
Ενικό Μετσόιο Πουτενείο
Σοή Ηεκτροόν Μηανικών και Μηανικών Υποοιστών

Τομέας Τενοοίας Πηροφορικής και Υποοιστών

Systematic Testing of Concurrent Erlang
Programs: Some Experiences

Διπματική Ερασία
του

Ηία Τσιτσιμπή

Επιέπν: Κστής Σαώνας
Αν. Καηητής Ε.Μ.Π.

Εραστήριο Τενοοίας Λοισμικού
Αήνα, Δεκέμριος 2013

Ενικό Μετσόιο Πουτενείο
Σοή Ηεκτροόν Μηανικών και Μηανικών Υποοιστών
Τομέας Τενοοίας Πηροφορικής και Υποοιστών
Εραστήριο Τενοοίας Λοισμικού

Systematic Testing of Concurrent Erlang
Programs: Some Experiences

Διπματική Ερασία
του

Ηία Τσιτσιμπή

Επιέπν: Κστής Σαώνας
Αν. Καηητής Ε.Μ.Π.

Εκρίηκε από την τριμεή εξεταστική επιτροπή την 13η Δεκεμρίου, 2013.

........................
Κστής Σαώνας Νικόαος Παπασπύρου Άρης Κοζύρης

Αν. Καηητής Ε.Μ.Π. Επικ. Καηητής Ε.Μ.Π. Καηητής Ε.Μ.Π.

Αήνα, Δεκέμριος 2013

...
Ηίας Τσιτσιμπής

Διπματούος Ηεκτροόος Μηανικός
και Μηανικός Υποοιστών Ε.Μ.Π.

Copyright © – All rights reserved Ηίας Τσιτσιμπής, 2013.
Με επιφύαξη παντός δικαιώματος.

Απαορεύεται η αντιραφή, αποήκευση και διανομή της παρούσας ερασίας, εξ οοκήρου
ή τμήματος αυτής, ια εμπορικό σκοπό. Επιτρέπεται η ανατύπση, αποήκευση και διανομή
ια σκοπό μη κερδοσκοπικό, εκπαιδευτικής ή ερευνητικής φύσης, υπό την προϋπόεση να
αναφέρεται η πηή προέευσης και να διατηρείται το παρόν μήνυμα. Ερτήματα που αφορούν
τη ρήση της ερασίας ια κερδοσκοπικό σκοπό πρέπει να απευύνονται προς τον συραφέα.

Οι απόψεις και τα συμπεράσματα που περιέονται σε αυτό το έραφο εκφράζουν τον
συραφέα και δεν πρέπει να ερμηνευεί ότι αντιπροσπεύουν τις επίσημες έσεις του Ενικού
Μετσόιου Πουτενείου.

Περίηψη

Στις μέρες μας παρατηρείται μια αυξανόμενη τάση χρησιμοποίησης παράλληλων τεχνικών
στον προγραμματισμό. Αυτό εξηγείται τόσο από την αύξηση των επεξεργαστών που περι-
λαμβάνονται πλέον σε κάθε προσωπικό υπολογιστή, όσο και από την δημιουργία και ανάπτυξη
υπηρεσιών Cloud. Ωστόσο ο παράλληλος προγραμματισμός εισάγει μια σειρά από σφάλματα
τα οποία δεν υπάρχουν στο σειριακό προγραμματισμό και τα οποία τα συνηθισμένα εργαλεία
αποσφαλμάτωσης δεν μπορούν να εντοπίσουν.

Σε αυτή τη διπλωματική μελετάμε τον Concuerror, ένα εργαλείο ελέγχου προγραμμάτων
γραμμένων σε Erlang το οποίο μπορεί να χρησιμοποιηθεί για τον εντοπισμό λαθών που εισά-
γονται από τον ταυτοχρονισμό. Επίσης εξετάζουμε κατά πόσο ένα τέτοιο εργαλείο μπορεί να
χρησιμοποιηθεί από μεγάλα projects (χιλιάδες γραμμές κώδικα), τα οποία μπορεί να χρησιμο-
ποιούν αρκετές από τις βιβλιοθήκες της υλοποίησης της Erlang και να υλοποιούν περίπλοκα
πρωτόκολλα επικοινωνίας.

Λέξεις Κειδιά

Erlang, concurrency, software testing, model checking, test-driven development

5

Abstract

Concurrent programming has become increasingly widely used in the last decade. This can
be explained by the increasing number of multiprocessor personal computers and the new
trend of Cloud computing. Nevertheless, concurrent programming introduces a number of
new errors not seen in sequential programming and which traditional testing tools largely
cannot easily detect.

In this thesis we study Concuerror, a testing tool for concurrent Erlang programs, that
aims to facilitate the task of detecting and eliminating concurrency-related errors. We also
examine how Concuerror can be used in practice to test projects with thousands of lines
of code, which may use many system libraries and implement complex communication
protocols.

Keywords

Erlang, concurrency, software testing, model checking, test-driven development

7

Ευαριστίες

Θα ήθελα να πω ένα μεγάλο ευχαριστώ στον Κωστή Σαγώνα για την διαρκή υποστήριξη και
πολύτιμη καθοδήγηση, η οποία συνέβαλε καθοριστικά στη διαμόρφωση αυτής της διπλωμα-
τικής εργασίας, καθώς και για την εμπιστοσύνη και σεβασμό τον οποίο μου έδειξε. Επίσης,
θα ήθελα να ευχαριστήσω τον Νίκο Παπασπύρου για την πολύ σημαντική βοήθεια την οποία
μου προσέφερε.

Χρωστάω ένα μεγάλο ευχαριστώ στους γονείς μου για την υποστήριξη που μου έχουν προ-
σφέρει και την εμπιστοσύνη που έδειξαν σε κάθε επιλογή μου.

Τέλος, θέλω να πω ένα μεγάλο ευχαριστώ σε όλους τους φίλους μου που μου στάθηκαν τα
τελευταία χρόνια.

Ηλίας Τσιτσιμπής

9

Contents

Περίληψη 5

Abstract 7

Ευχαριστίες 9

Contents 12

List of Figures 13

List of Listings 15

1 Introduction 17
1.1 Testing as part of Software Development . 17
1.2 Testing concurrent programs . 18
1.3 Introducing Concuerror . 19
1.4 What’s next? . 19

2 Background 21
2.1 The Erlang Programming Language . 21

2.1.1 Basic features . 21
2.1.2 Concurrency in Erlang . 23
2.1.3 Concurrency Errors . 25

2.2 Concuerror Overview . 26
2.2.1 Instrumenter . 27
2.2.2 Scheduler . 29
2.2.3 Efficiency Improvements . 30

3 Extending Concuerror 31
3.1 Command Line Interface . 31

3.1.1 Analysis Results . 31
3.1.2 Analysis Termination . 33
3.1.3 Command-line options . 33

3.2 Instrumentation of Libraries . 37
3.3 Extending Concuerror’s Test Suite . 38
3.4 Dynamic Partial Order Reduction . 40

4 Concuerror By Example 41
4.1 Run Eunit tests through Concuerror . 41

4.1.1 Let it crash . 43

11

12 Contents

4.2 Identifying a bug in the gen_server OTP module 43
4.3 Analyze the MochiWeb library . 47

4.3.1 Configuring Concuerror . 47
4.3.2 Findings . 48

5 Conclusion and future work 51

6 Related work 53

Bibliography 55

List of Figures

1.1 Graphical representation of the test-driven development cycle 17

2.1 The ring of linked processes created by the program of Listing 2.3 25
2.2 Process LID tree . 29

3.1 The Concuerror GUI . 32

13

List of Listings

2.1 A mergesort algorithm implemented in Erlang 22
2.2 A quicksort algorithm implemented in Erlang 22
2.3 A simple concurrent Erlang program . 24
2.4 A simple two process example with a bug 26
2.5 Concuerror’s pause function . 27
2.6 The concuerror:receive_check/1 function 28
3.1 The Concuerror Bash script . 34
3.2 The concuerror:stop/0 function . 34
3.3 Concuerror’s help output . 35
3.4 Start an instrumented application controller 36
3.5 Rename modules during the instrumentation phase 38
3.6 The check whether a given function application must be renamed 39
4.1 Simple example program involving two processes and a concurrency error . 42
4.2 Analyze ping_pong using Concuerror . 42
4.3 Analysis results from ping_pong . 42
4.4 Eunit test for the ping_pong:pong/0 function 43
4.5 Analyze ping_pong_test using Concuerror 43
4.6 Patch eunit to propagate exceptions to Concuerror 44
4.7 A simple server using the gen_server behavior 45
4.8 Analysis results for the gen_server_bug module 46
4.9 Patch ssl from OTP and rename ssl_manager atom 48
4.10 Patch mochiweb to use the instrumented ssl application 48
4.11 Application resource file for the instrumented ssl application 48
4.12 Deploy Concuerror over mochiweb . 50

15

Chapter 1

Introduction

1.1 Testing as part of Software Development

Back in the old days, most of the software testing processes used to occur after the require-
ments had been defined and the coding process had been completed. Unfortunately, this
process leads to defects being discovered late in the development cycle and makes them
more expensive to fix. This is sometimes called the Defect Cost Increase (DCI) principle
in software development [12, p. 98].

As software engineers began to realize the difficulties in software development and the
failure of the existing inflexible development models, new ones began to emerge. Most
of them, such as Agile [49], often employ test-driven development and place an increased
portion of the testing in the hands of the developer, before it reaches a team of testers.

Figure 1.1: Graphical representation of the
test-driven development cycle

In test-driven development, each new fea-
ture begins with writing a test. This test
must inevitably fail because it is written
before the feature has been implemented.
To write a test, the developer must clearly
understand the feature’s specification and
requirements. This is a differentiating
feature of test-driven development versus
writing unit tests after the code is written:
it makes the developer focus on the require-
ments before writing the code, a subtle but
important difference [11].

Groups that use test-driven development
tend to rely more and more on automated
testing. There are many frameworks to write tests in, and continuous integration software
will run tests automatically every time code is checked into a version control system.

While automation cannot reproduce everything a human can do (and all the ways they
think of doing it), it can be very useful for regression testing. However, it does require a
well-developed test suite in order to be truly useful.

17

18 Chapter 1. Introduction

1.2 Testing concurrent programs

Testing concurrent programs is harder than testing sequential ones. This is trivially true:
tests for concurrent programs are themselves concurrent programs. But it is also true
for another reason: the failure modes for concurrent programs are less predictable and
repeatable than for sequential programs. Failures in sequential programs are deterministic;
if a sequential program fails with a given set of inputs and initial state, it will fail every
time. Failures in concurrent programs, on the other hand, tend to be rare probabilistic
events.

Because of this, reproducing failures in concurrent programs can be maddeningly difficult.
Not only might the failure be rare, and therefore not manifest itself frequently, but it might
not occur at all in certain configurations, so that a bug that happens daily at production
might never happen at all in test lab. Further, attempts to debug or monitor the program
can introduce timing or synchronization artifacts that prevent the bug from appearing at
all. As in Heisenberg’s uncertainty principle, observing the state of the system may in fact
change it.

So, given all these, how are we supposed to ensure that concurrent programs work properly?
A number of techniques have been proposed that aim to alleviate the seemingly grave
situation [47].

• Using stress testing [45] one can test the application for robustness, availability and
graceful error handling simulating conditions that may occur in production usage.
When conducting stress testing for concurrent applications, more focus should be
given to testing the robustness and availability of the application. It should be noted
though that analyzing the root cause for stress-related concurrency bugs and trying
to reproduce stress-related bugs in a consistent manner is extremely difficult.

• Another approach is static analysis techniques [16, 21] that analyze code without
actually executing the program. Usually, static analysis is performed by looking
at meta-data from a compiled application or annotated source code. To deal with
concurrency bugs, static analysis requires a great deal of annotations. Moreover,
these annotations need to be correct themselves. Plus, tools that use static analysis
tend to generate a lot of false positives and require a significant effort from the user
to distinguish between the false positives.

