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PerÐlhyh

To Single-Chip Cloud Computer (SCC) eÐnai “mia peiramatik  platfìrma me 48 pur nec Pèn-

tioum apì thn Intel Labs”. Me skopì thn exereÔnhsh twn dunatot twn tou SCC, dÔo efarmogèc

metafèrjhkan sthn platfìrma sta plaÐsia thc diplwmatik c. H pr¸th efarmog  eÐnai ènac sumpie-

st c eikìnwn b�sh tou prwtokìllou thc om�dac “Joint Photographics Experts Group” (JPEG).

H metafor� tou sumpiest  sto SCC petuqaÐnei ikanopoitik  aÔxhsh thc taqÔthtac epÐ thc mono-

nhmatik c èkdoshc thc efarmog c kai prosfèrei ènan apodekto telikì rujmì paragwg c eikìnwn

gia tic shmerinèc an�gkec thc biomhqanÐac.

H deÔterh kai kÔria efarmog  poÔ metafèrjhke sto SCC eÐnai ènac prosomoiwt c diktÔwn

twn egkefalik¸n kutt�rwn pur na k�tw elaÐac, me stìqo thn ell�twsh katan�lwshc enèrgeiac

leitourgÐac. Katapi�netai me thn exereÔnhsh tou anjr¸pinou egkef�lou pou apasqoleÐ meg�lo

mèroc thc akadhmaðk c èreunac s mera. DiaforopoieÐtai apì tic sunhjismènec proseggÐseic tÔ-

pou “maÔrou koutioÔ” kaj¸c basÐzetai se èna biologik� akribèc montèlo. H metafor� sto SCC

epikentr¸netai sthn eÔresh mejìdwn gia thn beltistopoÐhsh thc apìdoshc tou prosomoiwt  se

sunduasmì me thn meÐwsh tou energeiakoÔ kìstouc thc efarmog c. EpÐ toÔtou anaptÔqjhkan dÔo

mèjodoi metafor�c sto SCC, kajemÐa me diaforetikì trìpo meÐwshc thc energeiak c katan�lwshc.

Oi dÔo mèjodoi sugkrÐnontai b�sh grafhm�twn kai parousi�zetai mia lÔsh pou isorropeÐ an�mesa

sthn taqÔthta kai to kalì energeiakì profÐl thc efarmog c.

Lèxeic Kleidi�: SCC, RCCE, HPC, JPEG, K�tw ElaÐa, Enèrgeia, IsqÔc, Egkèfaloc, DÐktuo

Kutt�rwn, Prosomoiwt c
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Abstract

The Single-Chip Cloud Computer (SCC) is an experimental board with 48 Pentium cores

created by Intel Labs. To explore SCC, this thesis covers the porting of two applications on

the board. The first project is the porting of an encoder for the “Joint Photographics Experts

Group (JPEG) Protocol for still image compression”. Porting the encoder on the SCC yields a

satisfactory speedup of the single-threaded version and achieves an acceptable frame rate with

respect to today’s standards of the industry.

The second and main application ported on the SCC is an energy-aware simulator of inferior

olive cell networks. It tackles an important aspect of the human brain’s exploration, a subject

motivating academic research greatly in modern times. It differs from the usual black-box

approach on the matter by using a biologically accurate model. The porting focuses on finding

efficient solutions to optimizing the simulator’s performance while reducing energy expenditure

and power consumption. To this end, two different porting options are introduced, each with a

different method of lowering power requirements. The different methods are compared against

each other with extensive Figures detailing each option’s results. Ultimately, a solution that

balances performance and energy gain is presented.

Keywords: SCC, RCCE, HPC, JPEG, Inferior Olive, Energy, Power, Brain, Cell Network,

Simulator
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Chapter 1

Introduction

The SCC experimental processor [27] is a 48-core “concept vehicle” created by Intel Labs as

a platform for many-core software research.

This thesis covers the mapping of two applications on the SCC. The first application is an

encoder of the JPEG format. The JPEG encoder served as an application to explore the capa-

bilities of the SCC and familiarize the user with its programming paradigm. Image compression

and processing is a subject of great value in today’s era. Many Computer Generated Image

(CGI) studios demand ever increasing processing power and revolutionary progress is marked in

the field of medical imaging. Thus, a JPEG encoder served as a representative concept vehicle

to create a first functional project on the SCC.

The second application mapped on the SCC is a biologically accurate simulator of the inferior

olive cell activity. It constitutes the main contribution of this thesis and involves an exploration

of mapping options, along with an evaluation of the associated quality costs (energy, delay etc).

Contrary to most existing approaches on cell activity modeling (black box approaches [37]),

this simulator is based on mathematical equations concerning cells’ channel conductances, in

order to calculate important parameters of the cells, such as its compartments’ voltage levels.

Because of the accuracy of the utilized model, it is a great tool to observe the obscure behavior

of important brain cells when exposed to user-defined stimuli. The sheer volume of floating

point operations during a simulation makes the application suitable for speeding up on the 48

cores of the SCC. This is done via both data and task partitioning; these two main techniques

point to how workload can be distributed across the available cores. Data partitioning refers to

segmenting and assigning different parts of the program’s data to different cores and performing

the same actions on them. Task partitioning on the other hand, refers to assigning different

tasks to different cores and each one performing on the entirety of the application’s data. Both

techniques have their merits and the best multi-core performance possible is often attained by

utilizing a mix of both methods [29].

This thesis holds an overview of the SCC platform in Chapter 2. Information about Intel’s
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multi-core project and SCC’s history is provided, followed by presentation of the chip’s archi-

tecture. The board’s programming paradigm is then detailed, along with libraries and utilities

offered to the user to fulfill his needs and ease his familiarization phase with the SCC. Special

attention will be given to power management utilites, which are extensivelly used in the inferior

olive simulator’s design. Chapter ends with the remarks about the user’s experience working

with the board.

Chapter 3 and Chapter 4 detail the porting of the JPEG encoder and the inferior olive

simulator on the SCC, respectively. Both Chapters begin by describing the nature of each

application’s purpose and what motivated their development. Details about both applications’

structure are provided. In the case of the inferior olive simulator of Chapter 4, two separate

porting options are presented along with two methods aimed at lowering energy consumption

while maintaining peak performance. Results are discussed based on extensive Figures describing

variables examined, such as frame rate output for the JPEG encoder, simulation completion time

and energy expenditure for the inferior olive simulator etc.

