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Mepidnym

To Awxdiktvo pe ™ onpepvy) Tov Soun €xel cUUPdAeL Ta péyloTa
oTNV aQVATITUEN EKOVIKWV TepIdAlovTwy. QoTtdoo, 11 Sour Tov auTH
ELOAYEL TIEPLOPLOUOVGS €VPELNG KAILAKAG OTNV AVATITUEN KALVOTOUWV
epappoywv. Tla To Adyo oavto, elonybnoav ta «Evein-
[Mpoypappatilopeva-Aiktva» (Software-Defined-Networks), ta
omola avapévetal va amoteAdéoovv ™ Bdon tou Awxdiktov TOUL
HEAAOVTOG, GUUPBAAAOVTAG OTNV AKOUO UEYXAVUTEPT AVATITUEN TwWV
Népwv Ymoroylotwv (Cloud Computing) Kot Twv EKOVIK®V SIKTUWV

(virtualized networks).

INUOVTIKO pOA0 TPOG aUTH TNV KATEVOULUVON AVAUEVETAL VO
Stadpapatiosl To TpwtokoAAo OpenFlow, To omolo oe cuvSvaouo pe
™mv  apyltektovikl Ttwv  Evelwv-Tipoypappati{opevwyv-
AKTUWV EMITPETEL TO SLAXWPLOUO TOU EMIMESOV EAEYXOU QTO TO
emimedo mpowbnong makétwv oe éva Siktvo. EmmpooOetwg,
ETILTPEMETAL 1) VTIAPEN MOAAATAWV «EVOLKIAOTWV» (tenants) Kata
UNKOG €vOG Kool polpaldpevou SIKTUAKOU vTooTpwuatos. ‘Evag
amd Toug BacikoUg oTOXOUG TNG ElkovoTomong SikTuwv (network
virtualization) elvat 1 mapoxn o€ kABe «evOKLXOTH» NG
Pevaiobnong 0Tl KATavaAwVEL LOVOG TOU O0A0UG TOuG SlaBEéaipoug
SIKTLAKOVG TTOPOUG. 'l To AdY0 avTO, KABE «EVOLKLAOGTIG» UTIOPEL VO
(mmoet To 81K TOU KOoppdtt Siktvakwv mopwv (network slice).
Emiong, ot Siktvakol mOpoL Kol ot evépyeleg kABe «evolklaotn» &€ Ba
TpEMEL va ovykpovovtal (conflict) pe Toug mOPoOLG TwV VTTOAOITIWYV

EVOLKLOXOTWV.

[a 6Aovg TOUG TapATMAvVW AOYOUG, YIVETAL EMITAKTIKY 1)



QVAYKT UEAETNG TPOTIWV GUVUTIAPENG KL ATTOUOVWOTNG UETAED TWV

«EVOLKLAOTWV» KATA UTN|KOG TOV (PUOIKOU SIKTUAKOU UTTOCTPWUATOG.

A€Eeic KAELSLA: «Ev@Un-Tlpoypappatilépeva-
Atktva», Néen YToAoylotwy, €IKOVIKA SIKTUQ, KOPUATL SIKTUAKWY
TOPWV, CLVUTIAPEN TOAAAAWY KEVOLKIXOTWVY» SIKTU0VU, ATOUOVWON

KEVOLKLAOTWV».



ABSTRACT

Internet, with its current structure, has greatly contributed to
the introduction and the development of virtual environments.
However, this Internet structure introduces limitations on the
development of innovative applications. In this context, Software-
Defined-Networks (SDNs) were introduced and are expected to
constitute the core of Future Internet contributing to the even

greater development of Cloud Computing and network virtualization.

The introduction and standardization of the OpenFlow (OF)
protocol plays an important role in this effort. SDN, based on the
OpenFlow protocol, enables the decoupling of control and data plane.
Furthermore, multi-tenancy is enabled across a shared physical
network substrate. One of the major goals of network virtualization is
to provide to each tenant the perception that it uses the available
network resources exclusively on its own. In this context, each tenant
can request its own network slice. Moreover, the requested network

slices should not conflict with each other.

For all the reasons mentioned above, it is imperative to study
various possible methods of coexistence and isolation among

multiple tenants over a shared physical network substrate.

Key words: Software-Defined-Networking, Cloud Computing,

network virtualization, network slice, multi-tenancy, tenant isolation.
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Chapter 2. Introduction

2. Introduction

2.1. Research problem and
Approach

Modern computer design is greatly based on the concept of
virtualization in order to decouple service provisioning from physical
resources. More specifically, the emerging cloud computing
ecosystem and its major trends (e.g. Infrastructure as a Service
(IaaS), Platform as a Service (PaaS) and Service as a Service (SaaS))
are mainly based on the concept of network virtualization.

The concept of network virtualization has become of even greater
importance since the emergence of Software-Defined-Networking
(SDN) [1]. SDN, based on the OpenFlow (OF) protocol [2],[3],
introduced the decoupling of control and data plane and the concept
of multi-tenancy over a shared physical network substrate. Multi-
tenancy, as a feature of SDN, refers to the existence of multiple
tenants across a common physical network topology.

In this context, each tenant can request its own network slice; a
basket of allocated logical and physical network resources across one
or more parts of physical network topology. In this way, tenants can
run their own forwarding logic and develop advanced service
functionalities within their virtual network (network slice), without
being aware either of the physical network substrate or the existence
of other tenants.

A typical method to achieve multi-tenancy is to introduce packet

classification into flows via a logical separator, typically a field within
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Chapter 2. Introduction

the packet header. In this context, each OpenFlow controller
considers a packet ID, preferably a Layer 2 header field, as the
identifier of the network slices. Thus, in this thesis, three such
methods, called “network control plane slicing methods”, are
proposed, implemented in software and assessed. These methods are
the following: (i) domain-wide slicing, (ii) switch-wide slicing and
(iii) port-wide slicing.

In a multi-tenant SDN environment, each tenant should not be
able to exploit network resources that are delegated to other tenants
(network slices). Thus, isolation should be enforced among network
slices, so that they do not conflict with each other. In other words, a
network slice should not be allowed to exhaust the network
resources of other network slices. The rules, which should be
generated in order to enforce an isolation policy among network
slices, constitute the required flowspace [4]. Given that prerequisite,
the proposed implementation also generates the required flowspace

rules, so that the isolation enforcement among tenants is achieved.
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Chapter 2. Introduction

2.2. Thesis Contribution

This thesis mainly intends to propose and assess various slicing

policies

that enable the efficient flowspace segmentation among

tenants. Specifically:

Three control plane slicing methods are proposed. These
methods are applicable to diverse SDN architectures.

An isolation policy across SDN environments is discussed
and a rule reduction approach is proposed.

The efficiency of the proposed slicing methods over
multiple real network topologies is assessed and the
required flowspace is generated.

An evaluation of the slicing method feasibility is performed.
Thus, the slicing methods are associated with FlowVisor, a
popular OpenFlow proxy controller, and the generated

flowspace rules are injected into this proxy controller.

2.3. Thesis outline

The remainder of this thesis is organized as follows: in section 3,

the background of this research issue and the related work are

summarized. In section 4, the overall design of the proposed

implementation is analyzed. In section 5, the analysis of the software

implementation is performed. In section 6, the evaluation of this

software implementation is performed. In section 7, the conclusions

are summarized and the future work is described. Finally, in section

18



Chapter 2. Introduction

8, the used references are listed and, in section 9, an appendix is

included.
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Chapter 3. Background

3. Background

In legacy network architectures, each network device
constitutes an autonomous forwarding entity. Within such devices,
the required forwarding, control and management functionalities are
designed and implemented in distinct groups. These major groups
constitute forwarding/data plane, control plane and management
plane respectively. However, each vendor permits to a different, but
always limited, extent the programmability and control of routers
and Ethernet switches by network administrators. Moreover, each
vendor designs network devices for specific markets. As a result, the
mechanisms associated with the above functionalities are
implemented in a different way by each vendor. This policy often
results in major traffic management incompatibilities among devices
of different vendors.

In order to overcome these limitations, we can take advantage
of Software-Defined Networking (SDN) [1] based on the OpenFlow
(OF) protocol [2],[3]. Nowadays, the majority of Ethernet switches
are OpenFlow-enabled and, as a result, they contain flow tables for
the implementation of services such as Network Address Translation
(NAT), Quality of Service (QOS) and Firewall [5]. OpenFlow provides
a protocol for the programmability of these flow tables. Each
OpenFlow-enabled switch is controlled by an OpenFlow controller
that can insert or delete flows in/from the flow table of each switch.

Generally speaking, SDN, based on the OpenFlow protocol,
transforms network devices to fully programmable forwarding

elements. Modern system design often employs virtualization to
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Chapter 3. Background

decouple the system service model from its physical realization.
Thus, the OpenFlow protocol constitutes a concrete substrate for the
development of multi-tenant virtualized environments. By using a
network hypervisor [6], one can fully virtualize a physical network
substrate, by inserting distinct abstraction layers in order to achieve
operational goals divorced from the wunderlying physical
infrastructure. On the other hand, the deployment of an OpenFlow
transparent proxy controller (e.g. FlowVisor [4]) can result in the
delegation of various network resources, under the form of network

slices, to multiple tenants.

In the sections below, all the mentioned concepts are described

in detail.

3.1. Networking planes

A plane, in networking context, is one of the three integral
components of a telecommunication architecture. As mentioned
above, these three integrals are: (i) forwarding/data plane, (ii)
control plane and (iii) management plane. In legacy networks, all
the three planes are implemented in the firmware of routers and

switches.

3.1.1. Forwarding/Data plane

Typically, the forwarding/data plane is locally implemented
within each network device and operates based on the line-rate. The
forwarding/data plane refers to the underlying systems, which

forward a packet to a selected destination. Said another way, the data
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Chapter 3. Background

plane is mainly responsible for the process of packet forwarding
based on forwarding rules (e.g. longest-prefix match) and for the
simultaneous check of Access Control Lists (ACLs). Moreover, queue
management and packet scheduling are implemented in the context
of this plane. All the above operations are based on hardware

components.

Despite the fact that the forwarding/data plane
implementation varies among vendors, network devices
communicate with each other via standardized data forwarding

protocols (e.g. Ethernet, Internet Protocol).

3.1.2. Control plane

The control plane is the part of the network that carries
signaling traffic and is responsible for system configuration,
exchange and management of routing table information. The control
plane feeds the data plane and, in this way, the data plane
functionality is determined by the control plane rules. These rules
are generated by specific algorithms. In legacy networks, the
signaling traffic is in-band and the control plane refers to the
component of a router that focuses on the way that this device

interacts with its neighbors via state exchange.

One of the main control plane operations is to combine routing
information (generated by a routing protocol) in order to populate

FIB (Forwarding Information Base), which is used by the data plane.

Moreover, the control plane functionality can either be

centralized or distributed. In case of a centralized control plane,

22
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decision-making regarding the entire infrastructure is a centralized

process, whereas in case of a distributed control plane, the selected

algorithms are distributed to each network device that is responsible

for the control plane.

