
ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ
ΣΧΟΛΗ ΗΛΕΚΤΡΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ
ΚΑΙ ΜΗΧΑΝΙΚΩΝ ΥΠΟΛΟΓΙΣΤΩΝ
ΤΟΜΕΑΣ ΣΗΜΑΤΩΝ, ΕΛΕΓΧΟΥ ΚΑΙ ΡΟΜΠΟΤΙΚΗΣ

Πλοήγηση κινούμενου ρομπότ σε άγνωστο περιβάλλον προς ένα
προκαθορισμένο στόχο

Mobile robot navigation through an unknown environment
towards a predefined target

ΔΙΠΛΩΜΑΤΙΚΗ ΕΡΓΑΣΙΑ

Χαράλαμπος Μ. Ρωσσίδης

Επιβλέπoντες:
Δρ. Κωνσταντίνος Τζαφέστας - Επίκουρος Καθηγητής HMMY EMΠ
Δρ. Στασινός Κωνσταντόπουλος - ΕΚΕΦΕ Δημόκριτος

July 16, 2014

ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ
ΣΧΟΛΗ ΗΛΕΚΤΡΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ
ΚΑΙ ΜΗΧΑΝΙΚΩΝ ΥΠΟΛΟΓΙΣΤΩΝ
ΤΟΜΕΑΣ ΣΗΜΑΤΩΝ, ΕΛΕΓΧΟΥ ΚΑΙ ΡΟΜΠΟΤΙΚΗΣ

Πλοήγηση κινούμενου ρομπότ σε άγνωστο περιβάλλον προς ένα
προκαθορισμένο στόχο

Mobile robot navigation through an unknown environment
towards a predefined target

ΔΙΠΛΩΜΑΤΙΚΗ ΕΡΓΑΣΙΑ

Χαράλαμπος Μ. Ρωσσίδης

Επιβλέπoντες:
Δρ. Κωνσταντίνος Τζαφέστας - Επίκουρος Καθηγητής HMMY EMΠ
Δρ. Στασινός Κωνσταντόπουλος - ΕΚΕΦΕ Δημόκριτος

Εγκρίθηκε από την τριμελή εξεταστική επιτροπή την Τετάρτη 16.7.2014

Δρ. Κωνσταντίνος Δρ. Στασινός Δρ. Αλέξανδρος
Τζαφέστας Κωνσταντόπουλος Ποταμιάνος

Επίκ. Καθηγητής HMMY EMΠ ΕΚΕΦΕ Δημόκριτος Αν. Καθηγητής HMMY EMΠ

July 16, 2014

Χαράλαμπος Μ. Ρωσσίδης
Διπλωματούχος Ηλεκτρολόγος Μηχανικός και Μηχανικός Υπολογιστών Ε.Μ.Π.

Copyright ©Χαράλαμπος Μ. Ρωσσίδης, 2014
Με επιφύλαξη παντός δικαιώματος. All rights reserved.

Απαγορεύεται η αντιγραφή, αποθήκευση και διανομή της παρούσας εργασίας, εξ’ ολοκλήρου ή
τμήματος αυτής, για εμπορικό σκοπό. Επιτρέπεται η ανατύπωση, αποθήκευση και διανομή για
σκοπό μη κερδοσκοπικό, εκπαιδευτικής ή ερευνητικής φύσης, υπό την προϋπόθεση να αναφέρε-
ται η πηγή προέλευσης και να διατηρείται το παρόν μήνυμα. Ερωτήματα που αφορούν τη χρήση
της εργασίας για κερδοσκοπικό σκοπό πρέπει να απευθύνονται προς τον συγγραφέα.
Οι απόψεις και τα συμπεράσματα που περιέχονται σε αυτό το έγγραφο εκφράζουν το συγ-
γραφέα και δεν πρέπει να ερμηνευθεί ότι αντιπροσωπεύουν τις επίσημες θέσεις του Εθνικού
Μετσόβιου Πολυτεχνείου.

Acknowledgements

This project sums up all the effort, the passion and the devotion that have charac-
terised me during the past five years in my pursuit for knowledge and specialisation in
the fields of electrical and computer engineering. It has been quite a journey indeed and
the truth is that many people deserve my gratitude.

To begin, I would like to thank my supervisors. To Dr. Stasinos Konstantopoulos,
thank you for the steady coaching, for the availability and the priceless advice. Thank you
for the flexibility you provided that allowed me to put my personal touch on this project. I
would like to thank Dr. Costas Tzafestas for the eye opening courses on Robotics during
my studies at the school of ECE-NTUA. It was the inspiration gained during those
courses that have always fuelled my passion to pursue not only this project but the
fields of Robotics, Automation and Control as well. Also, thank you for your availability
and advice, especially for reviewing this project.

It would be an omission not to express my acknowledgement to the National Centre
for Scientific Research “Demokritos” for the availability on expensive equipment like the
differential drive robot (Sek) used for this project.

Special greetings to Mr. Andreas Lydakis, the operator of Sek that despite his
crowded schedule and the fact that he had been working on a different project, he
has always been there to help with anything I needed. I would also like to thank my best
friend Mr. George Trigeorgis as well as my friend Mr. Panayiotis Kkolos for their advice
on issues related to programming and their continuous support.

To my parents, thank you for your lifetime support. Thank you for being there no
matter what, thank you for your care and for financing my life and education all those
years.

Finally, I would like to thank my closest friends and classmates for without their
company, support and encouragement the whole task of studying abroad for five years
would be unachievable.

5

6

Abstract

This thesis project describes an implementation of a Human Computer Interaction
(HCI) system for intelligent mobile robots. It aims to provide the ability to indoor
mobile robots to understand and execute direction orders described in a pseudo-human
language. The robot is positioned in an unknown indoor environment and it is given
directions like ”Go to the third office on your right”.

To achieve that, the robot should be able to create a map of its environment and
localise itself in the map. Thus, Simultaneous Localisation And Mapping (SLAM) tech-
niques are used. Two key novel challenges are confronted. Firstly, the navigation towards
a target in a yet unknown map, and secondly, how informative and useful the map is.

The main objective of existing navigation techniques, is to drive the robot towards
the unknown area of the map in order to minimise the yet unseen environment. That is
not enough if the robot must move towards a predefined target. In order to achieve this
kind of behaviour, an existing navigation technique is augmented.

Secondly, the robot should be able to recognise entities that signify the way-points
given by the human. To cope with that, a map of entities like door, chair, box, etc.
is created and provided to to the robot. To identify these entities, pattern recognition
techniques may be employed. The result is a map of objects that can be used not only
for navigation and path planning, but also for a better illustration of the actual map.

7

8

Keywords

mobile robot navigation, pseudo-human language, navigator, path planner, trajectory
planner, utility function, SLAM, EKF-SLAM, scanSLAM, LCscanSLAM, LC-SLAM

9

10

Contents

1 Introduction 15

2 Theoretical Background 17
2.1 SLAM . 17

2.1.1 Overview . 17
2.1.2 Key Components . 18
2.1.3 Current State of the Art SLAM . 20
2.1.4 scanSLAM . 22

2.2 The Extended / Kalman Filter (KF and EKF) 23
2.2.1 The Kalman Filter (KF) . 23
2.2.2 The Extended Kalman Filter (EKF) 26
2.2.3 EKF SLAM . 29

2.3 Navigators . 30
2.3.1 The need for a Navigator . 30
2.3.2 How it works . 31
2.3.3 Utility Functions . 31

3 Topic Description 33
3.1 Objectives . 33
3.2 Innovation . 33
3.3 Challenges . 34

4 Analysis and Design 35
4.1 Problem Statement . 35

4.1.1 Goal . 35
4.1.2 Key Features . 35
4.1.3 Implementation Overview . 36

4.2 Analysis . 37
4.2.1 scanSLAM Components . 37
4.2.2 The Simple scanSLAM Algorithm 42
4.2.3 From scanSLAM towards a predefined target 43
4.2.4 pseudo-human Language Framework 43
4.2.5 Tagger . 45

11

4.2.6 Target Scouter . 46
4.3 Detailed Design . 46

4.3.1 Discussion . 46
4.3.2 scanSLAM . 47
4.3.3 EKF Kernel . 54
4.3.4 Navigator . 59

5 Implementation 67
5.1 Overview . 67
5.2 Components . 67

6 Testing 79
6.1 Experiments . 79
6.2 Evaluation . 81
6.3 Solution Outlines: . 82

7 Conclusion 85
7.1 Summary of Contributions . 85
7.2 Future Work . 86

Glossary 87

12

List of Figures

2.1 Extented Kalman Filter dynamic concept 28

4.1 scanSLAM Components . 38
4.2 PointCloud Fusion . 42
4.3 The Language Grammar . 44
4.4 Language Design . 45
4.5 Map and Landmark Pose Frames . 47
4.6 scanSLAM Components . 49
4.7 Candidate Landmarks and Free Edges . 49
4.8 Transforming to Cartesian Coordinates . 50
4.9 Landmark’s Pose Frame . 50
4.10 Normalised Innovation Squared . 51
4.11 New Observation for the EKF . 52
4.12 Shape Matching . 53
4.13 Landmarks and Local Frames . 55
4.14 Differential Drive Robot . 56
4.15 LCscanSLAM Language . 59
4.16 Draw Candidate Points . 61
4.17 Utility Function Components . 62
4.18 Free Edge . 63
4.19 Distance to obstacle penalty function . 64

5.1 Scan segmented in candidate Landmarks 68
5.2 Object Saliency Score Failure . 69
5.3 Association through NIS . 70
5.4 Faulty Association . 71
5.5 PointCloud Alignment using ICP . 71
5.6 ICP Failure . 72
5.7 Valid Associations . 73
5.8 Rejected Assoiciations . 74
5.9 Successful Fusion . 74
5.10 Fusion Failure . 75
5.11 Successful Navigation . 76
5.12 Navigator Failure . 77

13

6.1 Simple Test . 80
6.2 Target Sequence . 80
6.3 Moderate Test . 81
6.4 Redundant Tags . 81

14

Chapter 1

Introduction

Although it is really unclear what a robot is, nowadays everyone has an impression.
Truth is that robots have spread in a variety of places performing tasks ranging from
simple assembly lines to space exploration. The versatility of the application fields causes
robots to be extremely different depending on their working environment. However, one
can identify a machine as a robot if it has the following attributes:

A robot is a machine that can sense, think and act. The first two capabilities are
those who differentiate a robot from any other machine. Thus, a robot uses sensors
to perceive its environment. Using this perception, an algorithm is responsible to do
the reasoning and make decisions on how the robot should act. Finally, it designs its
actions which can either affect its inner state or interact with the environment through
its actuators. A robot possesses three basic properties:

• Programmability
It has a computer available that implements the necessary algorithms that can be
changed to augment its behaviour.

• Mechatronic Device
It is a machine that can interact with its environment through mechanical parts.

• Adaptability, Versatility, Flexibility
It is a complex intelligent system that can adapt to different environment and task
requirements.

Breaking down the vastness of robot applications into distinct categories is definitely
nor straightforward neither it can be done in a unique way. However, robots can be
classified as Industrial Manipulators, which are robotic arms fixed on a static base, and
Mobile Robots, which vary from car like vehicles to drones and submarines.

Machines in those two fields confront very different challenges. While the important
feature of an industrial arm is accuracy and dexterity, a mobile robot focuses on locali-
sation issues and autonomy. Focusing on mobile robots, they can be further subdivided
to robots that interact with humans and those that do not.

15

Nowadays, robots tend to break out of the industries and be used increasingly often
in indoor environments. Thus, emanates the need to design intelligent robots that have
the ability to communicate with humans in a high level of abstraction. Providing this
ability to a robot, would result in an increased ease of use and in an easier acceptance by
the society, boosting the production of indoor commercial use of highly efficient mobile
robots.

This project tries to resolve issues that arise when mobile robots interact with hu-
mans. It is a Human-Computer Interaction system that gives the ability to the robot
to understand direction orders described in human language. It builds on existing tech-
niques used for mobile robot localisation and mapping in unknown environments, and
expands its capabilities by integrating the ability to move towards an abstractly prede-
fined target within the unknown environment.

The ultimate contribution of this project consists of two factors:

• The design of a pseudo-human language framework that feels human while being
understood by a robot and enables the high level Human - Robot communication.

• The description of the necessary components of a system that enables a robot to
execute the directions given in the pseudo-human language.

This thesis project is structured as follows: Chapter 2 describes previous work on
mobile robot localisation and mapping. Chapter 3 describes the objectives and the chal-
lenges encountered in the development of this system. In Chapter 4 a complete system
is designed from scratch to serve as a host for the innovation of this project which lies
in two key parts. Firstly, a pseudo-human language framework is designed to formalise
the human - robot communication. Secondly, a standard subsystem called the Navigator
is augmented to facilitate the new features. In Chapter 5 the functionality of the key
components of the developed system is demonstrated via a simulation that has been con-
tacted. Finally, in Chapter 6 the overall performance of the system is tested through a
set of carefully designed tests. Final remarks and future work are presented in Chapter 7

16

Chapter 2

Theoretical Background

2.1 SLAM

This chapter introduces the core component of a mobile robot moving in an unknown
environment called SLAM. A set of key features of SLAM systems is outlined and the
essential SLAM variations are described in brief.

2.1.1 Overview

During the last decades, a great attention has been focused on the solution of the
Simultaneous Localisation And Mapping (SLAM) problem by the mobile robotics com-
munity. It is the problem that “asks if it is possible for a mobile robot to be placed at an
unknown location in an unknown environment and for the robot to incrementally build a
consistent map of this environment while simultaneously determining its location within
this map.”[5] SLAM formulations have been implemented for indoor, outdoor, under-
water and airborne systems, each of them facing different challenges and difficulties. A
great amount of solutions has been proposed in the literature and SLAM can now be
considered as a solved problem.

Although it is not explicitly mentioned in the bibliography, each SLAM variant needs
a navigator to work properly. A Navigator is a system that produces the control signals
for the robot to move towards the next desired location at each time step. A great variety
of navigators have been designed in a strain to maximise the final quality of the SLAM
map. The effort so far has been focused on minimising the yet unseen map while keeping
the uncertainty in low levels.