The thesis concludes in Chapter 5 which summarizes both applications’ performance. Im-

portant conclusions valuable to the reader are discussed. Suggestions for improving the existing

work are mainly held in this Chapter. The Chapter ends with a remark from the author on how

the SCC sets the trend for future developers caring for the energy profile of their applications,

as well as providing them the chance to develop multi-core projects, ultimately succeeding in its

original purpose.



Chapter 2

SCC Platform Overview

2.1 Introduction

The SCC is a platform developed by Intel corporation largely for research on multi-core

programming and architecure. The platform proceeded a previous 80-core platform named

Teraflops Research Chip (also named Polaris [31]). Both are part of Intel’s Tera-scale Project

[30]. The project’s aim is to answer various important questions concerning highly parallel

computing (HPC), such as what programmers can achieve when they are equipped with software

tools enabling control over power consumption of applications and how scalable networks of cores

need to be interconnected. According to Intel Labs, “the SCC is an ideal research platform to

help accelerate many-core software research” [16].

This Chapter will initially describe the architecture of the SCC and its necessary connection

to the host Personal Computer (host PC). Then the process of programming will be described,

as well as the available software tools to write multi-core, communication-heavy applications.

Finally, any additional utilities provided by Intel Labs that have been proven useful will be

relayed.
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2.2 Physical Description

In its current form, the SCC needs a host PC called the Management Console PC (MCPC)

which connects to the board via PCI-Express bus. The MCPC runs a Linux distribution of the

user’s choice, while the cores have the option of supporting baremetal applications or loading

Linux images [15]. The thesis has only tackled applications using a working Linux OS loaded

on the cores and thus will not include further information concerning baremetal applications.

The board itself consists of 48 cores on a 6×4 mesh. The mesh is split in 24 tiles containing

2 cores each. The tile is the basis for the SCC, each one being an autonomous entity, connected

with the rest of the network of tiles. For each core, there is a separate L1 Instruction and a L1

Data cache, while the L2 cache is common for both and is located on the tile. Both L1 caches’

capacity is 16KB, while the L2 cache is 256KB. On the tile, a crucial part of core communication

is located, the message passing buffer (MPB). The MPB is a small SRAM buffer of 16KB and

its contents can be read by any core of all 24 tiles. In total, there is 384KB of message-passing

memory that can be accessed by any core on the SCC. Hence, whenever a message needs to be

sent from one core to the other, the cores transfer the required data from their L1 cache to their

MPB, so that the receiving core can access the information and copy it to its own L1 cache.

Figure 2.1: A brief description of the SCC Architecture [30]

“The Mesh Interface Unit (called MIU) connects the tile to the mesh. It packetizes data out

to the mesh and unpacks data in from the mesh” [16]. Because the core addresses are 32-bit

but the SCC holds 64GB of RAM, the MIU acts as a decoder of a core address to a system

address. This process uses a look up table for translating, the table being different for each

core. The MIU also handles the data flow on the mesh. A credit-based protocol regulates data

traffic incoming to or outgoing from the tile. The flow alternates between the two cores of the

tile based on a round robin protocol.

As mentioned before, in the configuration used for this research, the SCC was connected to

a host PC, the MCPC through a PCIe bus. The MCPC is a 64-bit console that runs Linux,



with all required software for programming provided by Intel. Through such software, the

SCC platform is configured and then the desired application is compiled and loaded on the SCC

cores. All Input/Output (I/O) operations of the application are carried out through the MCPC.

In this configuration, the files and logs that serve as I/O for the application that is executed

on the SCC are kept in a special folder on the MCPC that maps to a shared memory space

between the console and the SCC. Of the board’s 64GB RAM, 32GB is private to the cores and

the other 32GB is shared between the SCC and the MCPC. All files in that space (and only

those) can be created by the MCPC and be accessible to the cores. Thus, they are used for

the required input (list of frames and frames-to-be-encoded for the JPEG encoder, simulation

parameters specificiations for the inferior olive simulator) as well as output (encoded frames

and logs detailing information about the JPEG encoder’s performance, inferior olive simulator

output files) of both applications mapped on the SCC in this thesis.

Figure 2.2: Voltage and Frequency Domains on the SCC Mesh [16]

Other important compartments of the SCC board include a power controller. This controller

allows the user to alter the frequency and voltage under which a subset of cores operates. A

program can affect in real time the frequency level of a tile and the user can also affect the

voltage level of a mesh of 4 tiles (2×2, 8 tiles total), as shown in Figure 2.2. However voltage

adjustment takes considerable time and cannot be realistically achieved on the fly. The board

also contains a digital temperature sensor which allows observation of the tiles’ cores, even as

their frequency and voltage feed is altered. These sensors are available via the sccTherm program

[35].



2.3 Programming Model

The application developer mostly works on the MCPC. All necessary utilities are installed

there, the cores of the SCC have minimal user interface and can even function without an OS

(baremetal applications). The MCPC is a typical PC with Linux distribution, facilitating the

developer as he works in a familiar environment.

For the programming of many-core applications demanding communication between cores, a

many-core C-language environment very similar to the open-mpi library [10] is used and provided

by Intel, called RCCE [15] [22]. Its purpose serves writing message passing application programs

on the board. The RCCE library includes a vast range of functions, from simple message passing

between two cores to broadcasting messages from one core to the entire mesh. One who is familiar

with the logic of message passing parallel programming is quick to adapt to and use the RCCE

environment.

The RCCE library has two main modes: gory mode and non-gory mode. The difference

between the two is the amount of detail the programmer gets involved with concerning message

passing. Non-gory mode is usually enough for an average application and was the mode selected

when the library was first configured and built for the SCC system. Gory mode was not explored

at all for this thesis.

Most applications, including those developed in this thesis, make use of RCCE send() [15]

and RCCE recv() functions. These are simple blocking functions transmitting a buffer of pre-

defined size between two cores. Like any blocking communication function, each RCCE send()

must be met with a corresponding RCCE recv() from the core receiving the information and vice

versa. There are non-blocking versions of the functions developed by RWTH Aachen University

[24] which were not used by the applications presented in this thesis.

There are more collective communication functions enabling mass core-to-core data ex-

change. RCCE scatter() [22] and RCCE gather() will be mentioned here, which allow a core

to send the contents of a buffer to multiple other cores silmutaneously, as well as receive in-

formation from multiple cores. Such functions perform better than individual send-receives

since they are optimized for mass communication and they prevent deadlocks; however they can

only be employed with careful processing of data-to-be-sent and received. They also demand

communication between all cores employed by the application, which is not always desirable.

