
Σπυρίδων Γ. Μαστοράκης

Μέθοδοι εξουσιοδότησης για δέσμευση πόρων σε
Ευφϋή-Προγραμματιζόμενα-Δίκτυα (Software-Defined-

Networks)

ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ
ΣΧΟΛΗ ΗΛΕΚΤΡΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ

ΚΑΙ ΜΗΧΑΝΙΚΩΝ ΥΠΟΛΟΓΙΣΤΩΝ

ΤΟΜΕΑΣ ΕΠΙΚΟΙΝΩΝΙΩΝ, ΗΛΕΚΤΡΟΝΙΚΗΣ & ΣΥΣΤΗΜΑΤΩΝ

ΠΛΗΡΟΦΟΡΙΚΗΣ

 ΔΙΠΛΩΜΑΤΙΚΗ ΕΡΓΑΣΙΑ

Επιβλέπων : Βασίλειος Μάγκλαρης

Καθηγητής Ε.Μ.Π

Αθήνα, Μάιος 2014

Σπυρίδων Γ. Μαστοράκης

Μέθοδοι εξουσιοδότησης για δέσμευση πόρων σε
Ευφϋή-Προγραμματιζόμενα-Δίκτυα (Software-Defined-

Networks)

ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ
ΣΧΟΛΗ ΗΛΕΚΤΡΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ

ΚΑΙ ΜΗΧΑΝΙΚΩΝ ΥΠΟΛΟΓΙΣΤΩΝ

ΤΟΜΕΑΣ ΕΠΙΚΟΙΝΩΝΙΩΝ, ΗΛΕΚΤΡΟΝΙΚΗΣ & ΣΥΣΤΗΜΑΤΩΝ

ΠΛΗΡΟΦΟΡΙΚΗΣ

ΔΙΠΛΩΜΑΤΙΚΗ ΕΡΓΑΣΙΑ

Επιβλέπων : Βασίλειος Μάγκλαρης

Καθηγητής Ε.Μ.Π

Εγκρίθηκε από την τριμελή εξεταστική επιτροπή την 27η Μαΐου 2014.

Αθήνα, Μάιος 2014

............................
Βασίλειος Μάγκλαρης
Καθηγητής Ε.Μ.Π

............................
Συμεών Παπαβασιλείου
Αναπληρωτής Καθηγητής
Ε.Μ.Π

............................
Δημήτριος Καλογεράς
Ερευνητής ΕΠΙΣΕΥ

...................................
Σπυρίδων Γ. Μαστοράκης

Διπλωματούχος Ηλεκτρολόγος Μηχανικός και Μηχανικός Υπολογιστών Ε.Μ.Π.

Copyright © Σπυρίδων Μαστοράκης, 2014
Με επιφύλαξη παντός δικαιώματος. All rights reserved.

Απαγορεύεται η αντιγραφή, αποθήκευση και διανομή της παρούσας εργασίας, εξ ολοκλήρου ή

τμήματος αυτής, για εμπορικό σκοπό. Επιτρέπεται η ανατύπωση, αποθήκευση και διανομή για
σκοπό μη κερδοσκοπικό, εκπαιδευτικής ή ερευνητικής φύσης, υπό την προϋπόθεση να αναφέρεται

η πηγή προέλευσης και να διατηρείται το παρόν μήνυμα. Ερωτήματα που αφορούν τη χρήση της

εργασίας για κερδοσκοπικό σκοπό πρέπει να απευθύνονται προς τον συγγραφέα.

Οι απόψεις και τα συμπεράσματα που περιέχονται σε αυτό το έγγραφο εκφράζουν τον συγγραφέα

και δεν πρέπει να ερμηνευθεί ότι αντιπροσωπεύουν τις επίσημες θέσεις του Εθνικού Μετσόβιου

Πολυτεχνείου.

 5

Περίληψη

 Το Διαδίκτυο με τη σημερινή του δομή έχει συμβάλει τα μέγιστα

στην ανάπτυξη εικονικών περιβάλλοντων. Ωστόσο, η δομή του αυτή

εισάγει περιορισμούς ευρείας κλίμακας στην ανάπτυξη καινοτόμων

εφαρμογών. Για το λόγο αυτό, εισήχθησαν τα «Ευφϋή -

Προγραμματιζόμενα -Δίκτυα» (Software-Defined-Networks), τα

οποία αναμένεται να αποτελέσουν τη βάση του Διαδικτύου του

μέλλοντος, συμβάλλοντας στην ακόμα μεγαλύτερη ανάπτυξη των

Νέφων Υπολογιστών (Cloud Computing) και των εικονικών δικτύων

(virtualized networks).

 Σημαντικό ρόλο προς αυτή την κατεύθυνση αναμένεται να

διαδραματίσει το πρωτόκολλο OpenFlow, το οποίο σε συνδυασμό με

την αρχιτεκτονική των Ευφϋών-Προγραμματιζόμενων-

Δίκτυων επιτρέπει το διαχωρισμό του επιπέδου ελέγχου από το

επίπεδο προώθησης πακέτων σε ένα δίκτυο. Επιπροσθέτως,

επιτρέπεται η ύπαρξη πολλαπλών «ενοικιαστών» (tenants) κατά

μήκος ενός κοινού μοιραζόμενου δικτυακού υποστρώματος. Ένας

από τους βασικούς στόχους της εικονοποίησης δικτύων (network

virtualization) είναι η παροχή σε κάθε «ενοικιαστή» της

ψευαίσθησης ότι καταναλώνει μόνος του όλους τους διαθέσιμους

δικτυακούς πόρους. Για το λόγο αυτό, κάθε «ενοικιαστής» μπορεί να

ζητήσει το δικό του κομμάτι δικτυακών πόρων (network slice).

Επίσης, οι δικτυακοί πόροι και οι ενέργειες κάθε «ενοικιαστή» δε θα

πρέπει να συγκρούονται (conflict) με τους πόρους των υπολοίπων

ενοικιαστών.

Για όλους τους παραπάνω λόγους, γίνεται επιτακτική η

 6

ανάγκη μελέτης τρόπων συνύπαρξης και απομόνωσης μεταξύ των

«ενοικιαστών» κατά μήκος του φυσικού δικτυακού υποστρώματος.

 Λέξεις κλειδιά: «Ευφϋή-Προγραμματιζόμενα-

Δίκτυα» , Νέφη Υπολογιστών, εικονικά δίκτυα, κομμάτι δικτυακών

πόρων, συνύπαρξη πολλαλών «ενοικιαστών» δικτύου, απομόνωση

«ενοικιαστών».

 7

ABSTRACT

Internet, with its current structure, has greatly contributed to

the introduction and the development of virtual environments.

However, this Internet structure introduces limitations on the

development of innovative applications. In this context, Software-

Defined-Networks (SDNs) were introduced and are expected to

constitute the core of Future Internet contributing to the even

greater development of Cloud Computing and network virtualization.

 The introduction and standardization of the OpenFlow (OF)

protocol plays an important role in this effort. SDN, based on the

OpenFlow protocol, enables the decoupling of control and data plane.

Furthermore, multi-tenancy is enabled across a shared physical

network substrate. One of the major goals of network virtualization is

to provide to each tenant the perception that it uses the available

network resources exclusively on its own. In this context, each tenant

can request its own network slice. Moreover, the requested network

slices should not conflict with each other.

For all the reasons mentioned above, it is imperative to study

various possible methods of coexistence and isolation among

multiple tenants over a shared physical network substrate.

Key words: Software-Defined-Networking, Cloud Computing,

network virtualization, network slice, multi-tenancy, tenant isolation.

 8

Ευχαριστίες

 Η διπλωματική αυτή εργασία αποτελεί το τελευταίο στάδιο

των προπτυχιάκων μου σπουδών στο Εθνικό Μετσόβιο Πολυτεχνείο.

Αρχικά, θα ήθελα να ευχαριστήσω τον επιβλέποντα καθηγητή μου, κ.

Βασίλειο Μάγκλαρη, για τη συνολική και πολύπλευρη βοήθεια και

καθοδήγηση του. Ακόμη, θα ήθελα να ευχαριστήσω όλα τα μέλη του

εργαστηρίου NETMODE για τη συνεργασία και την άκρως φιλική

τους διάθεση που με έκανε πραγματικά να μη θέλω να φεύγω τα

βράδια από το εργαστήριο. Ειδικότερα, θα ήθελα να ευχαριστήσω

τον υποψήφιο Διδάκτορα Χρήστο Αργυρόπουλο για την άψογη

συνεργασία και την προθυμία του να με καθοδηγήσει όποτε αυτό

χρειάστηκε.

 Τέλος, θα ήθελα να ευχαριστήσω την οικογένειά μου για την

αμέριστη υποστήριξη που μου έχουν προσφέρει όλα αυτά τα χρόνια

σε όλα τα στάδια της ζωής μου, αλλά και τους φίλους για την

κατανόηση που έχουν δείξει καθ’ όλη τη διάρκεια των σπουδών μου.

 9

1. Table of Contents
2. Introduction ... 16

2.1. Research problem and Approach ... 16

2.2. Thesis Contribution ... 18

2.3. Thesis outline ... 18

3. Background ... 20

3.1. Networking planes.. 21

3.1.1. Forwarding/Data plane ... 21

3.1.2. Control plane ... 22

3.1.3. Management plane .. 23

3.2. Software-Defined Networking (SDN) .. 24

3.3. Network virtualization ... 26

3.3.1. Full network virtualization .. 26

3.3.2. Control plane slicing ... 27

3.4. Algorithmic basis .. 27

3.4.1. Search algorithms .. 27

3.4.2. Disjoint paths algorithm ... 31

3.5. OpenFlow protocol ... 33

3.5.1. Flow Table ... 33

3.5.2. Matching a packet with the corresponding flow entry 42

4. Design principles of the proposed implementation 45

4.1. Network control plane slicing methods 46

4.1.1. Domain-wide slicing method .. 46

4.1.2. Switch-wide slicing method ... 47

4.1.3. Port-wide slicing method ... 47

4.2. Isolation policy enforcement in multi-tenant virtualized
environments .. 48

4.3. Flowspace rule reduction approach in multi-tenant
virtualized environments .. 52

5. Implementation analysis... 55

 10

5.1. Implementation structure ... 55

5.2. Detailed implementation analysis ... 59

5.2.1. Script run_engine.sh ... 59

5.2.2. Script generate.py .. 62

5.2.3. Script topo_lib.py.. 63

5.2.4. Script metrics.py .. 64

5.2.5. Script paths.py ... 68

5.2.6. Script evaluation.py .. 68

5.2.7. Script graph_util.py ... 73

5.2.8. Script lookup_process.py .. 74

5.2.9. Script lookup.py .. 74

5.2.10. Script kdtree.py .. 75

5.2.11. Script util_lookup.py ... 76

5.3. The Internet Topology Zoo project .. 77

6. Evaluation of the proposed implementation 80

6.1. Tenant request acceptance ratio .. 81

6.2. Generated flowspace rule tables .. 86

6.3. Feasibility evaluation of the implemented slicing methods
 90

6.4. An approach towards a more efficient flowspace lookup
process ... 93

7. Conclusion and Future Work ... 95

7.1. Conclusion .. 95

7.2. Future Work .. 97

8. References ... 99

9. Appendix ... 102

 11

Figures
Figure 3.2-1: Decoupling of control and data plane introduced by

SDN [Source: Open Networking Foundation]

Figure 3.4.2-1: Modified Dijkstra Algorithm for Shortest Path from

node A to Z [Source: Optimal physical diversity algorithms and

survivable networks]

Figure 3.5-1: An OpenFlow-enabled switch communicates with an

OpenFlow controller over a secure channel using the OpenFlow

protocol [Source: OpenFlow Switch Specification Version 1.4]

Figure 3.5.2-1: Flowchart illustrating packet flow through an

OpenFlow switch [Source: OpenFlow Switch Specification version

1.4.0]

Figure 4.2-1: Scenario of two potential conflicting network slices in

the switch-wide slicing method

Figure 4.2-2: Scenario of two potential conflicting network slices in

the port-wide slicing method

Figure 5.1-1: Structure of the software implementation

Figure 6.1-1: Acceptance ratio in Internet2/OS3E for 8K requests

Figure 6.1-2: Acceptance ratio in Internet2/OS3E for 16K requests

Figure 6.1-3: Acceptance ratio scaling as the percentage of unbound

requests increase

Figure 6.1-4: Acceptance ratio in the ULAKNET network topology for

16K requests

 12

Figure 6.1-5: Acceptance ratio in the PSiNET network topology for

16K requests

Figure 6.2-1: Flowspace rule number for port-wide method

normalized by domain-wide rules for small, medium and large sized

topologies (6K requests)

Figure 6.2-2: Flowspace rule number for port-wide method

normalized by switch-wide rules for small, medium and large sized

topologies (6K requests)

Figure 6.4-1: Elapsed time of the most efficient implemented search

algorithms compared with the FlowVisor performance overhead

 13

Tables
Table 3.5.1-1: Major components of a flow entry in a flow table

Table 3.5.1-2: Required match fields of a flow table entry

Table 3.5.1-3: List of the available OpenFlow-compliant counters

[Source: OpenFlow Switch Specification version 1.4.0]

Table 3.5.1-4: Push/pop tag actions [Source: OpenFlow Switch

Specification version 1.4.0]

Table 3.5.1-5: Existing fields that can be copied into new fields on a

push action [Source: OpenFlow Switch Specification version 1.4.0]

Table 4.1.3-1: Example of separator tuple for each slicing method

Table 4.2-1: Required flowspace rules in case of isolation policy

enforcement in switch-wide slicing

Table 4.2-2: Required flowspace rules in case of isolation policy

enforcement in port-wide slicing

Table 4.3-1: Rule reduction approach in switch-wide slicing when

a>u

Table 6.3-1: Performance overhead and memory consumption of

FlowVisor regarding the entire Internet2/OS3E topology

Table 6.3-2: Performance overhead and memory consumption of

FlowVisor regarding the Internet2/OS3E node of Chicago

 14

Code snippets

Snippet 5.2.2-1: Snippet of script generate.py that determines

whether the attributes of a network topology were parsed

successfully from the dataset.

