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Περίληψη

Η βασική θεωρία σχεδιασμού μηχανισμών υποθέτει ότι οι παίκτες μπορούν να ακολουθήσουν

οποιαδήποτε από τις δυνατές στρατηγικές. Επομένως ο μηχανισμός δεν μπορεί να χρηση-

μοποιήσει κάποια πληροφορία η οποία μπορεί να προσφέρεται εύκολα. Κάνοντας μια μικρή

παραλαγή αυτού του μοντέλου μπορούμε να υποθέσουμε ότι οι δυνατές στρατηγικές για κάθε

παίκτη είναι περιορισμένες και εξαρτώνται από την πραγματική κατάσταση του παίκτη. Σ΄

αυτην την εργασία μελετάμε τον τρόπο με τον οποίο αλλάζει ο σχεδιαμός μηχανισμών όταν

υποθέτουμε αυτόν τον περιορισμό στις στρατηγικές που ονομάζουμε επαλήθευση.

Η πρώτη διαφορά που συναντάμε είναι ότι στον σχεδιασμό μηχανισμών με επαλήθευση εμ-

φανίζεται η δυνατότητα υλοποίησης μη-φιλαλήθη συναρτήσεων κοινωνικής επιλογής. Παρουσιά-

ζουμε τις αιτίες που συμβαίνει αυτό καθώς και τους λογούς που κάνουν αυτόν τον τρόπο

υλοποίησης μη εφαρμόσιμο όταν απαιτούμε την ύπαρξη κυρίαρχης στρατηγικής. ΄Υστερα

παρουσιάζουμε την δύναμη που αποκτάει αυτός ο τρόπος υλοποίησης όταν απαιτήσουμε ύπαρξη

nash ισορροπίας.

Σ΄ αυτήν την εργασία επίσης μελετάμε τους λόγους που κάνουν την συμμετρική επαλή-

θευση μη χρήσιμη στην υλοποίσηση συναρτήσεων κοινωνικής επιλογής. Για πρώτη φορά

μελετάμε γενική συμμετρική επαλήθευση εφαργμοσμένη σε οποιδήποτε σύνολο δυνατών στρατηγικών.

Επειδή η απλούστερη μορφή συμμετρικής επαλήθευσης είναι η τοπική επαλήθευση τα αποτελέσ-

ματα μας μπορύν να εφαρμοστούν στην μελέτη της σχέσης μεταξύ τοπικής και ολικής φιλαλή-

θειας.

Για να ολοκληρώσουμε την εικόνα της ανάλυσης εξετάζουμε και αποδεικνύουμε την δύναμη

και την σημασία της μη συμμετρικής επαλήθευσης στην φιλαλήθη υλοποίηση συναρτήσεων

κοινωνικής επιλογής.

Λέξεις Κλειδιά

Σχεδιασμός Μηχανισμός, Επαλήθευση, Υλοποίηση Συνάρτησης Κοινωνικής Επιλογής,

Φιλαλήθεια, Τοπικό σε Γενικό
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Abstract

The basic mechanism design model assumes that each agent can follow any of its strategies,
independently of its type. Thus the mechanism cannot use any ”real-world” information
about the agents. This is the norm in mechanism design and it models well the negotiation
stage in which agents do nothing but communicate. A simple type of modification to the
model suggests itself: a problem definition may limit the set of strategies available to each
agent as a function of its type. In this work we investigate the way mechanism design
changes under the assumption of verification.

The first deference in the mechanism design with verification is the existence of non-
truthful implementations of social choice functions. We present the reason why this way
of implementation is not really helpful in the solution concept of dominant strategy equi-
librium and we present a way it could be useful using the concept of Nash equilibrium.

In this work, we also investigate the reasons that make symmetric partial verification
essentially useless in virtually all domains. Departing from previous work, we consider
any possible (finite or infinite) domain and general symmetric verification. We identify
a natural property, namely that the correspondence graph of a symmetric verification M
is strongly connected by finite paths along which the preferences are consistent with the
preferences at the endpoints, and prove that this property is sufficient for the equivalence
of truthfulness and M -truthfulness. Since the simplest symmetric verification is the local
verification, specific cases of our result are closely related, in the case without money, to
the research about the equivalence of local truthfulness and global truthfulness.

To complete the picture, we consider asymmetric verification, and prove that a social
choice function is M -truthfully implementable by some asymmetric verification M if and
only if f does not admit a cycle of profitable deviations.

Key Words

Mechanism Design, Verification, Implementation of Social Choice Function, Truthful-
ness, Local to Global
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Chapter 1

Introduction

An algorithm in computer science could be described as a rule which is based on some
information in order to choose the correct solution from a set of possible solutions. Of
course the term correct in the previous sentence is not well defined a priory and in every
algorithmic problem could take a different meaning.

One basic assumption about algorithms is that all the information they need in order
to choose the solution is always easily available. This assumption is a very reasonable in
a lot of settings where the information that the algorithm needs it is saved in a safe place.
But if one would try to apply an algorithm on a society then this assumption cannot hold
because every person in the society has a part of the information that the algorithm needs.
This creates a big problem to the implementation of the algorithm since some people could
prefer not to tell the information they have or to lie about it because they don’t like the
result of the algorithm. Therefore when someone applies a rule on a society should also
pay attention on the incentives of every single person in the society. In order to solve
this complicated problem we need to use some tools to describe the behaviour of people
who are called from now on strategic agents or just agents. This tools are available in
the mathematical theory named as game theory and the description of the result of an
algorithm when it is applied to strategic agents is called mechanism desing.

In mechanism design we assume that there is a principal who seeks to implement an
algorithm which is based on some private information of some strategic agents. From now
on we call this algorithm social choice function. More formally a social choice function
is a function that maps the private information of the agents to a result which we call
outcome. Exploiting their power over the outcome, the agents may lie about their private
information if they find it profitable. Then the agent should change the social choice func-
tion to a mechanism which after taking into account the incentives of the agents finally
implements the social choice function. The searching for such mechanism is the basic goal
of mechanism design. As we will see from the very beginning of the mechanism design
there are a lot of negative results implying that there in a very general setting there no
way of implementing any non trivial social choice function. For this reason the principal
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may offer payments to (or collect payments from) the agents or find ways of partially ver-
ifying their statements, thus restricting the false statements available to them. A social
choice function is then implementable if there is a payment scheme under which there is
a mechanism which implements it. Since many social choice functions still are not im-
plementable, a central research direction in mechanism design is to identify sufficient and
necessary conditions under which large classes of functions are implementable.

In this thesis we seek a deeper understanding of the power of partial verification in
mechanism design both in the case where also money are available and in the case not.
This is a question going back to the work of Green and Laffont [10].

In this chapter we give the basic definitions and the preliminary results that we need
for the next chapters. In the Chapter 2 we introduce the concept of nontruthful implemen-
tations and we present some already known results and some new results on this concept.
Afterwards we seek our attention into truthful implementations of social choice functions.
In Chapter 3 we explore the power of symmetric verification in a very general framework.
In Chapter 4 we present the work of Archer and Kleinberg [2] which gives a local to global
characterization of truthfulness and it is a stronger version of the results presented in
Chapter ?? but in a more restricted setting. In Chapter ?? we give some results and some
deeper explanation on the very useful tool of asymmetric verification which has a lot of
applications. In Chapter 6 we present a new model for verification produced by Caragian-
nis et. al. [6] where the verification is not a deterministic process but a random process.
Finally we give some conclusions and we present some open and interesting problems based
on this work.

1.1 Model and Notation

We start with a more formal description of our model. We restate that in the mecha-
nism design context we have a set of agents with private inputs and the principal which is
the designer of the mechanism and wants to implement a social choice function f on the
agents’ input. So if we assume that D is the set of possible inputs of agents and O the set
of possible outcomes of the mechanism then the principal wants to implement a function
f : Dn → O where n is the number of agents.

It is known from the discussion in [2] that when proving theorems for mechanism design
we could suppose, without loss of generality, that we have only one agent and the principal
wants to implement a function f : D → O. If money are available then the principal has
the opportunity to use a payment function p : D → R in order to implement his social
choice function.

In this context we give the following definitions.

• there is a set O of the set of possible outcomes of the mechanism
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• each agent has a private information about the outcomes, abstracted as a valuation
function or type u : O → R

• the set of all types is the domain D = RO

• the principal wants to implement a social choice function f : D → O

• when money are available principal also defines a payment function p : D → R

Now we are now ready to define notion of implementability of a social choice function.
Intuitively we call a social choice function f implementable if there is a mechanism g such
that if we apply g to the input then after the strategic behaviour of the agent the result
is the same as the result of f without the strategic behaviour of the agent. To examine
the strategic behaviour of the agent we use from game theory the solution concept of
dominant strategy equilibrium. Of course the existence of the dominant strategy is not
always guaranteed as the existence of mixed Nash equilibrium in finite games. But the
dominant strategy equilibrium is the most robust solution concept of game theory and
gives as a very strong evidence that the mechanism is going to work in practice. Therefore
in order to say that g implements f the agent has to have a dominant strategy on the
mechanism g and the result in this dominant strategy has to be the same as the result of
f in the case where the agent has not a strategic behaviour.

Definition 1 (Implementation without money). A mechanism g : D → O – is said to
implement a social choice function f if for each u ∈ D there exists a v ∈ D such that :

g(v) = f(u)

u(g(v)) ≥ u(g(u′)) ∀u′ ∈ D

A social choice function f is said implementable if there exists a mechanism g that imple-
ments it.

If the principal is also allowed to use money then there is also a payment function
p : D 7→ R which also changes the utility of the agent. Throughout this work we assume
that the agent has quasilinear utility which means that his utility is equal to the valuation
plus the payments. In this setting the notion of implementability changes as follows.

Definition 2 (Implementation with money). A mechanism g : D → O – together with a
payment function p : D → R is said to implement with money a social choice function f if
for each u ∈ D there exists a v ∈ D such that :

g(v) = f(u)

u(g(v)) + p(v) ≥ u(g(u′)) + p(u′) ∀u′ ∈ D

A social choice function f is said implementable with money if there exists a mechanism g
and a payment function p that truthfully implements it.

13



From the very first steps of mechanism design the researchers understood that the re-
quirement of the existence of some dominant strategy equilibrium in this setting is equiva-
lent with the requirement of the existence of a very special dominant strategy equilibrium.
Namely they understood that if there exists a mechanism that implements a social choice
function then the agent has no reason to misreport from the beginning and therefore the
social choice function it can also be used as a mechanism to implement it self. In this case
the agent has reason to misreport and it is a dominant strategy for him to tell the truth.
The condition that the truthful report is a dominant strategy it is the central concept of
mechanism design and it is well known as truthfulness. We are now ready to define truthful
implementation of a social choice function.

Definition 3 (Truthful Implementation without money). A mechanism – social choice
function f : D → O – is said to be truthfully implementable or truthful if for each u ∈ D :

u(f(u)) ≥ u(f(u′)) ∀u′ ∈ D

In the case money are available to principal we have the notion of truthfulness with
money.

Definition 4 (Truthful Implementation with money). A mechanism – social choice func-
tion f : D → O is said to be truthfully implementable with money or truthful with money
if there is a payment function p : D → R such that for each u ∈ D :

u(f(u)) + p(u) ≥ u(f(u′)) + p(u′) ∀u′ ∈ D

The first basic result in mechanism design is the following theorem which is also known
as revelation principle. We will present a proof of this theorem for the case without money
next in this section when we will introduce the graph representation of mechanism design.

Revelation Principle. A social choice function f is implementable (with money) if and
only if it is truthfully implementable (with money).

1.1.1 Partial Verification

The basic mechanism design model assumes that each agent can follow any of its strategies,
in- dependently of its type. Thus the mechanism cannot use any ”real-world” information
about the agents. This is the norm in mechanism design and it models well the negotiation
stage in which agents do nothing but communicate. In many settings in distributed compu-
tation though, one could take advantage of the fact that computers actually act (execute a
task, route a message, etc.) to gain extra information about the agents’ types and actions.
A simple type of modification to the model suggests itself: a problem definition may limit
the set of strategies available to each agent as a function of its type. More formally in the
usual mechanism design setting, an agent with type u is allowed to report any other type
v ∈ D. In the partial verification model the types that the agent is allowed to report is
limited and may depend on u [?].

14



Definition 5. A misreport correspondence is a function M : D → 2D, which for each type
u specifies the set of types M(u) ⊆ D the agent is allowed to report.

Assuming that every agent with type x could report a type in the set M(x) the notions
of implementation and truthful implementation with verification changes as follows.

Definition 6 (M−Implementation without money). A mechanism g : D → O – is said to
M−implement a social choice function f if for each u ∈ D there exists a v ∈ M(u) such
that :

g(v) = f(u)

u(g(v)) ≥ u(g(u′)) ∀u′ ∈M(u)

A social choice function f is said M−implementable if there exists a mechanism g that
implements it.

If the principal is also allowed to use money then there is also a payment func-
tionConvex Domain. A domain D is convex if for every x, y ∈ D and any λ ∈ [0, 1],

the function z : O 7→ R, with z(a) = λx(a) + (1 − λ)y(a), for each a ∈ O, is also in D.
p : D 7→ R which also changes the utility of the agent. Throughout this work we assume
that the agent has quasilinear utility which means that his utility is equal to the valuation
plus the payments. In this setting the notion of implementability changes as follows.

Definition 7 (M−Implementation with money). A mechanism g : D → O – together
with a payment function p : D → R is said to M−implement with money a social choice
function f if for each u ∈ D there exists a v ∈M(u) such that :

g(v) = f(u)

u(g(v)) + p(v) ≥ u(g(u′)) + p(u′) ∀u′ ∈M(u)

A social choice function f is said M−implementable with money if there exists a mechanism
g and a payment function p that truthfully implements it.

Again a central role in our analysis plays the implementation with every player reporting
truthfully in the dominant strategy equilibrium.

Definition 8 (Truthful M−Implementation without money). A mechanism – social choice
function f : D → O – is said to be truthfully M−implementable or M−truthful if for each
u ∈ D :

u(f(u)) ≥ u(f(u′)) ∀u′ ∈M(u)

Definition 9 (Truthful M−Implementation with money). A mechanism – social choice
function f : D → O is said to be M−truthfully implementable with money or M−truthful
with money if there is a payment function p : D → R such that for each u ∈ D :

u(f(u)) + p(u) ≥ u(f(u′)) + p(u′) ∀u′ ∈M(u)
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In the first work where the partial verification is examined Green and Lafford [?] notice
that the revelation principle no more holds when partial verification is available. Moreover
the examine sufficient conditions which the correspondence function M has to satisfy in
order to have an equivalence between the notions of M−implementability and truthful
M−implementability. From the fact that revelation principle doesn’t hold we can under-
stand that with some kinds of partial verification there is a way of implementing social
choice functions non-truthfully. We present some attempts to understand the power of
non-truthful implementations in Chapter 2. After understanding the difficultly of non-
truthful implementations we turn our attention to truthful implementations again in the
next chapters.

We now introduce a nice representation of mechanism design, using graph theory, which
we call graph representation of mechanism design and it will became very useful in the next
chapter when we analyse the power of verification. The reason is that the conditions under
which the verification is or it’s not powerful have a very nice formulation in terms of the
graph representation.

1.2 Graph representation

Gui, Müller, and Vohra [11] cast the setting of mechanism design in terms of a (possibly
infinite) directed graph G on vertex set D. For each ordered pair of types x, y, G has a
directed edge (x, y). Given the social choice function f , we obtain an edge-weighted version
of G, denoted Gf , where the weight of each edge (x, y) is x(o)− x(o′), with o = f(x) and
o′ = f(y). This corresponds to the gain of the agent if instead of misreporting y, she
reports his true type x. Then, a social choice function f is truthfully implementable if and
only if Gf does not contain any negative edges. Moreover, Rochet’s theorem [16] implies
that a function f is truthfully implementable with money if and only if Gf does not contain
any directed negative cycles (see also [19]). More formally we have the following definition
for the weighted graph Gf .

Definition 10. For a given social choice function f we define the weighted graph Gf

Gf = (D,D2, w) where w((x, y)) = x(f(x))− x(f(y))

As we analysed in the previous section, there are many classical impossibility results
stating that natural social choice functions (or large classes of them) are not implementable,
even with the use of money (see e.g., [13]). Virtually all such proofs seem to crucially ex-
ploit that the agent can declare any type in the domain. Hence, Nisan and Ronen [14]
suggested that the class of implementable functions could be enriched if we assume partial
verification [10], which restricts the types that the agent can misreport.