• In another direction, model checking [19] can be used to verify the correctness of
a (finite state) concurrent system. Although model checking tools provide strict
verification, they often require a translation of the real system into a formal model.
This not only leads to increased programming effort and the need to master a new
model-specific language, but also introduces a further source of errors, i.e. the ones
arising from mistakes in the translation process.

This list provides only a small portion of existing techniques. Other testing techniques,
such as random testing or fuzzing [51, 4], property-based testing [22], symbolic execu-
tion [36, 7] and concolic testing [48] can be used as well. Many tools have been developed
that try to test concurrent programs using one of the aforementioned techniques. Each of
these tools targets programs written in a specific programming language.

1.3 Introducing Concuerror 19

1.3 Introducing Concuerror

In this thesis we are going to study and further develop Concuerror, a testing tool for
programs written in Erlang (Section 2.1). Concuerror was designed and developed by A.
Gotovos, M. Christakis and K. Sagonas [28, 29]. Concuerror promotes the use of TDD in
concurrent programming environments and is intended to assist Erlang programmers in
writing high quality concurrent software.

The real power of Concuerror lies in the fact that it is user-friendly and automated, being
able to use real tests written for the original system, like stress testing tools, as well
as provide sound and complete verification at the same time. Concuerror falls into the
category of systematic testing (also known as stateless model checking [50]) and it tries to
systematically explore process interleaving in concurrent programs.

Concuerror is inspired from CHESS [43], a systematic testing tool for concurrent software
developed by Microsoft Research. Concuerror, just like CHESS aims at systematically
generating all interleaving sequences of a given test and is able to consistently reproduce
an erroneous execution. Some of the optimizations implemented by Concuerror (such as
the preemption bounding optimization [42]) have been inspired by CHESS.

This thesis describes the changes that took place to Concuerror (changes that improve
both its functionality and its usability) as well as the reasons for these changes. We
also experiment with how a real user would use Concuerror in practice as a testing and
debugging aid and distill from the process and the experience gained.

1.4 What’s next?

The rest of the thesis is organized as follows. Chapter 2 presents a brief introduction to
Erlang, particularly its concurrency related aspects, and Concuerror. Chapter 3 is the
main chapter of the thesis, where we present the changes that took place to Concuerror as
well as the reasons for these changes. In Chapter 4 we evaluate Concuerror against real
case scenarios using big and well known Erlang applications as analysis input. Finally, in
Chapter 5 we present our concluding remarks and future work.

Chapter 2

Background

2.1 The Erlang Programming Language

Following the establishment of multi-processor computing systems, software developers
are shifting their attention towards languages that support and facilitate concurrent and
distributed system development and Erlang is one of them. Erlang is one the oldest
concurrency-oriented languages, developed by Joe Armstrong in 1986 [8]. It was origi-
nally a proprietary language within Ericsson, but was released as open source in 1998.
It was designed to support the implementation of fault-tolerant distributed software sys-
tems. Erlang was originally used in telephony applications but has gained a lot more
popularity recently with many companies using Erlang in their production systems like
the CouchDB [1] database, the ejabberd XMPP server [2] and the SimpleDB web service
by Amazon [5]. Erlang, together with libraries and the real-time distributed database
Mnesia [39], forms the Open Telecom Platform (OTP) collection of libraries which is the
implementation almost exclusively used by Erlang developers.

The following subsections present a brief overview of the main features of Erlang with
emphasis on its concurrency related aspects. For more detailed information the reader
is referred to introductory Erlang textbooks [9, 14] and the official Erlang/OTP online
documentation [3].

2.1.1 Basic features

Erlang is a functional language, although not as pure as other popular functional languages
(e.g. Haskell). The main language constructs are functions, and single assignment vari-
ables, meaning that variables are immutable. Erlang uses eager evaluation and supports
pattern-matching, list comprehensions, higher-order functions and closures.

Among the basic Erlang datatypes are integers, floats, binaries and atoms. Atoms are
represented by alphanumeric sequences starting with lowercase letter. On the other hand,
variables always begin with an uppercase letter or an underscore. Erlang also provides
tuples, which contain a fixed number of elements, and lists, which contain a variable
number of elements, not necessarily of the same kind.

Erlang is dynamically typed. Erlang code can be written without providing any type
information. Nonetheless, type annotations and function specifications have been added

21

22 Chapter 2. Background

to the language to allow users to provide information that can then be used to check the
program for type inconsistencies. The Erlang/OTP distribution provides two tools, named
Typer and Dialyzer, that combine information from user-defined annotations and perform
a static analysis of the program to detect errors [37, 38].

Erlang source code is organized into modules and functions. The programmer may choose
which functions should be exported and be visible outside of the module, while the rest
of the functions can only be used inside the module where they are defined. Exported
functions are called from outside their module using the syntax module:function(…). In
Listing 2.1 is shown a mergesort algorithm and in Listing 2.2 we have a quicksort algorithm
both implemented in Erlang.

� �
1 % This is the file ’ms.erl’, the module and the filename must match
2 -module(ms).
3 % This exports the function ’mergesort’ of arity 1
4 % (1 parameter, no type, no name)
5 -export([mergesort/1]).
6
7 split([H1, H2|T]) ->
8 {L1, L2} = split(T),
9 {[H1|L1], [H2|L2]};
10 split(L) -> {L, []}.
11
12 merge([], L) -> L;
13 merge(L, []) -> L;
14 merge([H1|T1], [H2|_T2] = L2) when H1 < H2 -> [H1|merge(T1, L2)];
15 merge(L1, [H2|T2]) -> [H2|merge(T2, L1)].
16
17 mergesort([]) -> [];
18 mergesort([_] = L) -> L;
19 mergesort(L) ->
20 {L1, L2} = split(L),
21 merge(mergesort(L1), mergesort(L2)).� �

Listing 2.1: A mergesort algorithm implemented in Erlang

� �
1 %% qsort:qsort(List)
2 %% Sort a list of items
3 -module(qsort). % This is the file ’qsort.erl’
4 % A function ’qsort’ with 1 parameter is exported (no type, no name)
5 -export([qsort/1]).
6
7 qsort([]) -> []; % If the list [] is empty, return an empty list
8 qsort([Pivot|Rest]) ->
9 % Compose recursively a list with ’Front’ for all elements that
10 % should be before ’Pivot’ then ’Pivot’ then ’Back’ for all
11 % elements that should be after ’Pivot’
12 qsort([Front || Front <- Rest, Front < Pivot])
13 ++ [Pivot] ++
14 qsort([Back || Back <- Rest, Back >= Pivot]).� �

Listing 2.2: A quicksort algorithm implemented in Erlang

2.1 The Erlang Programming Language 23

From the above examples we can conclude that:

• Lists are represented by comma separated expressions put inside brackets i.e. [Elem1,
Elem2, …]. The “cons” operator is written as [Head|Tail] and the expression
[Head1, Head2, …, HeadN|Tail] is equivalent to [Head1|[Head2|…[HeadN|Tail]…]].
Tuples are represented by comma separated expressions put inside curly brackets,
i.e. {Elem1, Elem2, …}. The expression [Front || Front<-Rest, Front<Pivot]
is a list comprehension, meaning “Construct a list of elements Front such that Front
is a member of Rest, and Front is less than Pivot”. ++ is the list concatenation
operator.

• Guard expressions are introduced using the when keyword. The corresponding clause
is entered only if the guard expressions is true.

• A catchall pattern is represented by an underscore. We also notice that there are
some variables with an underscore prefix in their names. These variables have exactly
the same functionality as normal variables, but no “unused variable” warnings are
emitted for them by the Erlang compiler.

Erlang programs are normally compiled into bytecode and executed by the Erlang virtual
machine named BEAM. Alternatively, Erlang source files can be compiled to native code
using the HiPE compiler, which is also included in the Erlang/OTP distribution [35].

2.1.2 Concurrency in Erlang

Erlang main strength is support for concurrency, which was an essential element of the
language’s initial design, rather than a later addition. The cornerstones of Erlang’s concur-
rency are the extremely lightweight processes it uses, which are neither operating system
processes nor operating system threads and are completely managed by the Erlang VM.

Erlang implements the actor model of concurrency [31, 30] which means that inter-process
communication is done via message passing. Erlang’s processes (called green threads)
are very lightweight and thus one can spawn thousands of them without degrading per-
formance. In a nutshell, every process may spawn new processes, asynchronously send
messages to other processes, and receive messages from them.

Inter-process communication works via an asynchronous message passing system: every
process has a “mailbox”, a queue of messages that have been sent by other processes and not
yet consumed. A message may comprise any Erlang term, including primitives (integers,
floats, characters, atoms), tuples, lists and functions. Messages are sent using the send
(!) operator and are received using receive expressions. A process uses the receive
primitive to retrieve messages that match desired patterns. A message-handling routine
tests messages in turn against each pattern, until one of them matches. When the message
is consumed and removed form the mailbox the process resumes execution.

Processes are identified by unique process identifiers (PIDs) and can be globally registered
under a unique name represented by an atom. Processes can also be linked to each other,
so that when one process crashes, it neatly exits and sends a message to its linked processes
which can take action. This way of error handling increases maintainability and reduces
complexity of code.

24 Chapter 2. Background

� �
1 -module(ring).
2
3 -export([start/2]).
4
5 -define(NPROC, 5).
6
7 start(TTL, Token) ->
8 Fun = fun(_S, N) -> spawn_link(fun() -> loop(N) end) end,
9 Next = lists:foldl(Fun, self(), lists:seq(?NPROC, 2, -1)),
10 Next ! {TTL, Token},
11 loop(Next).
12
13 loop(Next) ->
14 receive
15 {1, Token} ->
16 io:format(”~p: Received final token (~p)~n”,
17 [self(), Token]),
18 exit(ttl_limit_surpassed);
19 {TTL, Token} ->
20 io:format(”~p: Received token (~p); transmitting to ~p~n”,
21 [self(), Token, Next]),
22 Next ! {TTL - 1, Token},
23 loop(Next)
24 end.� �

Listing 2.3: A simple concurrent Erlang program

Listing 2.3 demonstrates how easy concurrency is in Erlang. The program creates a ring of
processes like the one shown in Figure 2.1, where each process is linked to its two neighbors,
and a message (Token) is transmitted in a circular fashion from process to process a finite
(TTL) number of times. Again, we can make some remarks on the code:

• Concurrency primitives
The built-in function (BIF) spawn_link/1 atomically combines the actions of creat-
ing a new process and linking to it. All spawn-related functions have to specify what
code will be executed by the newly spawned process. In the example, we use a clo-
sure for that purpose. The spawn_link/1 function returns the PID of the spawned
process. The BIF self/0 returns the PID of the calling process. The send operator
(!) uses the PID of a process to specify the message’s destination. Note that any
Erlang term can be used as a message.

• Library functions
We have used functions from the lists (common list operations) and io (I/O and
formatting operations) library modules of the Erlang/OTP distribution. Library
functions can be called identically to user functions residing in other modules, i.e.
using the module:function(…) syntax, and are visible without the need to import
them.

• Preprocessor
Erlang’s preprocessor allows the use of records and macros, which are expanded be-
fore the program is compiled. In our example, we used the macro NPROC – referenced
as ?NPROC – to define the number of processes in the ring.

2.1 The Erlang Programming Language 25

• Tail recursion
Tail-recursive functions like loop/1 are commonly used in Erlang for server-like pro-
cesses. The Erlang compiler uses tail-call optimization to avoid memory exhaustion
due to recursion. Therefore, memory-wise, functions of this form are equivalent to
iterative loops in imperative languages.