As a basic subset of capabilities, a mobile robot should be able to move and perceive
its environment. Focusing on indoor, wheeled vehicles, one can consider movement as
wheel driving and perception as either combining, or using as a stand alone sensor one or
a combination of a laser sensor, a camera, an RGBD sensor (e.g. the KINECT sensor),
ultra-sound sensors, etc.

In order to create a map, the robot shall move within the world and take mea-
surements of the environment using its sensors. Moving changes the robot’s pose (i.e.

17

location and orientation). Determining the new pose of the robot after a move direc-
tion is executed, is not an easy task. The new pose is always prone to a significant
uncertainty due to external factors such as wheel slipping, air currents, inaccurate en-
vironment modelling, etc. In addition, the perception of the environment by the robot,
i.e. the measurements provided by its sensors, are noisy. Consequently, one of the main
hassles to cope with is the existence of noise. Modeling the system in a stochastic frame-
work in order to cope with the existence of noise, gave birth to the probabilistic SLAM
[4, 10]. Since, a variety of different probabilistic methods emerged, all of them using a
probabilistic filter as a kernel, to confront the noise issues. Namely, the most popular
ones are the Extended Kalman Filter (EKF), and the Rao Blackwellized Particle Filter.

The map is a vector that contains the robot’s pose and all other objects of the world.
As a rule of thumb, the different methods to solve the SLAM problem are distinguished
by the way they define and manipulate the world’s objects. The simplest way to define
an object is “The space occupied by obstacles, i.e. the positions of the environment that
are not accessible by the robot”. This leads to huge maps and computationally infeasible
solutions. More modern approaches tend to group these positions into sets that define a
bigger part of the space occupied by the obstacles. This is exactly what T. Bailey et al.
do in their scanSLAM solution [1, 2, 3] which is the method used as a base to implement
the contributions of this thesis as described above.

The SLAM process works as follows. A kernel (e.g. EKF or Rao Blackwellized) cre-
ates and maintains a map. It works in discrete time steps incrementally expanding and
improving the map. Two external systems are responsible to provide an observation and
a movement order at each time step. Using the current observation, the kernel updates
the map estimation in order to reduce its uncertainty. This means that in case that the
observation is of bad quality (i.e. we are pretty unsure that the position and the orienta-
tion of the observed object is correct), the current map should not be changed radically.
In other words, a kernel determines the importance of the new information according to
its uncertainty in order to update the map properly. Having the new, improved map in
hands, the second system called the “Navigator” computes the next desired pose of the
robot and provides a move order.

2.1.2 Key Components

Taking a deeper look in the components of a SLAM system, one can break them
down to an indicative required set. Obviously, the methodologies used differ from im-
plementation to implementation:

Observation Model
A robot perceives its environment using a set of sensors. An observation almost
never consists of the raw sensor data. Instead, a pre-processing of the sensor mea-
surements shall be conducted in order to produce an entity called Observation,
and provide it to the kernel. This “Observation” could be anything from a set of
laser data points to a set of fused multi-sensor data. Obviously, the kernel should

18

be properly formulated, utilising the observation model, so that it can use this
observation suitably.

System (Motion) Model
In order to identify the errors in the map, the kernel should have the ability to
compute an expected map, a Prediction. The robot should be able to answer the
question: “Given the current map and a move order, what should the world look
like when I move to that position?” Apparently, the kernel should be aware of the
structure of the robot, and use the move order to simulate its movement. It would
then compare the new world perception with the predicted one and use the result
to improve the map. Most advanced techniques (e.g. Particle Filtering SLAM), try
to avoid the errors induced by an inaccurate model, by avoiding to use one (see
Chapter 2.1.3). Instead, they create a set of hypothesis of the future map, and they
discard the bad ones later, if they realise that they are of low quality. However,
even this method, needs a mechanism to create the set of hypothesis in order to
produce plausible candidates of the map and increase the system’s efficiency.

Data Association
When the robot observes its environment at the next time step, it gets a set of new
data representing a portion of an object in the real world. It is of great importance
to be able to identify that the currently visible object, is already saved in the map
and that the robot has been here before. This will enable the kernel to decide
whether it should incorporate the new observation to the map as a new object
or correct the map appropriately. A detailed view of a simple data association
mechanism is described in Chapter 4.2.1. It is worth to note that data association
issues seem to be the Achilles heel of SLAM algorithms. If the data association
fails, then the input to the kernel, the “Observation”, is faulty and consequently the
results differ from the desired. It is extremely difficult to ensure the proper function
of data association, because it is done in real time, and it works on real world data.
However, techniques which manage to “forget” data association history, such as the
Particle Filters, make the system immune to faulty associations conducted in the
past, and thus, they perform better in practice.

Identification of Moving Objects
Both kernels being discussed assume that the map is static. As, moving objects
can not be a part of the map, it is of great importance that the observation does
not contain any currently moving object. Consequently, the system responsible for
raw sensor data pre-processing should reject an observation that contains moving
objects. A lot of work has been done in recognising moving objects while building a
map, not only in order to reject them from observations, but to track their motion
as well [14]. Focusing our attention on indoor environments such as offices and
homes, the moving objects of interest are mainly humans and thus, it is important
to identify and reject human walking patterns [13].

19

Object Removal
During the SLAM procedure, a lot of objects that seem to be static for a while, may
change position. For example, a chair might be moved to a different place. These
objects can practically not be classified as moving during the first observation
because they are static at that time. Thus, they are saved in the map. The SLAM
algorithm should be able to remove objects from the map that are not re-observed
near their previous position.

Exploration Strategies and Path Planning
As mentioned before, the robot must move in order to visit unknown places and
construct the map. A lot of effort has been put to design navigation algorithms that
not only maximise the visited areas but minimise the map’s uncertainty as well. A
Path Planner is responsible to design a path, and a Trajectory Planner produces
the control signals so that the robot follows the desired path. The whole process is
done in a way that the followed trajectory is optimal, in terms of distance, energy
consumption, motion uncertainty etc. (see Chapter 2.3). This thesis aims to enrich
the path planner capabilities in a way that the main purpose of the robot is not to
maximise the known map, but move towards a predefined target. This target could
lie in an unknown, not yet visited part of the map. The robot gets its orders which
consist of way-points such as door, corridor, staircases, etc. In order to identify
those way-points, the algorithm must characterise the contents of the map and
associate them with predefined object templates.

These essential features of the SLAM algorithm, are used either as parts of the
whole system or as stand alone sub-systems. Traditionally, the SLAM variations have
been named after the kernel used, although this is not a rule. The first successful SLAM
applications used the Extended Kalman Filter (EKF) as a kernel, while in more modern
variations the Rao Blackwellized Particle Filter managed to outperform it and it is
currently the kernel used by the state of the art algorithm.

2.1.3 Current State of the Art SLAM
The first successful steps towards a solution to the SLAM problem, were taken when

researchers started to formulate it in a stochastic framework. The genesis of the Prob-
abilistic SLAM resulted in the extensive use of the EKF as a kernel. The EKF uses
a motion and an observation model, both non-linear and it makes the assumption of
white, zero mean, uncorrelated, Gaussian motion and observation system noise (see
Chapter 2.2.2). It works in two steps, where it firstly estimates the expected map that
would result after the current control is asserted, and secondly it takes an observation and
improves the estimated map. A great variety of solutions has been proposed throughout
the years, and the EKF SLAM has prevailed for almost 15 years.

However, the EKF SLAM has two serious disadvantages that prevent its application
on large environments: it has quadratic complexity and it is very sensitive to faulty data
association. Although it has been the dominant SLAM solution for so long, it has been

20

recently outperformed by the uprising particle filters [8]. Especially, the most efficient
Rao-Blackwellized Particle Filter gave birth to the currently prevailing algorithm known
as FastSLAM. FastSLAM not only scales logarithmically with the number of Landmarks
in the map, but it is less sensitive on ambiguous data association, and it consequently
outperforms the EKF, especially in large environments.

Particle Filters

Particle filters make no restrictive assumptions about the robot’s dynamics, or the
structure of the environment. Instead, they treat the system’s state and the observations
as probability density functions (pdf). The conditional pdf p(xt|ut, xt−1) is called the
motion (or actuation) model and it is used to predict the State of the system (i.e. the
map containing the robot’s pose and all the known Landmarks). It assumes that the
current state xt depends exclusively on the previous state xt−1 and on the control that
has just been asserted ut.

However, the state xt is not directly observable. The observation zt is available in-
stead, which is a stochastic projection of the true state. It is produced by a stochastic
process, implemented by the observation (or measurement) model, which is given by the
conditional pdf p(zt|xt) The two models described above are usually highly geometric,
and they capture the whole structure of the robot generalising notions such as kinematics
and dynamics by introducing non-deterministic noise [11]. In contrast with EKF SLAM,
Particle Filtering SLAM can manage non linear models without the need of linearisation,
as well as non Gaussian noise models.

In order to use a Particle Filter for SLAM purposes, it is designed such as each
particle represents a candidate state of the map. The particles are updated according to
the law induced by the motion model. Each particle, a possible instance of the map, is
weighted according to the observation model which diminishes the improbable particles
and reinforces the most likely ones.

Unfortunately, although Particle Filters tend to provide more accurate results than
the EKF approach, they do not perform well when applied to high dimensional systems,
mainly due to dimensionality issues. To address this problem, a hybrid solution called
FastSLAM uses the Rao-Blackwellized Particle Filter as a kernel. It actually consists of
a Particle Filter to estimate the robot’s pose and an Extended Kalman Filter for each
Landmark, to estimate its pose.

FastSLAM

The Particle Filter is a very powerful tool for SLAM purposes. It is able to capture
any kind of robot motion dynamics and cope with noise models with no Gaussianity
assumption or any other imposed restriction. Sadly, a great expense has to be paid, in
matter of dimensionality and computational cost. However, taking a careful look at the
SLAM problem’s structure, one can see that the whole potential of Particle Filter is
actually not essential.

21

The Landmarks on the map are stationary, and as such no motion dynamics need to
be captured. The designer should only ensure that the best estimation of their pose is
provided. This, easier task, can be achieved by an inferior system that is on the other
hand cheaper to implement. This is the idea behind the Rao-Blackwellized Particle Filter,
used as a kernel by the FastSLAM Algorithm.

Along with the computational overhead reduction, many advantages emerge from
this implementation, which mainly affect data association and uncertainty reduction.
Each particle represents a different robot pose hypothesis, and data association is done
separately for each particle. In case of faulty association, for any kind of reasons, the
pose hypothesis (particle) will eventually be discarded through its weight decay.

Moreover, by cleverly implementing the filters, representing particles as binary trees
of Kalman Filters, the FastSLAM algorithm can reduce its complexity down to O(M logK),
where M is the number of particles, and K is the number of Landmarks. FastSLAM has
been demonstrated with up to 100,000 Landmarks, problems far beyond the reach of the
EKF [8].

2.1.4 scanSLAM
For the purposes of this project, an EKF SLAM variation (see Chapter 2.2.3) is

used as a base system. Tim Bailey et al. have described their EKF SLAM variation
called scanSLAM in their paper “Scan-SLAM : Recursive Mapping and Localisation
with Arbitrary-Shaped Landmarks” [1]. Of course, assembling a complex system such as
a SLAM algorithm is obviously not a simple task. Thus, they focus on the components
of their system in [2] providing clarifications and recommendations for improvement.
scanSLAM as described in the previous two papers is just a proof of concept of their in-
novative technique described below, and the components of their system are the simplest
possible. Finally, an advanced technique which tries to improve the covariance estima-
tion is described in [3]. The latter is not essential for this thesis project and it is not
furtherly discussed.

Please note that scanSLAM is used abusively throughout this project. It refers to
the SLAM variation of T. Bailey et al. exclusively and it must not be confused with any
scan-matching SLAM techniques which existed prior to it.

Basic Idea

The central idea in scanSLAM is to find sets of points in a laser sensor scan and group
them in entities called Landmarks. It is important to emphasise that the contribution of
scanSLAM is that no templates are used to define the Landmarks, but they are arbitrary
shaped segments of raw sensor data. These Landmarks should have some key properties
that would allow the algorithm to identify them when the site is revisited (recall the
“Data Association” requirement: Chapter 2.1.2). A local coordinate frame is assigned to
each Landmark to indicate its position and orientation (i.e. its pose).

Although the current state of the art SLAM algorithms use particle filters as kernels,
T. Bailey et al. chose to use the EKF, mainly because of the simplicity in which their

22

approach could be implemented in this framework. The scanSLAM approach is no differ-
ent than any other EKF-SLAM algorithm, except from the definition of the observation
model. Instead of defining an observation as a point of the laser scanner, the observation
is defined by a Landmark, which is represented, as far as the EKF is concerned, by its
local coordinate frame, i.e. its pose. Consequently, the observation model of the EKF
works on the poses of the Landmarks.

Thus, the SLAM “map” consists of the pose of the robot and the poses of the Land-
marks. This provides a few advantages in contrast to the naive approach of storing each
laser point in the map. Firstly, it reduces the size of the EKF state vector (i.e. the map)
since large sets of points are stored in groups. Secondly, it improves the overall behaviour
of the EKF because it treats the map points macroscopically. As a result, minor changes
on individual points do not affect the filter drastically.

2.2 The Extended / Kalman Filter (KF and EKF)

The extended Kalman Filter used as a SLAM kernel is a generalisation of the Kalman
filter which tries to address the filtering problem: Based on the available information
(control inputs and observations), estimate the system’s state (map) that optimises a
given criteria. This paragraph aims to demonstrate how the EKF could be formulated
in the SLAM framework to be used as a kernel. Firstly, the mathematical background of
the Kalman and the Extended Kalman Filters is outlined concluding to the EKF SLAM.

2.2.1 The Kalman Filter (KF)

KF Overview

The Kalman filter is a linear, discrete time, finite dimensional, time-varying system
that evaluates the state estimate that minimises the mean-square error (MSE) [9].