One of the reasons that makes the graph representation very useful in our work is
that partial verification comes as a very reasonable extension of the mechanism design
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represented with Gf , namely instead of assuming that Gf is a complete graph we assume
that it is an arbitrary graph and this has an one-to-one and onto correspondence with the
assumption of partial verification. As before, we can cast M as a (possibly infinite) directed
correspondence graph GM on D. For each ordered pair of types x, y, GM has a directed
edge (x, y) if y ∈ M(x). Given the social choice function f , we obtain the edge-weighted
version GM,f of GM by letting the edge weights be as in Gf . A social choice function f
is truthfully M−implementable (resp. with money) if and only if GM,f does not contain
any negative edges (resp. directed negative cycles). More formally we have the following
definitions for the graph GM and the weighted graph GM,f .

Definition 11. For a given correspondence M we define the correspondence graph GM

GM = (D, {(x, y) | y ∈M(x)})

Definition 12. For a given correspondence M and a given social choice function f we
define the weighted graph GM,f

GM,f = (D, {(x, y) | y ∈M(x)}, w) where w((x, y)) = x(f(x))− x(f(y))

A k-cycle (resp. k-path) in GM is a directed cycle (resp. path) consisting of k edges.
We say that an edge (x, y) of GM,f is negative if w(x, y) < 0. We say that a cycle in

GM,f is negative if the total weight of its edges is negative. We let G−M,f (resp. G+
M,f )

denote the subgraph of GM,f that consists of all its negative (resp. non-negative) edges.
If there is no verification, we refer to GD,f , G

+
D,f , and G−D,f as Gf , G

+
f , and G−f , respec-

tively. Also, given a gWe say that a verification M is symmetric if GM is symmetric, i.e.,
for each directed edge (x, y) ∈ E(GM), (y, x) ∈ E(GM). We say that a verification M is
asymmetric if GM is an acyclic tournament.

raph G, we let V (G) be its vertex set and E(G) be its edge set.
A negative edge (x, y) in GM,f represents that misreporting y is a profitable deviation

of type x under f . Thus, a social choice function f is M -truthfully implementable if and
only if GM,f does not contain any negative edges.

As we have already said the truthfulness conditions in terms of graph representation
have a very nice inteprentation which we give formally now. The theorem that gives the
implementability without money its obvious and has no explanation of proof. On the other
hand the theorem that gives the implementability with money it’s completely not obvious
and we give here a proof of it.

Theorem 1. A social choice function f is truthfully M−implementable if and only if the
graph GM,f has no negative edge.

Before presenting the theorem that relates the truthful implementation with the graph
representation we give some definitions which helps to state the theorem and giving the
proof.
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Definition 13. A function f satisfies M -cycle monotonicity if for all k ≥ 1, and all
x1, . . . , xk ∈ D, such that xi+1 ∈M(xi)

k∑
i=1

xi(f(xi)) ≥
k∑
i=1

xi−1(f(xi))

where the subscripts are modulo k. Equivalently, f is M−cyclic monotone if and only
if GM,f does not contain any finite negative cycles.

If there is no verification and f has these properties, we simply say that f is cyclic
monotone.

Theorem 2. (Rochet [16]) A social choice function f is truthfully M−implementable with
money if and only if the graph GM,f has no negative cycle, i.e. f satisfies the M−cycle
monotonicity property.

Proof [2]. If a mechanism (f, p) is truthful then

xi(f(xi)) + p(xi) ≥ xi(f(xi+1)) + p(xi+1)

for each i and xi+1 ∈M(xi). Summing over i we have that f satisfies the M−cyclic mono-
tonicity.

Conversely, suppose f is M−cyclic monotone. For every two types x ∈ M(y), y ∈ D
define l(x, y) to be the infimum of the lengths of all finite paths from x to y in GM,f .
Note that the set of all such path lengths is bounded below by −w(y, x) because otherwise
appending the edge (y, x) would yield a negative cycle which contradicts to our assumption.
Hence l(x, y) is a well defined real number. Now add a type x0 and add the edges (x0, z)
for all z ∈ D with w(x0, z) = 0 and define a payment function by p(x) = l(x0, x). Observe
that

p(x) ≤ p(y) + w(y, x) ≤ p(y) + y(f(y))− y(f(x))

and the assertion that (f, p) is truthful follows by rearranging the terms.

Using the above theorem we can have a very useful necessary condition for a social
choice function to be truthfully M−implementable with money which it has been proved
to be also sufficient in a wide range of domains.

Definition 14. A social choice function f satisfies M -weak monotonicity if for every
x ∈ D and any y ∈M(x)

x(f(x)) + y(f(y)) ≥ x(f(y)) + y(f(x))

Equivalently, f is M-weakly monotone if and only if GM,f does not contain any negative
2-cycles.

If there is no verification, we simply say that f is weakly monotone.
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Corollary 1. If a social choice function f is truthfully M−implementable then it satisfies
the M−weak monotonicity property.

In the seminal work of Saks and Yu [17] the have proved that weak monotonicity is
also a sufficient condition for the truthful implementation of a social choice function with
money when the domain D is convex and the outcome space O is finite. In order to express
this theorem we now give the definition of the convexity of a domain D.

Definition 15. A domain D is convex if for every x, y ∈ D and any λ ∈ [0, 1], the function
z : O 7→ R, with z(a) = λx(a) + (1− λ)y(a), for each a ∈ O, is also in D.

Theorem 3 (Saks and Yu). If the domain D is convex then a social choice function f is
truthfully implementable with money if and only if the graph Gf has no negative 2−cycle,
i.e. f satisfies the weak monotonicity property.

We present a version of this theorem in terms of verification in the Chapter 3 where we
examine the equivalence between weak monotonicity and M−weak monotonicity.

1.3 Basic Domains and Verification Definitions

Through this work we prove some propositions and we then give the example for how they
apply in some of the most usual cases. For this reason we use as examples of the application
of our proposition the following domains:

• convex domains

• strategic voting

• facility location

1.3.1 Strategic Voting

We have n voters and k candidates, with O = {o1, . . . , ok} denoting the set of candidates
and V = {v1, . . . , vn} denoting the set of voters. The type of each voter is a linear order
over O. We write o �i o′ to denote that voter i prefers o to o′, and vi(o) to denote the
rank of candidate o in the linear order of voter i.

We always assume that each type x is a functions from O to R. However, in case of
deterministic mechanisms without money, when the preferences are ordinal, we only care
about the relative order of outcomes in each type.

1.3.2 k−Facility Location

In k-Facility Location, we place k ≥ 1 facilities on the real line based on the preferences
of n agents. The type of each agent i is determined by xi ∈ R, and the set of outcomes
is O = Rk. The utility of agent i from an outcome (y1, . . . , yk) ∈ O is −minj |xi − yj|. If
k = 1, we simply refer to Facility Location.
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Definition 16. A social choice function f for the k−facility location game is a function
f : Rn → Rk, where n is the number of agents and k is the number of facilities. The inputs
of this function are the real locations of the agents.

Definition 17. We define f i : Rn → R the function which computes the position of the
i-est facility with

f 1 < f 2 < f 3 < ... < fk

1.3.3 Mε and Mswap Verification

In case of a convex domain or Facility Location, given an ε > 0, we let M ε(x) = {y ∈ D :
||x− y|| ≤ ε}, for all x, where || · || is the l2 distance in RO for convex domains and |x− y|
for Facility Location.

If we have a domain D where the agent’s types are linear orders on O, for any type
x ∈ D, M swap(x) is the set of all linear orders on O obtained from x by swapping two
adjacent outcomes in x.

1.3.4 Symmetric and Asymmetric Verification

In the Chapters 3 and ?? we use some properties of verification that could be applied to
any domain. These properties are symmetricity and asymmetricity.

Definition 18. A verification is called symmetric if and only if

(a, b) ∈ E[GM ]⇒ (b, a) ∈ E[GM ]

Definition 19. A verification is called asymmetric if and only if GM is an acyclic tour-
nament.

1.3.5 Randomized Domains

A randomized mechanism f : D 7→ ∆(O) maps each type x to a probability distribution
over O. There two common notions of truthfulness for randomized functions: univer-
sal truthfulness and truthfulness-in-expectation. A randomized mechanism is (resp. M -
)universally truthful if it is a probability distribution over deterministic (resp. M -)truthful
mechanisms (even with money).

For truthfulness-in-expectation, we assume that O is finite, for simplicity, and let fo(x)
be the probability of the outcome o if the agent reports x. Then, a randomized mechanism
f is (resp. M -)truthful-in-expectation if for every type x and any y ∈ D (resp. y ∈M(x)),∑

o∈O

fo(x)x(o) ≥
∑
o∈O

fo(y)x(o)
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A randomized mechanism f is (resp. M -)truthful-in-expectation with money if there
are payments p : O 7→ R such that for every x ∈ D and any y ∈ D (resp. y ∈M(x)),∑

o∈O

fo(x)(x(o) + p(o)) ≥
∑
o∈O

fo(y)(x(o) + p(o))
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Chapter 2

Revalation Pronciple and Non –
Truthful Implementations using
Verification

As we noticed in the introduction the first observation of the researchers in the the model of
mechanism design with partial verification was that the revelation principle no more holds.
In their paper Green and Lafford [10] give some sufficient conditions for the verification
under which the revelation principle remains correct even using partial verification. After
that Auletta et. al. claimed that the have found the necessary and sufficient conditions
and which revelation principle is correct in the partial verification model. Unfortunately
the had a mistake in their work which has been found from Lan Yu who had finally found
the correct necessary and sufficient conditions. We present these conditions in the first
part of this chapter.

As a consequence of the failure of the revelation principle, in a wide range of veri-
fications, Green and Lafford [10] first present the ability of implementing social choice
functions in a non-truthful way. This idea was completely new and very promising by the
time Green and Lafford published their work. Unfortunately during the following years
no one have found a better application of non-truthful implementation. Auletta et. al.
[3] gave an explanation for this proving that the problem of finding a non-truthful imple-
mentation of social choice function even if you have the ability to write down the whole
domain D is NP-complete and therefore difficult by its nature. In the second part of this
chapter we present the NP-completeness proof of Auletta et al. and we also explain why
dominant strategy non-truthful implementations are indeed difficult. After that we relax
the requirement of dominant strategy equilibrium to the unique pure Nash equilibrium in
order to implement a social choice function. Using this new concept we present some very
efficient mechanisms with verification in the facility location domain which non-truthfully
implement some functions which are known to be non-implementable without verification
and which are also non-implementable truthfully using the same kind of verification.
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2.1 Revelation Principle in the presence of Partial

Verification

We first give a proof of revelation principle in order to make clear why the presence of
verification clearly destroys the validity of revelation principle.

Proof of Revelation Principle. Suppose that there is mechanism g which implements the
social choice function f and that f is not a truthful social choice function. This means
that there must be a type x and a type y such that x(f(y)) > x(f(x)) or in other words the
edge (x, y) is negative. Since g implements f there must be a z ∈ D such that g(z) = f(y).
Now in the absence of verification an agent with type x is allowed to misreport anything.
So he is also allowed to misreport z instead of x. Therefore g could never implement
f because the agent with type x would always prefer to report z because he prefer the
outcome f(y) = g(z) than the outcome f(x) which he has to take.

The above proof of revelation principle makes clear that if we restrict x to not be able
to misreport anything in the type space then there must be same cases where revelation
principle fails.

This is the topic of this section where based on the work of Lan Yu we present the
necessary and sufficient conditions for the verification M under which the revelation prin-
ciple still holds. These conditions are expressed in terms of the graph representation. As
a special case of these conditions we take the Nested-Range Conditions which was the first
sufficient conditions proposed by Green and Lafford [10].

From now on we assume that the correspondence graph is decomposed into strongly
connected components (C1, C2, . . . , Ck).

Definition 20. A verification with correspondence M satisfies strong decomposability if
and only if:

1. Each strongly connected component Ci of GM is a complete directed subgraph, i.e.
for all t1, t2 ∈ Ci we have t1 ∈M(t2) and t2 ∈M(t1).

2. Vertices in the same strongly connected component share the same image set, i.e.
for all t1, t2 ∈ Ci we have M(t1) = M(t2). In other words, if t1 ∈ Ci, t2 ∈ Cj and
t2 ∈M(t1), then for all t ∈ Ci, t2 ∈M(t).

Based on this definition we can prove the following which describe the exact relation
between the structure of GM and the revelation principle.

Proposition 1. If M satisfies strong decomposability then a social choice function f :
D 7→ O is M−implementable if and only if f is truthfully M−implementable.

The proof of this proposition is based on the following lemma
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Lemma 1. For any M−implementable social choice function f , for any cycle C consisting
of the vertices t1, t2, . . . tk of GM , if M(t1) = M(t2) = · · · = M(tk), then C is a nonnegative
cycle in GM,f , i.e.

k∑
i=1

ti(f(ti))− ti(f(ti+1)) ≥ 0

Proposition 2. If M does not satisfy strong decomposability, then there exist a set of out-
comes O an M−implementable social choice function f that is not truthfully M−implementable.

The proof of this proposition is based on the following lemma

Lemma 2. If the correspondence graph GM contains an induced directed cycle of length
greater than three, then there exist a set of outcomes O, an M−implementable social choice
function f that is not truthfully M−implementable.

The above propositions have the following consequence.

Theorem 4. The revelation principle holds for a verification with correspondence M if
and only if M satisfies the strong decomposability.

Obviously since strong decomposability is a tight property we can get the sufficiency
of the nested-range condition as a direct corollary of the above theorem.

Definition 21. A correspondence M satisfies the nested-range condition (NRC) if and
only if for any t1, t2, t3 ∈ D, if t2 ∈M(t1) and t3 ∈M(t2), then t3 ∈M(t1).

Corollary 2. If M satisfies nested-range condition then a social choice function f : D 7→ O
is M−implementable if and only if f is truthfully M−implementable.
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2.2 Non-Truthful Implementation

As we have already noticed the failure of revelation principle creates a new opportunity
for implementation of a social choice function the non-truthful implementation. The first
example of such an implementation was given by Green and Lafford [10].

Example : Non-truthful implementation of a social choice function

Consider a setting with O = {T, F}, D = {u, v, w} and x(T ) = 1, x(F ) = 0 ∀x ∈ D.
Suppose that the correspondence M is given by M(u) = {u, v}, M(v) = {v, w}, M(w) =
{w} and we would like to implement the social choice function f(u) = F, f(v) = F, f(w) =
T . We can set g(u) = g(v) = F, g(w) = T : under this mechanism g(u′) = F ∀u′ ∈ M(u)
and v, w can both report w to obtain their preferred outcome g(w) = T .

For a lot of years after the presentation of this example no other example was known to
the community of a non-truthful implementation. Auletta et al. [3] managed to understand
the reason and they have proved that even if you have the ability to work on the entire
domain the problem of finding a non-truthful implementation is NP-complete. We present
their reduction for both the case with and without money in the next section.

2.2.1 NP-hardness of Non-Truthful Implementability [3]

Implementability without money

Definition 22. We define the Implementability decision problem as follows

Input: domain D, outcome set O, social choice function f : D → O and the graph GM .

Output: there exists an outcome function g that M−implements f?

For the reduction we are going to use O = {T, F} and we are going to reduce 3−Sat
problem to the Implementability problem.

Theorem 5. The Implementability problem is NP-hard.

Reduction. We first notice the following obvious facts.

1. If f(a) = T and a(T ) < a(F ) then, for all v ∈M(a), we have g(v) = T .

2. If f(a) = F and a(T ) < a(F ) then, there exists v ∈M(a) such that g(v) = F .

3. If f(a) = T and a(T ) > a(F ) then, there exists v ∈M(a) such that g(v) = T .

4. If f(a) = F and a(T ) > a(F ) then, for all v ∈M(a), we have g(v) = F .
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Figure 2.1: The gadget we add to GM for every variable

Figure 2.2: The gadget we add to GM for every clause

Now let Φ a boolean formula in 3−CNF over the variables x1, x2, . . . , xn and let
C1, C2, . . . , Cm be the clauses of Φ. We construct D,O,M and f : D 7→ O such that
f is M−implementable if and only if Φ is satisfiable. The basic step is to construct a
correspondence graph GM representing M and the set of vertex of who’s is the set D. We
do this by creating variable gadgets (one per variable) and clause gadgets (one per clause).

The variable gadget for the variable xi is depicted in Fig. 2.1. Each variable xi of the
formula Φ adds six new types to the domain D of the agent, namely ti, ui, vi, wi, z

1
i and

z2
i satisfying the following relations:

ti(F ) > ti(T )

ui(F ) > ui(T )

vi(T ) > vi(F )

wi(T ) > wi(F )

The labeling of the vertices in the figure defines the social choice function f that is,
f(ti) = T , f(vi) = T , f(wi) = T , f(zi) = T , f(zi) = T , and f(ui) = F . Nodes vi and wi
have incoming edges from the clause gadgets. The role of these edges will be clear in the
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following.

