requesting allocation or 

deallocation  
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4.2 Functionalities VS Dynamic Memory Allocator’s 

Security 

The subject used for our research is an open source library, dmmlib [12]. It is free-list 

based allocator offering to any process the same functionality with DL, UNIX’s 

default allocator. 

Moreover it maintains some extra internal functionality features aiming to memory 

usage efficiency and low system calls ratio. For example it supports evolutionary 

splitting and coalescing mechanisms that resize portion of memory being freed by 

application in order to serve each allocation call in a more memory efficient way. 

Moreover the specific allocator supports a numerous policies defining the way that 

object allocations are served, policies like first fit, best-fit etc.  

Finally through heap’s internal organization permitting alignment policies and raw 

blocks with various sizes, the target of hardware platform transparency is fulfilled (as 

long as it is possible) as well as distributed memory transactions supported based on 

NOC
15

 hardware and software implementations.  

 

4.3 Heap Organization Overview  

The allocator that we based on for our research is described by a layered 

architectural scheme figured out in Figure 4-5.The allocator classifies memory 

portions, according to their significance to blocks and raw blocks.  

Starting with blocks, they are the known, as well as, memory chunks, meaning 

memory portions which contain a header to specify their location in the whole heap’s 

organization and being oriented for maintaining application dynamic allocated 

objects. Moreover blocks are the structural components of raw blocks.  

                                                           

 

15
 NOC: Network On Chip 
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Raw blocks are large portion of memory that allocator requests from kernel through 

some system call. The size of these large portions is fixed and defined during 

allocator’s source code compilation meaning that depending on the specified system 

there should be analogous allocator’s binary. Raw blocks consist of continuous 

blocks. 

So the dynamic memory manager implements the above structures to wrap 

application’s data. Moreover it uses single linked lists to manage and organize these 

structures. Actually we have two basic lists, one ordering the raw blocks and one 

maintaining the free blocks. The linked lists mechanism is implemented in macros in 

order to achieve best able performance inheriting linux queue.h source code file. 

 

 

 

Figure 4-4: Snapshots of tree raw blocks organized in a linked list while the free 

blocks that they contain are organized in another linked list too. 
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4.4 A real attack scenario 

Consider that there are two raw blocks having size less than one page
16

, in the address 

space of an application’s heap. The first one consists of five blocks and the second 

one of four blocks. In case of unprotected string pointer, pointing to the internal of 

one of these nine blocks, there are only two blocks that forbid block overlap attack to 

be successful. These are the last one block of each raw block. Any trial for forward 

consolidation (see 2.5.2) buffer overflow attack to the specific blocks will probably 

end to segmentation fault. So the probability the launched attack not to be succeeded 

is two out of nine cases. And because of the probabilities regularity, 7/9 is the 

probabilities of a successful attack indicating to the need of security 

implementations mechanisms.  

 

4.5 Protection Security Schemas 

In chapter 4.3 we have discussed the two layered memory organization of heap, 

blocks and raw blocks organization schemas.  Consequently all the protection 

mechanisms that have been implemented within this paper’s framework, aim to 

protect this specific layer’s organization integrity in order not to permit indirect 

overflows through heap, introducing canaries techniques and encrypted pointers for 

the lower level (blocks) as well as encrypted lists and encrypted lists validations 

mechanisms for the higher one (raw blocks). 

 All the security mechanisms are active (see chapter 3) meaning that they do find out 

any illegal modification, but they act like passive ones, as in case of illegal 

modification only a segmentation fault is triggered. However because of the fact that 

our implementation uses the adaptor morpheme at this point, it is obvious that any 

other more complicated activity can replace the passive action of segmentation fault 

triggering.  

                                                           

 

16
 Usually raw blocks’ size is equal to page size. This because, in this case, allocator scales, as it 

collaborates with OS efficiently. There are although cases in which raw block’s size is multiple of the 
page size. In this case the probabilities of our example are different  
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4.5.1 Canaries 

This is the first of the security mechanism introduced to the subject allocator. It aims 

to protect blocks metadata from any illegal modifications mainly happening through 

buffer overflows and daggling pointers vulnerabilities. However, despite the fact that 

it succeeds to protect heap’s metadata significantly as it was described in previous 

chapter (see 3.1), the specific mechanism is not able to track any double free attack 

or any allocator’s effort to read uninitialized data. This is the reason why, in our 

paper, we describe an evolution of the specific security mechanism. “Semantics” are 

being introduced in canary guard’s value for first time, meaning that chunk’s state 

defines canary guard’s value. This actually takes place by implementing different 

encryption schemas for “in use” and for free blocks. 

The block header structure, that our allocator uses to organize blocks, contains a range 

of fields having different significance depending on blocks state (in use/free). This 

leads us to include in our encryption schema, different metadata fields, in order to 

produce each block canary guard, according to its state. Figure 4-5 presents the block 

header’s fields used in encryption schema, depending on the block’s status. 