In order to use the KF, one has to define an observation model and a system’s model.
The KF then works in two steps: Firstly, the prediction step uses the system model and
the control inputs to estimate the next state of the system. After the application of the
control input, the innovation (filtering) step uses the new observation (passing the sensor
readings through the observation model) to improve the estimation of the system’s state.

The Kalman Filter works on the assumption that the two models are linear and
the noise distributions involved are Gaussian. It can be shown that if the above as-
sumptions apply, then the KF converges to a steady state, minimising the mean-square
error between the actual system’s state and the state prediction. The system’s state is
represented by a probability density function that, in the case that all the previously
described assumptions apply, is also Gaussian. This means that it can be described only
by the first and second moments (i.e. its mean and covariance).

23

KF Statement

System’s Model:

xk+1 = Akxk +Bkuk +Gkwk k ≥ 0 (2.1)

Observation Model:

yk = Ckxk + vk (2.2)

Where:

State : xk ∈ Rn SystemNoise : wk ∈ Rn

Control : uk ∈ Rm MeasurementNoise : vk ∈ Rr

Observation : yk ∈ Rr

JointCovarianceMatrix : E

[(
wk

vk

)(
wT
k vTk

)]
≜

[
Qk 0
0 Rk

]

Interpreting the above equations one can see that they represent a classic linear
discrete time system. At time k + 1, the state vector xk+1 is linearly dependent on the
state at the previous time xk, and on a control signal uk. The white, Gaussian, zero
mean noise vector wk is responsible to model the system’s error sources. Namely the
control vector uncertainty, the model (Ak) inaccuracy, and other external factors such
as wheel slipping etc.

The system’s state can not be measured directly. Instead, a linear combination of the
state vector’s elements, called the observation vector yk is available. The white, Gaussian,
zero mean noise vector vk models the observation’s error sources, videlicet mainly the
sensor’s uncertainty.

The Kalman Filter, uses the current state xk, the given control signal uk and the
observation yk in order to calculate an optimal prediction of the next state xk+1 of the
system. It approximates the system state with a Gaussian Probability Density Function,
which can be described only by its mean and covariance. Thus, the goal of the KF is to
compute the mean state and the covariance matrix at time k + 1 given all information
provided at time k + 1: x̂(k + 1|k + 1) and P (k + 1|k + 1) respectively.

24

KF Dynamics

To accomplish the behaviour described above, the Kalman Filter works in two cycles,
the prediction and the filtering cycle.

P(xk|Y k
1 , U

k−1
0) P(xk+1|Y k+1

1 , Uk
0)

P(xk+1|Y k
1 , U

k
0)

Prediction
Cycle

Filtering
Cycle

(2.3)

Where all probability density functions (pdf) are assumed to be Gaussians (P ∼ N),
and the sequences Y b

a , U b
a consist of the values of y and u respectively, from time a to

time b.
So, Equations 2.3 describe the KF dynamics as follows:

Using the pdf of xk given all observations until now (Y k
1) and all control inputs until the

previous time step (Uk−1
0), predict the pdf of the next time step. i.e. Compute the pdf

of (xk+1) given Y k
1 and all control inputs including the control currently being applied

(Uk
0).

As soon as a new observation is available, improve the prediction and compute the pdf
of xk+1 given all available observations (Y k+1

1) and all control inputs until now (Uk
0)

Step 1: Prediction i.e. evaluation of P(xk+1|Y k
1 , U

k
0) and P(yk+1|Y k

1 , U
k
0)

As mentioned before, all pdf are assumed to be Gaussian:
P(xk+1|Y k

1 , U
k
0) ∼ N (x̂(k+1|k), P(k+1|k))

P(yk+1|Y k
1 , U

k
0) ∼ N (ŷ(k+1|k), P(k+1|k))

This means that there is no need to compute anything but the means x̂(k + 1|k),
ŷ(k + 1|k) and the covariance P (k + 1|k) which are shown [9] to be given by the
Equations 2.4:

x̂(k + 1|k) = Akx̂(k|k) +Bkuk

ŷ(k + 1|k) = Ck+1x̂(k + 1|k)
P (k + 1|k) = AkP (k|k)AT

k +GkQkG
T
k

(2.4)

Step 2: Filtering i.e. evaluation of P(xk+1|Y k+1
1 , Uk

0)

It turns out that the new mean and covariance result from the correction of the
current ones as follows:
Filtered State Estimate = Predicted State Estimate + Gain * Error

25

KF Equations Summary

Prediction:

x̂(k + 1|k) = Akx̂(k|k) +Bkuk

P (k + 1|k) = AkP (k|k)AT
k +GkQkG

T
k

Filtering:

x̂(k + 1|k + 1) = x̂(k + 1|k) +Kk+1[yk+1 − Ck+1x̂(k + 1|k)]

Kk+1 = P (k + 1|k)CT
k+1[Ck+1P (k + 1|k)CT

k+1 +Rk+1]
−1

P (k + 1|k + 1) = [I −Kk+1Ck+1]P (k + 1|k)

Initial Conditions:

x̂(0| − 1) = x̄0

P (0| − 1) = Σ0

(2.5)

Remarks

1. The Kalman Filter is a linear, discrete time, finite dimension, time varying system
that uses the control and observation sequences, Uk−1

0 and Y k
0 respectively and

computes an optimal estimation of the state x̂(k|k) with respect to the mean
square error.

2. The system and the observation noise are assumed to be independent random
variables. Notice that they are Gaussians with E[wkv

T
k] = E[vkw

T
k] = 0

3. The conditional error covariance matrix P (k|k − 1) and the gain Kk are not de-
pendent on the observations Y k−1

0

2.2.2 The Extended Kalman Filter (EKF)

EKF Overview

The very strict linearity assumptions of the Kalman Filter make it useless in practice.
To improve that, the Extended Kalman Filter is formulated in order to introduce non-
linear system and observation models.

The fact that in practice, the system and observation models are not linear, violate
the assumption that the conditional pdf P(xk|Y k

1), P(xk+1|Y k
1) and P(xk+1|Y k+1

1) are

26

Gaussian. In this case, in order to evaluate the first and second moments of the non-
linear filter, the whole pdf has to be propagated, which is a heavy computational burden
[9].

The Extended Kalman filter gives an approximation of the optimal estimate. To
achieve this, the EKF linearises the system model around the current state prediction
x̂(k|k) and the observation model around the next time step prediction x̂(k + 1|k) and
it applies the KF on the linearised dynamics. Thus, the need to propagate the whole
non-linear pdf is avoided.

As a result, the EKF becomes a powerful tool that can be used in practice. It is
computationally efficient and provides estimations that are close enough to the real
state of the system. However, everything has a cost. It is important to note that,

1. there is no convergence proof (the EKF may diverge), and

2. the state predicted by the EKF is not optimal

EKF Dynamics

Generalising the KF, the EKF introduces the discrete time non-linear system and
observation models. At a given time step, the system state x is given by the non-linear
system model f(.) evaluated at the previous time step. The uncertainties are modelled
exactly as the KF through the zero mean, white Gaussian process w. The observation is
obtained similarly through the non-linear observation model h(.)

System’s Model:

xk+1 = fk(xk) + wk (2.6)

Observation Model:

yk = hk(xk) + vk (2.7)

Where:

fk(xk) : Rn → Rn

h(xk) : Rn → Rr

Procedure

In order to compute an estimate using the KF, the problem has to be formulated to
respect its assumptions. Thus, at each time step, the two models have to be linearised
around the current working point. Obviously, the current state is unknown, so the latest
prediction is used instead.

27

P(xk|Y k
1 , U

k−1
0) x̂(k|k)

linearise xk+1 = fk(xk)+wk around
x̂(k|k)

P(xk+1|Y k
1 , U

k
0) x̂(k + 1|k)

linearise yk+1 = hk+1(xk+1) + vk+1

around x̂(k + 1|k)

P(xk+1|Y k+1
1 , Uk

0) x̂(k + 1|k + 1)

KF

KF

Figure 2.1: Extented Kalman Filter dynamic concept

As illustrated in Figure 2.1, the EKF works as follows:

1. Linearise the system model xk+1 = fk(xk) + wk around the last state estimate
x̂(k|k)

2. Apply the KF prediction step to compute x̂(k + 1|k) and P (k + 1|k)

3. Linearise the observation model yk = hk(xk) + vk around x̂(k + 1|k)

4. Apply the KF filtering step to compute x̂(k + 1|k + 1) and P (k + 1|k + 1)

28

EKF Equations Summary

Prediction:

x̂(k + 1|k) = fk(x̂(k|k))
P (k + 1|k) = FkP (k|k)F T

k +Qk

Filtering:

x̂(k + 1|k + 1) = x̂(k + 1|k) +Kk+1[yk+1 − hk+1(x̂(k + 1|k))]

Kk+1 = P (k + 1|k)HT
k+1[Hk+1P (k + 1|k)HT

k+1 +Rk+1]
−1

P (k + 1|k + 1) = [I −Kk+1Hk+1]P (k + 1|k)

Initial Conditions:

x̂(0| − 1) = x̄0

P (0| − 1) = Σ0

(2.8)

Where:

Fk ≜ ∇fk|x̂(k|k)
Hk+1 ≜ ∇hk|x̂(k+1|k)

(2.9)

The Jacobians of the non-linear systems (see Equations 2.9) are responsible for the
linearisation of the models around the desired points.

2.2.3 EKF SLAM
The Extended Kalman Filter is formulated in such a way that is extremely convenient

to use for SLAM purposes. Notice that a mobile robot moves after a control signal u is
applied and perceives (observes) the surrounding world through its sensors. In order to
use the EKF as a SLAM kernel, it suffices to formulate the “map” as the EKF state and
the sensor readings as the EKF observation.

Storing the robot’s view (map) of the world as a state, the EKF is used to produce
the best possible estimate. Note that the “map” to be estimated includes not only the
objects of the world but the robot’s pose as well. Thus, all the “knowledge” of the robot
about its environment and its localisation within the environment is maintained in the
EKF state.

At each time step, the robot moves and computes the expected view of the world, i.e.
the new state based on the expected move, and the current map. As discussed before,

29

the actual move is almost never the same as the expected one because of a variety of
reasons such as, wheel slipping, inaccurate kinematic model, noise, etc. Fortunately, the
EKF takes care of that using the system model noise vector wk.

Then, the robot takes a snapshot of the world using its sensors, an observation. Using
the new provided data, it compares the new view of the world with the expected one.
Noticing that the objects of the world are static in respect of each other, it is obvious
that the main source of uncertainty in the map is the robot’s pose. This remark is crucial
in order to acquire some intuition on how the EKF works in order to localise a mobile
robot within a static environment. It actually, constantly fixes a bad estimation of the
robot’s pose with respect of a set of static objects.

The formulation of the EKF for SLAM purposes is not straightforward. Different ap-
proaches have been proposed, mainly to minimise the algorithm’s computational needs.
Some focus on the algorithm’s complexity [6] whereas others try to reduce the actual
size of the “map”. The later approach is what the scanSLAM is about, proposed by Tim
Bailey et al.

Last but not least, the production of the control signal is of great importance. The
robot should move with a purpose. Mainly, the effort made in the past, focuses on
maximising the known map while at the same time preferring trajectories that minimise
the robot’s pose uncertainty [12].

2.3 Navigators
This paragraph describes the system responsible for the robot motion. The so called

Navigator uses the map to produce the control signals for the wheels so that the robot
moves appropriately.

2.3.1 The need for a Navigator

Every SLAM implementation needs a Navigator in order to implement the general
exploration strategy. Throughout the years that researches struggled against the SLAM
challenge, the great problem has emerged. It is impossible to build a consistent map
without a good exploration strategy. Unfortunately, the trajectory followed by the robot
is crucial for map building as well.

Because the uncertainty of the robot’s pose increases while moving, the observations
tend to become unacceptably inaccurate. One of the best ways to cope with this problem
is to revisit a known place of the map. Re-observing the same object and associating it
with its previous position, makes it possible to improve the estimation of its real position.

A second, obvious reason that the exploration strategy is important for map building,
is the need to visit the unknown areas in an optimal way. Thus, a methodical way to
move through space is needed in order to visit as many places as possible moving as
least as possible.

Apart from the exploration strategy, the trajectory followed is extremely significant.
A mobile robot is a moving rigid body, and as such, the laws of physics apply to it.

30

The applied forces, its inertia and friction on the wheels are some of the elements indi-
rectly induced by the trajectory followed. These elements, greatly affect the robot’s pose
uncertainty and thus, the trajectory should be carefully designed.

To sum up, the two elements of great importance are both implemented by the
Navigator System:

• The Exploration Strategy
i.e. which areas and when they are visited.

• The Trajectory
i.e. which path will be followed and what the velocity of the robot will be at each
point of the path.

2.3.2 How it works
A navigator consists of two parts, a high level goal setting system called the “Path

Planner”, and a trajectory designer to move from goal to goal. The path planner is
responsible to choose the successive goals in order to implement the exploration strategy.

The navigator reads the current map, and computes the control signal that is respon-
sible to drive the robot to its next target. This control signal is e.g. for a differential drive
robot, the desired velocity of the wheels. The sequence of successive targets combined
with the velocity along this path defines the trajectory.

The navigators being used today, employ a utility function that gives a score to each
candidate next target. Maximising the utility function yields the best target to follow
on the next step. Consequently, the implementation of a navigator is highly dependent
on designing the appropriate utility function.

2.3.3 Utility Functions
B. Tovar et al. have described a set of characteristics that a good utility function

should have as a part of their project “Planning Exploration Strategies for Simultaneous
Localization and Mapping” [12]:

Re-Observe Landmarks
As referred before, re-observing Landmarks is crucial in order to improve the
estimate of their pose. A widely used technique known as “Loop Closure”, suggests
that the robot moves towards the unknown areas of the map for a while, before it
returns to a previously known place, to “close a loop”. There is a trade-off on how
long it shall move before it closes a loop, and how often should it return. Although
the loop closure technique mostly relies on the path planner, it is important that
the robot finally observes the Landmarks lying around. Thus, it should prefer
positions from which maximal number of Landmarks are visible, i.e. observable by
its sensors.