We observe that the relation about ti implies that the social choice function f is not
truthfully M−implementable. Indeed ti prefers outcome F = f(ui) to T = f(ti) and
ui ∈M(ti). Moreover by our initial observations for any mechanism g implementing f we
must have g(ti) = g(ui) = T . On the other hand, since f(ui) = F it must be the case
that any mechanism g that M−implements f assigns outcome F to at least one node in
M(ui) \ {ui}. Intuitively, the fact that every mechanism g that M−implements f must
assign F to at least one between vi and wi corresponds to assigning ”false” to respectively
literal xi and x̄i.

The clause gadget for clause Cj of Φ is depicted in Fig. 2.2. Each clause Cj adds types
cj and dj to the domain D of the agent such that

cj(T ) > cj(F )

dj(T ) > dj(F )

As before the labeling defines the social choice function f and we have f(dj) = T and
f(cj) = F . Moreover, directed edges encode correspondence M . Besides the directed edge
(cj, dj), the correspondence graph contains three edges directed from dj towards the three
variable gadgets corresponding to the variables appearing in the clause Cj. Specifically, if
Cj contains the literal xi then dj has an outgoing edge to node vi. If Cj contains the literal
x̄i then dj has an outgoing edge to node wi. Similarly to the variable gadget, we observe
that the relation about cj implies that for any mechanism g M−implementing f it must
be g(dj) = F . Therefore, for g to M−implement f it must be the case that, for at least
one of the neighbors a of dj from a variable gadget, we have g(a) = T . We will see that
this happens if and only if the formula Φ is satisfiable. This concludes the description of
the reduction.

We next prove that the reduction is correct. Suppose that Φ is satisfiable, let τ be a
satisfying truth assignment and let g be the mechanism defined as follows. For the ith
variable gadget we set g(ti) = g(ui) = g(z1

i ) = g(z2
i ) = T . Moreover, if xi is true in τ , then

we set g(vi) = T and g(wi) = F . Otherwise we set g(vi) = F and g(wi) = T . For the
jth clause gadget, we set g(dj) = g(cj) = F . Thus, to prove that the outcome function
produced by our reduction M−implements f , it is sufficient to show for each type a the
corresponding condition of the initial observation holds. We prove that conditions hold
only for a = ui and a = dj, the other cases being immediate. For ui we have to verify
that the second observation holds. Since τ is a truth assignment, for each i vertex ui has
a neighbor vertex for which the mechanism g gives F . For dj we have to verify that the
third observation holds. Since τ is a satisfying truth assignment, for each j there exists at
least one literal of Cj that is true in τ therefore vertex dj has a neighbor vertex for which
the outcome function g gives T .

28



Conversely, consider a mechanism g which M−implements the social choice function
f . This means that, for each clause Cj, dj is connected to at least one node aj from a
variable gadget such that g(aj) = T . Then the truth assignment that sets to true the
literals corresponding to nodes a1, a2, . . . , am, and gives arbitrary truth value to the other
variables, satisfies the formula.

Implementability with money

Definition 23. The Quasi Linear Implementability decision problem is defined as
follows.

Input: domain D, outcome set O, social choice function f : D 7→ O and the graph GM

Output: decide whether there exists (g, p) that M−implements f?

Theorem 6. The Quasi Linear Implementability decision problem is NP-hard.

2.2.2 Efficient mechanism for Facility Location using the unique
pure Nash Equilibrium solution concept

If we are looking for a truthful implementation M ε verification is not useful. But as Green
and Lafford [10] showed, if we have partial verification then the revelation principle does
not apply and therefore we may have a non-truthful implementation of a social choice
function. We present here an example of such an implementation for the 1-facility location
game with M ε verification.

Definition 24. We define the Mechanism 0 as follows

g1(y) = g(y) =
maxi yi + mini yi

2

Is is obvious that the dominant strategy for the leftmost player ilt, under the mech-
anism 0, is to report xilt − ε and for the rightmost player irt is to report xirt + ε. Thus
g(y) = g(x), which means that g achieves the optimal maximum distance. It also known
that we are not able to achieve optimal maximum distance without verification. Therefore
by proposition 1 there is a social choice function which is not M ε truthfully implementable
but instead is M ε implementable.

Remark Notice that although g(y) = g(x) the implementation is non-truthful.

We now show that at the single agent model the set of social choice functions which are
M ε implementable is equal with the set of social choice functions which are M ε truthfully
implementable.

Proposition 3. A scale invariant social choice function f is M ε truthfully implementable
if and only if it is M ε implementable by a scale invariant mechanism.

29



Proof. It is obvious that if a function f is M ε truthfully implementable then it is M ε

implementable.
Now suppose that f is not M ε truthfully implementable but there exists a scale invariant
mechanism g that M ε implements f . Let x ∈ Rn an instance, since f is not M ε truthfully
implementable there exists an agent i and a location yi ∈M ε(xi) such that

xi(f(yi)) > xi(f(xi)) (2.1)

Since g M ε implements f

∀x ∈M ε(xi) g(x) 6= f(yi) and

∃zi ∈M ε(yi) g(zi) = f(yi)

The only way this could happen is zi /∈M ε(xi). Taking an other instance x′i = xi/r where
r > |zi − xi|/ε all the above conditions still hold. But in this case zi ∈ M ε(xi) since
|zi − yi| < ε and therefore we have a contradiction. So g could not implement f . [?]

Remark 1 We could generalize proposition 2 in the case where the mechanism g is not
scale invariant. This could be done because using a non-scale invariant mechanism we are
not able to implement a scale invariant function.

Remark 2 We see that mechanism 0 M ε implements a social choice function which is
impossible to truthfully M ε implement it. This seems to contradicts proposition 2. How-
ever this is not true because proposition 2 is proved only in the single agent model whereas
mechanism 0 is implementable in the multiagent model.

A scale invariant non-truthful mechanism for a modified game

In this section we propose a slightly modified k-facility location game as defined in section
1 and get a mechanism which achieves the optimal maximum distance of an agent to its
facility. More specifically what we change is to ask from agents not only their prefered
location but also which of the facilities they want to use. For the next of this work we call
this game Modified k-facility location or for simplicity MD k-facility location.

MD 2-facility location game

Game definition
In the MD 2-facility location we want to place two facilities on the line. Let F = {1, 2}

be the set of facilities, each agent report a pair (a, x) ∈ F × R where a is her prefered
facility and x is her prefered location for this facility. A mechanism for the MD 2-facility
location is a function g : (F × R)n → R2 where n is the number of agents, this function
takes as input the report of each agent and returns the location of the two facilities.

The main purpose of a mechanism for the MD 2-facility location game is to implement
a social choice function that it is defined for the k-facility location game. For this reason we
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define the extension of a social choice function f for the k-facility location. An extension
of a social choice function for the k-facility location is a social choice function for the MD
k-facility location where there must be a way to choose the prefered facility for each agent
such that the extension places the facilities in the same locations with the starting function.

Definition 25. A social choice function fne : (F ×R)n → R2 for the MD facility location
is said to be an extension of a social choice function f : Rn → R2 if and only if

∀x ∈ Rn f(x) = fne(p(x, f(x)))

where
pi(xi,x−i, (f

1(x), f 2(x))) = (ai, xi) and

ai = {j | j = argmink∈F (|fk(x)− xi|)}

Definition 26. A mechanism g : (F × R)n → R2 is said to implement a social choice
function f : Rn → R2 for the 2-facility location game if and only if there exists a extension
fne of f such that g implements fne.

Since in this game each agent report a pair the verification could verify every component
of the pair. In this work we consider the following verification :

M ε((a, x)) = {(a, y) ∈ F × R | |y − x| ≤ ε}

The meaning of the above verification is that an agents may misreport in an ε area her
location but she can’t mireport her prefered facility. This new part of verification is very
similar with the idea of winner-imposing mechanisms where the mechanism has the ability
to connect an agent to a facility if this facility is placed on her reported location.

Mechanism definition
Let xi be the real locations of the agent i and yi her reported location. We may assume

that x1 ≤ x2 ≤ ... ≤ xn and y1 ≤ y2 ≤ ... ≤ yn since the mechanism we define
is anonymous. Let lt denote the location of leftmost agent and rt the location of the
rightmost agent

ltz = min
i
{zi} , rtz = max

i
{zi}

Also let N j (with j ∈ F ) be the set of agents that have report the facility j as their prefered
facility i.e. N j = {i | ai = j} and ltj be the location of the leftmost agent in N j and rtj

the location of the rightmost

ltjz = min
i∈Nj
{zi} , rtjz = max

i∈Nj
{zi}

We also define the midpoint md and the maximum distance c as follows :

mdz =
ltz + rtz

2
, mdjz =

ltjz + rtjz
2
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c = max
i
{ci} , ci = |gai(p)− xi|

We are now ready to introduce our mechanism for the MD 2-facility location game.
Recall that xi is the real location of the agent i and yi is the location agent i reports.

Definition 27. We define as Mechanism 1 the mechanism g : (F × R)n → R2 with :

g1(p) = min{mdy, md1
y} , g2(p) = max{mdy, md2

y}

We will next analyze Mechanism 1. In this analysis we suppose that each agent i
knows the real positions xk of the other agents and of course their reported locations
yk. We discuss latter how we may implement Mechanism 1 if agents don’t have complete
information for the game.

Lemma 3. The dominant strategy for the leftmost agent is to report (1, ltx− ε). Similarly
for the rigthmost agent the dominant strategy is to report (2, rtx + ε).

Proof. It is easy to see that, no matter what the other agents will report, when M ε verifi-
cation is availiable then ltx < md. It is also easy to see that g1 ≤ mdy whereas g2 ≥ mdy
this means that in any case the leftmost agent benefits by reporting that she want to use
facility 1. Now since the leftmost player will denote facility 1 we will have that lty = lt1y.
It is obvious that the leftmost agent wants mdy to be as small as possible and so by the
definition of md1

y we can easy see that the leftmost agent wants to report the smallest
possible lt1y. But in our case verication is availiable and so this value is ltx − ε.
Using symmetric arguments we can easily prove the dominat strategy for the rightmost
agent.

Corollary 3. Mechanism 1 computes mdy = lty+rty
2

= ltx−rtx
2

= mdx.

Because of the corollaty 1 we will next use md = mdx = mdy.

Lemma 4. The dominant strategy for the agents with xi < md is to report (1, yi) with
yi ∈ R. Similarly the dominant strategy for the agents with xi > md is to report (2, yi)
with yi ∈ R.

Proof. If an agent with xi < md reports (2, yi) yi ∈ R then since from lemma 1 the
rightmost agent reports (2, rt+ ε) the distance |xi −md2| ≥ md/4. Now if agent i reports
(1, yi) yi ∈ R then is easy to see that |xi −md1| ≤ md/4. So we conclude that if xi < md
then the player i would prefer to report (1, yi). Using symmetric arguments we can easily
prove that when xi > md then the player i would prefer to report (2, yi).

Using lemma 2 and similar arguments with lemma 1 we can prove the following.

Lemma 5. The agent rt1x will report (1, rt1x + ε) and the agent lt2x will report (2, lt2x − ε).

Now using the above three lemmas we can easily prove the following.
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Proposition 4. Mechanism 1 achivies c = c∗ with c∗ the minimum value of c for the
2-facility location game.

Implementation of the mechanism
As noticed before the analysis of the mechanism holds only if every agent has a complete

information about the game. In a different case we have to implement Mechanism 1 in
multiple rounds instead of one round. We can easily show that if we run Mechanism 1
for a finite number of times then at last the game converges to the dominant strategy
equilibrium.

Proposition 5. If we play Mechanism 1 in rounds then after a finite number of round the
game will converge to the dominand strategy equilibrium.

If we examine carefully the proof of proposition 3 we will see that the only information
that an agents needs to play her dominant strategy is the value md and not the exact
location of the other agents. Also by lemma 1 we can see that in each round the leftmost
and the rightmost agents have one dominant strategy. Therefore playing one round of
mechanism 1 we can compute the value of md. Then the mechanism could report this value
to all the agents and now every agent has the information needed to play her dominant
strategy. So it is enough to play Mechanism 1 in two rounds to converge to the dominant
strategy equilibrium.

Proposition 6. There exists a way of implementing Mechanism 1 in two rounds.

MD k-facility game

In the case of MD k-facility location game we can see that there is no obvious extention of
the Mechanism 1 with good behavior. But there are some results that still hold. We give
here, without proofs, some obvious results for the MD k-facility location game (recall that
at the MD k-facility location game each agent reports not only her prefered location but
also her prefered facility from the set of facilities F = {1, 2, 3, ..., k}).

We define the following sets and the veficition as in the case of MD 2-facility location.

N j = { i | ai = j }

M ε((a, x)) = {(a, y) ∈ F × R | |y − x| ≤ ε}

Proposition 7. In every nash equilibrium of every mechanism g : (F × R)n → Rk with
M ε verification the sets N j is a clustering of set of agents N = {1, 2, .., n}.

Proposition 8. The clustering which gives the optimal maximum distance is a nash equi-
librim for every every mechanism g : (F × R)n → Rk with M ε verification.

Although the above results seems positive it is easy to find other nash equilibrium for
the mechanisms for the MD k-facility location which are not optimal and so the optimal
clustering it is not a dominant strategy for every mechanism g.
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Ideas for the 3-facility

There are some ideas for changing more the 3-facility location game and ask from agent
to report more informations to get a mechanism with good behavior for more than two
facilities. We describe intuitively one idea here.

In the case of 3-facility location the basic idea is to ask from agent to report (a1, x1, a2, x2) ∈
F × R× F × R where

• a1, x1 is the prefered facility and the prefered location conditional that the two facil-
ities will be placed left from md and the third right from md

• a2, x2 is the prefered facility and the prefered location conditional that the first facility
will be placed left from md and the other two right from md.

This new game, lets call it more modified 3-facility location ( MMD 3-facility location ),
seems to have some better behaviour than the MD 3-facility location but still is not optimal.
However it looks like there is a version of this new game which achieves optimal behaviour.
Of course the main question here is if defining such games and finding a mechanism with
optimal behaviour has any sense. Of course in the case of three facility the information we
ask from agents is not to much but is seems that as the k increases the information we need
will be much more. Therefore an other question is if there is a way to extent these ideas
to more facilities without making the new games unuseful by asking a lot of information
from the agents.
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Chapter 3

Sufficient Conditions for Truthful
Implementation [9]

Every function f can be implemented by an appropriately strong verification scheme com-
bined with payments (see also Section 5.1). So, the problem now is to come up with a
meaningful verification M , which is either inherent in or naturally enforceable for some
interesting domains and allows for a few non-implementable functions to be M -truthfully
implementable. To this end, previous work has considered two kinds of verification, namely
symmetric and asymmetric verification.

Symmetric verification naturally applies to convex domains (e.g., Combinatorial Auc-
tions) and to domains with an inherent notion of distance (e.g., Facility Location, Voting).
The idea is that every type x can declare any type y not far from x. A typical example is
M ε verification, naturally applicable to convex domains and to Facility Location. In M ε

verification, each type x can declare any type y in a ball of radius ε around x. Another typ-
ical example is M swap verification, naturally applicable to Voting and to ordinal preference
domains. In M swap verification, each type x is as a linear order on O and can declare any
type y obtained from x by swapping two adjacent outcomes. Rather surprisingly, previous
work provides strong evidence that symmetric verification does not give any benefit to the
principal, as far as truthful implementation is concerned. In particular, the strong and
elegant result of Archer and Kleinberg [2] and its extension by Berger, Müller, and Naeemi
[5] imply that M ε verification does not help in convex domains. Formally, the results of
[2, 5, 6] imply that for any convex domain, a function is truthfully implementable with
money if and only if it is M ε-truthfully implementable with money. Similarly, Caragiannis,
Elkind, Szegedy, and Yu [6] proved that M swap verification does not help in the domain of
Voting .

As far as implementation without money is concerned, the research on the power of
symmetric verification is closely related to the research about sufficient and necessary con-
ditions under which weaker properties are equivalent to global truthfulness. Even though
the motivation for studying weaker properties may be more general (see e.g., [17, 2, 7, 18]),
in the absence of money, local truthfulness is essentially a special case of symmetric veri-
fication. In this research agenda, Sato [18] considered M swap verification (under the name
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of adjacent manipulation truthfulness) for ordinal preference domains, and proved that if
GMswap is strongly connected by paths satisfying the no-restoration property, then truthful
implementation and M swap-truthful implementation are equivalent. He also proved that
the universal domain, that includes all linear orders on O, and single-peaked domains have
the no-restoration property, and thus, for these domains, truthful implementation is equiva-
lent to M swap-truthful implementation. Independently, Carroll [7] obtained similar results
for convex domains, for the universal domain, and for single-peaked and single-crossing
domains, which also extend to randomized mechanisms. Carroll also gave a necessary con-
dition for the equivalence of local and global truthfulness in a specific domain with cardinal
preferences.