The produced mechanism is able, thus, to detect all the attacks that its stateless 

ancestor detects. Moreover it is moving on in detection of double frees and 

uninitialized data reads. For example a double free trial will lead to canary validation 

failure. This is not because of wrong decryption random-seed/key (see 4.7) but 

because of wrong header field invocation.  
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Figure 4-5: Block header fields used by canary mechanism in order to distinguish 

blocks’ states. Red denotes the one used for free blocks while green the one used for 

in use blocks. 

 

4.5.2 Encrypted Indirect Pointers 

The basic schema 

The second mechanism that was implemented and tested is encrypted pointers. 

Actually, the dynamic memory manger that we focus on, supports two types of linked 

lists. The first one is the one explained before which connects directly, via pointers, 

entities of heap organization such as blocks and raw blocks. The second one, on the 

other hand, connects indirectly all the blocks belonging on the same raw block 

regardless their status. This is supported by an extremely low level arithmetic 

software component that use the pervious size field of block header and the data 

segment’s start of the specific block in order to locate previous one. The equation 

bellow describes the mechanism connecting chunk A and B included in the same raw 

block: 

                                                            

The mechanism that we introduce for this reason is based on encrypting some of the 

essential, for the described above equation, operators resulting to encrypted indirect 

pointing mechanism. Because of the fact that the arithmetic function used for 
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indirect pointing is the addition, which is linear and distributive, both addends (a, b) 

are of the same size as well as the chosen encrypting function is XOR (see 4.7) we 

got: 

                             

The above equation denotes that formally our encryption schema produces a fully 

encrypted indirect heap metadata pointer, by encrypting one of the two addends that 

the pointer consists of
17

.  

The chosen policy of our implementation is to elect the previous size block’s header 

field because it is exposed to buffer overflow attacks and its value is manipulated 

directly by dynamic memory manager, fact false for the starting address of any block 

as it depends on system. However our choice has a small flaw. The allocated chunk’s 

sizes create a canonical distribution. Consequently in case of using a static key set, 

having size smaller than the encryptions amount, the resulted environment will not be 

secure enough. A statistical observation would be enough, to squeal the described 

security mechanism. The last side effect of static keys choice can be bypassed by 

using fully random keys.  

Consequently the indirect encryption mechanism creates a randomization cloud 

around the raw blocks internal organization, in a way that the probabilities do not help 

the attacker to succeed its will. However this does not necessitate the definition of the 

applications behavior, leaving to the luck the results of the launched attack. 

The replicated mode 

Despite the fact that the described security mechanism is enough to offer protection 

against buffer overflow attacks, both forward and backward consolidation, through 

unpredictability, it is not enough to compete the validation functionality that canaries 

implementation offers and the pros of any other active security mechanism. That is 

why we have created the replicated mode of the described mechanism. 

                                                           

 

17
 Addition and subtraction mathematically is the same operation. Moreover do not forget that b can 

considered the sum:                            
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In this scheme it is kept an extra replica of each one already encrypted field. And as it 

is expected, the value stored in each extra field, comes from the original one, 

encrypted in the same way, but using a different random seed (key). Of course every 

key is again produced in the same way that the respective one used in the first replica 

does. 

Every time that an internal operation takes place allocator decrypts both original and 

replicated field and compares their values. Their mismatching denotes an attack 

launch thus the dynamic memory manger behaves analogous (in our case it raises a 

segmentation fault). By this way, we have passed the encrypted indirect pointer 

mechanism from the class of passive to the one of active security schemes.  

 

4.5.3 Encrypted lists 

As it is mentioned before dmmlib organizes heap’s entities (blocks/raw blocks) in 

large single linked lists. Consequently there is an extensive actual pointer use in order 

to connect heap’s metadata. In chapter 2 it is clarified that maintaining pointer to 

metadata and letting the allocator managing them freely can be proven pernicious for 

the system’s integrity.  

Passive schema 

The first mechanism implemented aiming to offer passive protection transparently to 

any list that participates in heap’s organization. This is supported by the encryption of 

any existing list pointer according to the encryption mechanism that chapter 4.7 

presents. In this way the attacker without being aware of the key that is used for the 

encryption-decryption mechanism cannot track the next element of the list. 

Consequently the whole heap’s organization cannot be revealed. Moreover even if the 

attacker finds out the essential for its attack clues, an attack based on list linking 

pointer overflow would lead to application to behave in a way that even the attacker 

cannot predict let alone take advantage of it.  

This hostile environment combined with short attack windows can be proved valuable 

against a large set of security flaws. 
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Active schema 

However this security mechanism is not able to detect any security violation in order 

to take action and defend at once the application as well as the whole system. That is 

the reason why we have implemented its descendant, the encrypted list validation 

scheme.  