The usual process of programming on the SCC is as follows: the developer works on his

project on the MCPC in a private folder. He then compiles the project with the necessary

adjustments to a regular makefile so that the RCCE library is included and the executable is

compatible for the P54C architecture of the SCC cores. Then the executable is transferred

to the shared folder with the board, along with a file describing the core addresses that will

be demanded to host the application, as well as any input and output files necessary to the

program. A provided script is then initiated which forces the cores to execute the application.



If the execution runs into a critical error, an error message along with an error code is returned

to the MCPC by each core of the SCC individually. The developer can look up the error code

to discern problems occuring in his project leading to failure [17].



2.4 Utilities and Experiences

The user is provided with a script (named rccerun) to facilitate dispatching jobs to the SCC.

The script first flushes the MPBs of the cores requested by the user to host the program. It then

proceeds with the executable, assigning it to the cores as indicated by the host file provided by

the user. The script is important, as the MPBs are necessary for any communication between

cores and previous programs may leave them in undefined state.

Intel Labs provides the user with software for the MCPC called sccKit [16]. sccKit offers

a graphic user interface (sccGUI) to supervise the condition under which the cores operate.

sccGUI contains information on how much of each core’s processing power is being used. It also

helps at the startup of the cores, allowing easy booting of Linux on all cores. sccKit also offers

the sccKonsole command, allowing the user to access a terminal on any of the 48 SCC cores.

The protocol used to connect to the cores via the MCPC is SSH [7]. If the user wants to execute

a particular command in all core terminals (the top command for example), there is a broadcast

option to copy input from one terminal to all others.

A factor that draws people to the SCC would definitely be its power management utilities

[18]. As mentioned in Figure 2.2 of Section 2.2, the board’s power controller allows the user

to dictate the voltage and frequency of operation of the cores, within certain limitations. This

allows the developer to experiment with energy consumption reduction methods, an issue that

is very pressing and interesting these days [40], as he can observe how the application behaves

when running under different frequency levels. It also allows to balance workload “slack” between

cores handling different tasks with energy gains by allowing these particular cores to operate at

lower voltage settings.

One important asset of the SCC, which renders it suitable for experimental purposes, would

be how familiar to the user its programming paradigm is. The board itself does not burden the

cores with anything unnecessary, leaving it up to the user to boot an operating system, if any

at all. The MCPC on the other hand is a typical Linux system, equipped with all necessary

compilers for the P54C architecure, code editors and general utilities the programmer needs,

such as internet browsers. This way, while the SCC is minimalistic, it offers the developer with

everything required to develop his project in a friendly environment.

There is a great variety of sources from which the programmer can acquire information

concerning both the SCC and the RCCE library. Many manuals concerning the board and its

usage have been composed by Intel which have been invaluable to this project (some of them

are used as references for this thesis). There is also a very active Intel forum helping out and

educating SCC developers [2]. Finally, many of the projects already created by third parties for

the SCC, such as the iRCCE library [24], are open to the public, allowing a developer to collect

ideas, inspiration and acquire information.

The SCC presents some troubles with debugging. Any messages the cores try to send to the



MCPC seem to fail when the program freezes for whatever reason. Thus a simple segmentation

fault causing the execution to crush might not be caught by the SCC if it causes the program

to “hang” and no error code is returned to the user. Also, any messages embedded within the

application to help the developer keep track of his project are delayed, so if the program crushes,

they never appear to help the user know which part of the code failed. Furthermore, when a

program freezes for any reason while executed by the core, the easiest way to terminate it is to

run the provided script killing a particular set of jobs on all cores, as defined by the user. These

problems cannot be practically alleviated by the use of a debugger either, since an application

running on multiple cores would require an instance of the debugger running on each of the

cores utilized by the application. All these minor details combined together make the process

of debugging somewhat tedious for the developer, forcing him to waste development time over

trivial errors in his application.

To summarize, the experience of the author using the SCC has been overall positive. There

is plenty of support for the developer provided by Intel, such as technical reports and hardware

or software manuals, along with a dedicated forum [2]. The MCPC, once configured correctly,

provides everything one needs to begin creating multi-core applications. This is done in an

environment that is familiar to the programmer, with tools that resemble well-known pre-existing

ones, like then open-mpi library [10]. While there are some setbacks during the development

phase of an application due to troublesome bug handling, the SCC is deemed an excellent

advanced platform to compose and test HPC projects of any nature. This is further supported

by the fact that future products follow, like the SCC did, the many-core paradigm, such as

the “Intel Xeon Phi coprocessor” [34] [8] and the ST Microelectronics P2012 “area- and power-

efficient many-core computing fabric” [36].



Chapter 3

Porting of the JPEG Encoder

3.1 Introduction

The first portion of the thesis on the Intel SCC is the porting of a JPEG protocol encoder.

The application has the following task in mind: given a set of .bmp format pictures, compress

the images and transform them in JPEG images, in the least amount of time possible.

The name JPEG stands for “Joint Photographic Experts Group”, the name of the committee

that created the JPEG standard, as well as other still picture coding standards. The “Joint”

in JPEG refers to the collaboration of two groups, CCITT and ISO [9]. It is the most common

method of lossy compression for digital photography. Particularly, all contemporary digital

photo cameras support the capture of images in JPEG format as the common medium for

image interchange and all image viewers, image editors and Web browsers can display JPEG

images as a common standard. It was first publicly released in October 1991 and has been

developed since that time. In June 2009, JPEG Group published version 7 of the software with

new features for image coding application. In January 2010, version 8 was introduced with

extension providing the basis for the “next generation image coding standard” [5]. The current

version is release 9 of 13-Jan-2013.

JPEG’s goal has been to develop a method for image compression which meets a number

of criteria [46]. The standard needs to be at or near state-of-the-art with regard to compres-

sion rate and accompanying image fidelity, over a wide range of image resolutions, sizes and

quality ratings. The application also needs to be configurable so that the user can set the

compression/quality ratio which is desired. The standard needs to be applicable to any kind

of digital-source image and not be restricted by dimension, color, aspect ratios or any other

parameter. It also needs to have a tractable computational complexity so as implementation is

feasible to program. Lastly, it needs to have different modes of operation, sequential encoding,

progressive encoding, lossless encoding and hierarchical encoding.