On the other hand, asymmetric verification is “one-sided”. Given a social choice func-
tion f , a typical example of asymmetric verification is when the agent can only lie either
by overstating or by understating her utility. E.g., for Scheduling on related machines, the
machine can only lie by overstating its speed [4], for Combinatorial Auctions, the agent
can only underbid on her preferred sets [12], and for Facility Location, the agent can only
understate her distance to the nearest facility [8]. The use of asymmetric verification has
led to strong positive results about the truthful implementation of natural social choice
functions in several important domains (see e.g., [4, 12, 8] and the references there in).
The intuition is that the social choice function is monotonic and discourages one direction
of lying (e.g., underbidding for Combinatorial Auctions), while the other direction of lying
is forbidden by the verification.

Motivation and Contribution. Our work is motivated by the general observation,
stated explicitly and justified in [6], that even very strict symmetric verification schemes
do not help in truthful implementation, while strong positive results are possible with the
use of simple asymmetric verification. So, we seek a deeper understanding of the reasons
that make symmetric verification essentially useless in virtually all domains, and some
formal justification behind the success of asymmetric verification.

Departing from previous work, we do not restrict ourselves to any particular domain or
to any particular kind of verification. To the contrary, we consider any possible (finite or
infinite) domain D and very general classes of partial verification. To formalize the notions
of symmetric and asymmetric verification, we say that a verification M is symmetric if the
presence of a directed edge (x, y) in GM implies the presence of the reverse edge (y, x), and
asymmetric if GM is an acyclic tournament.

Our main result is a general and unified explanation about the weakness of symmetric
verification. In Section 3.1, we identify a natural property, namely that the correspondence
graph GM is strongly connected by finite paths along which the preferences are consistent
with the preferences at the endpoints. In fact, we define three versions of this property
depending on whether we consider implementation by deterministic truthful mechanisms
(strict order-preserving property), by deterministic mechanisms that use payments (strict
difference-preserving property), and by randomized truthful-in-expectation mechanisms
(difference-convex property). Despite the slightly different definitions, the essence of the
property is the same, but stronger versions of it are required as the mechanisms become
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more powerful. We show that for any (finite or infinite) domain D and any symmetric
verification M that satisfies the corresponding version of the property, deterministic /
randomized truthful implementation (resp. with money) is equivalent to deterministic /
randomized M -truthful implementation (resp. with money). In all cases, the proof is
simple and elegant, and only exploits an elementary combinatorial argument on the paths
of GM . With this general sufficient condition for the equivalence of truthfulness and M -
truthfulness, we simplify, unify, and strengthen several known results about symmetric
verification and local truthfulness without money. E.g., we obtain, as simple corollaries,
the equivalence of truthful and M ε-truthful implementation for any convex domain (even
with money) and for Facility Location, and the equivalence of truthfulness and M swap-
truthfulness for Voting.

In Section 3.2, we identify necessary conditions for the equivalence of truthfulness
and M -truthfulness, for any symmetric verification M . These are relaxed versions of the
sufficient conditions, and require that the correspondence graph GM is strongly connected
by finite preference preserving paths. Otherwise, we show how to find a separator of GM ,
which in turn, leads to the definition of a function that is M -truthfully implementable,
but not implementable. We also observe that the necessary condition is violated by the
domain of 2-Facility Location. To conclude the discussion about symmetric verification,
we close the small gap between the sufficient and necessary properties, and present the
first known condition that is both sufficient and necessary for the equivalence of truthful
and M -truthful implementation. Overall, our conditions provide a generic and convenient
way of checking whether truthful implementation can take advantage of any symmetric
verification scheme in any domain.

Finally, in Section 5.1, we consider asymmetric verification, and prove that a social
choice function f is M -truthfully implementable by some asymmetric verification M if
and only if the subgraph of Gf consisting of negative edges is acyclic (Theorem 15). This
result provides strong formal evidence about the power of asymmetric verification, since,
as we discuss in Section 5.1, any reasonable social choice function f should not have
a cycle in Gf that entirely consists of negative edges. Moreover, we prove that given
any function f truthfully implementable by payments p, an asymmetric verification that
truthfully implements f can be directly obtained by p (Proposition 9).

Comparison to Previous Work. The strict order-reserving property, which we employ as
a sufficient condition for deterministic truthful implementation without money, is similar
to the no-restoration property of [18]. However, the results of [18] are restricted to finite
domains with ordinal preferences and to M swap verification. Our results are far more
general, since we manage, in Theorem 7, to extend the equivalence of truthful and M -
truthful implementation, under the strict order-preserving property, to any (even infinite)
domain and to any symmetric verification. Moreover, our necessary property generalizes
and unifies the necessary conditions of both [7, 18].

We also note that our results in case of deterministic implementation with money are
not directly comparable to the strong and elegant results about local truthfulness with
money in convex domains (see e.g., [2, 1]). For instance, if we restrict Theorem 9 to convex
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domains and compare it to [2, Theorem 3.8], our result is significantly weaker, since it
starts from a much stronger hypothesis (see also the discussion in Section 3.1.2). On the
other hand, Theorem 9 is more general, in the sense that it applies to any symmetric strict
difference-preserving verification and to arbitrary (even non-convex) domains.

3.1 Sufficient Conditions for Truthful Implementation

Without any additional assumptions on the domain, symmetric verification is not sufficient
for the equivalence of truthfulness and M -truthfulness and we give now such an example
in the 2-Facility Location setting.

Example : A Social Choice Function that is M ε-Truthful but not Truthful
We next present a social choice function g that is M ε-truthfully implementable but

not truthfully implementable. The function g is defined in the 2-Facility Location domain
from the perspective of a single agent. Specifically, the social choice function g : R → R2

is defined as:

g1(x) =

{
−2 if x ∈ (−∞, 3/4 + ε] ∪ [1,∞)

−1.5 if x ∈ (3/4 + ε, 1)

g2(x) =

{
3 if x ∈ (−∞, 0] ∪ [1/4− ε,∞)

2.5 if x ∈ (0, 1/4− ε)

To see that g is not truthful, we let the agent be at x ∈ [0, 1/2] and use the facility
on the left. Then, the agent has an incentive to declare any y ∈ (3/4 + ε, 1), so that the
facility on the left moves from −2 to −1.5. On the other hand, for every x ∈ R, the agent
has no incentive to declare any false location y ∈ M ε(x). Therefore, g is M ε-truthfully
implementable. Hence, g is a social choice function that is M ε-truthfully implementable,
but not truthfully implementable, which holds despite the fact that M ε verification is
symmetric and that the correspondence graph GMε,g is strongly connected (albeit not with
order-preserving paths).

Moreover, Gg contains the negative cycle (0.1, 0.3, 0.1), with:

u(0.1, g(0.1))− u(0.1, g(0.3)) + u(0.3, g(0.3))− u(0.3, g(0.1)) =

= −2.1− (−2.1) + (−2.3) + (−2.2) = −0.1 ,

where u(x, g(y)) = −min{|x − g1(y)|, |x − g2(y)|} is the utility of the agent at location x
from the outcome of g if she declares location y, which for 2-Facility Location is equal to
minus the distance of x to the nearest facility in g(y). Due to the negative cycle above, we
conclude that g is not truthfully implementable even if we use money.

In this section, we assume that the correspondence graph GM is symmetric and strongly
connected by finite paths along which the preferences are consistent with the preferences

38



at the endpoints. We prove that this property suffices for the equivalence of truthful and
M -truthful implementation, even for infinite domains. To demonstrate that our result is
applicable to infinite domains, we give two such examples where GMε is strongly connected
by finite preference preserving paths at the end of the section.

3.1.1 Deterministic Mechanisms

We start with a sufficient condition for a symmetric verification M (and its correspondence
graph) under which any deterministic M -truthful mechanism is also truthful.

Definition 28 (Order-Preserving Path). Given a verification M , an x− y path p in GM

is order-preserving if for all outcomes a, b ∈ O, with x(a) > x(b) and y(a) ≥ y(b), and for
any intermediate type w in p, w(a) > w(b). A x−y path p in GM is strict order-preserving
if for every type w in p, the subpath of p from x to w is order-preserving.

Intuitively, if the endpoints x and y of an order-preserving path p agree that outcome a
is preferable to outcome b, any intermediate type w in p should also agree on this. Following
Definition 28, we say that a verification M is symmetric (resp. strict ) order-preserving if
M is symmetric and for any types x, y ∈ D, there is a finite (resp. strict) order-preserving
x− y path in the correspondence graph GM . Next, we show that:

Theorem 7. Let M be a symmetric strict order-preserving verification. Then, truthfulness
is equivalent to M-truthfulness.

Proof. If a social function is truthfully implementable, it is also M -truthfully imple-
mentable. The converse is proven by induction on the length of the strict order-preserving
paths in GM . Technically, for sake of contradiction, we assume that there is a function f
that is M -truthfully implementable, but not implementable. Therefore, all edges in GM,f

are non-negative, but there is a negative edge (x, z) ∈ E(Gf ).
Since M is symmetric strict order-preserving, there is a finite strict order-preserving

x − z path p in GM,f . In particular, we let p = (x = v0, v1, v2, . . . , vk = z), and let i,
2 ≤ i ≤ k, be the smallest index such that the edge (x, vi) ∈ E(Gf ) is negative. For
convenience, we let y = vi and w = vi−1. We note that by the definition of i, the edge
(x,w) ∈ E(Gf ) is non-negative, and also since f is M -truthfully implementable, the edges
(w, y), (y, w) ∈ E(GM,f ) are non-negative (see also Fig. 3.1.i).

For convenience, we let a = f(x), b = f(w), c = f(y) denote the outcome of f at x, y,
and w, respectively. Since the edge (x, y) is negative, a 6= c. Moreover, by the definition
of i (and of y), b 6= c. By the discussion above, we have that x(c) > x(a) ≥ x(b) and
y(c) ≥ y(b). Therefore, since the x − z path is strict order-preserving, and thus its x − y
subpath is order-preserving, we obtain that w(c) > w(b), a contradiction to the hypothesis
that the edge (w, y) ∈ E(GM,f ) is non-negative. Therefore there is no negative edge in Gf ,
which implies that f is truthfully implementable.

If the domain D is finite, we next show that for a symmetric verification, the strict
order-preserving property is equivalent to the order-preserving property.
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Figure 3.1: (i) The part of Gf considered in the proof of Theorem 7. (ii) The part of Gf

considered in the proof of Theorem 9. The label of each node consists of the type and the
outcome of f .

Lemma 6. In a finite domain D, a symmetric verification M is order-preserving if and
only if M is strict order-preserving.

Proof. Clearly, if M is strict order-preserving, it is also order-preserving. The proof of the
converse is by induction on the length of order-preserving paths inGM . Technically, for sake
of contradiction, we assume that M is order-preserving, but not strict order-preserving.
Hence, there are types x, z so that there is no strict order-preserving x− z path. Since M
is order-preserving, there is an order-preserving x− z path in GM .

For any order-preserving x− z path p = (x = vk+1, vk, vk−1, . . . , v1, v0 = z), we let l(p)
be the largest index such that every subpath (x, vk, . . . , vj) with j < l(p) is order preserving.
Namely, vl(p) is the first node of p (as we move from z to x) where the order-preserving
property fails. We note that the index l(p) is well defined and satisfies 0 < l(p) ≤ k − 1,
because p is not strict order-preserving. We now let q = (x, vk, . . . , vl(q), . . . , v1, z) be the
x− z order-preserving path with the maximum l(q). The path q is well defined because D
is finite and l(q) ≤ |D|. Since M is order-preserving, there is an order-preserving x− vl(q)
path r = (x, u`, . . . , u1, vl(q)). Next we prove that the subpath (vl(q), . . . , v1, z) of q and the
subpath (x, u`, . . . , u1) of r do not have any nodes in common.

Claim. The subpath (vl(q), . . . , v1, z) of q and the subpath (x, u`, . . . , u1) of r do not have
any nodes in common.

Proof. For sake of contradiction, we assume that the subpath q′ = (vl(q), . . . , v1, z) of q and
the subpath r′ = (x, u`, . . . , u1) of r have a node ui = vj (vj could be z) in common. We
recall that j < l(q) ≤ k − 1, and let y = ui = vj, for convenience.

Since the path r is order preserving, we have that:

∀a, b ∈ O, (x(a) > x(b) ∧ vl(q)(a) ≥ vl(q)(b)⇒ y(a) > y(b)) (3.1)

Moreover, by the definition of l(q), the path q′′ = (x, vk, . . . , vl(q), . . . , vj = y) is order-
preserving. Hence, for any i ∈ {j, . . . , k},

∀a, b ∈ O, (x(a) > x(b) ∧ y(a) > y(b)⇒ vi(a) > vi(b)) (3.2)

Combining (3.1) and (3.2), we obtain that for any i ∈ {j, . . . , l(q)},

∀a, b ∈ O, (x(a) > x(b) ∧ vl(q)(a) ≥ vl(q)(b)⇒ vi(a) > vi(b))

Therefore, the path (x, vk, . . . , vl(q)) is order-preserving, a contradiction to the definition of
l(q).
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The x−z path p = (x, u`, . . . , u1, vl(q), . . . , v1, z) is order-preserving because the x−vl(q)
path r and the x − z path q are both order-preserving. Moreover, by the definition of l
and since r is order-preserving, l(p) > l(q), which contradicts the assumption that q is the
order-preserving x− z path with maximum l(q).

Combining Theorem 7 and Lemma 6, we obtain that:

Theorem 8. Let M be a symmetric order-preserving verification in a finite domain D.
Then, truthfulness is equivalent to M-truthfulness.

Applications

Theorems 7 and 8 provide a generic and convenient way of checking whether truthful im-
plementation can take any advantage of symmetric verification. E.g., it is not hard to
verify that for any convex domain D, M ε verification is (symmetric and) strict order-
preserving, and that for Strategic Voting, M swap verification is (symmetric and) order-
preserving (Lemmas 10 and 7). Thus, we obtain alternative (and very simple) proofs of
[6, Theorems 3.1 and 3.3]. Moreover, our corollary about M swap verification implies the
main result of [18]. Similarly, we show, in Lemma 8, that for the Facility Location domain,
which is non-convex, M ε verification is strict order-preserving. Thus, for Facility Location,
a mechanism is truthful iff it is M ε-truthful. This is similar to [18, Prop. 4.2] and to [7,
Prop. 3]. However, we consider here a very restricted setting, where the set of outcomes is
R and the preferences are given by a linear function of the agent’s distance to the facility.
Thus, [18, Prop. 4.2] and [7, Prop. 3] do not imply our result for Facility Location with
M ε verification.

Convex Domains
Convex domains have an stronger property which we call strict difference-preserving prop-
erty which implies directly the strict order-preserving property we prove in the next section
that convex domains have the strict difference-preserving property 10.

Strategic Voting

Lemma 7. The M swap verification is symmetric and strict order-preserving.

Proof. It is easy to see that M swap verification is symmetric, since applying the same swap
two times, we get the initial linear order. Now we want to prove that M swap is order-
preserving. For this, suppose that we take two arbitrary types x, z and two outcomes
a, b with a �x b and a �z b. We have to prove that there is a sequence y1, y2, . . . , yn
with y1 = x, yn = z, yi+1 ∈ M swap(yi) and also a �yi b for every i. One way to find
such a sequence is to bring, by consecutive swaps, the outcome which is first in z to the
first position from its initial position to x and the same for the second outcome of z,
etc. Therefore for every x, z there is an order-preserving path and because the domain
is finite. Using Lemma 6, we can conclude that M swap verification is symmetric strict
order-preserving.
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Facility Locations
For the purposes of the following proof, we have to find a strict order-preserving path
between any two types x, y. Thus we have to find a finite path with the strict difference
preserving property. Note that although the domain is infinite if we consider a sequence
of types with distance ε we can get a finite x− y path. Through the proof we use this kid
of finite paths to prove the strict difference preserving property.

Lemma 8. For any ε > 0, the M ε verification is symmetric strict order-preserving for the
Facility Location domain.

Proof. Again it is obvious that the M ε verification is symmetric and we have to prove that
it is also strict order-preserving. To do this we prove that for any x, z ∈ R, any a, b ∈ O
and any y ∈ [x, z] we take cases for the position of a, b ∈ O.