Visit New Areas
Maximising the visited areas of the map is not straightforward. The environment is

31

full of obstacles that shall be avoided and moving towards an unknown area requires
finding a path towards it. To achieve that, the robot shall be able to recognise the
boundaries of the known world and try to expand them. Consequently, it shall
prefer positions near the boundaries, that provide maximal views of unexplored
areas.

Minimise Localisation Uncertainty
The main source of the uncertainty of the robot’s pose that is controlled by the
trajectory followed, is inertia. It causes wheel slipping and decreases the motion
model’s credibility. In order to minimise the effect of Inertia, a good navigator
should penalise rotation and prefer trajectories along straight lines. Moreover, it
should reduce start and stops as much as possible, since acceleration and deceler-
ations tend to increase the robot’s position error.

Minimise Power Consumption
Last but not least, every implemented system has to be as efficient as possible. It
is obvious that decreasing the total path travelled improves the power footprint of
the robot.

They designed a utility function that works in the framework of their Bayesian based
SLAM implementation and integrates all of the features above. Furthermore, positions
near walls and objects are discarded because many sensors become blind when the ob-
jects are very near. Their utility function optimises criteria such as information gain,
uncertainty reduction, etc.

For the purposes of this project, the focus is crowned towards the path planner.
Thus, a much simpler form of the proposed utility function is used as a base, in order to
design the appropriate navigator. Some of the features are discarded for simplicity and
they can definitely be re-introduced in an improved version of this system.

32

Chapter 3

Topic Description

3.1 Objectives

As robots become more and more popular in indoor environments, rises the need
of them interacting with humans. Developing intelligent systems that can communicate
with humans in a smooth manner is of high importance when it comes to the robot’s
penetration and acceptance from the society. This project tries to make a step towards
this direction, by providing a mobile robot the ability of navigating through unknown
environments following directions described in human language. The directions are given
in a form of waypoints followed by orders just like humans describe this kind of directions.
For instance, “Go straight until the end of the corridor, and turn left.”

3.2 Innovation

In order to achieve the described objective, existing techniques are put in practice.
As described in Chapter 2.1, the capability of moving in an unknown environment has
been already studied thoroughly and a great variety of SLAM algorithms are available.
However, current SLAM systems’ primary objective is to create maps with the highest
quality possible. To achieve that, they tend to force the robot to navigate along optimal
paths in terms of map quality.

This project treats SLAM in a completely different way. The main goal is to nav-
igate the robot towards a target described in human language through an unknown
environment. Whether a good map is constructed in the meantime or not, is not of great
interest. Working towards this direction, two novel elements are introduced.

• Pseudo-Human Language Framework
An interface that connects human expression of navigation instructions and the
robot’s comprehension has been designed. This Language forms a framework to
express directions in a way that is familiar to humans while being easily compre-
hended by a machine.

33

• Navigator Augmentation
A Navigator is designed in a way that allows the robot to move towards the way-
points given and execute its directions. Special care has been taken so that if the
robot has no directions in hand, the navigator would work as if it was executing a
classic SLAM algorithm.

3.3 Challenges
Executing tasks described in the pseudo-human language imposes some requirements.

The robot shall be able to identify and move towards the given waypoints. To achieve
that, an appropriate SLAM system has to be used as a base, which must inevitably ac-
commodate entities that can represent waypoints. Thus, the proposed solution is limited
on using only SLAM systems that use landmarks to represent whole world objects.

The next step is to link these landmarks to the waypoints given in the directions. A
tagger system has to be designed that can recognise objects in the world and identify
them in the way a human would do e.g. “door”, “chair” etc.

Changing a navigator so that its main goal is to drive the robot towards a target
inflicts the side effect of reducing the quality of the resulting map. Designing the navi-
gator so that the whole procedure yields the best possible map along the followed path
towards the target is a main concern.

34

Chapter 4

Analysis and Design

4.1 Problem Statement

The following paragraph describes the problem confronted by this thesis project and
outlines the main issues that the solution copes with.

4.1.1 Goal

The goal of the system to be implemented is to provide the ability of moving towards
an unknown predefined target, to a mobile robot. The target should be described in a
pseudo-human language. The basic requirements of the system is that the mobile robot
has the appropriate sensing equipment that allows it to create and identify landmarks
in its environment. For instance, a laser scanner could be used to create the landmarks
and a camera could be used for visual identification.

The robot should finally be able to pass the test described below. It should be placed
in an unknown indoor environment (office) given the instructions “Go to the third office
on your right”

Notice that the goal is not described in a global coordinate system and that the robot
has no map in its disposal.

4.1.2 Key Features

In order to achieve the described goal, a robot should possess two key features:
Self positioning in an unknown environment and Interpretation of the pseudo-human
language in the context of the landmarks observable in the environment. Here, it is
important to clarify that the language processing part of the pseudo-human language
analysis is out of the scope of this project. Instead, the target is to design a system with
the ability to comprehend its environment.

35

SLAM

Firstly, it should be able to move in an unknown environment, while incrementally
building a map. Thus, a SLAM (see Chapter 2.1) variant is used as a base system to
provide the crucial ability of the environment perception. However, while the classic
SLAM approach forces the robot to explore the world, this project aims on driving the
robot towards a target. Consequently, information retrieved from the map is used by the
Navigator to determine the robot’s path.

Object Map

Secondly, the robot should be able to “understand” and execute the pseudo-human
language.

In order to achieve that, the robot should have the ability of labeling the objects
of the world that have been stored in the map, with a tag from a vocabulary. This
vocabulary is defined by the pseudo-human language, and it consists of a set of crucial
world object categories such as door, desk, chair, etc. It should be able to identify and
tag the objects of the world in order to create a map of objects and use it to execute the
navigation commands.

As one could easily understand, the SLAM and the Navigator systems are tightly
connected. Thus, the right choice of a SLAM and Navigator system is of great importance
in order to implement the desired system.

4.1.3 Implementation Overview

As mentioned above, a great variety of SLAM implementations exists, each one with
its unique advantages and disadvantages. However, there is one that best fits the purposes
of this thesis project. scanSLAM is a SLAM variation formulated by Tim Bailey et al.
[3, 2, 1] This method uses a laser sensor as the main environment perception instrument.
It extracts segments of the laser readings and treats them as “Landmarks” positioned
in the map. Therefore, a map of Landmarks is maintained during the SLAM process.
Consequently, one can easily see how convenient this is for a new system that tries to
link the objects of the environment with a tag.

In this thesis project, the scanSLAM is used as a base system. Attached to that, a
vision system (e.g the KINECT sensor) and an offline trained pattern recognition system,
could be used to label the Landmarks using a tag from a predefined vocabulary.

Having these Landmarks available, a Navigator designed by B. Tovar et al. [12] is
augmented in order to design optimal paths that lead to the desired target.

The following analysis and design is organised in two distinct phases. Firstly (Anal-
ysis), an abstract description of the system’s components shapes the big picture of the
proposed solution. Alongside the first phase, a bunch of alternative techniques are pro-
posed aiming on improving the overall result. Phase two (Design) clarifies how each
component is actually implemented by introducing all the mathematical background
and the required details.

36

4.2 Analysis
The algorithm is used to control a mobile robot equipped with a laser distance sensor

as the primary perception instrument. Any computation conducted is done in discrete
time steps. At each time step, the robot moves, takes a scan, updates the map and
computes a new move direction.

As soon as a new laser scan is available, it is segmented into clusters. Each cluster
is tested to determine whether it is good enough to form a Landmark. The Landmarks
resulting from the current scan, form the set of current observations and they are checked
one by one. If the Landmark was never seen before, it is a new observation and thus,
a new object in the “map” is created. However, if it is a known Landmark (revisited
object), the algorithm determines which point in the “map” it corresponds to (Data
Association) and computes the new observation’s pose so that the EKF takes it from
this point on.

4.2.1 scanSLAM Components
The key components of the scanSLAM base system illustrated in Figure 4.1 are

explained in an abstract sense below. The exact detailed analysis following, clarifies the
actual implementation of those compontents for the purposes of this project.

Segmentation
A laser scan consists of a set of points called the PointCloud. This PointCloud rep-
resents the world in front of the robot. Each point signifies space not accessible by
the robot. One object of the real world (e.g. a wooden box) is represented by more
than one points. The segmentation procedure tries to find groups of points that,
may or may not represent real world objects, are “easily” recognised throughout
scans.

Break into Clusters
The simplest way to extract clusters from a PointCloud is to choose successive
points that are close enough to each other. Thus, thresholding the distance
between successive points yields a set of clusters within a Pointcloud. If the
points are stored in Polar Coordinates (i.e. Range and Angle) then a simple
thresholding on Range and Angle will provide the same result.

Choose Clusters to form candidate Landmarks
Not all the clusters are appropriate to form Landmarks. A Landmark has to
be unique and easily identified. In order to get a measure of how informative a
Cluster is, a metric called the Object Saliency Score (OSS) [2] has been used.
It shows how unique a Cluster is. For example a wall, which is represented
by a straight line, has a smaller OSS than a box, which is represented by a
corner. The OSS is measured as follows: Compute the Cluster’s covariance
matrix R and the OSS = 1

trace(R) . It is worth to note that, the more regular
the points are, the more R resembles the identity matrix I. On the other

37

Segmentation

Data Association

PointCloud Alignment Validation Gating

Landmark
Augmentation

Candidate Landmarks

Associated Landmark La

Transformed Observation Lo

Figure 4.1: scanSLAM Components

38

hand, the more random the points are, the the more R differs from I. Thus,
the OSS acts as a measure of irregularity. When a Cluster passes the OSS
test, a local coordinate frame that represents its pose is assigned on it. This
local frame is located at the centroid of the PointCloud of the Cluster and it
is rotated by the current robot angle (θv degrees).

Data Association
Once a Landmark is observed, the robot must determine whether it has seen it
before, and which one from the list of the known Landmarks it is. To achieve
that, the candidate Landmark is compared with each of the known (previously
visited) Landmarks forming one testing pair {o,xi} at a time, where xi is the pose
of Landmark i being tested, and o is the pose of the current observation being
associated. In order to decide that the two Landmarks of the pair are identical (i.e.
they are two instances of the same Landmark), the pair shall pass the innovation
gate. When the Data Association procedure is finished, a testing pair wins, and
associates the observation’s Landmark Lo with one of the candidate Landmarks,
say La.

Innovation Gate
The primary goal of data association is to determine whether the two Land-
marks represent the same space in the world. The easiest way to do that is to
compute the distance between the two Landmarks poses, defined as the error
e = ∥xi−o∥ However, if two different objects of the real world are positioned
close to each other, the error e metric gives rise to ambiguous associations. To
avoid that, the uncertainty of the pose of the Landmark has to be taken into
account. The more trustworthy the information about the Landmark’s pose,
the more accurate the error e calculation is. Thus, normalising the error by
the pose covariance norm, which is a measure of the certainty of the pose of
the Landmark, a better metric is obtained. This metric is called Normalised
Innovation Squared (NIS) and it is defined as follows: NIS = e

∥Pii∥ where Pii

is the {i, i} 3x3 sub-matrix of the EKF covariance matrix P , which represents
the covariance of the ith Landmark’s pose.

PointCloud Alignment
Although the two Landmarks Lo and La may match, they are usually slightly
displaced in relation to each other. Computing the affine transform (i.e. the rigid
body translation and rotation) between the two Landmarks, provides two facilities.
Firstly, a validation gate shall be passed after aligning the two PointClouds to
ensure the matching is acceptable (Validation Gating). Secondly, the alignment is
essential in order to formulate the observation in the way demanded by the EKF
to proceed.

Find Affine Transform
The Affine Transform between the observation and the candidate Landmark
PointClouds, signifies how the candidate Landmark’s PointCloud should be

39

translated and rotated in order to optimally match the observation’s Point-
Cloud. Videlicet, to minimise the Mean Square Error (MSE) between them.
A well known, efficient enough algorithm that works on PointClouds is the
Iterative Closest Point (ICP) algorithm. The ICP algorithm associates each
point in the source PointCloud with its closest point in the target PointCloud
and finds the translation and rotation needed to minimise the MSE between
the associated points. Then, the source PointCloud is transformed according
to the result yielded. After a user defined number of iterations, the algorithm
provides its output, the final transform. The new observation pose needed
by the EKF is provided by transforming the pose (i.e. the local coordinate
frame) of La according to the computed affine transform.

Cope with Rectilinear Objects
The Data Association procedure is not a simple task. Especially, in the cases
where the robot’s pose estimation is extremely uncertain. As a result, many
issues tend to rise, particularly in large scale environments, always according
to the SLAM application. One of those special issues is constituted by the
rectilinear objects commonly found in an office environment. When visiting
objects whose opposite sides have similar shapes, such as boxes, walls, etc.
from different angles, there is the potential to inadvertently align the opposing
surfaces. A solution for this problem has been devised by T. Bailey et al.
described in [1], which involves the recording of the angle order of scan points
in the robot’s coordinate frame (the coordinate frame from which the scan
was taken).

Validation Gating
Before accepting Lo as a valid observation, it has to pass through a much stricter
test than the primary data association procedure, called the Validation Gate. Be-
fore applying the validation gate, La is transformed using the computed affine
transform forming La′ . Thus, the PointClouds of La′ and Lo are aligned. The Val-
idation Gate consists of two parts: Firstly, a shape matching gate and secondly, a
threshold on the Mahalanobis Distance between the pose of Lo and La′ .

Shape Matching
Passing the Innovation Gate ensures that the Landmarks in a testing pair
imprint the same space of the real world. The next step is to check whether
they represent the same object. Consequently, the shapes emerging from the
PointClouds should be checked for dissimilarities. It is crucial to emphasise
that two Landmarks that represent the same object of the real world are not
necessarily identical, but they may have two completely different PointClouds.
This happens for a bunch of reasons such as, they might represent the object as
seen by two different angles, they might illustrate different portions of it, the
laser readings do not measure the same exact point each time. As a result,
it is impossible to compare two Landmarks point by point, but a different
method is used instead. The shape matching gate links the two PointClouds

40

point by point. Next, it calculates the percentage of the points that are close
enough, i.e. the percentage of the distances that do not exceed a threshold.
Thresholding this percentage yields whether the shape match criterion is met
or not.