In encrypted list validation mechanism every list link
18

 has been replicated. Both the 

original and the replicated links are encrypted. Every time that a list operation, such as 

insertion, deletion, reordering etc., is going to take place the validation mechanism is 

triggered. Thus both values are decrypted and compared and in case of mismatch the 

allocator alerts for illegal modification and terminates the process through 

segmentation fault. Of course, as it is mentioned in previous mechanisms, the 

segmentation fault part can be replaced by a more innovative behavior.  

 

Efficiency Assertion 

It is obvious that generally encrypting all the list links that connect heap’s entities is 

not something efficient. The main problem is the list exploration and not any other list 

operation. This is because, despite the fact that a deletion/insertion requests only one 

decryption (three in case of active schema), every list element access involves a 

pointer decryption. Thus probably the security schemas are not appropriate for 

applications that maintain high heap reorganization intensity. However it is not 

actually prohibitive as there are plenty of applications maintaining low heap 

reorganization intensity. 

 

4.6 Basic components 

The described security mechanisms are actually divided into four main distinguished 

modules, the core, the encryption, the key production and the key maintenance 

                                                           

 

18
Pointer that connects two list elements 
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module. The last three modules are named side-modules, because they support the 

main module and they are not involved with each described security scheme (they 

behave the same way regardless the implemented security module they corporate 

with). These modules, to corporate with, recommend a layered architecture schema of 

peer to peer interaction points that we have implemented in a modular way offering 

the opportunity to replace any one of them with some other implementation.  

Starting with the core application it consists of all the modifications and code routines 

that have been created in order to secure the dynamic memory manager. It has the 

most complicated connection with the dynamic memory manager in unrepeatable 

way.  

The encryption module is the one responsible for any encrypting or decrypting 

operation that happens during application’s memory requests. The basic algorithm the 

specific sub-mechanism is based on is described in detail in section 4.7. 

The random seed production unit is responsible for key production. In the specific 

paper we use the already existed random functionality, that c libraries offer, which 

produces pseudorandom numbers. However it can be replaced easily from any other 

more sophisticated randomization mechanism. Moreover because of one time 

encryption politics the randomization c utility is wrapped with an extra feature, the 

key uniqueness. Every time a new random seed is generated a uniqueness request is 

sent to the key holder module. Then if the new random seed is unique, it is added to 

the structures that key holder maintains. On the other hand, if it already exists, we got 

a regeneration of it. This is ordered by one time padding philosophy (see 4.7).  

Last but not least the biggest concern, talking about side-modules, is the key storing 

and maintenance module. This is because keys have to remain secreted and so they 

have to be protected by any third. However allocator needs to find them in low cost in 

order to be effective and competitive. Thus the specific side-module is extremely 

important for our research so we have dedicated to it both chapters 4.8, 4.9. 
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Figure 4-6:  The four modules of the security mechanism, corporation schema. 

Arrows indicate the keys or the encrypted/decrypted values exchange directions. 

 

4.7 Encryption schema 

As it is declared every one of the above security mechanisms, is based on a specific 

cryptographic scheme. Because of the fact that, in cryptography, the one-time-pad 

has been proven to be impossible to crack in case of correct use, one-time-pad is the 

one chosen algorithm to support the aforementioned security mechanisms.  

In one-time-pad each bit or character from the plaintext is encrypted by a modular 

addition with a bit or character from a secret random key (or pad) of the same length 

as the plaintext, resulting in a ciphertext. If the key is truly random, as large as or 

greater than the plaintext, never reused in whole or part, and kept secret, the 

ciphertext will be impossible to be decrypted or break without knowing the key. 

It is obvious that despite the fact that one-time-pad is impossible to crack, there are 

some serious difficulties to its application. Starting with the truly random number 

demand, there is not commodity hardware able to be found on any pc system which 

can produce truly random numbers. Thus the random numbers (seeds) in our 

https://en.wikipedia.org/wiki/Plaintext
https://en.wikipedia.org/wiki/Modular_addition
https://en.wikipedia.org/wiki/Modular_addition
https://en.wikipedia.org/wiki/Key_(cryptography)
https://en.wikipedia.org/wiki/Ciphertext
https://en.wikipedia.org/wiki/Random
https://en.wikipedia.org/wiki/Secret
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implementation are produced by using c-embedded random generator. It is actually a 

generator of pseudo-random numbers based on system clock.  

It is chosen not to spend a lot of time in finding a truly random number generator 

because it should be something out of this paper’s scope. Moreover consider that the 

heap is a large dynamic structure, changing shape continuously and rapidly, resulting 

to windows of time not large enough for the attacker to crack the ciphertext. 

Although, academically, a ciphertext break is possible. For this reason our 

implementation uses the adaptor morpheme
19

 connecting modularly the 

randomization mechanism to the main project. In this way its replacement from one 

producing truly random numbers, is a piece of cake. 