• a, b ∈ (−∞, x] : x(a) > x(b) implies a > b which implies z(a) > z(b) and y(a) > y(b)

• a ∈ (−∞, x], b ∈ (x, y] : of course in this case z(b) > z(a) and y(b) > y(a) and so we
don’t care about x

• a ∈ (−∞, x], b ∈ (y, z] : of course in this case z(b) > z(a) and x(b) > x(a) implies
x > (a+ b)/2 which implies y > (a+ b)/2 and so y(b) > y(a)

• a ∈ (−∞, x], b ∈ (z,∞): x(a) > x(b) implies z(a) > z(b) and y(a) > y(b) also
x(b) > x(a) and z(b) ≥ z(a) implies y(b) > y(a)

• a ∈ (x, y], b ∈ (x, y] : x(a) > x(b) implies a < b which implies z(b) > z(a)

• a ∈ (x, y], b ∈ (y, z] : of course in this case x(a) > x(b) and z(b) > z(a)

• a ∈ (x, y], b ∈ (z,∞) : of course in this case x(a) > x(b) and if z(a) > z(b) implies
z < (a+ b)/2 which implies y < (a+ b)/2 and so y(a) > y(b)

• a ∈ (y, z], b ∈ (y, z] : x(a) > x(b) implies a < b which implies z(b) > z(a)

• a ∈ (y, z], b ∈ (z,∞) : of course in this case x(a) > x(b) and if z(a) > z(b) implies
z < (a+ b)/2 which implies y < (a+ b)/2 and so y(a) > y(b)

• a, b ∈ (z,∞) : x(a) > x(b) implies a < b which implies z(a) > z(b) and y(a) > y(b)

From the above analysis of cases we have that in every case the order-preserving prop-
erty is satisfied. We then take a path p the sequence of points from x with step ε on
the line segment and so after a finite number of steps we reach z. This path belongs to
GMε since every consecutive points have distance ε. Therefore p is order-preserving and
since all the points are on the same line segment it is obvious that this path is also strict
order-preserving. Since x, z ∈ D are arbitrary we conclude that M ε is symmetric strict
order-preserving.
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3.1.2 Deterministic Mechanisms with Money

Next, we extend the notion of order-preserving paths to mechanisms with money. Since
utilities are not ordinal anymore, we use the notion of difference-preserving paths, which
takes into account the difference between the utility of different outcomes. Formally, given
a verification M , an x − y path p in GM is difference-preserving if for any intermediate
type w in p and for all outcomes a, b ∈ O, if x(a)− x(b) 6= y(a)− y(b),

w(a)− w(b) ∈ (min{x(a)− x(b), y(a)− y(b)},max{x(a)− x(b), y(a)− y(b)})

As for order-preserving paths, if both endpoints x and y of a difference-preserving path
p prefer a to b, any type w in p should also prefer a to b. Moreover, the strength of w’s
reference for a, i.e., w(a)−w(b), should lie between the strength of x’s and of y’s preference
for a. We now give an intuitive interpretation of the difference-preserving property which
also give a really simple way of thinking the proofs of the next theorems.

Interpretation of the Difference-Preserving Property Using Path Diagrams
There is an intuitive way of thinking about the difference-preserving property using the

path diagrams defined here. Let p = (x, v1, v2, . . . , vk, y) be a difference-preserving x − y
path in GM . Then, the x−y path diagram is the plot having the sequence x, v1, v2, . . . , vk, y
on the horizontal axis and the utility of each type in p for some possible outcomes on the
vertical axis. E.g., in the first path diagram below, we have depicted the utility of each
type in p for an outcome a.

x v1 yvk

a

x v1 yvk

a

b

b
b

b

x v1 yvk

a

b

b
b b

To simplify a path diagram, we use the fact that truthfulness is not affected if a function
g that depends only on the real type of the agent is added to the utility function. Namely,
if the agent has real type x and reports type y, we let her modified utility be u′(x, f(y)) =
u(x, f(y)) + g(x), instead of u(x, f(y)). Then, it not hard to verify that f is truthful with
utility function u iff f is truthful with utility function u′.

Using this argument, we can simplify a path diagram as follows. We choose an outcome
a, set the modified utility of each type in p for a equal to 0, by letting g(x) = −u(x, a),
and set the modified utility of each type for the remaining outcomes accordingly. The
important observation is that the difference of the utility of each type x for two outcomes
a and b remains the same in both u and u′. So, as far as the difference-preserving property
is concerned, we can have the same conclusion from both the original and the modified path
diagrams. Applying this transformation, the path diagram allows one to directly conclude
where a path p is difference-preserving or not, as it is shown by the second diagram above.
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x | a

y | cw | b

Figure 3.2: The part of Gf considered in the proof of Lemma 9. The label of each node
includes the type and the outcome of f . The 2-cycles (x,w, x) and (w, y, w) are non-
negative. For sake of contradiction, we assume that the 2-cycle (x, y, x) is negative.

Path diagrams also provide an intuitive way of thinking about negative 2-cycles. E.g.,
the third diagram depicts a negative cycle (x, y, x) where f(x) = a and f(y) = b.

In fact, the difference-preserving property is a stronger version of the increasing differ-
ence property in [5, Definition 5].

Similarly, an x− y path p in GM is strict difference-preserving if for every type w in p,
the subpath of p from x to w is also difference-preserving. A verification M is symmetric
(resp. strict ) difference-preserving if M is symmetric and for any x, y ∈ D, there is a finite
(resp. strict) difference-preserving x− y path in GM .

We proceed to show that the symmetric strict difference-preserving property is sufficient
for the equivalence between M -truthfulness with money and truthfulness with money. The
proof is based on the equivalence between cycle monotonicity and truthful implementation
with money. As a first step, we show that under the symmetric strict difference-preserving
property, for any social choice function f , GM,f does not have any negative 2-cycles iff Gf

does not have any negative 2-cycles. The proof is similar to the proof of Theorem 7.

Lemma 9. Let M be a symmetric strict difference-preserving verification. Then for any
social choice function f , f is M-weakly monotone if and only if f is weakly-monotone.

Proof. If f is weakly-monotone, it is also M -weakly monotone. The proof of the converse
is essentially an extension of the proof of Theorem 7 to mechanisms with money and to
difference-preserving paths. For sake of contradiction, let us assume that f is M -weakly
monotone, but not weakly-monotone. Therefore, every 2-cycle in GM,f is non-negative,
while there is a negative 2-cycle (x, z, x) in Gf . Since M is symmetric strict difference-
preserving, there is a finite strict difference-preserving x − z path p = (x, v1, v2, . . . , z) in
GM . We let i ≥ 2 be the smallest index such that the 2-cycle (x, vi, x) in Gf is negative.
For convenience, we let y = vi and w = vi−1. We note that by the definition of i, the
2-cycle (x,w, x) in Gf is non-negative, and also since f is M -weakly monotone, the 2-cycle
(w, y, w) is non-negative (see also Fig. 3.2).

For convenience, we let a = f(x), b = f(w), c = f(y) denote the outcome of f
at x, y, and w, respectively. Assuming that the 2-cycle (x, y, x) is negative, i.e., that
x(c)− x(a) > y(c)− y(a), we reach a contradiction by considering the following cases:

• x(b)− x(a) > y(b)− y(a). Since w belongs to a difference-preserving x− y path, we
have that x(b)− x(a) > w(b)− w(a), i.e., that the 2-cycle (x,w, x) is negative.

• y(b) − y(a) > x(b) − x(a). Then, y(b) − y(a) > w(b) − w(a) and w(c) − w(a) >
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y(c) − y(a), both because w belongs to a difference-preserving x − y path. Thus,
w(c)− w(b) > y(c)− y(b), i.e., the 2-cycle (w, y, w) is negative.

• x(b) − x(a) = y(b) − y(a). Then since x(c) − x(a) > y(c) − y(a) we have that
x(c)− x(b) > y(c)− y(b). Thus w(c)− w(b) > y(c)− y(b), i.e., the 2-cycle (w, y, w)
is negative.

Using Lemma 9, we next show that under the symmetric strict difference-preserving
property, M -cycle monotonicity is equivalent to cycle monotonicity, and thus, M -truthful
implementation with money is equivalent to truthful implementation with money.

Theorem 9. Let M be a symmetric strict difference-preserving verification. Then for any
social choice function f , f is M-truthfully implementable with money if and only if f is
truthfully implementable with money.

Proof. If f is truthfully implementable with money, it is also M -truthfully implementable
with money. For the converse, we show that if GM,f does not have any negative cycles,
then Gf does not have any negative cycles as well. In what follows, we assume that Gf

does not have any negative 2-cycles, since otherwise, by Lemma 9, f is not M -weakly
monotone, and thus, not truthfully implementable with money.

For sake of contradiction, we assume that Gf includes some negative cycle with more
than 2 (and a finite number of) edges. In particular, we let C = (x, y, z, . . . , x) be any such
cycle. The existence of such a cycle C is guaranteed by Rochet’s theorem. Moreover, C
contains at least one edge (x, y) ∈ E(Gf )\E(GM,f ), because C is not present in GM,f . Since
M is a symmetric strict difference-preserving verification, there is a finite strict difference-
preserving x − y path p = (v0 = x, v1, . . . , vk = y). For convenience, we let w = vk−1 be
the last node before y in p, let a = f(x), b = f(w), c = f(y), and d = f(z) be the outcome
of f at x, w, y, and z, respectively, and let L be the total length of the z− x path used by
C (see also Fig. 3.1.ii).

Since the cycle C is negative, x(a)−x(c)+y(c)−y(d)+L < 0. Moreover, since Gf does
not contain any negative 2-cycles, x(c)−x(b) ≤ y(c)−y(b). Otherwise, since w belongs to a
difference-preserving x−y path, we would have that y(c)−y(b) < w(c)−w(b), which implies
that the 2-cycle (w, y, w) is negative. Hence, since w belongs to a difference-preserving x−y
path, x(c)− x(b) ≤ w(c)− w(b). Therefore,

x(a)− x(b) + w(b)− w(c) + y(c)− y(d) + L ≤ x(a)− x(c) + y(c)− y(d) + L < 0

So, we have that the cycle C1 = (x,w = vk−1, y, . . . , z) is also negative.
Since p is strict difference-preserving, the path p′ = (x = v0, v1, . . . , vk−1 = w) is also

difference-preserving. Therefore, using the same argument, we can prove that the cycle
C2 = (x, vk−2, vk−1, y, . . . , z) is also negative. Repeating the same process k − 1 times, we
obtain that the cycle Ck−1 = (x = v0, v1, . . . , vk−1, y, . . . , z) is also negative.
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However, all the edges (vi, vi+1), i = 0, . . . , k−1, of the strict difference-preserving x−y
path p belong to GM . Hence, the edge (x, y) ∈ E(Gf )\E(GM,f ) in C is replaced by k edges
of E(GM,f ) in Ck−1. Therefore, the negative cycle Ck−1 has one edge not in E(GM,f ) less
than the original negative cycle C. Repeating the same process for every edge of C not in
E(GM,f ), we obtain a negative cycle C ′ with all edges in E(GM,f ). This is a contradiction,
since it implies that f is not M -truthfully implementable with money.

Application

In order to apply Theorem 9 we now prove that M ε verification is symmetric and strict
difference-preserving for any convex domain.

Convex Domains
To establish the strict difference-preserving property of M ε, we have to find a strict
difference-preserving path between any two types x and y. Thus we have to find a fi-
nite path with the strict difference-preserving property. Note that although the domain
is infinite, if we consider a sequence of types with distance ε from each other, we can get
a finite x − y path. In the proof, we use this kind of finite paths to establish the strict
difference preserving property.

Lemma 10. Let D be any convex domain. Then, M ε verification in D is symmetric and
strict difference-preserving.

Proof. It is obvious that the M ε verification is symmetric and so we want to prove that it
is strict difference-preserving. Let x, z ∈ D and let y = λx+ (1− λ)z, also let a, b ∈ O we
have that y(a)− y(b) = λ(x(a)− x(b)) + (1− λ)(z(a)− z(b)) and since λ ∈ [0, 1] we have
that

y(a)− y(b) ∈ [max(x(a)− x(b), z(a)− z(b)),min(x(a)− x(b), z(a)− z(b))]

Therefore every path between x and z with points on the line segment between x and z is
an difference-preserving path. We then take a path p the sequence of points from x with
step ε on the line segment and so after a finite number of steps we reach z. This path
belongs to GMε since every consecutive points have distance ε. Therefore p is difference-
preserving and since all the points are on the same line segment it is obvious that this path
is also strict difference-preserving. Since x, z ∈ D are arbitrary we conclude that M ε is
symmetric strict difference-preserving.

As we observed in Section 3.1.2, strict difference-preserving property implies strict
order-preserving property and therefore the above lemma also proves that M ε verification
on a convex domain D is symmetric order-preserving.

Since M ε verification is symmetric and strict difference-preserving for any convex do-
main, Theorem 9 implies that for convex domains, M ε-truthful implementation with money
is equivalent to truthful implementation with money. This result is also a corollary of [2,
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Theorem 3.8], but here we obtain it through a completely different approach (and give a
very simple proof using elementary combinatorial tools). In particular, Archer and Klein-
berg [2] proved that if there is no “local” negative cycle C in Gf , where “local” means that
C can fit in a small area of the convex domain D, then Gf does not contain any negative
cycles, and thus, f is truthfully implementable with money. On the other hand, we prove
here that if Gf does not contain any negative cycles consisting of “short” edges, where
“short” means that the endpoints of the edge are very close to each other in D, then Gf

does not contain any negative cycles. So, in our case, the hypothesis is much stronger, since
it excludes the existence of negative cycles that consist of “short” edges, but may cover an
arbitrarily large area of the convex domain D. In this sense, if we restrict Theorem 9 to
convex domains, our result is different in nature and weaker than [2, Theorem 3.8]. Nev-
ertheless, Theorem 9 is quite more general, in the sense that it applies to any symmetric
strict difference-preserving verification and to arbitrary (even non-convex) domains.

3.1.3 Randomized Truthful-in-Expectation Mechanisms

A general condition is sufficient and/or necessary for the equivalence between universal
truthfulness and M -universal truthfulness in randomized mechanisms, iff it is sufficient
and/or necessary for the equivalence between truthfulness and M -truthfulness in deter-
ministic mechanisms. Hence, all the results of Sections 3.1.1, 3.1.2, and 3.2 directly apply
to randomized universally-truthful mechanisms (also with money).

A similar, but more interesting, correspondence holds for the case of randomized
truthful-in-expectation mechanisms. For simplicity, we assume here that the set of out-
comes O = {o1, . . . , om} is finite. With each type x : D 7→ R, we associate a new type
X : ∆(O) 7→ R, such that for each probability distribution ~q over outcomes, the utility
X(~q) is the expected utility of x wrt. ~q. Formally, X(~q) =

∑m
i=1 qix(oi). We let D′ be the

set of these new types. By definition, there is an one-to-one correspondence between types
in D and types in D′. Hence, a social choice function f : D → ∆(O) corresponds to a
(deterministic) social choice function f ′ : D′ → ∆(O). Moreover, (resp. given a verification
M) f is (resp. M -)truthful-in-expectation iff f ′ is (resp. M -)truthful.

As before, we seek a general condition under which truthfulness-in-expectation is equiv-
alent to M -truthfulness-in-expectation. Given a verification M , we let M ′ be the verifi-
cation corresponding to M in the new domain D′. Formally, for each type X ∈ D′,
corresponding to type x ∈ D, M ′(X) = {Y ∈ D′ : y ∈ M(x)}. Now, the results of
Sections 3.1.1, 3.1.2, and 3.2 directly apply to the new domain D′ with verification M ′.
We note that if M is symmetric, then M ′ is symmetric as well. Hence, for a result that
directly applies to the original verification M and domain D, we need a property of the
paths in GM that guarantees that the corresponding paths in GM ′ are order-preserving.

An x− y path p in GM is difference-convex if for any type w in p, there is a λ ∈ (0, 1),
such that for all a, b ∈ O, w(a)− w(b) = λ(x(a)− x(b)) + (1− λ)(y(a)− y(b)) . Similarly,
an x − y path p in GM is strict difference-convex if for every type w in p, the subpath
of p from x to w is also difference-convex. A verification M is called symmetric (resp.
strict ) difference-convex if M is symmetric and for any x, y ∈ D, there is a finite (resp.

47



strict) difference-convex x − y path in GM . For truthfulness-in-expectation, we quantify
the utility of each type x for each outcome. Hence, the difference-convex property is a
stronger version of the difference-preserving property, which in turn, is a stronger version
of the order-preserving property. We now prove that:

Lemma 11. If an x − y path p in GM is (resp. strict) difference-convex, then the cor-
responding X − Y path p′ in GM ′ is (resp. strict) difference-preserving, and thus, (resp.
strict) order-preserving.

