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Περίληψη

Σκοπός της διπλωματικής αυτής είναι η μελέτη των κανόνων ψηφοφορίας, μίας γε-

νικής μεθόδου που χρησιμοποιείται για τη συνάθροιση ατομικών προτιμήσεων στην

περιοχή της κοινωνικής επιλογής. Συγκεκριμένα, έμφαση δίνεται σε μία καλά μελετη-

μένη προσέγγιση που αντιμετωπίζει τους κανόνες ψηφοφορίας ως εκτιμητές μέγιστης

πιθανοφάνειας˙ δεδομένου ότι υπάρχει μία κρυφή αντικειμενική κατάταξη των υποψη-
φίων σύφωνα με κάποιο μέτρο και ότι κάθε ψήφος αποτελεί μία θορυβώδη εκτίμηση

της πραγματικής κατάταξης, ο κανόνας πρέπει να επιστρέψει την κατάταξη που με τη

μέγιστη πιθανότητα ταυτίζεται με την αντικειμενική αλήθεια. Ωστόσο, υποστηρίζε-

ται ότι η απαίτηση μέγιστης πιθανοφάνειας είναι περιοριστική και γι΄ αυτό εξετάζεται

επίσης ο αριθμός των ψήφων που απαιτεί κάθε κανόνας ώστε να επιστρέψει με μεγά-

λη πιθανότητα την πραγματική κατάταξη. Τέλος, λαμβάνοντας υπόψη την τάση των

ανθρώπων να επηρεάζονται από τις προτιμήσεις των ανθρώπων στον κοινωνικό τους

περίγυρο, εξετάζεται εαν η δομή του κοινωνικού δικτύου επηρεάζει τους εκτιμητές

μέγιστης πιθανοφάνειας.

Λέξεις Κλειδιά

Κοινωνική Επιλογή, Υπολογιστική Κοινωνική Επιλογή, Κανόνες Ψηφοφορίας, Εκτι-

μητές Μέγιστης Πιθανοφάνειας, Πολυπλοκότητα Δειγμάτων, Κοινωνικά Δίκτυα
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Abstract

In this thesis, voting, a general method of preference aggregation in social choice
theory, is studied. In particular, emphasis is given on a well-studied approach that
views the voting rules as maximum likelihood estimators; given that there is an
underlying true ranking of the candidates according to a quality measure and the
fact that every vote is a noisy estimator of the true ranking, the rule must reconstruct
the ranking that is most likely to be the ground truth. However, it is argued that
the maximum likelihood requirement is restrictive and thus, a generalization of
this framework that studies how many votes a rule requires to output with high
probability the ground truth is presented as well. Finally, taking into account the
fact that voters are clearly influenced by the preferences of the people who are related
to them, it is studied whether the social network structure affects the optimal rules
under the maximum likelihood approach.

Keywords

Social Choice Theory, Computational Social Choice, Voting Rules, Maximum Like-
lihood Estimator, Sample Complexity, Social Networks
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Chapter 1

Introduction

1.1 Social choice

It is a fact that people evaluate things in their own unique way and hold different
opinions and preferences for almost everything. However, in our everyday lives we
face many situations where a collective decision based on the individual preferences
must be made. Therefore, there is the need to find methods that will combine the
individual preferences into a “right” decision and reach a compromise. For example,
we often have to select a leader, the representatives of a group or share probably
heterogeneous goods to people with different preferences. The best known way to
achieve these goals is by voting, an extremely important component of democracy
through the years [81].

Social choice theory provides mathematical models for the above situations and
involves the design and analysis of voting methods for the aggregation of individ-
ual preferences to a “right” joint decision. The mathematical modeling of voting
was founded by Marquis de Condorcet and Chevalier de Borda in the 18th century,
continued with Dodgson in the 19th century and rose in the 20th century with the
influential work of Arrow.

Historically, social choice has been focusing on political elections and referen-
dums. The recent developments in computer science and networks, however, led
to the introduction of social choice to low-stakes applications. As social choice can
be used to aggregate people’s preferences, in a same way can be used to output
a joint decision in multiagent systems that are developed in Artificial Intelligence
where a number of intelligent, autonomous and self-interested agents interact and
collaborate. For example, in a system developed by Ephrati et al. [35], agents vote
to decide their next step in a joint plan. Furthermore, principles from traditional
social choice theory are also well applicable to problems in network design, recom-
mendation systems, meta-search engines and electronic commerce applications [81].

As these new applications of social choice are usually associated with an ex-
tremely large number of alternatives and information, they point out many inter-
esting computational challenges. Specifically, it is investigated whether the joint
decision is easily computed while a beneficial strategic behavior is hard to find. Com-
putational social choice is the area that intents to examine computational aspects of
voting and other preference aggregation methods and develop new algorithms and
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16 Chapter 1. Introduction

methods that confront the emerging challenges. Thus, it is an interdisciplinary field
that captures the mutual interaction between economics and computer science; it
adds an algorithmic aspect to traditional social choice theory and at the same time
includes the application of social choice techniques to decision making in AI [60].

1.2 Outline of this thesis

There are two basic views of voting [24]: under the first view, the purpose of voting is
to achieve a compromise among the idiosyncratic preferences of the agents, returning
an outcome that best reflects the social “good”, while under the second view, the
purpose of voting is to reveal an underlying truth which can be either the best
alternative or a ranking according to a quality measure. In other words, some
candidates are objectively better than others and this is prior and not dependent on
the preferences of the voters. In fact, it is assumed that an agent’s preference express
how he perceives the ground truth, i.e. it is a noisy estimate of the underlying correct
outcome.

In this thesis, emphasis will be given on the second approach. Under this ap-
proach, a voting rule is better than another rule if it is more likely to return the
ground truth. Thus, the selection of the maximum likelihood estimator as the op-
timal rule follows naturally; a maximum likelihood estimator returns the outcome
that maximizes the likelihood of observing the given votes. By the definition of
the maximum likelihood estimator, it follows that it depends on the probability
of observing a vote given the ground truth i.e. the noise model. Different noise
models define the conditional probabilities of observing any vote given the ground
truth with an important assumption; it is usually assumed that the agents’ votes are
conditionally independent given the ground truth. Having the noise model defined,
then the maximum likelihood estimator for the noise model can be computed.

A well-studied noise model is the Mallows model which was firstly introduced
by Marquis de Condorcet. The basic assumption of this noise model is that each
voter can rank correctly and independently any pair of alternatives with probability
p > 1/2. One may argue that this assumption is quite optimistic and it is not
realistic to expect that in practice all votes will follow Mallows model. In fact,
different noise models are expected to arise in practice and in an attempt to predict
the kind of noise models that may appear, it is usually supposed that under any
realistic model, it will be more probable to observe a ranking that is closer to the
ground truth according to some distance metric.

As different noise models are expected to emerge and there is exactly one max-
imum likelihood estimator per noise model, it can be argued that the maximum
likelihood requirement is restrictive. That is, a voting rule which is a maximum like-
lihood estimator for a specific noise model, given votes that follow another model,
may present a very bad behavior. Hence, trying to overcome this restriction, a more
general setting is examined. Under this setting, it is studied how many samples
different rules need in order to reveal the ground truth with high probability, that
is, given noisy estimates of the truth, voting rules return a hypothesis of what the
truth is. According to the nature of the voting rule and the accuracy with which is
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required to learn the truth, the number of required samples changes. For example,
some rules require logarithmic samples in the number of alternatives while others
require exponential number in order to reconstruct the truth with high probability.

Finally, the assumption of independence between the agents’ preferences is dis-
puted. Considering the fact that people’s opinions and preferences are clearly influ-
enced by the people that are related to, it is examined how the number of required
samples changes by taking the social network structure into account. Specifically,
preliminary models give an insight into how the dependencies reflecting the social
interaction of the individuals affect the optimal rules and they suggest that social
network structure should not be ignored.

1.3 Structure of this thesis

The remainder of this thesis is organized as follows: Chapter 2 of the thesis gives
an introduction to Social choice theory. In particular, basic concepts and notations
are introduced and prominent aggregation methods are presented. Then, important
results such as the Arrow’s Theorem and the Gibbard-Satterthwaite Theorem are
demonstrated. Chapter 3 views the different voting methods under the maximum
likelihood approach which aims not only to reach a compromise among the agents
but to reveal a supposed underlying ground truth as well. Different settings, such
as the model where agents vote to select a “good” set of alternatives and the case
where the input votes are given in the form of partial orders are examined. A gener-
alization of the maximum likelihood approach which investigates how many samples
different rules need in order to reveal the truth with high probability, is presented
in the chapter 4. Furthermore, in chapter 5, the fact that people’s preferences are
influenced by the people in their social network is considered and it is investigated
whether a social network structure among the agents affects the maximum likelihood
approach. Finally, in the last chapter, general conclusions and any further future
directions are discussed.





Chapter 2

Preliminaries

In this chapter, important definitions and concepts that will be used in the next
chapters as well as some important results in social choice theory, will be introduced.