3.1.3. Management plane

The most widely used network management framework is

FCAPS [7]. The five areas of function of this framework are described

below:

Fault management: its goal is to recognize, isolate,
correct and log faults that occur in the network.
Configuration management: its goals are to gather and
store configurations from network devices, to simplify
the configuration of the device, to track changes that are
made to the configuration, to configure or “provision”
circuits or paths through non-switched networks and to
plan for future expansion and scaling.

Accounting management: its goal is to gather usage
statistics for users.

Performance management: it focuses on ensuring that
network performance remains at an acceptable level
Security management: it refers to the process of

controlling access to assets in the network.
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Chapter 3. Background

3.2. Software-Defined
Networking (SDN)

Software-Defined Networking (SDN) 1is an emerging
architecture that is dynamic, manageable, cost-effective, and
adaptable, making it ideal for the high-bandwidth, dynamic nature of
today's applications. This architecture enables the control and the
data plane decoupling. In this way, the network control plane
becomes directly programmable and the underlying infrastructure
can be abstracted for various applications and network services. The
OpenFlow protocol is the cornerstone of building SDN solutions. SDN
also constitutes the enabling technology for network virtualization.

The most important features of a SDN architecture are:

e Direct programmability: The control plane is directly
programmable because it is decoupled from the data
plane.

o Agility: Abstracting the control plane from the data
plane lets administrators dynamically adjust network-
wide traffic flow to meet changing needs.

e Central management: Network intelligence is
(logically) centralized in software-based SDN
controllers. Such controllers maintain a global view of
the infrastructure network, which appears to
applications and policy engines as a single, logical

switch.

e Programmable configuration: SDN lets network

managers configure, manage, secure, and optimize
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Chapter 3. Background

network resources very quickly via dynamic, automated
SDN programs, which they can write themselves,
because the programs do not depend on proprietary

software.

e Open standards implementation and vendor
neutrality: When implemented through open standards,
SDN simplifies network design and operation because
instructions are provided by SDN controllers instead of

multiple, vendor-specific devices and protocols.

APPLICATION LAYER

CONTROL LAYER

Network
Services

INFRASTRUCTURE
LAYER

Figure 3.2-1: Decoupling of control and data plane introduced by SDN [Source:
Open Networking Foundation]
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3.3. Network virtualization

The primitive principles of virtualization have been
implemented in many well-known and widely used network
protocols. In the past, network virtualization was used for the
increase of utilization, establishment of logical separation among
different network instances, simplification of network management
(e.g. Virtual Private Networks - VLANs) and security over untrusted

networks (e.g. Virtual Private Networks - VPNs).

Cloud computing brought network virtualization to
prominence because cloud providers needed a way to allow multiple
customers (or “tenants”) to share a common infrastructure. SDN
architecture, based on the OpenFlow protocol, constitutes a solid
background for the development of multi-tenant virtualized

environments.

There are two major approaches of network virtualization: (i)

full network virtualization and (ii) control plane “slicing”.

3.3.1. Full network virtualization

As it is mentioned in [8], network virtualization presents the
abstraction of a network that is decoupled from the underlying
physical equipment. Network virtualization allows multiple virtual
networks to run over a shared infrastructure and each virtual
network can have a much more abstract topology than the
underlying physical substrate. Important semantics of the full
network virtualization concept are link/node abstraction [6] and

path splitting and migration [9].

26



Chapter 3. Background

3.3.2. Control plane slicing

The main idea is to divide traffic flowspace (physical
resources) into “slices” (a concept initially introduced in PlanetLab
[10]), where each slice has a part of network resources and is
managed by a different SDN controller. An intermediate controller
can act as a transparent proxy controller, speaking OpenFlow to each

SDN controller and OpenFlow switch.

The behavior of such a proxy controller is specified by
establishing flowspace rules. In this context, each network slice is
associated with a certain number of flowspace rules, which specify

the way that the physical resources of a particular slice are utilized.

The (up to now) de-facto software-based OpenFlow proxy
controller is FlowVisor. Other undergoing promising efforts are OVX

(OpenVirtex) [11] and Flowspace Firewall [12].

3.4. Algorithmic basis

Algorithms for the creation of various data structures (e.g. hash
tables and multi-dimensional binary trees) and the lookup process in
them were studied and implemented. Moreover, disjoint path finding
was studied and an algorithm for routing between a given pair of

nodes over two physically disjoint paths was implemented.

3.4.1. Search algorithms

In computer science, a search algorithm is an algorithm for

finding an item with specified properties among a collection of items.
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The items may be stored individually in a database or a hash table or
may be elements of a search space defined by a mathematical

formula or procedure.

An important step in evaluating the efficiency of an algorithm is
algorithmic asymptotic analysis. This gives us a solid view of the
algorithmic behavior at large inputs and forms a good basis for the
comparison of various algorithms. The goal of asymptotic analysis is
to categorize algorithms in large complexity classes (using the “Big
0” notation) without focusing on “constants” that differentiate

execution behavior to a quite smaller extent.

In the context of this thesis, the following search algorithms

were implemented:

e Linear Search
e Single hashing
e Open addressing with double hashing

e Multi-dimensional binary search tree

The linear search algorithm [13] is a method for finding a
particular element in a data structure and consists of serially
checking every one of its elements. It has a worst-case time
complexity of O(N), where N is the amount of elements that have to
be accessed. Despite its simplicity and its good storage
requirements, this algorithm results in slow lookup rates, especially
in cases that the accessed structure has many elements and the

requested element is at its end.

The single hashing algorithm, described in [13], searches for a
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given key K in a table of existing keys (hash tables). This algorithm
make use of a hash function h(K) (e.g. MD5, SHA-1 and CRC32) in
order to map the requested data of arbitrary length into data of a
fixed length. Its average time complexity is O(1) and its worst-case
time complexity is O(N). Generally speaking, the lookup process is
quite fast (more apparent when the number of entries is thousands
or even more). Moreover, in a well-dimensioned hash table, the
average cost (number of instructions) for each lookup is independent
of the number of elements stored in the table. On the other hand, if
the hash table uses dynamic resizing, an insertion or a deletion
operation may occasionally take time proportional to the number of
entries and this may be a serious drawback in real-time or interactive
applications. Hash tables also require the design of an effective hash
function for each key type, which in many cases is quite difficult and

time-consuming to design and debug.

The open addressing with double hashing algorithm, described
in [13], probes the table in a slightly different fashion by making use
of two hash functions hi(K) and hz(K). hi(K) produces a value
between 0 and M-1 , inclusive (M is the table size) . However, hz(K)
must produce a value between 1 and M-1 that is relatively prime to

M. The steps of this algorithm are described below:
Step 1 [First hash] Seti €< h1(K).

Step 2 [First probe] If TABLEJi] is empty, go to Step 6. Otherwise

if KEY[i] = K, the algorithm terminates successfully.
Step 3 [Second hash] Set ¢ € hz(K).

Step 4 [Advance to next] Seti € i-c; if nowi<0,seti < i+ M
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Step 5 [Compare] If TABLE[i] is empty, go to Step 6. Otherwise if
KEY[i] = K, the algorithm terminates successfully. Otherwise go

back to Step 4.

Step 6 [Insert] If N = M - 1, the algorithm terminates with
overflow. Otherwise set N €< N + 1, mark TABLE[i] occupied and
set KEY[i] € K.

The average time complexity of this algorithm is O(1), while the
worst-case time complexity is O(N). Open addressing resolves the
problem of hash collisions (that is to say the problem of different key
values that are assigned by the hash function to the same bucket).
Moreover, by applying the second hash function to produce values
relatively prime to the maximum value produced by both the hash
functions, the appearance of consecutive key values is now actually a
help instead of a hindrance. Furthermore, the two hash functions are
independent, in the sense that different keys would have the same
value for both the hash functions with probability O(1/M”2) instead
of O(1/M), where M-1 is the maximum value produced by the hash
functions. On the other hand, the lookup becomes somewhat slower
and the memory needed is increased compared to the case of single
hashing.

The k-dimensional binary search tree algorithm (or k-d tree
algorithm, where k is the dimensionality of the search space) is
described in [14]. In general terms, if a file is represented as a k-d
tree, then each record in the file is stored as a node in the tree. In
addition to the k keys, which comprise the record, each node contains
two pointers, which are either null or point to another node in the

tree. Each pointer can be considered as specifying a subtree. Based
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on this data structure, various utility algorithms are developed, such
as insertion, deletion of the root, deletion of a random node and
optimization (guarantees logarithmic performance of searches).

As a consequence of the aforementioned optimization, the
average search time complexity is O(logN), while the worst-case
search time complexity is O(N). A great advancement of this
algorithm is that a single data structure facilitates many different and
seemingly unrelated query types. Moreover, this algorithm is
efficient for large trees (which consist of more than 8,000-9,000
nodes) and flexible enough to allow intersection queries. On the
other hand, it is less efficient than Linear Search for small or medium
sized trees (up to 6,000-7,000 nodes approximately). In cases that
the requested element is not a part of the tree, the lookup task takes

too much time to be terminated.

3.4.2. Disjoint paths algorithm

An optimal algorithm for k-disjoint path finding (k greater or
equal to 2) in a graph of vertices (nodes) and edges (links) are
presented in [15]. The used algorithm is a slight variant of the
original Dijkstra algorithm [16]. It is different (in step 3 below) in
that it scans all the neighbors of the node selected in step 2. Let d(i)
denote the distance of node i from starting node A. Let P(i) denote
the predecessor of node i. The ending node is Z.

In each iteration, a node with the least path length is selected

from the set . The search process includes one move at a time and

terminates when the node selected from the set S5 is Z. In the

original Dijsktra algorithm, when a node with the least path length is
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selected from the list of tentatively labeled nodes, the selected node
is said to have been labeled “permanently” and no further scanning
from any other node in the graph can update the label of this node.
However, in the algorithm described in Figure 3.4.2-1, because of the
presence of negative arcs in the modified graph, rescanning can
update the label of the previously selected (or “permanently”
labeled) node. That is why the algorithm given in Figure 3.4.2-1 permits

rescanning.

However, achieving vertex-disjointness and edge-disjointness
for the generated shortest pair of paths is not a trivial process. These
algorithms are analyzed in sections 3.1 and 3.2 of [15] and require a
number of runs of the shortest path algorithm described in Figure

3.4.2-1.