Snippet 5.2.3-1: the get_topo_graph function

Snippet 5.2.4-1: the read_weights_from_file function

Snippet 5.2.4-2: the read_json_file function

Snippet 5.2.4-3: Disjoint path finding

Snippet 5.2.4-4: The get_filename and the get_tablefilename

functions

Snippet 5.2.6-1: the precompute_ports function

Snippet 5.2.6-2: Computation of acceptance ratio and rule

generation in case of bound requests for simple paths using the port-

wide slicing method

Snippet 5.2.6-3: Computation of acceptance ratio and rule

generation in case of unbound requests for simple paths using the

domain-wide slicing method

 15

Snippet 5.2.7-1: the parse_points function

Snippet 5.2.9-1: Software implementation of the single hashing

search algorithm

Snippet 5.2.10-1: The class of a k-dimensional binary search tree

node

Snippet 5.3-1: Examples of a graph node and a graph edge (2 cases)

included in “The Internet Topology Zoo” project

 Chapter 2. Introduction

 16

2. Introduction

2.1. Research problem and
Approach

Modern computer design is greatly based on the concept of

virtualization in order to decouple service provisioning from physical

resources. More specifically, the emerging cloud computing

ecosystem and its major trends (e.g. Infrastructure as a Service

(IaaS), Platform as a Service (PaaS) and Service as a Service (SaaS))

are mainly based on the concept of network virtualization.

The concept of network virtualization has become of even greater

importance since the emergence of Software-Defined-Networking

(SDN) [1]. SDN, based on the OpenFlow (OF) protocol [2],[3],

introduced the decoupling of control and data plane and the concept

of multi-tenancy over a shared physical network substrate. Multi-

tenancy, as a feature of SDN, refers to the existence of multiple

tenants across a common physical network topology.

In this context, each tenant can request its own network slice; a

basket of allocated logical and physical network resources across one

or more parts of physical network topology. In this way, tenants can

run their own forwarding logic and develop advanced service

functionalities within their virtual network (network slice), without

being aware either of the physical network substrate or the existence

of other tenants.

A typical method to achieve multi-tenancy is to introduce packet

classification into flows via a logical separator, typically a field within

 Chapter 2. Introduction

 17

the packet header. In this context, each OpenFlow controller

considers a packet ID, preferably a Layer 2 header field, as the

identifier of the network slices. Thus, in this thesis, three such

methods, called “network control plane slicing methods”, are

proposed, implemented in software and assessed. These methods are

the following: (i) domain-wide slicing, (ii) switch-wide slicing and

(iii) port-wide slicing.

In a multi-tenant SDN environment, each tenant should not be

able to exploit network resources that are delegated to other tenants

(network slices). Thus, isolation should be enforced among network

slices, so that they do not conflict with each other. In other words, a

network slice should not be allowed to exhaust the network

resources of other network slices. The rules, which should be

generated in order to enforce an isolation policy among network

slices, constitute the required flowspace [4]. Given that prerequisite,

the proposed implementation also generates the required flowspace

rules, so that the isolation enforcement among tenants is achieved.

 Chapter 2. Introduction

 18

2.2. Thesis Contribution

This thesis mainly intends to propose and assess various slicing

policies that enable the efficient flowspace segmentation among

tenants. Specifically:

 Three control plane slicing methods are proposed. These

methods are applicable to diverse SDN architectures.

 An isolation policy across SDN environments is discussed

and a rule reduction approach is proposed.

 The efficiency of the proposed slicing methods over

multiple real network topologies is assessed and the

required flowspace is generated.

 An evaluation of the slicing method feasibility is performed.

Thus, the slicing methods are associated with FlowVisor, a

popular OpenFlow proxy controller, and the generated

flowspace rules are injected into this proxy controller.

2.3. Thesis outline

The remainder of this thesis is organized as follows: in section 3,

the background of this research issue and the related work are

summarized. In section 4, the overall design of the proposed

implementation is analyzed. In section 5, the analysis of the software

implementation is performed. In section 6, the evaluation of this

software implementation is performed. In section 7, the conclusions

are summarized and the future work is described. Finally, in section

 Chapter 2. Introduction

 19

8, the used references are listed and, in section 9, an appendix is

included.

 Chapter 3. Background

 20

3. Background

In legacy network architectures, each network device

constitutes an autonomous forwarding entity. Within such devices,

the required forwarding, control and management functionalities are

designed and implemented in distinct groups. These major groups

constitute forwarding/data plane, control plane and management

plane respectively. However, each vendor permits to a different, but

always limited, extent the programmability and control of routers

and Ethernet switches by network administrators. Moreover, each

vendor designs network devices for specific markets. As a result, the

mechanisms associated with the above functionalities are

implemented in a different way by each vendor. This policy often

results in major traffic management incompatibilities among devices

of different vendors.

In order to overcome these limitations, we can take advantage

of Software-Defined Networking (SDN) [1] based on the OpenFlow

(OF) protocol [2],[3]. Nowadays, the majority of Ethernet switches

are OpenFlow-enabled and, as a result, they contain flow tables for

the implementation of services such as Network Address Translation

(NAT), Quality of Service (QOS) and Firewall [5]. OpenFlow provides

a protocol for the programmability of these flow tables. Each

OpenFlow-enabled switch is controlled by an OpenFlow controller

that can insert or delete flows in/from the flow table of each switch.

Generally speaking, SDN, based on the OpenFlow protocol,

transforms network devices to fully programmable forwarding

elements. Modern system design often employs virtualization to

 Chapter 3. Background

 21

decouple the system service model from its physical realization.

Thus, the OpenFlow protocol constitutes a concrete substrate for the

development of multi-tenant virtualized environments. By using a

network hypervisor [6], one can fully virtualize a physical network

substrate, by inserting distinct abstraction layers in order to achieve

operational goals divorced from the underlying physical

infrastructure. On the other hand, the deployment of an OpenFlow

transparent proxy controller (e.g. FlowVisor [4]) can result in the

delegation of various network resources, under the form of network

slices, to multiple tenants.

In the sections below, all the mentioned concepts are described

in detail.

3.1. Networking planes

A plane, in networking context, is one of the three integral

components of a telecommunication architecture. As mentioned

above, these three integrals are: (i) forwarding/data plane, (ii)

control plane and (iii) management plane. In legacy networks, all

the three planes are implemented in the firmware of routers and

switches.

3.1.1. Forwarding/Data plane

Typically, the forwarding/data plane is locally implemented

within each network device and operates based on the line-rate. The

forwarding/data plane refers to the underlying systems, which

forward a packet to a selected destination. Said another way, the data

 Chapter 3. Background

 22

plane is mainly responsible for the process of packet forwarding

based on forwarding rules (e.g. longest-prefix match) and for the

simultaneous check of Access Control Lists (ACLs). Moreover, queue

management and packet scheduling are implemented in the context

of this plane. All the above operations are based on hardware

components.

Despite the fact that the forwarding/data plane

implementation varies among vendors, network devices

communicate with each other via standardized data forwarding

protocols (e.g. Ethernet, Internet Protocol).

3.1.2. Control plane

The control plane is the part of the network that carries

signaling traffic and is responsible for system configuration,

exchange and management of routing table information. The control

plane feeds the data plane and, in this way, the data plane

functionality is determined by the control plane rules. These rules

are generated by specific algorithms. In legacy networks, the

signaling traffic is in-band and the control plane refers to the

component of a router that focuses on the way that this device

interacts with its neighbors via state exchange.

One of the main control plane operations is to combine routing

information (generated by a routing protocol) in order to populate

FIB (Forwarding Information Base), which is used by the data plane.

Moreover, the control plane functionality can either be

centralized or distributed. In case of a centralized control plane,

 Chapter 3. Background

 23

decision-making regarding the entire infrastructure is a centralized

process, whereas in case of a distributed control plane, the selected

algorithms are distributed to each network device that is responsible

for the control plane.

3.1.3. Management plane

The most widely used network management framework is

FCAPS [7]. The five areas of function of this framework are described

below:

 Fault management: its goal is to recognize, isolate,

correct and log faults that occur in the network.

 Configuration management: its goals are to gather and

store configurations from network devices, to simplify

the configuration of the device, to track changes that are

made to the configuration, to configure or “provision”

circuits or paths through non-switched networks and to

plan for future expansion and scaling.

 Accounting management: its goal is to gather usage

statistics for users.

 Performance management: it focuses on ensuring that

network performance remains at an acceptable level

 Security management: it refers to the process of

controlling access to assets in the network.

 Chapter 3. Background

 24

3.2. Software-Defined
Networking (SDN)

Software-Defined Networking (SDN) is an emerging

architecture that is dynamic, manageable, cost-effective, and

adaptable, making it ideal for the high-bandwidth, dynamic nature of

today's applications. This architecture enables the control and the

data plane decoupling. In this way, the network control plane

becomes directly programmable and the underlying infrastructure

can be abstracted for various applications and network services. The

OpenFlow protocol is the cornerstone of building SDN solutions. SDN

also constitutes the enabling technology for network virtualization.

The most important features of a SDN architecture are:

 Direct programmability: The control plane is directly

programmable because it is decoupled from the data

plane.

 Agility: Abstracting the control plane from the data

plane lets administrators dynamically adjust network-

wide traffic flow to meet changing needs.

 Central management: Network intelligence is

(logically) centralized in software-based SDN

controllers. Such controllers maintain a global view of

the infrastructure network, which appears to

applications and policy engines as a single, logical

switch.

 Programmable configuration: SDN lets network

managers configure, manage, secure, and optimize

 Chapter 3. Background

 25

network resources very quickly via dynamic, automated

SDN programs, which they can write themselves,

because the programs do not depend on proprietary

software.

 Open standards implementation and vendor

neutrality: When implemented through open standards,

SDN simplifies network design and operation because

instructions are provided by SDN controllers instead of

multiple, vendor-specific devices and protocols.

Figure 3.2-1: Decoupling of control and data plane introduced by SDN [Source:
Open Networking Foundation]

 Chapter 3. Background

 26

3.3. Network virtualization

The primitive principles of virtualization have been

implemented in many well-known and widely used network

protocols. In the past, network virtualization was used for the

increase of utilization, establishment of logical separation among

different network instances, simplification of network management

(e.g. Virtual Private Networks – VLANs) and security over untrusted

networks (e.g. Virtual Private Networks – VPNs).

Cloud computing brought network virtualization to

prominence because cloud providers needed a way to allow multiple

customers (or “tenants”) to share a common infrastructure. SDN

architecture, based on the OpenFlow protocol, constitutes a solid

background for the development of multi-tenant virtualized

environments.

There are two major approaches of network virtualization: (i)

full network virtualization and (ii) control plane “slicing”.

3.3.1. Full network virtualization

As it is mentioned in [8], network virtualization presents the

abstraction of a network that is decoupled from the underlying

physical equipment. Network virtualization allows multiple virtual

networks to run over a shared infrastructure and each virtual

network can have a much more abstract topology than the

underlying physical substrate. Important semantics of the full

network virtualization concept are link/node abstraction [6] and

path splitting and migration [9].

 Chapter 3. Background

 27

3.3.2. Control plane slicing

The main idea is to divide traffic flowspace (physical

resources) into “slices” (a concept initially introduced in PlanetLab

[10]), where each slice has a part of network resources and is

managed by a different SDN controller. An intermediate controller

can act as a transparent proxy controller, speaking OpenFlow to each

SDN controller and OpenFlow switch.

The behavior of such a proxy controller is specified by

establishing flowspace rules. In this context, each network slice is

associated with a certain number of flowspace rules, which specify

the way that the physical resources of a particular slice are utilized.

The (up to now) de-facto software-based OpenFlow proxy

controller is FlowVisor. Other undergoing promising efforts are OVX

(OpenVirtex) [11] and Flowspace Firewall [12].

3.4. Algorithmic basis

Algorithms for the creation of various data structures (e.g. hash

tables and multi-dimensional binary trees) and the lookup process in

them were studied and implemented. Moreover, disjoint path finding

was studied and an algorithm for routing between a given pair of

nodes over two physically disjoint paths was implemented.

3.4.1. Search algorithms

In computer science, a search algorithm is an algorithm for

finding an item with specified properties among a collection of items.