• Links and exits

Figure 2.1: The ring of linked processes
created by the program of
Listing 2.3

To demonstrate how linked processes in-
teract, we use the BIF exit/1 in the
first clause of the receive expression to
abnormally terminate with an exception
the process that receives the final token.
When a process terminates this way, a
signal is sent to each of its linked pro-
cesses forcing them to terminate too.
In our example, this results in every
process terminating with an exception,
given that processes are circularly linked
to each other. Note that links are sym-
metrical, thus the action of process 1
linking to process is equivalent to the
action of process 2 linking to process 1.
Erlang also provides a way for processes
to “catch” exit signals, instead of termi-
nating unconditionally. Having called process_flag(trap_exit, true), a process
will not terminate whenever a linked process terminates abnormally, but rather will
receive a message of the form {’EXIT’, Pid, Reason}.

Apart from links Erlang also provides monitors. Monitors are a special type of link with
the difference of being unidirectional, which means that a monitored process does not
know anything about being monitored. Similarly to the ’EXIT’ message that is sent by
the runtime when a linked process exits, a ’DOWN’ message is sent as soon as a monitored
process has exited. In this case, however, the message is sent regardless of the monitoring
process’ trap_exit flag.

This was a brief discussion of Erlang’s essentials. More advanced features, like ETS and
Dets storage, OTP behaviors, distributed Erlang and hot-swapping, shall not be discussed
here. The most important thing to remember for the rest of this thesis, is the notion
of Erlang’s lightweight processes, that execute their internal actions sequentially, and
communicate with each other via message passing.

2.1.3 Concurrency Errors

As we saw, messages between Erlang processes are sent asynchronously using the !/2 ex-
pression, which is a convenient shorthand for the send/2 function. A process can then
consume messages using selective pattern matching in receive expressions, which are block-
ing operations in case a process’ mailbox does not contain a matching message. Of course,
blocking the execution of a process until a specific kind of message from another process
arrives can lead to deadlocks.

26 Chapter 2. Background

Deadlocks, however, are not the only kinds of concurrency errors that are possible in
Erlang. Although the majority of memory that programs access is process-local, the
language comes with various built-in functions (BIFs) that manipulate data structures
at the level of the virtual machine (VM) which are shared between all processes. Some
interleaving sequences of calls to theses BIFs, can lead to data races or result in abnormal
process exits.
Testing for absence of concurrency errors due to unfortunate process interleavings is com-
plicated by the fact that many errors are hard to come across and expose by conventional
unit testing. Part of the difficulty lies in that the scheduling of processes is done by the
Erlang VM and is mostly deterministic. It is currently based on the notion of reduction
steps: roughly, each process gets to execute for a certain number of “reductions” before
it has to yield back to its scheduler which then picks another process to execute. As a
result, multiple runs of the same unit test are most likely to exhibit the same behavior with
respect to process interleaving as such tests are too small for scheduling non-determinism
to take effect.
Take a look at the code in Listing 2.4. The process running foo/0 is supposed to spawn a
new process and register it under the name math. The new process executes bar/3 with
the given arguments and sends the results back to the first process. Among these few lines
of code, lingers a concurrency error.� �

1 foo() ->
2 Self = self(),
3 Pid = spawn(fun() -> bar(Self, 42, 5) end),
4 register(math, Pid),
5 receive
6 Result -> Result
7 end.
8
9 bar(Target, X, Y) ->
10 Target ! {result, X + Y}.� �

Listing 2.4: A simple two process example with a bug

What if the newly spawned process running bar/3 terminates before the first process
executes register/2? In this case, according to the Erlang/OTP documentation, the
register/2 call will fail and the process will terminate with an exception. The worst part
is that this case is very hard to detect using conventional testing. We can try repeatedly
running foo/0, but it is very unlikely that the above exception will occur because foo’s
register/2 almost always precedes bar’s termination. The problem will likely occur
randomly after many hours of running the program under stress.

2.2 Concuerror Overview

Concuerror aims to detect concurrency-related runtime errors like the above abnormal
process exit. Concuerror is a tool that, given a program and its test suite, systemati-
cally explores process interleaving and presents detailed interleaving information on any
errors that occur during the execution of the tests. In addition to abnormal process exits,
Concuerror detects assertion violations and deadlocks.

2.2 Concuerror Overview 27

To detect these kinds of errors, Concuerror effectively explores all interleaving sequences
of the processes that participate in a test execution using a stateless search strategy, i.e. a
search strategy that does not store the shared state of the program. Specifically, recording
an interleaving sequence involves storing information only about context switches, while
enforcing the execution of all such sequences consists in efficiently controlling when the
participating processes yield or resume execution.

The delegation of control over process execution from the Erlang scheduler to Concuerror
is achieved through source-to-source instrumentation of the program under test. More
concretely, the program undergoes a parse transformation that inserts preemption points
in the code, i.e. points where a context switch is allowed to occur, without altering its se-
mantics. In practice, a context switch may occur at any function call during the execution
of a process under the Erlang VM. However, to avoid generating redundant interleav-
ing sequences that lead to the same shared state, instrumentation in Concuerror inserts
preemption points only at process actions that interact with (i.e. inspect or update) this
shared state, which is very little in Erlang. Such actions are called preemptive.

2.2.1 Instrumenter

Concuerror instruments the code of the program under test at the granularity of modules.
The translation is source-to-source and processes yield and resume execution at preemption
points with a simple receive expression as shown in Listing 2.5.

� �
1 pause () ->
2 receive scheduler_prompt -> continue end .� �

Listing 2.5: Concuerror’s pause function

By calling Concuerror’s pause/0 function, a process blocks on the receive expression until
a prompt from the scheduler is received. In this section we will focus on the instrumenta-
tion of built-in function calls and receive expressions as it is implemented in the current
version of Concuerror (version 0.9). Many of the following concepts will be redesigned to
accommodate the dynamic partial order reduction optimization technique (see Section 3.4).

Built-In Function Calls

The instrumentation of built-in function calls that interact with the shared state consists
in their substitution with calls to appropriate wrapper functions provided by Concuerror.

The interface of a wrapper function is identical to the interface of the BIF it is replacing,
i.e. it accepts the same arguments and returns the same values. Internally, all wrap-
per functions have the same structure: (1) the original BIF is called, (2) the scheduler
is notified of the process action, (3) the process yields execution (via a call to concuer-
ror:pause/0) until the scheduler prompts it to continue, and (4) when execution resumes,
the result of the original BIF call is returned. From the above it is clear that Concuerror
chooses to place preemption points after any interaction with the shared state to conve-
niently separate the last such interaction from the process exit. This implies that a context

28 Chapter 2. Background

switch also needs to occur before a newly spawned process starts executing the user code,
otherwise the process would only yield execution after executing the first interaction with
the shared state.

receive Expressions

The instrumentation of receive expressions is more complex than that of BIF calls, as
receives are language expressions that are more difficult to intercept and whose semantics
dictates that processes might block while waiting for a matching message to be received.

Concuerror has to ensure that the process executing the receive does not block for-
ever in case no matching message ever arrives. For this, it calls the function concuer-
ror:receive_check/1, whose definition is shown in Listing 2.6. More specifically, on
line 3 of Listing 2.6, the function argument F is used to look for matching messages in
the process mailbox without receiving them, i.e. without removing them from the mes-
sage queue. Note that in the case expression of the function F there are additional clauses
both for uninstrumented matching messages – send by processes executing uninstrumented
code – and for instrumented or uninstrumented messages that do not match. If the mail-
box contains a matching message (line 4 of Listing 2.6), then the function concuer-
ror:receive_check/1 returns and then the message can be consumed by the receive
expression and the process continues by yielding execution at a preemption point (via a
call to concuerror:receive_notify/2). If, however, the mailbox contains no matching
messages, the process notifies the tool’s scheduler that it is blocked and enters a busy-wait
loop checking for the arrival of a matching message (line 5). As soon as such a message
arrives, the process requests to be unblocked (line 11) and when the scheduler prompts it
to continue, the message is received.

� �
1 receive_check(F) ->
2 {messages, Mailbox} = process_info(self(), messages),
3 case match(F, Mailbox) of
4 match -> continue ;
5 no_match -> notify_scheduler(block, self()), loop(F)
6 end.
7
8 loop(F) ->
9 {messages, Mailbox} = process_info(self(), messages),
10 case match(F, Mailbox) of
11 match -> notify_scheduler(unblock, self()), pause();
12 no_match -> loop(F)
13 end.
14
15 match(F, []) -> no_match;
16 match(F, [Msg | Msgs]) ->
17 case F(Msg) of
18 match -> match ;
19 no_match -> match(F, Msgs)
20 end.� �

Listing 2.6: The concuerror:receive_check/1 function

2.2 Concuerror Overview 29

Timeouts

Concuerror’s instrumenter eliminates any timeouts or delays in the code under test by
setting them to zero. Delaying a process is equivalent to running an interleaving sequence
in which that process is executed after some other processes actions have been executed.
Therefore, all delays can be set to zero and, still, Concuerror will not miss any interleaving
sequence.

2.2.2 Scheduler

The main purpose of Concuerror is to explore the state-space of a concurrent program.
To this end, the scheduler has to produce interleaving sequences, carefully control process
interleaving for each sequence, and, at the same time, handle and report process actions,
including any errors that might be encountered.

Figure 2.2: Process LID tree

For representing interleaving sequences,
each process must be identified in a way
that is both unique and constant across re-
peated executions of a test function. For
this reason, Concuerror assigns to each pro-
cess a logical identifier (LID), i.e. a string
that uniquely identifies the process in the
process tree hierarchy. The LID P1 is
assigned to the initial process of a pro-
gram. Thereafter, every process’ LID con-
sists of the LID of its parent followed by
the number of its siblings at the time it
was spawned plus one. Thus P1.1 will be
assigned to the first process spawned by P1, P1.2 to the second one and so on. This way
the process hierarchy is represented by a tree like the one shown in Figure 2.2.

The scheduler needs to keep track of some process related information during each exe-
cution. This information is stored in a structure, called scheduler context and includes
two sets of active and blocked processes, the current interleaving sequence prefix and the
currently running process. Active processes are the ones that are paused but ready to be
scheduled and blocked processes are the ones that are suspended usually due to a receive.

Concuerror explores the space of valid interleaving sequences in a depth-first way. An
iteration of the search consists in running one process at a time to enforce a specific
interleaving sequence. At the very beginning of the search procedure, the initial user
process (LID = P1) is spawned to execute a user defined test function and is paused
right before starting its execution. The initial context consists of an active set containing
process P1, an empty blocked set, no current process and an empty state (no processes
run yet). The search begins by calling the driver and passing the initial context. At every
preemption point the currently running process is paused and the driver has to determine
which process is going to be executed next. Let’s take for example that there are two
processes in the active set (P1 and P1.1). Under depth-first search, the driver should
continue with P1, but the other choice has to be stored for future exploration. What is
actually stored is the state that would have resulted if process P1.1 was run instead of P1 at
this point. Such an interleaving sequence, which does not represent a complete program

30 Chapter 2. Background

execution but is a prefix of unexplored states, is called a partial state. The execution
continues the same way, saving at each step all partial states resulting form choices not
taken. When the current execution has finished, i.e. when all processes have terminated
normally or an error has occurred, Concuerror records the result of the finished execution
and initiates the next one.

The scheduler detects the three types of errors that Concuerror targets as follows:

• Exceptions
Exceptions can be raised by the Erlang runtime at any time and by any process.
As long as the process that exits due to an exception is known to Concuerror, the
current execution is terminated and the error is logged.

• Assertion violations
Concuerror allows the use of xUnit-style assertions. An assertion violation is es-
sentially a user-defined exception and provides more information about what went
wrong at some point of the program. The distinction between exceptions and asser-
tion violations errors is made depending on the details of the process exit information.

• Deadlocks
The driver reports a deadlock whenever all alive processes are blocked (empty active
process set) and at the same time there are suspended processes (non-empty blocked
process set) which means that the program under test cannot make progress.

2.2.3 Efficiency Improvements

Concuerror explores the state-space of a program using an exponential time complexity
algorithm which suggests that the search becomes quickly infeasible as the number of pre-
emption points increases. To this end, Concuerror uses two techniques that significantly
improve the efficiency of the search. The first is a simple partial-order reduction technique
that avoids redundant interleaving sequences involving process blocks on receive expres-
sions [15]. The second is a heuristic method, called preemption bounding, that bounds
the number of allowed context switches and drastically reduces the number of explored
interleaving sequences [42].