2.1 The basics

The setting considered in Voting Theory is usually formulated as follows. Assume
that there is a finite set of agents N = {1, ..., n} and a finite set of alternatives
(candidates) A, where |A| = m. It is supposed that each agent i ∈ N uses a linear
order <i on A i.e. a ranking of the alternatives to represent his preferences. A linear
order is a transitive, antisymmetric and total relation on A and the set of all linear
orders on A is denoted with L(A). Then, a preference profile π given by the n agents
is a vector (σ1, ..., σn) ∈ L(A)n where σi is the preference of the agent i ∈ N . Given
a preference profile, the fundamental question in social choice theory is how the
preferences of the agents over the set of the alternatives can be aggregated into one
collective preference relation. Social welfare functions which are defined formally
below, are used for this purpose.

Definition 1. A social welfare function (SWF) is a function f : L(A)n →L(A).

However, in some settings the objective is not to find a collective preference rela-
tion but to determine the winner alternative. In these cases, social choice functions
are used.

Definition 2. A social choice function (SCF) is a function f : L(A)n →A.

2.2 Common Social Welfare and Social Choice

Functions

In this section some common social welfare and social choice functions will be
defined. Since the common rules that are presented below are defined to be the
maximizers/minimizers of a kind of score, they are often associated with some tie-
breaking schemes.

19



20 Chapter 2. Preliminaries

2.2.1 (Positional) Scoring rules

Scoring rules give a particular score to each alternative every time he is ranked in
a particular place and the alternatives with the highest total score win. As scoring
rules are simple, they are widely used.

Definition 3. Every scoring rule is associated with a score vector s = (s1, s2, ..., sm)
with s1 ≥ s2 ≥ ... ≥ sm and s1 > sm. Each time an alternative is ranked in the ith

place, he gets si points. The alternatives with the highest total sum(summed over all
agents) are selected.

Some popular scoring rules are the following.
Borda rule.The score vector for Borda rule is (m−1,m−2, ..., 0) which means that
alternative a gets k points from a voter if the voter prefers a to k other alternatives.
Plurality rule.The score vector for the plurality rule is (1, 0, ..0) which means that
the total score of an alternative will be the number of the voters that rank him first.
Veto.The score vector for the veto rule is (1, 1, .., 1, 0) which means that the alter-
native with the highest score will be the alternative that is vetoed in the smallest
number of votes.

Example 2.2.1. Let A = {a, b, c} the set of alternatives and the following vote
profile consisting of four votes:

1. a >i b >i c

2. c >ii a >ii b

3. c >iii a >iii b

4. b >iv a >iv c

Under plurality alternative a gets one point, alternative b gets one, and alterna-
tive c gets two points, and hence, c is the plurality winner. Under Borda, alternative
a gets five(=2+1+1+1) points, alternative b gets three(=1+0+0+2), and alterna-
tive c gets four(=0+2+2+0) , thus a is the Borda winner. Under veto, a gets four
points, b and c get two points each. Thus, a is the veto winner (it was not vetoed by
any voter). Hence, this example illustrates the differences between scoring rules.

2.2.2 Condorcet Extensions

Another important class of rules is the Condorcet extensions that satisfies a com-
pelling criterion suggested by Marquis de Condorcet. During 18th century, Marquis
de Condorcet proposed a criterion to select the winner of the elections; he proposed
that the winner should be the alternative that beats every other alternative in the
pairwise elections. However, the preferences of the majority may be cyclic and hence,
there are profiles that do not have a Condorcet winner. This phenomenon is known
as Condorcet Paradox [9, 22] and it is shown in the following example.

Example 2.2.2. Let A = {a, b, c} and three agents with the following preferences:
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1. a ≥i b ≥i c

2. b ≥ii c ≥ii a

3. c ≥iii a ≥iii b

The preferences given by majority in this example are cyclic and a Condorcet
winner does not exist as a majority of agents prefer a to b, another majority prefers
b to c and a majority prefers c to a.

Although a Condorcet winner does not necessarily exist, returning the Con-
dorcet winner whenever he exists is deemed to be extremely important by many
social choice theorists and thus, many voting rules were devised so as to satisfy this
property.

Definition 4. An SCF is called Condorcet extension if it selects the Condorcet
winner whenever he exists.

The following rules are some SCF which are Condorcet extensions.
Maximin rule. The maximin rule selects the alternative who has the maximum
worst pairwise election against any of the other alternatives. Formally, the Maximin
winner is the arg maxa∈A minb∈A\{a} nab where nab is the number of voters who prefer
a to b. Maximin rule is Condorcet extension as whenever a Condorcet winner exists,
he will have a Maximin score > n

2
since he is preferred to all other alternatives by

the majority of voters. Every other alternative will have a Maximin score< n
2

as he
loses at the pairwise election with the Condorcet winner. Thus, the maximin rule
will select the Condorcet winner whenever he exists.
Ranked pairs. This rule ranks all pairwise elections by the largest strength of
victory first to smallest last. First, the number of voters who prefer a to b for each
pair (a, b), a 6= b are computed. Then it locks each pair, starting with the one with
the largest number of winning votes, and add one pair in turn to a graph as long as
they do not create a cycle. The procedure is continued until all pairs of alternatives
have been considered. The Ranked pairs winner is the alternative at the top of the
ranking. Ranked pairs is a Condorcet extension as whenever a Condorcet winner a
exists, the rule will select the pairs (a, b), ∀b prior to (b, a) as they have score larger
than n

2
and smaller than n

2
, respectively. Hence, the Ranked pairs winner will be

the Condorcet winner.
Although the Kemeny’s rule which is presented below is a SWF, when it is used

like an SCF, i.e. when it returns the top alternative of the Kemeny’s ranking, it is
a Condorcet extension.
Kemeny’s rule. Kemeny’s rule is an SWF that selects the rankings that minimize
the disagreements with the pairwise preferences of the agents. A more formal defi-
nition of Kemeny’ rule uses the Kendall tau distance between two rankings which is
defined as: dKT (σ1, σ2) = |{(a, b)|((a >σ1 b) ∧ (b >σ2 a)) ∨ ((b >σ1 a) ∧ (a >σ2 b))}|,
i.e. it is the number of pairs that the two rankings disagree. Then, Kemeny’s
rule gives the rankings in arg minσ∈L(A)

∑
1≤i≤n dKT (σ, σi), where n is the number

of voters. As the Kemeny’s rule returns a ranking that minimizes the total pair-
wise disagreements with the voters, if the vote profile has a Condorcet winner then
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the Kemeny’s winner (the alternative at the top of the output ranking) will be the
Condorcet winner. Otherwise, let that a is the Condorcet winner and b is another
alternative such that Kemeny’s rule return a ranking with b > a. As a is Condorcet
winner, the number of voters that prefer a to b is greater than n

2
and the number

of voters that prefer b to a is less than n
2
. Therefore, if b > a is replaced by a > b

a ranking with a smaller number of pairwise disagreements is obtained, which is
opposed to the definition of Kemeny’s rule. In a similar way, for every alternative b
in A the Kemeny’s rule will return a ranking with a > b and hence, it will output
the Condorcet winner.

Example 2.2.3. The Kendall Tau distance of the rankings σ1 = a > b > c and
σ2 = b > c > a is dKT (σ1, σ2) = 2 as they disagree on the pairs {(a, b), (a, c)}.

Example 2.2.4. Let A = {a, b, c} the set of alternatives. Then beginning from the
ranking a > b > c, the following tree graph illustrates how the rankings are formed
while the Kendall Tau distance is increasing (moving a layer down translates into
increasing the KT distance by one):

a > b > c

b > a > c

b > c > a

c > b > a

a > c > b

c > a > b

c > b > a

Figure 2.1: Kendall Tau distance diagram of the ranking a > b > c.

Example 2.2.5. Suppose that the set of alternatives is A = {a, b, c} and consider
the profile consisting of the following five votes:

1. 2 votes: a > b > c

2. 2 votes: b > c > a

3. 1 vote: a > c > b

Under the Maximin rule, alternative a gets 3 points, alternative b gets 2 points,
and c gets 1 point, thus a is the Maximin winner. Under the Ranked pairs, each
pair gets the following points (in decreasing order): (b, c) : 4 points, (a, b) : 3 points,
(a, c) : 3 points, (b, a) : 2 points, (c, a) : 2 points and (c, b) : 1 point. Hence,
the Ranked pairs will output the ranking a > b > c and winner the alternative a.
Kemeny’s rule will output the ranking a > b > c and winner the alternative a as
each ranking gets the following score: a > b > c : 5 points, a > c > b : 8 points,
b > a > c : 6 points, b > c > a : 7 points, c > a > b : 9 points, c > b > a : 10
points. We observe that all three rules output the Condorcet winner a (three out of
five voters prefer a to b and tree out of five voters prefer a to c).
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Although there are many common rules that are Condorcet extensions, it is
proved that the popular class of scoring rules is disjoint with the class of Condorcet
extensions [39].