 Chapter 3. Background

 28

The items may be stored individually in a database or a hash table or

may be elements of a search space defined by a mathematical

formula or procedure.

 An important step in evaluating the efficiency of an algorithm is

algorithmic asymptotic analysis. This gives us a solid view of the

algorithmic behavior at large inputs and forms a good basis for the

comparison of various algorithms. The goal of asymptotic analysis is

to categorize algorithms in large complexity classes (using the “Big

O” notation) without focusing on “constants” that differentiate

execution behavior to a quite smaller extent.

 In the context of this thesis, the following search algorithms

were implemented:

 Linear Search

 Single hashing

 Open addressing with double hashing

 Multi-dimensional binary search tree

The linear search algorithm [13] is a method for finding a

particular element in a data structure and consists of serially

checking every one of its elements. It has a worst-case time

complexity of O(N), where N is the amount of elements that have to

be accessed. Despite its simplicity and its good storage

requirements, this algorithm results in slow lookup rates, especially

in cases that the accessed structure has many elements and the

requested element is at its end.

The single hashing algorithm, described in [13], searches for a

 Chapter 3. Background

 29

given key K in a table of existing keys (hash tables). This algorithm

make use of a hash function h(K) (e.g. MD5, SHA-1 and CRC32) in

order to map the requested data of arbitrary length into data of a

fixed length. Its average time complexity is O(1) and its worst-case

time complexity is O(N). Generally speaking, the lookup process is

quite fast (more apparent when the number of entries is thousands

or even more). Moreover, in a well-dimensioned hash table, the

average cost (number of instructions) for each lookup is independent

of the number of elements stored in the table. On the other hand, if

the hash table uses dynamic resizing, an insertion or a deletion

operation may occasionally take time proportional to the number of

entries and this may be a serious drawback in real-time or interactive

applications. Hash tables also require the design of an effective hash

function for each key type, which in many cases is quite difficult and

time-consuming to design and debug.

The open addressing with double hashing algorithm, described

in [13], probes the table in a slightly different fashion by making use

of two hash functions h1(K) and h2(K). h1(K) produces a value

between 0 and M-1 , inclusive (M is the table size) . However, h2(K)

must produce a value between 1 and M-1 that is relatively prime to

M. The steps of this algorithm are described below:

Step 1 [First hash] Set i h1(K).

Step 2 [First probe] If TABLE[i] is empty, go to Step 6. Otherwise

if KEY[i] = K, the algorithm terminates successfully.

Step 3 [Second hash] Set c h2(K).

Step 4 [Advance to next] Set i i – c; if now i<0, set i i + M

 Chapter 3. Background

 30

Step 5 [Compare] If TABLE[i] is empty, go to Step 6. Otherwise if

KEY[i] = K, the algorithm terminates successfully. Otherwise go

back to Step 4.

Step 6 [Insert] If N = M – 1, the algorithm terminates with

overflow. Otherwise set N N + 1, mark TABLE[i] occupied and

set KEY[i] K.

The average time complexity of this algorithm is O(1), while the

worst-case time complexity is O(N). Open addressing resolves the

problem of hash collisions (that is to say the problem of different key

values that are assigned by the hash function to the same bucket).

Moreover, by applying the second hash function to produce values

relatively prime to the maximum value produced by both the hash

functions, the appearance of consecutive key values is now actually a

help instead of a hindrance. Furthermore, the two hash functions are

independent, in the sense that different keys would have the same

value for both the hash functions with probability O(1/M^2) instead

of O(1/M), where M-1 is the maximum value produced by the hash

functions. On the other hand, the lookup becomes somewhat slower

and the memory needed is increased compared to the case of single

hashing.

 The k-dimensional binary search tree algorithm (or k-d tree

algorithm, where k is the dimensionality of the search space) is

described in [14]. In general terms, if a file is represented as a k-d

tree, then each record in the file is stored as a node in the tree. In

addition to the k keys, which comprise the record, each node contains

two pointers, which are either null or point to another node in the

tree. Each pointer can be considered as specifying a subtree. Based

 Chapter 3. Background

 31

on this data structure, various utility algorithms are developed, such

as insertion, deletion of the root, deletion of a random node and

optimization (guarantees logarithmic performance of searches).

As a consequence of the aforementioned optimization, the

average search time complexity is O(logN), while the worst-case

search time complexity is O(N). A great advancement of this

algorithm is that a single data structure facilitates many different and

seemingly unrelated query types. Moreover, this algorithm is

efficient for large trees (which consist of more than 8,000-9,000

nodes) and flexible enough to allow intersection queries. On the

other hand, it is less efficient than Linear Search for small or medium

sized trees (up to 6,000-7,000 nodes approximately). In cases that

the requested element is not a part of the tree, the lookup task takes

too much time to be terminated.

3.4.2. Disjoint paths algorithm

An optimal algorithm for k-disjoint path finding (k greater or

equal to 2) in a graph of vertices (nodes) and edges (links) are

presented in [15]. The used algorithm is a slight variant of the

original Dijkstra algorithm [16]. It is different (in step 3 below) in

that it scans all the neighbors of the node selected in step 2. Let d(i)

denote the distance of node i from starting node A. Let P(i) denote

the predecessor of node i. The ending node is Z.

 In each iteration, a node with the least path length is selected

from the set . The search process includes one move at a time and

terminates when the node selected from the set is Z. In the

original Dijsktra algorithm, when a node with the least path length is

 Chapter 3. Background

 32

selected from the list of tentatively labeled nodes, the selected node

is said to have been labeled “permanently” and no further scanning

from any other node in the graph can update the label of this node.

However, in the algorithm described in Figure 3.4.2-1, because of the

presence of negative arcs in the modified graph, rescanning can

update the label of the previously selected (or “permanently”

labeled) node. That is why the algorithm given in Figure 3.4.2-1 permits

rescanning.

However, achieving vertex-disjointness and edge-disjointness

for the generated shortest pair of paths is not a trivial process. These

algorithms are analyzed in sections 3.1 and 3.2 of [15] and require a

number of runs of the shortest path algorithm described in Figure

3.4.2-1.

Figure 3.4.2-1: Modified Dijkstra Algorithm for Shortest Path from node A to Z
[Source: Optimal physical diversity algorithms and survivable networks]

 Chapter 3. Background

 33

3.5. OpenFlow protocol

OpenFlow (OF) is a communication protocol that enables the

network control plane to define cross-layer forwarding rules, which

can be established and handled by OpenFlow-enabled devices. Based

on the SDN architecture, together with the OF protocol, network

devices are transformed to fully programmable forwarding elements.

OpenFlow Switch Specification (its latest version is described in [17])

provides a standardized and secure interface (secure channel)

between a centralized control plane entity (OpenFlow controller)

and distributed data plane entities (OpenFlow-enabled switches).

Figure 3.5-1: An OpenFlow-enabled switch communicates with an OpenFlow controller
over a secure channel using the OpenFlow protocol [Source: OpenFlow Switch

Specification Version 1.4]

3.5.1. Flow Table

A flow table consists of flow entries. Each flow entry (Table 3.5.1-1)

contains the following fields:

 Match fields: to match against OpenFlow packets. These fields

 Chapter 3. Background

 34

consist of the ingress port and the packet headers and,

optionally, some metadata specified by a previous flow table.

 Priority: matching precedence of the flow entry. Higher values

are higher priorities.

 Counters: increased by one when a packet is matched.

 Instructions: modification of the action set or pipeline

processing.

 Timeouts: maximum timespan or idle time before a flow is

expired by the switch.

 Cookie: opaque data value handled and selected by the

controller. May be used by the controller to filter flow statistics,

flow modification and deletion.

The match fields and priority taken together, uniquely identify

each flow table entry in a flow table.

 In Table 3.5.1-2, the required match fields are presented. These

fields are matched against the corresponding fields of each OpenFlow

packet that arrives at an OpenFlow-enabled switch. Each flow entry

may contain one or more wildcarded fields. In this case, a wildcarded

field matches against all the possible values of that field.

Ingress

Port

Ether

src

Ether

dst

Ether

type

VLAN

id

VLAN

Priority

IP

src

IP

dst

IP

proto

IP

ToS

Bits

TCP/UDP

Src Port

TCP/UDP

Dst Port

 Table 3.5.1-1: Major components of a flow entry in a flow table

Table 3.5.1-2: Required match fields of a flow table entry

Match

Fields

Priority Counters Instructions Timeouts Cookie

 Chapter 3. Background

 35

Counters are supported by each OpenFlow-enabled switch and

are maintained for each flow table, flow entry, switch port, queue,

group and group bucket, meter and meter band. OpenFlow-compliant

counters can be implemented in software and maintained by polling

hardware counters. The set of counters defined by the OpenFlow

specification is presented in Table 3.5.1-3. It should be noted that an

OpenFlow-enabled switch is not required to support all counters, but

just those marked “Required” in the mentioned table.

Each flow entry contains a set of instructions that are executed

when a packet matches the entry. Such instructions result in action

set, changes to the incoming packet and/or pipeline processing. An

OpenFlow-enabled switch is not required to support all possible

instruction types, just those marked as “Required Instruction” below.

Theses instructions are considered as absolutely necessary. It should

be noted that a switch must reject a flow entry, if it is unable to

execute the instructions associated with this flow entry.

 Optional Instruction: Meter meter_id: Directs packet to the

specified meter.

 Optional Instruction: Apply-Actions action(s): This instruction

may be used for the modification of the packet between two

tables or for the execution of multiple actions of the same type.

It applies the specific action(s) immediately to the packet,

without changing the Action Set. Such actions are described as

an action list.

 Optional Instruction: Clear-Actions: Clears all the actions in the

action set immediately.

 Chapter 3. Background

 36

 Required Instruction: Write-Actions action(s): Merges the

specified action(s) into the current action set.

 Optional Instruction: Write-Metadata metadata / mask:

Writes the masked metadata value into the metadata field.

 Required Instruction: Goto-Table next-table-id: Indicates the

next table in the processing pipeline. The next table-id must be

greater than the current table-id.

 Chapter 3. Background

 37

Table 3.5.1-3: List of the available OpenFlow-compliant
counters [Source: OpenFlow Switch Specification version 1.4.0]

 Chapter 3. Background

 38

 An action set is associated with each packet. By default, this

set is empty. An action set can be modified by a flow entry using a

Write-Action or a Clear-Action instruction associated with a specific

match. Each action set is carried among flow tables. The actions in

the action set of the packet are executed and the pipeline processing

stops when a Goto-Table instruction is not included in the instruction

set of a flow entry.

 An action set contains a maximum of one action of each type.

Regardless of the order that they were added to the set, the actions in

an action set are applied in the order specified below. However, an

OpenFlow-enabled switch may support arbitrary action execution

order through the action list of the Apply-Actions instruction:

1. Copy TTL inwards: apply copy TTL inward actions to the

packet.

2. Pop: apply all tag pop actions to the packet.

3. Push-MPLS: apply MPLS tag push action to the packet.

4. Push-PBB: apply PBB tag push action to the packet.

5. Push-VLAN: apply VLAN tag push action to the packet.

6. Copy TTL outwards: apply copy TTL outwards action to the

packet.

7. Decrement TTL: apply decrement TTL action to the packet.

8. Set: apply all set-field actions to the packet.

9. QoS: apply all QoS actions to the packet.

10. Group: if a group action is specified, apply the actions of the

relevant group bucket(s) in the order specified by this list.

11. Output: forward the packet on the port specified by the

output action unless a group action is specified.

 Chapter 3. Background

 39

 The output action in the action set is executed last. An output

action is ignored only in the case that both an output action and a

group action are specified in an action set because the group action

takes precedence. The packet is dropped unless an output or a group

action (or both) was specified in an action set.

 The Apply-Actions instruction includes an action list. The

actions of an action list are executed in the order specified by the list

and are applied immediately to the packet. Each action is executed on

the packet in sequence and that execution starts with the first action

in the list.

 However, a switch is not required to support all action types,

but just those marked as “Required Action” below. Moreover, the

controller can query the switch about which of the “Optional Actions”

it supports.

 Required Action: Output. According to this action, a packet is

forwarded to a specified OpenFlow port. OpenFlow switches

must support forwarding to physical ports, switch-defined

logical ports and the required reserved ports.

 Optional Action: Set-Queue. It sets the queue id for an

incoming packet. When the packet is forwarded to a port using

the output action, the queue id specifies which queue, attached

to this port, is used for scheduling and forwarding the packet.

More specifically, the forwarding behavior is determined by

the configuration of the queue and is used for the basic QoS

support.

 Required Action: Drop. This result can come from empty

instruction sets or empty action buckets in the processing

pipeline, or after the execution of a Clear-Actions instruction. In

 Chapter 3. Background

 40

other words, there is no explicit action to represent drop, but

packets whose action sets have no output actions should be

dropped.

 Required Action: Group. Process the packet through the

specified group.

 Optional Action: Push-Tag/Pop-Tag. Switches may support

the ability to push and pop the tags shown in Table 3.5.1-4. For

instance, the ability to push/pop VLAN tags is suggested to be

supported.

 Optional Action: Set-Field. The Set-Field actions modify the

values of respective header fields in the packet. Such actions

are identified by their field type.