1. Start with
A0, d(D)=IlA ) fiel,,
« oo, otherwise.
(I', = set of first neighbor vertices of vertex i,
I(ig) = length of arc from vertex i to vertex j)
Py=AVviel,.
Set S=I',

2. Find je S such that d(j)*min d(i), ie S.
Set S~S -{j}
If ) = Z (the terminal vertex), END;
otherwise, go 1o 3.

3. Vie [ if d(j)+1(.1) < d(i), set
d(i)=d()+1G.i), P(i)=jand S = Su {i};
go to 2.

Figure 3.4.2-1: Modified Dijkstra Algorithm for Shortest Path from node A to Z
[Source: Optimal physical diversity algorithms and survivable networks]
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3.5. OpenFlow protocol

OpenFlow (OF) is a communication protocol that enables the
network control plane to define cross-layer forwarding rules, which
can be established and handled by OpenFlow-enabled devices. Based
on the SDN architecture, together with the OF protocol, network
devices are transformed to fully programmable forwarding elements.
OpenFlow Switch Specification (its latest version is described in [17])
provides a standardized and secure interface (secure channel)
between a centralized control plane entity (OpenFlow controller)

and distributed data plane entities (OpenFlow-enabled switches).

OpenFlow
Protocol

Secure -
Channel &

Flow
Table

OpenFlow Switch

Figure 3.5-1: An OpenFlow-enabled switch communicates with an OpenFlow controller
over a secure channel using the OpenFlow protocol [Source: OpenFlow Switch
Specification Version 1.4]

3.5.1. Flow Table

A flow table consists of flow entries. Each flow entry (Table 3.5.1-1)

contains the following fields:

e Match fields: to match against OpenFlow packets. These fields
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consist of the ingress port and the packet headers and,
optionally, some metadata specified by a previous flow table.
Priority: matching precedence of the flow entry. Higher values
are higher priorities.

Counters: increased by one when a packet is matched.
Instructions: modification of the action set or pipeline
processing.

Timeouts: maximum timespan or idle time before a flow is
expired by the switch.

Cookie: opaque data value handled and selected by the

controller. May be used by the controller to filter flow statistics,

flow modification and deletion.

The match fields and priority taken together, uniquely identify

each flow table entry in a flow table.

In Table 3.5.1-2, the required match fields are presented. These

Match

Priority

Counters

Instructions

Timeouts

Cookie

Table 3.5.1-1: Major components of a flow entry in a flow table

fields are matched against the corresponding fields of each OpenFlow

packet that arrives at an OpenFlow-enabled switch. Each flow entry

Ingress

Port

Ether

Src

Ether
dst

Ether
type

VLAN
id

VLAN
Priority

IP

Src

IP
dst

IP

proto

IP
ToS
Bits

TCP/UDP
Src Port

TCP/UDP
Dst Port

Table 3.5.1-2: Required match fields of a flow table entry

may contain one or more wildcarded fields. In this case, a wildcarded

field matches against all the possible values of that field.
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Counters are supported by each OpenFlow-enabled switch and
are maintained for each flow table, flow entry, switch port, queue,
group and group bucket, meter and meter band. OpenFlow-compliant
counters can be implemented in software and maintained by polling
hardware counters. The set of counters defined by the OpenFlow
specification is presented in Table 3.5.1-3. It should be noted that an
OpenFlow-enabled switch is not required to support all counters, but

just those marked “Required” in the mentioned table.

Each flow entry contains a set of instructions that are executed
when a packet matches the entry. Such instructions result in action
set, changes to the incoming packet and/or pipeline processing. An
OpenFlow-enabled switch is not required to support all possible
instruction types, just those marked as “Required Instruction” below.
Theses instructions are considered as absolutely necessary. It should
be noted that a switch must reject a flow entry, if it is unable to

execute the instructions associated with this flow entry.

e Optional Instruction: Meter meter_id: Directs packet to the
specified meter.

e Optional Instruction: Apply-Actions action(s): This instruction
may be used for the modification of the packet between two
tables or for the execution of multiple actions of the same type.
It applies the specific action(s) immediately to the packet,
without changing the Action Set. Such actions are described as
an action list.

e Optional Instruction: Clear-Actions: Clears all the actions in the

action set immediately.
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e Required Instruction: Write-Actions action(s): Merges the
specified action(s) into the current action set.

e Optional Instruction: Write-Metadata metadata / mask:
Writes the masked metadata value into the metadata field.

e Required Instruction: Goto-Table next-table-id: Indicates the
next table in the processing pipeline. The next table-id must be

greater than the current table-id.

36



Chapter 3. Background
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Table 3.5.1-3: List of the available OpenFlow-compliant
counters [Source: OpenFlow Switch Specification version 1.4.0]
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An action set is associated with each packet. By default, this
set is empty. An action set can be modified by a flow entry using a
Write-Action or a Clear-Action instruction associated with a specific
match. Each action set is carried among flow tables. The actions in
the action set of the packet are executed and the pipeline processing
stops when a Goto-Table instruction is not included in the instruction
set of a flow entry.

An action set contains a maximum of one action of each type.
Regardless of the order that they were added to the set, the actions in
an action set are applied in the order specified below. However, an
OpenFlow-enabled switch may support arbitrary action execution
order through the action list of the Apply-Actions instruction:

1. Copy TTL inwards: apply copy TTL inward actions to the
packet.
Pop: apply all tag pop actions to the packet.
Push-MPLS: apply MPLS tag push action to the packet.
Push-PBB: apply PBB tag push action to the packet.
Push-VLAN: apply VLAN tag push action to the packet.

o 1o W N

Copy TTL outwards: apply copy TTL outwards action to the

packet.

7. Decrement TTL: apply decrement TTL action to the packet.

8. Set: apply all set-field actions to the packet.

9. QoS: apply all QoS actions to the packet.

10. Group: if a group action is specified, apply the actions of the
relevant group bucket(s) in the order specified by this list.

11. Output: forward the packet on the port specified by the

output action unless a group action is specified.
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The output action in the action set is executed last. An output
action is ignored only in the case that both an output action and a
group action are specified in an action set because the group action
takes precedence. The packet is dropped unless an output or a group
action (or both) was specified in an action set.

The Apply-Actions instruction includes an action list. The
actions of an action list are executed in the order specified by the list
and are applied immediately to the packet. Each action is executed on
the packet in sequence and that execution starts with the first action
in the list.

However, a switch is not required to support all action types,
but just those marked as “Required Action” below. Moreover, the
controller can query the switch about which of the “Optional Actions”
it supports.

e Required Action: Output. According to this action, a packet is
forwarded to a specified OpenFlow port. OpenFlow switches
must support forwarding to physical ports, switch-defined
logical ports and the required reserved ports.

e Optional Action: Set-Queue. It sets the queue id for an
incoming packet. When the packet is forwarded to a port using
the output action, the queue id specifies which queue, attached
to this port, is used for scheduling and forwarding the packet.
More specifically, the forwarding behavior is determined by
the configuration of the queue and is used for the basic QoS
support.

e Required Action: Drop. This result can come from empty
instruction sets or empty action buckets in the processing

pipeline, or after the execution of a Clear-Actions instruction. In
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other words, there is no explicit action to represent drop, but
packets whose action sets have no output actions should be
dropped.

Required Action: Group. Process the packet through the
specified group.

Optional Action: Push-Tag/Pop-Tag. Switches may support
the ability to push and pop the tags shown in Table 3.5.1-4. For
instance, the ability to push/pop VLAN tags is suggested to be
supported.

Optional Action: Set-Field. The Set-Field actions modify the
values of respective header fields in the packet. Such actions
are identified by their field type.

Optional Action: Change-TTL. Such actions result in the
modification of the values of the [Pv4 TTL, [Pv6 Hop Limit or
MPLS TTL in the packet.

Action

Associated Data

Description

Push VLAN header

Ethertype

Push a new VLAN header
onto the packet. The
Ethertype is used as the
Ethertype for the tag. Only
Ethertype 0x8100 and
0x88a8 should be used.

Pop VLAN header

Pop the outer-most VLAN
header from the packet.
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Push MPLS header Ethertype Push a new MPLS shim
header onto the
packet. The Ethertype is
used as the Ethertype for
the tag. Only Ethertype
0x8847 and 0x8848 should
be used.

Pop MPLS header Ethertype Pop the outer-most MPLS
tag or shim header from
the packet. The Ethertype
is used as the Ethertype for
the resulting packet
(Ethertype for the MPLS
payload).

Push PBB header Ethertype Push a new PBB service
instance header (I-TAG
TCI) onto the packet. The
Ethertype is used as the
Ethertype for the tag. Only
Ethertype 0x88E7 should
be used.

Pop PBB header - Pop the outer-most PBB
service instance header (I-
TAG TCI) from the packet.

Table 3.5.1-4: Push/pop tag actions [Source: OpenFlow Switch Specification
version 1.4.0]

When executing a push action, values for all the fields listed in
Table 3.5.1-5 should be copied from existing outer headers to new outer
headers. “New Fields”, specified in Table 3.5.1-5, without corresponding

“Existing Field(s)”, should be set to zero.
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New Fields Existing Field(s)

VLAN ID «— VLANID

VLAN priority i— VLAN priority

MPLS label «— MPLS lahel

MPLS traffic class +« MPLS traffic class
S . MPLS TTL

MPLS TTL ; P TTL

PBEB I-SID +— PBB I-5ID

PBB I-PCP «— VLAN PCP

PBB C-DA +— FETH DST

PBB C-5A +— FETH SRC

Table 3.5.1-5: Existing fields that can be copied into new fields on a push
action [Source: OpenFlow Switch Specification version 1.4.0]

3.5.2. Matching a packet with the
corresponding flow entry

On arrival of a packet, an OpenFlow-enabled switch starts by
performing a table lookup in the first flow table, and according to the
pipeline processing, may perform table lookups in other flow tables
as well.

First of all, packet match fields are extracted from the
OpenFlow packet. Packet match fields used for table lookups
typically include various Layer 2 to Layer 4 header fields and usually
depend on the packet type. Apart from the header fields, matches can
be performed against ingress switch port and metadata fields.

A packet matches a flow table entry, if the values in the packet
match fields, used for the lookup, match those specified in the flow
entry. As it was mentioned in the previous section, if a flow table

entry field is wildcarded, it matches all possible values in the packet
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header. Each packet is matched against the table and only the highest
priority entry that matches the packet must be selected. The counters
associated with this particular flow entry must be increased and the
instruction set included in the selected flow entry must be applied. In
case of multiple matching flow entries with the same highest priority,
the chosen flow entry is undefined.

All the aforementioned functions, which are performed by an

OpenFlow switch, are shown in the following figure:

Packat In
Start at teble &

T

Undete courters
Execute instructions:

+ Updabg aiton el

« ppdate pacoelimatich el hoekds
+ update metcdsata

Gioto-
Table n?

Execute action
sat

Match in
table n?

Drop packat

Figure 3.5.2-1: Flowchart illustrating packet flow through an OpenFlow switch [Source:
OpenFlow Switch Specification version 1.4.0]

Moreover, every flow table must support a table-miss flow
entry to process table misses. This flow entry defines how to handle
packets that are not matched against other flow entries in the flow
table. As a result, such packets may be sent to the controller, be

dropped or be directed to a subsequent table. If such a table-miss
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entry does not exist, by default, packets unmatched by flow entries
are discarded.