Theorem 2.2.1. There are not any scoring rules that are Condorcet extensions.
Equivalently, for every scoring rule there is a preference profile that the rule fails to
select the Condorcet winner.

Example 2.2.6. Suppose that the set of alternatives is A = {a, b, c} and the profile
consisting of the following seven votes:

1. 3 votes: a > b > c

2. 2 votes: b > c > a

3. 1 vote: b > a > c

4. 1 vote: c > a > b

In the above profile a is the Condorcet winner since four out of seven voters prefer
a to b and four out of seven voters prefer a to c. Let r a scoring voting rule with
s1 > s2 > s3. Then the score of alternative a = 3 · s1 + 2 · s2 + 2 · s3 is smaller than
the score of alternative b = 3 · s1 + 3 · s2 + 1 · s3. Hence, the scoring rule r will not
output the Condorcet winner.

2.2.3 Other rules

Some other prominent rules that are neither scoring rules nor Condorcet extensions,
are introduced.
Single transferable vote (STV) rule. Under STV rule, the election procedure
consists of m−1 rounds. In each round, the alternative that gets the lowest plurality
score (the number of times that he is ranked first among the remaining alternatives)
is removed. The alternative is also removed from all votes and the remaining al-
ternatives proceed to the next round. The last remaining alternative is the winner.
STV rule is widely used in political elections in many countries such as Scotland
and Ireland, Australia and India.
Bucklin’s rule. Under Bucklin’s rule, the score of each alternative is the minimum
position k such that the majority of voters rank the alternative among the first k
positions. The Bucklin’s winner is the alternative with the minimum Bucklin score.
Plurality with runoff. Elections under Plurality with runoff proceed in two
rounds. In the first round, all alternatives except the two with the highest plu-
rality score are removed. Then, the winner of the elections is the alternative that is
preferred by the majority of voters in the second round. Plurality with runoff rule
is used in Iran, France and North Carolina State.

Example 2.2.7. Assume that the set of the alternatives is A = {a, b, c, d} and the
following profile consisting of twenty-six votes:

1. 10 votes: a > b > c > d
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2. 7 votes: d > a > b > c

3. 6 votes: c > d > a > b

4. 3 votes: b > c > d > a

Under Bucklin’s rule, alternative a is the winner as a gets two points and b,c,d
get three points each. Under STV rule, in the first round b drops out, in the second
round d drops out, in the third round c is removed and the last remaining is a who
is the STV winner. Under Plurality rule with runoff, however, d is the winner as a
and d proceed to the second round and d is preferred to a by sixteen out of twenty-six
voters.

2.3 Axiomatic Approach

Since many and different rules do exist, a natural question is which voting methods
(SWF or SCF) are considered to be “good”. When there are only two alternatives, a
“good” voting rule is the majority rule; common sense characterizations [52] suggest
that alternative a should be preferred to alternative b if the majority of voters prefer
a to b. However, when the number of alternatives is larger than three, majority rule
cannot consist an SWF since the preferences of majority may lead to cycles. In ad-
dition to this, since the agents’ preferences are given in the form of rankings, it does
not seem obvious which voting method returns the outcome that best reflects the
social good. Therefore, to overcome this difficulty, researchers have proposed some
desirable properties that “good” SWF and SCF should satisfy and have classified
them by the properties they have.

Some of these desirable properties for SWF are defined as follows.

Definition 5. An SWF f is unanimous if strict unanimous agreement is reflected
in the social preference relation. That is, if all agents prefer a certain alternative to
another, then so must the resulting social preference order. Formally, if alternative
a is ranked above b in all rankings σ1, .., σn in the preference profile π, then a is
ranked higher than b in f(π).

Definition 6. An SWF f is independent of irrelevant alternatives (IIA) if the social
preference between any alternatives a and b depends only on the agents’ preferences
between a and b. Formally, for every alternatives a, b ∈ A and every rankings
σ1, ..., σn, σ

′
1, ..., σ

′
n, if σ = f(σ1, ...σn) and σ′ = f(σ′1, ...σ

′
n) then a >σi b ↔ a >σ′i

b
for all i implies that a >σ b↔ a >σ′ b.

Example 2.3.1. Assume that an SWF f ranks alternative a above alternative b at
the profile consisting of the two preferences:

1. a ≥i b ≥i c

2. b ≥ii c ≥ii a

If f is IIA, then it ranks alternative a above alternative b at all following profiles:
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1. a ≥i b ≥i c, b ≥ii a ≥ii c

2. a ≥i b ≥i c, b ≥ii c ≥ii a

3. a ≥i b ≥i c, c ≥ii b ≥ii a

4. a ≥i c ≥i b, b ≥ii a ≥ii c

5. a ≥i c ≥i b, b ≥ii c ≥ii a

6. a ≥i b ≥i b, c ≥ii b ≥ii a

7. c ≥i a ≥i b, b ≥ii a ≥ii c

8. c ≥i a ≥i b, b ≥ii c ≥ii a

9. c ≥i a ≥i b, c ≥ii b ≥ii a

Definition 7. An SWF is non-dictatorial if there is no agent that can force his
preference of any pair of alternatives to the resulting social preference, no matter
what the preferences of the other agents are. Formally, an SWF f is non-dictatorial
if there is no agent i such that for all preference profiles π = (σ1, .., σn) ∈ L(A)n

implies that f(π) = σi.

Although these properties seem to be quite natural and one would surely want
any good voting method to satisfy them, Arrow showed that these natural axiomatic
properties are not compatible and there are not any SWF that simultaneously meet
the above criteria when the number of alternatives is larger than two.

Theorem 2.3.1 (Arrow, 1951). There exists no SWF that is simultaneously IIA,
unanimous and non-dictatorial whenever |A| ≥ 3.

Arrow’s impossibility theorem is one of the most influential results in social
choice theory and has given the boundaries on what can be achieved in social choice
[63]. In particular, it shows that the main concern is to find ways to escape this
impossibility result by relaxing or omitting the desired properties.

Such attempt was given by Young [82] who proposed to weaken the IIA require-
ment as a way out of the impossibility theorem. He proposed to replace IIA with
local IIA which requires IIA to hold only for consecutive pairs of alternatives in the
social preference. In other words, if two alternatives are in consecutive positions in
the social preference, then the one that was ranked higher must win if we delete all
other alternatives from the votes.

Various theorists [83] agreed that IIA is a very strong requirement as all SWF
that reduce to majority rule when there are only two alternatives fail the IIA re-
quirement. For example, suppose that there are three alternatives a, b, c and the
following preference profile :

1. 25% of agents prefer a > b > c

2. 40% of agents prefer b > c > a
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3. 35% of agents prefer c > a > b

There are three possible winners:

1. Winner is a. Then, in the preference profile with the above preferences without
b, c would be the winner as 75 % prefer c to a.

2. Winner is b. Then, in the preference profile with the above preferences without
c, a would be the winner as 60 % prefer a to b.

3. Winner is c. Then, in the preference profile with the above preferences without
a, b would be the winner as 65 % prefer b to c.

As a result, the IIA requirement fails for the rules that reduce to majority when
there are only two alternatives.

Rather than relaxing the explicit assumptions of the Arrow’s theorem, another
way out of the impossibility result, is relaxing the implicit assumptions. One of
these attempts is presented in the following subsection.

2.3.1 Utilitarian voting

In this subsection, relaxing the requirement for the use of linear orders will be pre-
sented as a way out of the Arrow’s impossibility result. In contrast with the above
rules, under the utilitarian voting a voter gives a score within a permitted scale
to each alternative using a utility function that assigns a number(utility) to each
alternative. Then, the scores of all voters are summed and the total score of each
alternative is calculated. Winner is the alternative with the highest total score.
This kind of voting is called cardinal whereas the rules that take as input rankings
of the alternatives are called ordinal. Although a cardinal rule implies an ordinal,
the inverse does not hold as infinite cardinal mappings imply the same ordinal. For
example, giving the utilities 4, 3, 2, 1 to alternatives a, b, c, d respectively is the same
as giving 200, 100, 50, 10 which is the same as giving 100, 1, 0.5, 0. They all imply
the ordinal ranking a > b > c > d.

According to Claude Hilinger [48] there are three conditions that define utilitar-
ian voting:

1. The voting method must have a voting scale (a, b) and the scores given by the
voters should be between this scale.

2. The outcome of an election must be based on the total scores of the alterna-
tives.

3. Every voter should be free to assign to each alternative any of the scores
permitted by the voting scale.
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2.3.1.1 Examples

Some common cardinal rules are defined below.
Approval voting(AV) [11, 13, 12, 72]. The voting scale for this method is
{0, 1}. The main advantage presented is that it is a simple rule and lets voters put
the alternatives into two classes; the class with the alternatives they approve and
one with the alternatives they reject. However, it is suggested that a voting scale of
two values may be too restrictive.
Range voting(RV) [67]. The valid scores can be any real s such that a ≤ s ≤ b
where the voting scale is (a, b). Although range voting allows voters a wide choice
of permitted values, the selection of an appropriate voting scale for the voter needs
empirical and experimental study.
Evaluative voting(EV) [38, 46, 47]. The only valid scores for this method are
{−1, 0, 1}. This method is between AV and RV and gives the chance to the voter
to discriminate the alternatives with three values.