 Optional Action: Change-TTL. Such actions result in the

modification of the values of the IPv4 TTL, IPv6 Hop Limit or

MPLS TTL in the packet.

Action Associated Data Description

Push VLAN header Ethertype Push a new VLAN header
onto the packet. The
Ethertype is used as the
Ethertype for the tag. Only
Ethertype 0x8100 and
0x88a8 should be used.

 Pop VLAN header - Pop the outer-most VLAN
header from the packet.

 Chapter 3. Background

 41

Push MPLS header Ethertype Push a new MPLS shim
header onto the
packet. The Ethertype is
used as the Ethertype for
the tag. Only Ethertype
0x8847 and 0x8848 should
be used.

Pop MPLS header

Ethertype

Pop the outer-most MPLS
tag or shim header from
the packet. The Ethertype
is used as the Ethertype for
the resulting packet
(Ethertype for the MPLS
payload).

Push PBB header

Ethertype

Push a new PBB service
instance header (I-TAG
TCI) onto the packet. The
Ethertype is used as the
Ethertype for the tag. Only
Ethertype 0x88E7 should
be used.

Pop PBB header

-

Pop the outer-most PBB
service instance header (I-
TAG TCI) from the packet.

Table 3.5.1-4: Push/pop tag actions [Source: OpenFlow Switch Specification
version 1.4.0]

When executing a push action, values for all the fields listed in

Table 3.5.1-5 should be copied from existing outer headers to new outer

headers. “New Fields”, specified in Table 3.5.1-5, without corresponding

“Existing Field(s)”, should be set to zero.

 Chapter 3. Background

 42

3.5.2. Matching a packet with the
corresponding flow entry

On arrival of a packet, an OpenFlow-enabled switch starts by

performing a table lookup in the first flow table, and according to the

pipeline processing, may perform table lookups in other flow tables

as well.

First of all, packet match fields are extracted from the

OpenFlow packet. Packet match fields used for table lookups

typically include various Layer 2 to Layer 4 header fields and usually

depend on the packet type. Apart from the header fields, matches can

be performed against ingress switch port and metadata fields.

A packet matches a flow table entry, if the values in the packet

match fields, used for the lookup, match those specified in the flow

entry. As it was mentioned in the previous section, if a flow table

entry field is wildcarded, it matches all possible values in the packet

Table 3.5.1-5: Existing fields that can be copied into new fields on a push
action [Source: OpenFlow Switch Specification version 1.4.0]

 Chapter 3. Background

 43

header. Each packet is matched against the table and only the highest

priority entry that matches the packet must be selected. The counters

associated with this particular flow entry must be increased and the

instruction set included in the selected flow entry must be applied. In

case of multiple matching flow entries with the same highest priority,

the chosen flow entry is undefined.

All the aforementioned functions, which are performed by an

OpenFlow switch, are shown in the following figure:

Figure 3.5.2-1: Flowchart illustrating packet flow through an OpenFlow switch [Source:
OpenFlow Switch Specification version 1.4.0]

Moreover, every flow table must support a table-miss flow

entry to process table misses. This flow entry defines how to handle

packets that are not matched against other flow entries in the flow

table. As a result, such packets may be sent to the controller, be

dropped or be directed to a subsequent table. If such a table-miss

 Chapter 3. Background

 44

entry does not exist, by default, packets unmatched by flow entries

are discarded.

Flow entries are removed from flow tables in three ways:

 at a request of a controller

 via the switch flow expiry mechanism

 via the optional switch eviction mechanism

The controller may actively dictate the deletion of a flow entry

from a flow table by sending delete flow table modification

messages.

The switch flow expiry mechanism is run by the switch

independently of the controller and is based on the state and the

configuration of flow entries. Every flow entry has an idle timeout

and a hard timeout indicator associated with it. A non-zero hard

timeout field causes a flow entry to be deleted after the given number

of seconds, regardless of the number of packets that it has matched. A

non-zero idle timeout field causes the flow entry to be removed when

it has matched no packets in the given amount of seconds. A switch

must implement both the aforementioned features.

Flow entries may be evicted from flow tables when the switch

needs to reclaim resources. That is an optional feature, and the

mechanism used to select which flow entries to evict is switch

defined and may depend on flow entry parameters, resource

mappings in the switch and other internal switch constraints.

Chapter 4. Design principles of the proposed implementation

 45

4. Design principles of the
proposed implementation

Generally speaking, there are two popular multi-tenant SDN

architectures. The first one deploys an OpenFlow transparent proxy

controller, such as FlowVisor, that enables tenants to share or “slice”

the control plane and develop their own arbitrary forwarding logic

within their slice [4]. The second one assumes a network hypervisor

that supports various network abstractions towards network

virtualization [6].

In order to achieve multi-tenancy across any SDN environment

(as well as in both of the SDN architectures mentioned above), the

classification of packets into flows is required. A typical way to

achieve this classification is via logical separators within packet

headers. In this context, three “network control plane slicing

methods” are proposed and analyzed in section 4.1. A network

control plane slicing method is an algorithm that ensures the creation

of non-overlapping flowspace rules. Each slicing method takes into

account different fields of the packet header.

Regardless of the selected slicing method, isolation among

slices (tenants) should be enforced across a shared physical

infrastructure. To that end, in section 4.2, the implications of

isolation policy enforcement for each slicing method are presented.

In order to enforce isolation policy among tenants, a certain

number of non-overlapping flowspace rules should be generated. In

some cases, this number may be quite large resulting in extreme

overheads. In order to keep flowspace rules to a reasonable number

Chapter 4. Design principles of the proposed implementation

 46

and, thus, avoid such overheads, a flowspace rule reduction approach

is described in section 4.3.

4.1. Network control plane
slicing methods

As described above, packet classification into flows via logical

separators within a packet header (packet ID) is required to achieve

multi-tenancy. Such a packet ID can also be considered by an

OpenFlow controller as the identifier of a network slice. For instance,

the VLAN IDs or the MPLS tags can be considered as packet IDs.

However, using a single separator as a slice identifier (e.g. the

VLAN IDs are restricted to 4096 per domain) could result in limited

scalability. In order to overcome these limitations, multiple

separators could be considered within an SDN controller and, thus, a

network slice can be identified via a set of tuples.

The proposed slicing methods are the following: i) domain-

wide slicing method, ii) switch-wide slicing method and iii) port-

wide slicing method. Examples of a separator tuple for each slicing

method are presented in Table 4.1.3-1.

4.1.1. Domain-wide slicing method

In the domain-wide slicing method, each network slice is

strictly associated (identified) with a unique value of the packet ID.

This is achieved by using a single separator per domain, e.g. <MPLS

tag> or <VLAN ID>. This slicing method could be referred to as the

“naïve” way to classify packets and “slice” flowspace.

Chapter 4. Design principles of the proposed implementation

 47

4.1.2. Switch-wide slicing method

In the switch-wide slicing method, each slice is identified

(associated) via multiple separators, which form tuples. In addition

to a single or multiple packet header fields, these tuples also include

the identification of the switching elements that this slice spans. Such

tuples can be specified as follows: <MPLS tag, switch ID> or <VLAN

ID, switch ID>. This method is more sophisticated than the “naïve”

domain-wide slicing and, thus, it is expected to result in a more

efficient flowspace segmentation.

4.1.3. Port-wide slicing method

In the port-wide slicing method, each slice is identified

(associated) via multiple separators along with specific switch ports

and switch identification. In other words, a slice is further identified

(compared to the switch-wide slicing method) using specific switch

ports.

For instance, a tuple regarding this particular slicing method

could be defined as follows: <MPLS tag, switch ID, switch port ID>.

One could think of this method as the most complex one, which,

however, provides the greatest network programmability to the

administrator or the infrastructure provider.

Chapter 4. Design principles of the proposed implementation

 48

Slicing method Separator tuple

Domain-wide <MPLS tag>

Switch-wide <MPLS tag, switch ID>

Port-wide <MPLS tag, switch ID, switch

port ID>

Table 4.1.3-1: Example of separator tuple for each slicing method

4.2. Isolation policy enforcement
in multi-tenant virtualized

environments

As stated above, regardless of the selected slicing method and

the underlying physical network topology, strong isolation should be

enforced among network slices. That is to say, actions of one slice

should be prevented from affecting other slices allowing tenants to

safely coexist across a common physical network infrastructure.

The overall concept of network virtualization may break down

if one slice conflicts with others and exhausts their resources. In

order to enforce such strong isolation among network slices, non-

overlapping flowspace rules should be created.

Enforcing isolation in the domain-wide slicing method is a

trivial process. Tenants should use each instance of the selected

separator only once across a network domain. For example, each

reserved MPLS tag or VLAN ID should not be reused across the same

domain.

Chapter 4. Design principles of the proposed implementation

 49

However, isolation enforcement in the switch-wide slicing

method is more complex because a specific instance of a selected

separator can be reused across a network domain. As a consequence,

multiple network slices may select the same separator instance

across a common physical network substrate risking the isolation of

network slices. At the worst-case scenario, the control plane could be

poisoned by the data plane traffic harshly violating the isolation

among network slices and thus exhausting their network resources.

In Figure 4.2-1, a scenario of two, potential conflicting, network

slices is illustrated. Slices of Tenant K and L are allocated within two

separate switching elements A and B. These switches are

interconnected via port 3 and port 1 respectively. Moreover, within

these switches, the same separator instance of MPLS tag i has been

reserved by each tenant. If tenant L selects port 1 of switch B as the

egress port of its traffic, packets will be forwarded to switch A.

However, in switch A, MPLS tag i has been delegated to tenant K and,

thus, tenant’s K OpenFlow controller would be overloaded by alien

OpenFlow control messages.

Such an outcome can be avoided by not assigning port 3 of

switch A and port 1 of switch B for the specific separator instance to

any of the tenants. In order to fulfill this requirement, the required

non-overlapping flowspace rules regarding tenants K and L and

switches A and B are presented in Table 4.2-1. It is worth noting that

one rule per delegated switch port should be defined.

Chapter 4. Design principles of the proposed implementation

 50

Rule
identification

Tenant
identification

Rule
priority

Egress/Ingress
switch port

Datapath
identification

Separator
instance

Rule 1 tenant L priority=1 port=2 datapath=switch
B

MPLS
tag=i

Rule 2 tenant L priority=1 port=3 datapath=switch
B

MPLS
tag=i

Rule 3 tenant L priority=1 port=4 datapath=switch
B

MPLS
tag=i

Rule 4 tenant L priority=1 port=5 datapath=switch
B

MPLS
tag=i

Rule 5 tenant K priority=1 port=1 datapath=switch
A

MPLS
tag=i

Rule 6 tenant K priority=1 port=2 datapath=switch
A

MPLS
tag=i

Rule 7 tenant K priority=1 port=4 datapath=switch
A

MPLS
tag=i

Rule 8 tenant K priority=1 port=5 datapath=switch
A

MPLS
tag=i

Table 4.2-1: Required flowspace rules in case of isolation policy enforcement in switch-
wide slicing

In the port-wide slicing method, non-overlapping flowspace

rules should be created in the same manner as above. Figure 4.2-2

Figure 4.2-1: Scenario of two potential conflicting network slices in the switch-wide

slicing method

Chapter 4. Design principles of the proposed implementation

 51

illustrates a potential scenario of violating tenant isolation in port-

wide slicing. Ports 1 and 5 of switch A have been assigned to tenant L,

while ports 3 and 4 of the same switching element have been assigned

to tenant K and the switch port 2 has not been assigned to any of the

tenants.

 Both tenants K and L use the instance i of separator MPLS tag.

However, if tenant L selects port 3 or 4 as the egress port of its traffic,

the isolation policy will be violated and the tenant slices will conflict.

In order to avoid this violation, the required flowspace rules for both

tenants are presented in Table 4.2-2. It is deduced that one rule per

delegated switch port should be defined in this slicing method as

well. Finally, it should be noted that in any of the aforementioned

scenarios, if a packet does not match any flowspace rule, it will be

discarded.

Figure 4.2-2: Scenario of two potential conflicting network slices in the
port-wide slicing method

Chapter 4. Design principles of the proposed implementation

 52

4.3. Flowspace rule reduction
approach in multi-tenant
virtualized environments

 As mentioned in the previous section, the number of required

flowspace rules in switch-wide and port-wide slicing is equal to the

number of switch ports that have been assigned to tenants, so that

isolation among network slices (tenants) is safeguarded. Moreover,

the ports that interconnect the switching elements of a network

topology should not be delegated to any of the tenants unless both of

the interconnected switches are delegated to the same tenant.

However, this isolation policy could result in large numbers of

generated flowspace rules and, as a consequence, its enforcement

could cause severe performance overheads and large memory

consumption, thus becoming the bottleneck of the entire network

infrastructure. In this way, it is overt that an approach towards the

reduction of the required flowspace rule number should be made.

This approach is applicable to the switch-wide slicing method.