In the context of this thesis, the JPEG encoder was used as a concept vehicle to attain

10



familiarization with the SCC architecture and its programming paradigm, the RCCE library. As

such, in order to achieve familiarity and gain experience with it, an application that could easily

achieve high degree of parallelism was deemed necessary. An encoder is such an application,

demanding high levels of throughput, encoding at a fast pace multiple frames at high resolutions

so as to achieve high frame-per-second (FPS) delivery times.

However, it is worthy of note that instead of simply assigning different images to differ-

ent cores with minimal effort, the encoding algorithm was broken down in stages and a pipeline

architecture was realized to exploit task partitioning while processing a single image. The advan-

tages of such an approach, discussed in detail further below, include specialization of the tasks

each core undertakes and providing the user with the option of assigning more computational

resources to process images of greater priority and/or importance.



3.2 Motivation

Over the years, the need for great computing power to serve the needs of image processing has

increased. Tasks, such as rendering large objects of high resolution, which have been considered

impossible in the past can be achieved today with high-performance computing [39]. As a result

companies interested in the field of image rendering and animation invest in obtaining higher

levels of processing power. An example of this would be the collaboration of Intel Labs and

Pixar, the well-known animation studios [20]. As time progresses, more and more processing

power is required to the development of CGI-based films. Rendering, which is the process of

creating an image on the computer from a strict model detailing the geometry, shading, texture

and lighting of a three-dimensional object, is a very demanding process, from a computational

standpoint. An average film of 90 minutes at 24 frames per second requires the production of

over 130,000 frames. However, the task can be handled by efficient parallel programming, as

multiple frames can be processed simultaneously. Pixar Studios invest in systems with great

amounts of cores, providing them with the computing power they need, as well as upgrading

their single-threaded rendering engine (called RenderMan) to supporting multiple threads so as

to be able to take advantage of multicore systems provided by Intel.

Highly parallel computing is not only beneficial to image rendering for entertaining purposes.

3D medical information obtained from Magnetic Resonance Image (MRI), X-ray Computed

Tomography (CT), etc. are used for an operation-supporting image, and operations under

image guidance has also been conducted [19]. Taking it one step further, Integral Videography

(IV) can reproduce a computer-generated spatial object. However, due to the sheer amount of

calculation needed, parallel processing is paramount to reduce delay in rendering.

Another source of motivation for this project has been a very relevant work from the Univer-

sity of Eindhoven in collaboration with the University of Las Palmas, named MiniNOC [14]. The

project focused on using a Network-on-a-Chip to map multi-core applications of vast computa-

tional needs. A lot of software tools were developed by the two universities but most importantly

for this thesis, a JPEG decoder was ported on the MiniNOC. The results of the work were en-

couraging and it should be noted that future work includes increasing the speed of the decoding

process. Compared to the 2×2-core MiniNOC platform, SCC was deemed a platform capable of

better performance. Thus, there have already been attempts at porting the widely used JPEG

protocol on a Network on Chip (NoC).

The need for high performance computing (HPC) techniques in the field of image rendering

has been proven on many different occasions. There is a general increasing need for HPC in a

diverse number of fields, ranging from medicinal [4] and geometrical applications to financial [6]

projects. The science of parallel computing is no longer restricted to supercomputing centers as

more and more companies invest in HPC. With this in mind, porting an image-rendering-relevant

application on a high performance NoC is worthy of taking a look at.



3.3 JPEG Encoder and Porting

There is currently a great number of applications on the field of digital imaging. The key

obstacle for many of them is the vast amount of data required to represent a digital image

directly. A single, color picture at TV resolution requires megabytes of data to be represented.

This amount of data even grows at a fast rate with the increase in image size and resolution.

The JPEG encoder is broken down on separate tasks, feeding data from one task to the next

like a streaming application. The procedure will be detailed in full further in the text, however

this fact has encouraged the porting of the encoder on a multicore platform for distributing

the tasks to cores, in a pipeline fashion. The idea was inspired originally by a number of other

projects. One such work, the MiniNOC project has already been mentioned; another is the

work of Rodopoulos et al. as presented at the IEEE SELSE workshop in 2012 [41]. This work

focused on the application of decoding as a means of exploring silicon error handling protocols.

It provided a solid background to work on.

The JPEG protocol is split in 3 stages, as depicted in Figure 3.1. The .bmp image is split

in 8x8 (pixels) blocks. In the first stage, the block is parsed and decoded in YGB buffers which

are fed as input to the next stage. In stage 2, from YGB encoding, through a mathematical

process called Discrete Cosine Transform (DCT), the picture is coded as frequency blocks, which

are 64-point discrete signals. The frequency blocks are forwarded to stage 3, which quantizes

the signal based on a hardcoded frequency table, rearranges the blocks in a zig-zag fashion and

further compresses the image based on Huffman’s coding.

The blocks are provided as input in stage 1, make their way through the 3 stages and are

ready to be recorded in the output .jpg file. After every block has been processed, the footer is

signed and the .jpg file is ready. Thus a pipeline approach has been used so as to increase the

encoding throughput. A core is assigned to executing a specific stage. After a block is finished,

it is passed on to the appropriate core/stage and the next block is processed. Thus the 48 cores

of the SCC are organized in triads in this work, where each core of the triad always handles one

particular stage for all blocks of the frames assigned to the triad.

Figure 3.1: Illustration of the encoder pipeline: after n+2 steps, the n-block frame 1 is
produced.



One main advantage that should be noted in the particular porting option that was followed

is the task partitioning between cores. The DCT transformation is a computationally heavy

task, whereas splitting the image in 8x8 blocks and converting them to YGB standard mostly

comprises of many memory accesses. Hence, one could assign the former task to a core with

strong ALU and the latter task to a core with a fast and suitably sized series of data caches.

Specializing cores according to tasks assigned is a profitable method. It can lead to speedup

as well as financial benefits, since the user knows exact specifications to build his system with

and run the encoder application optimally. Moreover, cores with lighter tasks than others can

be tuned to operate at lower frequencies in order to align better with the other cores and save

up on energy costs. Such arguments prove the worth of a task-partitioning porting option over

strictly data-partitioning methods.