Flow entries are removed from flow tables in three ways:

e atarequest of a controller
e via the switch flow expiry mechanism
e via the optional switch eviction mechanism

The controller may actively dictate the deletion of a flow entry
from a flow table by sending delete flow table modification
messages.

The switch flow expiry mechanism is run by the switch
independently of the controller and is based on the state and the
configuration of flow entries. Every flow entry has an idle timeout
and a hard timeout indicator associated with it. A non-zero hard
timeout field causes a flow entry to be deleted after the given number
of seconds, regardless of the number of packets that it has matched. A
non-zero idle timeout field causes the flow entry to be removed when
it has matched no packets in the given amount of seconds. A switch
must implement both the aforementioned features.

Flow entries may be evicted from flow tables when the switch
needs to reclaim resources. That is an optional feature, and the
mechanism used to select which flow entries to evict is switch
defined and may depend on flow entry parameters, resource

mappings in the switch and other internal switch constraints.
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4. Design principles of the
proposed implementation

Generally speaking, there are two popular multi-tenant SDN
architectures. The first one deploys an OpenFlow transparent proxy
controller, such as FlowVisor, that enables tenants to share or “slice”
the control plane and develop their own arbitrary forwarding logic
within their slice [4]. The second one assumes a network hypervisor
that supports various network abstractions towards network
virtualization [6].

In order to achieve multi-tenancy across any SDN environment
(as well as in both of the SDN architectures mentioned above), the
classification of packets into flows is required. A typical way to
achieve this classification is via logical separators within packet
headers. In this context, three “network control plane slicing
methods” are proposed and analyzed in section 4.1. A network
control plane slicing method is an algorithm that ensures the creation
of non-overlapping flowspace rules. Each slicing method takes into
account different fields of the packet header.

Regardless of the selected slicing method, isolation among
slices (tenants) should be enforced across a shared physical
infrastructure. To that end, in section 4.2, the implications of
isolation policy enforcement for each slicing method are presented.

In order to enforce isolation policy among tenants, a certain
number of non-overlapping flowspace rules should be generated. In
some cases, this number may be quite large resulting in extreme

overheads. In order to keep flowspace rules to a reasonable number
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and, thus, avoid such overheads, a flowspace rule reduction approach

is described in section 4.3.

4.1. Network control plane
slicing methods

As described above, packet classification into flows via logical
separators within a packet header (packet ID) is required to achieve
multi-tenancy. Such a packet ID can also be considered by an
OpenFlow controller as the identifier of a network slice. For instance,
the VLAN IDs or the MPLS tags can be considered as packet IDs.

However, using a single separator as a slice identifier (e.g. the
VLAN IDs are restricted to 4096 per domain) could result in limited
scalability. In order to overcome these limitations, multiple
separators could be considered within an SDN controller and, thus, a
network slice can be identified via a set of tuples.

The proposed slicing methods are the following: i) domain-
wide slicing method, ii) switch-wide slicing method and iii) port-
wide slicing method. Examples of a separator tuple for each slicing

method are presented in Table 4.1.3-1.

4.1.1. Domain-wide slicing method

In the domain-wide slicing method, each network slice is
strictly associated (identified) with a unique value of the packet ID.
This is achieved by using a single separator per domain, e.g. <MPLS
tag> or <VLAN ID>. This slicing method could be referred to as the

“naive” way to classify packets and “slice” flowspace.
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4.1.2. Switch-wide slicing method

In the switch-wide slicing method, each slice is identified
(associated) via multiple separators, which form tuples. In addition
to a single or multiple packet header fields, these tuples also include
the identification of the switching elements that this slice spans. Such
tuples can be specified as follows: <MPLS tag, switch ID> or <VLAN
ID, switch ID>. This method is more sophisticated than the “naive”
domain-wide slicing and, thus, it is expected to result in a more

efficient flowspace segmentation.

4.1.3. Port-wide slicing method

In the port-wide slicing method, each slice is identified
(associated) via multiple separators along with specific switch ports
and switch identification. In other words, a slice is further identified
(compared to the switch-wide slicing method) using specific switch
ports.

For instance, a tuple regarding this particular slicing method
could be defined as follows: <MPLS tag, switch ID, switch port ID>.
One could think of this method as the most complex one, which,
however, provides the greatest network programmability to the

administrator or the infrastructure provider.
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Slicing method Separator tuple
Domain-wide <MPLS tag>
Switch-wide <MPLS tag, switch ID>
Port-wide <MPLS tag, switch ID, switch
port ID>

Table 4.1.3-1: Example of separator tuple for each slicing method

4.2. Isolation policy enforcement
in multi-tenant virtualized
environments

As stated above, regardless of the selected slicing method and
the underlying physical network topology, strong isolation should be
enforced among network slices. That is to say, actions of one slice
should be prevented from affecting other slices allowing tenants to
safely coexist across a common physical network infrastructure.

The overall concept of network virtualization may break down
if one slice conflicts with others and exhausts their resources. In
order to enforce such strong isolation among network slices, non-
overlapping flowspace rules should be created.

Enforcing isolation in the domain-wide slicing method is a
trivial process. Tenants should use each instance of the selected
separator only once across a network domain. For example, each
reserved MPLS tag or VLAN ID should not be reused across the same

domain.
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However, isolation enforcement in the switch-wide slicing
method is more complex because a specific instance of a selected
separator can be reused across a network domain. As a consequence,
multiple network slices may select the same separator instance
across a common physical network substrate risking the isolation of
network slices. At the worst-case scenario, the control plane could be
poisoned by the data plane traffic harshly violating the isolation
among network slices and thus exhausting their network resources.

In Figure 4.2-1, a scenario of two, potential conflicting, network
slices is illustrated. Slices of Tenant K and L are allocated within two
separate switching elements A and B. These switches are
interconnected via port 3 and port 1 respectively. Moreover, within
these switches, the same separator instance of MPLS tag i has been
reserved by each tenant. If tenant L selects port 1 of switch B as the
egress port of its traffic, packets will be forwarded to switch A.
However, in switch A, MPLS tag i has been delegated to tenant K and,
thus, tenant’s K OpenFlow controller would be overloaded by alien
OpenFlow control messages.

Such an outcome can be avoided by not assigning port 3 of
switch A and port 1 of switch B for the specific separator instance to
any of the tenants. In order to fulfill this requirement, the required
non-overlapping flowspace rules regarding tenants K and L and
switches A and B are presented in Table 4.2-1. It is worth noting that

one rule per delegated switch port should be defined.
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Figure 4.2-1: Scenario of two potential conflicting network slices in the switch-wide
slicing method

Rule Tenant Rule Egress/Ingress Datapath Separator
identification | identification | priority switch port identification instance
Rule 1 tenant L priority=1 port=2 datapath=switch MPLS
B tag=i
Rule 2 tenant L priority=1 port=3 datapath=switch MPLS
B tag=i
Rule 3 tenant L priority=1 port=4 datapath=switch MPLS
B tag=i
Rule 4 tenant L priority=1 port=5 datapath=switch MPLS
B tag=i
Rule 5 tenant K priority=1 port=1 datapath=switch MPLS
A tag=i
Rule 6 tenant K priority=1 port=2 datapath=switch MPLS
A tag=i
Rule 7 tenant K priority=1 port=4 datapath=switch MPLS
A tag=i
Rule 8 tenant K priority=1 port=5 datapath=switch MPLS
A tag=i

Table 4.2-1: Required flowspace rules in case of isolation policy enforcement in switch-
wide slicing

In the port-wide slicing method, non-overlapping flowspace

rules should be created in the same manner as above. Figure 4.2-2
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illustrates a potential scenario of violating tenant isolation in port-
wide slicing. Ports 1 and 5 of switch A have been assigned to tenant L,
while ports 3 and 4 of the same switching element have been assigned
to tenant K and the switch port 2 has not been assigned to any of the
tenants.

Both tenants K and L use the instance i of separator MPLS tag.
However, if tenant L selects port 3 or 4 as the egress port of its traffic,
the isolation policy will be violated and the tenant slices will conflict.
In order to avoid this violation, the required flowspace rules for both
tenants are presented in Table 4.2-2. It is deduced that one rule per
delegated switch port should be defined in this slicing method as
well. Finally, it should be noted that in any of the aforementioned

scenarios, if a packet does not match any flowspace rule, it will be

discarded.
2
Tenant L Tenant K
MPLS 1 > MPLS
tag i tagi
TE"an't L . Tenant H:
MPLS 5 4 MPLS
tagi tagi

Figure 4.2-2: Scenario of two potential conflicting network slices in the
port-wide slicing method
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Rule Tenant Rule Egress/Ingress Datapath Separator
identification | identification | priority switch port identification instance
Rule 1 tenant L priority=1 port=1 datapath=switch MPLS
A tag=i
Rule 2 tenant L priority=1 port=5 datapath=switch MPLS
A tag=i
Rule 3 tenant K priority=1 port=3 datapath=switch MPLS
A tag=i
Rule 4 tenant K priority=1 port=4 datapath=switch MPLS
A tag=i

Table 4.2-2: Required flowspace rules in case of isolation policy enforcement in port-

wide slicing

4.3. Flowspace rule reduction

approach in multi-tenant
virtualized environments

As mentioned in the previous section, the number of required
flowspace rules in switch-wide and port-wide slicing is equal to the
number of switch ports that have been assigned to tenants, so that
isolation among network slices (tenants) is safeguarded. Moreover,
the ports that interconnect the switching elements of a network
topology should not be delegated to any of the tenants unless both of
the interconnected switches are delegated to the same tenant.

However, this isolation policy could result in large numbers of
generated flowspace rules and, as a consequence, its enforcement
could cause severe performance overheads and large memory
consumption, thus becoming the bottleneck of the entire network
infrastructure. In this way, it is overt that an approach towards the
reduction of the required flowspace rule number should be made.

This approach is applicable to the switch-wide slicing method.
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When the number a of ports assigned to tenants per topology
switch is greater than the number u of unassigned switch ports, the
overall number of flowspace policy rules can be reduced by defining
high (higher than normal) priority drop rules for the interconnection
ports of the topology switches. These rules would be handled by a
special-purpose (administrative) OpenFlow controller that has a
global view of the network topology. In this way, if the data traffic of
a specific tenant was forwarded to a topology switch delegated to
another tenant, the corresponding packets would be dropped
(discarded). In addition to the aforementioned packet-dropping
rules, low (lower than normal) priority wildcard entries should be
used for the typical process of flowspace delegation to the existing
tenants.