A newer version of Concuerror developed in parallel with this thesis incorporates a powerful
dynamic partial order reduction technique, which considerably reduces the number of
explored interleaving sequences (Section 3.4).

Chapter 3

Extending Concuerror

Concuerror has been successfully tested and used on a number of small tests that have
been created for that sole purpose and the errors were known a priori. We wanted to
be able to use Concuerror to test real world projects. We wanted to be able to analyze
code bases with hundreds of thousands of lines of code which use complex communication
protocols and depend upon many libraries (OTP or not). In order to do so, we introduced
a number of improvements over the existing implementation of Concuerror.

3.1 Command Line Interface

The first version of Concuerror was designed to be operated through a graphical user
interface (GUI) (Figure 3.1). The GUI allows the user to import Erlang modules and
select a test to be executed. After the analysis is complete, information about any errors
encountered is displayed. The user may choose to replay some of the erroneous sequences
and acquire detailed, action by action interleaving information. The initial developers
believed that a command line interface (CLI) was not able to convey information about
process interaction in a nice and usable format. Although this may be true in general
(GUI is considered more user friendly than CLI) we believe that this is not the case with
Concuerror.

Concuerror is a tool designed to be used by programmers. Such users are already familiar
with operating a command line interface. As a result the biggest (if not the only) advance of
GUI over CLI does not apply in our case. On the other hand command line interfaces offer
better scripting and remote access capabilities. Concuerror is a testing tool and as such
one must be able to use it in a remote server (testing/development machine) were graphical
interface may be not an option, or even automate the test processes through continuous
integration software. For the above reasons we decided that we have to implement a
command line interface which will offer all the previous functionality.

3.1.1 Analysis Results

Concuerror’s analysis results are divided into three parts: the error type (assertion vio-
lation, deadlock or exception), the error’s short description and the interleaving sequence
that led to this error. When one is using the graphical interface, she gets a list of all the

31

32 Chapter 3. Extending Concuerror

Figure 3.1: The Concuerror GUI

errors Concuerror was able to find (along with a short description) and then when she
selects one of them, the corresponding erroneous thread is replayed to produce a detailed
list of the interleaving for this error.

As we can see in Figure 3.1, the user has selected two modules to be instrumented by
Concuerror, the reg_server and the reg_server_tests. From them, she has chosen to
analyze the multiple_stops_test/0 function under the reg_server_tests module. The
analysis has been completed in 0.32 seconds (as we can see in the Log tab) after checking
4 interleavings and founding 2 erroneous ones. A short description of these errors can
been found under the Errors tab (here we have a Deadlock and an Exception) and the
corresponding process interleaving sequence for each error under the Process Interleaving
tab.

Unfortunately this point and click user experience can not be provided by command line
environments. Moreover we want to be able to save all the analysis information in a file
as Concuerror may be part of an integration testing process.

The first thought was for Concuerror to find all the errors and then for every one of them
replay it so we could get full interleaving details. That seemed a bit of excessive so we
ended up completely removing the replay functionality. Concuerror now keeps a list of all
the interleavings for every error encountered and then it saves the results in a file for the
user to review them offline.

Concuerror was also lacking an indicator to show the progress of the analysis. We created
a somewhat simple but straightforward progress bar which displays the preemption bound
at which the analysis is running as well as the current number of checked interleavings, the

3.1 Command Line Interface 33

number of errors encountered so far and the elapsed time. The ideal would be for Concuer-
ror to be able to compute the estimated completion time but that proved to be difficult
when using algorithms such as the dynamic partial order reduction (see Section 3.4).

3.1.2 Analysis Termination

As we saw in Figure 1.1 most software development cycles usually involve running some
tests, finding errors, fixing them and then repeating this process again until no more errors
can be found. Concuerror on the other hand performs an exhaustive state space traversal
(all interleavings of program threads are checked for property violations). This means
that the analysis could take a lot of time to be completed, making Concuerror unsuited
for these kinds of development models. In order to adapt to these development models,
one should be able to stop the analysis at any time, resolve the errors found so far and
repeat. Although this functionality was already provided by Concuerror’s graphical user
interface, implementing it for the command line interface was a little bit trickier.
Most CLI applications use SIGINT signal (keyboard interrupt) in order to stop execution.
We wanted to preserve the same functionality in Concuerror and handle the above signal
in order to save the analysis results so far and then exit. Unfortunately, OS signals are
handled exclusively by the Erlang VM and do not propagate to the running process so
that they can be handled properly. The only viable option is to have a script starting
Concuerror and also trapping the SIGINT signal. We chose to use the bash scripting
language for simplicity and since all the flag parsing is done inside the Erlang code one
can easily opt to use alternative programming languages which would be more portable
(such like C).
Listing 3.1 shows how we trap the SIGINT signal and instruct Concuerror to stop. In
Erlang, a node is an executing runtime system which has been given a name, using the
command line flag -name. Every Concuerror instance, runs in a distinct Erlang node and
is assigned a unique name which then will be used to call concuerror:stop/0 on this
node. This function will send the stop_analysis message which will cause Concuerror to
save the analysis results up to that point and then exit (see Listing 3.2).

3.1.3 Command-line options

With the introduction of the CLI, Concuerror started to use command line options in
order to control its operation. The parsing of the flags is done completely using Erlang
code by the concuerror:parse/2 function. Although Concuerror now supports both the
usage of a command line and a graphical user interface, most of the options can be given
only using the former one. Here we will present some of these options and their usage.

–target
This option is used to specify the function that Concuerror will use as entry point
when exploring the interleaving sequences of a test. It can take an arbitrary number
of arguments and its functionality depends upon them. If only the module name
is given then Concuerror will try and run all Eunit tests for this module (more on
this in Section 4.1). Otherwise Concuerror will execute the given function with the
specified arguments (if no arguments are given, it is assumed that the function is of
arity 0). This option is mandatory and can be specified from inside the GUI too.

34 Chapter 3. Extending Concuerror

� �
1 #!/bin/bash
2
3 Date=$(date +%s%N)
4 Name=”Concuerror$Date”
5 Cookie=”ConcuerrorCookie”
6
7 trap ctrl_c INT
8 function ctrl_c() {
9 erl -sname ConcuerrorStop -noinput -cookie $Cookie \
10 -pa /home/ilias/erlang/Concuerror/ebin \
11 -run concuerror stop $Name -run init stop
12 wait
13 }
14
15 erl +Bi -smp enable -noinput -sname $Name -cookie $Cookie \
16 -pa /home/ilias/erlang/Concuerror/ebin \
17 -run concuerror cli -run init stop -- ”$@” &
18 wait $!� �

Listing 3.1: The Concuerror Bash script

� �
1 %% @spec stop() -> ok
2 %% @doc: Stop the Concuerror analysis
3 -spec stop() -> ok.
4 stop() ->
5 try ?RP_SCHED ! stop_analysis
6 catch
7 error:badarg ->
8 init:stop()
9 end,
10 ok.� �

Listing 3.2: The concuerror:stop/0 function

-D and -I
These flags are used to define a symbol in the Erlang pre-processor and to add some
directories to the directory search list included files.

–keep-tmp-files
When Concuerror instruments the input files, it performs a module renaming (more
on this in Section 3.2). During this processes it creates some temporary files which
later removes. With this flag Concuerror will keep these files so that one can later
inspect them.

–fail-uninstrumented
Using this flag, analysis will fail when the program under test tries to call a function
of an uninstrumented module. Although Concuerror can handle both instrumented
and uninstrumented modules, the more modules one chooses to instrument the more
accurate the results will be (see Section 3.2). With –fail-uninstrumented the user
can inspect these uninstrumented modules and choose to instrument them or ignore
them.

3.1 Command Line Interface 35

� �
Concuerror

A systematic testing tool for concurrent Erlang programs.
Version 0.9

usage: concuerror [<args>]
Arguments:

-t|--target module Run eunit tests for this module
-t|--target module function [args]

Specify the function to execute
-f|--files modules Specify the files (modules) to instrument
-o|--output file Specify the output file (default results.txt)
-p|--preb number|inf Set preemption bound (default is 2)
-I include_dir Pass the include_dir to concuerror
-D name=value Define a macro
--noprogress Disable progress bar
-q|--quiet Disable logging (implies --noprogress)
-v Verbose [use twice to be more verbose]
--keep-tmp-files Retain all intermediate temporary files
--fail-uninstrumented Fail if there are uninstrumented modules
--ignore modules It is OK for these modules to be uninstrumented
--show-output Allow program under test to print to stdout
--wait-messages Wait for uninstrumented messages to arrive
--app-controller Start an (instrumented) application controller
-T|--ignore-timeout bound

Treat big after Timeouts as infinity timeouts
--gui Run concuerror with a graphical interface
--dpor Runs the experimental optimal DPOR version
--help Show this help message

Examples:
concuerror --target foo bar arg1 arg2 --files ”foo.erl” -o out.txt
concuerror -DVSN=\”1.0\” --gui -I./include --files foo.erl --preb inf� �

Listing 3.3: Concuerror’s help output

–ignore
This option is used alongside with –fail-uninstrumented and it allows one to
choose which modules are ok to be uninstrumented.

–show-output
By default Concuerror implements an IO server and channels all IO through there
by making it the group leader of all newly created processes. This way Concuerror
prevents the program under test with writing into the terminal and selectively prints
the output only for the erroneous interleavings. This flag disables this behavior.

–wait-messages
One of the problems that Concuerror has to face (regarding the approach it takes of
instrumenting the modules under test) is the inability to know about and correctly
handle processes which have been spawned from an uninstrumented part of code.
One may try to solve this problem by choosing to instrument as many modules as she
can and, as we will see in Section 3.2, instrumenting OTP libraries can help towards
this direction. But there are certain processes that currently Concuerror cannot
handle and these are the ones initialized by the Erlang VM itself (such as the init

36 Chapter 3. Extending Concuerror

process). When a process is sending a message to an uninstrumented one, Concuerror
has no means to control when this message will be processed and when or if a reply
will be sent back. Therefore Concuerror’s analysis becomes non-deterministic. In
the best case scenario Concuerror will fail to examine some interleavings but in the
worst one it may fail to find some errors or report false positives.
Using --wait-messages, Concuerror will wait a pre-configured amount of time (10
msecs) every time an instrumented process tries to send a message to an uninstru-
mented one. Doing this, Concuerror allows the latter process to receive and handle
its messages. Naturally, this slows down the exploration, so this option is to be used
only when necessary.

–app-controller
When an Erlang runtime system is started, a number of processes are started as
part of the kernel application. One of these processes is the application controller
process, registered as application_controller. In order for Concuerror to be able to
instrument Erlang applications (such as the ssl application) it needs to start its own
renamed application controller as well as handle the termination of the registered
applications afterwards. This is done during the spawn of the function under testing
by the concuerror_rep:start_target/3 function shown in Listing 3.4.