3.4 Results

Several metrics show the efficiency of the application. One important outcome of the ap-

plication is the frames-per-second (FPS) metric, which shows how rate at which the series of

images supplied to the application are being processed and compressed. Figure 3.2 describes

how FPS scales as more resources of the SCC are used. It is important to note that because of

the particular porting option, the amount of cores used is always a multiple of 3, since each core

handles one step of the 3-stage pipeline. A linear increase in FPS is observed as more resources

are used, capping at about 65 FPS when the SCC is used at its fullest. The linearity is expected

since the application breaks down the amount of images each triad of cores handles according

to how many cores are available. What is more interesting is the 48-core result of 65 FPS which

is an acceptable benchmark. It is actually more than triple the upper threshold at which the

human eye can perceive changes in alternating images and much greater than double the frame

rate at which cinematic films have been traditionally shot (24 fps [3], albeit usually at higher

resolutions [12] than the small picture used as benchmark for this thesis). Although the size of

the image was small, the rate at which it was processed is more than satisfactory and a stronger

platform with more cores could easily process higher resolution images even faster.
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Figure 3.2: Figure detailing Frame Rate scaling with number of cores used

Figure 3.3 details the performance of the application when using the SCC at full capacity.

Using as reference point the moment the first frame is produced, the exact time at which the

following frames are delivered is recorded. It is observed that at the beginning of the application,

the frames are delivered 16 at a time. Since this metric uses all 48 of the SCC cores, equaling to

16 triads of cores, 16 frames are being processed at any given moment. Thus, at the beginning

16 frames are delivered almost concurrently. However, as more images are being processed, the

delivery chronograph becomes more noisy. Many reasons can cause individual cores to stall and

delay the delivery of a frame(e.g. interrupting requests by the operating system), thus causing

the de-syncing of the core triads. This also leads to the delivery of subsequent frames earlier



than current frames. Potentially this could be harmful for an application using the encoder for

motion picture purposes (since the frames need to be sorted) and it could be interesting to design

a system reallocating frame processing in response to unavoidable and unpredictable stalls. Such

factors affect performance variability, an issue intimately linked to many-core systems [21].
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Figure 3.3: Delivery times of compressed frames

Figure 3.4 touches on the subject of power consumption during the benchmark of encoding

160 frames. Power efficiency is an increasing concern for applications running days, months

even, causing considerable expenses to companies using them due to energy consumption. The

encoder application causes a power pulse for the SCC. Its cores normally operate at 70 Watts,

however since the application uses the CPUs to their fullest, power increases for the duration of

the encoding. To calculate energy costs, the average power level increase during the spike was

calculated and multiplied with the duration of the pulse. Although this method is simple, the

SCC does not provide the user with accurate tools. The power level can only be measured on

board-level, not core-level (or at least tile-level). When one wishes to measure energy expenditure

of an application running on specific cores, measurements become diluted with the power levels

of idle cores. Thus, measuring power levels when employing a small amount of cores for the

application is inaccurate. One can understand from Figure 3.4 that increasing the amount of

cores employed results in greater energy consumption, but it would be of interest to have more

accurate graphs and the ability to measure power pulses in cores operating different tasks.

In Figure 3.5, one needs to notice the delay in the fall of the power level after the application

has ended. According to Figure 3.3, the application lasts less than 3 seconds when operating

with 48 cores, but the power pulse has a width of more than 6 seconds. This observation can

be attributed to the inaccuracy of measuring power levels, or an actual delay due to the SCC

being unable to adjust its power level swiftly enough.

The results clearly point to the following rule: using an increasing amount of the platform’s

resources leads to greater speedup and higher power consumption. The user needs to determine
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the frame rate he aims for and use the appropriate amount of cores in order to avoid excess

expenditures. However, more accurate measurements on different platforms could produce useful

Pareto curves [38] between power consumption and execution speed with varying amount of cores

used.



3.5 Future Work and Conclusions

There was a number of different approaches that were examined and might prove worthy

of interest for future work. In the encoding process, the blocks in which the image is split are

independent from one another. Another, simpler approach would be to assign the entire encoding

process to every core of the SCC and distribute different blocks of a single image to different

cores. While this approach would lead to good workload distribution between cores (since every

core performs the same series of tasks), it would lead to the problem of needing a “master core”

responsible for collecting the blocks from the other “slave cores”, sorting them and assembling

the unified .jpg file. This approach effectively “wastes” one core and imposes a bottleneck as

one core has to communicate silmutaneously with the other cores (such an approach would be

an interesting opportunity of using the scatter and gather functions of the RCCE library [22]).

Another approach would be to assign the encoding of entire images to a single core and map

images to cores. However this option can introduce significant delay in the production of the

first in a series of images, as well as not providing speedups for the encoding of single images.

It would also be a problematic approach in case the images are dependent on one another, such

as the case of MPEG protocols for compressed moving pictures [44]. If however this was not the

case (as in the Motion-JPEG protocol [11], where each video frame is independently compressed

and transmitted in series) then one could very well explore this porting option.

Other than alternate porting options, one of the first aspects that need to be worked on for

the class of image processing on the SCC would be increasing its compatibility with images of

other protocols (like raster coding). Because of the variety in image protocols, constructing an

application able to process image files of different structure is a non-trivial task. This would

enable the exploration of whether image format affects the encoder’s performace. An easier

task would be to make the application compatible with the raster format since it does not have

multiple versions, allowing the encoder to be compatible with more images.

Another course of future work is testing the encoder with images of different resolutions. At

the moment, the encoder has only been tested with an image of low resolution. FPS output

would certainly be lower for images of greater size. It would be interesting to explore how FPS

is affected by increasing workload via higher resolution images. Furthermore, large size images

are more indicative of today’s ever-increasing need for processing great amounts of data.

Conclusions can be drawn from the successful porting of the application. For small images,

when operating at the SCC’s full processing capacity, a very satisfactory FPS output can be

reached. Since increasing the amount of cores employed by the application leads to a linear

increase of FPS but a sub-linear increase in power consumption, using higher amount of cores

yields a better performance to energy cost ratio.



Chapter 4

Porting of the Inferior Olive

Simulator

4.1 Introduction

The main application that has been ported on the SCC for this thesis is a simulator of an

important set of brain cells, the inferior olive (IO) cells. The IO cells have been associated

with brain functions such as “the learning and timing of movements” [25]. The cells are the

receivers of stimuli through the human senses and pass on such input to the cerebellar cortex

via the Purkinje cells. Should the IO cells be damaged, the patient is unable to synchronize

his movements and thus severe cases of ataxia can be demonstrated [26]. As such, they are an

important part of the human brain, which motivated the development of the simulator.

The application aims at simulating a user-defined network of IO cells. This network is

provided with a custom input current at each simulation step. Then, the biological parameters

of the entire network are calculated and recorded. The application thus calculates and records

the voltage levels of each cell as it reacts to the stimuli (input current) as well as other parameters

that define its state. As such, the application is biologically accurate and different from most

black-box approaches on the matter (e.g. neural networks [37]).