Mahalanobis Distance
The Mahalanobis Distance (M.D.) is used to provide a measure between the
two Landmarks treated with a stochastic method. If the information about
these two poses is inaccurate, then the M.D. tends to increase, favouring the
certain (good) measurements. It is the norm between two points weighted by
the covariance between them: MD2 = (o−a’)TS−1(o−a’) where o and a’ are
the pose’s of the observation Landmark and the aligned associated Landmark
respectively. Noticing that the observation is obtained from the robot’s pose,
the covariance involved in the computation described above is the covariance
between the robot and landmark La. This is stored in the EKF 3x3 covariance
sub-matrix {1,a}, which means that S ≡ P1,a.

It is crucial to note that, if Lo fails the Validation Gate, then La should be un-
changed throughout all the structures of the algorithm. Neither its pose, nor its
PointCloud should be changed, but they should remain as they wore before the
observation. However, if the validation is successful, then the new observation for
the purposes of the EKF is given by the transformed associated Landmark’s pose
(a’)

Landmark Fusion
When a place of the world is revisited, hopefully a testing pair representing it
passes the validation gate. In this case, two instances (i.e. two Landmarks) of the
same object are available. Thus, there exist the demand of fusing these structures,
and maintain only one containing all the useful information. The valid testing pair
consists of the observation and the associated Landmark Lo and La A Landmark,
in the classic scanSLAM version discussed here, holds two crucial pieces of infor-
mation: a PointCloud and a pose. The EKF uses the PointCloud of Lo to produce
the observed pose a’. Then, a’ is used by the EKF in order to consistently fix and
maintain the pose of La. Consequently, what remains to the designer is to devise a
way to maintain the best possible PointCloud for La, in order to achieve the best
results for future re-observations.

PointCloud Fusion
After alignment, the PointCloud fusion is straightforward. The two Point-
Clouds are matched together (see Figure 4.2), and the easiest way to fuse
them is to append the PointCloud of Lo on the PointCloud of La. The only
problem here is that the resulting PointCloud keeps increasing after each
observation. A way to solve this, is DownSampling.

41

Figure 4.2: PointCloud Fusion

DownSampling
In order to confine the size of the PointCloud in some desired limits, some of
its points have to be discarded. The best way to apply DownSampling is not
profound. Discarding points from regions with high density, choosing “noisy”
- low quality points, or just throwing away every second point are some of
the candidate design decisions that are taken for reasons of computational
efficiency and performance.

4.2.2 The Simple scanSLAM Algorithm

Using the scanSLAM algorithm in its simplest form, a robot creates a consistent
map of its environment. T. Bailey et al. have proposed a great variety of methods to
improve its performance throughout their three papers [1, 2, 3]. For the scope of this
Thesis project, a very basic implementation is enough in order to create an “acceptable”
map. The real value of scanSLAM to this project is the Landmark notion which allows
for treating real world objects as entities.

Algorithm 1: The Simple scanSLAM Algorithm
repeat

Initialise Structures
scan ← Read_Laser()
cand_land ← Get_Candidate_Landmarks(scan)
for cand in cand_land do

L ← Associate(cand, All_Landmarks)
if L then

L_alinged ← Align(L, cand)
if Validate(L_alinged, cand) then

Append(observations, L_aligned)
else

map ← EKF_Add_Landmark(cand)

map ← EKF_update(control, observations)
control ← Navigate(map)
Robot_Move(control)

until Forever

The tests supposed to be done, such as the Validation Gate, Shape Matching, etc. are

42

embedded in the pseudo-functions for simplicity. Moreover, the indispensable navigator
produces the control commands in a way that maximises the known map while reducing
its uncertainty (see Chapter 2.3).

4.2.3 From scanSLAM towards a predefined target
A pseudo language has to be designed, in the framework of which the target of the

robot would be described. Having this target in hand, a high level goal setting system
(a path planner), will be responsible to produce a sequence of goals to be achieved by
the robot. For example, if the target is the “third office on your right” then the three
goals would be “go to the nearest door on your right”, three times. To achieve that, the
meaning of the word “door” has to be familiar to the robot. Moreover, it should be able
to extract spacial relationships using the map in order to understand what a right door
is, as well as having the ability of going there.

In the scanSLAM framework, two components are essential to implement this kind of
behaviour. Firstly, Landmark tagging according to their signification would provide the
understanding of the words in the pseudo-language. This can be done using a pattern
recognition system, operating on visual data. Secondly, appropriate augmentation of the
navigator should provide it the ability to wisely utilise those tags and produce move
directions to drive the robot towards the next goal each time.

4.2.4 pseudo-human Language Framework
The directions given to the robot should be described in a language that should feel

human while being understood by the robot. The Language designed here aims to be
the link between the human language and the machine code. Future extensions of the
system could use a pre-processing system to interpret directions given in real language
to this pseudo-human form. Special effort has been put in order to develop a general
outline, so that it can be used for diverse systems such as drones, submarines etc.

This language is constructed using two components: “Targets” (T) and “Orders” (O)
which combined together can describe a direction order. A Target is a set containing a
Landmark, the target’s achievement requirements and a set of restrictions. For instance,
in order to regard a chair as visited, the robot should get 0.5m apart whereas to visit a
room’s corner, it suffices to go as far as 1m away. Moreover, the robot may be allowed to
pass through an open door, or even open the door itself. The Order signifies the actions
that should be taken by the robot when it reaches a Target. Each order is stated in
an abstract way, e.g. “go through the door” and it is accompanied with a routine that
implements the order.

Combining Targets and Orders makes it possible to express directions in a way similar
to how humans do, connecting characteristic points of the route with the appropriate
actions. Formulating the language in the simplest possible way, a sentence is of the
form described by the FSM of Figure 4.3 The robot starts from its current position,
and executes one or a sequence of targets followed by one or a sequence of orders. This

43

Tstart O

Figure 4.3: The Language Grammar

pattern may be continued infinitely and the robot is allowed to finish either on a Target
or on a Order.

Some examples of valid patterns created by the FSM are shown below:

T −O − T − ...− T −O − T

T −O − ...−O − T

T −O − ...−O

Noting the targets with bold, the structure described above can be used to demon-
strate how the simple example of ”Go to the second door on your right” could be ex-
pressed:

Here− rDoor− rDoor− go_through

However, this language can describe more complex directions. For example, a drone
could be programmed to perform acrobatics:

Here− go_to_direction(D)−Window− go_trough− reverse_loop− go_through

It is crucial to emphasise that the Language only describes the sequence of targets
that have to be achieved, not the way of doing that. It can be thought as explicitly fixing
some of the points of the path that has to be designed. There is still the need to design the
trajectory between consecutive targets, a process carried out by the navigator. Several
issues arising in real applications such as inability to recognise one of the Targets, the
need of “Loop Closing” (see Chapter 2.3.3), etc. must be confronted by the navigator, not
the target setting language. Moreover, the language outline described here is extremely
versatile so that it provides the ability to the designer to fit a custom made language to
each application.

In order to design a custom language for a system, it suffices to define the Target
vocabulary and the feasible Orders, an example of which is illustrated in Figure 4.4. The
vocabulary is strictly connected with the Tagger subsystem, since the Targets have to be
recognisable by the system. Once the list has been constructed, the several attributes of
each Target should be described. For instance, when a Target is considered to be achieved,
what are the available actions of the robot on that target, or anything relevant to the
specific application. The Orders list emanates from the robot’s features and capabilities.

Each order is accompanied with a stand alone routine, completely independent from
the navigator, that has to be executed as soon as the target is achieved. For example,
once the robot has arrived next to a door, thus a Door Target has been achieved, an

44

Targets Orders
Identifiers Tags

Right Here knock
Left Corner ask_entrance_permission
Green Door enter_room
Big Box go_straight
Auckward Stairs make_about_turn

Desk go_trough
reverse_loop

Figure 4.4: Language Design

order could be “go_through”. In this case, the appropriate routine is responsible to do
the required actions (open the door if it is closed, align the robot in front of the door,
move and enter the room) to execute the order. Once the routine is finished the navigator
takes charge again.

Taking the intelligence of the system to the next level, the custom language could
provide the ability to construct more complex sentences. Consequently, well known tech-
niques from the fields of Information Technology and Programming Languages can be
exploited to construct more complex orders and more sophisticated behaviour.

From the robot’s point of view, two crucial tasks have to be executed. Firstly, it
should be able to identify each observed Landmark in the map and assign a Tag on it.
Secondly, it has to link the desired Target to an existing Landmark.

4.2.5 Tagger

The tagger system is exclusively responsible for characterising the Landmarks by
assigning a Tag (see Figure 4.4) on each one. Tagging the Landmarks helps the robot
to make sense of the world. The difficulty level of this task could vary from easy to
extremely complex, always depending on the language vocabulary.

A pattern recognition system may characterise each Landmark assigning a Tag from
the vocabulary, as well as provide vital information on how confident it is about this
identification. A visual pattern recognition system could prove to be very useful for this
purpose. However, combined sensor information could be utilised for more difficult tasks.

It is extremely important for the whole system to work properly that the robot can
satisfactorily comprehend its environment. Consequently, great effort should be put in
the design of a good tagger. Not only great variety of techniques has been proposed
for 3D objects identification [7], but there exist SLAM algorithms that are based on
Landmark characterisation [12].

45

4.2.6 Target Scouter
The Target scouter is responsible to decide which of the known Landmarks is the

desired Target to chase.
To achieve its purpose, this system may employ a variety of techniques. For instance,

spatial relationships information could be extracted from the map in order to decide
whether a door is either on the right or on the left. Moreover, coupling the Tagger with
the Scouter could provide vital information to achieve difficult tasks such as identifying
a door as “auckward”. Finally, any other available sensor could be used to uniquely
characterise a Landmark. For instance, the door of the copy-machine room could be
recognised by elevated noise levels.

Obviously, the scouter’s complexity extremely depends on the Language’s vocabulary.
The feasibility of this task is not evident as the vocabulary grows and this shall be of
main concern when designing a new Language for a given project. Further analysis must
be conducted in this direction, to prove that any combination of {Identifier, Tag} can
be correctly recognised and linked to the correct Target by the scouter.

4.3 Detailed Design
For the purposes of this thesis project, a simple system is designed to present an

outline of a possible solution. This system will be referred as Landmark Characterisation
scanSLAM (LCscanSLAM). In this chapter, all the subsystems of “LCscanSLAM” are
designed and described in detail.

4.3.1 Discussion
The high level purpose of this system is to provide the ability to a mobile robot to

follow direction orders described in a pseudo-human language. In order to achieve that, to
begin with, the robot should be able to navigate itself in an unknown environment. This
enforces the use of a SLAM system as a base, which as described before (see Chapter 2.1)
is composed of three subsystems: the Observation producing system, the Navigator, and
the Kernel. Traditionally, the Navigators aim to drive the robot towards the unvisited
areas of the map. This project aims to design a Navigator that would drive the robot
towards the desired target.

The following design utilises scanSLAM (see Chapter 2.1.4) as a base system because
of the very useful way it defines the “Landmark” entity and the ease of its implementa-
tion. Fortunately, it is not the only system that the new method is applicable on. More
complex systems such as this used by B. Tovar et al. [12] could be used instead. The only
premise imposed is that the system manipulates an entity similar to the “Landmark” so
that the system is a able to tag it as one of the “targets” of the pseudo-human Language
as described in the following chapters.

Like any SLAM solution, this system is composed by three parts. The system respon-
sible to produce the observations, the system that maintains the map, and the system
that decides where should the robot go at the next step. The first one is a scanSLAM

46

xG

yG

xvyv
θv

xL2yL2
θL2

xL1yL1
θL1

xL3yL3
θL3

Figure 4.5: Map and Landmark Pose Frames

variation, the second one is an Extended Kalman Filter Kernel and the third one is a
cooperation of the pseudo-language, the tagger and the navigator.

All subsystems of “LCscanSLAM” are designed in the most basic version possible.

4.3.2 scanSLAM

A basic SLAM version is implemented based on the methods described by T. Baily et
al.’s scanSLAM [1, 2]. The crucial aspect that makes scanSLAM suitable for this project
is the use of Landmarks to form the SLAM map. Thus, any divergence from the classic
scanSLAM is allowed as soon as it does not interfere with the Landmark entity.

The robot is a two wheel vehicle that moves in the environment and takes scan
measurements. As illustrated in Figure 4.5, a local frame attached on the robot signifies
its pose xv ≜ [xv, yv, θv]

T and localises the robot in the world. A segmentation procedure
yields the Landmarks. The pose of the vehicle at the time when the scan is taken provides
an indication on the Landmark’s poses. Specifically, the frame of each Landmark is
attached on the centroid of its cluster (in global coordinates) rotated by θv degrees.

The plan described in Chapter 2.1.4 is followed in order to implement a base SLAM
system for this project. Around the basic scanSLAM, the Landmark Characterisation
pattern recognition system (the Tagger), works to provide the augmented Navigator
with the necessary information. What follows is a clarification of the applied techniques.

47

Algorithm 2: The LCscanSLAM Algorithm
Input: Directions described in pseudo-Language
Initialise map
next_direction ← Get_Next(Directions)
repeat

scan ← Read_Laser()
{cand_land, free_edges} ← Get_Candidate_Landmarks(scan)
Tag(cand_land)
for cand in cand_land do

L = Associate(cand, Get_All_Landmarks(map))
if L then

L_alinged ← Align(L, cand)
if Validate(L_alinged, cand) then

Append(observations, L_aligned)
else

map ← EKF_Add_Landmark(cand)

map ← EKF_update(control, observations)
{control, goal_reached} ← Navigate(map, cand_land, free_edges,
next_direction)
if goal_reached then

next_direction ← Get_Next(Directions)
Robot_Move(control)

until next_direction == None

Segmentation

Break into Clusters
A laser scan consists of an array of range measurements paired with their
corresponding angles. The range values are the distances of the points from
the laser sensor mounted on the front of the robot. The clustering is done
simply by thresholding on the distance of successive points. Thus, a cluster is
a set of successive points whose distance does not exceed a threshold. The sets
of successive points between the clusters are by definition the free edges used
by the Navigator in the following sections (Chapter 4.3.4). Consequently, as
illustrated in Figure 4.7 after the processing of each laser scan a set of segments
and a set of free edges are available.