2.3.1.2 Arrow and utilitarian voting

An important advantage of cardinal voting is that it is a way out of the impossibility
result by Arrow. Cardinal voting methods that evaluate alternatives by their total
utility are not covered by Arrow’s theorem (e.g. [67]) and in fact, the conditions
of the Arrow’s theorem (as they are restated in [70]) are trivially satisfied by the
definition of the utilitarian voting.

Specifically:

1. Unanimity: sik ≥ sij,∀i,∀j =⇒ sk ≥ sj,∀j, meaning that if all voters give a
higher score to alternative k than any other alternative, then he will have the
highest total score.

2. Nondictatorship: There exists no voter i, such that sih > sik =⇒ sh > sk.

3. Transitivity: The ordering of the alternatives implied by their total scores is
transitive.

4. Unrestricted Domain: Each voter can give to each alternative any score per-
mitted by the voting scale.

5. Independence of Irrelevant Alternatives: The total score of any alternative
does not depend on the scores given to other alternatives.

2.3.2 Social choice functions

Another approach out of the impossibility result is disputing the use of SWF, i.e.
the fact that the rule must return a ranking of the alternatives. As it has been
mentioned above, in some settings it is not required to return a ranking of the
alternatives but it is desired to identify the most desirable alternatives. In these
cases SCF are used. Therefore, it is advisable to study some desirable properties
that SCF are expected to satisfy.
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Definition 8. An SCF is resolute if there is always a unique winner.

Definition 9. An SCF satisfies anonymity if the outcome of the rule remains the
same after renaming the agents. In other words, the rule is insensitive to the names
of the agents and ensures the fairness among them.

Definition 10. An SCF satisfies neutrality if the outcome of the rule is invariant
after renaming the alternatives. That means, the rule is insensitive to the names of
the alternatives and ensures the fairness among them.

Definition 11. An SCF satisfies homogeneity if replicating the votes of any profile
does not change the outcome of the election.

Definition 12. An SCF satisfies monotonicity if improving the position of an alter-
native in a profile without changing the order of the other alternatives cannot worsen
the outcome of the rule for the improved alternative, that is, if the alternative was
the winner of the election will still be the winner.

Definition 13. An SCF is non-imposing if for every alternative there is a preference
profile that returns him as winner.

Definition 14. An SCF f is non-dictatorial if there is no agent i such that for all
π ∈ L(A)n, f(π) = a where a is the agent’s i most preferred alternative. In other
words, it is non-dictatorial if there is no agent that can force his top preference to
be the top alternative.

Although neutrality and anonymity are two properties that one may expect that
every reasonable SCF should satisfy, it is shown that in general (except for some
special cases of n [54]) there is no resolute SCF that satisfies both properties.

Theorem 2.3.2. For resolute SCF, anonymity is not compatible with neutrality.

Proof. The above theorem can be shown by considering an election with two alter-
natives A = {a, b} and the vote profile consisting of the two following votes:

1. a >i b

2. b >ii a

Without loss of generalization, we suppose that winner is the alternative a.
Then, we rename the alternatives a ↔ b. If the rule is neutral, then the winner
should be b. If the rule satisfies anonymity, then the winner should be a. Hence, we
have a contradiction and the rule cannot satisfy both neutrality and anonymity.

The following table summarizes whether some of the common voting methods
mentioned above satisfy the aforementioned axiomatic properties.
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Scoring
r.

Maximin Ranked
pairs

STV Bucklin Plurality
w.
runoff

Anonymity Y Y Y Y Y Y
Neutrality Y Y Y Y Y Y
Homogeneity Y Y Y Y Y Y
Monotonicity Y Y Y N Y N

Table 2.1: Properties of common voting rules.

2.4 Manipulation

One of the biggest concerns in social choice theory is that the agents may be moti-
vated not to report their true preferences in order to manipulate the voting method
to a more desired outcome. For example, a voter may have alternative a as his most
preferred alternative but if he believes that a will get a very few votes, he may vote
for one of the popular alternatives instead. In this way, he tries to ensure that his
most preferred popular alternative will get to win.

Example 2.4.1. Assume that there are are three alternatives A = {a, b, c} and three
voters with the following preferences:

1. a >i b >i c

2. b >ii a >ii c

3. c >iii b >iii a

Suppose that the voting method is plurality with ties broken in favor of c. Then
if voter i misreports his preference as b >i a >i c, then the winner will be b and
voter i will achieve a better result for himself as he prefers b to c.

SCF and SWF with a positive behavior should not be vulnerable to manipulation
as many fairness issues arise when there is the possibility of manipulation. There
is also the doubt whether the social preference responds to the true preferences of
the agents or to the probably distorted reported preferences. As a result, many
undesirable outcomes can rise and it is very difficult to predict the outcomes of the
elections [32, 78] .

Definition 15. A resolute voting rule f is strategyproof if there is no voter i such
that there exist preference profiles π = (σ1, ..., σn) and π′ = (σ′1, ..., σ

′
n) with σj = σ′j,

∀j 6= i and f(π′) >i f(π). In other words, a voting rule is strategyproof if there is
never a beneficial manipulation for any voter under this rule.

Unfortunately, manipulation cannot be avoided in general, as every single-valued
SCF is susceptible to manipulation when there are more than two alternatives [43,
64].
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Theorem 2.4.1 (Gibbard - Satterthwaite). Let f be a non-imposing, strategyproof,
resolute social choice function on A, where |A| ≥ 3, then f is dictatorial.

According to the Gibbart-Satterthwaite theorem there is no hope for finding a
reasonable strategyproof SCF. Therefore, similarly with Arrow’s theorem, the above
theorem shows that there is the need to find ways to escape the impossibility result
by either relaxing or skipping some of its implicit or explicit requirements.

One of the implicit assumptions of the Gibbart-Satterthwaite theorem is that
the social choice function is defined for all possible preference profiles. A research
direction investigates how to escape the impossibility result by restricting the pref-
erence profiles to domains with desirable properties.

An important contribution in this direction was made by Moulin [55] who showed
that if the preference profiles are only profiles who have a Condorcet winner, then
the SCF that uniquely selects the Condorcet winner is strategyproof. An example
of such domain is the single-peaked preferences. Under this domain, it is assumed
that there is a linear ordering < of the alternatives and the agents’ preferences are
supposed to have a single most preferred alternative. As one moves away from the
agent’s most preferred alternative, the alternatives will become less preferred for
that agent. For example, the agents may be voting over the number of new com-
puters that a school needs to buy and let A = {10, 15, 20, 25, 30, 40} the set of the
alternatives. Then, a voter that thinks that the school needs 20 computers, he would
prefer 15 to 10 and 30 to 40.

When the preferences are single-peaked and the number of the agents is odd, a
Condorcet winner always exists. In fact, as it was observed by Black [9], if the pref-
erences of the voters are sorted (according to <) by their most preferred alternative,
then the top alternative of the median((n+1)/2)th) voter, is the Condorcet winner.
Hence, the median-voter rule i.e. the rule that returns the top alternative of the
median voter, is a non-dictatorial, non-imposing, strategyproof SCF as it follows
by the result of Moulin [55] mentioned above; a Condorcet extension in preference
profiles that have a Condorcet winner, is strategyproof.

While restricting the domain of the preference profiles provides a breakaway of
the impossibility result and many positive results arise, it is not realistic to expect
that in all settings the preference profiles will fall in the restricted domain. In fact,
in many settings the restrictions are not expected to hold. Hence, it is required
to find another way to slide over the Gibbard - Satterthwaite result as there is no
control over whether the preferences will actually fall in the restricted domain.

Another approach to circumvent the impossibility result is by using SCF with
high manipulation complexity. Inspired by Bartholdi et. al [4], resent research[23,
26, 33, 36, 45] examines how to use computational hardness as a barrier against
manipulation. While it is desirable to have SCF by which it is easy to determine
the winner of the elections, it is also desirable manipulation to be hard to compute.
When defining manipulation problem as a computational problem it is usually as-
sumed that there is a manipulator who already knows the votes of all other agents
and wants to determine whether he can make a particular alternative to win. Al-
though one may argue that it is not realistic to assume that the manipulator knows
all the other votes, any NP-hardness results are stronger as the case where the voter
knows all the other votes is just a special case of the problem where he does not
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know all votes.
For some voting methods, such as Kemeny’s rule which has been proved to be

NP-hard to compute [3], predicting the winner is too complicated for everyone.
Hence, if finding an effective manipulation is computationally hard, manipulation
will not be a problem as the agents will prefer to vote truthfully. Indeed, finding an
effective manipulation has been proved to be NP-hard for several voting rules such
as STV[5] and ranked pairs[77]. In addition, most common voting rules are known
to be hard to manipulate when there is a coalition of manipulators which cooperate
in order to make a specific alternative win. As the single-manipulator problem is
a special case of the coalition problem, the SCF which are NP-hard to manipulate
when there is a single manipulator are also NP-hard to manipulate when there is a
coalition of manipulations. However, there are also some other common rules such
as maximin [77] and Borda [6, 30] which are hard to manipulate in the case of many
manipulators.