Keeping up with the scenario presented in the previous section,
the required flowspace policy rules, after applying the rule reduction
approach, are presented in Table 43-1 (denoting that Priority 1 is
greater than Priority 2). It is worth noting that the required rules are

now reduced to half compared to the required rules defined in Table

4.2-1.
Flowspace Implementation
Slice id Priority Port Datapath id MPLS tag
Reserved slice 1 Priority 1 Port=3 Switch A MPLS tag i
Tenant K slice Priority 2 Port=* Switch A MPLS tag i
Reserved slice 1 Priority 1 Port=1 Switch B MPLS tag i
Tenant L slice Priority 2 Port=* Switch B MPLS tag i

Table 4.3-1: Rule reduction approach in switch-wide slicing when a>u

On the other hand, when the number a of ports assigned to
tenants per topology switch is smaller than the number u of

unassigned switch ports, a flowspace rule reduction cannot be
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achieved because the number of required flowspace policy rules for
each topology switch is equal to the number of reserved switch ports.
Thus, the number of required flowspace rules is equal to the number

of policy rules mentioned in Table 4.2-1.
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5. Implementation analysis

In the previous chapter (sections 4.1, 4.2, 4.3), the design
principles of the proposed implementation were discussed. In this

chapter, implementation specific features are described in detail.

5.1. Implementation structure

In order to evaluate the efficiency and the feasibility of the
aforementioned slicing methods and flowspace isolation policy, a
flowspace rule engine was implemented in software using Python
[18].

This engine takes as inputs tenant requests for virtual network
topologies (simple, disjoint and star topologies - all of them are
defined below) and physical substrate topologies and, based on the
selected slicing method, it generates the required flowspace rules, so
that isolation is enforced among tenants. It is noteworthy that this
engine takes as input real (WAN, medium and small sized) physical
network topologies. As a result, the selected slicing methods are
applied to real network substrate topologies providing a fertile
environment for reliable evaluation. The structure of this
implementation is illustrated in Figure 5.1-1. Specifically, it consists of
the following scripts:

¢ run_engine.sh: This bash script is used to initialize and
start the engine by specifying all the necessary
parameters of its execution. These parameters include

the desired physical network topologies, the selected
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weight type (propagation delays or link bandwidths), the
interconnection points between the selected network
domains (reserved for future development) and the
number of virtual network topologies of each type.
generate.py: This script generates the selected real
network topologies (specified in run_engine.sh) as
topology graphs using the dataset of “The Internet
Topology Zoo” project [19]. Moreover, it computes the
selected type of weights for each graph link and attaches
these weights to the topology graph.

metrics.py: This script initializes the generation of
virtual network topologies and the computation of
evaluation metrics.

paths.py: Given a source and a destination node of a
network topology graph, this script searches for a
disjoint path set between these nodes.

evaluation.py: It calculates various performance
indicators and generates the required flowspace rules for
the domain-wide, the switch-wide and the port-wide
slicing method. Simple paths, star topologies and sets of
disjoint paths along with the network topology graph are
needed for this computation.

graph_util.py: This script contains functions for the
interconnection of two or more network graphs. The
interconnection points are specified in run_engine.sh.
This script is useful for the future development of the

implemented engine, so that multi-domain support is

added.
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¢ lookup_process.py: This script takes as input the lookup
query and initializes the flowspace lookup process by
creating various data structures.

e looKkup.py: It contains the linear search, the single
hashing and the open addressing with double hashing
lookup algorithms. The elapsed time of the lookup
process for each algorithm is also computed. The average
and the worst-case time complexity for each algorithm
were described in chapter 3.

e Kdtree.py: It contains functions for the construction of a
k-dimensional binary search tree (kd tree) and the
implementation of the lookup process in it. If the desired
element belongs to the kd tree, then the corresponding
node is returned. If there is not such a node in the kd
tree, the nearest neighbor of the requested element is
returned. The elapsed time is also computed.

e util_lookup.py: It includes various helpful functions for
the lookup process implementation.

The computed evaluation metrics are defined as follows:

e Acceptance ratio: the fraction of total requests issued by
tenants that were accepted by each slicing method. This
indicator shows the efficiency of a proposed slicing method.

e Number of required flowspace rules: the flowspace rules
that are generated by the rule engine and are required to be
established within an OpenFlow transparent proxy controller
(such as FlowVisor) in order for isolation policy to be enforced

among network slices (tenants)
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e Proxy controller time overhead: the time overhead added to
the networked system by the OpenFlow proxy controller when
it handles the generated flowspace rules

e Proxy controller memory consumption: The memory
needed by the OpenFlow proxy controller to create, manipulate

and update the generated flowspace.

Welghts, Topology
Inter-domain connection points
(Disjoint, Star. Simple} paths

Resource allocation Acceptance ratio
cakutation and feasibiity
waluation

{Time overhead, Rule

number, Memory
consumption)

Figure 5.1-1: Structure of the software implementation
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5.2. Detailed implementation
analysis

In this section, a detailed description of the scripts, mentioned

in section 5.1, is presented.

5.2.1. Script run_engine.sh

As mentioned above, this bash script initializes and starts the
flowspace rule engine by defining all the necessary execution
parameters. Such parameters include the desired real network
topologies (topo_list), the desired number of virtual network
topologies (simple_paths, disjoint, star_paths), the percentage of
bound and unbound requests (unbound) (these requests are defined
in detail below), the type of desired graph weights (bandwidth), an
argument for writing output in a file (w), an argument specifying
whether the evaluation metrics will be computed (reuse), the graph
interconnection points (connection_points), an argument specifying
whether the graph weigths will be computed or imported from a
source file (weights_from_file) and, if that is the case, the name of
the file that includes the graph weights (weights_file). All of these
parameters are described in detail below:

e topo_list: This argument specifies the desired real network
topologies, which constitute one of the inputs given to the
engine. The structure of each network topology is included in
“The Internet Topology Zoo” project. Such network topologies
include Internet2/0S3E [20], GEANT [21], ULAKNET [22]
and PSiNET [23].
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simple_paths: The desired number of simple paths. These are
multi-hop (point-to-point) paths with no repeated vertices.
Source and destination nodes are randomly chosen.

disjoint: The desired number of disjoint path sets. These are
sets of paths between a source and a destination node having
no vertex and edge in common. Source and destination nodes
are randomly selected.

star_paths: The selected number of star topologies. A star
topology is defined as a tree with one internal vertex and k
leaves. Internal vertex and leaves are randomly selected.
unbound: A parameter that takes a numerical value specifying
the percentage of unbound tenant requests. The percentage of
bound requests is computed as (100-$UNBOUND)% These
two types of requests are defined as follows:

o Bound request: a tenant requests a specific instance of
the selected logical separator across a path (e.g. a specific
VLAN ID or MPLS label).

o Unbound request: the allocation of any available
instance of the selected logical separator across a path is
acceptable (e.g. any available VLAN ID or MPLS label).

bandwidth: A parameter that takes a boolean value. If that
value is TRUE, graphs weights represent link bandwidths
otherwise they represent propagation delays. The default value
of this parameter is FALSE.

w: This argument determines that the evaluation results will be
printed in an output file.

reuse: A parameter that takes a boolean value. If that value is

TRUE, the computation of the evaluation metrics is executed.
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Otherwise, none of the metrics are computed. Its default value
is FALSE.

e connection_points: The interconnection points of the
specified network topologies (network domains) are defined as
a list of strings. This parameter is reserved for the future
development of the rule engine execution in multi-domain
environments.

o weights_from_file: A parameter that takes a boolean value. If
that value is TRUE, the graph weights are imported from a
source file otherwise they are computed during the engine
execution. The default value of this parameter is FALSE.

o weights_file: In case that the previous parameter has a TRUE
value, this parameter specifies the name of the .json file [24]
that includes the graph weights.

After the initialization of these parameters, the script generate.py

is called and takes them as input arguments.
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5.2.2. Script generate.py

This script generates each of the selected real network
topologies as a topology graph by parsing its attributes from the
dataset of “The Internet Topology Zoo” project (described in detail in
section 5.3). For this purpose, the get_topo_graph function is called.
This function is contained in the topo_lib.py script, which is
described in the next section. Moreover, the selected type of graph
weights is generated and these weights are appended to a NetworkX
[25] Graph data structure named g. In case of a successful topology
parsing from the dataset, this successful parsing is recorded and the
function do_metrics is called for the initialization of the evaluation

metric computation otherwise the topology is ignored.

In addition to the above features, there is an option of unifying
two or more network topology graphs. However, this option is noted
as a comment because it is reserved for the future development of

the engine regarding multi-domain environments.

All the aforementioned process is described in Snippet 5.2.2-1.
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for i, topo in enumerate(topos):
print "topo %s of %s: %s" % (i + 1, t, topo)
g, usable, note = get_topo_graph(topo)
#g_unified = nx.union(g,topo_test)#unify graphs
exp_filename = metrics.get filename(topo, options)

if not g:
raise Exception("WTF?! null graph: %s" % topo)

elif not options.force and os.path.exists(exp_filename + ".json'):
print "skipping already-analyzed topo: %s" % topo
ignored.append(topo)
elif not has_weights(g):
ignored.append(topo)
print "no weights for %s, skipping" % topo
else:
do_all(topo, g, 1, 1, None, mylist)
successes.append(topo)

print "successes: %s of %s: %s" % (len(successes), t, successes)
print "ignored: %s of %s: %s" % (len(ignored), t, ignored)

Snippet 5.2.2-1: Snippet of script generate.py that determines whether the
attributes of a network topology were parsed successfully from the dataset.

5.2.3. Script topo_lib.py

The most important function included in this script is
get_topo_graph (Snippet 5.2.3-1). It takes as input a network topology
name and parses the corresponding network graph attributes from
the dataset of “The Internet Topology Zoo” project. To that end, it
either returns an error message or the entire topology graph. If the
attribute parsing process is successful, the selected type of weights
and each node name are attached to the NetworkX Graph data

structure named g.
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def get_topo_graph(topo):
if topo =="'os3e":
g = 0S3EWeightedGraph()
return g, True, None
elif topo == 'Geant2012":

g, note, note2 = import_zoo_graph(topo)
attr = nx.get_node_attributes(g,'Country")
for node in g.nodes():

temp = str(attr[node])
mapping[node] = temp
g = nx.relabel_nodes(g,mapping)
return g, True, False
else:
g, note, note2 = import_zoo_graph(topo)
attr = nx.get_node_attributes(g,'label")
for node in g.nodes():
temp = str(attr[node])
mapping[node] = temp

g = nx.relabel_nodes(gmapping)

return g, True, False

Snippet 5.2.3-1: the get_topo_graph function

5.2.4. Script metrics.py

For each successful parsing of a network topology, the function
do_metrics is called. This function initializes the computation of
acceptance ratio and the generation of flowspace rule tables (one for

each slicing method) for a single network domain.