� �
1 %%%--
2 %%% Start analysis target module/function
3 %%%--
4 -spec start_target(module(), atom(), [term()]) -> ok.
5 start_target(Mod, Fun, Args) ->
6 InstrAppController = ets:member(?NT_OPTIONS, ’app_controller’),
7 AppConModule =
8 concuerror_instr:check_module_name(application_controller, none, 0),
9 AppModule = concuerror_instr:check_module_name(application, none, 0),
10 case InstrAppController of
11 true ->
12 AppConModule:start({application, kernel, []}),
13 AppModule:start(kernel),
14 AppModule:start(stdlib),
15 ok;
16 false ->
17 ok
18 end,
19 apply(Mod, Fun, Args),
20 case InstrAppController of
21 true ->
22 lists:foreach(fun ({App, _, _}) -> AppModule:stop(App) end,
23 AppModule:loaded_applications()),
24 ok;
25 false ->
26 ok
27 end.� �

Listing 3.4: Start an instrumented application controller

–ignore-timeout
Concuerror by default does not attempt to model or simulate the effect of delays on
a program’s execution. Delaying a process is equivalent to running an interleaving

3.2 Instrumentation of Libraries 37

sequence in which that process is executed after some other processes’ actions have
been executed. Therefore, all delays can be set to zero and, still, Concuerror will
not miss any interleaving sequence.
That said, we can not ignore that in the presence of delays Concuerror may produce
interleaving sequences that are not likely to occur in practice. Moreover, when we
instrument OTP modules such as the gen_server module, which use timeouts as a
way to detect communication errors, we may end up with too many false positive
erroneous interleavings. Using this flag we can provide an upper limit and instruct
Concuerror to treat timeouts with values bigger than this limit as they were the atom
infinity. This means that Concuerror will never examine interleaving sequences where
these timeouts have been executed.

3.2 Instrumentation of Libraries

As we saw in Section 2.2.1, the instrumenter provides some complex hooks for the sched-
uler, by parse transforming the source code. In doing so, the instrumenter has to be
extremely careful not to alter the original program’s semantics.

Ideally the instrumenter could transform any module and use it in the analysis. But when
it comes to instrumenting modules from the OTP library there are two main problems.
The first one is that some of these modules affect the Erlang runtime system itself and
so the Erlang Virtual Machine prevents us from reloading them (the kernel, stdlib and
compiler directories are considered sticky). The second one is that the very same modules
that we may want to instrument are used by Concuerror itself. Of course this can not be
done because when Concuerror will try to use one of these instrumented modules it will
hang. In order to bypass these problems, Concuerror has to rename all the instrumented
modules and assign unique names to them.

Concuerror renames every module during the instrumentation phase (see Listing 3.5). To
do so, it first renames and saves the module file under a temp directory and then parses this
file in order to change the module attribute that defines the name of the module (which
should be the same as the file name minus the extension .erl). This step is important as
during the preprocessing phase (done by epp:parse_file) the predefined macros ?MODULE
and ?FILE are resolved automatically to the ones specified by the module attribute.

After renaming the modules, we have to change the function calls to these modules to point
to the instrumented code. This is done in two steps. At first, we change the function calls
statically when we instrument other modules. Then, dynamically, we check if we need to
rename any function calls for which the module names were not known at compile time as
for example when they are assigned into a variable. In order to decide which module names
must be renamed and which not Concuerror uses the function check_module_name/3. This
function checks a given module name against a set of rules and applies the first rule to
match (see Listing 3.6):

1. If the module belongs to Concuerror, that is its name starts with ’concuerror_’,
then don’t rename it.

2. If the module has been marked as to be ignored using the --ignore flag then don’t
rename it.

38 Chapter 3. Extending Concuerror

� �
1 rename_module(Module, File) ->
2 ModuleStr = atom_to_list(Module),
3 NewModuleStr = atom_to_list(new_module_name(Module)),
4 TmpDir = ets:lookup_element(?NT_INSTR, ?INSTR_TEMP_DIR, 2),
5 NewFile = filename:join(TmpDir, NewModuleStr ++ ”.erl”),
6 case file:read_file(File) of
7 {ok, Binary} ->
8 %% Replace the first occurrence of ‘-module(Module).’
9 Pattern = binary:list_to_bin(
10 ”-module(” ++ ModuleStr ++ ”).”),
11 Replacement = binary:list_to_bin(
12 ”-module(” ++ NewModuleStr ++ ”).”),
13 NewBinary = binary:replace(Binary, Pattern, Replacement),
14 %% Count lines of code
15 NewLine = binary:list_to_bin(”\n”),
16 Lines = length(binary:matches(NewBinary, NewLine)),
17 %% Write new file in temp directory
18 case file:write_file(NewFile, NewBinary) of
19 ok -> {ok, NewFile, Lines};
20 Error -> Error
21 end;
22 Error ->
23 Error
24 end.� �

Listing 3.5: Rename modules during the instrumentation phase

3. If the module, function pair is an Erlang built in function (BIF) then don’t rename
the module.

4. If the module has been instrumented then rename it.

5. If –fail-uninstrumented flag has been given, then rename the module. This way
the program under test will crash when it will try to call the renamed function (as
this function will not exist) and Concuerror will report that there are modules needed
by our test that have not been instrumented.

6. If none of the above apply, then don’t rename the module.

3.3 Extending Concuerror’s Test Suite

In software development, a test suite is a collection of test cases that are intended to test a
software program and ensure that it has some specified set of behaviors. A test suite often
contains detailed instructions or goals for each collection of test cases and information
on the system configuration to be used during testing. Tests are frequently grouped by
where they are added in the software development process, or by the level of specificity
of the test. The main levels during the development process as defined by the SWEBOK
guide [34] are unit and system testing.

Unit testing, also known as component testing, refers to tests that verify the functionality
of a specific section of code, usually at the function level. These types of tests are usually
written by developers as they work on code, to ensure that the specific function is working

3.3 Extending Concuerror’s Test Suite 39

� �
1 %% ---------------------------
2 %% Rename a module for the instrumentation.
3 %% 1. Don’t rename ‘concuerror_*’ modules
4 %% 2. Don’t rename ‘ignored’ modules
5 %% 3. Don’t rename ‘BIFS’.
6 %% 4. If module is instrumented rename it.
7 %% 5. If we are in ‘fail_uninstrumented’ mode rename all modules.
8 -spec check_module_name(module() | {module(),term()}, atom(), non_neg_integer())
9 -> module() | {module(), term()}.
10 check_module_name({Module, Term}, Function, Arity) ->
11 {check_module_name(Module, Function, Arity), Term};
12 check_module_name(Module, Function, Arity) ->
13 Conc_Module =
14 try atom_to_list(Module) of
15 (”concuerror_” ++ _Rest) -> true;
16 _Other -> false
17 catch %% In case atom_to_list fail, we don’t want to rename the module
18 error:badarg -> true
19 end,
20 Rename = (not Conc_Module)
21 andalso (not ets:member(?NT_INSTR_IGNORED, Module))
22 andalso (not ets:member(?NT_INSTR_BIFS, {Module, Function, Arity}))
23 andalso (ets:member(?NT_INSTR_MODS, Module)
24 orelse ets:lookup_element(?NT_INSTR, ?FAIL_BB, 2)),
25 case Rename of
26 true -> new_module_name(Module);
27 false -> Module
28 end.
29
30 -spec new_module_name(atom() | string()) -> atom().
31 new_module_name(StrModule) when is_list(StrModule) ->
32 %% Check that module is not already renamed.
33 case StrModule of
34 (?INSTR_PREFIX ++ _OldModule) ->
35 %% No need to rename it
36 list_to_atom(StrModule);
37 _OldModule ->
38 list_to_atom(?INSTR_PREFIX ++ StrModule)
39 end;
40 new_module_name(Module) ->
41 new_module_name(atom_to_list(Module)).� �

Listing 3.6: The check whether a given function application must be renamed

as expected. System testing on the other hand, tests a completely integrated system to
verify that it meets its requirements.

During this thesis Concuerror went through dramatic changes and many of scheduler’s
and instrumenter’s parts were completely rewritten. In order to do so we wanted to be
sure that the functionality of the tool itself would not be affected and that the analysis
results would be the same. Unfortunately, Concuerror was using only unit tests that could
not fully test its capabilities and did not preserve extensive results for feature reference.
Therefore, before any alternation could be made, we decided to significantly extend the
test suite of Concuerror, load it with enough test results to use as references and gradually
extend it as we move on.

40 Chapter 3. Extending Concuerror

Actually, Concuerror’s test suite was written from scratch in order to fit exactly in our
needs. For each test the user can now specify the preemption bound as well as the analysis
algorithm to be used. The results are compared with a set of predefined ones and the user
may choose to ignore them or update them respectively. The test suite is written in python
and has support for executing tests in parallel. Currently there are more than 100 total
tests which give rise to more than 400 test cases.

3.4 Dynamic Partial Order Reduction

As we already saw in Section 2.2, Concuerror systematically explores the state space of
a concurrent software system by driving its execution via a run-time scheduler. In the
context of this approach, partial order reduction seems (so far) to be the most effective
technique for reducing the size of the state space of concurrent software systems at the im-
plementation level [26, 52]. Using partial order reduction for model checking software one
can initially explore an arbitrary interleaving of the various concurrent processes/threads,
and then identify backtracking points where alternative paths in the state space need to
be explored by dynamically tracking interactions between these processes.

Konstantinos Sagonas and Stavros Aronis are currently researching an optimal dynamic
partial order reduction method to be used in Concuerror. The Algorithm is based on the
work of Flanagan and Godefroid [23] and has been optimized for the Erlang’s process-
based, no-shared-state concurrency models. A new scheduler which implements this algo-
rithm has been written for Concuerror and the results so far are more than encouraging
with the new scheduler being able to identify the same defects as the old one and dramat-
ically reduce the exploration’s state space at the same time.

Chapter 4

Concuerror By Example

In this chapter we will see how Concuerror can be used in practice as a testing and
debugging aid. The goal is to experiment with how a real user would use Concuerror and
distill from the process and the experience gained. For this we are going to experiment
with some well known OTP libraries [46] such as the eunit and the gen_server libraries
as well as analyze bigger and more complex Erlang applications such as mochiweb [40].

Instead of writing our own tests for analyzing the mochiweb application we decided to use
a subset of the tests that come along with it. Although these tests have not been written
for testing concurrency aspects of the system, we wanted to see how easy it is to use the
pre-existing ones. Most of Erlang’s applications come with a set of unit tests written using
the Eunit testing framework. So the first step is to integrate Concuerror with Eunit.

4.1 Run Eunit tests through Concuerror

First, we will create a simple Erlang program involving two processes such as the one
shown in Listing 4.1. The pong/0 function, which is exported and may be called out of
the ping_pong module, spawns a process that will execute the code of function ping/1
(line 6), sends a ping message to the parent process (line 10), which, in turn is expected
to receive this message and return ok (line 7). This code has a concurrency error. Its
execution will raise a runtime exception if the spawned process terminates before the parent
process attempts to register its PID, which would not exist after the process terminates.
As a result of this exception, the process executing function pong/0 will crash and exit
abnormally. This error is so subtle that many Erlang programmers are not even aware of
its possibility. Still, such errors compromise the robustness of applications.

Let’s run Concuerror over this simple example and confirm that it can identify this con-
currency error. We invoke Concuerror as shown in Listing 4.2 and the results are shown in
Listing 4.3. As we can see, Concuerror correctly reports one erroneous interleaving with
error Exception: badarg when trying to register the aforementioned process. Inside the
results.txt file we can find the complete trace that led to the error.

Now we will create another module, named ping_pong_test (Listing 4.4) that will contain
a simple unit test for our pong/0 function using eunit. Running this test of course will
succeed most of the times and it is very likely that it may never fail and we may never notice

41

42 Chapter 4. Concuerror By Example

� �
1 -module(ping_pong).
2 -export([pong/0]).
3
4 pong() ->
5 Self = self(),
6 register(?MODULE, spawn(fun () -> ping(Self) end)),
7 receive ping -> ok end.
8
9 ping(PongPID) ->
10 PongPID ! ping.� �

Listing 4.1: Simple example program involving two processes and a concurrency error

� �
$./concuerror --target ping_pong pong --files ping_pong.erl \

--preb inf -o results.txt --dpor

Instrumenting files... done

Running analysis with preemption bound infinity...

Analysis complete. Checked 2 interleaving(s) in 0m0.01s:
Found 1 erroneous interleaving(s).

Writing output to file results.txt... done� �
Listing 4.2: Analyze ping_pong using Concuerror

� �
Checked 2 interleaving(s). 1 errors found.