There is an important drawback, though, of using complexity to avoid manip-
ulation. While complexity provides some protection against manipulation, it is
probably not a strong barrier. Computational complexity measures only the worst
case which means that it is not very probable to find an effective way of manipu-
lation for all instances, but there still may be some instances of the manipulation
problem that are solved effectively. If this holds, then computational complexity
provides only a partial protection. For example, it has been proved that when the
preferences are single-peaked, then many of the NP-hard manipulation problems
become efficiently solvable [16, 37]. Furthermore, some other research results show
that some manipulation problems are often easy to compute [25, 57, 58, 71, 75, 76].
Therefore, while it is desirable to prove that a voting method is hard to manipulate
for almost all instances, it is under doubt whether it is possible.

2.5 Scoring rules in statistical analysis

In the previous sections, different rules have been presented in the framework of
social choice and voting settings; however it is worth mentioning that scoring rules
have applications in many areas such as statistical analysis.

In statistical analysis it is often desirable to make forecasts for the future. Specif-
ically, the forecasts must assign probabilities to different values or events [31]. For
example, weather forecasters should predict the probability of rain or not rain on
the next day and economic agents should give the probability of increase or decrease
in unemployment rate. In many cases, there is the need to have precise informa-
tion about what different agents (forecasters) believe. However, without incentives,
there is the danger that agents misreport their beliefs and give noisy probability
distributions.

A scoring rule assesses the accuracy of different probabilistic distributions by
assigning a score on the predictive distribution based on the event that materializes
[44]. Different scoring rules can be used as either a measure of the accuracy of a
probabilistic prediction or as a “cost” function. If the scoring rule is used as a cost
function, then the purpose is to report probabilistic distributions so as to minimize
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the expected cost. Otherwise the purpose is to maximize the expected score (re-
ward). In terms of elicitation [42], the role of scoring rules is to encourage agents to
report truthfully their beliefs while in terms of evaluation, the role of scoring rules
is to evaluate the quality of forecasts and rank different forecast procedures.

2.5.1 Model

The setting that is usually used [7] assumes that there is an assessor A that assesses
the probability distribution of n mutually exclusive and collectively exhaustive state-
ments, where n > 1. Let an n-vector p = (p1, ..., pn) representing A’s private beliefs
where pi is the probability that A believes that statement i is true. These proba-
bilities are the assessors’ “true” state of knowledge but are not directly observable.
Let A’s public response given by r = (r1, ..., rn) where ri is the stated probability
that statement i is true. Then, if the scoring rule R is used, the expected reward of
the assessor A is R̄(r|p) = Ep[Ri(r)] =

∑
i pi · Ri(r), where Ri is the score received

when i is correct. If the aim of each assessor is to maximize the expected reward
R̄(r|p), then the optimal response is r∗ = arg maxrR̄(r|p).

2.5.2 Linear Scoring rule

If a linear scoring rule was used [8], then the optimal solution for the assessor
would be to report probability 1 for the most probable statement and 0 for the
other statements. For example, if he believes that the true probabilities are p =
(0.85, 0.15) then the optimal response is r = (1, 0) while if he believes that p =
(0.49, 0.51) the optimal response is r = (0, 1). Thus, it is clear that the linear
scoring rule does not motivate assessors to give their true beliefs. However, there
are scoring rules that encourage assessors to report truthfully their beliefs and they
are defined in the next subsection.

2.5.3 Proper scoring rules

A scoring rule is proper if the highest expected reward or the minimum expected
cost is obtained by reporting the true probabilities. A scoring rule is characterized
as strictly proper [68, 61, 66, 73] if it is uniquely optimized by the true probabilities.
Formally, a strictly proper scoring rule T is a scoring rule such that the assessor
maximizes his expected score by setting r∗ = p.

2.5.4 Examples

Some common strictly proper scoring rules are the following:

Quadratic. Qi(r) = 2ri − r · r ∈ [−1,−1].
Spherical. Si(r) = ri/(r · r)1/2 ∈ [0, 1].
Logarithmic. Li(r) = ln(ri) ∈ (∞, 0].
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The possible scores of each rule differ considerably but as any linear transforma-
tion of a strictly proper scoring rule is also strictly proper [68], the above rules can
be scaled so as to be easily comparable.

Example 2.5.1. Assume that we have the logarithmic scoring rule and a weather
forecaster predicts that with probability 80% will rain and 20% will not rain. If
it rains, the score will be L(0.8) = ln(0.8) = −0.22. Otherwise, the score will be
L(0.2) = −1.6.

2.5.5 Characterizations

As there are many proper scoring rules, a natural question is which are the best
scoring rules. In order to answer that, many desirable properties have defined and
it is examined which scoring rules satisfy them. The properties are divided into
two categories; the ex ante and the ex post properties [74]. The ex ante properties
encourage the assessor to report truthfully their beliefs while the ex post properties
evaluate the assessor’s performance. While all proper scoring rules provide the ex
ante proper property, they differ in the ex post properties. Some important ex post
properties are defined below.

Definition 16. A proper scoring rule satisfies locality if the value of the scoring
rule depends only on probability assigned to the correct event.

When there are only two events, all scoring rules are local as the probability of
the false event can be found as 1−ri. However, logarithmic scoring rule is proved to
be the only local rule [66] for any number of events. A local rule has some practical
advantages [7, 8]:

1. A local rule can be presented with a two-dimensional chart that shows the
score for any assignment while other rules do not have this advantage except
in specific assignments such as the uniform distribution.

2. A local rule has the advantage to give higher scores to probability distributions
that assign higher probability to the true statement. Other rules may give
higher (lower) score to distributions with lower (higher) probability to the
true event which in some cases can be perceived as unfair.

3. Different nonlocal rules may generate different rank orderings among assessors
for the same set of assessments. According to [7], Quadratic and Spherical
often result in extreme ranking differences compared to Logarithmic which
always rank assessors according to the probability they assigned to the correct
statement.

Another important property is the effectiveness.

Definition 17. Effectiveness is satisfied by the rules that encourage agents not only
to report their true beliefs but also to report distributions close to the truth for some
distance metric[40, 41] .
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In other words, scoring rules are sensitive to distance, meaning that if an assessor
does not report his true beliefs, he will prefer to report a distribution that is closer
to his true beliefs than a distribution with a bigger distance according to some
distance metric. Quadratic and Spherical rules satisfy the effectiveness property
while Logarithmic is considered [40, 41] not to be effective.

2.5.6 Nonlinear objectives

The proof that the assessors should respond truthfully under a strictly proper scoring
rule is based on the assumption that the aim of each assessor is to maximize his
expected reward. However, if instead an assessor has a nonlinear utility function
over the expected score, then the Quadratic, Spheric and Logarithmic are no longer
strictly proper. Clearly, an assessor with nonlinear utility that reports an assignment
r∗ 6= p is being rational and not necessarily dishonest as he tries to maximize
his utility. Bickel [7], though, showed that Logarithmic scoring rule has the best
behavior as it is the least affected by this.

2.5.7 Social choice - Decision theory

Scoring rules do not only play an important role in social choice but also in statis-
tics and decision theory. Strictly proper scoring rules evaluate different forecasting
procedures and at the same time, they motivate forecasters to report their true
assessments. However, as different proper rules do exist, different properties are de-
fined in order to compare the rules and classify them in categories; something that
is similar with the axiomatic approach of social choice.
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Maximum Likelihood Approach

In social choice, social welfare and social choice functions have two different goals;
achieving a compromise/democracy among the preferences of the agents and re-
vealing the truth respectively. The axiomatic approach mentioned in the previous
chapter evaluates different rules by the axiomatic properties they satisfy, aiming
in this way to find “fair” rules that can lead to a compromise among the agents.
The statistical or maximum likelihood approach, on the other hand, seeks to realize
the second goal. This different approach views the voting rules as estimators: it is
assumed that there is a hidden ground truth (a correct ranking or a correct winner)
and that the votes are noisy estimators of that truth, i.e. votes are the agents’
different perceptions of what the correct outcome is.

Maximum likelihood approach which was firstly introduced by Marquis de Con-
dordet [22] has been adopted in economics [2, 69] and it has also recently peaked the
interest in computational social choice and AI [24, 34, 59, 51, 27, 79] as according
to Procaccia et al. [59] and Mao et. al [51], its prerequisites (an underlying truth)
are satisfied by the voting in some crowdsourcing and human computation domains.
It is notable that not all voting settings have a correct outcome. For example, it
may be the case that voters know all the required information for the alternatives
and the different votes are due to the personal circumstances of the agents. In other
settings, however, there are some alternatives that are objectively better than others
according to a quality measure. For instance, voters may have to evaluate the al-
ternatives’ quality of a specific property and rank the alternatives according to this
measure. An example of this setting is EteRNA a scientific game where players are
called to vote stable molecular designs that will be synthesized in the laboratory.