Proof. Let p be a difference-convex x− y path in GM , and let w be any node / type in p.
Since p is difference-convex, there exists a λ ∈ (0, 1), such that for all possible outcomes
a, b ∈ O,

w(a)− w(b) = λ(x(a)− x(b)) + (1− λ)(y(a)− y(b))

We next show that the correspondingX−Y path p′ inGM ′ is difference-preserving. Namely,
that for all probability distributions ~q, ~r ∈ ∆(O), and all nodes W in p′, if X(~q)−X(~r) 6=
Y (~q)− Y (~r), then

W (~q)−W (~r) ∈ (min{X(~q)−X(~r), Y (~q)− Y (~r)},max{X(~q)−X(~r), Y (~q)− Y (~r)}) ,

while if X(~q)−X(~r) = Y (~q)− Y (~r), then W (~q)−W (~r) = X(~q)−X(~r) .
We first show that for any ~q ∈ ∆(O), W (~q) = λX(~q) + (1 − λ)Y (~q). Using that

qm = 1− q1 − · · · − qm−1 we obtain that:

X(~q) =
m−1∑
i=1

qi(x(oi)− x(om)) , and

Y (~q) =
m−1∑
i=1

qi(y(oi)− y(om))

Multiplying the first equality by λ and the second by (1− λ), summing up, and using the
difference-convex property, we obtain that:

λX(~q) + (1− λ)Y (~q) =
m−1∑
i=1

qi[λ(x(oi)− x(om)) + (1− λ)(y(oi)− y(om))]

=
m−1∑
i=1

qi(w(oi)− w(om))

=
m∑
i=1

qiw(oi) = W (~q)

Now, let ~q, ~r be any two probability distributions over O. Expressing W (~q) and W (~r)
as a convex combination of X(~q) and Y (~q), and X(~r) and Y (~r), respectively, we obtain
that

W (~q)−W (~r) = λ(X(~q)−X(~r)) + (1− λ)(Y (~q)− Y (~r))
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This immediately implies that the X−Y path p′ in GM ′ is difference-preserving. Moreover,
the argument above implies that if the x− y path p in GM is strict difference-convex, the
corresponding X − Y path p′ in GM ′ is strict difference-preserving.

Since (strict) difference-preserving is a stronger property than (strict) order-preserving,
we obtain that the X − Y path p′ in GM ′ is also (strict) order-preserving.

Although the difference-convex property seems quite strong, there present an example
where a slight deviation from it results in paths in GM ′ that are not difference-preserving.
In this sense, the difference-convex property and Lemma 11 are tight.

Example : An Example Showing that Lemma 11 is Tight
We next present a simple example where a slight deviation from the difference-convex

property results in paths in GM ′ that are not difference / order-preserving. In this sense,
the difference-convex property and Lemma 11 are tight.

Let the domain D = {x, y, w}, let the outcome set O = {o1, o2, o3}, and let the corre-
spondence graph GM be:

x
w y

The types x, y, and w are defined as follows:

x w y
o1 1 + ε 2− ε 3 + ε
o2 0 0 0
o3 −1 −2 −3

We observe that the path p = (x,w, y) is order-preserving and difference preserving,
but it is ε-away from being difference-convex, in the sense that

w(o1)− w(o2) = (0.5 + ε)(x(o1)− x(o2)) + (0.5− ε)(y(o1)− y(o2)) ,

while w(o3)− w(o2) = 0.5(x(o3)− x(o2)) + 0.5(y(o3)− y(o2)) .
We next show that the path p′ corresponding to p in GM ′ is neither order-preserving nor

difference-preserving. To this end, we consider the probability distributions ~q = (0.5, 0, 0.5)
and ~r = (0, 1, 0) over O. The expected utility of each type wrt. ~q and ~r is:

X W Y
~q ε/2 −ε/2 ε/2
~r 0 0 0

Therefore, the corresponding path p′ = (X,W, Y ) in GM ′ is not order-preserving, because
X(~q) > X(~r) and Y (~q) > Y (~r), while W (~q) < W (~r). Moreover, the path p′ = (X,W, Y )
in GM ′ is not difference-preserving, because X(~q) − X(~r) = Y (~q) − Y (~r) = ε/2, while
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W (~q)−W (~r) = −ε/2.

By the discussion above, Lemma 11, Theorem 7, and Theorem 9 imply that:

Theorem 10. Let M be a symmetric strict difference-convex verification. Then, truthful-
ness-in-expectation (resp. with money) is equivalent to M-truthfulness-in-expectation (resp.
with money).

Similarly, we can combine Lemma 11 and Theorem 8, and obtain the equivalent of
Theorem 10 for finite domains D, under the symmetric difference-convex property.

3.2 Necessary Conditions for Truthful Implementa-

tion

Next, we study relaxed versions of the sufficient conditions in Section 3.1, and show that
they are necessary conditions for the equivalence of truthfulness and M -truthfulness.

Deterministic Mechanisms. Given an outcome a ∈ O, we say that an x− y path p in
GM is a-preserving if for all outcomes b ∈ O, with x(a) > x(b) and y(a) ≥ y(b), and for any
intermediate type w in p, w(a) > w(b). Namely, if the endpoints x and y of p agree that a
is preferable to b, any intermediate type w in p should also prefer a to b. A verification M
is called symmetric outcome-preserving if M is symmetric and for all types x, y ∈ D and
all outcomes a ∈ O, there is a finite a-preserving x−y path p in GM . Though quite close to
each other, the order-preserving property implies the outcome-preserving property, but not
vice versa. Specifically, an a-preserving path p may not be order-preserving, because the
relative preference order of some outcomes, other than a, may change in the intermediate
nodes of p.

Theorem 11. Let M be a symmetric verification that is not outcome-preserving. Then,
there exists a function g which is M-truthfully implementable, but not implementable.

Proof. Since M is not outcome-preserving, there exists a pair of types x, y ∈ D and an
outcome a ∈ O, such that any finite x− y path in GM violates the a-preserving property.
Thus, all x − y paths in GM consist of at least 2 edges (a single edge is trivially order-
preserving). Then, we construct a certificate that M is not outcome-preserving, which is a
separator of x and y in GM , and based on this, we define a function g that is M -truthfully
implementable, but not truthfully implementable.

For every finite x − y path p in GM , we let tp denote the first intermediate type in p
and op denote an outcome, such that x(a) > x(op)∧ y(a) ≥ y(op)∧ tp(op) ≥ tp(a). Namely,
for every finite x− y path p, tp and op provide a certificate that p violates the a-preserving
property. We let Oxy = {op ∈ O : p is a finite x− y path} be the set of outcomes in these
certificates, and let Cxy = {z ∈ D \ {y} : ∃b ∈ Oxy with z(b) ≥ z(a)} be a set of types that
can be used as certificates along with the outcomes in Oxy.
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For convenience, we simply use C instead of Cxy. The crucial observation is that for
every finite x− y path p in GM , tp ∈ C, and thus, C is a separator of x and y in GM .

Let A be the set of types in the connected component 1 that contains x, obtained from
GM after we remove C, and let B = D \ (A ∪ C).

Since y 6∈ C, by definition, and for every finite x− y path p, tp ∈ C, y is in B.
We consider the following function:

g(z) =

{
arg maxb∈Oxy{z(b)} z ∈ A ∪ C
a z ∈ B

By the definition of C, every type in A∪B prefers a to any outcome in Oxy. However,
by the definition of A and B, no type z ∈ A has a neighbor in B, since otherwise, we could
find a finite path from x to Gy

M . Therefore, for any z ∈ A, all z’s neighbors GM are in
A ∪ C, and thus g(z) is z’s best outcome in its GM neighborhood. Similarly, every type
z ∈ C prefers any type in Oxy to a, and every type z ∈ B prefers a to any outcome in Oxy,
by the definition of C. Hence, g is M -truthfully implementable. On the other hand, g is
not truthfully implementable, because x prefers a to any outcome in Oxy, and thus has an
incentive to misreport y, if we do not have any verification.

Applications

Theorem 11 provides a convenient way of checking whether truthful implementation cannot
take any advantage of symmetric verification. E.g., we show that for the domain of 2-
Facility Location, M ε verification is not outcome-preserving, and thus, there are such
social choice functions that become truthful with M ε verification.

Lemma 12. For any ε > 0, M ε verification is symmetric but not outcome-preserving for
the domain of 2-Facility Location.

Proof. As before, we know that M ε verification is symmetric. Therefore, we have only to
prove that it is not outcome-preserving. So we have to prove that there are x, y ∈ D = R
and a pair a, b ∈ R2 such that there is a set C which separates x and y in GMε and for
every w ∈ C:

x(a) > x(b) ∧ y(a) > y(b) ∧ w(a) < w(b)

for this purpose we set x = 0, y = 5ε, C = [2ε, 3ε] and a = [0, 5ε]T , b = [2ε, 3ε]T . Clearly
C is a separator of x and y and x(a) = y(a) = 0, x(b) = y(b) = −2ε also if we take an
arbitrary w ∈ C w(a) ≤ −2ε and w(b) ≥ −ε and therefore w(a) < w(b) and so we found
the separator we need to show that there is no a-preserving path between x and y and so
M ε is not outcome-preserving.

Deterministic Mechanisms with Money. We obtain a necessary condition for the
equivalence of weak and M -weak monotonicity. Given a verification M and a, b ∈ O, an

1If D is finite, we use the standard graph-theoretic definition of connected components. If D is infinite,
A includes x and all types w ∈ D reachable from x through a finite path.
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x − y path p in GM is difference a, b-preserving if for any type w in p, if x(a) − x(b) 6=
y(a)− y(b),

w(a)− w(b) ∈ (min{x(a)− x(b), y(a)− y(b)},max{x(a)− x(b), y(a)− y(b)})

A verification M is symmetric difference outcome-preserving if M is symmetric and
for any types x, y ∈ D and all outcomes a ∈ O, there is a finite difference a-preserving
x − y path p in GM . As before, the difference-preserving property implies the difference
outcome-preserving property, but not vice versa. The proof of the following is conceptually
similar to the proof of Theorem 11.

Theorem 12. Let M be a symmetric verification which is not difference outcome-pre-
serving. Then, there is a social choice function g which is M-weakly monotone, but not
weakly monotone.

Proof. Without loss of generality we assume that since the verification is not difference
outcome preserving there exists x, y ∈ D and a, b ∈ O such that every path p from x to y
with x(b)− x(a) > y(b)− y(a) has a type tp

y(b)− y(a) ≥ tp(b)− tp(a) ∨ tp(b)− tp(a) ≥ x(b)− x(a)

Let C1
xy = {z ∈ D \{y} : y(b)−y(a) ≥ z(b)− z(a)} and C2

xy = {z ∈ D \{x} : z(b)− z(a) ≥
x(b)− x(a)}. For convenience, we simply use C1 instead of C1

xy and C2 instead of C2
xy, let

also C = C1 ∪ C2. The crucial observation is that for every finite x − y path p, tp ∈ C (
since tp ∈ C1 or tp ∈ C2 ) and thus C is a separator of x and y in GM . Let A be the set
of types in the connected component of GM which contains x when we remove C from D,
let B = D \ A ∪ C. Since for every finite x − y path p tp ∈ C, y cannot belong to A and
by the definition of C, y cannot belong to C therefore y ∈ B. We define

g(z) =

{
a z ∈ C1 ∪ A
b z ∈ C2 ∪B

By the definitions of A and B any point in A cannot have a neighbor in B because then
we could find a finite path from x to a type in B which contradicts to the definition of A.
Therefore if there exists a negative 2-cycle (u, v, u) in GM,f for some u, v ∈ D it cannot
be the case that u ∈ A and v ∈ B. Of course by the definition of g we cannot have
u, v ∈ A ∪ C1 or u, v ∈ B ∪ C2. So we have to examine the following cases :

• u ∈ A, v ∈ C2. By the definition of C2 and by the fact that u /∈ C2 we have
v(b = f(v)) − v(a = f(u)) ≥ x(b) − x(a) ≥ u(a) − u(b) and therefore the 2-cycle
(u, v, u) is positive.

• u ∈ C1, v ∈ B. By the definition of C1 and by the fact that v /∈ C1 we have
v(b = f(v)) − v(a = f(u)) ≥ y(b) − y(a) ≥ u(a) − u(b) and therefore the 2-cycle
(u, v, u) is positive.
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Hence g is M -weakly monotone. By since x(b) − x(a) > y(b) − y(a) g is not weakly
monotone.

Sufficient and Necessary Condition. Closing the small gap between the order-preserv-
ing and outcome-preserving properties, we present a condition that is both sufficient and
necessary for the equivalence of truthful and M -truthful implementation. Given a social
choice function f , a x − y path p = (x = v0, v1, . . . , vk, vk+1 = y) in GM is f -preserving
if for any type vi, 1 ≤ i ≤ k + 1 in p, and for all outcomes a ∈ O, with x(f(vi)) > x(a)
and vi(f(vi)) ≥ vi(a), vi−1(f(vi)) > vi−1(a). A verification M is symmetric function-
preserving if M is symmetric and for any M -truthfully implementable function f and all
types x, y ∈ D, there is a finite f -preserving x − y path in GM . We now combine the
techniques used in the proofs of Theorem 7 and Theorem 11, and show that:

Theorem 13. Let M be a symmetric verification. Then, truthful implementation is equiv-
alent to M-truthful implementation if and only if M is function-preserving.

Theorem 13 is an immediate consequence of the following lemmas:

Lemma 13. Let M be a symmetric function-preserving verification. Then truthfulness is
equivalent to M-truthfulness.

Proof. Clearly, if a social function is truthfully implementable, it is also M -truthfully
implementable. So, we can focus on establishing the converse. The proof is by induction
on the length of the paths in GM . Technically, for sake of contradiction, we assume that
there is a social choice function f that is M -truthfully implementable, but not truthfully
implementable. Therefore, all edges in the correspondence graph GM,f are non-negative,
but there is a negative edge (x, z) ∈ E(Gf ).

Since M is symmetric function-preserving, there is a finite f -preserving x − z path p
in GM,f . In particular, we let p = (x = v0, v1, v2, . . . , vk = z), and let i, 2 ≤ i ≤ k, be the
smallest index such that the edge (x, vi) ∈ E(Gf ) is negative. For convenience, we let y = vi
and w = vi−1. We note that by the definition of i, the edge (x,w) ∈ E(Gf ) is non-negative,
and also since f is M -truthfully implementable, the edges (w, y), (y, w) ∈ E(GM,f ) are non-
negative (see also Fig. 3.1.i).

For convenience, we let a = f(x), b = f(w), c = f(y) denote the outcome of f at x, y,
and w, respectively. Since the edge (x, y) is negative, a 6= c. Moreover, by the definition
of i (and of y), b 6= c.

By the discussion above, we have that x(c) > x(a) ≥ x(b) and y(c) ≥ y(b). Therefore,
since the x − z path is f -preserving, and thus its x − y subpath is also f -preserving, we
obtain that w(c) > w(b), a contradiction to the hypothesis that the edge (w, y) ∈ E(GM,f )
is non-negative. Therefore there is no negative edge in Gf , which implies that f is truthfully
implementable.

Lemma 14. Let M be a symmetric verification which is not function-preserving. Then
there is a social choice function g which is M-truthfully implementable but not truthfully
implementable.
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Proof. Since the verification is not function preserving there exists a social choice function
f which is M truthfully implementable and x, y ∈ D such that every path p = (x =
v0, v1, v2, . . . , vk−1, vk = y) from x to y there exists i > 0 and an outcome a ∈ O such that

x(f(vi)) > x(a) ∧ vi(f(vi)) ≥ vi(a) ∧ vi−1(f(vi)) ≤ vi−1(a)

We say that a point v ∈ D is a separation point if and only if every path p = (x =
v0, v1, . . . , vi−1 = v, . . . , vk = y) such that the path p′ = (vi, . . . , vk) is f preserving part of
a x− y path there exists ovi ∈ O such that

x(f(vi)) > x(ovi) ∧ vi(f(vi)) ≥ vi(ovi) ∧ vi−1(f(vi)) ≤ vi−1(ovi)

ovi is called a separation outcome. We define C be the set of separation points and Oxy be
the set of separation outcomes.

Claim. The set C is a separator of GM with x and y be in different connected components.

Proof of the Claim. Suppose we remove C from GM and we get a new graph G′M . Suppose
that there is a path p = (x = v0, v1, . . . , vk−1, vk = y) from x to y. We call a vertex v on p
contagious if there exists an f preserving part of a x − y path from v to y, otherwise we
call the vertex free.