The exploration of the brain’s obscure and complex functions is the goal of many large-

scale projects today [1]. Great benefits can come out of such studies. One such instance is the

development of implantable chips that help patients combat grave diseases such as epilepsy and

Parkinson’s disease [47]. Other biological studies have lead to breakthroughs in creating artificial

pancreas systems which help diabetes patients regulate glycemic levels [23]. The biomedical

science is indeed a very interesting and rapidly growing field.

The application also tackles important questions in the field of HPC. It features two different

methods of utilizing the SCC’s many cores. Porting option #1 is based strictly on data parti-
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tioning, while porting option #2 incorporates data and task partitioning. Both options show

great speedup in comparison to the single-threaded version of the application, which serves as a

reference for comparison [32], as well as different benefits and drawbacks. Apart from different

ways of partitioning computational workload, the current thesis also explores the board’s util-

ities for voltage and frequency scaling. Two different methods of reducing power consumption

are introduced, a static and a dynamic solution, which are applied to the two alternative porting

options. Thus, “the concern of improving power efficiency” [42] in multicore applications is also

considered.

After detailing the biological model used for this application and the challenges of improving

the single-threaded version, the two porting options will be presented as well as the different

methods used for each option, aimed at lessening power consumption. The results of each effort

are analyzed in extensive graphs and commented upon. Finally, the author’s insight into the

different mapping options is presented, as well as possible future work for the simulator.



4.2 Biological and Simulation Model

The IO cell in this simulation is based on a compartmental model. Each cell comprises of

3 compartments: the dendrite, the soma and the axon. Each compartment serves a different

purpose biologically and has different membrane voltage levels.

• The dendrite compartment is responsible for communicating with the rest of the cell grid. It

has been proven that brain cell networks show a great degree of interconnectivity based

on various parameters such as brain size [33]. The dendritic compartment handles com-

munication with other IO cells, which is simulated by the application via recording other

dendrites’ membrane voltage levels. These levels, along with other biological parameters,

greatly affect computations which calculate the dendrite’s potential in each simulation

step. This compartment also receives stimuli from the environment as input current.

• The somatic compartment is the center of computations for the cell. The most elaborate

and time-consuming calculations are handled by the somatic compartment, which also

communicates with the other two compartments via voltage levels.

• The axonal compartment is the “output port” of the cell, the compartment whose volt-

age level is recorded in each simulation step. It features the lightest computational and

communication workload, however it performs a lot of I/O operations.

A brief description of each simulation step follows: the application allocates enough space in

memory for holding all of the necessary parameters for each cell, such as membrane voltage level

for each compartment, various ion concentration levels and communicating cells’ dendrite voltage

levels. Initial values are randomly given to these biological parameters and a random amount

of closed-circuit simulation steps are executed for each cell individually. Thus, randomization of

the grid’s initial state is achieved before proceeding to the actual simulation.

The dendrite is fed input current in each simulation step as stimuli from the cell network’s

environment. This can be achieved either by a user-defined input file which details each cell’s

input for each step, or by a hard-coded spike input current. The second method of input was

largely used for debugging purposes as well as porting assessment. The dendrite then records

the dendritic voltage levels of its communicating cells. Intercommunication in the network is

described by another user-defined file which details incoming and outgoing connections for each

cell. Each dendrite needs the voltage levels of each incoming dendritic connection and sends its

own voltage level to every outgoing connection. A naive interconnectivity system is simulated

via the simpler assumption that each cell communicates only with its neighboring cells in an

8 way connectivity (i.e. the network is represented as a two-dimensional matrix where each

element is immediately adjacent to a maximum of 8 other elements). It must be noted however

that inter-core communication overhead is greatly lessened with this assumption.
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Figure 4.1: Brief presentation of dataflow between simulation steps

After the dendritic compartment has finished collecting information from both outside envi-

ronment and connecting cells, the compartments share their voltage levels. Specifically, dendritic

and axonal compartments need the somatic compartment’s voltage level and vice versa. After ev-

erything is recorded, communication ends and each compartment performs computations which

recalculate their biological parameters, most important of which the voltage level of each com-

partment’s membrane. For each axonal compartment, its new voltage level is recorded in the

simulation’s output file and the simulation proceeds to the next step. This process repeats until

either the input current file ends, which indicates the end of the desired simulation duration, or

the hard-coded input spike (120,000 steps) ends, in case no input current file is provided.



4.3 Porting Options

There were two main methods used to distribute the application’s workload over the 48 cores

of the SCC. The simpler porting option #1 divides the cell network to smaller fragments, each

with the same number of cells, and distributes each to a different SCC core. Cells that need to

communicate and are mapped to the same core can do so by simply accessing the core’s private

memory. However, if communicating cells belong to different cores, then these cores need to

use the RCCE library [22] to communicate with each other. This allows the sharing of their

dendritic voltage levels. This method constitutes strict data partitioning and has the benefit of

needing less effort for communication purposes.

For porting option #2, the cores are divided in groups of three, similar to the JPEG Protocol

application described in Chapter 3. A different segment of the network is assigned to each

group, with each core of the group handling different compartment: dendritic, somatic and

axonal duties are mapped to different cores. For this option, each core has different amount and

nature of work to complete. The cores handling dendrites tackle most of the communication

necessities of the application and reading the input current file. The somatic cores perform

heavy computations and communicate with the other two cores in their group. The cores

mapped to axonal compartments mostly perform I/O operations. Thus, this porting option

is more complicated and features task partitioning on top of data partitioning. However, as

it will be shown, it allows for simpler and more efficient techniques to reduce the simulator’s

power consumption. This was encouraged by the fact that, as shown in Figure 4.2, according

to profiling carried out prior to designing porting option #2, approximately 50% of the total

computational workload was attributed to the somatic compartment. As such, cores handling

somatic duties needed to operate at full capacity, whereas cores with lesser workload could

simply be scaled down frequency-wise.
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Figure 4.2: Results of IO simulator profiling, detailing workload distribution between
cell compartments



Thus, in the interest of pursuing ways of lowering power consumption for long, demanding

simulations, for each porting option a method of using the application at reduced power is de-

veloped. The starting point in both strategies is the same: as mentioned before, the axonal

compartment features significantly lower workload than the other two compartments. Since the

dendritic compartments handle most of the communication between cells and the somatic com-

partments tackle the greatest part of a cell’s calculations for each step, the axonal compartment’s

duties are lighter than the rest. This is particularly true for simulations of bigger networks, where

the dendritic compartments take up an increasing degree of computing resources. Thus, using

the voltage and frequency scaling utilities of the SCC (RCCE iset power() [18]), less energy is

expended when handling axonal duties.