Table 4.2-2: Required flowspace rules in case of isolation policy enforcement in port-
wide slicing

Rule
identification

Tenant
identification

Rule
priority

Egress/Ingress
switch port

Datapath
identification

Separator
instance

Rule 1 tenant L priority=1 port=1 datapath=switch
A

MPLS
tag=i

Rule 2 tenant L priority=1 port=5 datapath=switch
A

MPLS
tag=i

Rule 3 tenant K priority=1 port=3 datapath=switch
A

MPLS
tag=i

Rule 4 tenant K priority=1 port=4 datapath=switch
A

MPLS
tag=i

Chapter 4. Design principles of the proposed implementation

 53

When the number a of ports assigned to tenants per topology

switch is greater than the number u of unassigned switch ports, the

overall number of flowspace policy rules can be reduced by defining

high (higher than normal) priority drop rules for the interconnection

ports of the topology switches. These rules would be handled by a

special-purpose (administrative) OpenFlow controller that has a

global view of the network topology. In this way, if the data traffic of

a specific tenant was forwarded to a topology switch delegated to

another tenant, the corresponding packets would be dropped

(discarded). In addition to the aforementioned packet-dropping

rules, low (lower than normal) priority wildcard entries should be

used for the typical process of flowspace delegation to the existing

tenants.

Keeping up with the scenario presented in the previous section,

the required flowspace policy rules, after applying the rule reduction

approach, are presented in Table 4.3-1 (denoting that Priority 1 is

greater than Priority 2). It is worth noting that the required rules are

now reduced to half compared to the required rules defined in Table

4.2-1.

Flowspace Implementation
Slice id Priority Port Datapath id MPLS tag

Reserved slice 1 Priority 1 Port=3 Switch A MPLS tag i
Tenant K slice Priority 2 Port=* Switch A MPLS tag i

Reserved slice 1 Priority 1 Port=1 Switch B MPLS tag i
Tenant L slice Priority 2 Port=* Switch B MPLS tag i

Table 4.3-1: Rule reduction approach in switch-wide slicing when a>u

 On the other hand, when the number a of ports assigned to

tenants per topology switch is smaller than the number u of

unassigned switch ports, a flowspace rule reduction cannot be

Chapter 4. Design principles of the proposed implementation

 54

achieved because the number of required flowspace policy rules for

each topology switch is equal to the number of reserved switch ports.

Thus, the number of required flowspace rules is equal to the number

of policy rules mentioned in Table 4.2-1.

Chapter 5. Implementation analysis

 55

5. Implementation analysis

In the previous chapter (sections 4.1, 4.2, 4.3), the design

principles of the proposed implementation were discussed. In this

chapter, implementation specific features are described in detail.

5.1. Implementation structure

In order to evaluate the efficiency and the feasibility of the

aforementioned slicing methods and flowspace isolation policy, a

flowspace rule engine was implemented in software using Python

[18].

This engine takes as inputs tenant requests for virtual network

topologies (simple, disjoint and star topologies - all of them are

defined below) and physical substrate topologies and, based on the

selected slicing method, it generates the required flowspace rules, so

that isolation is enforced among tenants. It is noteworthy that this

engine takes as input real (WAN, medium and small sized) physical

network topologies. As a result, the selected slicing methods are

applied to real network substrate topologies providing a fertile

environment for reliable evaluation. The structure of this

implementation is illustrated in Figure 5.1-1. Specifically, it consists of

the following scripts:

 run_engine.sh: This bash script is used to initialize and

start the engine by specifying all the necessary

parameters of its execution. These parameters include

the desired physical network topologies, the selected

Chapter 5. Implementation analysis

 56

weight type (propagation delays or link bandwidths), the

interconnection points between the selected network

domains (reserved for future development) and the

number of virtual network topologies of each type.

 generate.py: This script generates the selected real

network topologies (specified in run_engine.sh) as

topology graphs using the dataset of “The Internet

Topology Zoo” project [19]. Moreover, it computes the

selected type of weights for each graph link and attaches

these weights to the topology graph.

 metrics.py: This script initializes the generation of

virtual network topologies and the computation of

evaluation metrics.

 paths.py: Given a source and a destination node of a

network topology graph, this script searches for a

disjoint path set between these nodes.

 evaluation.py: It calculates various performance

indicators and generates the required flowspace rules for

the domain-wide, the switch-wide and the port-wide

slicing method. Simple paths, star topologies and sets of

disjoint paths along with the network topology graph are

needed for this computation.

 graph_util.py: This script contains functions for the

interconnection of two or more network graphs. The

interconnection points are specified in run_engine.sh.

This script is useful for the future development of the

implemented engine, so that multi-domain support is

added.

Chapter 5. Implementation analysis

 57

 lookup_process.py: This script takes as input the lookup

query and initializes the flowspace lookup process by

creating various data structures.

 lookup.py: It contains the linear search, the single

hashing and the open addressing with double hashing

lookup algorithms. The elapsed time of the lookup

process for each algorithm is also computed. The average

and the worst-case time complexity for each algorithm

were described in chapter 3.

 kdtree.py: It contains functions for the construction of a

k-dimensional binary search tree (kd tree) and the

implementation of the lookup process in it. If the desired

element belongs to the kd tree, then the corresponding

node is returned. If there is not such a node in the kd

tree, the nearest neighbor of the requested element is

returned. The elapsed time is also computed.

 util_lookup.py: It includes various helpful functions for

the lookup process implementation.

The computed evaluation metrics are defined as follows:

 Acceptance ratio: the fraction of total requests issued by

tenants that were accepted by each slicing method. This

indicator shows the efficiency of a proposed slicing method.

 Number of required flowspace rules: the flowspace rules

that are generated by the rule engine and are required to be

established within an OpenFlow transparent proxy controller

(such as FlowVisor) in order for isolation policy to be enforced

among network slices (tenants)

Chapter 5. Implementation analysis

 58

 Proxy controller time overhead: the time overhead added to

the networked system by the OpenFlow proxy controller when

it handles the generated flowspace rules

 Proxy controller memory consumption: The memory

needed by the OpenFlow proxy controller to create, manipulate

and update the generated flowspace.

Figure 5.1-1: Structure of the software implementation

Chapter 5. Implementation analysis

 59

5.2. Detailed implementation
analysis

In this section, a detailed description of the scripts, mentioned

in section 5.1, is presented.

5.2.1. Script run_engine.sh

As mentioned above, this bash script initializes and starts the

flowspace rule engine by defining all the necessary execution

parameters. Such parameters include the desired real network

topologies (topo_list), the desired number of virtual network

topologies (simple_paths, disjoint, star_paths), the percentage of

bound and unbound requests (unbound) (these requests are defined

in detail below), the type of desired graph weights (bandwidth), an

argument for writing output in a file (w), an argument specifying

whether the evaluation metrics will be computed (reuse), the graph

interconnection points (connection_points), an argument specifying

whether the graph weigths will be computed or imported from a

source file (weights_from_file) and, if that is the case, the name of

the file that includes the graph weights (weights_file). All of these

parameters are described in detail below:

 topo_list: This argument specifies the desired real network

topologies, which constitute one of the inputs given to the

engine. The structure of each network topology is included in

“The Internet Topology Zoo” project. Such network topologies

include Internet2/OS3E [20], GÉANT [21], ULAKNET [22]

and PSiNET [23].

Chapter 5. Implementation analysis

 60

 simple_paths: The desired number of simple paths. These are

multi-hop (point-to-point) paths with no repeated vertices.

Source and destination nodes are randomly chosen.

 disjoint: The desired number of disjoint path sets. These are

sets of paths between a source and a destination node having

no vertex and edge in common. Source and destination nodes

are randomly selected.

 star_paths: The selected number of star topologies. A star

topology is defined as a tree with one internal vertex and k

leaves. Internal vertex and leaves are randomly selected.

 unbound: A parameter that takes a numerical value specifying

the percentage of unbound tenant requests. The percentage of

bound requests is computed as (100-$UNBOUND)% These

two types of requests are defined as follows:

o Bound request: a tenant requests a specific instance of

the selected logical separator across a path (e.g. a specific

VLAN ID or MPLS label).

o Unbound request: the allocation of any available

instance of the selected logical separator across a path is

acceptable (e.g. any available VLAN ID or MPLS label).

 bandwidth: A parameter that takes a boolean value. If that

value is TRUE, graphs weights represent link bandwidths

otherwise they represent propagation delays. The default value

of this parameter is FALSE.

 w: This argument determines that the evaluation results will be

printed in an output file.

 reuse: A parameter that takes a boolean value. If that value is

TRUE, the computation of the evaluation metrics is executed.

Chapter 5. Implementation analysis

 61

Otherwise, none of the metrics are computed. Its default value

is FALSE.

 connection_points: The interconnection points of the

specified network topologies (network domains) are defined as

a list of strings. This parameter is reserved for the future

development of the rule engine execution in multi-domain

environments.

 weights_from_file: A parameter that takes a boolean value. If

that value is TRUE, the graph weights are imported from a

source file otherwise they are computed during the engine

execution. The default value of this parameter is FALSE.

 weights_file: In case that the previous parameter has a TRUE

value, this parameter specifies the name of the .json file [24]

that includes the graph weights.

After the initialization of these parameters, the script generate.py

is called and takes them as input arguments.

Chapter 5. Implementation analysis

 62

5.2.2. Script generate.py

This script generates each of the selected real network

topologies as a topology graph by parsing its attributes from the

dataset of “The Internet Topology Zoo” project (described in detail in

section 5.3). For this purpose, the get_topo_graph function is called.

This function is contained in the topo_lib.py script, which is

described in the next section. Moreover, the selected type of graph

weights is generated and these weights are appended to a NetworkX

[25] Graph data structure named g. In case of a successful topology

parsing from the dataset, this successful parsing is recorded and the

function do_metrics is called for the initialization of the evaluation

metric computation otherwise the topology is ignored.

In addition to the above features, there is an option of unifying

two or more network topology graphs. However, this option is noted

as a comment because it is reserved for the future development of

the engine regarding multi-domain environments.

All the aforementioned process is described in Snippet 5.2.2-1.

Chapter 5. Implementation analysis

 63

5.2.3. Script topo_lib.py

The most important function included in this script is

get_topo_graph (Snippet 5.2.3-1). It takes as input a network topology

name and parses the corresponding network graph attributes from

the dataset of “The Internet Topology Zoo” project. To that end, it

either returns an error message or the entire topology graph. If the

attribute parsing process is successful, the selected type of weights

and each node name are attached to the NetworkX Graph data

structure named g.

for i, topo in enumerate(topos):
 print "topo %s of %s: %s" % (i + 1, t, topo)
 g, usable, note = get_topo_graph(topo)
 #g_unified = nx.union(g,topo_test)#unify graphs
 exp_filename = metrics.get_filename(topo, options)

 if not g:
 raise Exception("WTF?! null graph: %s" % topo)

 elif not options.force and os.path.exists(exp_filename + '.json'):
print "skipping already-analyzed topo: %s" % topo
 ignored.append(topo)
 elif not has_weights(g):
 ignored.append(topo)
 print "no weights for %s, skipping" % topo
 else:
 do_all(topo, g, 1, 1, None, mylist)
 successes.append(topo)

 print "successes: %s of %s: %s" % (len(successes), t, successes)
 print "ignored: %s of %s: %s" % (len(ignored), t, ignored)

Snippet 5.2.2-1: Snippet of script generate.py that determines whether the
attributes of a network topology were parsed successfully from the dataset.

Chapter 5. Implementation analysis

 64

5.2.4. Script metrics.py

For each successful parsing of a network topology, the function

do_metrics is called. This function initializes the computation of

acceptance ratio and the generation of flowspace rule tables (one for

each slicing method) for a single network domain.

Firstly, the flowspace rule tables are initialized as empty lists

and the input arguments are parsed. Secondly, if the input argument

weights_from_file (defined in section 5.2.1) has a TRUE value, the

graph weights are imported from a source file. If that is the case, the

function read_weights_from_file (Snippet 5.2.4-1) is called. This

function takes as inputs the topology graph and the name of the file

that includes the graph weights on an appropriate format. The

function read_json_file (Snippet 5.2.4-2) is used for the weight parsing

from the given .json file. Finally, the parsed graph weights are

def get_topo_graph(topo):
 if topo == 'os3e':
 g = OS3EWeightedGraph()
 return g, True, None
 elif topo == 'Geant2012':
 g, note, note2 = import_zoo_graph(topo)
 attr = nx.get_node_attributes(g,'Country')
 for node in g.nodes():
 temp = str(attr[node])
 mapping[node] = temp
 g = nx.relabel_nodes(g,mapping)
 return g, True, False
 else:
 g, note, note2 = import_zoo_graph(topo)
 attr = nx.get_node_attributes(g,'label')
 for node in g.nodes():
 temp = str(attr[node])
 mapping[node] = temp
 g = nx.relabel_nodes(g,mapping)
 return g, True, False

Snippet 5.2.3-1: the get_topo_graph function

Chapter 5. Implementation analysis

 65

appended to the NetworkX Graph data structure named g.

The process of the optimal path finding from each source to

each destination node is executed according to the Dijkstra algorithm

using the built-in functions of NetworkX

all_pairs_dijkstra_path_length and all_pairs_dijsktra_path.