Under this approach, a good voting rule is a rule that will output the ranking
that is most likely to be the underlying truth given the noisy votes and consequently,
a natural approach is to choose the maximum likelihood estimator. Although one
may think that computing the maximum likelihood estimator is just a problem of
statistics, finding a maximum likelihood estimator is not just a problem of this area
since it is also desirable that a “good” rule under maximum likelihood approach is
also “good” under the axiomatic approach. That is, a maximum likelihood estima-
tor should also satisfy some of the traditional social choice axioms.

Formally, when the truth is either a ranking or an alternative, maximum likeli-
hood estimators are defined as below.

35
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Definition 18. A maximum likelihood estimator (MLE) of the underlying ranking
for a given preference profile π = (σ1, σ2, ..., σn) is the arg maxσ∈L(A) Pr[π|σ].

Definition 19. A maximum likelihood estimator (MLE) of the underlying winner
for a given preference profile π = (σ1, σ2, ..., σn) is the arg maxa∈A Pr[π|a].

That means the outcome of the estimator maximizes the probability of observing
the noisy samples given that it is the ground truth. As it follows from the definition
of MLE, computing the MLE depends on the conditional probabilities of observing
a profile given a ground truth. These conditional probabilities are defined by the
noise models which are studied in the following subsection.

3.1 Noise Models

Under maximum likelihood approach, as the votes are estimators of the ground
truth or equivalently the mistakes that voters make in their evaluation of what the
ground truth is, it is supposed that they follow a conditional distribution given the
correct ranking. Different conditional distributions constitute different noise models.
Usual assumptions are that the votes are conditionally independent given the correct
ranking and that all votes follow the same distribution.

Mallows model [50] is one of the most popular noise models and was firstly
proposed by Marquis de Condorcet. This model assumes that every voter ranks
every pair of alternatives correctly with probability p > 1

2
and incorrectly with

probability 1 − p. Each voter ranks every pair independently and when a pairwise
preference creates a cycle in the voter’s current ranking, the process is restarted until
a full ranking is formed. Two centuries later, Young [82] showed that the Kemeny’s
rule is the MLE for Mallows model.

Example 3.1.1. Let A = {a, b, c} the set of alternatives and consider the following
samples from Mallows model:

1. a >1 b >1 c

2. a >2 c >2 b

3. b >3 a >3 c

Then, the likelihood of each vote given the different possible ground truths when
p = 0.6 are given by the Table 3.1. It can be observed that the ranking a > b > c
maximizes the likelihood to observe the given profile and thus, MLE would output
a > b > c.

Given the noise model, i.e. the probability distributions that votes follow, the
MLE can be computed according to definitions 18 and 19. As an MLE is a function
from the given preference profile to a ranking or an alternative, it constitutes a SWF
or a SCF respectively. Therefore, it is natural to examine which of the common vot-
ing rules can be interpreted as maximum likelihood estimators as this different view
of the rule may contribute in understanding better the voting rule and consequently,
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vote 1 vote 2 vote 3 Total
a > b > c p3 p2 · (1− p) p2 · (1− p) p7·(1−p)2 = 4.48·10−3

a > c > b p2 · (1− p) p3 p · (1− p)2 p6·(1−p)3 = 2.98·10−3

b > a > c p2 · (1− p) p · (1− p)2 p3 p6·(1−p)3 = 2.98·10−3

b > c > a p · (1− p)2 (1− p)3 p2 · (1− p) p3·(1−p)6 = 8.84·10−4

c > a > b p · (1− p)2 p2 · (1− p) (1− p)3 p3·(1−p)6 = 8.84·10−4

c > b > a (1− p)3 p · (1− p)2 p · (1− p)2 p2·(1−p)7 = 5.89·10−4

Table 3.1: Likelihood of each vote in example 3.1.1.

adapt the rule so as to better fit each setting’s needs.
In this direction, Conitzer et. al [24] examine for which popular voting rules

exists a noise model such that the voting rule is the MLE for that model. Positional
scoring rules when the outcome is either an alternative (SCF) or a ranking(SWF) as
well as the STV rule when it returns a ranking of the alternatives, are some common
voting rules that can be interpreted as MLEs for some noise models. However, not
all common voting rules can be interpreted as MLEs and some negative results do
exist [24, 34]. A simple criterion introduced by Conitzer et. al [24] to decide if a
rule cannot be interpreted as MLE is presented below.

Lemma 3.1.1. If there exist preference profiles π1, π2 such that the rule f produces
the same outcome on π1 and π2, but a different outcome on π1 + π2, then f cannot
be an MLE.

Using the above condition, some popular rules such as Maximin and Bucklin rule
are shown that they cannot be MLEs. However, it remains open whether there are
rules that are not MLE but the above lemma cannot be used to show this or if the
above lemma is a sufficient condition.

Maximum likelihood estimators as defined above cover the cases where the aim is
to reveal the underlying truth which can be either the true ranking of the alternatives
or the true winner. However, they do not cover the settings where the aim of the
agents is to select a subset of good alternatives. Therefore, there was the need for
the maximum likelihood approach to be extended to the problem of selecting a set
of alternatives that possess special properties.

3.2 Selecting Sets of Alternatives

Procaccia et al. [59] study the problem of selecting a set of alternatives that provides
a maximum likelihood estimator for some desirable properties such as containing the
best alternative. Specifically, this voting setting has application in areas where given
a number of noisy estimators the aim is to select a subset of the alternatives so as
to identify the best alternatives.

For example, during the development of a product different designs are sug-
gested. Then, potential customers are called to vote for the designs they prefer
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and according to the votes, the most popular designs are manufactured. Finally,
the best prototype is selected from a group of experts. In this setting, the aim is
to manufacture(select) a set of prototypes that contains one of the objectively best
designs.

Another example that this research direction matches with is EteRNA, a scien-
tific game. In EteRNA, the players propose different molecular designs and they
vote for a specific number of designs that they evaluate to be stable in order to be
synthesized in the lab. Then, the designs that collect the larger number of votes
are selected to be materialized in the lab. In this setting there is a ground truth;
some designs are objectively stable and some are not. The votes of the players can
be assumed to be noisy estimates of the ground truth and the objective is to select
a set of designs that is most likely to contain a stable design, i.e. one of the best
designs of the ground truth.

The model that is used to capture these situations is described below.

3.2.1 Model

Let A = {1, 2, ..,m} the set of the alternatives and σ∗ the underlying ground truth
with ai the alternative that is on the ith position in the true ranking. Given a
number of noisy samples of the ground truth, the objective is to select a subset
of alternatives that is a maximum likelihood estimator of a “good” subset, i.e. it
satisfies one of the three objectives that will be presented below. The samples are
assumed that are taken from the noise models defined as follows.

In the noisy comparisons model, each pair of alternatives is presented to n voters
(probably different voters for each pair) and every voter independently ranks each
pair correctly with probability p, where 1

2
< p < 1. Therefore, this model leads

to a dataset D where there are n votes for each pair of alternatives. Under noisy
comparisons model computing the MLE is NP-hard [14, 20].

Under Mallows model, as it was defined above, the probability of observing a

ranking σ is (1−p)dKT (σ,σ∗)·p(
m
2 )−dKT (σ,σ∗) , due to the fact that every voter ranks each

pair of alternatives correctly with probability p and incorrectly with probability 1−p.
Under normalization the above probability can be written as Pr[σ|σ∗] = φdKT (σ,σ∗)

Zmφ
,

where φ = 1−p
p
< 1 and Zm

φ a normalizing constant.
The noisy choice model unifies the noisy comparisons model and the Mallows

model and the probability of observing a dataset D is Pr[D|σ∗] = γd(σ
∗,D)

Zγ
, where

d(σ∗, D) measures the disagreements for every pair of alternatives between the
ground truth and the dataset, γ is the level of noise and Zγ is a normalizing con-
stant. Formally, d(σ∗, D) =

∑
a,b∈A,a<σ∗b nba, where nba is the number of voters that

prefer b to a. The above equation shows that the probability of observing a dataset
D given that the ground truth is σ∗ decreases exponentially as its distance from the
underlying truth is increased.

As it follows, both noisy comparisons and Mallows model assume that every
agent compares correctly with probability p > 1/2 any pair of alternatives. Noisy
comparisons model, though, captures settings where any voter may be asked to rank
only some of the pairs of alternatives while Mallows model captures settings where
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any voter has to report a full ranking by giving his pairwise preferences. Both noisy
comparisons and Mallows model reduce to noisy choice model with γ = φ = 1−p

p
.

However, noisy choice model can capture more general settings such as the setting
where each voter selects some of the alternatives and reports a ranking only of those.