1
Error type : Exception
Details : {badarg,[{erlang,register,[ping_pong,<0.51.0>],[]},

{ping_pong,pong,0,[]}]}
Process P1 spawns process P1.1
Process P1.1 sends message ‘ping‘ to process P1
Process P1.1 exits (normal)
Process P1 registers process P1.1 (dead) as ‘ping_pong‘
Process P1 exits (”Exception”)� �

Listing 4.3: Analysis results from ping_pong

the concurrency error. In order to run this test under Concuerror, one has to instrument
the eunit and io modules as a minimal requirement. We need to instrument the eunit
module because Concuerror doesn’t know how to interpret and correctly run eunit tests.
On the other hand, the requirement for the io module is a little bit trickier. Eunit, just
like Concuerror, implements its own IO server in order to manage the output messages
and display them in the logs. That means that when one is using the io module (which
implements an IO client) it sends a message to eunit and waits for response. Therefore
Concuerror has to know that a message was send to eunit though the io module and so
the io module has to be instrumented. With all that said we can invoke Concuerror to

4.2 Identifying a bug in the gen_server OTP module 43

run this eunit test as shown in Listing 4.5.

� �
1 -module(ping_pong_test).
2
3 -include_lib(”eunit/include/eunit.hrl”).
4
5 pong_test() ->
6 ?assertEqual(ok, ping_pong:pong()).� �

Listing 4.4: Eunit test for the ping_pong:pong/0 function

� �
$./concuerror --target ping_pong_test -f ping_pong.erl ping_pong_test.erl \

--wait-messages -T 2000 -p 1 --dpor \
-I $OTP_PATH/lib/eunit/include \
-f $OTP_PATH/lib/eunit/src/*.erl $OTP_PATH/lib/stdlib/src/io.erl

Instrumenting files... done

Running analysis with preemption bound 1...

Analysis complete. Checked 10 interleaving(s) in 0m0.10s:
No errors found.

Writing output to file results.txt... done� �
Listing 4.5: Analyze ping_pong_test using Concuerror

4.1.1 Let it crash

But wait! Analysis yields that there are no errors at all. Why did that happen? Well,
Concuerror reports two type of errors, Exceptions and Deadlocks. In order to catch an
exception the program under test has to crash. This does not happen when we run a test
using Eunit because, the Eunit framework catches all exceptions, reports them and exits
gracefully leaving Concuerror to believe that everything went normal. To circumvent that
we have to patch Eunit (Listing 4.6), and force it to propagate any exceptions during the
test to Concuerror. Repeating the analysis process again, we get the erroneous interleaving.

4.2 Identifying a bug in the gen_server OTP module

During our experiments with the mochiweb library, we stumbled upon a concurrency error
in the gen_server OTP module. In fact this error has not been discovered or resolved by
the Erlang community yet. In this section we will try to reproduce and analyze the above
defect.

Let’s begin with a simple example that implements the Generic Server Behavior as shown
in Listing 4.7. In this example we have written the very basic functionality of a gen_server
and in the function test_start_stop_twice/0 we start and stop this server twice. By

44 Chapter 4. Concuerror By Example

� �
diff --git a/lib/eunit/src/eunit_proc.erl b/lib/eunit/src/eunit_proc.erl
index ec7d93f..8303e05 100644
--- a/lib/eunit/src/eunit_proc.erl
+++ b/lib/eunit/src/eunit_proc.erl
@@ -505,11 +505,13 @@ handle_test(T, St) ->
run_test(#test{f = F}) ->

- try eunit_test:run_testfun(F) of
- {ok, _Value} ->
- %% just discard the return value
- ok;
- {error, Exception} ->
- {error, Exception}
- catch
- throw:WrapperError -> {skipped, WrapperError}
- end.
+ F(),
+ ok.
+%% try eunit_test:run_testfun(F) of
+%% {ok, _Value} ->
+%% %% just discard the return value
+%% ok;
+%% {error, Exception} ->
+%% {error, Exception}
+%% catch
+%% throw:WrapperError -> {skipped, WrapperError}
+%% end.� �

Listing 4.6: Patch eunit to propagate exceptions to Concuerror

calling the function gen_server:start_link/4, we spawn and link to a new process, a
gen_server.

• The first argument {local, gsb} specifies the name. In this case, the gen_server
will be locally registered as gsb. If the name is omitted, the gen_server is not
registered. As we will discuss later on, not registering the server makes this bug
disappear.

• The second argument, ?MODULE, is the name of the callback module, that is the mod-
ule where the callback functions are located. In this case, the interface functions are
located in the same module as the callback functions hence the use of this predefined
macro.

• The third argument, [], is a term which is passed as is to the callback function init.
Here, init does not need any input data and ignores the argument.

• The fourth argument, [], is a list of options. Here we leave the defaults.

If name registration succeeds, the new gen_server process calls the callback function
gen_server_bug:init([]). After that we make a synchronous stop request to the server
using the gen_server:call/2 function. The request is made into a message and sent to
the gen_server. When the request is received, the gen_server calls handle_call(stop,
From, State) which returns {stop, normal, ok, State}, at which point the server
exits with reason normal.

4.2 Identifying a bug in the gen_server OTP module 45

� �
1 -module(gen_server_bug).
2 -behaviour(gen_server).
3
4 -export([test_start_stop_twice/0]).
5 -export([init/1, handle_call/3, handle_cast/2, handle_info/2, terminate/2,
6 code_change/3]).
7
8 test_start_stop_twice() ->
9 ServerName = {local, ’gsb’},
10 {ok, Pid1} = gen_server:start_link(ServerName, ?MODULE, [], []),
11 gen_server:call(Pid1, stop),
12 {ok, Pid2} = gen_server:start_link(ServerName, ?MODULE, [], []),
13 gen_server:call(Pid2, stop),
14 ok.
15
16 %% ===
17 %% CallBack Functions
18 init([]) ->
19 {ok, undefined}.
20
21 handle_call(stop, _From, State) ->
22 {stop, normal, ok, State};
23 handle_call(_Event, _From, State) ->
24 {reply, ok, State}.
25
26 handle_cast(_Event, State) ->
27 {noreply, State}.
28
29 handle_info(_Info, State) ->
30 {noreply, State}.
31
32 terminate(_Reason, _State) ->
33 ok.
34
35 code_change(_OldVsn, State, _Extra) ->
36 {ok, State}.� �

Listing 4.7: A simple server using the gen_server behavior

At first glance there is nothing wrong with our code. We expect to be able to start our
gen_server right away after we have stopped it with a synchronous stop call. The next
step is to analyze this example using Concuerror. The minimum set of instrumented OTP
modules needed are the gen_server, the gen and the proc_lib ones. Invoking Concuerror
as shown in the previous examples we encounter an exception. In particular the second
start_link/4 function call returns that the server is already started. The full analysis
result when running Concuerror with infinite preemption bound is shown in Listing 4.8.

In order to understand how this exception was raised and why Concuerror thinks that our
gen_server is already started we have to follow the chain of events reported in the results.

Process P1 calls gen_server:start_link/4 where after checking if a process with name
gsb exists, it spawns process P1.1 (our gen_server) and blocks. Process P1.1 registers
itself as gsb and calls gen_server_bug:init/1 where the initialization of our server is
taking place. Afterwards it sends an acknowledgment message back to process P1 and
blocks. As we see from this the start of a gen_server is a synchronous process.

46 Chapter 4. Concuerror By Example

� �
Checked 5 interleaving(s). 1 errors found.

1
Error type : Exception
Details : {{badmatch,{error,{already_started ,<0.88.0>}}},

[{gen_server_bug,test_start_stop_twice,0,
[{file,”gen_server_bug.erl”},
{line,12}]}]}

Process P1 requests the pid of unregistered process ‘gsb‘ (undefined)
Process P1 spawns with opts to process P1.1
Process P1 blocks
Process P1.1 registers process P1.1 as ‘gsb‘
Process P1.1 sends message ‘{ack,<0.88.0>,{...}}‘ to process P1
Process P1.1 blocks
Process P1 receives message ‘{ack,<0.88.0>,{...}}‘ from process P1.1
Process P1 monitors process P1.1
Process P1 sends message ‘{’$gen_call’,{<0.87.0>,...},stop}‘ to process P1.1
Process P1 blocks
Process P1.1 receives message ‘{’$gen_call’,{<0.87.0>,...},stop}‘

from process P1
Process P1.1 sends message ‘{#Ref<0.0.0.1152>,ok}‘ to process P1
Process P1 receives message ‘{#Ref<0.0.0.1152>,ok}‘ from process P1.1
Process P1 demonitors process P1.1
Process P1 requests the pid of process ‘gsb‘ (P1.1)
Process P1 exits (”Exception”)� �

Listing 4.8: Analysis results for the gen_server_bug module

Now process P1 tries to stop our server. For this it sends a specially crafted message
to process P1.1 with stop as a request. Then it blocks waiting for a reply (we used the
gen_server:call/2 function call so our request ought to be a synchronous one). Our
server receives this message and then proceeds with the following:

• Process P1.1 calls gen_server:decode_msg/8

• Process P1.1 calls gen_server:handle_msg/5

• Process P1.1 calls gen_server_bug:handle_call/3

• Process P1.1 calls gen_server_bug:terminate/2

• Process P1.1 sends reply to P1

• Process P1.1 exits

So the reply to the process P1 is sent before process P1.1 exits. If process P1 was to
try and start the gen_server again it would complain that the server is already started
because process P1.1 has not exited yet and it remains registered under the name gsb.
This is exactly what is happening on this particular interleaving.

In order to solve this race condition, one solution could be for the server (process P1.1) to
unregister itself before sending back the reply message. This can be easily implemented
inside the gen_server OTP module but providing such a patch here is outside of the scope
of this thesis.

4.3 Analyze the MochiWeb library 47

4.3 Analyze the MochiWeb library

MochiWeb is an Erlang library for building lightweight HTTP servers, created by Bob
Ippolito. Despite not having an official website or narrative documentation, mochiweb is
a popular choice to build web services in Erlang. It is very minimal but at the same time
uses a lot of OTP applications and libraries. This makes it a perfect candidate for testing
how Concuerror copes with real life examples.

We are going to use the latest versions of mochiweb and OTP as of the point of writing
this, that is, commit 680dba8 for mochiweb and version R16B01 for OTP. MochiWeb
has a set of unit tests written using the Eunit testing framework. These tests are divided
into four modules located under the test directory inside the source tree. From these
four modules, we are going to examine the mochiweb_tests one, as it contains tests that
provide full coverage over the mochiweb code.

In order to determine the full extent of Concuerror’s capabilities over instrumenting OTP
modules, we are going to instrument all the modules that are used by mochiweb and not
just the minimum set needed to run the tests (as we did with our previous examples). We
achieve that by using the fail-uninstrumented flag and gradually instrument modules
as we move on.

4.3.1 Configuring Concuerror

There is a number of preparations needed to be made before we are able to run Concuerror
over such a big project as mochiweb. These are some small modifications in both mochiweb
and OTP code bases about things that Concuerror cannot resolve by itself.

• Since mochiweb uses the Eunit framework, the first thing we need to do is to apply
our patch to Eunit that will allow Concuerror to catch the exceptions (see List-
ing 4.6).

• We need to apply a small patch (Listing 4.9) to the ssl module of OTP. For
some reason, ssl_manager module uses the predefined macro ?MODULE to spawn and
register a gen_server but then uses the atom ssl_manager to refer to this server.
Concuerror’s rename functionality (Section 3.2) cannot handle this type of hard
coded naming references at the moment and so we have to rename ssl_manager by
hand.

• MochiWeb depends on four OTP applications for its operation, namely the crypto,
asn1, public_key and ssl applications. For Concuerror to run correctly we have to
instrument at least the last one. This is because the function ssl:transport_accept/1
called by mochiweb_socket:accept/1 waits until a connection has been established.
Concuerror has to know that this function sleeps otherwise it will report it as a dead-
lock.
In order to instrument the ssl application we have to tell mochiweb to use the
instrumented one, using the patch shown in Listing 4.10 and we have to provide an
application resource file for our instrumented ssl (Listing 4.11).