This is accomplished in different ways for the two options. Porting option #1 is based on

each core handling the entirety of a cell’s workload. For this option, frequency of operation is

dynamically lowered in each simulation step during the computation of the axonal compartment

and restored after its end. Voltage levels are not altered since voltage modulating tools are not

fast enough to keep up with dynamic manipulation, as opposed to altering the cores’ frequency,

which happens in a matter of a few clock cycles. Porting option #2 takes a more static approach.

Since the axonal compartments are mapped to a particular, predefined group of cores, these cores

lower both voltage and frequency of operation before the actual simulation commences. There

are necessary communicational barriers in each step so that all compartments are synchronized.

Thus, reducing the frequency of low-workload cores does not gravely impact the application’s

overall performance since the application’s bottleneck lies in the cores handling dendritic and

somatic compartments. Overall board power consumption and peak power levels are expected

to be lower without hampering the application’s speed.



4.4 Porting Assessment

Each benchmark simulation has been carried out without an input current file specified.

Thus, all simulations use the hard-coded input spike and last for exactly 120,000 steps, or 6

seconds of real brain activity. All parameters have been initialized with the same standard

values and random closed-circuit initialization steps have been disabled. For simulations using

porting option #1, since it is interesting to see the benefits of using the board to its full capacity

of 48 cores, cell grids simulated feature cell numbers which are multiples of 48. For porting

option #2, since employing 48 cores allows the application to use 16 groups of three cores,

simulated cell grids have total cell numbers which are multiples of 16. It is important to note

that all benchmarks have been carried out under the “naive” assumption of 8-way connectivity,

thus communication overhead is reduced. The application behaves very differently in case of

densely intercommunicating networks. However, inspecting realistic connectivity schemes falls

beyond the scope of the current thesis.
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Figure 4.4: Porting option #2: Brief linear and extended logarithmic sweep comparison
against single-threaded version

Figures 4.3 and 4.4 demonstrate the two porting options’ performance. Figure 4.3 describes

how porting option #1 behaves with increasing network grids, both in a linear and a logarithmic



scale. Networks of up to 24,000 cells have been successfully simulated for 6 seconds of brain

activity in under 90 minutes. Further increase of cell grid size causes the application to crash due

to insufficient memory. Larger network simulations return rcce error code 137, which according

to Intel documentation [17] signifies a segmentation fault. However it should be noted that up

until that point, the application scales in a linear fashion as network size increases. Figure 4.4

showcases the speedup of the application’s porting option #2 compared to the single threaded

application. Speedups of up to a factor of 8 are achieved for big networks. The Figures also

point to the fact that porting option #1 is more than two times “faster” than the second for the

same network sizes. Thus, the application, when ported on the SCC, can perform more than

16 times faster than the single-threaded version, assuming one uses all 48 cores of the board

and porting option #1. It should also be noted that porting option #2 uses more memory

than the first. As a result it crashes for networks significantly larger than 16,000 cells. Another

interesting result of these Figures is the fact that porting option #1, while “faster”, shows a

stochastic performance for smaller cell grids while the second option’s results are more linear

and predictable. This issue of performance variability [21] can be very important for researchers

aiming at simulating grids with less than 1,000 cells.
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Figure 4.6: Porting option #2: Brief linear and extended logarithmic execution time
comparison between standard and SVFS mode



Figures 4.5 and 4.6 detail what impact on execution times do power management methods

employed hold. Figure 4.5 describes the performance of porting option #1 when all cores

perform at a standard 800MHz, as well as a sub-optimal 533MHz frequency against dynamic

frequency scaling (DFS) where all cores operate at 533MHz when performing axonal duties and

800MHz at any other time. It should be noted that for these benchmarks, aiming at comparing

performance when applying power management methods, all output has been disabled and as

a result, overall performance has improved greatly. This fact also points at the toll heavy I/O

operations can take on applications, especially when many cores flood multiple large files with

data and when cloud applications run on several different computation machines [28]. The

Figures show that DFS decreases the simulator’s performance considerably, possibly due to the

high number of frequency alterations since it happens twice per simulation step.

This is not the case with Figure 4.6 which describes Static Voltage-Frequency Scaling

(SVFS), applicable only to porting option #2, where no notable delay is observed even for

large cell networks. Time-wise, static scaling of power levels is superior, for this application, to

dynamic scaling and also simpler to employ since no inline changes to the code are necessary

and all changes happen before the application commences. Good results by SVFS also reinforce

earlier benchmarking, which indicates axonal compartments hold a smaller percentage of overall

workload, thus enabling cores on strictly axonal duties to perform adequately even at lower

frequencies. It should also be noted that in both cases, simply lowering frequency of operation

to 533MHz is not a feasible solution, as performance is gravely impacted, especially in the case

of porting option #2.
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Figure 4.7: Porting option #1: Mean power levels comparison between standard and
DFS mode, brief linear and extended logarithmic sweep

Figures 4.7 and 4.8 describe the average power consumption for simulations of increasing

grid size. The average levels of power used by the board to function is an important parameter

since high levels of power for prolonged periods of time can strain a system and cause it to

malfunction or underperform in the long run (for example, mobile terminal batteries deteriorate

faster based on cycles of 100% charge and discharge [43]). Striving for lower power levels of

operation is to a developer’s interest. Both methods successfully lower the average power level
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Figure 4.8: Porting option #2: Mean power levels comparison between standard and
SVFS mode, brief linear and extended logarithmic sweep

maintained throughout the simulations. However, one observes that SVFS on porting option

#2 is more effective than DFS on the first option. SVFS reduces power levels by a more

noticeable amount and does so more reliantly, whereas DFS exhibits unreliable performance for

small network simulations. It should also be noted that the highest average power for SVFS of

porting option #2 is much lower than in DFS case of porting option #1 (80-85 Watts against

95-100 Watts). While operating at 533MHz yields considerable benefits, the unavoidable impact

on performance, as observed in Figures 4.5 and 4.6 render this option unusable for most potential

users of the simulator.
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Figure 4.9: Porting option #1: Peak power levels comparison between standard and
DFS mode, brief linear and extended logarithmic sweep

Figures 4.9 and 4.10 show another important aspect of power management, peak power.

