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Περίληψη  

 

 Το Διαδίκτυο με τη σημερινή του δομή έχει συμβάλει τα μέγιστα 

στην ανάπτυξη εικονικών περιβάλλοντων. Ωστόσο, η δομή του αυτή 

εισάγει περιορισμούς ευρείας κλίμακας στην ανάπτυξη καινοτόμων 

εφαρμογών. Για το λόγο αυτό, εισήχθησαν τα «Ευφϋή -

Προγραμματιζόμενα -Δίκτυα» (Software-Defined-Networks), τα 

οποία αναμένεται να αποτελέσουν τη βάση του Διαδικτύου του 

μέλλοντος, συμβάλλοντας στην ακόμα μεγαλύτερη ανάπτυξη των 

Νέφων Υπολογιστών (Cloud Computing) και των εικονικών δικτύων 

(virtualized networks). 

 Σημαντικό ρόλο προς αυτή την κατεύθυνση αναμένεται να 

διαδραματίσει το πρωτόκολλο OpenFlow, το οποίο σε συνδυασμό με 

την αρχιτεκτονική των Ευφϋών-Προγραμματιζόμενων-

Δίκτυων επιτρέπει το διαχωρισμό του επιπέδου ελέγχου από το 

επίπεδο προώθησης πακέτων σε ένα δίκτυο. Επιπροσθέτως, 

επιτρέπεται η ύπαρξη πολλαπλών «ενοικιαστών» (tenants) κατά 

μήκος ενός κοινού μοιραζόμενου δικτυακού υποστρώματος. Ένας 

από τους βασικούς στόχους της εικονοποίησης δικτύων (network 

virtualization) είναι η παροχή σε κάθε «ενοικιαστή» της 

ψευαίσθησης ότι καταναλώνει μόνος του όλους τους διαθέσιμους 

δικτυακούς πόρους. Για το λόγο αυτό, κάθε «ενοικιαστής» μπορεί να 

ζητήσει το δικό του κομμάτι δικτυακών πόρων (network slice). 

Επίσης, οι δικτυακοί πόροι και οι ενέργειες κάθε «ενοικιαστή» δε θα  

πρέπει να συγκρούονται (conflict) με τους πόρους των υπολοίπων 

ενοικιαστών. 

Για όλους τους παραπάνω λόγους, γίνεται επιτακτική η 
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ανάγκη μελέτης τρόπων συνύπαρξης και απομόνωσης μεταξύ των 

«ενοικιαστών» κατά μήκος του φυσικού δικτυακού υποστρώματος.  

 Λέξεις κλειδιά: «Ευφϋή-Προγραμματιζόμενα-

Δίκτυα» , Νέφη Υπολογιστών, εικονικά δίκτυα, κομμάτι δικτυακών 

πόρων, συνύπαρξη πολλαλών «ενοικιαστών» δικτύου, απομόνωση 

«ενοικιαστών».
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ABSTRACT 

Internet, with its current structure, has greatly contributed to 

the introduction and the development of virtual environments. 

However, this Internet structure introduces limitations on the 

development of innovative applications. In this context, Software-

Defined-Networks (SDNs) were introduced and are expected to 

constitute the core of Future Internet contributing to the even 

greater development of Cloud Computing and network virtualization. 

 The introduction and standardization of the OpenFlow (OF) 

protocol plays an important role in this effort. SDN, based on the 

OpenFlow protocol, enables the decoupling of control and data plane. 

Furthermore, multi-tenancy is enabled across a shared physical 

network substrate. One of the major goals of network virtualization is 

to provide to each tenant the perception that it uses the available 

network resources exclusively on its own. In this context, each tenant 

can request its own network slice. Moreover, the requested network 

slices should not conflict with each other. 

For all the reasons mentioned above, it is imperative to study 

various possible methods of coexistence and isolation among 

multiple tenants over a shared physical network substrate. 

Key words: Software-Defined-Networking, Cloud Computing, 

network virtualization, network slice, multi-tenancy, tenant isolation. 
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2. Introduction 

2.1. Research problem and 
Approach 

 

Modern computer design is greatly based on the concept of 

virtualization in order to decouple service provisioning from physical 

resources. More specifically, the emerging cloud computing 

ecosystem and its major trends (e.g. Infrastructure as a Service 

(IaaS), Platform as a Service (PaaS) and Service as a Service (SaaS)) 

are mainly based on the concept of network virtualization.  

The concept of network virtualization has become of even greater 

importance since the emergence of Software-Defined-Networking 

(SDN) [1]. SDN, based on the OpenFlow (OF) protocol [2],[3], 

introduced the decoupling of control and data plane and the concept 

of multi-tenancy over a shared physical network substrate. Multi-

tenancy, as a feature of SDN, refers to the existence of multiple 

tenants across a common physical network topology.  

In this context, each tenant can request its own network slice; a 

basket of allocated logical and physical network resources across one 

or more parts of physical network topology. In this way, tenants can 

run their own forwarding logic and develop advanced service 

functionalities within their virtual network (network slice), without 

being aware either of the physical network substrate or the existence 

of other tenants.  

A typical method to achieve multi-tenancy is to introduce packet 

classification into flows via a logical separator, typically a field within 
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the packet header. In this context, each OpenFlow controller 

considers a packet ID, preferably a Layer 2 header field, as the 

identifier of the network slices. Thus, in this thesis, three such 

methods, called “network control plane slicing methods”, are 

proposed, implemented in software and assessed. These methods are 

the following: (i) domain-wide slicing, (ii) switch-wide slicing and 

(iii) port-wide slicing.  

In a multi-tenant SDN environment, each tenant should not be 

able to exploit network resources that are delegated to other tenants 

(network slices). Thus, isolation should be enforced among network 

slices, so that they do not conflict with each other. In other words, a 

network slice should not be allowed to exhaust the network 

resources of other network slices. The rules, which should be 

generated in order to enforce an isolation policy among network 

slices, constitute the required flowspace [4]. Given that prerequisite, 

the proposed implementation also generates the required flowspace 

rules, so that the isolation enforcement among tenants is achieved. 
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2.2. Thesis Contribution 
 

This thesis mainly intends to propose and assess various slicing 

policies that enable the efficient flowspace segmentation among 

tenants. Specifically: 

 Three control plane slicing methods are proposed. These 

methods are applicable to diverse SDN architectures. 

 An isolation policy across SDN environments is discussed 

and a rule reduction approach is proposed. 

 The efficiency of the proposed slicing methods over 

multiple real network topologies is assessed and the 

required flowspace is generated. 

 An evaluation of the slicing method feasibility is performed. 

Thus, the slicing methods are associated with FlowVisor, a 

popular OpenFlow proxy controller, and the generated 

flowspace rules are injected into this proxy controller. 

2.3. Thesis outline 
 

The remainder of this thesis is organized as follows: in section 3, 

the background of this research issue and the related work are 

summarized. In section 4, the overall design of the proposed 

implementation is analyzed. In section 5, the analysis of the software 

implementation is performed. In section 6, the evaluation of this 

software implementation is performed. In section 7, the conclusions 

are summarized and the future work is described. Finally, in section 
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8, the used references are listed and, in section 9, an appendix is 

included. 
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3. Background 
 

In legacy network architectures, each network device 

constitutes an autonomous forwarding entity. Within such devices, 

the required forwarding, control and management functionalities are 

designed and implemented in distinct groups. These major groups 

constitute forwarding/data plane, control plane and management 

plane respectively. However, each vendor permits to a different, but 

always limited, extent the programmability and control of routers 

and Ethernet switches by network administrators. Moreover, each 

vendor designs network devices for specific markets. As a result, the 

mechanisms associated with the above functionalities are 

implemented in a different way by each vendor. This policy often 

results in major traffic management incompatibilities among devices 

of different vendors.  

In order to overcome these limitations, we can take advantage 

of Software-Defined Networking (SDN) [1] based on the OpenFlow 

(OF) protocol [2],[3]. Nowadays, the majority of Ethernet switches 

are OpenFlow-enabled and, as a result, they contain flow tables for 

the implementation of services such as Network Address Translation 

(NAT), Quality of Service (QOS) and Firewall [5]. OpenFlow provides 

a protocol for the programmability of these flow tables. Each 

OpenFlow-enabled switch is controlled by an OpenFlow controller 

that can insert or delete flows in/from the flow table of each switch.  

Generally speaking, SDN, based on the OpenFlow protocol, 

transforms network devices to fully programmable forwarding 

elements. Modern system design often employs virtualization to 
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decouple the system service model from its physical realization. 

Thus, the OpenFlow protocol constitutes a concrete substrate for the 

development of multi-tenant virtualized environments. By using a 

network hypervisor [6], one can fully virtualize a physical network 

substrate, by inserting distinct abstraction layers in order to achieve 

operational goals divorced from the underlying physical 

infrastructure. On the other hand, the deployment of an OpenFlow 

transparent proxy controller (e.g. FlowVisor [4]) can result in the 

delegation of various network resources, under the form of network 

slices, to multiple tenants.  

In the sections below, all the mentioned concepts are described 

in detail. 

3.1. Networking planes 
 

A plane, in networking context, is one of the three integral 

components of a telecommunication architecture. As mentioned 

above, these three integrals are: (i) forwarding/data plane, (ii) 

control plane and (iii) management plane. In legacy networks, all 

the three planes are implemented in the firmware of routers and 

switches. 

3.1.1. Forwarding/Data plane 
 

Typically, the forwarding/data plane is locally implemented 

within each network device and operates based on the line-rate. The 

forwarding/data plane refers to the underlying systems, which 

forward a packet to a selected destination. Said another way, the data 
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plane is mainly responsible for the process of packet forwarding 

based on forwarding rules (e.g. longest-prefix match) and for the 

simultaneous check of Access Control Lists (ACLs). Moreover, queue 

management and packet scheduling are implemented in the context 

of this plane. All the above operations are based on hardware 

components. 

Despite the fact that the forwarding/data plane 

implementation varies among vendors, network devices 

communicate with each other via standardized data forwarding 

protocols (e.g. Ethernet, Internet Protocol). 

3.1.2. Control plane 
 

The control plane is the part of the network that carries 

signaling traffic and is responsible for system configuration, 

exchange and management of routing table information. The control 

plane feeds the data plane and, in this way, the data plane 

functionality is determined by the control plane rules. These rules 

are generated by specific algorithms. In legacy networks, the 

signaling traffic is in-band and the control plane refers to the 

component of a router that focuses on the way that this device 

interacts with its neighbors via state exchange. 

One of the main control plane operations is to combine routing 

information (generated by a routing protocol) in order to populate 

FIB (Forwarding Information Base), which is used by the data plane.  

Moreover, the control plane functionality can either be 

centralized or distributed. In case of a centralized control plane, 
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decision-making regarding the entire infrastructure is a centralized 

process, whereas in case of a distributed control plane, the selected 

algorithms are distributed to each network device that is responsible 

for the control plane. 

3.1.3. Management plane 
 

The most widely used network management framework is 

FCAPS [7]. The five areas of function of this framework are described 

below: 

 Fault management: its goal is to recognize, isolate, 

correct and log faults that occur in the network. 

 Configuration management: its goals are to gather and 

store configurations from network devices, to simplify 

the configuration of the device, to track changes that are 

made to the configuration, to configure or “provision” 

circuits or paths through non-switched networks and to 

plan for future expansion and scaling. 