Form candidate Landmarks
Each segment forms a candidate Landmark that is put through several tests.
Before the next processing phase begins, the coordinates of each segment are
transformed to cartesian expressed on a local frame attached at the centroid
of the cluster as illustrated in Figure 4.8 This procedure is done according to

48

Segmentation

Break into Clusters

Choose Quality Land-
marks (OSS)

Data Association

Tag Discrimination

Innovation Gate (NIS)

PointCloud Alignment

Find Affine Transform
(ICP)

Validation Gating

Frame Matching
(MD)

Shape Matching

Landmark
Augmentation

PointCloud Fusion

DownSampling

Candidate Landmarks

Associated Landmark La

Transformed Observation Lo

Figure 4.6: scanSLAM Components

Clusters
Free Edges

yr

xr

Figure 4.7: Candidate Landmarks and Free Edges

49

r
θs

xr

yr

xl

yl
Oc

Figure 4.8: Transforming to Cartesian Coordinates

xL
yL

Oc
θv

Figure 4.9: Landmark’s Pose Frame

Equations 4.1 and 4.2 The points expressed on the local cartesian frame l
constitute the PointCloud of the candidate Landmark: PCL ≡ {(xil, yil)}.(

xl

yl

)
=

(
rSθs − xc
−rCθs − yc

)
(4.1)

Oc ≡
(
xc
yc

)
≜ 1

n

n∑
i=1

(
xi
yi

)
(4.2)

Then, the frame that represents the pose of the Landmark is attached at its
centroid Oc with rotation equal to the robot’s angle θv at the time of the scan
as illustrated in Figure 4.9. Thus, the landmark’s initial pose is given by:

xL ≡

xL
yL
θL

 ≜

xv + xc
yv + yc

θv

 (4.3)

Choose quality Landmarks
Next, the candidate Landmarks are tested to find out how unique they are,
i.e. compute their Object Saliency Score (OSS).

OSS =
1

trace(R)
(4.4)

Where:
R = cov(PCL)

50

xLiyLi
θLi

xLjyLj

θLjl

NIS1

xLiyLi
θLi

xLjyLj

θLjl

NIS2

Figure 4.10: Normalised Innovation Squared

The Landmarks with OSS lower than a threshold are rejected.

Data Association
Each of the candidate Landmarks is checked over the Landmarks in the map to
find whether it is a new one or if it has been observed in the past. Symbolising the
Landmark of the map as Li and the shortly observed Landmark from the candidate
set as Lo, a testing pair is formed {Lo, Li} or by their poses {xo,xi}

Tag Discrimination
Assuming that the Landmark in the map is always correctly tagged, a prelim-
inary test rejects the association if the two tags disagree. This is a very strict
restriction, but it ensures that the robot moves towards a particular target,
since the tags of the stored Landmarks are not allowed to change. A different
approach could allow to correct a Landmak’s tag according to the Tagger’s
score if an association is otherwise successful. However, this would require a
more sophisticated path planner.

Innovation Gate
The Normalised Innovation Squared (NIS) measures how close the two frames
are taking account of the uncertainty as well, as illustrated in Figure 4.10
where NIS1 < NIS2

NIS =
∥xi − xo∥
∥PLi∥

(4.5)

where PLi is the 3x3 sub-matrix of the EKF map covariance matrix P , which
represents the covariance of the ith Landmark’s pose.
If there is no Landmark in the map with NIS lower than a threshold, then Lo

is considered as a new observation and a new Landmark is initialised in the
map. In the opposite case, the Landmark Li with the lowest NIS is associated
with Lo, and from now on it will be notated as La

PointCloud Alignment

Find Affine Transform
After the association, the new observation has to be formulated in the EKF

51

La

Lo

La′

Lo

Figure 4.11: New Observation for the EKF

framework. Specifically, using the new observation, the augmentation of xa
(the pose of La), has to be determined. Notice that xa comes from the current
prediction of the map and so it signifies where the robot thinks that the
Landmark is. Thus, computing the difference between the perception of the
world and the new observation provides the necessary new information to the
EKF to produce a better prediction.
The Iterative Closest Point (ICP) algorithm provides the rotation and the
translation needed to be applied on the PointCloud of La in order to best
match the PointCloud of Lo as illustrated in Figure 4.11 Applying it on the
pose of La yields the new observation. Equation 4.6 describes how the pose
frame is transformed whereas Equation 4.7 describes how the PointCloud is
transformed.

xa′ = xa + xoff (4.6)

(
xi
yi

)a′

=

(
Cθoff −Sθoff

Sθoff Cθoff

)(
xi
yi

)a

+

(
xoff
yoff

)
(4.7)

where:

xoff ≜ ICP (PCLa, PCLo) =

xoffyoff
θoff

Cope with Rectilinear Objects

This part is not implemented as the robot will have to execute simple orders
that will not require it to revisit an object from both sides.

Validation Gating
The validation gate provides the final approval or rejection of the association.

Frame Matching - Mahalanobis Distance
Firstly, the Mahalanobis Distance (MD) is used to incorporate information
about the pose uncertainty of the Landmarks.

MD2 = (xo − xa′)TPv,a
−1(xo − xa′) (4.8)

52

Figure 4.12: Shape Matching

A threshold on MD decides whether the validation is successful or not. If Lo

passes the Validation Gate, then the new observation defined by Equation 4.6
is attached to the observations list. When all the Landmarks in a scan are
examined, the observations list is used by the EKF to update the map.

Shape Matching
Before applying the shape matching test, a replica of La is created and it
is transformed using the computed affine transform forming La′ . Thus, the
PointClouds of La′ and Lo are aligned. This is done in order to reduce the
computational effort of transforming La′ back to La in case the validation fails.
Because the two PontClouds may represent different parts of the same object,
the matching is confined on their overlapping region. If it does not contain
enough points, the association is rejected. For the points in the overlapping
region, the nearest neighbours are paired using the k - Nearest Neighbours
(KNN) algorithm. The total error et is defined as the sum of the distances
between the neighbours that do not exceed a threshold. The percentage of
the neighbours that are close enough to each other is then computed using
Equation 4.10 A threshold on the percentage provides a decision on the shape
matching (see Figure 4.12).

et ≜
N∑
i=1

di : di < dthres (4.9)

Perc =
et
N

(4.10)

Landmark Fusion

PointCloud Fusion
To enrich the information that describes the Landmark, the PointCloud of
the new observation may be incorporated. Thus, the PointCloud of Lo is
firstly transformed using the inverse affine transform in order to match the
PointCloud of La, and then it is appended on it.

PCLa = PCLa ∪ PCLo′ (4.11)

where PCLo′ is obtained by Equation 4.7 using −xoff.

53

X =

xv
yv
θv
· · ·
xL1
yL1
θL1
...

xLR
yLR
θLR

≜

xv
· · ·
xL

Mx1

(4.12)

State Vector: The Map

DownSampling
If the size of the PointCloud increases over a threshold, then a DownSampling
procedure is executed. It is done by sorting the points in the PointCloud
according to the x dimension, and throwing away every second point.

When all the associations in a scan are done, the poses of observations are produced
and stored in an observation list and the update of the structures is finished, it is time to
update the map as well to incorporate the new information. The EKF uses the control
signal history from the previous update until the current one and the new observations
to improve the prediction of the map. Finally, the Navigator uses the new map and the
current scan to decide which the next control signal is to be asserted.

4.3.3 EKF Kernel
Formulating the SLAM problem in the EKF framework, the map is defined as the

EKF state vector (Equation 4.12). The first three elements of the state vector correspond
to the robot’s pose (vehicle) whereas the rest of the state vector is composed by triplets
that correspond to the poses of the Landmarks of the map. Each triplet defines the
position of the local frame of each Landmark via the first two variables (xLi, yLi). The
third variable θLi refers to the rotation of that frame, as shown in Figure 4.13

The motion model (Equation 4.13) describes how the robot would move when a
control (R, θ̇v) is asserted on it. As illustrated in Figure 4.14 the local frame of the robot
is attached on the laser sensor.

The observation model (Equation 4.15) describes how the robot perceives the world.
The pose of each one of the observed Landmarks is transformed to the robot’s frame xv
using hi to construct the observation vector h

54

xG

yG

xL2

yL2

θL2xL1yL1
θL1

xL3

yL3

θL3

Figure 4.13: Landmarks and Local Frames

f(xv, R, θ̇v) ≜

R(SθvCθ̇v
+ CθvSθ̇v

− Sθv) + xv
R(SθvSθ̇v

− CθvCθ̇v
+ Cθv) + yv

θ̇v + θv

3x1

(4.13)

Motion Model

R =
l

2

Vr + Vl

Vr − Vl

θ̇v =
Vr − Vl

l
∆t

(4.14)

Control
Where:

Vr :Right wheel velocity

Vl : Left wheel velocity

∆t : Time period of Vr, Vl being asserted

55

yv xv

θv

d

l

Figure 4.14: Differential Drive Robot

h =

0
0
0
· · ·
0
0
0
...

hi
0
0
0
...

hj
0
0
0
...

Mx1

hi ≜

 Cθv(xLi − xv) + Sθv(yLi − yv)
−Sθv(xLi − xv) + Cθv(yLi − yv)

θLi − θv

 (4.15)

Observation Model

56

P =

 Pv PV,1
PV,1 PL1

. . .

MxM

(4.16)

Pv|k=0 ≜ I3x3 (4.17)

Map Uncertainty Matrix

Q =

[
Qv 03x3R

03Rx3 03Rx3R

]
MxM

(4.18)

Qv ≜

σx2 σy
2

σθ
2

 (4.19)

Motion Model Uncertainty Matrix

R =

03x3

RL1
. . .

RLR

MxM

(4.20)

RLi|k=0 ≜ Ro =

σxo2 σyo
2

σθo
2

 (4.21)

Observation Model Uncertainty Matrix

57

After defining the observation and motion model, what remains is the computation
of the Jacobians as described in Chapter 2.2

H =

i j

03x3 03x3 · · · 03x3
... . . . · · · 03x3

i HLi 03x3 · · · Ho 03x3 · · · 03x3

j HLj 03x3 · · · Ho 03x3 · · · 03x3

03x3 03x3 · · · 03x3
... . . . · · · 03x3

MxM

(4.22)

HLk ≜

−Cθv −Sθv −Sθv(xLk − xv) + Cθv(yLk − yv)
Sθv −Cθv −Cθv(xLk − xv)− Sθv(yLk − yv)
0 0 −1

 (4.23)

Ho ≜

 Cθv Sθv 0
−Sθv Cθv 0
0 0 1

 (4.24)

F =

[
Fo 03x3R

03Rx3 I3Rx3R

]
MxM

(4.25)

Fo ≜

1 0 R(CθvCθ̇v
− SθvSθ̇v

− Cθv)

0 1 R(CθvSθ̇v
+ SθvCθ̇v

− Sθv)

0 0 1

 (4.26)

After each scan processing and before the computation of the next direction order,
the EKF updates the map’s prediction. If a new Landmark has been observed, it is added
in the map and the structures defined above have to be updated:

• The state vector X is extended with the pose of the new landmark xL defined by
Equation 4.3

• The Map Uncertainty Matrix (P) is extended with a 3Rx3 column to the right
and a 3x3R row below. On the bottom right corner, the uncertainty of the new
Landmark’s pose is initialised to be equal to the current vehicle uncertainty Pv

• The Motion Model Uncertainty Matrix (Q) is extended with a 3(R+1)x3 column
to the right and a 3x3(R+1) row below. The vehicle’s uncertainty matrix Qv is
compututed experimentally

• The Observation Model Uncertainty Matrix (R) is extended with a 3Rx3 column
to the right and a 3x3R row below. On the bottom right corner, the uncertainty
of the new Landmark’s observation is initialised to be equal to the laser sensor’s
uncertainty Ro

To update the map, the Equations 2.8 are executed and the new map x̂(k+1|k+1)
along with its uncertainty matrix P (k + 1|k + 1) are available.

58

4.3.4 Navigator
As mentioned before, a Navigator consists of two parts, the path planner and the

trajectory planner. A sophisticated Navigator tries to design routes that maximise a set
of criteria. These routes are defined by a sequence of points - targets. To connect two
consecutive targets, the trajectory planner designs the control signal fed to the wheel
motors.

Introducing the requirement of moving towards a target is not a simple assignment to
the navigator. This thesis project aims to delineate the outlines of a mechanism necessary
to provide this utility. Namely, the ability to tag the Landmarks of the map and use
them as targets to be reached. Blending this behaviour with the other required tasks of
a Navigator has to be examined thoroughly, so that the robot does not necessarily build
the best possible map of its environment, but it optimally maps the environment along
the route followed towards its destination.

Note that what mentioned above is a completely different task than of what a tra-
ditional SLAM algorithm does. The goal now is neither to maximise the visited areas,
nor to improve the quality of the map. The main goal now is to go towards a target in
an unknown environment. Whether a good map is constructed in the meantime or not,
is not of great interest. Undoubtedly, since the map is needed for navigation purposes,
it has to be at least as good as necessary to serve its purpose.

In order to demonstrate the new features of the system, a simple navigator is de-
signed.

Language Design

The first step in the process of designing a new system is to define the vocabulary
of the pseudo-Language. The system is destinated for an indoor office environment, so
the Targets have to be general categories that represent stationary distinctive objects
regularly found in an indoor environment. Figure 4.15 illustrates the vocabulary used in
this project’s simulation. It has been forced to be small but descriptive.

Targets Orders
Identifiers Tags

Right Here Turn Left
Left Corner Inform

Door Stop
End

Figure 4.15: LCscanSLAM Language

59

Tagger and Target Scouter Design

In order to avoid any errors imposed by faulty Landmark identification, the tagging
is contacted mannually. Moreover, the Target Scouter is designed in the simplest possible
form. The desired Target is associated with the closest Landmark with the proper Tag.