The second problem that any heap security mechanism faces is to keep keys (random 

seeds) secret and protected. This is actually a great challenge due to the fact that 

random seeds and encrypted values are located in the same address space (heap 

segment). Most described security mechanisms use hashing mechanism to assign keys 

and encrypted fields of heap. However hashing is generally a predictable procedure so 

any encryption protection is cancelled because of possible key access. Even if 

memory space is out of range of heap segment which application can access a 

dangling pointer could easily lead to the keys area.  

Because of the aforementioned concern, we created another storing schema. The 

random produced keys are stored as nodes of an avl-tree placed in a memory space 

located and maintained by a special mini-Allocator module. The search key of the 

avl-tree is even a block’s address or the encrypted value itself (see 4.5). By this way 

two targets are being fulfilled, storing keys in an inaccessible by the process area and 

ordering them randomly.  

 

 

                                                           

 

19
 Morpheme used to link a specific routine with main project in one or more locations giving the 

opportunity of changing the routines implementation even definition without modifying any code line 
from the main project. 
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A small modification 

Our implementation changes a little the algorithm depending on the allocator’s level 

that we secure. For the lowest one (canaries, encrypted pointers) the encrypting 

function that is used is: 

                        20 

While in the higher one (encrypted lists, encrypted lists validation) it is used as 

encrypting function the simple value key permutation. 

                       

This results from the dependencies that exist in the avl-tree storing mechanism which 

needs a unique search key to connect encrypted value and stored key. While in lowest 

level the unique search key is the block address that encrypted field is contained to, in 

higher level there is no clear similar address because of the complicated organization. 

For example there should be a raw block belonging in more than one linked lists 

leading to conflicts.   

 

4.8 Keys/Random Seeds organization algorithms 

As it is clarified in previous subchapters (4.5.1, 4.5.2, 4.5.3, 4.7) all the security 

mechanisms that we have implemented and described in this paper are based on keys 

entities. Any encryption decryption scheme is based on key existence and 

availability. Also, speed and low cost metadata modifications are evry dynamic 

memory manager’s demands. 

However it is obvious that encryption decryption schemas, cross checks, and replicas 

do cost in resources as well as in time too. The resources are not a problem nowadays. 

However the time cost of any protection mechanism is the main concern. To 

understand the causes of any delay because of security mechanism addition to the 

                                                           

 

20
 Of course in case of canaries a is produced reversely by executing XOR between an accumulator and 

each chosen field and finally with the random seed.  
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dmmlib we have to consider the bottleneck of each operation. And this is not the 

encryption decryption operation themselves but necessary key retrieval.  

To investigate the above statement we have implemented tree different key 

production and maintenance schemas, the static keys, the single list linked keys and 

the AVL-stored keys. 

Static keys are values produced randomly run-time during initialization stage of the 

dynamic memory management library. Static keys are a set of random values each 

one specified to be used by some of the described securing mechanisms. For example 

literally, every canary guard should use only one of these pre-produced values as 

seed, or any field and its replica of any block should be encrypted with the same pair 

of pre-produced values that was used by the same fields of any other heap’s block.  

It is obvious that the above implementation is not effective enough to protect large 

scale heaps. However it is not useless. In case of application having small heaps 

which does not last enough to offer large attack windows and demand extremely fast 

memory transactions, this implementation should be suitable due to its negligible 

memory transaction dependency.  

The second organization scheme that was implemented is the stored in link lists 

keys. According to this mechanism every hot field
21

 is assigned to its private key 

through its owner block starting address or through its own value depending on the 

core module’s algorithm. Canaries scheme assigns the random seed used for canary 

creation by implementing an object-element containing block’s header starting 

address, as primary search key, as well as the seed itself. A similar keys maintaining 

mechanism is used for indirect encrypted pointers. Again an object-element is created 

containing as primary search key block’s header address and both random seeds, the 

one used for the original field and the one for the replica, respectively.  

On the other hand in order to implement a universal security mechanism encrypting 

transparently all the linked lists the dmmlib creates and maintains during programs 

execution, we had to solve the problem of lack of distinguishing reference points to 

                                                           

 

21
 Meaning fields whose values result from the encryption component. 
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use them as primary search keys. For example a raw block can belong to more than 

one linked lists. That is why in case of encrypted lists and encrypted lists validating 

security mechanisms create objects contacting the encrypted value as primary key and 

the original one too. Furthermore remember that each encrypted value is nothing more 

than the respective random seed (see 4.7). Of course the restriction of key uniqueness 

will prevents any primary search key conflict in the whole structure.  

Single linked lists do not scale properly, as it is expected, because of their linearity; 

consequently we introduced another organization for stored key schema, AVL-trees. 

It is considered a better solution because of its O(logn) search, insert and delete 

complexity instead of Θ(n) that single-linked lists have for all of these operations
22

.  