 Accounting management: its goal is to gather usage 

statistics for users. 

 Performance management: it focuses on ensuring that 

network performance remains at an acceptable level 

 Security management: it refers to the process of 

controlling access to assets in the network. 
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3.2. Software-Defined 
Networking (SDN) 

 

Software-Defined Networking (SDN) is an emerging 

architecture that is dynamic, manageable, cost-effective, and 

adaptable, making it ideal for the high-bandwidth, dynamic nature of 

today's applications. This architecture enables the control and the 

data plane decoupling. In this way, the network control plane 

becomes directly programmable and the underlying infrastructure 

can be abstracted for various applications and network services.  The 

OpenFlow protocol is the cornerstone of building SDN solutions. SDN 

also constitutes the enabling technology for network virtualization. 

The most important features of a SDN architecture are:  

 Direct programmability: The control plane is directly 

programmable because it is decoupled from the data 

plane. 

 Agility: Abstracting the control plane from the data 

plane lets administrators dynamically adjust network-

wide traffic flow to meet changing needs. 

 Central management: Network intelligence is 

(logically) centralized in software-based SDN 

controllers. Such controllers maintain a global view of 

the infrastructure network, which appears to 

applications and policy engines as a single, logical 

switch. 

 Programmable configuration: SDN lets network 

managers configure, manage, secure, and optimize 
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network resources very quickly via dynamic, automated 

SDN programs, which they can write themselves, 

because the programs do not depend on proprietary 

software. 

 Open standards implementation and vendor 

neutrality: When implemented through open standards, 

SDN simplifies network design and operation because 

instructions are provided by SDN controllers instead of 

multiple, vendor-specific devices and protocols. 

Figure 3.2-1: Decoupling of control and data plane introduced by SDN [Source: 
Open Networking Foundation] 
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3.3. Network virtualization 
 

The primitive principles of virtualization have been 

implemented in many well-known and widely used network 

protocols. In the past, network virtualization was used for the 

increase of utilization, establishment of logical separation among 

different network instances, simplification of network management 

(e.g. Virtual Private Networks – VLANs) and security over untrusted 

networks (e.g. Virtual Private Networks – VPNs).  

Cloud computing brought network virtualization to 

prominence because cloud providers needed a way to allow multiple 

customers (or “tenants”) to share a common infrastructure. SDN 

architecture, based on the OpenFlow protocol, constitutes a solid 

background for the development of multi-tenant virtualized 

environments.  

There are two major approaches of network virtualization: (i) 

full network virtualization and (ii) control plane “slicing”.  

3.3.1. Full network virtualization 
 

As it is mentioned in [8], network virtualization presents the 

abstraction of a network that is decoupled from the underlying 

physical equipment. Network virtualization allows multiple virtual 

networks to run over a shared infrastructure and each virtual 

network can have a much more abstract topology than the 

underlying physical substrate. Important semantics of the full 

network virtualization concept are link/node abstraction [6] and 

path splitting and migration [9]. 
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3.3.2. Control plane slicing 
 

The main idea is to divide traffic flowspace (physical 

resources) into “slices” (a concept initially introduced in PlanetLab 

[10]), where each slice has a part of network resources and is 

managed by a different SDN controller. An intermediate controller 

can act as a transparent proxy controller, speaking OpenFlow to each 

SDN controller and OpenFlow switch.  

The behavior of such a proxy controller is specified by 

establishing flowspace rules. In this context, each network slice is 

associated with a certain number of flowspace rules, which specify 

the way that the physical resources of a particular slice are utilized. 

The (up to now) de-facto software-based OpenFlow proxy 

controller is FlowVisor. Other undergoing promising efforts are OVX 

(OpenVirtex) [11] and Flowspace Firewall [12]. 

3.4. Algorithmic basis 
 

Algorithms for the creation of various data structures (e.g. hash 

tables and multi-dimensional binary trees) and the lookup process in 

them were studied and implemented. Moreover, disjoint path finding 

was studied and an algorithm for routing between a given pair of 

nodes over two physically disjoint paths was implemented. 

3.4.1. Search algorithms 
 

In computer science, a search algorithm is an algorithm for 

finding an item with specified properties among a collection of items. 
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The items may be stored individually in a database or a hash table or 

may be elements of a search space defined by a mathematical 

formula or procedure.  

 An important step in evaluating the efficiency of an algorithm is 

algorithmic asymptotic analysis. This gives us a solid view of the 

algorithmic behavior at large inputs and forms a good basis for the 

comparison of various algorithms. The goal of asymptotic analysis is 

to categorize algorithms in large complexity classes (using the “Big 

O” notation) without focusing on “constants” that differentiate 

execution behavior to a quite smaller extent.  

 In the context of this thesis, the following search algorithms 

were implemented: 

 Linear Search 

 Single hashing 

 Open addressing with double hashing 

 Multi-dimensional binary search tree 

The linear search algorithm [13] is a method for finding a 

particular element in a data structure and consists of serially 

checking every one of its elements. It has a worst-case time 

complexity of O(N), where N is the amount of elements that have to 

be accessed.  Despite its simplicity and its good storage 

requirements, this algorithm results in slow lookup rates, especially 

in cases that the accessed structure has many elements and the 

requested element is at its end. 

The single hashing algorithm, described in [13], searches for a 
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given key K in a table of existing keys (hash tables). This algorithm 

make use of a hash function h(K) (e.g. MD5, SHA-1 and CRC32) in 

order to map the requested data of arbitrary length into data of a 

fixed length. Its average time complexity is O(1) and its worst-case 

time complexity is O(N). Generally speaking, the lookup process is 

quite fast (more apparent when the number of entries is thousands 

or even more). Moreover, in a well-dimensioned hash table, the 

average cost (number of instructions) for each lookup is independent 

of the number of elements stored in the table. On the other hand, if 

the hash table uses dynamic resizing, an insertion or a deletion 

operation may occasionally take time proportional to the number of 

entries and this may be a serious drawback in real-time or interactive 

applications. Hash tables also require the design of an effective hash 

function for each key type, which in many cases is quite difficult and 

time-consuming to design and debug. 

The open addressing with double hashing algorithm, described 

in [13], probes the table in a slightly different fashion by making use 

of two hash functions h1(K) and h2(K).  h1(K) produces a value 

between 0 and M-1 , inclusive (M is the table size) . However, h2(K) 

must produce a value between 1 and M-1 that is relatively prime to 

M. The steps of this algorithm are described below: 

Step 1 [First hash] Set i  h1(K). 

Step 2 [First probe] If TABLE[i] is empty, go to Step 6. Otherwise 

if KEY[i] = K, the algorithm terminates successfully. 

Step 3 [Second hash] Set c  h2(K). 

Step 4 [Advance to next] Set i  i – c; if now i<0, set i  i + M 
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Step 5 [Compare] If TABLE[i] is empty, go to Step 6. Otherwise if 

KEY[i] = K, the algorithm terminates successfully. Otherwise go 

back to Step 4. 

Step 6 [Insert] If N = M – 1, the algorithm terminates with 

overflow. Otherwise set N  N + 1, mark TABLE[i] occupied and 

set KEY[i]  K. 

The average time complexity of this algorithm is O(1), while the 

worst-case time complexity is O(N). Open addressing resolves the 

problem of hash collisions (that is to say the problem of different key 

values that are assigned by the hash function to the same bucket).  

Moreover, by applying the second hash function to produce values 

relatively prime to the maximum value produced by both the hash 

functions, the appearance of consecutive key values is now actually a 

help instead of a hindrance. Furthermore, the two hash functions are 

independent, in the sense that different keys would have the same 

value for both the hash functions with probability O(1/M^2) instead 

of O(1/M), where M-1 is the maximum value produced by the hash 

functions. On the other hand, the lookup becomes somewhat slower 

and the memory needed is increased compared to the case of single 

hashing.  

 The k-dimensional binary search tree algorithm (or k-d tree 

algorithm, where k is the dimensionality of the search space) is 

described in [14]. In general terms, if a file is represented as a k-d 

tree, then each record in the file is stored as a node in the tree. In 

addition to the k keys, which comprise the record, each node contains 

two pointers, which are either null or point to another node in the 

tree. Each pointer can be considered as specifying a subtree. Based 
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on this data structure, various utility algorithms are developed, such 

as insertion, deletion of the root, deletion of a random node and 

optimization (guarantees logarithmic performance of searches).  

As a consequence of the aforementioned optimization, the 

average search time complexity is O(logN), while the worst-case 

search time complexity is O(N). A great advancement of this 

algorithm is that a single data structure facilitates many different and 

seemingly unrelated query types. Moreover, this algorithm is 

efficient for large trees (which consist of more than 8,000-9,000 

nodes) and flexible enough to allow intersection queries. On the 

other hand, it is less efficient than Linear Search for small or medium 

sized trees (up to 6,000-7,000 nodes approximately). In cases that 

the requested element is not a part of the tree, the lookup task takes 

too much time to be terminated. 

3.4.2. Disjoint paths algorithm 
 

An optimal algorithm for k-disjoint path finding (k greater or 

equal to 2) in a graph of vertices (nodes) and edges (links) are 

presented in [15]. The used algorithm is a slight variant of the 

original Dijkstra algorithm [16].  It is different (in step 3 below) in 

that it scans all the neighbors of the node selected in step 2.  Let d(i) 

denote the distance of node i from starting node A. Let P(i) denote 

the predecessor of node i. The ending node is Z. 

 In each iteration, a node with the least path length is selected 

from the set . The search process includes one move at a time and 

terminates when the node selected from the set   is Z. In the 

original Dijsktra algorithm, when a node with the least path length is 



  Chapter 3. Background 
 

 32 

selected from the list of tentatively labeled nodes, the selected node 

is said to have been labeled “permanently” and no further scanning 

from any other node in the graph can update the label of this node. 

However, in the algorithm described in Figure 3.4.2-1, because of the 

presence of negative arcs in the modified graph, rescanning can 

update the label of the previously selected (or “permanently” 

labeled) node. That is why the algorithm given in Figure 3.4.2-1 permits 

rescanning. 

However, achieving vertex-disjointness and edge-disjointness 

for the generated shortest pair of paths is not a trivial process. These 

algorithms are analyzed in sections 3.1 and 3.2 of [15] and require a 

number of runs of the shortest path algorithm described in Figure 

3.4.2-1.  

Figure 3.4.2-1: Modified Dijkstra Algorithm for Shortest Path from node A to Z 
[Source: Optimal physical diversity algorithms and survivable networks] 
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3.5. OpenFlow protocol 
 

OpenFlow (OF) is a communication protocol that enables the 

network control plane to define cross-layer forwarding rules, which 

can be established and handled by OpenFlow-enabled devices. Based 

on the SDN architecture, together with the OF protocol, network 

devices are transformed to fully programmable forwarding elements. 

OpenFlow Switch Specification (its latest version is described in [17]) 

provides a standardized and secure interface (secure channel)  

between a centralized control plane entity (OpenFlow controller) 

and distributed data plane entities (OpenFlow-enabled switches).  