After that, using the value of the argument disjoint, the

required number of disjoint path sets is searched. Specifically, the

disjoint path finding process is executed by calling the function

vertex_disjoint_shortest_pair of script paths.py, which is described

def read_weights_from_file(g,filename):
 weights = {}
 weights = read_json_file(filename)
 for src,dst in g.edges():
 tuples = [weights.get(src)]
 if tuples[0]!=None:
 try:
 index = tuples[0].index(dst)
 except ValueError:
 continue
 else:
 g[src][dst]['weight'] = tuples[0][index+1]
 tuples = [weights.get(dst)]
 if tuples[0]!=None:
 try:
 index = tuples[0].index(src)
 except ValueError:
 continue
 g[src][dst]['weight'] = tuples[0][index+1]
 return

def read_json_file(filename):
 input_file = open(filename, 'r')
 return json.load(input_file)

Snippet 5.2.4-1: the read_weights_from_file function

Snippet 5.2.4-2: the read_json_file function

Chapter 5. Implementation analysis

 66

in the next section. If there are less disjoint path sets in the given

graph than the requested number, the maximum number of existing

disjoint paths is returned. In any case, an appropriate message is

printed to standard output. This process is described in Snippet 5.2.4-3.

After the disjoint path finding process, the evaluation metric

computation takes place by calling the compute_metrics function of

script evaluation.py, described in section 5.2.6. Finally, the output

for node in g.nodes():
 if dis_counter >= disjoints:
 break
 src = node
 counter = 0
 for i in range(len(dst))
 temp1,temp2 = paths.vertex_disjoint_shortest_pair(g, src, dst[i])
 if temp1!=None and temp2!=None:
 length1 = get_length(apsp,temp1)
 if length1 == -1:
 break
 paths_temp.append((temp1,length1,dst[i]))
 length2 = get_length(apsp,temp2)
 if length2== -1:
 break
 paths_temp.append((temp2,length2,dst[i]))
 counter = counter+2
 elif temp1!=None and temp2==None:
 length = get_length(apsp,temp1)
 if length == -1:
 break
 paths_temp.append((temp1,length,dst[i]))
 counter=counter+1
 if counter == 0 or counter==1:
 continue
 paths_temp = sorted(paths_temp, key=itemgetter(1))
 path1,path2 = get_disjoint(g,paths_temp)
 if path1!=None and path2!=None:
 dis_counter = dis_counter +2
 dis_paths.append(path1[0])
 dis_paths.append(path2[0])

 if dis_counter == disjoints:
 print("-------Found %d disjoint paths" % dis_counter)
 else:
 print("-------Found %d disjoint paths out of %d that was
requested" % (dis_counter,disjoints))

Snippet 5.2.4-3: Disjoint path finding

Chapter 5. Implementation analysis

 67

.json files, which will contain the generated flowspace rule tables and

the resulting acceptance ratios, are created and the computed

metrics are copied to them. The functions get_filename and

get_tablefilename that are presented in Snippet 5.2.4-4 create the

appropriate file names.

def get_filename(topo, options):
 number_of_requests = options.star_paths + options.disjoint +
options.simple_paths
 type_of_requests = options.unbound
 mix = options.mix
 filename = "acceptance_ratio/" + topo + str(number_of_requests) +
mix + "("+ str(type_of_requests) +"% unbound)" +"/"
 return filename

def get_tablefilename(topo,options):
 number_of_requests = options.star_paths + options.disjoint +
options.simple_paths
 type_of_requests = options.unbound
 mix = options.mix
 filename_domain = "tables/" + "domain-wide" + topo +
str(number_of_requests) + mix+ "(" + str(type_of_requests) + "%
unbound)"+ "/"
 filename_switch = "tables/" + "switch-wide" + topo +
str(number_of_requests) + mix+ "(" + str(type_of_requests) + "%
unbound)"+ "/"
 filename_port = "tables/" + "port-wide" + topo +
str(number_of_requests) + mix+ "(" + str(type_of_requests) + "%
unbound)"+ "/"
 return filename_domain, filename_switch, filename_port

Snippet 5.2.4-4: The get_filename and the get_tablefilename functions

Chapter 5. Implementation analysis

 68

5.2.5. Script paths.py

This script contains the Python implementation of the

algorithm described in section 3.4.2. Given a source and a target

graph node, the included functions search whether a set of optimal

paths, which are both edge and vertex disjoint, exists between these

end nodes.

As stated in section 3.4.2, in order to check whether the

conditions of edge-disjointness and vertex-disjointness are fulfilled, a

number of runs of the modified Dijkstra Algorithm for Shortest Path

finding are required. If the requested disjoint path set exists, the

paths are returned along with their costs (sum of their edge weights)

to the user. Otherwise, an error message is returned.

5.2.6. Script evaluation.py

This script computes the evaluation metrics and generates the

required flowspace rules for the domain-wide, the switch-wide and

the port-wide slicing methods. The tenant requests for virtual

network topologies along with the topology graph are needed for this

computation.

The main function of this script is compute_metrics. Firstly,

the number of bound and unbound requests for each virtual network

topology type is computed. After that, the number of each switch

interconnection ports is computed based on the number of edges that

are attached to each switch (Snippet 5.2.6-1).

Chapter 5. Implementation analysis

 69

The tenant request acceptance ratio is computed by separating

bound and unbound requests. The type of each tenant request

(bound or unbound) and the selected slicing method differentiate the

way that a tenant request gets accepted or rejected by the rule

engine. Specifically:

 In case of an unbound request using the:

o Domain-wide slicing method: if any instance of the

selected logical separator is available across the entire

physical network, the request is accepted otherwise it is

rejected.

o Switch-wide slicing method: if any instance of the

selected logical separator is available within each switch

of the generated path, the request is accepted otherwise

it is rejected.

o Port-wide slicing method: if any instance of the

selected logical separator is available on the appropriate

ingress and egress port of each switch across the

generated path, the request is accepted otherwise it is

rejected.

def precompute_ports(g,mylist):
 for node in g.nodes():
 neighboors = g.neighbors(node)
 num_of_neigh = len(neighboors)
 for port in range(0,num_of_neigh):
 mylist.append((node,neighboors[port],port+1))
 return mylist

Snippet 5.2.6-1: the precompute_ports function

Chapter 5. Implementation analysis

 70

 In case of a bound request using the:

o Domain-wide slicing method: if the selected instance of

the logical separator is available across the entire

network, the request is accepted otherwise it is rejected.

o Switch-wide slicing method: if the selected instance of

the logical separator is available within each switch of

the generated path, the request is accepted otherwise it

is rejected.

o Port-wide slicing method: if the selected instance of the

logical separator is available on the appropriate ingress

and egress port of each switch across the generated path,

the request is accepted otherwise it is rejected.

In this context, this script contains functions for accepting or

rejecting a tenant request based on the request type in case of each

virtual network topology type (simple path, star topology or disjoint

path set). These functions also generate the required flowspace rules,

in case of an accepted tenant request, based on the isolation policy

and the flowspace rule reduction approach described in chapter 4. In

Snippet 5.2.6-2 and Snippet 5.2.6-3, the functions regarding bound requests

for simple paths using the port-wide slicing method and unbound

requests for simple paths using the domain-wide slicing method are

presented respectively. Finally, it is worth noting that each star

topology used for the metric computation includes two neighboring

nodes across each star radius.

Chapter 5. Implementation analysis

 71

 def
reusability_perswitch_perport(FlowSpace_port,user_id,mylist,vlan,paths,port_list,numb
er_of_rules):
 query = []
 query2 = []
 f = itemgetter(0,1)
 temp_no=0
 rules_to_append = []
 length = len(paths)
 for i in range(length-1):
 temp_no += 2
 src_node = paths[i]
 dst_node = paths[i+1]
 index = map(f,port_list).index((src_node,dst_node))
 port1 = port_list[index][2]
 index = map(f,port_list).index((dst_node,src_node))
 port2 = port_list[index][2]
 temp = (src_node,port1,dst_node,port2,vlan)
 index = map(f,port_list).index((src_node,dst_node))
 rules_to_append.append((user_id,3000,port1,src_node,vlan))
 rules_to_append.append((user_id,3000,port2,dst_node,vlan))
 query.append(temp)
 temp2 = (dst_node,port2,src_node,port1,vlan)
 query2.append(temp2)
 rules_to_append.append((user_id,3000,port2,dst_node,vlan))
 temp_no +=1
 if len(mylist)==0:
 for i in range(len(query)):
 temp1 = query[i]
 temp2 = query2[i]
 mylist.append(temp1)
 mylist.append(temp2)
 for i in range(len(rules_to_append)):
 FlowSpace_port.append(rules_to_append[i])
 user_id +=1
 number_of_rules[2] = temp_no
 return True
 for i in range(len(query)):
 temp1 = query[i]
 temp2 = query2[i]
 if ((temp1 in mylist) or (temp2 in mylist)):
 return False
 for i in range(len(query)):
 temp1 = query[i]
 temp2 = query2[i]
 mylist.append(temp1)
 mylist.append(temp2)
 for i in range(len(rules_to_append)):
 FlowSpace_port.append(rules_to_append[i])
 user_id +=1
 number_of_rules[2] = temp_no
 return True

Snippet 5.2.6-2: Computation of acceptance ratio and rule generation in
case of bound requests for simple paths using the port-wide slicing

method

Chapter 5. Implementation analysis

 72

def
reusability_per_domain_unbound(FlowSpace_domain,user_id,mylist,sh
ow_vlan_unbound,number_of_rules):
 temp = show_vlan_unbound[0]+1
 while temp <= 4096:
 rules_to_append = []
 if not temp in mylist:
 mylist.append(temp)
 show_vlan_unbound[0]=temp
 number_of_rules[0] = 1

 FlowSpace_domain.append((user_id,3000,'*','*',show_vlan_unbou
nd))
 user_id +=1
 return True
 else:
 temp=temp+1
 return False

Snippet 5.2.6-3: Computation of acceptance ratio and rule generation in
case of unbound requests for simple paths using the domain-wide slicing

method

Chapter 5. Implementation analysis

 73

5.2.7. Script graph_util.py

This script contains functions regarding the interconnection of

two (or more) given network graphs. For each desired pair of graphs

to be interconnected, the following actions are performed: Firstly, the

interconnection points are parsed and, secondly, these points are

connected with each other by a bidirectional link. This link weight is

also computed and attached to the network graph.

This script is about to be used for the future enhancement of

the rule engine, so that to support multi-domain environments. The

function parse_points, which parses the given interconnection graph

points, is presented in Snippet 5.2.7-1.

def parse_points(g,dst,connection_points):
 counter = 1
 char = ''
 src= ''
 i=0
 enough = 0
 length= len(connection_points)
 while counter<length-1:
 enough=0
 while enough<1:
 char = connection_points[counter]
 if char == '@' and enough == 0:
 char=' '
 src = src + char
 counter = counter +1
 elif char!= ',' and char!=']' and enough == 0:
 src = src + char
 counter = counter +1
 elif char == ',' and enough == 0:
 enough = enough +1
 counter = counter +1
 else:
 enough = enough +1
 counter = counter +1
 if enough == 1:
 if g.__contains__(src):
 dst.append(src)
 src=''
 return dst

Snippet 5.2.7-1: the parse_points function

Chapter 5. Implementation analysis

 74

5.2.8. Script lookup_process.py

This script takes as input a user query and initializes the

flowspace lookup process by creating various data structures.

Specifically, the required parameters of the k-dimensional binary

search tree algorithm are initialized, the hash tables are created and

the functions implementing the various lookup algorithms are called.

5.2.9. Script lookup.py

This script contains the functions implementing the various

lookup algorithms noted in section 3.4.1. The average and worst-case

time complexity of these algorithms have been mentioned in section

3.4.1 as well. The first function implements the linear search

algorithm and computes the elapsed time of the lookup process. The

linear search or “naïve” search algorithm is used as a point of

reference for the elapsed time of the lookup process.

 The second function implements the search algorithm of open

addressing with double hashing. As noted in section 3.4.1, this

algorithm is expected to result in a quite efficient lookup process.

However, because of the double hashing that takes place, this

algorithm is expected to result in slower lookups than the single

hashing algorithm.

The third function implements the single hashing search

algorithm. This algorithm is expected to result in the fastest lookups

because of its simple hashing approach. The software

implementation of this algorithm is presented in Snippet 5.2.9-1.

Chapter 5. Implementation analysis

 75

5.2.10. Script kdtree.py

This script constructs a k-dimensional binary search tree (kd

tree) and implements the lookup process in it for a requested

element. The average and the worst-case time complexity of this

algorithm were noted in section 3.4.1. In case that the requested

element is not a part of the kd tree, the nearest neighbor of this

element is returned. If the lookup process is successful (the

requested element is actually a part of the tree), the corresponding

tree node is returned.