Path Planner Design

The simple path planner designed here assumes that all the Landmarks have been
tagged correctly, that the Targets are achieved in the right order and no Target is missed.
The essential language is shown in Figure 4.15 Each Target is associated with a set of
Orders that have to be executed as soon as the Target is reached.

Algorithm 3: Path Planner Design
repeat

next_Target ← pop(Targets_List)
move(Trajectory_Planner(next_Target))
repeat

Order ← pop(next_Target(Orders_List))
execute(Order)

until Orders_List is empty
until Targets_List is empty

It is important to notice that the current path planner serves only as a proof of concept.
It can not be used in any real world SLAM application because it does not cope even
with the minor requirements of such a system. It does neither consider any map quality
needs, nor any computational efficiency issues that may rise.

Trajectory Planner

The trajectory planner designed by B. Tovar et al. [12] uses a utility function that
works on a sequence of points. The corresponding path planner is responsible to produce
a set of candidate paths that the robot can follow starting from its current position
given the known map at the time. Having this set of paths available, the utility function
evaluates the quality of each path and chooses the best one. Thus, the utility func-
tion involved not only works on single points but it can evaluate paths as well, using
information provided by the path planner.

On the other hand, the simple path planner used here differs drastically. In fact, what
is described above can not be considered as a path planner in the classic sense. Instead,
the desired functionality of choosing the next point, and in consequence the final path is
hidden in the links between the targets and it is incorporated in the trajectory planner.
At each step, the trajectory planner is responsible to choose the position in front of the
robot that maximises the utility function (Equation 4.27), and drive the robot to it.

Instead of finding an analytic solution of the utility function, as this task would be
too costly and in many cases impossible, the traditional way of avoiding this burden is

60

xvyv

Figure 4.16: Draw Candidate Points

to employ a sampling scheme. Drawing enough points in the desired area and evaluating
the utility of each one provides a destination near the optimal one. As illustrated in
Figure 4.16, a set of random points laying in front of the robot are drawn at each step.
Then, the utility function is evaluated at each point and the robot moves towards the
one that yields the highest utility.

T = wte
−St + ewe(lv−Sv) e

−wu|θ|

1 +
√
S
fmin(d) (4.27)

where:

St :Distance to next Target

lv : Length of nearest free edge

Sv :Distance to nearest free edge

θ :Angle to face point

S :Distance to point

fmin(.) :Distance to obstacle penalty function

d :Distance to nearest obstacle

Modifying the original utility function to meet this project’s requirements yields
Equation 4.27 It consists of four terms, each one serving a specific purpose. The sig-
nificance of each term can be controlled by the weights wi which are experimentally
determined.

61

xv
yv

lv

S

Sv

St
d

θ

Figure 4.17: Utility Function Components

Go to the Target: e−St

The first term of the utility function is the most important one for what this project
is concerned. The primary purpose of the system is to drive the robot towards the
next target at each step. It is noteworthy that en exponential term is chosen in
order to emphasise its effect. If the next Target has not been observed yet, and
thus the distance St can not be measured, it is manually set to zero. Consequently,
the first term is set to 1 and it is identical across all candidate points. Thus, it
does not affect the utility function, leading the robot to move as it would if it was
running a classic SLAM algorithm.
This is one of the greatest achievements of the proposed method. The solution can
be formulated in such a way that the robot can operate as usual in case it has no
goal to achieve.

Explore: elv−Sv

In order to move towards the unvisited parts of the map, the robot should prefer
points near the vague areas. To find these places where the perception of the
environment is not clear, the “free edge” is defined as the border between regions
of explored and unexplored space. Thus preferring points near long free edges drives
the robot towards the unknown regions of the map. Maximising the first term of
the utility function favours points near free edges (max{e−Sv}) that are as long as
possible (max{elv}).
A proper use of a free edge as an indication of the unexplored regions of the
map, would be to store every free edge met in the global map, and retrieve that
information in order to design a path. However, this would require to employ

62

Sv

lv

Figure 4.18: Free Edge

special housekeeping techniques of the map that prove to be too complicated in
the case of scanSLAM. Although it is possible to implement, this proper treatment
is avoided, and only the free edges of the current scan are considered. This is not
a big compromise if one notices that the candidate next points to visit all lie in
front of the robot. On the other hand, in the case that a better path planner was
used, this issue should have been examined with care.
Identifying free edges in laser scan data is not a difficult task. It suffices to notice
that when the laser hits a continuous surface, it provides points that tend to be
close to each other. Thus, finding the sparse areas in a scan yields the free edges.
Luckily, the segmentation procedure demanded by the scanSLAM provides both
possible Landmark clusters and free edges between them.
An approximation of its length lv is given by the euclidean distance between the
first and the last point in the PointCloud of the cluster that represents the free
edge (see Figure 4.18). Of course, it is important that the points are sorted by
angle so that they are consecutive in the real world according to the laser beam
scanning direction. The centre of the free edge is given by the centre of the line
drawn from the first to the last point. The distance Sv is the length of the line
connecting the robot position with the centre of the free edge.
A better model that fits polylines to the laser data is used in [12]. It applies a divide-
and-conquer technique combined with a least squares method. This approach has
the advantage of removing noisy measurements but it is more computational in-
tensive.

Prefer Short Straight Lines: e−|θ|

1+
√
S

It has been experimentally proven that rotation boosts the uncertainty of the
robot’s pose. Thus, the best path to follow from target to target would be the
straight line that connects them. It would demand no rotation and the shortest
possible distance to be covered. Unfortunately, this is not possible to happen be-
cause in many cases the line that connects consecutive targets is not attainable
due to obstacles or the geometry of the environment.
This leads to the need of following polyline paths. The second term of the utility

63

fmin

d

u

1

t

Figure 4.19: Distance to obstacle penalty function

function favours the points that require minimal rotation (max{e−|θ|}) and abstain
the least possible distance from the current position of the robot (max{ 1

1+
√
S
}).

Avoid Obstacles: fmin(d)
Avoiding the obstacles in the robot’s way is not only crucial for collision averting
but involves other practical issues as well. Keeping a certain distance away from
objects and walls ensures that the sensors used, do not become blind due to short
range measurements. On the other hand, the practice of “the more the merrier”
does not apply in this occasion. It makes no sense to go very far from the obsta-
cles either. Thus, B. Tovar et al. designed a function (fmin(d): Figure 4.19) that
penalises points that abstain less than a threshold from an obstacle while being
unconcerned for those that lie too far.

The utility function described above serves two objectives. It’s form is such that the
importance of each term can be configured according to its purpose using the weights
wi. Note that the main objective (moving towards the target, is added to the secondary
one (minimise uncertainty) so that their relative importance is controlled through wt.
Focusing on the secondary term though, the multiplicative form proposed by B. Tovar
et al. implies that the winning point is good enough in all terms of interest. In other
words, if a point meets two out of three requirements, it will yet yield a low score.

At each time step, when the robot has to decide where to go next, the following
algorithm produces a set of random points in front of the robot and chooses the best ac-
cording to the utility function. Finally it returns the control signal for the wheel motors
that moves the robot towards the winning point.

64

Algorithm 4: Trajectory Planner
cand_points ← Draw_Random_Points
next_point ← max(Evaluate(cand_points))
return compute_control(next_point)

The implementation described here is just one possible solution for a simple application.
However, it has to be emphasised that the proposed method is not confined by any
assumption made for simplicity purposes. The general framework of the pseudo-language
formulation along with a proper utility function design can be fit to any SLAM algorithm
that can accommodate the “Target” entity, in order to implement a more sophisticated
and practical system.

65

66

Chapter 5

Implementation

A simulation has been implemented in Python, aiming on future porting of the
system through the Robot Operating System (ROS), on a differential drive robot (named
“Sek”1) housed at the National Centre for Scientific Research (NCSR) Demokritos. The
source code of the simulation is available to the public2. This chapter demonstrates the
performance of the subsystems of the conducted simulation while indicating any possible
weaknesses.

5.1 Overview
The robot has been driven manually along a corridor in NCSR Demokritos collecting

data using its laser scanner. The control signals provided and the laser readings have been
used in the simulation to produce a map using scanSLAM which has been implemented
from scratch according to the analysis and design chapter. The characterisation of the
Landmarks according to the designed pseudo-human language has been done manually.

The purpose of the simulation is to prove that at any given time, the navigator takes
the right decision in order to move towards the target and follow the given orders.

The resulting system is designed in such a way that can be easily used as a base to
implement LCscanSLAM on any mobile robot. It consists of carefully separated, stand
alone components that can be fit appropriately for the needs of any other platform.

5.2 Components
Segmentation

Once a new scan is available, it is segmented in a set of clusters. According to
the system design, these clusters are chosen to form candidate landmarks based
on their Object Saliency Score. Unfortunately, the nature of indoor environments
does not favour the formation of unique, distinctive clusters. Oppositely, as seen

1http://roboskel.iit.demokritos.gr/personnel/sek
2https://github.com/AndLydakis/LCscanSLAM

67

http://roboskel.iit.demokritos.gr/personnel/sek
https://github.com/AndLydakis/LCscanSLAM

Figure 5.1: Scan segmented in candidate Landmarks

in Figure 5.1 the extracted clusters are mainly straight lines. As a result, the OSS
metric tends to be useless. As a matter of fact, discarding clusters because of their
low OSS in a corridor could lead in lack of landmarks, leading to complete failure
of the algorithm.

What is more interesting here though is the failure of the OSS metric to estimate
how unique a cluster is. As illustrated in Figure 5.2, the green corner has smaller
OSS than the light blue line and greater OSS than the deep blue wavy cluster. It
is noteworthy, that the later actually represents a really distinctive place in the
corridor where a set of fire extinguishers are suspended.

Actually, the OSS metric seems to suffer from extreme dependency on the number
of points in a cluster. As a result, a cluster that covers a tiny area while containing
a big number of points which is actually pure noise, yields a large OSS. While a
clear big area cluster with few points, that represents a corner on the wall like
the green one, yields a small OSS. A good idea to improve this metric would be
to consider the points density of the cluster, i.e. the number of points it contains
divided by the area it covers.

However, the computation of the area can be proven to be tricky and computa-
tionally intensive. It is not sufficient to estimate its area as the area covered by
the rectangle shaped by the boundary points. This estimation would be prone to
any rotation of the cluster. The proper way would be to compute the area of the
convex hull that surrounds the points.

68

Figure 5.2: Object Saliency Score Failure

69

Figure 5.3: Association through NIS

As mentioned above, due to the lack of clusters and their inherent linearity, it is
impossible to reject them at the first place. Thus, the OSS test is disregarded.

Data Association
The association is done based on the Normalised Innovation Squared. Each can-
didate Landmark’s position is compared with the position of each Landmark in
the map through the NIS metric. The landmarks with the smallest NIS distance
are considered to represent the same area of the real world. The outcome of this
metric is illustrated in Figure 5.3
Of course the association is not always right. Figure 5.4 shows some faulty asso-
ciations. These candidate Landmarks are very closely located. Thus the candidate
Landmark is not used to initialise a new Landmark in the map, and it is wrongly
associated instead. Faithfully, the faulty associations will be rejected by the vali-
dation gate.

PointCloud Alignment
The PointClouds of the associated Landmarks are aligned using the Iterative Clos-
est Point algorithm which yields the relative pose of the two Landmark frames.

70

Figure 5.4: Faulty Association

Figure 5.5: PointCloud Alignment using ICP

Figure 5.5 illustrates the results after the alignment. Any possible alignment er-
ror across straight lines is a previously known disadvantage, but it is an accepted
tradeoff since the OSS test has been put aside.
The true disadvantage of the ICP algorithm is revealed in Figure 5.6. Plots on
the left column have axis with equal step whereas the same PointClouds on the
right column are plotted with axis stretched accordingly, for better illustration.
As expected, the ICP treats both directions in the same way. As a result, “long”
PointClouds that are developed along a specific direction tend to result in faulty
alignment.

Validation Gating
The validation gate consists of three independent tests. All of them must be passed
in order to consider an association as valid. The Mahallanobis Distance test comes
first, since it has the lowest computational needs.
Next come the overlap and shape matching criteria. Figure 5.7 shows that the val-

71

Figure 5.6: ICP Failure

72

Figure 5.7: Valid Associations

idation gate accepts good matchings but if the ICP provides a bad, but plausible
association, like the third plot, the validation gate can not tell the difference. The
eventuality of the existence of matchings like that in the third plot raises consid-
eration about the PointCloud fusion technique. It is obviously possible that fusing
poorly aligned PointClouds would diminish the quality of the stored Landmark in
map.
Figure 5.8 shows associations that have been rejected either because of the overlap
threshold or because of the shape matching gate.

Landmark Fusion
After the validation gate test, the aligned PointCloud of the observation is fused
with the PointCloud of the Landmark in the map. If the number of points in the
resulting PointCloud exceeds a threshold, the new PointCloud is downsampled.
Landmark Fusion could be a valuable technique since it gradually improves the
quality of the stored PointCloud as shown in Figure 5.9
However, it is extremely vulnerable on pour alignment. Figure 5.10 clearly illus-

73

Figure 5.8: Rejected Assoiciations

Figure 5.9: Successful Fusion

74

Figure 5.10: Fusion Failure

trates this issue while the quality of the new PointCloud is obviously reduced.

Navigator
The designed Navigator is evaluated based on the decision taken at each step. No
sophisticated path planning is performed. Thus, although better choices could be
made in some cases the navigator makes the best choice to perform the short term
task given.
The importance of each factor that the Navigator considers to chose the next point
is configured using the weights as described in the previous chapter. This results
in an extremely flexible scheme that makes the evaluation of the Navigator a very
difficult and opaque task. However, Figure 5.11 shows a set of cases that it seems
to work decently.
However, disadvantages exist as well. Figure 5.12 illustrates the most important
one. Considering the centroid of the Landmark as the point to which the robot
is attracted to, some of the candidate points located behind the Landmark may
wield a better utility. This forces the robot to pass through it or even get stuck
behind a wall for example if there is an obstacle between.
A second disadvantage arises when the Landmark is not the final target but an
intermediate goal. In this case, the robot should pass by instead of driving directly
towards it. Taking into account the last two comments, the need of a sophisti-
cated path planner such as that designed by B. Tovar et al. in [12] seems to be
indisputable.