Concluding, bibliography indicated that the most efficient way to store the keys is by 

using hash functions. We agree with the specific claim. However we consider that 

hash functions are a predictable technique. Consequently in case of large attack 

windows, the attacker after identifying the algorithm should bypass the security 

mechanism by accessing the original keys location. On the other had our string 

organization implementation inherit the randomization feature from independent 

“authorities”. In case of lower level security mechanisms the legacy comes from the 

ASLR and internal entropy while in case of list security mechanisms the 

randomization is inherited by the randomization independent mechanism itself. In any 

case there is no obvious way that the keys layout. 

 

4.9 mini-Allocator, mini-Heap implementation 

Of course all the described algorithms cannot be implemented in the same heap’s 

segment that the application uses for its needs and the dynamic memory mangers 

manages. In this case we would have a logical recursion leading us to an infinite loop. 

Moreover it is impossible to implement efficiently the described in section 4.8 

structures in huge memory portions without a special mechanism’s support.  

                                                           

 

22
 Of course the specific complexities are corresponding to the operation for a random element. In 

this way security schemas treat the key storing organization, by requesting random elements 
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The gap between the keys storing organization is completed by an extra layer module, 

mini-Allocator which manages a mini-Heap. In reality mini-Allocator is a small and 

efficient memory manager. Mini-Heap is the memory organization that it orders to a 

protected memory portion that it request directly from the OS. Consequently every 

dynamic memory request related with one of the algorithms described in section 4.8 is 

serviced by the mini-Allocator’s routines which allocate the requested space in the 

mini-Heap segment which actually is a protected segment of the known heap, 

accessible only by specific routines. 

Mini-Allocator’s organization indicates that it belongs to BiBOP dynamic memory 

managers family. It consists of big portions of memory dynamically increasing and 

decreasing, bags of pages. Each bag can store only objects of a specific size, which is 

defined during the bags initialization. Objects of various size will be stored in various 

pages. This property makes it ideal for storing elements of the same type. Considering 

linked lists and AVL-trees, they actually consist of objects having the same size, list 

elements and AVL-nodes respectively.  

Each bags exploration is based on bitmap philosophy. The bag consists of pages. Each 

is divided in equal portions, cells, where the newly created objects are plugged in. 

Moreover every bag contains a header in which it store essential for bags organization 

metadata such as pointer to the next page which belongs to the same bag too, a 

counter displaying the number of the allocated cells, an LRU reference, and the 

essential for the platform padding. 

Continuously after its header, every bag maintains a bitmap indicating exactly which 

cells are in use (respective bit is set) and which are not (respective bit is unset). 

Finally on the top of the whole construction, a single linked list exists. Every node 

belonging to this list is actually each bag’s header maintaining critical for the bag 

metadata such as number of pages of specific bag, a pointer to the first page of the bag 

as well as a pointer to the next larger bag. By ordering the bags we succeed to index 

the list and to refer to each bag in constant time.  
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Figure 4-7: mini-Heap's internal organization 
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5 METRICS – EVALUATION 

 

5.1 Overview to testing environment and scenario 

The object of the specific paper is not only the implementation of security 

mechanisms, but their evaluation through hard testing too. For testing we have 

chosen to use spec2006 and especially cpu2006 benchmark suite [9]. This is a widely 

recognized hardware and component architecture evaluation suite oriented mainly to 

CPU assertions. Consequently it is a sufficient indicator for our implementation’s 

performance. 

cpu2006 suite’s benchmarks are classified to two class, floating point and integer 

benchmarks respectively, according to their intention of floating point operations. 

Both sub-suites have equal significance to our assertion. 

Moreover it must be mentioned that they have been used three programming 

languages for benchmarks’ implementation, c, c++, fortran. Of course despite 

previous benchmark classification was not significant for our research this one must 

be taken under serious consideration, before evaluating benchmarking results. For this 

reason, until the end of this paper, every time that a benchmark’s name is displayed, it 

will be followed by c, cpp or f indicating the programming language that has 

been used for its development. This is because only c applications mange memory 

by sending explicit requests to dynamic memory manager. On the other hand c++ 

uses a garbage collector which increases its memory managing complexity. 

Concluding, the benchmarking process’s result evaluation is based on comparison 

between competitive implementations. Two competitive implementations have been 

benchmarked, the UNIX default DL allocator, the Die Harder [11] implementation. 

Moreover it was judged essential to measure the performance of dmmlib without any 

security mechanism enabled.  
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5.2 Benchmarking DL, DieHarder and clear dmmlib 

This chapter focuses on the presentation of the benchmarking results of the three 

competitive dynamic memory manager implementations.  In the following tables it is 

presented the time in second that was consumed by each benchmark when using each 

of the three allocators.  

 

 

Chart 5-1:  Floating point benchmarking results for DieHarder, DLallocator and 

dmmlib without any security mechanism enabled. 