Firstly, the flowspace rule tables are initialized as empty lists
and the input arguments are parsed. Secondly, if the input argument
weights_from_file (defined in section 5.2.1) has a TRUE value, the
graph weights are imported from a source file. If that is the case, the
function read_weights_from_file (Snippet 524-1) is called. This
function takes as inputs the topology graph and the name of the file
that includes the graph weights on an appropriate format. The
function read_json_file (Snippet5.2.4-2) is used for the weight parsing

from the given .json file. Finally, the parsed graph weights are
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appended to the NetworkX Graph data structure named g.

def read_weights_from_file(g,filename):
weights = {}
weights = read_json_file(filename)
for src,dst in g.edges():
tuples = [weights.get(src)]
if tuples[0]!=None:

try:

index = tuples[0].index(dst)
except ValueError:

continue
else:

g[src][dst]['weight'] = tuples[0][index+1]
tuples = [weights.get(dst)]
if tuples[0]!=None:
try:
index = tuples[0].index(src)
except ValueError:
continue
g[src][dst]['weight'] = tuples[0][index+1]
return

Snippet 5.2.4-1: the read_weights_from_file function

def read_json_file(filename):
input_file = open(filename, 'r")
return json.load(input_file)

Snippet 5.2.4-2: the read_json_file function

The process of the optimal path finding from each source to
each destination node is executed according to the Dijkstra algorithm
using the built-in functions of NetworkX

all_pairs_dijkstra_path_length and all_pairs_dijsktra_path.

After that, using the value of the argument disjoint, the
required number of disjoint path sets is searched. Specifically, the
disjoint path finding process is executed by calling the function

vertex_disjoint_shortest_pair of script paths.py, which is described
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in the next section. If there are less disjoint path sets in the given
graph than the requested number, the maximum number of existing
disjoint paths is returned. In any case, an appropriate message is

printed to standard output. This process is described in Snippet 5.2.4-3.

for node in g.nodes():
if dis_counter >= disjoints:
break
src = node
counter =0
foriin range(len(dst))
templ,temp2 = paths.vertex_disjoint_shortest pair(g, src, dst[i])
if temp1!=None and temp2!=None:
length1 = get length(apsp,temp1)
iflengthl ==-1:
break
paths_temp.append((temp1,length1,dst[i]))
length2 = get _length(apsp,temp?2)
iflength2==-1:
break
paths_temp.append((temp2,length2,dst[i]))
counter = counter+2
elif temp1!=None and temp2==None:
length = get_length(apsp,temp1)
if length == -1:
break
paths_temp.append((temp1,length,dst[i]))
counter=counter+1
if counter == 0 or counter==1:
continue
paths_temp = sorted(paths_temp, key=itemgetter(1))
path1,path2 = get_disjoint(gpaths_temp)
if path1!=None and path2!=None:
dis_counter = dis_counter +2
dis_paths.append(path1[0])
dis_paths.append(path2[0])

if dis_counter == disjoints:
print("------- Found %d disjoint paths" % dis_counter)
else:
print("------- Found %d disjoint paths out of %d that was
requested” % (dis_counter,disjoints))

Snippet 5.2.4-3: Disjoint path finding

After the disjoint path finding process, the evaluation metric
computation takes place by calling the compute_metrics function of

script evaluation.py, described in section 5.2.6. Finally, the output
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Json files, which will contain the generated flowspace rule tables and
the resulting acceptance ratios, are created and the computed
metrics are copied to them. The functions get_filename and
get_tablefilename that are presented in Snippet 52.4-4 create the

appropriate file names.

def get_filename(topo, options):

number_of_requests = options.star_paths + options.disjoint +
options.simple_paths

type_of_requests = options.unbound

mix = options.mix

filename = "acceptance_ratio/" + topo + str(number_of_requests) +
mix +"("+ str(type_of_requests) +"% unbound)" +"/"

return filename

def get_tablefilename(topo,options):

number_of_requests = options.star_paths + options.disjoint +
options.simple_paths

type_of_requests = options.unbound

mix = options.mix

filename_domain = "tables/" + "domain-wide" + topo +
str(number_of_requests) + mix+ "(" + str(type_of_requests) + "%
unbound)"+"/"

filename_switch = "tables/" + "switch-wide" + topo +
str(number_of_requests) + mix+ "(" + str(type_of _requests) + "%
unbound)"+"/"

filename_port = "tables/" + "port-wide" + topo +
str(number_of_requests) + mix+ "(" + str(type_of _requests) + "%
unbound)"+"/"

return filename_domain, filename_switch, filename_port

Snippet 5.2.4-4: The get_filename and the get_tablefilename functions
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5.2.5. Script paths.py

This script contains the Python implementation of the
algorithm described in section 3.4.2. Given a source and a target
graph node, the included functions search whether a set of optimal
paths, which are both edge and vertex disjoint, exists between these

end nodes.

As stated in section 3.4.2, in order to check whether the
conditions of edge-disjointness and vertex-disjointness are fulfilled, a
number of runs of the modified Dijkstra Algorithm for Shortest Path
finding are required. If the requested disjoint path set exists, the
paths are returned along with their costs (sum of their edge weights)

to the user. Otherwise, an error message is returned.

5.2.6. Script evaluation.py

This script computes the evaluation metrics and generates the
required flowspace rules for the domain-wide, the switch-wide and
the port-wide slicing methods. The tenant requests for virtual
network topologies along with the topology graph are needed for this
computation.

The main function of this script is compute_metrics. Firstly,
the number of bound and unbound requests for each virtual network
topology type is computed. After that, the number of each switch
interconnection ports is computed based on the number of edges that

are attached to each switch (Snippet 5.2.6-1).
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def precompute_ports(g,mylist):
for node in g.nodes():
neighboors = g.neighbors(node)
num_of neigh = len(neighboors)
for port in range(0,num_of neigh):
mylist.append((node,neighboors[port],port+1))
return mylist

Snippet 5.2.6-1: the precompute_ports function

The tenant request acceptance ratio is computed by separating
bound and unbound requests. The type of each tenant request
(bound or unbound) and the selected slicing method differentiate the
way that a tenant request gets accepted or rejected by the rule
engine. Specifically:

¢ In case of an unbound request using the:

o Domain-wide slicing method: if any instance of the
selected logical separator is available across the entire
physical network, the request is accepted otherwise it is
rejected.

o Switch-wide slicing method: if any instance of the
selected logical separator is available within each switch
of the generated path, the request is accepted otherwise
it is rejected.

o Port-wide slicing method: if any instance of the
selected logical separator is available on the appropriate
ingress and egress port of each switch across the
generated path, the request is accepted otherwise it is

rejected.
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¢ In case of a bound request using the:

o Domain-wide slicing method: if the selected instance of
the logical separator is available across the entire
network, the request is accepted otherwise it is rejected.

o Switch-wide slicing method: if the selected instance of
the logical separator is available within each switch of
the generated path, the request is accepted otherwise it
is rejected.

o Port-wide slicing method: if the selected instance of the
logical separator is available on the appropriate ingress
and egress port of each switch across the generated path,

the request is accepted otherwise it is rejected.

In this context, this script contains functions for accepting or
rejecting a tenant request based on the request type in case of each
virtual network topology type (simple path, star topology or disjoint
path set). These functions also generate the required flowspace rules,
in case of an accepted tenant request, based on the isolation policy
and the flowspace rule reduction approach described in chapter 4. In
Snippet 5.2.6-2 and Snippet 5.2.6-3, the functions regarding bound requests
for simple paths using the port-wide slicing method and unbound
requests for simple paths using the domain-wide slicing method are
presented respectively. Finally, it is worth noting that each star
topology used for the metric computation includes two neighboring

nodes across each star radius.

70



Chapter 5. Implementation analysis

def
reusability_perswitch_perport(FlowSpace_port,user_id,mylist,vlan,paths,port_list, numb
er_of_rules):
query =]
query2 =]
f = itemgetter(0,1)
temp_no=0
rules_to_append = []
length = len(paths)
foriin range(length-1):
temp_no +=2
src_node = paths][i]
dst_node = paths[i+1]
index = map(f,port_list).index((src_node,dst_node))
portl = port_list[index][2]
index = map(f,port_list).index((dst_node,src_node))
port2 = port_list[index][2]
temp = (src_node,portl,dst_node,port2,vlan)
index = map(f,port_list).index((src_node,dst_node))
rules_to_append.append((user_id,3000,port1,src_node,vlan))
rules_to_append.append((user_id,3000,port2,dst_node,vlan))
query.append(temp)
temp2 = (dst_node,port2,src_node,port1,vlan)
query2.append(temp2)
rules_to_append.append((user_id,3000,port2,dst_node,vlan))
temp_no +=1
if len(mylist)==0:
foriin range(len(query)):
templ = query([i]
temp2 = query2][i]
mylistappend(temp1)
mylist.append(temp2)
foriin range(len(rules_to_append)):
FlowSpace_port.append(rules_to_append[i])
user_id +=1
number_of rules[2] = temp_no
return True
foriin range(len(query)):
temp1l = query([i]
temp2 = query2][i]
if ((temp1 in mylist) or (temp2 in mylist)):
return False
foriin range(len(query)):
temp1l = query([i]
temp2 = query2[i]
mylistappend(temp1)
mylistappend(temp2)
foriin range(len(rules_to_append)):
FlowSpace_port.append(rules_to_append|i])
user_id +=1
number_of rules[2] = temp_no
return True

Snippet 5.2.6-2: Computation of acceptance ratio and rule generation in
case of bound requests for simple paths using the port-wide slicing
method
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def
reusability_per_domain_unbound(FlowSpace_domain,user_id,mylist,sh
ow_vlan_unbound,number_of rules):
temp = show_vlan_unbound[0]+1
while temp <= 4096:
rules_to_append =[]
if not temp in mylist:
mylist.append(temp)
show_vlan_unbound[0]=temp
number_of_rules[0] =1

FlowSpace_domain.append((user_id,3000,*',"*',show_vlan_unbou
nd))
user_id +=1
return True
else:
temp=temp+1
return False

Snippet 5.2.6-3: Computation of acceptance ratio and rule generation in
case of unbound requests for simple paths using the domain-wide slicing
method
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5.2.7. Script graph_util.py

This script contains functions regarding the interconnection of
two (or more) given network graphs. For each desired pair of graphs
to be interconnected, the following actions are performed: Firstly, the
interconnection points are parsed and, secondly, these points are
connected with each other by a bidirectional link. This link weight is
also computed and attached to the network graph.

This script is about to be used for the future enhancement of
the rule engine, so that to support multi-domain environments. The
function parse_points, which parses the given interconnection graph

points, is presented in Snippet 5.2.7-1.

def parse_points(g,dst,connection_points):
counter =1
char=""
src=""
i=0
enough =0
length= len(connection_points)
while counter<length-1:
enough=0
while enough<1:
char = connection_points[counter]
if char == '@’ and enough == 0:
char=""
src = src + char
counter = counter +1
elif char!="," and char!="]" and enough ==
src = src + char
counter = counter +1
elif char =="," and enough == 0:
enough = enough +1
counter = counter +1
else:
enough = enough +1
counter = counter +1
if enough == 1:
if g.__contains__ (src):
dst.append(src)
src="
return dst

Snippet 5.2.7-1: the parse_points function
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5.2.8. Script lookup_process.py

This script takes as input a user query and initializes the
flowspace lookup process by creating various data structures.
Specifically, the required parameters of the k-dimensional binary
search tree algorithm are initialized, the hash tables are created and

the functions implementing the various lookup algorithms are called.