 

Figure 3.5-1: An OpenFlow-enabled switch communicates with an OpenFlow controller 
over a secure channel using the OpenFlow protocol [Source: OpenFlow Switch 

Specification Version 1.4] 

3.5.1. Flow Table 
 

A flow table consists of flow entries. Each flow entry (Table 3.5.1-1) 

contains the following fields:  

 Match fields: to match against OpenFlow packets. These fields 
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consist of the ingress port and the packet headers and, 

optionally, some metadata specified by a previous flow table. 

 Priority: matching precedence of the flow entry. Higher values 

are higher priorities.  

 Counters: increased by one when a packet is matched. 

 Instructions: modification of the action set or pipeline 

processing. 

 Timeouts: maximum timespan or idle time before a flow is 

expired by the switch. 

 Cookie: opaque data value handled and selected by the 

controller. May be used by the controller to filter flow statistics, 

flow modification and deletion. 

The match fields and priority taken together, uniquely identify 

each flow table entry in a flow table.  

  In Table 3.5.1-2, the required match fields are presented. These 

fields are matched against the corresponding fields of each OpenFlow 

packet that arrives at an OpenFlow-enabled switch. Each flow entry 

may contain one or more wildcarded fields. In this case, a wildcarded 

field matches against all the possible values of that field.  

 

Ingress 

Port 

Ether 

src 

Ether 

dst 

Ether 

type 

VLAN 

id 

VLAN 

Priority 

IP 

src 

IP 

dst 

IP 

proto 

IP 

ToS 

Bits 

TCP/UDP 

Src Port 

TCP/UDP 

Dst Port 

 Table 3.5.1-1:  Major components of a flow entry in a flow table 

Table 3.5.1-2:  Required match fields of a flow table entry 

Match 

Fields 

Priority Counters Instructions Timeouts Cookie 
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Counters are supported by each OpenFlow-enabled switch and 

are maintained for each flow table, flow entry, switch port, queue, 

group and group bucket, meter and meter band. OpenFlow-compliant 

counters can be implemented in software and maintained by polling 

hardware counters. The set of counters defined by the OpenFlow 

specification is presented in Table 3.5.1-3. It should be noted that an 

OpenFlow-enabled switch is not required to support all counters, but 

just those marked “Required” in the mentioned table. 

Each flow entry contains a set of instructions that are executed 

when a packet matches the entry. Such instructions result in action 

set, changes to the incoming packet and/or pipeline processing. An 

OpenFlow-enabled switch is not required to support all possible 

instruction types, just those marked as “Required Instruction” below. 

Theses instructions are considered as absolutely necessary.  It should 

be noted that a switch must reject a flow entry, if it is unable to 

execute the instructions associated with this flow entry. 

 Optional Instruction: Meter meter_id: Directs packet to the 

specified meter. 

 Optional Instruction: Apply-Actions action(s): This instruction 

may be used for the modification of the packet between two 

tables or for the execution of multiple actions of the same type. 

It applies the specific action(s) immediately to the packet, 

without changing the Action Set. Such actions are described as 

an action list. 

 Optional Instruction: Clear-Actions: Clears all the actions in the 

action set immediately. 
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 Required Instruction: Write-Actions action(s): Merges the 

specified action(s) into the current action set. 

 Optional Instruction: Write-Metadata metadata / mask: 

Writes the masked metadata value into the metadata field. 

 Required Instruction: Goto-Table next-table-id: Indicates the 

next table in the processing pipeline. The next table-id must be 

greater than the current table-id. 
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Table 3.5.1-3: List of the available OpenFlow-compliant 
counters [Source: OpenFlow Switch Specification version 1.4.0] 
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 An action set is associated with each packet. By default, this 

set is empty. An action set can be modified by a flow entry using a 

Write-Action or a Clear-Action instruction associated with a specific 

match. Each action set is carried among flow tables. The actions in 

the action set of the packet are executed and the pipeline processing 

stops when a Goto-Table instruction is not included in the instruction 

set of a flow entry. 

 An action set contains a maximum of one action of each type. 

Regardless of the order that they were added to the set, the actions in 

an action set are applied in the order specified below. However, an 

OpenFlow-enabled switch may support arbitrary action execution 

order through the action list of the Apply-Actions instruction: 

1. Copy TTL inwards: apply copy TTL inward actions to the 

packet. 

2. Pop: apply all tag pop actions to the packet. 

3. Push-MPLS: apply MPLS tag push action to the packet. 

4. Push-PBB: apply PBB tag push action to the packet. 

5. Push-VLAN: apply VLAN tag push action to the packet. 

6. Copy  TTL outwards: apply copy TTL outwards action to the 

packet. 

7. Decrement TTL: apply decrement TTL action to the packet. 

8. Set: apply all set-field actions to the packet. 

9. QoS: apply all QoS actions to the packet.  

10. Group: if a group action is specified, apply the actions of the 

relevant group bucket(s) in the order specified by this list. 

11. Output: forward the packet on the port specified by the 

output action unless a group action is specified. 
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 The output action in the action set is executed last. An output 

action is ignored only in the case that both an output action and a 

group action are specified in an action set because the group action 

takes precedence. The packet is dropped unless an output or a group 

action (or both) was specified in an action set.  

 The Apply-Actions instruction includes an action list. The 

actions of an action list are executed in the order specified by the list 

and are applied immediately to the packet. Each action is executed on 

the packet in sequence and that execution starts with the first action 

in the list.  

 However, a switch is not required to support all action types, 

but just those marked as “Required Action” below. Moreover, the 

controller can query the switch about which of the “Optional Actions” 

it supports. 

 Required Action: Output. According to this action, a packet is 

forwarded to a specified OpenFlow port. OpenFlow switches 

must support forwarding to physical ports, switch-defined 

logical ports and the required reserved ports. 

 Optional Action: Set-Queue. It sets the queue id for an 

incoming packet. When the packet is forwarded to a port using 

the output action, the queue id specifies which queue, attached 

to this port, is used for scheduling and forwarding the packet. 

More specifically, the forwarding behavior is determined by 

the configuration of the queue and is used for the basic QoS 

support. 

 Required Action: Drop. This result can come from empty 

instruction sets or empty action buckets in the processing 

pipeline, or after the execution of a Clear-Actions instruction. In 
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other words, there is no explicit action to represent drop, but 

packets whose action sets have no output actions should be 

dropped. 

 Required Action: Group. Process the packet through the 

specified group. 

 Optional Action: Push-Tag/Pop-Tag. Switches may support 

the ability to push and pop the tags shown in Table 3.5.1-4. For 

instance, the ability to push/pop VLAN tags is suggested to be 

supported. 

 Optional Action: Set-Field. The Set-Field actions modify the 

values of respective header fields in the packet. Such actions 

are identified by their field type. 

 Optional Action: Change-TTL. Such actions result in the 

modification of the values of the IPv4 TTL, IPv6 Hop Limit or 

MPLS TTL in the packet.  

 

Action Associated Data Description 

Push VLAN header Ethertype Push a new VLAN header 
onto the packet. The 
Ethertype is used as the 
Ethertype for the tag. Only 
Ethertype 0x8100 and 
0x88a8 should be used. 

 Pop VLAN header - Pop the outer-most VLAN 
header from the packet. 
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Push MPLS header Ethertype Push a new MPLS shim 
header onto the 
packet. The Ethertype is 
used as the Ethertype for 
the tag. Only Ethertype 
0x8847 and 0x8848 should 
be used. 

 
Pop MPLS header 

 

Ethertype 

 

Pop the outer-most MPLS 
tag or shim header from 
the packet. The Ethertype 
is used as the Ethertype for 
the resulting packet 
(Ethertype for the MPLS 
payload). 

 
Push PBB header 

 

Ethertype 

 

Push a new PBB service 
instance header (I-TAG 
TCI) onto the packet. The 
Ethertype is used as the 
Ethertype for the tag. Only 
Ethertype 0x88E7 should 
be used. 

 
Pop PBB header 

 

- 

 

Pop the outer-most PBB 
service instance header (I-
TAG TCI) from the packet. 

 

Table 3.5.1-4: Push/pop tag actions [Source: OpenFlow Switch Specification 
version 1.4.0] 

When executing a push action, values for all the fields listed in 

Table 3.5.1-5 should be copied from existing outer headers to new outer 

headers. “New Fields”, specified in Table 3.5.1-5, without corresponding 

“Existing Field(s)”, should be set to zero. 
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3.5.2. Matching a packet with the 
corresponding flow entry 

 

On arrival of a packet, an OpenFlow-enabled switch starts by 

performing a table lookup in the first flow table, and according to the 

pipeline processing, may perform table lookups in other flow tables 

as well.  

First of all, packet match fields are extracted from the 

OpenFlow packet. Packet match fields used for table lookups 

typically include various Layer 2 to Layer 4 header fields and usually 

depend on the packet type. Apart from the header fields, matches can 

be performed against ingress switch port and metadata fields.  

A packet matches a flow table entry, if the values in the packet 

match fields, used for the lookup, match those specified in the flow 

entry. As it was mentioned in the previous section, if a flow table 

entry field is wildcarded, it matches all possible values in the packet   

 

 

Table 3.5.1-5: Existing fields that can be copied into new fields on a push 
action [Source: OpenFlow Switch Specification version 1.4.0] 
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header. Each packet is matched against the table and only the highest 

priority entry that matches the packet must be selected. The counters 

associated with this particular flow entry must be increased and the 

instruction set included in the selected flow entry must be applied. In 

case of multiple matching flow entries with the same highest priority, 

the chosen flow entry is undefined.  

All the aforementioned functions, which are performed by an 

OpenFlow switch, are shown in the following figure: 

 

 

Figure 3.5.2-1: Flowchart illustrating packet flow through an OpenFlow switch [Source: 
OpenFlow Switch Specification version 1.4.0] 

 

Moreover, every flow table must support a table-miss flow 

entry to process table misses. This flow entry defines how to handle 

packets that are not matched against other flow entries in the flow 

table. As a result, such packets may be sent to the controller, be 

dropped or be directed to a subsequent table. If such a table-miss 
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entry does not exist, by default, packets unmatched by flow entries 

are discarded. 

Flow entries are removed from flow tables in three ways: 

 at a request of a controller 

 via the switch flow expiry mechanism 

 via the optional switch eviction mechanism 

The controller may actively dictate the deletion of a flow entry 

from a flow table by sending delete flow table modification 

messages.  

The switch flow expiry mechanism is run by the switch 

independently of the controller and is based on the state and the 

configuration of flow entries. Every flow entry has an idle timeout 

and a hard timeout indicator associated with it. A non-zero hard 

timeout field causes a flow entry to be deleted after the given number 

of seconds, regardless of the number of packets that it has matched. A 

non-zero idle timeout field causes the flow entry to be removed when 

it has matched no packets in the given amount of seconds. A switch 

must implement both the aforementioned features. 

Flow entries may be evicted from flow tables when the switch 

needs to reclaim resources. That is an optional feature, and the 

mechanism used to select which flow entries to evict is switch 

defined and may depend on flow entry parameters, resource 

mappings in the switch and other internal switch constraints.   
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4. Design principles of the 
proposed implementation 

 

Generally speaking, there are two popular multi-tenant SDN 

architectures. The first one deploys an OpenFlow transparent proxy 

controller, such as FlowVisor, that enables tenants to share or “slice” 

the control plane and develop their own arbitrary forwarding logic 

within their slice [4]. The second one assumes a network hypervisor 

that supports various network abstractions towards network 

virtualization [6]. 