 

0 

200 

400 

600 

800 

1000 

1200 

1400 

1600 

4
1

0
.b

w
av

es
  f

 

4
1

6
.g

am
es

s 
 f

 

4
3

3
.m

ilc
  c

 

4
3

4
.z

eu
sm

p
  f

 

4
3

5
.g

ro
m

ac
s 

m
xe

d
 

4
3

6
.c

ac
tu

sA
D

M
 m

ix
ed

 

4
3

7
.le

sl
ie

3
d

  f
 

4
4

4
.n

am
d

  c
p

p
 

4
4

7
.d

ea
lII

  c
p

p
 

4
5

0
.s

o
p

le
x 

 c
p

p
 

4
5

3
.p

o
vr

ay
  c

p
p

 

4
5

4
.c

al
cu

lix
 m

ix
ed

 

4
5

9
.G

em
sF

D
TD

  f
 

4
6

5
.t

o
n

to
  f

 

4
7

0
.lb

m
  c

 

4
8

1
.w

rf
 m

ix
ed

 

4
8

2
.s

p
h

in
x3

  c
 

Dmmlib → no security used 

DL 

DieHarder 



69 
 

 

Chart 5-2: Integer benchmarking results for DieHarder, DLallocator and dmmlib 

without any security mechanism enabled. 

 

The conclusions that the above charts leads us to, is the fact that dmmlib is an 

extremely competitive library, considering the fact that despite it offers a large 

number of extra functionalities it actually is as efficient as the other two benchmarked 

dynamic memory managers, in the majority of benchmarks.  

As it is mentioned before, back in chapter 4 and especially in section 4.8, there were 

implemented three keys production-organization schemas, static keys, AVL-stored 

keys, single linked stored keys. Thus it is important to measure the performance that 

every mechanism presents when combined with canaries, encrypted indirect pointers, 

encrypted lists, and encrypted lists validation securing policy respectively.  

The benchmarking results have no “commercial” value if they are not compared with 

the existing competition. Every chart contains the results of dmmlib, without any 

security mechanism enabled (clean dmmlib), that have been compared with the 

competitive DieHarder and DL allocators (charts 5-1, 5-2). This is the link among all 

the charts that are presented in this paper. 
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measurements indicating large divergence it is obvious that have high memory 

intensity and dynamic memory manager performance dependency. 

 

5.3 Benchmarking dmmlib with canaries securing 

mechanism enabled  

Considering the evaluation results taken place in section 5.1 in the specific section we 

focused on evaluating the results of canaries security mechanism benchmarking.  

In chart 5-3 they are presented the floating points benchmarking results. They indicate 

that in the majority of the benchmarks our security mechanism implementation did 

not add any performance overhead. All three versions had performance close to clear 

dmmlib. Especially static keys implementation has same behavior with clear dmmlib, 

AVL-tree implementation gives close to dmmlib benchmarking results, while single 

linked lists benchmarking results indicates some performance issues to some of the 

benchmarks. However this is an expected status as single linked list version is by 

default an extremely inefficient   implementation which can be saturated easily by a 

large number of accesses to keys requests. 
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Chart 5-3: Floating point benchmarking results of dmmlib with canaries securing 

mechanism enabled for all of three key producing organizing schemes. 

 

The same “clinical” view is indicated in the following chart, which actually presents 

integer benchmarking results. In this case single linked lists implementation indicates 

a better measurement set closer to dmmlib. On the other hand both single lists 

implementation and AVL-tree implementation add serious performance overhead 

according gcc benchmark’s results. Of course this is an expected behavior as gcc 

demands a large amount of allocations and deallocations, so the continuous canary 

guards validations lead to keys invocations lead naturally to application saturation.  

This indicates that gcc is not an appropriate benchmark as the security mechanisms 

are dedicated to protect applications that have low application intensity and highly 

user interactivity.  

 

Chart 5-4: Integer benchmarking results of dmmlib with canaries securing 

mechanism enabled for all of three key producing organizing schemes. 
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5.4 Benchmarking dmmlib with encrypted indirect pointers 

securing mechanism enabled  

 

Chart 5-5: Floating point benchmarking results of dmmlib with encrypted indirect 

pointers  securing mechanism enabled for all of three key producing organizing 

schemes. 

Mining the conclusions of the above chart it is noticeable again that flat pointing 

benchmarking results indicate that there is no prohibitive overhead in our 

implementation. Of course serious overhead is noted in 465.tonto f and 454.calculix 

mixed benchmarks for AVL-tree implementation. This results us to the conclusion 

that maybe there is some collaborating problems between the way that fortran and 

AVL-trees implementation as both tonto and calculix contains fortarn code segments 

also. 

As it was expected, static keys implementation adds zero overhead, while single 

linked lists implementation suffer from some greater overhead as two of the 

benchmarks using this implementation passed the predefined time limits. (see 5.8).  
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Chart 5-6: Integer benchmarking results of dmmlib with encrypted indirect pointers 

securing mechanism enabled for all of three key producing organizing schemes. 