5.2.9. Script lookup.py

This script contains the functions implementing the various
lookup algorithms noted in section 3.4.1. The average and worst-case
time complexity of these algorithms have been mentioned in section
3.4.1 as well. The first function implements the linear search
algorithm and computes the elapsed time of the lookup process. The
linear search or “naive” search algorithm is used as a point of

reference for the elapsed time of the lookup process.

The second function implements the search algorithm of open
addressing with double hashing. As noted in section 3.4.1, this
algorithm is expected to result in a quite efficient lookup process.
However, because of the double hashing that takes place, this
algorithm is expected to result in slower lookups than the single

hashing algorithm.

The third function implements the single hashing search
algorithm. This algorithm is expected to result in the fastest lookups
because of its simple hashing approach. The software

implementation of this algorithm is presented in Snippet 5.2.9-1.
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def single_hashing(array,element,crc32_values):
start = time.time()
key =
zlib.cre32('{}{}{}{}' format(element[0],element[1],element[2],element[
31))
key_existing = crc32_values.has_key(key)
if key_existing :
if crc32_values[key] ==
['{H}HH} format(element[0],element[1],element[2],element[3])]:
end=time.time()
print("Simpe hashing found the requested element after %s ms"
% ((end-start)*1000))
return
else:
end=time.time()
print("Simple hashing did not find the requested element after %s
ms" % ((end-start)*1000))
return

Snippet 5.2.9-1: Software implementation of the single hashing search
algorithm

5.2.10. Script kdtree.py

This script constructs a k-dimensional binary search tree (kd
tree) and implements the lookup process in it for a requested
element. The average and the worst-case time complexity of this
algorithm were noted in section 3.4.1. In case that the requested
element is not a part of the kd tree, the nearest neighbor of this
element is returned. If the lookup process is successful (the
requested element is actually a part of the tree), the corresponding
tree node is returned.

In either case, along with the lookup process outcome, the
distance of the returned node from the root of the tree and the nodes
visited during the lookup process are returned. In Snippet 5.2.10-1, the

class of a k-dimensional binary search tree node is described.
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class Kd_node(object):
_slots__=["dom_elt", "split", "left", "right"]
def __init_ (self, dom_elt_, split_, left_, right_):
self.dom_elt = dom_elt_
self.split = split_
self.left = left_
selfright = right_

Snippet 5.2.10-1: The class of a k-dimensional binary search tree node

5.2.11. Script util_lookup.py

This script contains some quite simple, but useful functions for
handling various data types during the execution of the lookup
algorithms. Such functions convert the elements of a data structure
from one type to another and copy a multi-dimensional array to
another. For instance, there is a function that converts an ascii string
to an integer number and a function that copies any four dimensional

array to another.

76



Chapter 5. Implementation analysis

5.3. The Internet Topology Zoo
project

The dataset of this project includes the structure of diverse real
network topologies. Specifically, it includes their nodes and edges.
Each topology node consists of the following attributes: id, label,
Country, Longitude, Internal and Latitude. Moreover, each topology
edge consists of a certain group of the following attributes: source,
target, LinkType, LinkLabel, LinkSpeed, LinkSpeedUnits, LinkSpeedRaw
and LinkNote. However, for certain network topologies, the available
dataset was incomplete. To that end, it was updated and enhanced by
the completion of the missing attributes. An example of a graph node
and a graph edge is shown in Snippet 5.3-1. The available attributes are

described in detail below:

e id: this attribute refers to the sequence number of a particular
node.

e label: it refers to the label (name) of a particular graph node.

e Country: it refers to the name of the country where a
particular graph node is located.

e Longitude: this attribute refers to the longitude of a graph
node, so that precise propagation delays among nodes are
computed. These delays are used as the link weights when that
is determined by the input arguments.

¢ Internal: reserved attribute for internal graph functionalities.

e Latitude: this attribute refers to the latitude of a graph node. It

is used along with the Longitude attribute.
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source: the id attribute of the source node of a graph link.
target: the id attribute of the target node of a graph link.
LinkType: this attribute refers to the type of a link. Nowadays,
the most prevalent choice is optical fiber.

LinkLabel: a string attribute that refers to a link speed along
with the speed unit of measurement, for instance “10 Gbps”.
This attribute represents the link bandwidth used as the link
weight in case that this is determined by the input arguments.
LinkSpeed: this attribute refers to a link speed as a numerical
string.

LinkSpeedUnits: the unit of measurement of a link speed.
LinkSpeedRaw: it refers to a link speed as a floating-point
number.

LinkNote: a note regarding a graph link.
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node [

edge [

edge [

id 15

label "GR"

Country "Greece"
Longitude 23.71622
Internal 1

Latitude 37.97945

source 4

target 31

LinkSpeed "10"

LinkLabel "10 Gbps"
LinkSpeedUnits "G"
LinkSpeedRaw 10000000000.0

source 5

target 23

LinkType "Fibre"
LinkLabel "10 Gbps"
LinkNote "Lit "

Chapter 5. Implementation analysis

Snippet 5.3-1: Examples of a graph node and a graph edge (2 cases) included in “The
Internet Topology Zoo” project
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Chapter 6. Evaluation of the proposed implementation

Evaluation of the proposed
implementation

In this chapter, the evaluation results of the implemented slicing

methods are presented. The computed evaluation metrics were

discussed in section 5.1.

The main part of the experimental setup was tenant requests.

Each of these requests was associated with a randomly generated

virtual network topology that belongs to one out of three different

categories: i) simple paths, ii)star topologies and iii)disjoint path

sets. For the performed experiments, the following mixture scenarios

were generated:

Mix1: this mixture consisted of 17 requests for disjoint
path sets. Half of the remaining requests regarded star
topologies and the rest of these requests regarded simple
paths. All of these requests were bound.

Mix2: this mixture consisted of 17 requests for disjoint
path sets, while 70% of the remaining requests regarded
star topologies and 30% regarded simple paths. All of these
requests were bound.

Mix3: it consisted of 17 requests for disjoint path sets,
while 70% of the remaining requests regarded star
topologies and 30% regarded simple paths. 20% of the
requests for each category were unbound.

Mix4: it consisted of 17 requests for disjoint path sets,
while 70% of the remaining requests regarded star

topologies and 30% regarded simple paths. All of these
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requests were unbound.

It should be noted that the number of disjoint paths, which was
selected for the performed experimental evaluation, was based on

the maximum number of existing disjoint paths per physical network

topology.

6.1. Tenantrequestacceptance
ratio

In this experiment, the slicing method implementation runs on
top of diverse real network topologies for various numbers of
randomly generated tenant requests (up to 16,000) that are
consistent with the aforementioned mixture scenarios (mix1, mix2,
mix3 and mix4) and the resulting acceptance ratio is presented. The
real network topologies used for the evaluation process consisted of
6 up to 81 network nodes (WAN, medium and small sized

topologies).

In Figure 6.1-1 and Figure 6.1-2, the resulting acceptance ratio, in case
of the Internet2/0S3E topology (34 nodes) for 8,000 and 16,000
randomly generated tenant requests using the aforementioned
slicing methods and mixture scenarios, is presented. Link
bandwidths parsed from the dataset of “ The Internet Topology Zoo”

project constituted the graph weights.
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Figure 6.1-1: Acceptance ratio in Internet2/0S3E for 8K requests

¥ domain wide slicing
B ewitch wide slicing
part wide slicing
| |
mix4

mix3

mix2

Mixtures of requests

mix1

0 0.2 0.4 0.6 0.8 1
Acceptance ratio

Figure 6.1-2: Acceptance ratio in Internet2/0S3E for 16K requests

In the aforementioned figures, it is shown that the port-wide
slicing method scales better as the number of tenant requests
increase. The acceptance ratio of this method is quite large in

scenarios that involve a small percentage of unbound tenant requests
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(i.e. mix3) providing almost perfect resource utilization for
exclusively unbound requests (i.e. mix4). In this context, the port-
wide slicing method accepts more than 80% of the tenant requests
for a total of 16,000 requests (reaching 97-98% for the mix4
scenario). In scenarios involving exclusively bound tenant requests
(i.e. mix1, mix2), the efficiency of this method is quite satisfactory as

well.

In Figure 6.1-3, the resulting acceptance ratio, in case of the
GEANT backbone topology (39 nodes) for 16,000 tenant requests and
mixtures 1-4, is presented. For this experiment, the propagation
delays among the topology nodes were computed and attached as

graph weights.

(5]

£ 05 - © domain wide
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0 T T 1
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Mixtures of requests

Figure 6.1-3: Acceptance ratio scaling as the percentage of unbound requests increase

The above figure illustrates that as the percentage of unbound
requests (for a certain total number of tenant requests) is increased,
the port-wide slicing method scales much better than the switch-
wide and the domain-wide slicing methods ideally accepting all

tenant requests for a total of exclusively unbound requests.
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In order to evaluate the efficiency of the implemented slicing
methods in very large real network topologies, experiments involving
the ULAKNET network topology (81 network nodes) were
performed. The propagation delays among the topology nodes were
computed and attached as graph weights. The resulting acceptance
ratio for all the mixture scenarios in case of 16,000 requests is

illustrated in Figure 6.1-4.

& domain wide

i switch wide

port wide

mix1 mix2 mix3 mix4

Mixtures of requests

Figure 6.1-4: Acceptance ratio in the ULAKNET network topology for 16K
requests

Moreover, experiments were performed in small sized real
network topologies. A typical example is the PSINET network
topology (23 nodes). This experiment was based on propagation
delays. The resulting acceptance ratio in case of 16,000 requests for

mixtures 1-4 is illustrated in Figure 6.1-5.
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Figure 6.1-5: Acceptance ratio in the PSiNET network topology for
16K requests

As illustrated in Figure 6.1-1, Figure 6.1-2, Figure 6.1-3, Figure 6.1-4 and
Figure 6.1-5, the port-wide slicing method results in the largest
acceptance ratios (scaling up to 16,000 tenant requests). The
performed experiments also showed that this deduction is accurate
for real network topologies of various sizes (small, medium and WAN

sized network topologies).
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6.2. Generated flowspace rule
tables

The implemented rule engine, except for computing the
acceptance ratio for each slicing method and for given real network
topologies and tenant requests, generates the required flowspace
rules based on the isolation policy described in section 4.2 and the
rule reduction approach described in section 4.3

As mentioned in section 6.1, the port-wide slicing method results
in the highest efficiency in terms of acceptance ratio. However, the
high efficiency comes at the cost of the increased number of
flowspace rules required to be generated and established within an
OpenFlow proxy controller, so that isolation is enforced.

A large number of established flowspace rules could result in a
great performance overhead added to the networked system by the
OpenFlow proxy controller. In such a case, the proxy controller
would handle extremely large flowspace rule tables resulting in a
slow manipulation process of its flowspace.