In order to achieve multi-tenancy across any SDN environment 

(as well as in both of the SDN architectures mentioned above), the 

classification of packets into flows is required. A typical way to 

achieve this classification is via logical separators within packet 

headers. In this context, three “network control plane slicing 

methods” are proposed and analyzed in section 4.1. A network 

control plane slicing method is an algorithm that ensures the creation 

of non-overlapping flowspace rules. Each slicing method takes into 

account different fields of the packet header.  

Regardless of the selected slicing method, isolation among 

slices (tenants) should be enforced across a shared physical 

infrastructure. To that end, in section 4.2, the implications of 

isolation policy enforcement for each slicing method are presented.  

In order to enforce isolation policy among tenants, a certain 

number of non-overlapping flowspace rules should be generated. In 

some cases, this number may be quite large resulting in extreme 

overheads. In order to keep flowspace rules to a reasonable number 
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and, thus, avoid such overheads, a flowspace rule reduction approach 

is described in section 4.3. 

4.1. Network control plane 
slicing methods 

 

As described above, packet classification into flows via logical 

separators within a packet header (packet ID) is required to achieve 

multi-tenancy. Such a packet ID can also be considered by an 

OpenFlow controller as the identifier of a network slice. For instance, 

the VLAN IDs or the MPLS tags can be considered as packet IDs.  

However, using a single separator as a slice identifier (e.g. the 

VLAN IDs are restricted to 4096 per domain) could result in limited 

scalability. In order to overcome these limitations, multiple 

separators could be considered within an SDN controller and, thus, a 

network slice can be identified via a set of tuples. 

The proposed slicing methods are the following: i) domain-

wide slicing method, ii) switch-wide slicing method and iii) port-

wide slicing method. Examples of a separator tuple for each slicing 

method are presented in Table 4.1.3-1. 

4.1.1. Domain-wide slicing method 
 

In the domain-wide slicing method, each network slice is 

strictly associated (identified) with a unique value of the packet ID. 

This is achieved by using a single separator per domain, e.g. <MPLS 

tag> or <VLAN ID>. This slicing method could be referred to as the 

“naïve” way to classify packets and “slice” flowspace. 
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4.1.2. Switch-wide slicing method 
 

In the switch-wide slicing method, each slice is identified 

(associated) via multiple separators, which form tuples. In addition 

to a single or multiple packet header fields, these tuples also include 

the identification of the switching elements that this slice spans. Such 

tuples can be specified as follows: <MPLS tag, switch ID> or <VLAN 

ID, switch ID>.  This method is more sophisticated than the “naïve” 

domain-wide slicing and, thus, it is expected to result in a more 

efficient flowspace segmentation. 

4.1.3. Port-wide slicing method 
 

In the port-wide slicing method, each slice is identified 

(associated) via multiple separators along with specific switch ports 

and switch identification. In other words, a slice is further identified 

(compared to the switch-wide slicing method) using specific switch 

ports.  

For instance, a tuple regarding this particular slicing method 

could be defined as follows: <MPLS tag, switch ID, switch port ID>. 

One could think of this method as the most complex one, which, 

however, provides the greatest network programmability to the 

administrator or the infrastructure provider.  
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Slicing method Separator tuple 

Domain-wide <MPLS tag> 

Switch-wide <MPLS tag, switch ID> 

Port-wide <MPLS tag, switch ID, switch 

port ID> 

Table 4.1.3-1: Example of separator tuple for each slicing method 

4.2. Isolation policy enforcement 
in multi-tenant virtualized 

environments 
 

As stated above, regardless of the selected slicing method and 

the underlying physical network topology, strong isolation should be 

enforced among network slices. That is to say, actions of one slice 

should be prevented from affecting other slices allowing tenants to 

safely coexist across a common physical network infrastructure. 

The overall concept of network virtualization may break down 

if one slice conflicts with others and exhausts their resources. In 

order to enforce such strong isolation among network slices, non-

overlapping flowspace rules should be created.  

Enforcing isolation in the domain-wide slicing method is a 

trivial process. Tenants should use each instance of the selected 

separator only once across a network domain. For example, each 

reserved MPLS tag or VLAN ID should not be reused across the same 

domain. 
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However, isolation enforcement in the switch-wide slicing 

method is more complex because a specific instance of a selected 

separator can be reused across a network domain. As a consequence, 

multiple network slices may select the same separator instance 

across a common physical network substrate risking the isolation of 

network slices. At the worst-case scenario, the control plane could be 

poisoned by the data plane traffic harshly violating the isolation 

among network slices and thus exhausting their network resources.  

In Figure 4.2-1, a scenario of two, potential conflicting, network 

slices is illustrated. Slices of Tenant K and L are allocated within two 

separate switching elements A and B. These switches are 

interconnected via port 3 and port 1 respectively. Moreover, within 

these switches, the same separator instance of MPLS tag i has been 

reserved by each tenant. If tenant L selects port 1 of switch B as the 

egress port of its traffic, packets will be forwarded to switch A. 

However, in switch A, MPLS tag i has been delegated to tenant K and, 

thus, tenant’s K OpenFlow controller would be overloaded by alien 

OpenFlow control messages.  

Such an outcome can be avoided by not assigning port 3 of 

switch A and port 1 of switch B for the specific separator instance to 

any of the tenants. In order to fulfill this requirement, the required 

non-overlapping flowspace rules regarding tenants K and L and 

switches A and B are presented in Table 4.2-1. It is worth noting that 

one rule per delegated switch port should be defined. 
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Rule 
identification 

Tenant 
identification 

Rule 
priority 

Egress/Ingress 
switch port 

Datapath 
identification 

Separator 
instance 

Rule 1 tenant L priority=1 port=2 datapath=switch 
B 

MPLS 
tag=i 

Rule 2 tenant L priority=1 port=3 datapath=switch 
B 

MPLS 
tag=i 

Rule 3 tenant L priority=1 port=4 datapath=switch 
B 

MPLS 
tag=i 

Rule 4 tenant L priority=1 port=5 datapath=switch 
B 

MPLS 
tag=i 

Rule 5 tenant K priority=1 port=1 datapath=switch 
A 

MPLS 
tag=i 

Rule 6 tenant K priority=1 port=2 datapath=switch 
A 

MPLS 
tag=i 

Rule 7 tenant K priority=1 port=4 datapath=switch 
A 

MPLS 
tag=i 

Rule 8 tenant K priority=1 port=5 datapath=switch 
A 

MPLS 
tag=i 

Table 4.2-1: Required flowspace rules in case of isolation policy enforcement in switch-
wide slicing 

 

In the port-wide slicing method, non-overlapping flowspace 

rules should be created in the same manner as above. Figure 4.2-2 

 
Figure 4.2-1: Scenario of two potential conflicting network slices in the switch-wide 

slicing method 
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illustrates a potential scenario of violating tenant isolation in port-

wide slicing. Ports 1 and 5 of switch A have been assigned to tenant L, 

while ports 3 and 4 of the same switching element have been assigned 

to tenant K and the switch port 2 has not been assigned to any of the 

tenants.  

  Both tenants K and L use the instance i of separator MPLS tag. 

However, if tenant L selects port 3 or 4 as the egress port of its traffic, 

the isolation policy will be violated and the tenant slices will conflict. 

In order to avoid this violation, the required flowspace rules for both 

tenants are presented in Table 4.2-2. It is deduced that one rule per 

delegated switch port should be defined in this slicing method as 

well. Finally, it should be noted that in any of the aforementioned 

scenarios, if a packet does not match any flowspace rule, it will be 

discarded. 

 

 

Figure 4.2-2: Scenario of two potential conflicting network slices in the 
port-wide slicing method 
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4.3. Flowspace rule reduction 
approach in multi-tenant 
virtualized environments 

 
 As mentioned in the previous section, the number of required 

flowspace rules in switch-wide and port-wide slicing is equal to the 

number of switch ports that have been assigned to tenants, so that 

isolation among network slices (tenants) is safeguarded. Moreover, 

the ports that interconnect the switching elements of a network 

topology should not be delegated to any of the tenants unless both of 

the interconnected switches are delegated to the same tenant. 

However, this isolation policy could result in large numbers of 

generated flowspace rules and, as a consequence, its enforcement 

could cause severe performance overheads and large memory 

consumption, thus becoming the bottleneck of the entire network 

infrastructure. In this way, it is overt that an approach towards the 

reduction of the required flowspace rule number should be made. 

This approach is applicable to the switch-wide slicing method. 

Table 4.2-2: Required flowspace rules in case of isolation policy enforcement in port-
wide slicing 

Rule 
identification 

Tenant 
identification 

Rule 
priority 

Egress/Ingress 
switch port 

Datapath 
identification 

Separator 
instance 

Rule 1 tenant L priority=1 port=1 datapath=switch 
A 

MPLS 
tag=i 

Rule 2 tenant L priority=1 port=5 datapath=switch 
A 

MPLS 
tag=i 

Rule 3 tenant K priority=1 port=3 datapath=switch 
A 

MPLS 
tag=i 

Rule 4 tenant K priority=1 port=4 datapath=switch 
A 

MPLS 
tag=i 
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When the number a of ports assigned to tenants per topology 

switch is greater than the number u of unassigned switch ports, the 

overall number of flowspace policy rules can be reduced by defining 

high (higher than normal) priority drop rules for the interconnection 

ports of the topology switches. These rules would be handled by a 

special-purpose (administrative) OpenFlow controller that has a 

global view of the network topology. In this way, if the data traffic of 

a specific tenant was forwarded to a topology switch delegated to 

another tenant, the corresponding packets would be dropped 

(discarded).  In addition to the aforementioned packet-dropping 

rules, low (lower than normal) priority wildcard entries should be 

used for the typical process of flowspace delegation to the existing 

tenants.  

Keeping up with the scenario presented in the previous section, 

the required flowspace policy rules, after applying the rule reduction 

approach, are presented in Table 4.3-1 (denoting that Priority 1 is 

greater than Priority 2). It is worth noting that the required rules are 

now reduced to half compared to the required rules defined in Table 

4.2-1. 

 

Flowspace Implementation 
Slice id  Priority Port Datapath id MPLS tag 

Reserved slice 1 Priority 1 Port=3 Switch A MPLS tag i 
Tenant K slice Priority 2 Port=* Switch A MPLS tag i 

Reserved slice 1 Priority 1 Port=1 Switch B MPLS tag i 
Tenant L slice Priority 2 Port=* Switch B MPLS tag i 

Table 4.3-1: Rule reduction approach in switch-wide slicing when a>u 

 
 On the other hand, when the number a of ports assigned to 

tenants per topology switch is smaller than the number u of 

unassigned switch ports, a flowspace rule reduction cannot be 
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achieved because the number of required flowspace policy rules for 

each topology switch is equal to the number of reserved switch ports. 

Thus, the number of required flowspace rules is equal to the number 

of policy rules mentioned in Table 4.2-1. 
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5. Implementation analysis 
 

In the previous chapter (sections 4.1, 4.2, 4.3), the design 

principles of the proposed implementation were discussed. In this 

chapter, implementation specific features are described in detail. 