In either case, along with the lookup process outcome, the

distance of the returned node from the root of the tree and the nodes

visited during the lookup process are returned. In Snippet 5.2.10-1, the

class of a k-dimensional binary search tree node is described.

def single_hashing(array,element,crc32_values):
 start = time.time()
 key =
zlib.crc32('{}{}{}{}'.format(element[0],element[1],element[2],element[
3]))
 key_existing = crc32_values.has_key(key)
 if key_existing :
 if crc32_values[key] ==
['{}{}{}{}'.format(element[0],element[1],element[2],element[3])]:
 end=time.time()
 print("Simpe hashing found the requested element after %s ms"
% ((end-start)*1000))
 return
 else:
 end=time.time()
 print("Simple hashing did not find the requested element after %s
ms" % ((end-start)*1000))
 return

Snippet 5.2.9-1: Software implementation of the single hashing search
algorithm

Chapter 5. Implementation analysis

 76

5.2.11. Script util_lookup.py

This script contains some quite simple, but useful functions for

handling various data types during the execution of the lookup

algorithms. Such functions convert the elements of a data structure

from one type to another and copy a multi-dimensional array to

another. For instance, there is a function that converts an ascii string

to an integer number and a function that copies any four dimensional

array to another.

class Kd_node(object):
 __slots__ = ["dom_elt", "split", "left", "right"]
 def __init__(self, dom_elt_, split_, left_, right_):
 self.dom_elt = dom_elt_
 self.split = split_
 self.left = left_
 self.right = right_

Snippet 5.2.10-1: The class of a k-dimensional binary search tree node

Chapter 5. Implementation analysis

 77

5.3. The Internet Topology Zoo
project

The dataset of this project includes the structure of diverse real

network topologies. Specifically, it includes their nodes and edges.

Each topology node consists of the following attributes: id, label,

Country, Longitude, Internal and Latitude. Moreover, each topology

edge consists of a certain group of the following attributes: source,

target, LinkType, LinkLabel, LinkSpeed, LinkSpeedUnits, LinkSpeedRaw

and LinkNote. However, for certain network topologies, the available

dataset was incomplete. To that end, it was updated and enhanced by

the completion of the missing attributes. An example of a graph node

and a graph edge is shown in Snippet 5.3-1. The available attributes are

described in detail below:

 id: this attribute refers to the sequence number of a particular

node.

 label: it refers to the label (name) of a particular graph node.

 Country: it refers to the name of the country where a

particular graph node is located.

 Longitude: this attribute refers to the longitude of a graph

node, so that precise propagation delays among nodes are

computed. These delays are used as the link weights when that

is determined by the input arguments.

 Internal: reserved attribute for internal graph functionalities.

 Latitude: this attribute refers to the latitude of a graph node. It

is used along with the Longitude attribute.

Chapter 5. Implementation analysis

 78

 source: the id attribute of the source node of a graph link.

 target: the id attribute of the target node of a graph link.

 LinkType: this attribute refers to the type of a link. Nowadays,

the most prevalent choice is optical fiber.

 LinkLabel: a string attribute that refers to a link speed along

with the speed unit of measurement, for instance “10 Gbps”.

This attribute represents the link bandwidth used as the link

weight in case that this is determined by the input arguments.

 LinkSpeed: this attribute refers to a link speed as a numerical

string.

 LinkSpeedUnits: the unit of measurement of a link speed.

 LinkSpeedRaw: it refers to a link speed as a floating-point

number.

 LinkNote: a note regarding a graph link.

Chapter 5. Implementation analysis

 79

node [
id 15
label "GR"
Country "Greece"
Longitude 23.71622
Internal 1
Latitude 37.97945

]

edge [

source 4
target 31
LinkSpeed "10"
LinkLabel "10 Gbps"
LinkSpeedUnits "G"
LinkSpeedRaw 10000000000.0

]

edge [

source 5
target 23
LinkType "Fibre"
LinkLabel "10 Gbps"
LinkNote "Lit "

]

Snippet 5.3-1: Examples of a graph node and a graph edge (2 cases) included in “The
Internet Topology Zoo” project

Chapter 6. Evaluation of the proposed implementation

 80

6. Evaluation of the proposed
implementation

In this chapter, the evaluation results of the implemented slicing

methods are presented. The computed evaluation metrics were

discussed in section 5.1.

The main part of the experimental setup was tenant requests.

Each of these requests was associated with a randomly generated

virtual network topology that belongs to one out of three different

categories: i) simple paths, ii)star topologies and iii)disjoint path

sets. For the performed experiments, the following mixture scenarios

were generated:

 Mix1: this mixture consisted of 17 requests for disjoint

path sets. Half of the remaining requests regarded star

topologies and the rest of these requests regarded simple

paths. All of these requests were bound.

 Mix2: this mixture consisted of 17 requests for disjoint

path sets, while 70% of the remaining requests regarded

star topologies and 30% regarded simple paths. All of these

requests were bound.

 Mix3: it consisted of 17 requests for disjoint path sets,

while 70% of the remaining requests regarded star

topologies and 30% regarded simple paths. 20% of the

requests for each category were unbound.

 Mix4: it consisted of 17 requests for disjoint path sets,

while 70% of the remaining requests regarded star

topologies and 30% regarded simple paths. All of these

Chapter 6. Evaluation of the proposed implementation

 81

requests were unbound.

It should be noted that the number of disjoint paths, which was

selected for the performed experimental evaluation, was based on

the maximum number of existing disjoint paths per physical network

topology.

6.1. Tenant request acceptance
ratio

In this experiment, the slicing method implementation runs on

top of diverse real network topologies for various numbers of

randomly generated tenant requests (up to 16,000) that are

consistent with the aforementioned mixture scenarios (mix1, mix2,

mix3 and mix4) and the resulting acceptance ratio is presented. The

real network topologies used for the evaluation process consisted of

6 up to 81 network nodes (WAN, medium and small sized

topologies).

In Figure 6.1-1 and Figure 6.1-2, the resulting acceptance ratio, in case

of the Internet2/OS3E topology (34 nodes) for 8,000 and 16,000

randomly generated tenant requests using the aforementioned

slicing methods and mixture scenarios, is presented. Link

bandwidths parsed from the dataset of “ The Internet Topology Zoo”

project constituted the graph weights.

Chapter 6. Evaluation of the proposed implementation

 82

In the aforementioned figures, it is shown that the port-wide

slicing method scales better as the number of tenant requests

increase. The acceptance ratio of this method is quite large in

scenarios that involve a small percentage of unbound tenant requests

0 0.2 0.4 0.6 0.8 1

mix1

mix2

mix3

mix4

Acceptance ratio

M
ix

tu
re

s
o

f
re

q
u

se
st

s

0 0.2 0.4 0.6 0.8 1

mix1

mix2

mix3

mix4

Acceptance ratio

M
ix

tu
re

s
o

f
re

q
u

e
st

s

Figure 6.1-1: Acceptance ratio in Internet2/OS3E for 8K requests

Figure 6.1-2: Acceptance ratio in Internet2/OS3E for 16K requests

Chapter 6. Evaluation of the proposed implementation

 83

(i.e. mix3) providing almost perfect resource utilization for

exclusively unbound requests (i.e. mix4). In this context, the port-

wide slicing method accepts more than 80% of the tenant requests

for a total of 16,000 requests (reaching 97-98% for the mix4

scenario). Ιn scenarios involving exclusively bound tenant requests

(i.e. mix1, mix2), the efficiency of this method is quite satisfactory as

well.

 In Figure 6.1-3, the resulting acceptance ratio, in case of the

GÉANT backbone topology (39 nodes) for 16,000 tenant requests and

mixtures 1-4, is presented. For this experiment, the propagation

delays among the topology nodes were computed and attached as

graph weights.

Figure 6.1-3: Acceptance ratio scaling as the percentage of unbound requests increase

The above figure illustrates that as the percentage of unbound

requests (for a certain total number of tenant requests) is increased,

the port-wide slicing method scales much better than the switch-

wide and the domain-wide slicing methods ideally accepting all

tenant requests for a total of exclusively unbound requests.

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

mix1 mix2 mix3 mix4

A
cc

e
p

ta
n

ce
 r

a
ti

o

Mixtures of requests

domain wide

switch wide

port wide

Chapter 6. Evaluation of the proposed implementation

 84

In order to evaluate the efficiency of the implemented slicing

methods in very large real network topologies, experiments involving

the ULAKNET network topology (81 network nodes) were

performed. The propagation delays among the topology nodes were

computed and attached as graph weights. The resulting acceptance

ratio for all the mixture scenarios in case of 16,000 requests is

illustrated in Figure 6.1-4.

Moreover, experiments were performed in small sized real

network topologies. A typical example is the PSiNET network

topology (23 nodes). This experiment was based on propagation

delays. The resulting acceptance ratio in case of 16,000 requests for

mixtures 1-4 is illustrated in Figure 6.1-5.

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

mix1 mix2 mix3 mix4

A
cc

e
p

ta
n

ce
 r

a
ti

o

Mixtures of requests

domain wide

switch wide

port wide

Figure 6.1-4: Acceptance ratio in the ULAKNET network topology for 16K
requests

Chapter 6. Evaluation of the proposed implementation

 85

As illustrated in Figure 6.1-1, Figure 6.1-2, Figure 6.1-3, Figure 6.1-4 and

Figure 6.1-5, the port-wide slicing method results in the largest

acceptance ratios (scaling up to 16,000 tenant requests). The

performed experiments also showed that this deduction is accurate

for real network topologies of various sizes (small, medium and WAN

sized network topologies).

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

mix1 mix2 mix3 mix4

A
cc

e
p

ta
n

ce
 r

a
ti

o

Mixtures of requests

domain wide

switch wide

port wide

Figure 6.1-5: Acceptance ratio in the PSiNET network topology for
16K requests

Chapter 6. Evaluation of the proposed implementation

 86

6.2. Generated flowspace rule
tables

The implemented rule engine, except for computing the

acceptance ratio for each slicing method and for given real network

topologies and tenant requests, generates the required flowspace

rules based on the isolation policy described in section 4.2 and the

rule reduction approach described in section 4.3.

As mentioned in section 6.1, the port-wide slicing method results

in the highest efficiency in terms of acceptance ratio. However, the

high efficiency comes at the cost of the increased number of

flowspace rules required to be generated and established within an

OpenFlow proxy controller, so that isolation is enforced.

A large number of established flowspace rules could result in a

great performance overhead added to the networked system by the

OpenFlow proxy controller. In such a case, the proxy controller

would handle extremely large flowspace rule tables resulting in a

slow manipulation process of its flowspace.

For this evaluation experiment, the selected real network

topologies were divided into three groups. The first group consisted

of small sized network topologies (up to 25 topology nodes), the

second group of medium sized network topologies (26-45 topology

nodes) and the last group of WAN sized topologies (46-81 topology

nodes).

Chapter 6. Evaluation of the proposed implementation

 87

 In the figures below, the number of required rules for the port-

wide slicing method, normalized to the number of required rules for

the domain-wide slicing method (Figure 6.2-1) and the switch-wide

slicing method (Figure 6.2-2), is illustrated. These comparisons were

performed for each topology group and tenant request mixture

scenario (for a total of 6,000 requests).

Figure 6.2-1: Flowspace rule number for port-wide method normalized by domain-
wide rules for small, medium and large sized topologies (6K requests)

1 6 11 16 21 26 31 36

small sized topologies

medium sized topologies

large sized topologies

small sized topologies

medium sized topologies

large sized topologies

small sized topologies

medium sized topologies

large sized topologies

small sized topologies

medium sized topologies

large sized topologies

m
ix

1
m

ix
2

m
ix

3
m

ix
4

Flowspace rule number normalized by domain-wide rules

port-wide slicing / domain-wide
slicing

Chapter 6. Evaluation of the proposed implementation

 88

Figure 6.2-2: Flowspace rule number for port-wide method normalized by switch-wide
rules for small, medium and large sized topologies (6K requests)

Based on the results illustrated in the aforementioned figures, the

initial case was validated. Indeed, the port-wide slicing method

results in the highest acceptance ratios, but also in the largest

numbers of required flowspace rules. By carefully observing Figure

6.2-1 and Figure 6.2-2, the following conclusions are drawn:

I. The port-wide slicing method results in larger required

flowspace rule tables compared to domain-wide and switch-

wide slicing. That is to say, in port-wide slicing, a tenant

request is translated into more flowspace rules than in domain-

wide and switch-wide slicing.

II. Given a mixture scenario, the normalized rule number is

greater for large (WAN) sized real network topologies than for

medium and small sized topologies.

III. Given a topology group, the normalized rule number is the

greatest in case of exclusively unbound requests (i.e. mix 4).

1 1.5 2 2.5 3 3.5

small sized topologies

medium sized topologies

large sized topologies

small sized topologies

medium sized topologies

large sized topologies

small sized topologies

medium sized topologies

large sized topologies

small sized topologies

medium sized topologies

large sized topologies

m
ix

1
m

ix
2

m
ix

3
m

ix
4

Flowspace rule number normalized by switch-wide rules

port wide slicing / switch-wide
slicing

Chapter 6. Evaluation of the proposed implementation

 89

This is due to the fact that, in such a mixture scenario, a greater

percentage of the overall tenant requests gets accepted and

thus more flowspace rules are generated.

Chapter 6. Evaluation of the proposed implementation

 90

6.3. Feasibility evaluation of the

implemented slicing methods

 In order to evaluate the feasibility of the implemented slicing

methods within a networked system, the software implementation

was associated with a popular OpenFlow proxy controller, FlowVisor.

 Generally speaking, an OpenFlow proxy controller, such as

FlowVisor, adds performance overhead to actions that cross between

the control and data plane layers of a SDN system. This is due to the

fact that an additional layer between these planes has been added.

 As mentioned in section 6.2, the port-wide slicing method

results in high efficiency at the cost of large generated flowspace rule

tables. Despite their large number, these rules should be handled

efficiently by the proxy controller, so that the isolation policy among

tenants is enforced.