For this evaluation experiment, the selected real network
topologies were divided into three groups. The first group consisted
of small sized network topologies (up to 25 topology nodes), the
second group of medium sized network topologies (26-45 topology
nodes) and the last group of WAN sized topologies (46-81 topology

nodes).
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In the figures below, the number of required rules for the port-
wide slicing method, normalized to the number of required rules for
the domain-wide slicing method (Figure 6.2-1) and the switch-wide
slicing method (Figure 6.2-2), is illustrated. These comparisons were
performed for each topology group and tenant request mixture

scenario (for a total of 6,000 requests).

port-wide slicing / domain-wide
slicing

large sized topologies
medium sized topologies
small sized topologies
large sized topologies
medium sized topologies
small sized topologies
large sized topologies
medium sized topologies
small sized topologies
large sized topologies
medium sized topologies
small sized topologies

mix4

mix3

mix2

mix1

1 6 11 16 21 26 31 36

Flowspace rule number normalized by domain-wide rules

Figure 6.2-1: Flowspace rule number for port-wide method normalized by domain-
wide rules for small, medium and large sized topologies (6K requests)
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port wide slicing / switch-wide
slicing
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large sized topologies
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small sized topologies

mix4

mix3

mix2

mix1

1 1.5 2 2.5 3 3.5

Flowspace rule number normalized by switch-wide rules

Figure 6.2-2: Flowspace rule number for port-wide method normalized by switch-wide
rules for small, medium and large sized topologies (6K requests)

Based on the results illustrated in the aforementioned figures, the
initial case was validated. Indeed, the port-wide slicing method
results in the highest acceptance ratios, but also in the largest
numbers of required flowspace rules. By carefully observing Figure
6.2-1 and Figure 6.2-2, the following conclusions are drawn:

I.  The port-wide slicing method results in larger required
flowspace rule tables compared to domain-wide and switch-
wide slicing. That is to say, in port-wide slicing, a tenant
request is translated into more flowspace rules than in domain-
wide and switch-wide slicing.

[I. Given a mixture scenario, the normalized rule number is
greater for large (WAN) sized real network topologies than for
medium and small sized topologies.

[II. Given a topology group, the normalized rule number is the

greatest in case of exclusively unbound requests (i.e. mix 4).
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This is due to the fact that, in such a mixture scenario, a greater
percentage of the overall tenant requests gets accepted and

thus more flowspace rules are generated.
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6.3. Feasibility evaluation of the

implemented slicing methods

In order to evaluate the feasibility of the implemented slicing
methods within a networked system, the software implementation
was associated with a popular OpenFlow proxy controller, FlowVisor.

Generally speaking, an OpenFlow proxy controller, such as
FlowVisor, adds performance overhead to actions that cross between
the control and data plane layers of a SDN system. This is due to the
fact that an additional layer between these planes has been added.

As mentioned in section 6.2, the port-wide slicing method
results in high efficiency at the cost of large generated flowspace rule
tables. Despite their large number, these rules should be handled
efficiently by the proxy controller, so that the isolation policy among
tenants is enforced.

Specifically, in this experiment, the generated non-overlapping
flowspace rules were injected into FlowVisor (version 1.4) in order
to measure the introduced performance (time) overhead and its
memory consumption. It should be noted that the used FlowVisor
version provides high performance of flowspace lookups due to the
advanced implemented hashing algorithms instead of the “naive”
linear search algorithm implemented in the early FlowVisor releases.

For the quantification of the performance overhead, the
method described in [4] was used. Specifically, the time between
receiving a control packet from an OpenFlow switch and sending this

packet to a tenant OpenFlow controller was measured. For this
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measurement, the libpcap [26] was used. For the measurement of the
required memory, operating system specific RAM metrics were used.

In the following tables, the obtained measurements are
presented. Specifically, these measurements regard the entire
Internet2/0OS3E topology (Table 6.3-1) as well as the Internet2/0S3E
node of Chicago (Table 6.3-2). This particular node was selected
because it has one of the highest node degrees across the entire

network topology and thus is heavily used.

Internet2 /OS3E topology
Tenant [ Generated | Performance Memory
requests | flowspace overhead consumption
rules (ms) (Mbytes)
1K 15K 0.042 622
2K 43K 0.044 1643
4K 95K 0.050 3951
6K 145K 0.053 5910
7K 175K 0.056 7400

Table 6.3-1: Performance overhead and memory consumption of FlowVisor regarding

the entire Internet2/0OS3E topology

Internet2 /OS3E Chicago Node
Tenant Generated | Performance Memory
requests flowspace overhead consumption
rules (ms) (Mbytes)
1K 1.1K 0.038 125
2K 2.5K 0.040 151
4K 4.6K 0.041 202
6K 7.5K 0.0414 250
7K 11K 0.0425 427

Table 6.3-2: Performance overhead and memory consumption of FlowVisor regarding
the Internet2/0S3E node of Chicago

The aforementioned results demonstrate that an OpenFlow
proxy controller, such as FlowVisor, adds a minor performance
overhead to the network, even for a very large number of established

flowspace rules (up to 175,000). However, in case of a real network
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topology that consists of 34 network nodes deployed across the
United States of America (such as Internet 2/0S3E), the proxy
controller memory consumption can be quite large, but not
prohibitive for a generic purpose hardware hosting the OpenFlow
proxy controller (such as a hosting server).

As a conclusion, the implemented slicing methods can be
associated with an OpenFlow proxy controller, such as FlowVisor, as
the obtained measurements showed that the proxy controller can

efficiently handle the generated flowspace.
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6.4. An approach towards a
more efficient flowspace lookup
process

In section 3.4.1, a detailed analysis of various search algorithms
was presented. Moreover, in sections 5.2.8, 5.2.9, 5.2.10 and 5.2.11,
the software implementation of those algorithms was described.

In case of a large amount of tenant requests or a WAN sized
network topology, the generated flowspace is quite large. As a
consequence, high performance flowspace lookups should be
introduced in order to reduce the networked system time overhead.

In this context, the elapsed lookup time of the most efficient
implemented search algorithms (single hashing and open addressing
with double hashing) are compared with the FlowVisor time
overhead, presented in Table 6.3-1 (for the same generated flowspace).

In Figure 6.4-1, the resulting elapsed times are illustrated.

0.06

0.05
)
g 0.04 single hashing
)
£ 0.03
= @=pm open addressing with
§ 0.02 double hashing
E 0.01 FlowVisor performance
M= W overhead

O T T T T 1

15K 43K 95K 145K 175K
Generated flowspace rule number

Figure 6.4-1: Elapsed time of the most efficient implemented search algorithms
compared with the FlowVisor performance overhead
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Based on this figure, it is deduced that, despite the advanced
search algorithms used in version 1.4 of FlowVisor, the implemented
lookup algorithms result in more efficient flowspace lookups.
However, it should be noted that the FlowVisor time overhead
consists of operating system specific overheads (e.g. the time needed
by the FlowVisor process to interrupt the operating system) plus the
elapsed flowspace lookup time. As a consequence, a part of the
measured FlowVisor overhead does not regard the flowspace lookup
process. Generally speaking, though, this part is minor (its typical
value is a few useconds in modern computer systems) compared to

the flowspace lookup overhead and, thus, it can be ignored.
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7. Conclusion and Future Work

Material based on the aforementioned work was submitted

for publication [27].

7.1. Conclusion

Multi-tenancy, as a feature of SDN, constitutes a typical case
study of network virtualization. In this context, network
virtualization aims at providing to each tenant the perception that it
uses the available network resources exclusively on its own, without
being aware of other tenant existence or the physical network
substrate and topology. As a consequence, a basic principle of multi-
tenancy is the isolation policy enforcement among network slices
(tenants). As a result of this policy, potential conflicts among the
existing network slices are prevented.

A typical way to achieve multi-tenancy is to apply one of the
proposed network control plane slicing methods across a physical
substrate network. The proposed slicing methods, defined and
analyzed in section 4.1, are the following: (i) domain-wide slicing,
(ii) switch-wide slicing and (iii) port-wide slicing.

In order to enforce isolation among tenants based on a
network slicing method, a number of non-overlapping flowspace
rules should be created. For instance, in case of a deployed OpenFlow
transparent intermediate controller (e.g. FlowVisor), the created
non-overlapping flowspace rules should be established and handled

by it.
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In case of a large number of issued tenant requests or a WAN
sized real network topology, the number of required flowspace rules
could be quite large. Based on these rules, the isolation policy
enforcement could result in severe overheads. Thus, a rule reduction
approach was proposed, resulting, at the worst-case scenario, in
equal numbers of required flowspace rules for the switch-wide and
the port-wide slicing methods.

An experimental evaluation of the proposed network slicing
methods was performed via the association of these methods with
real network topologies (e.g. ULAKNET and PSiNET). Based on this
evaluation, the following conclusions were drawn:

e The port-wide slicing method results in the greatest efficiency
and scales better for large amounts of tenant requests (up to
16,000). This conclusion is independent of the network
topology size.

e The great efficiency of the port-wide slicing method comes at
the cost of the large number of flowspace rules that should be
established within an OpenFlow proxy controller (e.g.
FlowVisor), so that isolation is safeguarded among tenants.

e In case of port-wide slicing, each accepted tenant request is
translated into a larger number of flowspace rules compared
to the domain-wide and the switch-wide slicing methods.

e Given a mixture scenario, the rule number for port-wide
slicing, normalized by the domain-wide and switch-wide
slicing rule number, is greater for WAN sized network

topologies than for medium and small sized topologies.
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Finally, a feasibility evaluation of the proposed slicing methods
was performed via the injection of the generated flowspace rules into
FlowVisor. This experiment showed that the proposed flowspace
policies resulted in a minor proxy controller performance (time)
overhead. However, the required rules resulted in large memory
consumption by the proxy controller. This memory consumption,
though, is not considered a severe limitation in modern generic
purpose servers validating that the proposed implementation is

robust enough to run on top of real network topologies.

7.2. Future Work

The proposed network slicing methods, and especially the
port-wide slicing method, were proved to constitute a handy way to
achieve multi-tenancy across a physical substrate network. However,
these slicing methods could be enriched and enhanced in order to
result in higher tenant request acceptance ratios. For instance, each
physical switch port could be mapped to multiple virtual ports thus
enabling the port-wide slicing method to perform much better
scaling up to even larger numbers of tenant requests.

In case of an unbound request, the lookup, performed for an
available instance of the selected separator tuple, is slow. Advanced
hashing algorithms could be implemented for this lookup process
resulting in greater performance and lower overheads.

Another quite useful and interesting development would be to
add full integration of the proposed software implementation with
the API of an OpenFlow proxy controller, such as FlowVisor. In this

way, the software implementation would deal with real-time tenant
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requests and, as a consequence, would generate and inject flowspace

rules into the proxy controller in real time.
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Chapter 9. Appendix

9. Appendix

The software implementation is available in a public GitHub
repository at the following url:

https://github.com/spirosmastorakis/FSP_Engine
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