5.1. Implementation structure 
 

In order to evaluate the efficiency and the feasibility of the 

aforementioned slicing methods and flowspace isolation policy, a 

flowspace rule engine was implemented in software using Python 

[18].  

This engine takes as inputs tenant requests for virtual network 

topologies (simple, disjoint and star topologies - all of them are 

defined below) and physical substrate topologies and, based on the 

selected slicing method, it generates the required flowspace rules, so 

that isolation is enforced among tenants. It is noteworthy that this 

engine takes as input real (WAN, medium and small sized) physical 

network topologies. As a result, the selected slicing methods are 

applied to real network substrate topologies providing a fertile 

environment for reliable evaluation. The structure of this 

implementation is illustrated in Figure 5.1-1. Specifically, it consists of 

the following scripts: 

 run_engine.sh: This bash script is used to initialize and 

start the engine by specifying all the necessary 

parameters of its execution. These parameters include 

the desired physical network topologies, the selected 
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weight type (propagation delays or link bandwidths), the 

interconnection points between the selected network 

domains (reserved for future development) and the 

number of virtual network topologies of each type. 

 generate.py: This script generates the selected real 

network topologies (specified in run_engine.sh) as 

topology graphs using the dataset of “The Internet 

Topology Zoo” project [19]. Moreover, it computes the 

selected type of weights for each graph link and attaches 

these weights to the topology graph. 

 metrics.py: This script initializes the generation of 

virtual network topologies and the computation of 

evaluation metrics. 

 paths.py: Given a source and a destination node of a 

network topology graph, this script searches for a 

disjoint path set between these nodes. 

 evaluation.py: It calculates various performance 

indicators and generates the required flowspace rules for 

the domain-wide, the switch-wide and the port-wide 

slicing method. Simple paths, star topologies and sets of 

disjoint paths along with the network topology graph are 

needed for this computation. 

 graph_util.py: This script contains functions for the 

interconnection of two or more network graphs. The 

interconnection points are specified in run_engine.sh. 

This script is useful for the future development of the 

implemented engine, so that multi-domain support is 

added. 
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 lookup_process.py: This script takes as input the lookup 

query and initializes the flowspace lookup process by 

creating various data structures.  

 lookup.py: It contains the linear search, the single 

hashing and the open addressing with double hashing 

lookup algorithms. The elapsed time of the lookup 

process for each algorithm is also computed. The average 

and the worst-case time complexity for each algorithm 

were described in chapter 3. 

 kdtree.py: It contains functions for the construction of a 

k-dimensional binary search tree (kd tree) and the 

implementation of the lookup process in it.  If the desired 

element belongs to the kd tree, then the corresponding 

node is returned. If there is not such a node in the kd 

tree, the nearest neighbor of the requested element is 

returned. The elapsed time is also computed. 

 util_lookup.py: It includes various helpful functions for 

the lookup process implementation. 

The computed evaluation metrics are defined as follows: 

 Acceptance ratio: the fraction of total requests issued by 

tenants that were accepted by each slicing method. This 

indicator shows the efficiency of a proposed slicing method. 

 Number of required flowspace rules: the flowspace rules 

that are generated by the rule engine and are required to be 

established within an OpenFlow transparent proxy controller 

(such as FlowVisor) in order for isolation policy to be enforced 

among network slices (tenants) 
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 Proxy controller time overhead: the time overhead added to 

the networked system by the OpenFlow proxy controller when 

it handles the generated flowspace rules 

  Proxy controller memory consumption: The memory 

needed by the OpenFlow proxy controller to create, manipulate 

and update the generated flowspace. 

 

 

Figure 5.1-1: Structure of the software implementation 
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5.2. Detailed implementation 
analysis 

 

In this section, a detailed description of the scripts, mentioned 

in section 5.1, is presented. 

5.2.1. Script run_engine.sh 
 

As mentioned above, this bash script initializes and starts the 

flowspace rule engine by defining all the necessary execution 

parameters. Such parameters include the desired real network 

topologies (topo_list), the desired number of virtual network 

topologies (simple_paths, disjoint, star_paths), the percentage of 

bound and unbound requests (unbound) (these requests are defined 

in detail below), the type of desired graph weights (bandwidth), an 

argument for writing output in a file (w), an argument specifying 

whether the evaluation metrics will be computed (reuse), the graph 

interconnection points (connection_points), an argument specifying 

whether the graph weigths will be computed or imported from a 

source file (weights_from_file) and, if that is the case, the name of 

the file that includes the graph weights (weights_file). All of these 

parameters are described in detail below: 

 topo_list: This argument specifies the desired real network 

topologies, which constitute one of the inputs given to the 

engine. The structure of each network topology is included in 

“The Internet Topology Zoo” project. Such network topologies 

include Internet2/OS3E [20], GÉANT [21], ULAKNET [22] 

and PSiNET [23]. 
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 simple_paths: The desired number of simple paths. These are 

multi-hop (point-to-point) paths with no repeated vertices. 

Source and destination nodes are randomly chosen. 

 disjoint: The desired number of disjoint path sets. These are 

sets of paths between a source and a destination node having 

no vertex and edge in common. Source and destination nodes 

are randomly selected. 

 star_paths: The selected number of star topologies. A star 

topology is defined as a tree with one internal vertex and k 

leaves. Internal vertex and leaves are randomly selected. 

 unbound: A parameter that takes a numerical value specifying 

the percentage of unbound tenant requests. The percentage of 

bound requests is computed as (100-$UNBOUND)% These 

two types of requests are defined as follows: 

o Bound request: a tenant requests a specific instance of 

the selected logical separator across a path (e.g. a specific 

VLAN ID or MPLS label). 

o Unbound request: the allocation of any available 

instance of the selected logical separator across a path is 

acceptable (e.g. any available VLAN ID or MPLS label). 

 bandwidth: A parameter that takes a boolean value. If that 

value is TRUE, graphs weights represent link bandwidths 

otherwise they represent propagation delays. The default value 

of this parameter is FALSE. 

 w: This argument determines that the evaluation results will be 

printed in an output file.  

 reuse: A parameter that takes a boolean value. If that value is 

TRUE, the computation of the evaluation metrics is executed. 



Chapter 5. Implementation analysis 

 61 

Otherwise, none of the metrics are computed. Its default value 

is FALSE. 

 connection_points: The interconnection points of the 

specified network topologies (network domains) are defined as 

a list of strings. This parameter is reserved for the future 

development of the rule engine execution in multi-domain 

environments. 

 weights_from_file: A parameter that takes a boolean value. If 

that value is TRUE, the graph weights are imported from a 

source file otherwise they are computed during the engine 

execution. The default value of this parameter is FALSE. 

 weights_file: In case that the previous parameter has a TRUE 

value, this parameter specifies the name of the .json file [24] 

that includes the graph weights. 

After the initialization of these parameters, the script generate.py 

is called and takes them as input arguments. 
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5.2.2. Script generate.py 
 

This script generates each of the selected real network 

topologies as a topology graph by parsing its attributes from the 

dataset of “The Internet Topology Zoo” project (described in detail in 

section 5.3). For this purpose, the get_topo_graph function is called. 

This function is contained in the topo_lib.py script, which is 

described in the next section. Moreover, the selected type of graph 

weights is generated and these weights are appended to a NetworkX 

[25] Graph data structure named g. In case of a successful topology 

parsing from the dataset, this successful parsing is recorded and the 

function do_metrics is called for the initialization of the evaluation 

metric computation otherwise the topology is ignored.  

In addition to the above features, there is an option of unifying 

two or more network topology graphs. However, this option is noted 

as a comment because it is reserved for the future development of 

the engine regarding multi-domain environments.  

All the aforementioned process is described in Snippet 5.2.2-1. 
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5.2.3. Script topo_lib.py 
 

The most important function included in this script is 

get_topo_graph (Snippet 5.2.3-1). It takes as input a network topology 

name and parses the corresponding network graph attributes from 

the dataset of “The Internet Topology Zoo” project. To that end, it 

either returns an error message or the entire topology graph. If the 

attribute parsing process is successful, the selected type of weights 

and each node name are attached to the NetworkX Graph data 

structure named g. 

 

 

for i, topo in enumerate(topos): 
        print "topo %s of %s: %s" % (i + 1, t, topo) 
        g, usable, note = get_topo_graph(topo) 
     #g_unified = nx.union(g,topo_test)#unify graphs 
        exp_filename = metrics.get_filename(topo, options) 
 
        if not g: 
            raise Exception("WTF?!  null graph: %s" % topo) 
  
     
        elif not options.force and os.path.exists(exp_filename + '.json'): 
print "skipping already-analyzed topo: %s" % topo 
            ignored.append(topo) 
        elif not has_weights(g): 
            ignored.append(topo) 
            print "no weights for %s, skipping" % topo 
        else: 
            do_all(topo, g, 1, 1, None, mylist) 
            successes.append(topo) 
 
    print "successes: %s of %s: %s" % (len(successes), t, successes) 
    print "ignored: %s of %s: %s" % (len(ignored), t, ignored) 

Snippet 5.2.2-1: Snippet of script generate.py that determines whether the 
attributes of a network topology were parsed successfully from the dataset. 
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5.2.4. Script metrics.py 
 

For each successful parsing of a network topology, the function 

do_metrics is called. This function initializes the computation of 

acceptance ratio and the generation of flowspace rule tables (one for 

each slicing method) for a single network domain. 

Firstly, the flowspace rule tables are initialized as empty lists 

and the input arguments are parsed. Secondly, if the input argument 

weights_from_file (defined in section 5.2.1) has a TRUE value, the 

graph weights are imported from a source file. If that is the case, the 

function read_weights_from_file (Snippet 5.2.4-1) is called. This 

function takes as inputs the topology graph and the name of the file 

that includes the graph weights on an appropriate format. The 

function read_json_file (Snippet 5.2.4-2) is used for the weight parsing 

from the given .json file. Finally, the parsed graph weights are 

def get_topo_graph(topo): 
    if topo == 'os3e': 
 g = OS3EWeightedGraph() 
 return g, True, None 
    elif topo == 'Geant2012': 
        g, note, note2 = import_zoo_graph(topo) 
 attr = nx.get_node_attributes(g,'Country') 
 for node in g.nodes(): 
  temp = str(attr[node]) 
  mapping[node] = temp 
 g = nx.relabel_nodes(g,mapping) 
 return g, True, False  
    else: 
 g, note, note2 = import_zoo_graph(topo) 
        attr = nx.get_node_attributes(g,'label') 
        for node in g.nodes(): 
                temp = str(attr[node]) 
                mapping[node] = temp 
        g = nx.relabel_nodes(g,mapping) 
        return g, True, False 

Snippet 5.2.3-1: the get_topo_graph function 
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appended to the NetworkX Graph data structure named g. 

 

 

 

 

 

 

 

 

 

 

The process of the optimal path finding from each source to 

each destination node is executed according to the Dijkstra algorithm 

using the built-in functions of NetworkX 

all_pairs_dijkstra_path_length and all_pairs_dijsktra_path.  