Then since we suppose that the verification is not f -preserving we know that there is
a vl−1 and an outcome a ∈ O such that

x(f(v1)) > x(a) ∧ vi(f(vl)) ≥ vl(a) ∧ vl−1(f(vl)) ≤ vl−1(a)

let L be the set of such vertices and we take the vl−1 which is nearest to y and it is free
i.e. has maximum l and it’s free. Let’s call vi−1 and this vertex. For the definition of vi−1

we have that every vertex in L which is after vi−1 in the path p is contagious which means
that the vertex u which is in L and it is the next of vi−1 is contagious and this implies
that vi is contagious since the path (vi, . . . , u) is by the definition of u f preserving. This
proves that vi is contagious. This means that there is a path p′ = (vi, . . . , y) which is f
preserving. But vi−1 is not in C and also is free by its definition. So satisfies the conditions
in G′M to be in C and therefore the only reason to don’t be in C is the that there is a point
t ∈ C which is contagious but this contradicts the definition of C. This implies that vi−1

have to be in C and the means that the path p shouldn’t exist in the G′M graph. Therefore
there cannot be a path from x to y in G′M which implies that C is a separator of GM and
in G′M x and y are in different connected components.

Let B be the set of vertices in the connected component of y in the G′M graph and A
the set D \ C ∪B. We now define the social choice function

g(z) =

{
f(z) z ∈ B
arg maxa∈Oxy z(a) z ∈ A ∪ C

Using the definition of C and the fact that C is a separator of GM we can easily prove
that g is M truthfully implementable. And by the definition of Oxy we can see that
there exists a type w ∈ B which x prefers to report. This means that g is not truthfully
implementable.
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Therefore the function preserving property gives us the tight property for proving that
M−truthfulness is equivalent with truthfulness but it is far more complicated than the
order preserving and the outcome preserving properties which are still more important in
practical applications.
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Chapter 4

Local to Global Truthfulness in
convex domains [2]

As we saw in the previous chapter there is a general technique for proving thatM−truthfulness
is equivalent with truthfulness. We also notice that in the case of implementability without
money and in the case of weak monotonicity property, proving that M ε−truthfulness with-
out money (resp. M ε−weak monotonicity) implies truthfulness without money (resp. weak
monotonicity) is the same as proving that local truthfulness without money (resp. local
weak monotonicity) implies truthfulness without money (resp. weak monotonicity). The
situation changes when we consider truthfulness with money. In this case M ε−truthfulness
and truthfulness are different properties. This could be easily understood if we look at
the interprentation of these properties using the graph representation. In this framework
M ε−truthfulness implies that the GMε,f graph has no negative cycles, which means that
on the Gf graph there is no cycle consisting only from ”small” edges, where with the term
”small” we mean that the belong to the graph GMε . On the other hand local truthfulness
implies that the Gf graph contains no ”small” cycle, where with the term ”small” we mean
that the entire cycle is in an ε−neighborhood of the domain D. This difference becomes
more clear in the next picture.
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Mε-Truthfulness Local Truthfulness

In this chapter we present a proof that local truthfulness also implies truthfulness in
convex domains. This proof is the main result of the work of Archer and Kleinberg [2]. In
order to prove this Archer and Kleinberg give a characterization of truthfulness using path
integrals on the convex domain D. Afterwards the local to global truthfulness comes as a
result of the properties of closed integrals on the domain D.

4.1 The characterization Theorem

For simplicity of the analysis in this section we are going to denote x(f(y)) as x · f(y).
This notation makes some arguments and proof simpler because we can use the x(f(y)) as
a product x · f(y), but it is clear that all the results could be easily derived even if we use
the previous notation. Also we are going to use a sightly different graph representation
from the Gf which we denote as Hf .

Definition 29. For a given social choice function f we define the weighted graph Gf

Hf = (D,D2, w) where w((x, y)) = y(f(y))− x(f(y))

As we can see the deference between Gf and Hf is the weights of the edges and in
order to distinguish between them we are going to use the notation wG(x, y) to refer to the
weight of the edge in the Gf graph and wH(x, y) to refer to the weight of the edge in the
Hf graph. Therefore using the notation we have introduced we have that

wG(x, y) = x · (f(x))− f(y))

wH(x, y) = (y − x) · f(y)

It is easy to verify that the conditions for cycle monotonicity and weak monotonicity
doesn’t change in the Hf graph representations. Namely a social choice function f satisfies
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weak monotonicity if and only if Hf has no negative 2−cycles and cycle monotonicity if
and only if Hf has no negative cycle.

All of the statements and proofs in this section hold in the setting of abstract outcome
sets and infinite-dimensional type spaces, provided the notation is interpreted correctly.
However, it is conceptually helpful to assume for this discussion that D,O ⊆ Rn. For ex-
ample, this ensures that dot products have a well defined meaning. As we have already said
dot product such as x·a should be interpreted to mean the valuation x(a). This also applies
to expressions that need to be expanded using the distributive law, e.g., (x − y) · (a − b)
denotes x(a)− x(b)− y(a) + y(b).

Having these in mind we can now give an intuition of what it will be the meaning of the
line integrals that we are going to use for the characterization theorem in this section. The
interpretation of line integrals in the infinite-dimensional case is as follows. Since every
line integral considered in this chapter is defined over a polygonal path consisting of one or
more line segments in D, it suffices to define the line integral over a single line segment. If f
is a social choice function from D to O, x0, x1 are any two types, L is the line segment from
x0 to x1, and xt = (1−t)x0 +tx1 , then

∫
L
f(x)·dx denotes the integral

∫ 1

0
(x1−x0)·f(xt)dt.

We are now ready to present some useful definitions.

Definition 30. An allocation function f : D 7→ O satisfies local weak monotonicity if and
only if for every x ∈ D and every line L through x, there exists an open neighborhood U
about x such that

(x− y) · (f(x)− f(y)) ≥ 0

for all y ∈ L ∩ U .

Notice that the definition of local weak monotonicity is equivalent with the definition
of M ε−weak monotonicity in convex domains. Therefore the only reason for which we
present it again here is to become familiar with the notation we are using in this chapter.

Definition 31. A social choice function f : D 7→ O is segment integrable if and only if for
every closed line segment L ⊆ D, the line integral

∫
L
f(x) · dx is well-defined and finite.

Although the definition of segment integrable function looks like it restricts the set of
functions for which the characterization is going to apply we can prove that every function
satisfying the local weak monotonicity property also satisfies the segment integrable prop-
erty and therefore since we analyze locally truthful functions we lose nothing by assuming
that they are also segment integrable.

Lemma 15. Every social choice function f that satisfies local weak monotonicity is segment
integrable.

59



Proof. Let L be an arbitrary closed line segment in D with endpoints x0, x1. For the
purposes of this lemma it is obvious that we can assume that L = D. Since D is convex
using Lemma 9 and Lemma 10 we can conclude that f satisfies weak monotonicity. At
this point we have to prove a technical claim.

Claim. If a social choice function f is weakly monotone then the for every x ∈ D and
every vector h the function g(t) = f(x + th) · h is non-decreasing on the subset of R on
which it is defined.

Proof of the Claim. Let s < t be any two real numbers such that the vectors y = x + sh,
z = x+ th belong to D. We have that

g(t)− g(s) = (f(z)− f(y)) · h = (f(z)− f(y)) · (z − y)

t− s

and therefore since f satisfies weak monotonicity we have that g(t) ≥ g(s) for all g, s,
t.

Applying the claim with x = x0 and h = x1 − x0, we conclude that the function g(t) is
monotonically non-decreasing on [0, 1]. Observe that

∫
L
f(x)dx is defined as the integral∫ 1

0
g(t)dt. The lemma follows because every non-decreasing function on a closed interval is

Riemann integrable and has a finite integral.

Now we are ready to define the property based on line integrals which will us the
characterization of truthfulness.

Definition 32. A segment integrable social choice function f : D 7→ O is vortex-free
if for every x0 ∈ D and every 2−dimensional plane Π through x, there exists an open
neighborhood U about x0 such that the path integral

∮
∆
f(x)∆dx vanishes for every triangle

∆ in Π ∩ U with one corner at x0.

The definition of vortex-free implies a seemingly stronger condition :
for every x0 ∈ D and every 2−dimensional plane Π through it, there exists an open
neighborhood U about x0 such that the path integral

∮
∆
f(x)∆dx vanishes for every triangle

∆ in Π ∩ U .
To see this, take U as in Definition 32, let x1, x2, x3 be the corners of ∆. Now for
0 ≤ i, j ≤ 3, define Lij to be a line segment directed from xi to xj and let Wij =

∫
L
f(x)dx.

From the definition of vortex-freeness, we know that the loop integral
∮

∆′
f(x) ·dx vanishes

when ∆′ is a triangle contained in Π ∩ U with one corner at x0. Thus

W01 +W12 −W02 = 0

W02 +W23 −W03 = 0

W03 +W31 −W01 = 0
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where we used the fact that reversing a path negates its line integral. Summing these
three equations, we obtain

∮
∆
f(x)∆dx, as desired.

We are now ready to explain the characterization of truthfulness using line integrals.

Theorem 14. Let D be a convex domain and f : D 7→ O be a social choice function. Then
f is truthful if and only if it is vortex-free and satisfies local weak monotonicity.

We now express the idea behind the proof of the characterization theorem. Since we
have already show in the previous chapter that local weak monotonicity implies weak
monotonicity in convex domains we have only to prove that vortex-freeness implies that
there is no negative cycle between three or more types in D.

From the observation we have make after defining the vortex-free property it is easy
to show that vortex-freeness implies that the line integral on every triangle in D vanishes.
Using again the same argument we can prove that assuming vortex-freeness is equivalent
with the hypothesis that the line integral over any closed polygon in D vanishes.

Now using the same machinery as in the proof of the Theorem 9 we can have that the
total weight of a cycle C is greater that or equal to the total weight of a cycle C ′ where
C ′ contains the vertices of C and some more vertices on the difference preserving paths
between consequtive points of C. Since in convex domains the difference preserving path
between to points is the line segments between these points we can have that the value of
the line integral on the polygon defined by the points of C has value less than or equal to
the total weight of C. Therefore if there is a negative cycle in Hf there must also be a
line integral on a polygon which is not zero. This implies that vortex-freeness is violated.
Therefore vortex-freeness implies truthfulness.

For the other direction we suppose that there is no negative cycle in Hf graph and that
the line integral on a polygon is non-zero then by taking the one or the other direction to
the line integral we can find a polygon on which the line integral is negative. But since
the line integral is the limit of Riemann sums there must be a finite number of types in D
such that the weight of their cycle in HF is negative which contradicts to our hypothesis.
Therefore truthfulness implies that the integral on every polygon in D vanishes which is
equivalent as we have said with the vortex-free property. So truthfulness implies vortex-
freeness.

Having in mind this proof sketch of Theorem 14 we prove some useful lemmas and then
we give the entire proof of Theorem 14.

Lemma 16. Let g : [0, 1] 7→ R be an increasing function, and let 0 = x0 < x1 < · · · <
xN = 1 and 0 = y0 < y1 < · · · < yM = 1 be two increasing sequences such that (yj)

M
j=0

refines (xi)
N
i=0, i.e., (xi) is a subsequence of (yj). Then the right-hand Riemann sums of g

with respect to (xi), (yj) satisfy the inequality

N∑
i=1

(xi − xi−1)g(xi) ≥
M∑
j=1

(yj − yj−1)g(yj)
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Proof. It suffices to prove the lemma in the case M = N + 1 because the general case then
follows by induction. So assume that for some r we have xr−2 = yr−1 and xr = yr. We will
use the notation ∆x

i (resp. ∆y
i ) to denote xi − xi−1 (resp. yi − yi−1 ). In the sum on the

left side of the wanted relation the i = q term on the left side matches the j = q term on
the right side for q ≤ r and it matches the j = q + 1 term on the right side for q ≥ r + 2.
Hence

N∑
i=1

∆x
i g(xi)−

M∑
j=1

∆y
jg(yj) =

= ∆x
rg(xr)−∆y

rg(yr)−∆y
r−1g(yr−1)

= (yr − yr−2)g(yr)−∆y
rg(yr)−∆y

r−1g(yr−1)

= ∆y
r−1(g(yr)− g(yr−1)) ≥ 0

From the above general lemma we consider a specific case which we are going to use to
the proof of the Theorem 14.

Corollary 4. If f : D 7→ O is a social choice function that satisfies weak monotonicity,
and L is a line segment in D with endpoints x, y then

(y − x) · f(y) ≥
∫
L

f(z)dz

Proof. We will apply the previous lemma to the function g(t) = f(x + t(y − x)) · (y − x),
which we have already proved that it is increasing by Lemma 15. For non-negative integers
k and i ≤ 2k, let xk = i/2k . Note that for each k, 0 = xk0 < xk1 < · · · < xkk = 1, and that
(xk+1

j )2k+1

j=0 refines (xki )
2k

i=1. By the previous lemma, the sequence of Riemann sums

Sk =
2k∑
i=1

(xki − xki−1)g(xki )

is decreasing. Moreover, by the definition of the Riemann integral,
∫
L
f(z)dz = limk→∞ Sk.

Hence

(y − x) · f(y) = S0 ≥ lim
k→∞

Sk =

∫
L

f(z)dz

We are now ready to prove the characterization Theorem 14.

Lemma 17. If f : D → O is vortex-free, then for every triangle ∆ contained in D, the
path integral

∮
∆
f(x)dx vanishes.

62



Proof. For clarity, in this proof we will distinguish between triangles (sets consisting of
three points and the three line segments joining them) and 2−simplices (the convex hull
of three points). We will use the following geometric fact : if σ1, σ2 are 2−simplices with
disjoint interiors which share a side in common, and the boundaries of σ1, σ2 are triangles
∆1, ∆2 oriented consistently, then ∆1 and ∆2 traverse the common side of σ1, σ2 in opposite
directions.

Let V be the 2−simplex consisting of and its interior. The definition of vortex-free
implies that V has an open covering {Ui | i ∈ I} such that for every i and every triangle
contained in Ui , the integral

∮
∆′
f(x)dx vanishes. Because V is compact, we can apply

the Lebesgue number lemma [11] to deduce that there is a δ > 0 such that every set of
diameter less than δ is contained in one of the sets Ui. We can subdivide V into 2−simplices
σ1, σ2, . . . , σN of diameter less than δ and let ∆i be a closed curve tracing out the boundary
of σi; assume every ∆i is oriented consistently with a single, fixed orientation of D . If we
write

0 =
N∑
i=1

∮
∆i

f(x)dx

and break each loop integral on the right side into a sum of three integrals along line
segments forming the boundary of σi, then each such line segment appears either

• twice with opposite orientations, if it is on the common boundary between two
2−simplices σi, σj,

• once, if it is a subset of ∆.

Terms of the first type cancel each other out, while those of the second type sum up to∮
∆
f(x)dx. Thus

∮
f(x)dx = 0, as claimed.

Proof of Theorem 14. First assume f is truthful. Hence it satisfies cycle monotonicity.
This immediately implies weak monotonicity and therefore local weak monotonicity. To
see that f is vortex-free, we argue by contradiction, i.e., we will show that if f is not
vortex-free then it fails to satisfy cycle monotonicity. Assuming f is not vortex-free, there
is a triangle ∆ such that

∮
∆
f(x)dx 6= 0. Resersing the orientation of ∆ if necessary, we

may assume that
∮

∆
f(x)dx < 0. Since the integral is the limit of Riemann sums, there

mist be a negative sum, i.e., a sequence of points x1, x2, . . . , xN in D such that

N∑
i=1

f(xi) · (xi − xi−1) < 0

where the indices are interpreted modulo N . This sequence constitutes a negative cycle.
Conversely, suppose f is vortex-free and satisfies local weak monotonicity. We will

prove that f satisfies cycle monotonicity, from which it follows that f is truthful. For
any sequence of type vectors x0, x1, . . . , xN = x0, let Lij : 0 ≤ i < j ≤ N denote the set of
paths Lij(t) = (1 − t)xi + txj, i.e. Lij traces out a line segment from xi to xj. If P is
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the polygonal closed curve formed by concatenating L01, L12, . . . , L(N−1)N then Corollary
4 implies

∮
P

f(x)dx =
N∑
i=1

∫
L(i−1)i

f(x)dx

≤
N∑
i=1

f(xi) · (xi − xi−1)

so to prove cycle monotonicity (i.e. that the sum on the right side of the above equation
is non-negative) it suffices to prove that

∫
P
f(x)dx = 0. For 0 ≤ i < j ≤ N let

Wij =

∫
Lij

f(x)dx

Since integrating along a curve in the opposite direction negates the value of the integral,
we have Wij = −Wji. For i = 1, 2, . . . , N − 2 let Ti denote the triangle formed from L0i,
Li(i+1), L(i+1)0. Lemma 17 implies that

0 =

∮
Ti

f(x)dx = W0i +Wi(i+1) +W(i+1)0

Interpreting the subscripts mod N and summing previous equation as i runs from 1 to
N − 2 yields

0 =
N−2∑
i=1

W0i +Wi(i+1) +W(i+1)0

=
N∑
i=1

Wi(i+1) +
N−2∑
i=2

W0i +Wi0

=
N∑
i=1

Wi(i+1) =

∮
P

f(x)dx

Now we are ready to present the main consequence of the characterization theorem
which also could be read in terms of verification.