48 Chapter 4. Concuerror By Example

� �
diff --git a/lib/ssl/src/tls_connection.erl b/lib/ssl/src/tls_connection.erl
index 246fecf..ee72462 100644
--- a/lib/ssl/src/tls_connection.erl
+++ b/lib/ssl/src/tls_connection.erl
@@ -1240,5 +1240,5 @@ ssl_init(SslOpts, Role) ->
init_manager_name(false) ->

- put(ssl_manager, ssl_manager);
+ put(ssl_manager, conc__ssl_manager);
init_manager_name(true) ->

- put(ssl_manager, ssl_manager_dist).
+ put(ssl_manager, conc__ssl_manager_dist).� �

Listing 4.9: Patch ssl from OTP and rename ssl_manager atom

� �
diff --git a/src/mochiweb_socket_server.erl b/src/mochiweb_socket_server.erl
index a3d4da3..5f287b9 100644
--- a/src/mochiweb_socket_server.erl
+++ b/src/mochiweb_socket_server.erl
@@ -141,3 +141,3 @@ prep_ssl(true) ->

ok = mochiweb:ensure_started(public_key),
- ok = mochiweb:ensure_started(ssl);
+ ok = mochiweb:ensure_started(conc__ssl);
prep_ssl(false) ->� �

Listing 4.10: Patch mochiweb to use the instrumented ssl application

� �
{application, conc__ssl,

[{description, ”Erlang/OTP SSL application”},
{vsn, ”5.3”},
{registered, [conc__ssl_sup, conc__ssl_manager]},
{applications, [crypto, public_key, kernel, stdlib]},
{env, []},
{mod, {conc__ssl_app, []}}]}.� �
Listing 4.11: Application resource file for the instrumented ssl application

4.3.2 Findings

We are now ready to deploy Concuerror over mochiweb. We are doing so by running the
script shown in Figure 4.12, where we have try to instrument as many modules as we could
leaving aside (using the ignore flag) only a few ones. With this we reach the astonishing
number of 106727 total lines of instrumented code. The module mochiweb_tests contains
approximately 20 tests, and each interleaving can take up to 3 minutes to complete. In
order to reduce the time needed to run each interleaving we have to break the module into
smaller pieces and analyze each test function one by one while commenting out the rest
of them.

From our analysis we were able to find two different defects. The first one we already dis-
cussed, was the bug in the gen_server OTP module. The second one was more or less the
same but it was a defect in mochiweb itself. MochiWeb was using the gen_server:cast/2

4.3 Analyze the MochiWeb library 49

function in order to send the stop request to the server, which is an asynchronous call.
This means that if one were to try and start the mochiweb HTTP server again before the
stop request could be completed she would have faced with the same problems discussed
in Section 4.2. Because of the nature of the gen_server:cast/2 call this bug is much
more likely to occur in real time applications than the one found in the gen_server OTP
module. This is why the above defect was reported to the mochiweb developer, and a
patch fixing it has been merged upstream.

The fact that Concuerror finds and reports the above concurrency errors means that our
tools works and it is capable of instrumenting and analyzing modules that heavily depend
on OTP libraries. It also means that we are able to test a software end to end and identify
bugs not only on the software’s code base but also on the libraries it may use. This way the
developer can be sure that she uses the libraries the way it meant to be and doesn’t get any
unexpected defects caused by them. In addition our experiments show that Concuerror
is compatible with Eunit and that one can easily use the already existing Eunit tests to
analyze her software.

50 Chapter 4. Concuerror By Example

� �
1 #!/bin/bash
2
3 OTP_PATH=../otp
4 CONC_PATH=../Concuerror
5
6 $CONC_PATH/concuerror -pa . -t mochiweb_tests -p 1 --dpor \
7 -f src/*.erl test/*.erl -I include --wait-messages -T 2000 \
8 --fail-uninstrumented --app-controller --keep-tmp-files \
9 --ignore crypto crypto_app erl_prim_loader erl_parse \
10 code public_key global \
11 -I $OTP_PATH/lib/eunit/include \
12 -f $OTP_PATH/lib/eunit/src/*.erl \
13 -I $OTP_PATH/lib/kernel/include \
14 -f $OTP_PATH/lib/kernel/src/inet*.erl \
15 $OTP_PATH/lib/kernel/src/error_logger.erl \
16 $OTP_PATH/lib/kernel/src/application*.erl \
17 $OTP_PATH/lib/kernel/src/gen_tcp.erl \
18 $OTP_PATH/lib/kernel/src/os.erl \
19 $OTP_PATH/lib/kernel/src/file.erl \
20 -I $OTP_PATH/lib/stdlib/include \
21 -f $OTP_PATH/lib/stdlib/src/dict.erl \
22 $OTP_PATH/lib/stdlib/src/queue.erl \
23 $OTP_PATH/lib/stdlib/src/sets.erl \
24 $OTP_PATH/lib/stdlib/src/proplists.erl \
25 $OTP_PATH/lib/stdlib/src/lists.erl \
26 $OTP_PATH/lib/stdlib/src/io*.erl \
27 $OTP_PATH/lib/stdlib/src/unicode.erl \
28 $OTP_PATH/lib/stdlib/src/math.erl \
29 $OTP_PATH/lib/stdlib/src/erl_scan.erl \
30 $OTP_PATH/lib/stdlib/src/string.erl \
31 $OTP_PATH/lib/stdlib/src/gb_trees.erl \
32 $OTP_PATH/lib/stdlib/src/gen*.erl \
33 $OTP_PATH/lib/stdlib/src/proc_lib.erl \
34 $OTP_PATH/lib/stdlib/src/supervisor*.erl \
35 $OTP_PATH/lib/stdlib/src/timer.erl \
36 $OTP_PATH/lib/stdlib/src/calendar.erl \
37 $OTP_PATH/lib/stdlib/src/sys.erl \
38 $OTP_PATH/lib/stdlib/src/filename.erl \
39 $OTP_PATH/lib/stdlib/src/filelib.erl \
40 $OTP_PATH/lib/stdlib/src/re.erl \
41 $OTP_PATH/lib/stdlib/src/erl_posix_msg.erl \
42 $OTP_PATH/lib/stdlib/src/random.erl \
43 $OTP_PATH/lib/stdlib/src/epp.erl \
44 -f $OTP_PATH/lib/syntax_tools/src/erl_syntax.erl \
45 $OTP_PATH/lib/compiler/src/compile.erl \
46 -I $OTP_PATH/lib/ssl/include \
47 -f $OTP_PATH/lib/ssl/src/*.erl \
48 -I $OTP_PATH/lib/xmerl/include \
49 -D ”VSN=\”4.9.1\”” \
50 -f $OTP_PATH/lib/xmerl/src/xmerl_ucs.erl \
51 -I $OTP_PATH/lib/inets/include \
52 -I $OTP_PATH/lib/inets/src/inets_app \
53 -I $OTP_PATH/lib/inets/src/http_lib \
54 -f $OTP_PATH/lib/inets/src/ftp/*.erl \
55 -f $OTP_PATH/lib/inets/src/http_client/*.erl \
56 -f $OTP_PATH/lib/inets/src/http_lib/*.erl \
57 -f $OTP_PATH/lib/inets/src/http_server/*.erl \
58 -f $OTP_PATH/lib/inets/src/inets_app/*.erl \
59 -f $OTP_PATH/lib/inets/src/tftp/tftp_sup.erl \
60 -I $OTP_PATH/lib/kernel/src \
61 -f $OTP_PATH/erts/preloaded/src/prim_inet.erl \
62 $OTP_PATH/erts/preloaded/src/init.erl \
63 $OTP_PATH/erts/preloaded/src/prim_file.erl� �

Listing 4.12: Deploy Concuerror over mochiweb

Chapter 5

Conclusion and future work

In this thesis we have studied Concuerror, a testing tool for Erlang programs that uses
stateless model checking techniques for systematically producing process interleaving se-
quences of a program, after having instrumented its code. We have described the changes
that took place to Concuerror (changes that improve both its functionality and its usabil-
ity) as well as the reasons for theses changes. We also have experimented with how a real
user would use Concuerror in practice as a testing and debugging aid. At first we showed
how one can integrate Concuerror with the Eunit testing framework to use existing tests
for her analysis. Then we moved onto bigger code bases and successfully analyzed the
MochiWeb Erlang library. This was the first time Concuerror was used to debug and
analyze a well known Erlang library which depends heavily on OTP.

The development of Concuerror is far from over and the tool has a lot of room for im-
provements. Our tasks for the future include:

• Auto instrument libraries
Currently, instrumenting the code under test and the modules/libraries it uses can be
a tedious task. The user will have to use the –fail-uninstrumented command line
flag to instruct Concuerror to warn about uninstrumented modules and gradually
choose to either instrument or ignore them. We would like to make this task more
straight forward by having Concuerror to on-the-fly instrument and load one module
if it is needed by our code under test.

• Full compatibility with EUnit
Currently, using the Eunit test as an input for Concuerror’s analysis requires a
patch to be applied to the Eunit OTP library. This happens because Eunit catches
all exceptions in order to report them and then exits gracefully leaving Concuerror
to believe that everything went normal. We would like to find new ways to integrate
Concuerror with Eunit, ones that will allow the end user to use both systems as is
(without modifying them).

• Fair scheduling
As we have seen, the Concuerror scheduler is currently unfair, meaning that it could
be running a single process for ever, as long as that process never blocks. Using
fair scheduling will avoid these situations, and will additionally enable Concuerror
to detect livelocks.

51

52 Chapter 5. Conclusion and future work

• Extension for multi-node programs
Currently, Concuerror is not able to test programs that extend to more than one
node. Handling the case of multi-node programs will allow the testing of distributed
systems, which are fairly common in Erlang. Additionally, Concuerror could even-
tually be extended to drop its closed-world hypothesis and test programs that com-
municate with the outside world (e.g. ports).

• UI improvements and visualization
The Concuerror’s UI can be improved in many ways to become more usable. Some
directions are project creation and management, test automation, and visualization
of process interaction to further simplify the grasping and debugging of concurrency
errors.

Chapter 6

Related work

Model checking techniques have been used for years to verify concurrent and distributed
systems. More “traditional” model checkers require describing the system to be verified
in a special modeling language. An example of this is the SPIN model checker [32],
which verifies models expressed in the Promela language [6]. Automatic code translation
to the modeling language has been proposed and used in tools like Bandera [20], which
translates Java code into one of three modeling languages. Starting with the Verisoft
model checker [27], several others, like Java PathFinder [52], CMC [41] and CHESS [43],
have been designed to directly verify code written in the original language.

Of the aforementioned model checkers, SPIN, Java PathFinder and CMC deal with cap-
turing the program state and caching visited states. On the other hand, Verisoft and
CHESS use a stateless approach and enumerate process or thread interleaving sequences,
much like Concuerror does.

Although Erlang is a concurrency-oriented language, there has not been much effort to-
wards concurrency testing and verification. According to a recent survey [44], Dialyzer [37],
and Eunit [13] are the mostly used Erlang testing tools. Eunit provides no means of de-
tecting concurrency errors, while Dialyzer has been recently extended to detect some kinds
of data races [16] and message passing errors [17] via static analysis. QuickCheck [10],
a property-based testing tool for Erlang, has introduced a user-level scheduler named
PULSE [18], which is able to detect some concurrency errors via random process inter-
leaving. Besides the random nature of the testing procedure, which provides no correctness
guarantees, the user is required to write down desired properties using a special semi-formal
notation, which is by itself not a trivial task and, additionally, excludes the use of existing
unit tests.

Verification tools for Erlang programs include Huch’s abstract interpretation model checker
[33], and the McErlang model checker [24, 25]. McErlang uses a stateful exploration ap-
proach and allows the parametrization of the algorithms and structures used inside the
tool. However, by default processes are only allowed to be preempted at receive expres-
sions, thus the resulting search is very coarse-gained compared to Concuerror. The intro-
duction of finer-gained preemption points requires the manual placement of commands,
which is a strenuous task and, at the same time, alters the original code.