 

On the other hand, integer benchmarking indicates that the overhead added because of 

encrypted indirect pointers is the close to the one added by the canaries mechanism. 

This is because mini-Heap transactions ratio is the same as both mechanisms validate 

memory block fields at the same rate. Allocator validates canary guard or encrypted 

indirect pointer and its replica, before every block’s status change, fact that justifies 

the similarity of charts 5-6 and 5-3. The differences between the two charts are 

because of double encryption-decryption operations taking place in encrypted indirect 

pointer mechanisms, as well as due to decryptions that raw block interior exploration 

demands.  
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5.5 Benchmarking dmmlib with encrypted lists securing 

mechanism enabled  

 

Chart 5-7: Floating point benchmarking results of dmmlib with encrypted lists 

securing mechanism enabled for all of three key producing organizing schemes. 

It is clear that encrypted list security policy adds serious overhead for the two 

dynamic implementations (AVL-trees and SLLISTS). Heap is organized in linked 

lists, free-lists as well as raw-block lists. Because of it’s tend to be reorganized in 

order to offer memory efficient use, it has to encrypt and decrypt all the list links of 

the list that it need update. Consequently it presents a high transaction ratio with keys 

pool and of course as the AVL-implementation can serve its requests faster, it adds 

less overhead than SLLISTS.  

This perspective results from both Charts 5-7 and 5-8. Again the overhead that the 

specific securing implementation adds it is not prohibitive as it comes with a serious 

security principles guaranteeing linked lists robustness.  
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Chart 5-8: Integer benchmarking results of dmmlib with encrypted lists securing 

mechanism enabled for all of three key producing organizing schemes. 
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way as it can detect it. 
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Chart 5-9: Floating point benchmarking results of dmmlib with encrypted lists 

validation securing mechanism enabled for all of three key producing organizing 

schemas. 

 

Chart 5-10:  Integer benchmarking results of dmmlib with encrypted lists validation 

securing mechanism enabled for all of three key producing organizing schemes. 
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5.7 Benchmarking dmmlib with mixed security schemas 

Finally we tested two extra scenarios where there is enabled mixed security schema. 

The first consists of canaries and encrypted list validation security mechanisms 

(protecting both heap organization layers) while the second consists of encrypted 

indirect pointers and again encrypted list validation. The results are displayed in the 

following four charts. 

 

 

Chart 5-11: Canaries combined with encrypted lists validation security mechanisms, 

floating point benchmarking.  

Benchmarking of the first mixed schema (chart 5-11) indicates that the overhead of 

the coexisting security schemas is cumulative rather than cascading. This results from 

the fact that dynamic memory manger is actually a monolithic single thread module 

that runs on behalf of mother process without any multitasking touch. If a canary is 

going to be validated and a list link to be decrypted, both request will be serialized 

and serviced the one behind the other. However mini-Heaps implementation 

guarantees that the one mechanism will not add any overhead to the other. This is 

because of the fact that every mechanism maintains its separate key pool. In this way 

it is ensured that there is no interaction between the collaborating security schemas. 
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Chart 5-12: Canaries combined with encrypted lists validation security mechanisms, 

integer benchmarking.  

 

 

Chart 5-13: Encrypted pointers combined with encrypted lists validation security 

mechanisms, floating point benchmarking. 
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Thus coexistence of two different security schemas does not affect the 

implementation’s performance dramatically. Of course the number of benchmarks 

that do not finish in the predefined time bounds increases without although to be a 

dissuasive factor for combining more than one mitigation technique to create a 

security mechanism as we done here. 

 

Chart 5-14:  Encrypted pointers combined with encrypted lists validation security 

mechanisms, integer benchmarking.  

 

5.8 Decision schema – benchmarking explanations 

First of all it must be clarified that in every chart, the highest displayed time value 

measurements (highest bars) are not actually true. They actually denote the fact 

that for the specific benchmark, the requested time was more than the charts 

scalability could afford. If measurements, higher than the displayed ones, were 

compromised in charts, charts would not be able to scale correctly in an A4 paper. 

Moreover benchmarking script has been fed with time limits in order to deteriorate 

unreasonable resources consumption. A benchmarking threshold produced 

dynamically from previous benchmark results, have been considered enough to offer 

us clear performance view.  
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As it was mentioned before, the evaluation of the benchmark results is based on a 

simple comparison scheme. First of all dmmlib, with no security mechanism enabled, 

is benchmarked and compared with the state of art mechanisms. In case of satisfying 

comparison results, the allocator that we based our research is competitive enough, so 

we can continue to our module indirect benchmarking. 

Consequently benchmarking was used not only as a hard testing and evaluating 

procedure but also as a feedback tool helping us to understand if we follow an 

efficiently competitive route during implementation stage.  

 

5.9 Overall Evaluation 

As it was expected, our security mechanism adds some time overhead to the running 

process. This overhead depends on the type of the security mechanism that is enabled 

and the key organization that it uses in direct combination with the application 

itself. 