Corollary 5. If D is a convex domain then every social choice function f is truthful if
and only if it is locally truthful.

Another important consequence is based on the observation that vortex-freeness in a
property on triangles in D. This means that truthfulness is a property which takes into
account only the restriction of f on the 2−dimensional subsets of D.
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Corollary 6. If D is convex and the restriction of f to Π ∩ D is truthful for every
2−dimensional affine subspace Π, then f is truthful.

This means we can tell that truthfulness with money is a 2−dimensional property. It is
easy to see that truthfulness without money and weak monotonicity are 1−D properties.
Basically this is the reason for which the techniques described in the previous chapter work
very well for proving local to global conditions for truthfulness without money and weak
monotonicity but didn’t work well for truthfulness with money. Therefore if we want to
extend our techniques of the previous chapter in order to capture also truthfulness with
money, we have to extend the previous techniques in a 2−dimensional sense.
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Chapter 5

Positive results using asymmetric
verification

5.1 On the Power of Asymmetric Verification
Intuitively, one should expect that asymmetric verification is powerful due to requirement
that the correspondence graph should be acyclic. In fact, if we consider any asymmetric
verification M , since GM does not have any negative cycles, Rochet’s theorem implies
that any social choice function f is M -truthfully implementable with money. We next
show a natural characterization of the social choice functions that can be M -truthfully
implemented (without money), for some asymmetric verification M .

Theorem 15. Let f be any social choice function. There is an asymmetric verification M
such that f is M-truthfully implementable iff G−f is a directed acyclic graph.

Proof. Let M be an asymmetric verification that truthfully implements f . Hence, GM is
an acyclic tournament and GM,f does not contain any negative edges, i.e., any edges of G−f .
Therefore, if we arrange the vertices of Gf (i.e., the types of D) on the line according to
the (unique) topological ordering of GM,f , all edges of Gf not included in GM,f are directed
from right to left. Therefore, the edges of G−f cannot form a cycle.

For the converse, let f be a social choice function with an acyclic G−f . We consider a

topological ordering of G−f and remove any edge of Gf directed from left to right. This

removes all edges of G−f and leaves an acyclic correspondence subgraph G′f , since all its
edges are directed from right to left. Moreover, for every pair of types x, y, we remove one
of the edges (x, y) and (y, x). Hence, G′f is an acyclic tournament without any negative
edges. Therefore, f is M -truthfully implementable for the asymmetric verification M
corresponding to G′f .

Reasonable social choice functions should have an acyclic G−f . This is true for all
functions maximizing the social welfare and all functions truthfully implementable with
money. Although one may construct examples of functions f where G−f contains cycles,

such functions (and such cycles) are hardly natural. For instance, a 2-cycle (x, y, x) in G−f
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indicates that type x prefers outcome f(y) to f(x), while type y prefers outcome f(x) to
f(y). But then, one may change f to f ′, with f ′(x) = f(y), f ′(y) = f(x), and f ′(z) = f(z)
for any other type z. Thus, one eliminates the cycle (x, y, x) and the social welfare is
strictly greater using f ′ allocation.

To further demonstrate the power of asymmetric verification, we extend, in the Ap-
pendix, the construction in the proof of Theorem 15 to a universal asymmetric verification,
which can truthfully implement any social choice function with acyclic G−f .

5.1.1 Implementation using Asymmetric Verification for Facility
Location

In this section, we apply the idea behind universal asymmetric verification, and show that
in the Facility Location domain, the function Fmax(~x) = (min ~x+max ~x)/2, that minimizes
the maximum distance of the agents to the facility, can be truthfully implemented with
verification Mmax(xi) = {y : |y − Fmax(~x−i)| ≤ |xi − Fmax(~x−i)|}.

Fmax(x) =
min(x) + max(x)

2

We firstly have to found the graph G−Fmax
for an arbitrary agent i which means that all the

other players have fixed positions x−i. Let xmin = min x−i and xmax = max x−i then we
have the following cases.

• xi < Fmax(x−i) : In this case, for every x ∈ [2xi−xmax,min(xi, xmin)], the edge (xi, x)
in the GFmax graph has negative weight and every other edge starting from xi has
positive weight.

• xi > Fmax(x−i) : In this case, for every x ∈ [max(xi, xmax), 2xi − xmin], the edge
(xi, x) in the GFmax graph has negative weight and every other edge starting from xi
has positive weight.

• xi = Fmax(x−i) : In this case, every edge starting for xi has positive weight.

The above cases describe completely the graph G−Fmax
and it is easy to see that this graph

is acyclic. Therefore, we can apply Theorem 15, and define an asymmetric verification
which implements Fmax. To do this, we have first to find a topological ordering of G−Fmax

,
with Fmax(x−i) as the source. The topological ordering can be viewed in the following
figures:
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xmin xmax
Fmax(x−i)

Fmax(x−i)

xmax

xmin

G−Fmax

Therefore the verification which implements the Fmax is the following:

Mmax(xi) = {y ∈ R : |y − Fmax(x−i)| ≤ |xi − Fmax(x−i)|}

Clearly if the agent i hasn’t the minimum or the maximum position of all the agents
then Fmax(x−i) = Fmax(x). In the case agent i has the maximum position on the line then
the set of y ∈ R with y > xi are the only point agent i has an incentive to misreport and
is a subset of the point for which |y − Fmax(x)| ≤ |xi − Fmax(x)|. This implies that the
following verification also implements Fmax :

Mmax(xi) = {y ∈ R : |y − Fmax(x)| ≤ |xi − Fmax(x)|}

We note that Fmax cannot be approximated within a factor less than 2 (resp. 3/2) by
deterministic (resp. randomized) mechanisms without money [15].

5.1.2 Implementation using Asymmetric Verification for Strate-
gic Voting

We now show that, in the domain of Strategic Voting, Plurality can be truthfully imple-
mented by an asymmetric verification where the voters are not allowed to misreport a
higher preference for the winner of the election. Similarly, we show that Borda Count can
be truthfully implemented by an asymmetric verification where the voters are not allowed
to misreport either a higher preference for the winner of the election or a lower preference
for some of the remaining candidates.

In this domain we are interested in implementing the following social choice functions.

• Plurality function Fpl : this function for every candidate–outcome a counts the
number of voters–agents having a first in their order and sets winner the candidate
with the maximum such number. So let Oa = {i | i ∈ V, vi(a) = 1} and na = |Oa|
then Fpl(v) = arg maxa∈O na

• Borda count function Fbrd : this function sets winner the candidate a which
minimizes the

∑
i vi(a), i.e. Fbrd(v) = arg mina∈O

∑
i∈V vi(a)
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Implementation of Fpl. It is easy to see that a voter has incentive to misreport that
a candidate b is her first option if she prefers b from the real winner a. Therefore the
asymmetric verification which implements Fpl is the verification which forbids the overbid
of the winner candidates. This means that after the voting the verification has to check
if the voters have overbid the winner candidate. Let w be the winner of the voting, i.e.
Fpl(v) = w

Mpl(i) = {j : j ∈ V, vj(w) ≤ vi(w)}

Implementation of Fbrd. This a more difficult case of social choice function because a
voter has an incentive to misreport both the winner of the voting w = Fbrd(v) and the
winner without her w−i = Fbrd(v−i). Therefore we have to forbid both the overbid of w
and the underbid of w−i.

Mbrd(i) = {j : j ∈ V, vj(w−i) ≥ vi(w−i), vj(w) ≤ vi(w)}

5.1.3 Asymmetric Verification and Payments

The absence of negative cycles inGf implies the absence of cycles inG−f . Thus, Theorem 15,
combined with Rochet’s theorem, shows that for any function f truthfully implementable
with money, there is an asymmetric verification M that truthfully implements f . Next, we
show that such an asymmetric verification M can be directly obtained from any payment
scheme that implements f . The proof is an extension of the proof of Theorem 15.

Proposition 9. Let f be a social choice function truthfully implementable by payments
p : D 7→ R. Then, removing all edges (x, y) ∈ E(Gf ) with p(f(x)) > p(f(y)) results in an
asymmetric verification M that truthfully implements f (without money).

Proof. Let p : D 7→ R be any set of payments that truthfully implements f . We arrange all
types on the line in decreasing order of the corresponding payments by p. Precisely, type x
precedes (i.e., is on the left of) type y if p(f(x)) > p(f(y)), with ties broken in an arbitrary
(but fixed) way. Then, we observe that any negative edge (x, y) ∈ E(G−f ) is directed from
left to right. Indeed, since the edge (x, y) is negative, we have that x(f(y)) > x(f(x)).
Moreover, since the p truthfully implements f , x(f(x)) + p(f(x)) ≥ x(f(y)) + p(f(y)).
Therefore, p(f(x)) > p(f(y)), which indeed implies that (x, y) is directed from left to right
in the linear ordering of D. Thus, as in the proof of Theorem 15, removing any edge of Gf

directed from left to right, i.e., all edges (x, y) with p(f(x)) > p(f(y)), eliminates all edges
of G−f and leaves an acyclic tournament that corresponds to an asymmetric verification M
that truthfully implements f .
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Chapter 6

Probabilistic Verification [6]

Motivated by the negative results presented in Chapter 3, Caragiannis et al. proceed to
study a broader class of verification settings. The starting point is the observation that in
the partial verification model of Green and Laffont [10] lie detection is fully deterministic:
either an agent of type v can declare a type v = v′ without any risk of being caught, or he
simply cannot declare v′ as his type. However, in many real-life scenarios lie detection is
probabilistic: an agent can report any type v′ that differs from his true type v, and is caught
with a certain probability. In this model the probability may depend on both v′ and v. If
a lie is detected, the lying agent is usually punished: if the center was supposed to pay the
agent, the payment may be withheld, and the agent may have to pay a fine; again, the fine
may depend on the agent’s true type, the declared type, or both. Because of the existence
of the fine all the mechanisms discussed in this chapter refer to implementation with money.

For instance, consider a member of a decision-making body (let us call him Mr. X)
who is supposed to vote by submitting his ranking of several alternatives, such as budget
proposals or nominees for an administrative post. Let us denote the available alternatives
by A, B, and C, and suppose that Mr. X’s true ranking of the alternatives is A ¿ B ¿ C.
Moreover, he once wrote a private e-mail in which he argued that A is preferable to B, and
on another occasion he told a group of supporters that he prefers A to C. Now, if Mr. X
votes B ¿ A ¿ C for strategic reasons, his reputation may be damaged if that private e-mail
of his is leaked, Thus, when he weighs the cost and the benefits of the strategic vote, he
must take into account the leakage probability. Voting B ¿ C ¿ A is even more dangerous,
as there is an additional risk that the position he expressed when talking to his supporters
becomes publicly known.

In this chapter we provide a formal model for such scenarios by explaining the frame-
work introduced here [6] of mechanism design with probabilistic verification. This model
allows for probabilistic lie detection and fines, and can be shown to generalize the partial
verification model. We characterize the set of social choice functions that can be truthfully
implemented in this model; the proof is based on a modification of the graph representa-
tion of mechanism design. These results indicate that probabilistic verification can be very
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powerful. In particular, whenever all lie detection probabilities are strictly positive, any
social choice function can be implemented: intuitively, if payments are large enough, even
a small chance of not receiving them makes a player reluctant to lie.

6.1 Model and Characterization

We assume that for each pair of types u, v ∈ D we are given a pair of numbers λ[u, v] ∈ [0, 1]
and ψ[u, v] ∈ R+ ∪{0,+∞}, λ[u, v] is the probability that a player with type u can report
type v and not get caught, and ψ[u, v] is the fine that a player of type u has to pay when he
is caught reporting v. We require λ[u, u] = 1 for all u ∈ D, and write Λ = {λ[u, v]}u,v∈D,
Ψ = ψ[u, v]u,v∈D. We refer to Λ as the verification probability matrix and to Ψ as the
fine matrix. We assume that the outcome is chosen according to the declared type and
the agent enjoys the utility associated with this outcome, but he only gets paid/does not
get fined if the lie is not detected. This is motivated by applications such as scheduling,
where lie detection typically takes place after an assignment of jobs to machines has been
determined, but before the payments are distributed. That is, under a mechanism (g, p)
the expected utility of an agent with type u who reports v is

U(g,p)(u, v) = u(g(v)) + λ[u, v]p(v)− (1− λ[u, v])ψ[u, v]

Definition 33. Given an outcome space O, a domain D, a verification probability matrix
Λ = {λ[u, v]}u,v∈D, a fine matrix Ψ = ψ[u, v]u,v∈D, and a social choice function f : D 7→ O,
a mechanism (g, p) is said to (Λ,Ψ)−implement f if for every u ∈ D there exists a v ∈ D
such that

g(v) = f(u)

U(g,p)(u, v) ≥ U(g,p)(u, u)foreachu ∈ D.

If Ψ is the all-zero matrix, we omit it from the notation, and say that (g, p) Λ−implements
f . In words, the expected utility of the agent when declaring a type v with g(v) = f(u)
must be at least as high as for any other declaration. A (Λ,Ψ)−implementation is said to
be truthful if f = g and condition i.e.,

u(f(u)) + p(u) ≥ u(f(u)) + λ[u, u′]p(u)− (1− λ[u, u′])ψ[u, u′]forallu, u′ ∈ D

This condition can be rewritten as

λ[u, v]p(v)− p(u) ≤ c[u, v]forallu, v ∈ D

where c[u, v] = u(f(u))− u(f(v)) + (1− λ[u, v])ψ[u, v]
Our probabilistic model generalizes the partial verification model (and, hence, also the

classic model): a misreport graph GM can be simulated by setting λ[u, v] = 1, ψ[u, v] = 0
if (u, v) ∈ E[GM ] and λ[u, v] = 0, ψ[u, v] = +∞ otherwise. We denote the resulting
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verification probability matrix by ΛM and the fine matrix by ΨM . Note that in this con-
struction the fine matrix ΨM cannot be replaced by the all-zero matrix, i.e. a mechanism
that M−implements f does not necessarily λM−implement it. Indeed, in the absence of
fines, if u(g(v)) > u(g(u′)) + p(u′) for some v ∈ M(u) and all u′ ∈ M(u), an agent of
type u would prefer to report v, even if he knows for sure that he will be denied payment.
However, there is an interesting special case of the probabilistic verification model where
fines are not necessary. Namely, suppose that all outcomes are associated with tasks, so
that the agent incurs a cost for each outcome, i.e., v(o) ≤ 0 for all o ∈ O and all v ∈ D.
Let M be a misreport correspondence, and let (g, p) be an individually rational mechanism
that M−implements some function f ; we can assume that p(v) ≥ 0 for all v ∈ D. Then
(g, p) is an individually rational λM−implementation of f . Indeed, if an agent of type u
reports a type v ∈ M(u), he will be detected and his utility will be u(g(v)) ≤ 0, whereas
if he reports v, the individual rationality of (g, p) guarantees him a non-negative utility.

We will now show that a similar characterization can be obtained for probabilistic
verification under some mild conditions on the domain D and the matrix Λ. Namely, we
will assume that D is bounded, i.e., −C < v(o) < C for some sufficiently large constant
C > 0 and all v ∈ D, o ∈ O, and all elements of Λ are either equal to 1 or are bounded away
from 1, i.e., there exists an ε > 0 such that for all u, v ∈ D the inequality λ[u, v] < 1 implies
λ[u, v] ≤ 1− ε. Note that both of these restrictions trivially hold if the domain D is finite.
We will modify Rochet’s construction as follows. Given a social choice function f and a
probability verification matrix Λ = {λ[u, v]}u,v∈D, we construct a graph GΛ

f from Gf by
setting edge weight cΛ[u, v] = +∞ for all edges (u, v) with λ[u, v] < 1 and cΛ[u, v] = c[u, v]
otherwise. Now, the set of social choice functions that are (Λ,Ψ)−implementable can be
characterized as follows.

Theorem 16. Suppose that D is bounded and all entries of Λ are either equal to 1 or are
bounded away from 1. Then a social choice function f is truthfully (Λ,Ψ)−implementable
if and only if Gλ has no negative cycle.
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