It is well documented how sudden fluctuations of power levels can damage equipment. While

hardware solutions exist (such as voltage regulators [13]), software tools that allow power man-

agement can prove useful in designing applications that attempt to reduce such stress by guar-

anteeing low upper thresholds in power usage. Such software tools are part of a wider attempt

to lower energy requirements and consumption for applications globally [45]. Much like pre-

vious Figures 4.7 and 4.8, it is shown that SVFS outperforms DFS. DFS actually presents

power spikes worse than the standard case of porting option #1 for small networks and highly
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Figure 4.10: Porting option #2: Peak power levels comparison between standard and
SVFS mode, brief linear and extended logarithmic sweep

unpredictable behaviour. It is deemed unsuitable for the purposes of controlling peak power

levels. Figure 4.10 shows that SVFS succeeds in reducing maximum power levels, however it

also presents a less than ideal behaviour concerning reliably and predictably lowering power

spikes as cell networks grow larger.
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Figure 4.11: Porting option #1: Energy expenditure comparison between standard and
DFS mode, brief linear and extended logarithmic sweep
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Figure 4.12: Porting option #2: Energy expenditure comparison between standard and
SVFS mode, brief linear and extended logarithmic sweep

Figures 4.11 and 4.12 detail actual energy consumption throughout the completion of



increasing in size simulations. Energy consumption has been measured by integrating power

levels over the duration of each simulation. These Figures show that DFS for porting option #1

is overall ineffective. The fact that previous Figures indicate DFS hampering the application’s

performance, while not providing reliable power level benefits, supports the results of Figure

4.11. Energy expenditure is actually worse in most cases, proving that this method is inefficient

for this application. However, Figure 4.12 shows promising results for SVFS of porting option

#2. Power expenditure is always lower when SVFS methods are applied and for relatively small

networks (less than 250 cells) the benefits are noteworthy, even up to 25 % reduced energy

consumption. In combination with reduced average power and maximum power spike levels,

while not noticeably affecting the application’s speed, SVFS can be described as an effective

and simple method of power management, provided the application’s architecture supports it.

Finally, these Figures prove that simply operating at 533MHz is not an efficient solution for

energy savings, since it is not directly associated with lower energy expenditure (especially for

large network simulations). This can be attributed to the fact that, while power consumption is

lowered, each simulation runs for much longer due to second-rate performance, thus nullifying

any reasonable energy gain.



Chapter 5

General Conclusions and Remarks

The current thesis aims at using the SCC as a concept vehicle for the porting of two ap-

plications, a JPEG Protocol Encoder and an Inferior Olive Simulator. The main goals were to

achieve massive speedups compared to respective single-threaded versions by efficiently utilizing

the chip’s 48 cores, as well as exploring methods of reducing energy expenditure without ham-

pering performance. Both applications yielded interesting results, with the IO Simulator being

the main focus of the thesis.

The JPEG encoder project proved that HPC can help achieve compression rates that satisfy

today’s criteria of acceptable FPS. Utilizing more cores leads to better performance at the

cost of power consumption. However, this is a general conclusion one is lead to when using

HPC on many-core platforms; the developer enjoys the freedom of suiting the parameters of an

application’s execution to his needs, balancing time perfomance and energy costs. This balance

can be accomplished in a number of ways, from using a specific portion of a platform’s cores

to altering voltage and frequency of operation. These methods supply the user with many

interesting options, such as keeping cores at idle mode to conserve power but also have cores

act as “back-up”, in case part of the platform’s cores goes offline or becomes damaged (due to

power outages or temporal fluctuations in power supply for example).

The user can also use task partitioning more effectively with increasing number of cores at

his disposal. Not all tasks are of the same “weight” in a typical application, nor of the same

nature as some may be memory-bound and others may be heavily affected by CPU computational

performance. Thus, there is an incentive for building custom multi-core platforms specialized for

demanding applications. Cores would be organized in groups handling different tasks optimally,

each at different power levels of operation, for maximum performance and power efficiency.

The IO application showcases two different efforts to solve the same problem: strict data

partitioning against a task-data partitioning approach. The simpler porting option #1, which

only features data partitioning, proves to be faster, particularly when simulating large networks,

by a factor of at least 2. If speed is the only concern of the user, then it is the prefered method.

31



However, DFS methods used in this thesis for porting option #1 did not yield acceptable re-

sults. Statically lowering frequency on all cores for both porting options hinders the simulator’s

performance greatly and does not ultimately offer considerable energy gains, thus it is not a fea-

sible option either. Porting option #2 on the other hand, offers an effective and simple way of

reducing power levels considerably. While keeping performance relatively intact, SVFS manages

to lower average and peak power levels, as well as offering intriguing energy gains for medium

sized networks. As with the JPEG encoder project, it is also more customizable, as a system

tailored to the demands of the application can be developed. Such system would have three

groups of cores:

• Group 1 would consist of cores equipped with optimized MPBs for rapid communication

purposes. The cores should be physically adjacent to each other to reduce message passing

delays even further. They would also require more buffer memory in case of densely

intercommunicating networks.

• Group 2 would need cores featuring the best ALUs available, since they handle the biggest

part of the network’s computations. Since these cores communicate with both group 1 and

3, it would be suggested that they are physically placed between these two core groups.

• Group 3 would finally have cores of lower requirements, operating at lower frequency and

voltage settings. These cores would benefit greatly from optimized I/O operations, in case

axonal voltage levels remains the application’s main point of interest.

Such a system would perform remarkably well while providing energy gains, but is only

possible to develop while using the more complex porting option #2. As future work, it is very

interesting to see how the simulator’s behaviour and needs change depending on how densely

the network’s cells communicate with each other. Not only would the simulator be closer to

real brain cell networks, it is very possible that the increased communication overhead shifts the

application’s bottleneck from the somatic to the dendritic compartment. If that were the case,

new porting scenarios and power management options could be considered.

Overall, the SCC has been an experiment at HPC, a platform of one single chip containing

many fully operational and autonomous processing centers, like a Cloud. Since its original pur-

pose was exploring the limits of HPC and teaching researchers how to create code for multi-core

systems, its programming paradigm was very simple and easy to learn. It is a platform allowing

the developer to use methods described above for power management. Software-controlled volt-

age and frequency of operation on different cores is an invaluable and effective tool. It certainly

points to a future where power efficiency is of paramount importance for “heavy” applications.

As a general remark, the author believes that shifting this control to the programmer’s side is

a step towards the right direction.
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