After that, using the value of the argument disjoint, the 

required number of disjoint path sets is searched. Specifically, the 

disjoint path finding process is executed by calling the function 

vertex_disjoint_shortest_pair of script paths.py, which is described 

def read_weights_from_file(g,filename): 
 weights = {} 
 weights = read_json_file(filename) 
 for src,dst in g.edges(): 
  tuples = [weights.get(src)] 
  if tuples[0]!=None: 
   try: 
    index = tuples[0].index(dst) 
   except ValueError: 
    continue 
   else: 
    g[src][dst]['weight'] = tuples[0][index+1] 
  tuples = [weights.get(dst)] 
  if tuples[0]!=None: 
                        try: 
                                index = tuples[0].index(src)    
         except ValueError: 
    continue 
                        g[src][dst]['weight'] = tuples[0][index+1] 
 return 

def read_json_file(filename): 
    input_file = open(filename, 'r') 
    return json.load(input_file) 

Snippet 5.2.4-1: the read_weights_from_file function 

 

Snippet 5.2.4-2: the read_json_file function 
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in the next section. If there are less disjoint path sets in the given 

graph than the requested number, the maximum number of existing 

disjoint paths is returned. In any case, an appropriate message is 

printed to standard output. This process is described in Snippet 5.2.4-3.  

 

 

 

 

 

 

 

 

 

 

 

 

 

After the disjoint path finding process, the evaluation metric 

computation takes place by calling the compute_metrics function of 

script evaluation.py, described in section 5.2.6. Finally, the output 

for node in g.nodes(): 
  if dis_counter >= disjoints: 
   break 
  src = node 
  counter = 0 
  for i in range(len(dst)) 
                 temp1,temp2  = paths.vertex_disjoint_shortest_pair(g, src, dst[i]) 
                 if temp1!=None and temp2!=None: 
                         length1 = get_length(apsp,temp1) 
    if length1 == -1: 
     break 
                         paths_temp.append((temp1,length1,dst[i])) 
                         length2 = get_length(apsp,temp2) 
    if length2== -1: 
     break 
                         paths_temp.append((temp2,length2,dst[i])) 
                         counter = counter+2 
                 elif temp1!=None and temp2==None: 
                         length = get_length(apsp,temp1) 
    if length == -1: 
     break 
                         paths_temp.append((temp1,length,dst[i])) 
                         counter=counter+1 
  if counter == 0 or counter==1: 
   continue 
  paths_temp = sorted(paths_temp, key=itemgetter(1)) 
         path1,path2 = get_disjoint(g,paths_temp)  
  if path1!=None and path2!=None: 
   dis_counter = dis_counter +2 
   dis_paths.append(path1[0]) 
   dis_paths.append(path2[0]) 
 
 if dis_counter == disjoints: 
  print("-------Found %d disjoint paths" % dis_counter) 
 else: 
  print("-------Found %d disjoint paths out of %d that was 
requested" % (dis_counter,disjoints)) 

Snippet 5.2.4-3: Disjoint path finding 
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.json files, which will contain the generated flowspace rule tables and 

the resulting acceptance ratios, are created and the computed 

metrics are copied to them. The functions get_filename and 

get_tablefilename that are presented in Snippet 5.2.4-4 create the 

appropriate file names. 

 

 

 

 

 

 

 

 

 

 

def get_filename(topo, options): 
    number_of_requests = options.star_paths + options.disjoint + 
options.simple_paths 
    type_of_requests = options.unbound  
    mix = options.mix 
    filename = "acceptance_ratio/" + topo + str(number_of_requests) + 
mix  + "("+ str(type_of_requests) +"% unbound)" +"/" 
    return filename 
 
def get_tablefilename(topo,options): 
     number_of_requests = options.star_paths + options.disjoint + 
options.simple_paths 
    type_of_requests = options.unbound  
     mix = options.mix 
 filename_domain = "tables/" + "domain-wide"  + topo + 
str(number_of_requests) + mix+ "(" + str(type_of_requests) + "% 
unbound)"+ "/" 
 filename_switch = "tables/" + "switch-wide"  + topo + 
str(number_of_requests) + mix+ "(" + str(type_of_requests) + "% 
unbound)"+ "/" 
 filename_port = "tables/" + "port-wide"  + topo + 
str(number_of_requests) + mix+ "(" + str(type_of_requests) + "% 
unbound)"+ "/" 
 return filename_domain, filename_switch, filename_port 

Snippet 5.2.4-4: The get_filename and the get_tablefilename functions 
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5.2.5. Script paths.py 
 

This script contains the Python implementation of the 

algorithm described in section 3.4.2. Given a source and a target 

graph node, the included functions search whether a set of optimal 

paths, which are both edge and vertex disjoint, exists between these 

end nodes.  

As stated in section 3.4.2, in order to check whether the 

conditions of edge-disjointness and vertex-disjointness are fulfilled, a 

number of runs of the modified Dijkstra Algorithm for Shortest Path 

finding are required. If the requested disjoint path set exists, the 

paths are returned along with their costs (sum of their edge weights) 

to the user. Otherwise, an error message is returned.  

5.2.6. Script evaluation.py 
 

This script computes the evaluation metrics and generates the 

required flowspace rules for the domain-wide, the switch-wide and 

the port-wide slicing methods. The tenant requests for virtual 

network topologies along with the topology graph are needed for this 

computation.  

The main function of this script is compute_metrics. Firstly, 

the number of bound and unbound requests for each virtual network 

topology type is computed. After that, the number of each switch 

interconnection ports is computed based on the number of edges that 

are attached to each switch (Snippet 5.2.6-1). 
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The tenant request acceptance ratio is computed by separating 

bound and unbound requests. The type of each tenant request 

(bound or unbound) and the selected slicing method differentiate the 

way that a tenant request gets accepted or rejected by the rule 

engine. Specifically: 

 In case of an unbound request using the: 

o Domain-wide slicing method: if any instance of the 

selected logical separator is available across the entire 

physical network, the request is accepted otherwise it is 

rejected. 

o Switch-wide slicing method: if any instance of the 

selected logical separator is available within each switch 

of the generated path, the request is accepted otherwise 

it is rejected. 

o Port-wide slicing method: if any instance of the 

selected logical separator is available on the appropriate 

ingress and egress port of each switch across the 

generated path, the request is accepted otherwise it is 

rejected. 

 

 

def precompute_ports(g,mylist): 
 for node in g.nodes(): 
  neighboors = g.neighbors(node) 
  num_of_neigh = len(neighboors) 
  for port in range(0,num_of_neigh): 
   mylist.append((node,neighboors[port],port+1)) 
 return mylist 

Snippet 5.2.6-1: the precompute_ports function 
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 In case of a bound request using the: 

o Domain-wide slicing method: if the selected instance of 

the logical separator is available across the entire 

network, the request is accepted otherwise it is rejected. 

o Switch-wide slicing method: if the selected instance of 

the logical separator is available within each switch of 

the generated path, the request is accepted otherwise it 

is rejected. 

o Port-wide slicing method: if the selected instance of the 

logical separator is available on the appropriate ingress 

and egress port of each switch across the generated path, 

the request is accepted otherwise it is rejected. 

 
In this context, this script contains functions for accepting or 

rejecting a tenant request based on the request type in case of each 

virtual network topology type (simple path, star topology or disjoint 

path set). These functions also generate the required flowspace rules, 

in case of an accepted tenant request, based on the isolation policy 

and the flowspace rule reduction approach described in chapter 4. In  

Snippet 5.2.6-2 and Snippet 5.2.6-3, the functions regarding bound requests 

for simple paths using the port-wide slicing method and unbound 

requests for simple paths using the domain-wide slicing method are 

presented respectively. Finally, it is worth noting that each star 

topology used for the metric computation includes two neighboring 

nodes across each star radius. 
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 def 
reusability_perswitch_perport(FlowSpace_port,user_id,mylist,vlan,paths,port_list,numb
er_of_rules): 
 query = [] 
 query2 = [] 
 f = itemgetter(0,1) 
 temp_no=0 
 rules_to_append = [] 
 length = len(paths) 
 for i in range(length-1): 
  temp_no += 2 
                src_node = paths[i] 
  dst_node = paths[i+1] 
  index = map(f,port_list).index((src_node,dst_node)) 
  port1 = port_list[index][2] 
  index = map(f,port_list).index((dst_node,src_node)) 
  port2 = port_list[index][2] 
                temp = (src_node,port1,dst_node,port2,vlan) 
  index = map(f,port_list).index((src_node,dst_node)) 
                rules_to_append.append((user_id,3000,port1,src_node,vlan)) 
  rules_to_append.append((user_id,3000,port2,dst_node,vlan)) 
                query.append(temp) 
  temp2 = (dst_node,port2,src_node,port1,vlan) 
  query2.append(temp2) 
 rules_to_append.append((user_id,3000,port2,dst_node,vlan)) 
 temp_no +=1 
 if len(mylist)==0: 
  for i in range(len(query)): 
   temp1 = query[i] 
   temp2 = query2[i] 
   mylist.append(temp1) 
   mylist.append(temp2) 
  for i in range(len(rules_to_append)): 
   FlowSpace_port.append(rules_to_append[i]) 
  user_id +=1  
  number_of_rules[2] = temp_no 
  return True 
 for i in range(len(query)): 
  temp1 = query[i] 
  temp2 = query2[i] 
  if ((temp1 in mylist) or (temp2 in mylist)): 
   return False 
 for i in range(len(query)):  
  temp1 = query[i] 
                temp2 = query2[i] 
  mylist.append(temp1) 
  mylist.append(temp2) 
 for i in range(len(rules_to_append)): 
         FlowSpace_port.append(rules_to_append[i]) 
        user_id +=1 
 number_of_rules[2] = temp_no 
 return True 

 

Snippet 5.2.6-2: Computation of acceptance ratio and rule generation in 
case of bound requests for simple paths using the port-wide slicing 

method 
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def 
reusability_per_domain_unbound(FlowSpace_domain,user_id,mylist,sh
ow_vlan_unbound,number_of_rules): 
 temp = show_vlan_unbound[0]+1 
        while temp <= 4096: 
  rules_to_append = [] 
         if not temp in mylist: 
           mylist.append(temp) 
   show_vlan_unbound[0]=temp 
   number_of_rules[0] = 1 
  
 FlowSpace_domain.append((user_id,3000,'*','*',show_vlan_unbou
nd)) 
                 user_id +=1 
   return True 
  else: 
   temp=temp+1 
        return False 

Snippet 5.2.6-3: Computation of acceptance ratio and rule generation in 
case of unbound requests for simple paths using the domain-wide slicing 

method 
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5.2.7. Script graph_util.py 
 

This script contains functions regarding the interconnection of 

two (or more) given network graphs. For each desired pair of graphs 

to be interconnected, the following actions are performed: Firstly, the 

interconnection points are parsed and, secondly, these points are 

connected with each other by a bidirectional link. This link weight is 

also computed and attached to the network graph.  

This script is about to be used for the future enhancement of 

the rule engine, so that to support multi-domain environments. The 

function parse_points, which parses the given interconnection graph 

points, is presented in Snippet 5.2.7-1.  