53

Bibliography

[1] CouchDB. https://couchdb.apache.org/.

[2] ejabberd. http://www.process-one.net/en/ejabberd/.

[3] Erlang/OTP online documentation. http://www.erlang.org/doc/.

[4] Fuzz testing of application reliability. http://pages.cs.wisc.edu/~bart/fuzz/
fuzz.html.

[5] SimpleDB. https://aws.amazon.com/simpledb/.

[6] Book review: Design and validation of computer protocols by Gerard J. Holzmann
(prentice hall, 1991). SIGCOMM Comput. Commun. Rev., 21(2):14–, Apr. 1991.
Reviewer-Fredlund, Lars-Åke.

[7] S. Anand, P. Godefroid, and N. Tillmann. Demand-driven compositional symbolic
execution. In Proceedings of the Theory and practice of software, 14th international
conference on Tools and algorithms for the construction and analysis of systems,
TACAS’08/ETAPS’08, pages 367–381, Berlin, Heidelberg, 2008. Springer-Verlag.

[8] J. Armstrong. A history of Erlang. In Proceedings of the third ACM SIGPLAN
conference on History of programming languages, HOPL III, pages 6–1–6–26, New
York, NY, USA, 2007. ACM.

[9] J. Armstrong. Programming Erlang: Software for a Concurrent World. Pragmatic
Bookshelf, 2007.

[10] T. Arts, J. Hughes, J. Johansson, and U. Wiger. Testing telecoms software with
Quviq QuickCheck. In Proceedings of the 2006 ACM SIGPLAN workshop on Erlang,
ERLANG ’06, pages 2–10, New York, NY, USA, 2006. ACM.

[11] K. Beck. Test Driven Development: By Example. Addison-Wesley Longman Publish-
ing Co., Inc., Boston, MA, USA, 2002.

[12] K. Beck and C. Andres. Extreme Programming Explained: Embrace Change (2nd
Edition). Addison-Wesley Professional, 2004.

[13] R. Carlsson and M. Rémond. Eunit: a lightweight unit testing framework for Erlang.
In Proceedings of the 2006 ACM SIGPLAN workshop on Erlang, ERLANG ’06, pages
1–1, New York, NY, USA, 2006. ACM.

[14] F. Cesarini and S. Thompson. ERLANG Programming. O’Reilly Media, Inc., 1st
edition, 2009.

55

https://couchdb.apache.org/
http://www.process-one.net/en/ejabberd/
http://www.erlang.org/doc/
http://pages.cs.wisc.edu/~bart/fuzz/fuzz.html
http://pages.cs.wisc.edu/~bart/fuzz/fuzz.html
https://aws.amazon.com/simpledb/

56 Bibliography

[15] M. Christakis, A. Gotovos, and K. Sagonas. Systematic testing for detecting concur-
rency errors in Erlang programs. In ICST, pages 154–163. IEEE, 2013.

[16] M. Christakis and K. Sagonas. Static detection of race conditions in Erlang. In
Proceedings of the 12th international conference on Practical Aspects of Declarative
Languages, PADL’10, pages 119–133, Berlin, Heidelberg, 2010. Springer-Verlag.

[17] M. Christakis and K. Sagonas. Detection of asynchronous message passing errors
using static analysis. In R. Rocha and J. Launchbury, editors, PADL, volume 6539
of Lecture Notes in Computer Science, pages 5–18. Springer, 2011.

[18] K. Claessen, M. Palka, N. Smallbone, J. Hughes, H. Svensson, T. Arts, and U. Wiger.
Finding race conditions in Erlang with QuickCheck and PULSE. In Proceedings of
the 14th ACM SIGPLAN international conference on Functional programming, ICFP
’09, pages 149–160, New York, NY, USA, 2009. ACM.

[19] E. M. Clarke, E. A. Emerson, and J. Sifakis. Model checking: algorithmic verification
and debugging. Commun. ACM, 52(11):74–84, Nov. 2009.

[20] J. C. Corbett, M. B. Dwyer, J. Hatcliff, S. Laubach, C. S. Păsăreanu, Robby, and
H. Zheng. Bandera: extracting finite-state models from Java source code. In Proceed-
ings of the 22nd international conference on Software engineering, ICSE ’00, pages
439–448, New York, NY, USA, 2000. ACM.

[21] D. Engler and K. Ashcraft. RacerX: effective, static detection of race conditions and
deadlocks. In Proceedings of the nineteenth ACM symposium on Operating systems
principles, SOSP ’03, pages 237–252, New York, NY, USA, 2003. ACM.

[22] G. Fink and M. Bishop. Property-based testing: a new approach to testing for
assurance. SIGSOFT Softw. Eng. Notes, 22(4):74–80, July 1997.

[23] C. Flanagan and P. Godefroid. Dynamic partial-order reduction for model checking
software. In Proceedings of the 32nd ACM SIGPLAN-SIGACT symposium on Prin-
ciples of programming languages, POPL ’05, pages 110–121, New York, NY, USA,
2005. ACM.

[24] L.-Å. Fredlund and C. B. Earle. Model checking Erlang programs: the functional
approach. In Proceedings of the 2006 ACM SIGPLAN workshop on Erlang, ERLANG
’06, pages 11–19, New York, NY, USA, 2006. ACM.

[25] L.-Å. Fredlund and H. Svensson. McErlang: a model checker for a distributed func-
tional programming language. In Proceedings of the 12th ACM SIGPLAN interna-
tional conference on Functional programming, ICFP ’07, pages 125–136, New York,
NY, USA, 2007. ACM.

[26] P. Godefroid. Partial-Order Methods for the Verification of Concurrent Systems: An
Approach to the State-Explosion Problem. Springer-Verlag New York, Inc., Secaucus,
NJ, USA, 1996.

[27] P. Godefroid. Model checking for programming languages using VeriSoft. In Proceed-
ings of the 24th ACM SIGPLAN-SIGACT symposium on Principles of programming
languages, POPL ’97, pages 174–186, New York, NY, USA, 1997. ACM.

Bibliography 57

[28] A. Gotovos. Dynamic systematic testing of concurrent Erlang programs. Master’s
thesis, Computer Engineering, National Technical University of Athens, June 2011.

[29] A. Gotovos, M. Christakis, and K. Sagonas. Test-driven development of concurrent
programs using Concuerror. In K. Rikitake and E. Stenman, editors, Erlang Work-
shop, pages 51–61. ACM, 2011. https://github.com/mariachris/Concuerror/.

[30] C. Hewitt. Actor model for discretionary, adaptive concurrency. CoRR,
abs/1008.1459, 2010.

[31] C. Hewitt, P. Bishop, and R. Steiger. A universal modular actor formalism for artifi-
cial intelligence. In Proceedings of the 3rd international joint conference on Artificial
intelligence, IJCAI’73, pages 235–245, San Francisco, CA, USA, 1973. Morgan Kauf-
mann Publishers Inc.

[32] G. J. Holzmann. The model checker SPIN. IEEE Trans. Softw. Eng., 23(5):279–295,
May 1997.

[33] F. Huch. Verification of Erlang programs using abstract interpretation and model
checking. In Proceedings of the fourth ACM SIGPLAN international conference on
Functional programming, ICFP ’99, pages 261–272, New York, NY, USA, 1999. ACM.

[34] IEEE Computer Society. Software Engineering Body of Knowledge (SWEBOK). An-
gela Burgess, EUA, 2004.

[35] E. Johansson, M. Pettersson, and K. Sagonas. A high performance Erlang system.
In Principles and Practice of Declarative Programming, pages 32–43, 2000.

[36] J. C. King. Symbolic execution and program testing. Commun. ACM, 19(7):385–394,
July 1976.

[37] T. Lindahl and K. Sagonas. Detecting software defects in telecom applications through
lightweight static analysis: A war story. In W.-N. Chin, editor, APLAS, volume 3302
of Lecture Notes in Computer Science, pages 91–106. Springer, 2004.

[38] T. Lindahl and K. Sagonas. Typer: a type annotator of Erlang code. In K. Sagonas
and J. Armstrong, editors, Erlang Workshop, pages 17–25. ACM, 2005.

[39] H. Mattsson, H. Nilsson, and C. Wikström. Mnesia - a distributed robust dbms for
telecommunications applications. In Proceedings of the First International Workshop
on Practical Aspects of Declarative Languages, PADL ’99, pages 152–163, London,
UK, UK, 1998. Springer-Verlag.

[40] MochiWeb. https://github.com/mochi/mochiweb/.

[41] M. Musuvathi, D. Y. W. Park, A. Chou, D. R. Engler, and D. L. Dill. CMC: a
pragmatic approach to model checking real code. SIGOPS Oper. Syst. Rev., 36(SI):75–
88, Dec. 2002.

[42] M. Musuvathi and S. Qadeer. Iterative context bounding for systematic testing of
multithreaded programs. In Proceedings of the 2007 ACM SIGPLAN conference on
Programming language design and implementation, PLDI ’07, pages 446–455, New
York, NY, USA, 2007. ACM.

https://github.com/mariachris/Concuerror/
https://github.com/mochi/mochiweb/

58 Bibliography

[43] M. Musuvathi, S. Qadeer, T. Ball, G. Basler, P. A. Nainar, and I. Neamtiu. Find-
ing and reproducing heisenbugs in concurrent programs. In Proceedings of the 8th
USENIX conference on Operating systems design and implementation, OSDI’08,
pages 267–280, Berkeley, CA, USA, 2008. USENIX Association.

[44] T. Nagy and A. Nagyné Víg. Erlang testing and tools survey. In Proceedings of the
7th ACM SIGPLAN workshop on ERLANG, ERLANG ’08, pages 21–28, New York,
NY, USA, 2008. ACM.

[45] W. Nelson. Accelerated Testing: Statistical Models, Test Plans, and Data Analysis.
John Wiley & Sons, 1990.

[46] OTP. https://github.com/erlang/otp/.

[47] R. V. Patil and B. George. Tools and techniques to identify concurrency issues. MSDN
Magazine, June 2008.

[48] K. Sen. Concolic testing. In Proceedings of the twenty-second IEEE/ACM interna-
tional conference on Automated software engineering, ASE ’07, pages 571–572, New
York, NY, USA, 2007. ACM.

[49] J. Shore and Chromatic. The Art of Agile Development. O’Reilly Media, 2008.

[50] A. J. H. Simons. A theory of regression testing for behaviourally compatible object
types. Softw. Test. Verif. Reliab., 16(3):133–156, Sept. 2006.

[51] A. Takanen, J. DeMott, and C. Miller. Fuzzing for Software Security Testing and
Quality Assurance. Artech House, Inc., Norwood, MA, USA, 1 edition, 2008.

[52] W. Visser, K. Havelund, G. Brat, and S. Park. Model checking programs. In Proceed-
ings of the 15th IEEE international conference on Automated software engineering,
ASE ’00, pages 3–, Washington, DC, USA, 2000. IEEE Computer Society.

https://github.com/erlang/otp/

	Περίληψη
	Abstract
	Ευχαριστίες
	Contents
	List of Figures
	List of Listings
	Introduction
	Testing as part of Software Development
	Testing concurrent programs
	Introducing Concuerror
	What's next?

	Background
	The Erlang Programming Language
	Basic features
	Concurrency in Erlang
	Concurrency Errors

	Concuerror Overview
	Instrumenter
	Scheduler
	Efficiency Improvements

	Extending Concuerror
	Command Line Interface
	Analysis Results
	Analysis Termination
	Command-line options

	Instrumentation of Libraries
	Extending Concuerror's Test Suite
	Dynamic Partial Order Reduction

	Concuerror By Example
	Run Eunit tests through Concuerror
	Let it crash

	Identifying a bug in the gen_server OTP module
	Analyze the MochiWeb library
	Configuring Concuerror
	Findings

	Conclusion and future work
	Related work
	Bibliography