Example 3.2.1. Let A = {a, b, c, d} the set of alternatives and suppose that the true
ranking is σ∗ = a >σ∗ b >σ∗ c >σ∗ d. Then for n = 3 the following profile could be
observed under noisy comparisons model (where each column gives the n votes for
the respective pair):

(a,b) (a,c) (a,d) (b,c) (b,d) (c,d)
a > b c > a a > d b > c d > b d > c
a > b a > c a > d c > b d > b c > d
b > a a > c d > a c > b b > d c > d

Table 3.2: A vote profile under noisy comparisons model.

The probability of observing the above profile is p10 ·(1−p)8 as each pairwise vote
that agrees with the true ranking appears with probability p and each pairwise vote
that disagrees with the true ranking appears with probability 1− p.

Under Mallows model, for n = 3 the following voting profile could be observed:

1. a >1 b >1> d >1 c which has probability p5 · (1− p)1

2. b >2 c >2> d >2 a which has probability p3 · (1− p)3

3. b >3 a >3> c >3 d which has probability p5 · (1− p)1

The probability of observing the above profile is p5·(1−p)1·p3·(1−p)3·p5·(1−p)1 =
p13 · (1− p)5.

3.2.2 Different objectives

Given samples from the above noise models, finding a good subset will be viewed
under three different objectives.

The first objective is to select a k-subset of alternatives that is most likely to
include the top alternative of the underlying ranking, that means the k alternatives
that are most likely to be the best alternative. Formally, the aim is to select a sub-
set S ⊆ A with k alternatives such that S ∈ arg maxS⊆A,|S|=k Pr[a1 ∈ S|D], where
a1 is the top alternative of the underlying ranking. From Bayes rule it is known
that Pr[a|b] ∝ Pr[b|a] when a follows uniform a priori distribution and therefore,
supposing uniform prior over the rankings, the aim is equivalent with selecting a
subset S ∈ arg maxS⊆A,|S|=k Pr[D|a1 ∈ S].

The next objective that will be studied is selecting a k-subset that is most likely to
contain the k top alternatives of the true ranking, i.e the k alternatives that are most
likely to coincide with the top k alternatives. Formally, the aim is to select a subset
S ⊆ A with k alternatives such that S ∈ arg maxS⊆A,|S|=k Pr[S = {a1, a2, .., ak}|D].
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The last objective aims to select an ordered tuple of k alternatives that is most
likely to coincide with the ordered tuple of the first k alternatives in the ground
ranking. That is, it extends the second objective as it is not only required to
select the k top alternatives but it is required to select them with their true or-
der. Formally, the aim is to select a k-tuple (s1, s2, .., sk) such that (s1, s2, .., sk) ∈
arg max(s1,s2,...,sk)∈Ak Pr[ai = si,∀i ∈ {1, ..k}|D].

Choosing k = 1, under first objective the aim is to select an alternative that
maximizes the probability of being the best alternative and under the second and
third objective the aim is to select an alternative that is most likely to be on the
first position of the true ranking. Hence, the three objectives coincide for k = 1.

For the rest of this section, finding an optimal solution to Objective 1, Objective
2 and Objective 3 will be referred as k-Include Top, k-Unordered Set and k-Ordered
Tuple respectively. In addition, the notation arg maxka∈A g(a) is used to denote the
set of all k-subsets that include the k alternatives with the highest values under the
function g.

3.2.3 Computational Complexity

As the three objectives have defined, the complexity of finding optimal solutions
to the three respective problems, k-Include Top, k-Unordered Set and k-Ordered
Tuple, will be studied.

Theorem 3.2.1. For any k ∈ {1, ..,m} computing k-Ordered Tuple is NP-hard
under noisy comparisons.

Proof. In order to show that the above problem is NP-hard, it is sufficient to show
that a known NP-hard problem is polynomially reduced to this problem. In other
words, it is sufficient to show that if there is an algorithm that selects a k subset
which optimally satisfies objective 3, then there would be an algorithm that can
solve the NP-hard problem. The NP-hard problem that will be used is the mini-
mum feedback arcset in unweighted graphs [20]. Given an unweighted tournament
(directed graph with one directed edge between every pair of alternatives), the min-
imum feedback arcset is the smallest subset of edges such that if they are removed
from the graph, a DAG is obtained. Then, this DAG corresponds to a ranking that
is denoted as minimum feedback ranking.

Assume that there is an algorithm A1 that solves k-Ordered Tuple. Then, an
algorithm A2 that solves minimum feedback arcset can be constructed using the
following lemma.

Lemma 3.2.1. The k-tuple that the algorithm A1 outputs on the voting profile DT

is a k-prefix of a minimum feedback ranking in the tournament T , where DT is
constructed with vertices of T as alternatives and with each edge from i to j of T as
a vote i > j.

Proof. Let T an unweighted tournament and DT the voting profile that is con-
structed from T . Consider S = (s1, .., sk) the result of the algorithm A1 applied
on DT which means that S ∈ arg max(s1,..,sk)∈Ak Pr[DT |ai = si,∀i ∈ {1, ..k}]. It is
wanted to show that S is the prefix of a minimum feedback ranking of T . Instead,
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suppose that S is not a prefix of any minimum feedback ranking and S ′ ∈ Ak is
another tuple that is a prefix of a minimum feedback ranking of T .

Assume that σ is a ranking obtained from the tournament T . Then, the feed-
back of this ranking σ equals d(σ,DT ), i.e. the number of disagreements between
the voting profile and the ranking is the number of edges in tournament T that if
they are eliminated, then σ is formed. Moreover, the probability of observing the

profile DT is Pr[DT |ai = si, ∀i ∈ {1, ..k}] =
∑

σ∈L(A)|σ(i)=si,∀i∈{1,..k}

Pr[DT |σ] =∑
σ∈L(A)|σ(i)=si,∀i∈{1,..k}

p(
m
2 )−d(σ,DT ) · (1 − p)d(σ,DT ), where the second transition follows

the fact that the event ai = si, ∀i ∈ {1, ..k} is the union of the disjoint events that
one of the rankings ∈ {σ ∈ L(A)|σ(i) = si} is the ground truth. The third transition
follows the definition of the noisy comparisons model.

Suppose that the minimum feedback is f ∗. Then there is a ranking with feedback

f ∗ and k-prefix S ′. Therefore, Pr[DT |ai = s′i,∀i ∈ {1, ..k}] ≥ p(
m
2 )−f∗ · (1 − p)f∗ .

Since S is not a prefix of any minimum feedback ranking, every ranking that has S
as prefix has at least feedback f ∗ + 1.

Hence, Pr[DT |ai = si,∀i ∈ {1, ..k}] ≤ (m−k)!·p(
m
2 )−f∗−1 ·(1−p)f∗+1, as there are

(m−k)! rankings that have (s1, .., sk) as a prefix with minimum distance f ∗+1. Thus,

if p > (m−k)!
1+(m−k)! , Pr[DT |ai = s′i,∀i ∈ {1, ..k}] > Pr[DT |ai = si, ∀i ∈ {1, ..k}]which

is opposed to the assumption that S is an optimum solution to Objective 3. As a
result, S is indeed a prefix of a minimum feedback ranking.

As the result of algorithm A1 is a k-prefix of a minimum feedback ranking, we
can use it to find a minimum feedback ranking. Specifically, given a tournament T
and a vote profile DT the algorithm A2 can be constructed using A1 as follows:

1. Apply A1 on DT and let ρ1 the outcome.

2. Construct a tournament T ′ by removing all vertices of ρ1 from T and adding
k dummy vertices.

3. Add edges from every non-dummy vertex to all dummy vertices in T ′ and
arbitrary edges between the dummy vertices.

4. Construct the voting profile D′T .

5. Repeat steps 1-4 for dm
k
e times.

6. Return the ranking of the first m vertices in ρ1ρ2..ρdm
k
e, where ρi is the result

of the ith iteration.

Induction can be used to prove that the first m vertices in ρ1ρ2..ρdm
k
e form a

minimum feedback ranking. Any suffix of a minimum feedback ranking is a minimum
feedback ranking of the tournament restricted on that alternatives. Otherwise, it
could be replaced by a smaller feedback ranking and get a different ranking with a
smaller total feedback which is opposed to the assumption that it was a minimum
feedback ranking from the beginning. Hence, by induction it follows that the first
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m−k alternatives in ρ2..ρdm
k
e form a minimum feedback ranking and concatenating it

with ρ1 we get the minimum feedback. It is also notable that the first m alternatives
of ρ1..ρdm

k
e are the original m alternatives. This is due to the construction of T ′

as there is an edge from every non-dummy vertex to all the dummy vertices and
therefore, the non-dummy vertices are selected as it is higher the probability of the
non-dummy vertices being ranked higher than the dummy vertices.

As an algorithm that solves minimum feedback arcset is constructed by using
polynomial times the algorithm that solves k-Ordered Tuple, the minimum feedback
arcset reduces to k-Ordered Tuple and thus finding an optimal solution to Objective
3 is NP-hard.

As solving k-Ordered Tuple for k = 1 is the same as solving 1-Include Top and
1-Unordered Set the corollary below follows.

Corollary 3.2.1. For m alternatives and k = 1, both k-Include Top and
k-Unordered Set are NP-hard under noisy comparisons.