 

 
 
 
 

 

 

def parse_points(g,dst,connection_points): 
        counter = 1 
        char = '' 
        src= '' 
        i=0 
        enough = 0 
        length= len(connection_points) 
 while counter<length-1: 
                enough=0 
                while enough<1: 
                        char = connection_points[counter] 
                        if char == '@' and enough == 0: 
                                char=' ' 
                                src = src + char 
                                counter = counter +1 
                        elif char!= ',' and char!=']' and enough == 0: 
                                src = src + char 
                                counter = counter +1 
                        elif char == ',' and enough == 0: 
                                enough = enough +1 
                                counter = counter +1 
                        else: 
    enough = enough +1 
                                counter = counter +1 
                if enough == 1: 
   if g.__contains__(src): 
                         dst.append(src) 
   src='' 
 return dst 

Snippet 5.2.7-1: the parse_points function 
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5.2.8. Script lookup_process.py 
 

This script takes as input a user query and initializes the 

flowspace lookup process by creating various data structures. 

Specifically, the required parameters of the k-dimensional binary 

search tree algorithm are initialized, the hash tables are created and 

the functions implementing the various lookup algorithms are called. 

5.2.9. Script lookup.py 
 

This script contains the functions implementing the various 

lookup algorithms noted in section 3.4.1. The average and worst-case 

time complexity of these algorithms have been mentioned in section 

3.4.1 as well. The first function implements the linear search 

algorithm and computes the elapsed time of the lookup process. The 

linear search or “naïve” search algorithm is used as a point of 

reference for the elapsed time of the lookup process. 

  The second function implements the search algorithm of open 

addressing with double hashing. As noted in section 3.4.1, this 

algorithm is expected to result in a quite efficient lookup process. 

However, because of the double hashing that takes place, this 

algorithm is expected to result in slower lookups than the single 

hashing algorithm. 

The third function implements the single hashing search 

algorithm. This algorithm is expected to result in the fastest lookups 

because of its simple hashing approach. The software 

implementation of this algorithm is presented in Snippet 5.2.9-1. 
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5.2.10. Script kdtree.py 
 

This script constructs a k-dimensional binary search tree (kd 

tree) and implements the lookup process in it for a requested 

element. The average and the worst-case time complexity of this 

algorithm were noted in section 3.4.1. In case that the requested 

element is not a part of the kd tree, the nearest neighbor of this 

element is returned. If the lookup process is successful (the 

requested element is actually a part of the tree), the corresponding 

tree node is returned.  

In either case, along with the lookup process outcome, the 

distance of the returned node from the root of the tree and the nodes 

visited during the lookup process are returned. In Snippet 5.2.10-1, the 

class of a k-dimensional binary search tree node is described. 

def single_hashing(array,element,crc32_values): 
    start = time.time()  
    key = 
zlib.crc32('{}{}{}{}'.format(element[0],element[1],element[2],element[
3])) 
    key_existing = crc32_values.has_key(key)  
    if key_existing : 
        if crc32_values[key] == 
['{}{}{}{}'.format(element[0],element[1],element[2],element[3])]: 
            end=time.time()  
            print("Simpe hashing found the requested element after %s ms" 
% ((end-start)*1000)) 
            return 
    else: 
        end=time.time()  
        print("Simple hashing did not find the requested element after %s 
ms" % ((end-start)*1000)) 
        return 

Snippet 5.2.9-1: Software implementation of the single hashing search 
algorithm 
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5.2.11. Script util_lookup.py 
 

This script contains some quite simple, but useful functions for 

handling various data types during the execution of the lookup 

algorithms. Such functions convert the elements of a data structure 

from one type to another and copy a multi-dimensional array to 

another. For instance, there is a function that converts an ascii string 

to an integer number and a function that copies any four dimensional 

array to another. 

class Kd_node(object): 
    __slots__ = ["dom_elt", "split", "left", "right"] 
    def __init__(self, dom_elt_, split_, left_, right_): 
        self.dom_elt = dom_elt_ 
        self.split = split_ 
        self.left = left_ 
        self.right = right_ 

Snippet 5.2.10-1: The class of a k-dimensional binary search tree node 
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5.3. The Internet Topology Zoo 
project 

 

The dataset of this project includes the structure of diverse real 

network topologies. Specifically, it includes their nodes and edges. 

Each topology node consists of the following attributes: id, label, 

Country, Longitude, Internal and Latitude. Moreover, each topology 

edge consists of a certain group of the following attributes: source, 

target, LinkType, LinkLabel, LinkSpeed, LinkSpeedUnits, LinkSpeedRaw 

and LinkNote. However, for certain network topologies, the available 

dataset was incomplete. To that end, it was updated and enhanced by 

the completion of the missing attributes. An example of a graph node 

and a graph edge is shown in Snippet 5.3-1. The available attributes are 

described in detail below: 

 id: this attribute refers to the sequence number of a particular 

node. 

 label: it refers to the label (name) of a particular graph node. 

 Country: it refers to the name of the country where a 

particular graph node is located. 

 Longitude: this attribute refers to the longitude of a graph 

node, so that precise propagation delays among nodes are 

computed. These delays are used as the link weights when that 

is determined by the input arguments. 

 Internal: reserved attribute for internal graph functionalities. 

 Latitude: this attribute refers to the latitude of a graph node. It 

is used along with the Longitude attribute. 
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 source: the id attribute of the source node of a graph link. 

 target: the id attribute of the target node of a graph link. 

 LinkType: this attribute refers to the type of a link. Nowadays, 

the most prevalent choice is optical fiber. 

 LinkLabel: a string attribute that refers to a link speed along 

with the speed unit of measurement, for instance “10 Gbps”. 

This attribute represents the link bandwidth used as the link 

weight in case that this is determined by the input arguments. 

 LinkSpeed: this attribute refers to a link speed as a numerical 

string. 

 LinkSpeedUnits: the unit of measurement of a link speed. 

 LinkSpeedRaw: it refers to a link speed as a floating-point 

number. 

 LinkNote: a note regarding a graph link. 
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node [ 
id 15 
label "GR" 
Country "Greece" 
Longitude 23.71622 
Internal 1 
Latitude 37.97945 

] 
 
edge [ 

source 4 
target 31 
LinkSpeed "10" 
LinkLabel "10 Gbps" 
LinkSpeedUnits "G" 
LinkSpeedRaw 10000000000.0 

] 
 
edge [ 

source 5 
target 23 
LinkType "Fibre" 
LinkLabel "10 Gbps" 
LinkNote "Lit " 

] 

Snippet 5.3-1: Examples of a graph node and a graph edge (2 cases) included in “The 
Internet Topology Zoo” project 
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6. Evaluation of the proposed 
implementation 

 

In this chapter, the evaluation results of the implemented slicing 

methods are presented. The computed evaluation metrics were 

discussed in section 5.1.  

The main part of the experimental setup was tenant requests. 

Each of these requests was associated with a randomly generated 

virtual network topology that belongs to one out of three different 

categories: i) simple paths, ii)star topologies and iii)disjoint path 

sets. For the performed experiments, the following mixture scenarios 

were generated: 

 Mix1: this mixture consisted of 17 requests for disjoint 

path sets. Half of the remaining requests regarded star 

topologies and the rest of these requests regarded simple 

paths. All of these requests were bound. 

 Mix2: this mixture consisted of 17 requests for disjoint 

path sets, while 70% of the remaining requests regarded 

star topologies and 30% regarded simple paths. All of these 

requests were bound. 

 Mix3: it consisted of 17 requests for disjoint path sets, 

while 70% of the remaining requests regarded star 

topologies and 30% regarded simple paths. 20% of the 

requests for each category were unbound. 

 Mix4: it consisted of 17 requests for disjoint path sets, 

while 70% of the remaining requests regarded star 

topologies and 30% regarded simple paths. All of these 
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requests were unbound. 

It should be noted that the number of disjoint paths, which was 

selected for the performed experimental evaluation, was based on 

the maximum number of existing disjoint paths per physical network 

topology. 

6.1.  Tenant request acceptance 
ratio 

 

In this experiment, the slicing method implementation runs on 

top of diverse real network topologies for various numbers of 

randomly generated tenant requests (up to 16,000) that are 

consistent with the aforementioned mixture scenarios (mix1, mix2, 

mix3 and mix4) and the resulting acceptance ratio is presented. The 

real network topologies used for the evaluation process consisted of 

6 up to 81 network nodes (WAN, medium and small sized 

topologies). 

 

In Figure 6.1-1 and Figure 6.1-2, the resulting acceptance ratio, in case 

of the Internet2/OS3E topology (34 nodes) for 8,000 and 16,000 

randomly generated tenant requests using the aforementioned 

slicing methods and mixture scenarios, is presented. Link 

bandwidths parsed from the dataset of “ The Internet Topology Zoo” 

project constituted the graph weights. 
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In the aforementioned figures, it is shown that the port-wide 

slicing method scales better as the number of tenant requests 

increase. The acceptance ratio of this method is quite large in 

scenarios that involve a small percentage of unbound tenant requests 
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Figure 6.1-1: Acceptance ratio in Internet2/OS3E for 8K requests 

 

Figure 6.1-2: Acceptance ratio in Internet2/OS3E for 16K requests 
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(i.e. mix3) providing almost perfect resource utilization for 

exclusively unbound requests (i.e. mix4). In this context, the port-

wide slicing method accepts more than 80% of the tenant requests 

for a total of 16,000 requests (reaching 97-98% for the mix4 

scenario). Ιn scenarios involving exclusively bound tenant requests 

(i.e. mix1, mix2), the efficiency of this method is quite satisfactory as 

well. 

 

 In Figure 6.1-3, the resulting acceptance ratio, in case of the 

GÉANT backbone topology (39 nodes) for 16,000 tenant requests and 

mixtures 1-4, is presented. For this experiment, the propagation 

delays among the topology nodes were computed and attached as 

graph weights. 

Figure 6.1-3: Acceptance ratio scaling as the percentage of unbound requests increase 

 

The above figure illustrates that as the percentage of unbound 

requests (for a certain total number of tenant requests) is increased, 

the port-wide slicing method scales much better than the switch-

wide and the domain-wide slicing methods ideally accepting all 

tenant requests for a total of exclusively unbound requests. 
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In order to evaluate the efficiency of the implemented slicing 

methods in very large real network topologies, experiments involving 

the ULAKNET network topology (81 network nodes) were 

performed. The propagation delays among the topology nodes were 

computed and attached as graph weights. The resulting acceptance 

ratio for all the mixture scenarios in case of 16,000 requests is 

illustrated in Figure 6.1-4. 

 

 

Moreover, experiments were performed in small sized real 

network topologies. A typical example is the PSiNET network 

topology (23 nodes). This experiment was based on propagation 

delays. The resulting acceptance ratio in case of 16,000 requests for 

mixtures 1-4 is illustrated in Figure 6.1-5. 
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As illustrated in Figure 6.1-1, Figure 6.1-2, Figure 6.1-3, Figure 6.1-4 and 

Figure 6.1-5, the port-wide slicing method results in the largest 

acceptance ratios (scaling up to 16,000 tenant requests). The 

performed experiments also showed that this deduction is accurate 

for real network topologies of various sizes (small, medium and WAN 

sized network topologies). 
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6.2. Generated flowspace rule 
tables 

 

The implemented rule engine, except for computing the 

acceptance ratio for each slicing method and for given real network 

topologies and tenant requests, generates the required flowspace 

rules based on the isolation policy described in section 4.2 and the 

rule reduction approach described in section 4.3. 