75

Figure 5.11: Successful Navigation

76

Figure 5.12: Navigator Failure

77

78

Chapter 6

Testing

As mentioned before, the proposed navigation method can be applied on any SLAM
system that treats real world objects as Landmarks. Thus, the testing phase is focused on
the navigator rather than the SLAM subsystem. The series of tests that follow, intent on
enlightening the potential of the method while exploring its weaknesses and the necessary
improvements.

6.1 Experiments

The first test tries to prove that the utility function works properly. The robot is
instructed to go to the first door on the right, print a message when it arrives and
stop moving. Figure 6.1 illustrates the behaviour in this case. Notice that although the
shortest path would be that of moving straight to the target, the robot prefers to move
on a curved line favouring positions that maximise its view of the unknown parts of the
map.

The next challenge is to implement a real life scenario, where the waypoints consist
of a sequence of targets, where the robot passes by the intermediate ones and ends up
to the final Target. On the second test, it is instructed to pass the first door on the
right just printing a message when it achieves this first goal and then continue to the
end of the corridor where it shall print a message and stop. Figure 6.2 illustrates its
behaviour in this case. Here, it is essential to emphasise the importance of the target
achievement parameters. In this specific case, the first target is considered to be achieved
as soon as the robot gets within a radius of 1.5m from the frame origin of the landmark.
Configuring this parameter in a different way, would yield a different path as illustrated
in the second example in Figure 6.2

Taking the difficulty to the next level, the robot is instructed to visit the first corner,
pass by the door on the right and stop at the end of the corridor. An alternative way to
achieve the same goal is to instruct the robot to visit the first corner, turn left, pass by
the door on the right and stop at the end of the corridor. The reaction of the robot in
these tow cases is illustrated in Figure 6.3

79

Figure 6.1: Simple Test

Figure 6.2: Target Sequence

80

Figure 6.3: Moderate Test

Figure 6.4: Redundant Tags

The next two experiments intent to reveal the Achilles heal of the designed naviga-
tor, the behaviour of the Target Scouter. The demonstrated system chooses the closest
Landmark with the same tag to represent the given Target. Thus, in the first experiment
in Figure 6.4 where the robot is instructed to move towards the corner, pass by the door
on the right and finish at the end, it chooses the desired rDoor since it lies closer than
the other one.

However, this is not always the case as shown in the second experiment in Figure 6.4
where the robot is instructed to pass by the door on the right and finish at the end of
the corridor. Since there is an rDoor in a nearby corridor that is closer than the rDoor
located in the current one, the robot moves towards the wrong one.

6.2 Evaluation
The tests described above prove that the first barrier has been successfully sur-

mounted. The utility function serves its purpose by driving the robot from its current

81

location to the next Target in an optimal way. Achieving this first goal is crucial for any
Landmark Characterisation SLAM (LC-SLAM) system. Having this result in hand, it is
important to explore the arising issues in order to design a practical system.

Taking an attentive look on the experiment results, one can notice the following
defects:

Paths Across Landmarks: While the desired obstacle avoidance demand is success-
fully achieved by the navigator (all the chosen points are at least 0.3m away from
the nearest obstacle), the resulting path is “unaware” of the obstacle existence.
Choosing each next point in isolation results in paths that forget their history and
tend to move through obstacles.

Poor “Pass By” Behaviour: Chasing the frame origin of the Landmarks seems to be
a bad idea. When the robot tries to achieve an intermediate goal, it moves towards
its centroid ignoring that it does not really need to get there, but it should just
pass by the Landmark and mark the Target as achieved.

Target - Landmark Association: Choosing the closest Landmark with the desired
tag as the next Target seems to work erroneously in complex maps. This method
completely ignores the topology of the map and reduces the acceptable level of
abstraction that the target setting language tries to achieve.

Map Coherence: Although it is not clearly visible, the definition of the free edge is
spurious. Because of the scanSLAM nature, it is impossible to have a coherent
map. There is a chance that the robot visits a place of the real world that does not
produce any Landmarks on the map. This part, is obviously visited, known but
unmapped. The described implementation will yield a free edge in this case that
could never be erased after a visit on the place and thus, it will permanently act
as an attractor for the robot.

6.3 Solution Outlines:
The evaluation of the behaviour of the designed system shows the way to the required

improvements. What follows is a sketch of some possible solutions to the problems de-
scribed above, that when applied would result to an overall upgrade of the system.

1. Path Planner: The incorporation of a more complex utility function is unavoid-
able. It is necessary to follow the example of B. Tovar et al. in [12] where they
designed a utility function that evaluates whole paths rather than isolated points.
This leads to the need of a sophisticated path planner to produce candidate paths
connecting consecutive targets, in order to be evaluated by the utility function.

2. Target Definition: It is inevitable to define a new model for the targets. The
utility function should be aware of the area covered by the Target and whether it
is an obstacle or not. Moreover, the distance to Target should be defined differently

82

so that the robot moves towards a point near the Landmark rather towards it’s
centre.

3. Target Identification: One of the most important defects of the new system is
the faulty Target - Landmark association conducted by the Target Scouter. This
system should be designed carefully, in order to provide the required high level
behaviour of the system. It could extenuate any restrictions on the Target setting
language expressiveness and transfer the burden to the semantic coupling of the
desired Target and the Landmarks in the Map.

4. Free Edge Revisit: Although this augmentation is specific to scanSLAM, it helps
to emphasise the importance of this delicate issue. There exists the need of erasing
free edges located at visited places whether there is a Landmark in place or not.

83

84

Chapter 7

Conclusion

This thesis proposes an innovative method that gives the ability to a mobile robot
to understand and execute direction orders described in human language. It builds on
existing techniques used for mobile robot localisation and mapping in unknown environ-
ments (SLAM), and expands its capabilities by integrating the ability to move towards
an abstractly predefined target within the unknown environment.

The mission of the robot is to go towards a target in an unknown environment.
Whether a good map is constructed in the meantime or not, is not of great interest.
Undoubtedly, since the map is needed for navigation purposes, it has to be at least as
good as necessary to serve its purpose. Thus, the main purpose of the robot is not to
build the best possible map of its environment, but to optimally map the environment
along the route followed towards its destination.

The proposed method is based on a SLAM system to introduce a navigator that
facilitates the desired features. There exists one prerequisite in order to formulate any
SLAM system so that the new navigator can drive the robot towards a target. The
SLAM system should treat the objects of the world as whole entities called Landmarks.

A simple system has been designed to prove the feasibility of the methods implemen-
tation. During the testing of this system, it has been shown that the proposed method
can be used on real world systems and it has shown the pathway for the required future
work.

7.1 Summary of Contributions
In order to implement the new system, two key components were essential:

1. Pseudo-Human Language: The designed language provides the framework to
enable the human - robot communication. It formulates the way that a human can
talk to the robot so that it understands the given orders.

2. SLAM Requirements Formulation: In addition to the human requirements
(speak the pseudo-human language), the robot has to do its part as well. Provided

85

that the SLAM system can accommodate the Landmark entity, the proposed nav-
igator enables the robot to execute the given orders.

7.2 Future Work
There is yet a lot to be done in order to create a practical LC-SLAM system.

1. FastSLAM: Having in hand the know-how regarding the navigation towards a
target, what comes next is the formulation of the state of the art SLAM system to
accommodate the new method.

2. Navigator Improvement: The Navigator should be revisited so that a real path
planner takes charge and cooperates with a redisigned utility function that evalu-
ates whole paths.

3. Target Scouter: It is inevitable to design a sub-system for the Target-Landmark
association. This “Target Scouter” should use the map to extract topological in-
formation in order to correctly choose the Landmark that represents each Target
in the given Orders.

86

Glossary

actuator

is a mechanical component that is used by the robot to do physical work on the
environment. E.g. a mechatronic arm. 15

control

is the input signal of a system. It is used to change the inner state of the system
towards a desired value. 43

HCI

stands for Human Computer Interaction system. It refers to a computer system
specially designed to facilitate a smooth and easy communictation and interraction
with humans. 7

kernel

is abusively used throughout this thesis to describe a data fusion system used by
SLAM algorithms. Data fusion systems are used in order to optimally combine
heterogeneous data sources to produce a valuable result. A SLAM kernel combines
data acquired by different types of sensors to produce an optimal estimation of the
map of the world. 18

MSE

stands for Mean Squared Error. It measures the average of the squares of the errors
between respective points of two signals. 23

noise

is an unwanted signal that disturbs a primary signal of importance. Noise can be
involved in the primary signal in various different forms. For instance, it can be
additive or multiplicative. It may be stochastic or deterministic. 18

87

observation
is an entity that aims to describe a depiction of the world acquired by the robot.
Different designs of the SLAM kernel require different formulations for the observa-
tion entity. For instance, a specific kernel could use a laser scan as an observation,
whereas a different kernel might use the pose of the laser scan instead. 18

Order
is one of the two components of the designed language. It is an action that has to
be done once the robot reaches a Target e.g. knock the door, enter the room, etc.
43

PointCloud
is a term devised for the purposes of this project. It signifies a set of points, usually
laser readings. 37

pose
is a vector that completely defines the position and orientation of a robot in space.
A car like vehicle’s pose can be determined by two values to represent its position
on a plane and an angle to represent its orientation. However, a robot that can
move in three dimensions needs more parameters to determine its pose, namely
three values for its position and three for its orientation. 17

RGBD
An RGBD sensor is a hybrid sensor that is composed by a camera, which yields
an RGB (image) signal and a Depth (image) signal. Each pixel of the RGB image
is accompanied with a “depth” value that measures the distance of the object
represened by the pixel from the sensor. 17

sensor
is a device that measures a physical quantity and converts it to a signal. Some
examples of sensors are a thermometer, a camera, etc. 15

stochastic
is a system whose state at any given time is random. A stochastic system could
yield different outputs given the same input. 18

Target
is one of the two components of the designed language. It is an abstract description
of the world’s objects e.g. a Door, a Window, etc. 43

uncertainty
in measurements is a measure of the confidence for the measured value. A value
with large uncertainty is more unlikely to be correct. 17

88

Bibliography

[1] Tim Bailey and Juan Nieto. “Scan-SLAM : Recursive Mapping and Localisation
with Arbitrary-Shaped Landmarks”. In: Robotics: Science and Systems Conference
(RSS) (2008).

[2] Tim Bailey, Juan Nieto, and Eduardo Nebot. “Recursive scan-matching SLAM”.
In: Robotics and Autonomous Systems (2007).

[3] Tim Bailey, Juan Nieto, and Eduardo Nebot. “Scan-SLAM : Combining EKF-
SLAM and Scan Correlation”. In: International Conference on Field and Service
Robotics (2005).

[4] Hugh Durrant-Whyte. “Uncertain geometry in robotics”. In: IEEE Trans. Robotics
and Automation (1988).

[5] Hugh Durrant-Whyte and Tim Bailey. “Simultaneous Localisation and Mapping (
SLAM): Part I The Essential Algorithms”. In: Robotics & Automation Magazine,
IEEE (2006).

[6] Jose E. Guivant and Eduardo Mario Nebot. “Optimization of the Simultane-
ous Localization and Map-Building Algorithm for Real-Time Implementation”. In:
Robotics and Automation, IEEE Transactions (2001).

[7] Abhinav Gupta et al. “From 3D Scene Geometry to Human Workspace”. In: Com-
puter Vision and Pattern Recognition(CVPR) (2011).

[8] M. Montemerlo and S. Thrun. “Simultaneous Localization and Mapping with Un-
known Data Association Using FastSLAM”. In: Robotics and Automation, 2003.
Proceedings. ICRA ’03. IEEE International Conference (2003).

[9] Maria I. Ribeiro. “Kalman and Extended Kalman Filters: Concept, Derivation and
Properties”. In: Institute for Systems and Robotics (Feb 2004).

[10] R. Smith and P. Cheesman. “On the representation of spatial uncertainty”. In: Int.
J. Robotics Research (1987).

[11] S. Thrun. “Particle Filters in Robotics”. In: Proceedings of the 17th Annual Con-
ference on Uncertainty in AI (UAI) (2002).

[12] Benjamın Tovar et al. “Planning Exploration Strategies for Simultaneous Local-
ization and Mapping”. In: Robotics and Autonomous Systems (2006).

89

[13] Theodoros Varvadoukas, Ioannis Giotis, and Stasinos Konstantopoulos. “Detecting
Human Patterns in Laser Range Data”. In: Frontiers in Artificial Intelligence and
Applications 242 (2012), pp. 804–809. doi: 10.3233/978-1-61499-098-7-804.

[14] Chieh-Chih Wang and Chuck Thorpe. “Simultaneous Localization and Mapping
with Detection and Tracking of Moving Objects”. In: IEEE International Confer-
ence on Robotics and Automation (ICRA) (2002), pp. 842–849.

90

http://dx.doi.org/10.3233/978-1-61499-098-7-804

	Contents
	Introduction
	Theoretical Background
	SLAM
	Overview
	Key Components
	Current State of the Art SLAM
	scanSLAM

	The Extended / Kalman Filter (KF and EKF)
	The Kalman Filter (KF)
	The Extended Kalman Filter (EKF)
	EKF SLAM

	Navigators
	The need for a Navigator
	How it works
	Utility Functions

	Topic Description
	Objectives
	Innovation
	Challenges

	Analysis and Design
	Problem Statement
	Goal
	Key Features
	Implementation Overview

	Analysis
	scanSLAM Components
	The Simple scanSLAM Algorithm
	From scanSLAM towards a predefined target
	pseudo-human Language Framework
	Tagger
	Target Scouter

	Detailed Design
	Discussion
	scanSLAM
	EKF Kernel
	Navigator

	Implementation
	Overview
	Components

	Testing
	Experiments
	Evaluation
	Solution Outlines:

	Conclusion
	Summary of Contributions
	Future Work

	Glossary