 Specifically, in this experiment, the generated non-overlapping

flowspace rules were injected into FlowVisor (version 1.4) in order

to measure the introduced performance (time) overhead and its

memory consumption. It should be noted that the used FlowVisor

version provides high performance of flowspace lookups due to the

advanced implemented hashing algorithms instead of the “naïve”

linear search algorithm implemented in the early FlowVisor releases.

 For the quantification of the performance overhead, the

method described in [4] was used. Specifically, the time between

receiving a control packet from an OpenFlow switch and sending this

packet to a tenant OpenFlow controller was measured. For this

Chapter 6. Evaluation of the proposed implementation

 91

measurement, the libpcap [26] was used. For the measurement of the

required memory, operating system specific RAM metrics were used.

 In the following tables, the obtained measurements are

presented. Specifically, these measurements regard the entire

Internet2/OS3E topology (Table 6.3-1) as well as the Internet2/OS3E

node of Chicago (Table 6.3-2). This particular node was selected

because it has one of the highest node degrees across the entire

network topology and thus is heavily used.

 The aforementioned results demonstrate that an OpenFlow

proxy controller, such as FlowVisor, adds a minor performance

overhead to the network, even for a very large number of established

flowspace rules (up to 175,000). However, in case of a real network

 Internet2/OS3E topology
Tenant

requests
Generated
flowspace

rules

Performance
overhead

(ms)

Memory
consumption

(Mbytes)

1Κ 15Κ 0.042 622
2Κ 43Κ 0.044 1643
4Κ 95Κ 0.050 3951
6Κ 145Κ 0.053 5910
7Κ 175Κ 0.056 7400

Table 6.3-1: Performance overhead and memory consumption of FlowVisor regarding
the entire Internet2/OS3E topology

 Internet2/OS3E Chicago Node
Tenant

requests
Generated
flowspace

rules

Performance
overhead

(ms)

Memory
consumption

(Mbytes)

1Κ 1.1Κ 0.038 125
2Κ 2.5Κ 0.040 151

4Κ 4.6Κ 0.041 202
6Κ 7.5K 0.0414 250
7Κ 11K 0.0425 427

Table 6.3-2: Performance overhead and memory consumption of FlowVisor regarding
the Internet2/OS3E node of Chicago

Chapter 6. Evaluation of the proposed implementation

 92

topology that consists of 34 network nodes deployed across the

United States of America (such as Internet 2/OS3E), the proxy

controller memory consumption can be quite large, but not

prohibitive for a generic purpose hardware hosting the OpenFlow

proxy controller (such as a hosting server).

 As a conclusion, the implemented slicing methods can be

associated with an OpenFlow proxy controller, such as FlowVisor, as

the obtained measurements showed that the proxy controller can

efficiently handle the generated flowspace.

Chapter 6. Evaluation of the proposed implementation

 93

6.4. An approach towards a
more efficient flowspace lookup

process

 In section 3.4.1, a detailed analysis of various search algorithms

was presented. Moreover, in sections 5.2.8, 5.2.9, 5.2.10 and 5.2.11,

the software implementation of those algorithms was described.

 In case of a large amount of tenant requests or a WAN sized

network topology, the generated flowspace is quite large. As a

consequence, high performance flowspace lookups should be

introduced in order to reduce the networked system time overhead.

 In this context, the elapsed lookup time of the most efficient

implemented search algorithms (single hashing and open addressing

with double hashing) are compared with the FlowVisor time

overhead, presented in Table 6.3-1 (for the same generated flowspace).

In Figure 6.4-1, the resulting elapsed times are illustrated.

0

0.01

0.02

0.03

0.04

0.05

0.06

15K 43K 95K 145K 175K

E
la

p
se

d
 T

im
e

 (
m

s)

Generated flowspace rule number

single hashing

open addressing with
double hashing

FlowVisor performance
overhead

Figure 6.4-1: Elapsed time of the most efficient implemented search algorithms
compared with the FlowVisor performance overhead

Chapter 6. Evaluation of the proposed implementation

 94

 Based on this figure, it is deduced that, despite the advanced

search algorithms used in version 1.4 of FlowVisor, the implemented

lookup algorithms result in more efficient flowspace lookups.

However, it should be noted that the FlowVisor time overhead

consists of operating system specific overheads (e.g. the time needed

by the FlowVisor process to interrupt the operating system) plus the

elapsed flowspace lookup time. As a consequence, a part of the

measured FlowVisor overhead does not regard the flowspace lookup

process. Generally speaking, though, this part is minor (its typical

value is a few useconds in modern computer systems) compared to

the flowspace lookup overhead and, thus, it can be ignored.

Chapter 7. Conclusion and Future Work

 95

7. Conclusion and Future Work

Material based on the aforementioned work was submitted

for publication [27].

7.1. Conclusion

 Multi-tenancy, as a feature of SDN, constitutes a typical case

study of network virtualization. In this context, network

virtualization aims at providing to each tenant the perception that it

uses the available network resources exclusively on its own, without

being aware of other tenant existence or the physical network

substrate and topology. As a consequence, a basic principle of multi-

tenancy is the isolation policy enforcement among network slices

(tenants). As a result of this policy, potential conflicts among the

existing network slices are prevented.

 A typical way to achieve multi-tenancy is to apply one of the

proposed network control plane slicing methods across a physical

substrate network. The proposed slicing methods, defined and

analyzed in section 4.1, are the following: (i) domain-wide slicing,

(ii) switch-wide slicing and (iii) port-wide slicing.

 In order to enforce isolation among tenants based on a

network slicing method, a number of non-overlapping flowspace

rules should be created. For instance, in case of a deployed OpenFlow

transparent intermediate controller (e.g. FlowVisor), the created

non-overlapping flowspace rules should be established and handled

by it.

Chapter 7. Conclusion and Future Work

 96

 In case of a large number of issued tenant requests or a WAN

sized real network topology, the number of required flowspace rules

could be quite large. Based on these rules, the isolation policy

enforcement could result in severe overheads. Thus, a rule reduction

approach was proposed, resulting, at the worst-case scenario, in

equal numbers of required flowspace rules for the switch-wide and

the port-wide slicing methods.

 An experimental evaluation of the proposed network slicing

methods was performed via the association of these methods with

real network topologies (e.g. ULAKNET and PSiNET). Based on this

evaluation, the following conclusions were drawn:

 The port-wide slicing method results in the greatest efficiency

and scales better for large amounts of tenant requests (up to

16,000). This conclusion is independent of the network

topology size.

 The great efficiency of the port-wide slicing method comes at

the cost of the large number of flowspace rules that should be

established within an OpenFlow proxy controller (e.g.

FlowVisor), so that isolation is safeguarded among tenants.

 In case of port-wide slicing, each accepted tenant request is

translated into a larger number of flowspace rules compared

to the domain-wide and the switch-wide slicing methods.

 Given a mixture scenario, the rule number for port-wide

slicing, normalized by the domain-wide and switch-wide

slicing rule number, is greater for WAN sized network

topologies than for medium and small sized topologies.

Chapter 7. Conclusion and Future Work

 97

 Finally, a feasibility evaluation of the proposed slicing methods

was performed via the injection of the generated flowspace rules into

FlowVisor. This experiment showed that the proposed flowspace

policies resulted in a minor proxy controller performance (time)

overhead. However, the required rules resulted in large memory

consumption by the proxy controller. This memory consumption,

though, is not considered a severe limitation in modern generic

purpose servers validating that the proposed implementation is

robust enough to run on top of real network topologies.

7.2. Future Work

 The proposed network slicing methods, and especially the

port-wide slicing method, were proved to constitute a handy way to

achieve multi-tenancy across a physical substrate network. However,

these slicing methods could be enriched and enhanced in order to

result in higher tenant request acceptance ratios. For instance, each

physical switch port could be mapped to multiple virtual ports thus

enabling the port-wide slicing method to perform much better

scaling up to even larger numbers of tenant requests.

 In case of an unbound request, the lookup, performed for an

available instance of the selected separator tuple, is slow. Advanced

hashing algorithms could be implemented for this lookup process

resulting in greater performance and lower overheads.

 Another quite useful and interesting development would be to

add full integration of the proposed software implementation with

the API of an OpenFlow proxy controller, such as FlowVisor. In this

way, the software implementation would deal with real-time tenant

Chapter 7. Conclusion and Future Work

 98

requests and, as a consequence, would generate and inject flowspace

rules into the proxy controller in real time.

Chapter 8. References

 99

8. References

[1] Open Networking Foundation https://www.opennetworking.org

[2] OpenFlow protocol http://archive.openflow.org

[3] McKeown, N., T. Anderson, et al. (2008). "OpenFlow: Enable

Innovation in Campus Networks."

[4] R. Sherwood, G. Gibb, K. Yap, G. Appenzeller, M. Casado, N. McKeown,

and G. Parulkar, “Can the production network be the testbed?” in

Proceedings of USENIX OSDI, Vancouver, Canada, October 2010

[5] Balchunas, A. (2007). "Switching Tables v1.01."

[6] Martin Casado, Teemu Koponen, Rajiv Ramanathan, and Scott

Shenker, “Virtualizing the network forwarding plane”, in Proceedings

of the Workshop on Programmable Routers for Extensible Services of

Tomorrow (PRESTO '10), ACM , New York, USA, Article 8, 2010

[7] The FCAPS management Framework: ITU-T Rec. M. 3400

[8] N. Feamster, J. Rexford, and E. Zegura, “The Road to SDN: An

Intellectual History of Programmable Networks,” 2013.

[9] M. Yu, Y. Yi, J. Rexford, and M. Chiang, “Rethinking virtual network

embedding: Substrate support for path splitting and migration,” ACM

SIGCOMM Computer Communication Review, vol. 38, no. 2, pp. 17–29,

April 2008.

[10] PlanetLab http://www.planet-lab.org

[11] OVX (OpenVirtex) project http://www.sdncentral.com/projects/

ovx-openvirtex

[12] Flowspace Firewall project

http://globalnoc.iu.edu/software/sdn.html

https://www.opennetworking.org/
http://archive.openflow.org/
http://www.planet-lab.org/
http://www.sdncentral.com/projects/%20ovx-openvirtex
http://www.sdncentral.com/projects/%20ovx-openvirtex
http://globalnoc.iu.edu/software/sdn.html

Chapter 8. References

 100

[13] D. Knuth, “The Art of Computer Programming, Volume 3: Sorting and

Searching, Second Edition”, Chapter 6.3, page 492. Addison Wesley,

1997.

[14] Bentley, J. L. 1975 Multidimensional binary search trees used for

associative searching. Communications of the ACM, 18, 9 (Sept.), 509

517.

[15] R. Bhandari, “Optimal physical diversity algorithms and survivable

networks”, Proc. Second IEEE Symposium on Computers and

Communications 1997, Alexandria, Egypt, July 1997, pp. 433-441.

[16] E.W. Dijkstra, “A Note on Two Problems in Connexion with Graphs”,

Numer. Math. 1 (1959) 269-271.

[17] OpenFlow Protocol version 1.4.0 specification

https://www.opennetworking.org/images/stories/downloads/sdn-

resources/onf-specifications/openflow/openflow-spec-v1.4.0.pdf

[18] "Python Programming Language. http://www.python.org"

[19] “ The Internet Topology Zoo” project http://www.topology-zoo.org

[20] “Internet2/OS3E http://www.internet2.org/news/detail/4865/”

[21] GÉANT, the pan-European research and education network that

interconnects Europe’s National Research and Education Networks

(NRENs).

http://www.geant.net/Resources/Media_Library/Pages/Maps.aspx

[22] ULAKNET, the Academic network of Turkey

http://www.ulakbim.gov.tr/ulaknet/

[23] PSiNET research group of Internet Interdisciplinary Institute, Open

University of Catalonia (UOC-IN3)

http://psinet.uoc.edu/index.php/en/

[24] Crockford, D. (2009). "Introducing JSON."

https://www.opennetworking.org/images/stories/downloads/sdn-resources/onf-specifications/openflow/openflow-spec-v1.4.0.pdf
https://www.opennetworking.org/images/stories/downloads/sdn-resources/onf-specifications/openflow/openflow-spec-v1.4.0.pdf
http://www.python.org/
http://www.topology-zoo.org/
http://www.internet2.org/news/detail/4865/
http://www.geant.net/Resources/Media_Library/Pages/Maps.aspx
http://www.ulakbim.gov.tr/ulaknet/
http://psinet.uoc.edu/index.php/en/

Chapter 8. References

 101

[25] NetworkX Python software package for the manipulation of complex

networks http://networkx.github.io

[26] Tcpdump/Libpcap, http://www.tcpdump.org

[27] C. Argyropoulos, S. Mastorakis, G. Androulidakis, D. Kalogeras, V.

Maglaris, “Network Virtualization in Software Defined Networking”,

May 2014 (Submitted for publication).

http://networkx.github.io/
http://www.tcpdump.org/

Chapter 9. Appendix

 102

9. Appendix

 The software implementation is available in a public GitHub

repository at the following url:

https://github.com/spirosmastorakis/FSP_Engine

https://github.com/spirosmastorakis/FSP_Engine