Consequently the above measurements cannot be explained just by referring to the 

dynamic memory manager that benchmarks have used and the security mechanism 

that were enabled during benchmarking stage. Of course static keys schema is the 

less while single linked lists is the most pretentious of all the three schemes. 

However this behavior can be hidden behind a bottleneck which is caused by a 

completely different reason. 

Concluding, charts denote that the secured dmmlib is not as efficient as the original. 

However its efficiency indicator is close to the original’s one and considering the 

security principals that it affords, it is a really competitive dynamic memory manager.  
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6 FUTURE WORK 

After this first approach to the dynamic memory managers’ security issue, plenty of 

ideas have been born, based on evolutionary implementations and on the already 

described principles. These principles and ideas are being invigorated by modern 

hardware implementations. Multicore systems, NOC (Network On Chip), lightweight 

processes (threads), embedded systems, as well as universal software platforms 

(JVM) demand special target oriented instead from the described global transparent 

solutions.  

  

6.1 Server side allocator 

As it is aforementioned in chapter 4.1.1, dynamic memory manager can be treated as 

a server. Consequently a newly designed allocator can be designed as a server to serve 

one or more running applications. By embedding all the security principles used by 

the modern client-server big scale architectures combining them with a robust and self 

secure implementations it is possible to end up with a scalable competitive dynamic 

memory manager which maintains more than one heaps oriented from equal number 

of running applications vanishing many security issues.  

Considering the performance issue, it is noteworthy the plethora of possibilities that 

such an implementation offers to any interoperable or collaborating environment 

which are rising minute after minute. Issues such as shared memory and message 

passing aiming to synchronization could be solved by a universal server allocator 

instead of kernel based solutions. Furthermore most of the security issues 

confrontation and application data maintenance should be allocator’s responsibility, 

thus programming such collaborating environments should be easier.  
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6.2 Data integrity 

Every proposed solution for heap security until know, focuses on heap’s metadata 

integrity. Of course this, as it is described in previous chapters, is the biggest concern 

of the security oriented developers. Nevertheless, it is essential nowadays for an 

environment to be self secure to guarantee not only its internal organization but also 

its effectiveness. Consequently, the effectiveness demand necessitates not only the 

metadata but also the data integrity. 

 

Watchdogs 

Any schema offering application’s data protection should be real time
23

. Thus the 

security policy ordering the allocator to find out if any attack has been launched just 

before any allocation or deallocation is not enough to offer real time data protection. 

Thus watchdogs are being proposed. Watchdogs are lightweight processes, threads, 

whose purpose is to validate continuously the data of their range of interest. In this 

way we can have real time investigation involving real time protection using 

parallelism. 

Nowadays chips come with many cores, cores fast and powerful. NOC
24

 is also a 

powerful architecture for parallelism embedding large scale distribution philosophy 

that modern cloud systems are based on, on just any multicore chip. Thus, one from 

the most useful ways to use this good, is to use it for security completion.  

Recovery 

Finally it is essential data recovery mechanisms to be implemented in order to recover 

data after their corruption’s detection in way that the application will not be affected 

at all. Of course the data recovery mechanism can support metadata recovery offering 

a really robust heap organization. 

                                                           

 

23
 Real time protection refers to corruption detection just in the next clock cycle, after the one that it 

took place 
24

 NOC aka Network On Chip  
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6.3 Embedded systems’ point of view 

Nowadays embedded systems are something more than trivial. Thus it is essential to 

focus on these systems security too. Because of the fact that embedded systems has a 

number of hard restrictions defined by their purpose there is not obvious solution that 

can offer to all of them the same security and efficiency qualifications. Moreover it is 

not obvious which components of each implementation can be hardware and which 

can be software implemented. Thus embedded systems cannot be treated just like 

consumers as software applications are, but also as assistants, meaning that the 

dynamic memory manager and its security policies have to be essential parts of their 

design and implementation. 
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Conclusion 

The specific paper classifies, defines and describes some of the well known attacks 

that can be launched against any dynamic memory manger. It also describes the best 

of the existing efforts to secure any dynamic memory manger as well as the main 

principles of mitigation implementations.  

Moreover there have been developed, tested and benchmarked some new securing 

methodologies based on the preexisting ones and on the defined securing principles, 

as well as it has been proposed the principles of a futuristic dynamic memory manager 

focused primarily on security without underestimating performance requests. 

The implemented allocator [14], based on open source dmmlib is efficient enough in 

way that it can be compared with the existing competitors, while it offers protection 

against numerous attacks. However the specific implementation cannot guarantee that 

it offers a totally trusted dynamic memory manger, because of the numerous existing 

and newly born attack morphemes.   

Finally, as it is explained before, the security of an application depends firstly on the 

application itself and secondly to the dynamic memory manger. So in order to have a 

trusted environment there should be responsible programming! 
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