As mentioned in section 6.1, the port-wide slicing method results 

in the highest efficiency in terms of acceptance ratio. However, the 

high efficiency comes at the cost of the increased number of 

flowspace rules required to be generated and established within an 

OpenFlow proxy controller, so that isolation is enforced. 

A large number of established flowspace rules could result in a 

great performance overhead added to the networked system by the 

OpenFlow proxy controller. In such a case, the proxy controller 

would handle extremely large flowspace rule tables resulting in a 

slow manipulation process of its flowspace. 

For this evaluation experiment, the selected real network 

topologies were divided into three groups. The first group consisted 

of small sized network topologies (up to 25 topology nodes), the 

second group of medium sized network topologies (26-45 topology 

nodes) and the last group of WAN sized topologies (46-81 topology 

nodes). 
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 In the figures below, the number of required rules for the port-

wide slicing method, normalized to the number of required rules for 

the domain-wide slicing method (Figure 6.2-1) and the switch-wide 

slicing method (Figure 6.2-2), is illustrated. These comparisons were 

performed for each topology group and tenant request mixture 

scenario (for a total of 6,000 requests).   

  

 

Figure 6.2-1: Flowspace rule number for port-wide method normalized by domain-
wide rules for small, medium and large sized topologies (6K requests) 
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Figure 6.2-2: Flowspace rule number for port-wide method normalized by switch-wide 
rules for small, medium and large sized topologies (6K requests) 

 

Based on the results illustrated in the aforementioned figures, the 

initial case was validated. Indeed, the port-wide slicing method 

results in the highest acceptance ratios, but also in the largest 

numbers of required flowspace rules. By carefully observing Figure 

6.2-1 and Figure 6.2-2, the following conclusions are drawn: 

I. The port-wide slicing method results in larger required 

flowspace rule tables compared to domain-wide and switch-

wide slicing. That is to say, in port-wide slicing, a tenant 

request is translated into more flowspace rules than in domain-

wide and switch-wide slicing. 

II. Given a mixture scenario, the normalized rule number is 

greater for large (WAN) sized real network topologies than for 

medium and small sized topologies. 

III. Given a topology group, the normalized rule number is the 

greatest in case of exclusively unbound requests (i.e. mix 4). 
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This is due to the fact that, in such a mixture scenario, a greater 

percentage of the overall tenant requests gets accepted and 

thus more flowspace rules are generated. 
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6.3. Feasibility evaluation of the 

implemented slicing methods 

 In order to evaluate the feasibility of the implemented slicing 

methods within a networked system, the software implementation 

was associated with a popular OpenFlow proxy controller, FlowVisor.  

 Generally speaking, an OpenFlow proxy controller, such as 

FlowVisor, adds performance overhead to actions that cross between 

the control and data plane layers of a SDN system. This is due to the 

fact that an additional layer between these planes has been added.  

 As mentioned in section 6.2, the port-wide slicing method 

results in high efficiency at the cost of large generated flowspace rule 

tables. Despite their large number, these rules should be handled 

efficiently by the proxy controller, so that the isolation policy among 

tenants is enforced. 

 Specifically, in this experiment, the generated non-overlapping 

flowspace rules were injected into FlowVisor (version 1.4) in order 

to measure the introduced performance (time) overhead and its 

memory consumption. It should be noted that the used FlowVisor 

version provides high performance of flowspace lookups due to the 

advanced implemented hashing algorithms instead of the “naïve” 

linear search algorithm implemented in the early FlowVisor releases. 

 For the quantification of the performance overhead, the 

method described in [4] was used. Specifically, the time between 

receiving a control packet from an OpenFlow switch and sending this 

packet to a tenant OpenFlow controller was measured. For this 
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measurement, the libpcap [26] was used. For the measurement of the 

required memory, operating system specific RAM metrics were used. 

 In the following tables, the obtained measurements are 

presented. Specifically, these measurements regard the entire 

Internet2/OS3E topology (Table 6.3-1) as well as the Internet2/OS3E 

node of Chicago (Table 6.3-2). This particular node was selected 

because it has one of the highest node degrees across the entire 

network topology and thus is heavily used. 

 

 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 

 

 The aforementioned results demonstrate that an OpenFlow 

proxy controller, such as FlowVisor, adds a minor performance 

overhead to the network, even for a very large number of established 

flowspace rules (up to 175,000). However, in case of a real network 

         Internet2/OS3E topology 
Tenant 

requests 
Generated 
flowspace 

rules 

Performance 
overhead 

(ms) 

Memory 
consumption 

(Mbytes) 

1Κ 15Κ 0.042 622 
2Κ 43Κ 0.044 1643 
4Κ 95Κ 0.050 3951 
6Κ 145Κ 0.053 5910 
7Κ 175Κ 0.056 7400 

Table 6.3-1: Performance overhead and memory consumption of FlowVisor regarding 
the entire Internet2/OS3E topology 

 Internet2/OS3E Chicago Node 
Tenant 

requests 
Generated 
flowspace 

rules 

 

Performance 
overhead 

(ms) 

Memory 
consumption 

(Mbytes) 

1Κ 1.1Κ 0.038 125 
2Κ 2.5Κ 0.040 151 

4Κ 4.6Κ 0.041 202 
6Κ 7.5K 0.0414 250 
7Κ 11K 0.0425 427 

Table 6.3-2: Performance overhead and memory consumption of FlowVisor regarding 
the Internet2/OS3E node of Chicago 
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topology that consists of 34 network nodes deployed across the 

United States of America (such as Internet 2/OS3E), the proxy 

controller memory consumption can be quite large, but not 

prohibitive for a generic purpose hardware hosting the OpenFlow 

proxy controller (such as a hosting server).  

 As a conclusion, the implemented slicing methods can be 

associated with an OpenFlow proxy controller, such as FlowVisor, as 

the obtained measurements showed that the proxy controller can 

efficiently handle the generated flowspace.  
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6.4. An approach towards a 
more efficient flowspace lookup 

process 
 

 In section 3.4.1, a detailed analysis of various search algorithms 

was presented. Moreover, in sections 5.2.8, 5.2.9, 5.2.10 and 5.2.11, 

the software implementation of those algorithms was described.  

 In case of a large amount of tenant requests or a WAN sized 

network topology, the generated flowspace is quite large. As a 

consequence, high performance flowspace lookups should be 

introduced in order to reduce the networked system time overhead.  

 In this context, the elapsed lookup time of the most efficient 

implemented search algorithms (single hashing and open addressing 

with double hashing) are compared with the FlowVisor time 

overhead, presented in Table 6.3-1 (for the same generated flowspace). 

In Figure 6.4-1, the resulting elapsed times are illustrated. 
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  Based on this figure, it is deduced that, despite the advanced 

search algorithms used in version 1.4 of FlowVisor, the implemented 

lookup algorithms result in more efficient flowspace lookups. 

However, it should be noted that the FlowVisor time overhead 

consists of operating system specific overheads (e.g. the time needed 

by the FlowVisor process to interrupt the operating system) plus the 

elapsed flowspace lookup time. As a consequence, a part of the 

measured FlowVisor overhead does not regard the flowspace lookup 

process. Generally speaking, though, this part is minor (its typical 

value is a few useconds in modern computer systems) compared to 

the flowspace lookup overhead and, thus, it can be ignored. 
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7. Conclusion and Future Work 
 
 

Material based on the aforementioned work was submitted 

for publication [27]. 

7.1. Conclusion 
 

 Multi-tenancy, as a feature of SDN, constitutes a typical case 

study of network virtualization. In this context, network 

virtualization aims at providing to each tenant the perception that it 

uses the available network resources exclusively on its own, without 

being aware of other tenant existence or the physical network 

substrate and topology. As a consequence, a basic principle of multi-

tenancy is the isolation policy enforcement among network slices 

(tenants). As a result of this policy, potential conflicts among the 

existing network slices are prevented. 

 A typical way to achieve multi-tenancy is to apply one of the 

proposed network control plane slicing methods across a physical 

substrate network. The proposed slicing methods, defined and 

analyzed in section 4.1, are the following: (i) domain-wide slicing, 

(ii) switch-wide slicing and (iii) port-wide slicing.  

 In order to enforce isolation among tenants based on a 

network slicing method, a number of non-overlapping flowspace 

rules should be created. For instance, in case of a deployed OpenFlow 

transparent intermediate controller (e.g. FlowVisor), the created 

non-overlapping flowspace rules should be established and handled 

by it.  
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 In case of a large number of issued tenant requests or a WAN 

sized real network topology, the number of required flowspace rules 

could be quite large. Based on these rules, the isolation policy 

enforcement could result in severe overheads. Thus, a rule reduction 

approach was proposed, resulting, at the worst-case scenario, in 

equal numbers of required flowspace rules for the switch-wide and 

the port-wide slicing methods.  

 An experimental evaluation of the proposed network slicing 

methods was performed via the association of these methods with 

real network topologies (e.g. ULAKNET and PSiNET). Based on this 

evaluation, the following conclusions were drawn: 

 The port-wide slicing method results in the greatest efficiency 

and scales better for large amounts of tenant requests (up to 

16,000). This conclusion is independent of the network 

topology size. 

 The great efficiency of the port-wide slicing method comes at 

the cost of the large number of flowspace rules that should be 

established within an OpenFlow proxy controller (e.g. 

FlowVisor), so that isolation is safeguarded among tenants. 

 In case of port-wide slicing, each accepted tenant request is 

translated into a larger number of flowspace rules compared 

to the domain-wide and the switch-wide slicing methods. 

 Given a mixture scenario, the rule number for port-wide 

slicing, normalized by the domain-wide and switch-wide 

slicing rule number, is greater for WAN sized network 

topologies than for medium and small sized topologies. 
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 Finally, a feasibility evaluation of the proposed slicing methods 

was performed via the injection of the generated flowspace rules into 

FlowVisor. This experiment showed that the proposed flowspace 

policies resulted in a minor proxy controller performance (time) 

overhead. However, the required rules resulted in large memory 

consumption by the proxy controller. This memory consumption, 

though, is not considered a severe limitation in modern generic 

purpose servers validating that the proposed implementation is 

robust enough to run on top of real network topologies.   

7.2. Future Work 
 

 The proposed network slicing methods, and especially the 

port-wide slicing method, were proved to constitute a handy way to 

achieve multi-tenancy across a physical substrate network. However, 

these slicing methods could be enriched and enhanced in order to 

result in higher tenant request acceptance ratios. For instance, each 

physical switch port could be mapped to multiple virtual ports thus 

enabling the port-wide slicing method to perform much better 

scaling up to even larger numbers of tenant requests. 

 In case of an unbound request, the lookup, performed for an 

available instance of the selected separator tuple, is slow. Advanced 

hashing algorithms could be implemented for this lookup process 

resulting in greater performance and lower overheads. 

 Another quite useful and interesting development would be to 

add full integration of the proposed software implementation with 

the API of an OpenFlow proxy controller, such as FlowVisor. In this 

way, the software implementation would deal with real-time tenant 
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requests and, as a consequence, would generate and inject flowspace 

rules into the proxy controller in real time. 
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9. Appendix 
 

 The software implementation is available in a public GitHub 

repository at the following url:  

https://github.com/spirosmastorakis/FSP_Engine 

https://github.com/spirosmastorakis/FSP_Engine