The above corollary can be used to extend the NP-hardness of k-Include Top
and k-Unordered Set for k = 1 to any k ∈ {1, ...,m− 1}.

Theorem 3.2.2. k-Include Top with m alternatives and k ∈ {1, ...,m − 1} is NP-
hard under noisy comparisons.

Proof. The proof consists of two parts. The first part is to show that k-Include
Top with k = 1 reduces to k-Include Top with k ∈ {1, ..,m/2}. Let T1 an instance
of k-Include Top with k = 1 and m − t + 1 alternatives with t ∈ {1, ..,m/2}. A
T2 instance can be created with m alternatives and k = t by adding t − 1 extra
alternatives. In order to complete the voting profile for the pairs with the extra
alternatives n preferences a > b are added for every pair a, b such that a is one of
the extra alternatives and b is an initial alternative. Arbitrary preferences are also
added between each pair a, b with both a and b extra alternatives. It is obvious
that the t− 1 extra alternatives will be selected as they are preferred by all votes to
any other initial alternative and hence, the likelihood of being the top alternative
is higher. The last alternative of the t-tuble will be one of the initial alternatives
and hence, it is the initial alternative with the highest probability of being the top
alternative, i.e. he is the solution in T1. It follows, thus, that k-Include Top with
k ∈ {1, ..,m/2} is NP-hard.

The second part is to show that k-Include Top with k = t ∈ {1, ..,m/2} is
equivalent to k-Include Top with k = m − t. Let T1 an instance of k-Include Top
with k = t ∈ {1, ..,m/2}. Then the solution consists of the k alternatives with the
highest probability of being the top alternative. Let T2 an instance of k-Include Top
with k = m− t which is constructed from T1 by reversing all preferences. Then, the
m − t alternatives most likely to be the best alternative are the m − t alternatives
in T1 which weren’t selected, i.e. the m − t alternatives which were less likely to
be the best alternative in T1. In a same way, an instance of k-Include Top with
k = m− t ≥ m/2 can be reduced to to an instance of k-Include Top with k ≤ m/2.
Therefore, k-Include Top with k ∈ {1, ..,m/2} is equivalent to m − k-Include Top.
As a result, k-Include Top with k ∈ {1, ..,m− 1} is NP-hard.
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In a similar way, the theorem below follows.

Theorem 3.2.3. k-Unordered Set is NP-hard for k ∈ {1, ..,m − 1} under noisy
comparisons.

Except from samples from noisy comparisons, NP-hardness can also be proved for
samples from Mallows model using the reduction of computing the Kemeny ranking
(which is NP-hard [3]) to the above three objectives.

Theorem 3.2.4. k-Include Top and k-Unordered Set with k ∈ {1, ..,m − 1}, and
k-Ordered Tuple with k ∈ {1, ..,m} are NP-hard under Mallows model.

As Mallows model and noisy comparisons are special cases of noisy choice model,
it follows that the three problems k-Include Top, k-Unordered Set and k-Ordered
Tuple are NP-hard under noisy choice model.

3.2.4 Finding Solutions

One natural approach to find the optimal solution to Objective 1 would be to com-
pute the MLE ranking and then select the k top alternatives. As Young [82] showed
for k = 1 when p is close to 1, this method indeed gives an optimal solution. Lemma
1.2 and Theorem 1.1 also show that when p is close to 1 (p > (m−k)!

(m−k)!+1
) the optimal

solution is a k-prefix of the minimum feedback ranking in noisy comparisons or a
k-prefix of the Kemeny ranking which are respectively the MLE rankings. However,
when p is close to 1

2
this is not the case. Young showed [82] with an example that

for k = 1 the optimal solution is given by Borda rule and does not coincide with the
top alternative of the MLE ranking. Procaccia et. al [59] extend this case (p close
to 1

2
or equivalently γ close to 1) to any k ∈ {1, ..,m− 1} using an extended scoring

method. Under the extended scoring method the score of any alternative a is given
by sc(a) =

∑
b∈A\{a} nab where nab is the number of votes that prefer a to b.

Theorem 3.2.5. For every n and m there exists γ′ < 1 such that for all γ ≥ γ′, the
optimal solutions to Objective 1 under the noisy choice model are in arg maxka sc(a).

Proof. The probability of observing voting profile D given that the top alternative
is a∗ = a is the following:

Pr[D|a∗ = a] =
∑

σ∈L(A)|σ(a)=1

Pr[D|σ∗ = σ] =
∑

σ∈L(A)|σ(a)=1

γd(σ,D)

Zγ
, where the second

transition follows the fact that alternative a is top alternative if one of the rankings
that have alternative a as top alternative is the true ranking and the third transition
follows the probability distribution of the noisy choice model.

Let f(a) = Pr[D|a∗ = a] · Zγ. As the optimal solution to Objective 1 is
arg maxka Pr[D|a∗ = a], it follows that the optimal solution is also arg maxka f(a)
since arg maxka Pr[D|a∗ = a] = arg maxka f(a).

Using the inequality (1− ε)t ≥ 1− ε · t, ∀t ∈ N and that γ = 1− ε, ε ∈ [0, 1) the
following comes:

f(a) =
∑

σ∈L(A)|σ(a)=1

γd(σ,D) =
∑

σ∈L(A)|σ(a)=1

(1− ε)d(σ,D) ≥ f̂(a) =
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∑
σ∈L(A)|σ(a)=1

(1− ε · d(σ,D))

The difference between f(a) and f̂(a) can be upper bounded using the following
inequality:

|(1− ε)t− (1− t · ε)| ≤
t∑
i=2

(
t

i

)
· εi ≤ 2t · ε2 , where the second transition holds due to

the expansion (1− ε)t =
t∑
i=0

(
t

i

)
· (−ε)i and the last transition follows the property

of binomial coefficients
t∑
i=0

(
t

i

)
= 2t.

Using the above inequality for t = d(σ,D) the following comes:

f(a)− f̂(a) ≤
∑

σ∈L(A)|σ(a)=1

2d(σ,D) · ε2 ≤ ε2 · (m− 1)! · 2n·(
m
2 ), where the last transition

holds as there are (m−1)! rankings that have as top alternative a and max d(σ,D) =
n ·
(
m
2

)
, that is all voters of D disagree with every pair of σ.

Lemma 3.2.2. For every a ∈ A, f̂(a) = Cε + ε · (m− 1)! · sc(a) where Cε depends
only on ε.

Lemma 2.2 shows that as f̂(a) is a linear transformation of sc(a) we get that
arg maxka f̂(a) = arg maxka sc(a). Hence, in order to complete the proof of theorem
2.4 we have to show that arg maxka f(a) ⊂ arg maxka f̂(a). In order to show that, it
is sufficient to show that for every a, a′ ∈ A such that f̂(a) > f̂(a′) we have that
f(a) > f(a′). From lemma 2.2. it follows that if f̂(a) > f̂(a′) then sc(a) ≥ sc(a′)+1
and hence, f̂(a) ≥ f̂(a′) + ε · (m − 1)!. Thus, f(a) ≥ f̂(a) ≥ f̂(a′) + ε · (m − 1)! ≥
f(a′) − ε2 · (m − 1)! · 2n·(

m
2 ) + ε · (m − 1)!, where setting that ε < 2−n·(

m
2 ) we have

that f(a) > f(a′) as required.

Under Mallows model, sc(a) reduces to Borda score as sc(a) =
∑

b∈A\{a} nab
=
∑n

i=1(m−σi(a)), that is the number of alternatives that a beats summed over all
votes which equals Borda score. Hence, the optimal solution when given very noisy
samples of Mallows model is just picking the k alternatives with the highest Borda
scores. This is an extension of Young’s result for k = 1 to any 1 ≤ k ≤ m− 1.

Example 3.2.2. Let A = {a, b, c, d} the set of alternatives and the following noisy
samples (p ' 1/2) from Mallows model.

1. a > b > c > d

2. b > a > d > c

3. c > a > b > d

4. a > b > d > c

Then, the Borda scores of every alternative are the following: sc(a) = 10, sc(b) =
8, sc(c) = 4, sc(d) = 2. Therefore, for k = 1 the candidate most likely to be the top
alternative is a.
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Furthermore, extended scoring method also gives optimal solutions to Objective
2 when p is close to 1

2
. Thus, the alternatives selected for Objective 1 are not only

likely to be the top alternative but as a whole, they are also likely to coincide with
the k best alternatives.

Theorem 3.2.6. For every n and m there exists γ′ < 1 such that for all γ ≥ γ′, the
optimal solutions to Objective 2 under the noisy choice model are in arg maxka sc(a).

Optimal solutions to Objective 3 when p is close to 1
2

can also be given by an easily
computable method; the scoring tuples method. Under this method the score of
each k-tuple is computed as follows:

sc(a1, a2, ..., ak) =
k∑
i=1

sc(ai)− d((a1, a2, ..., ak), D) where d((a1, a2, ..., ak), D)

=
∑

1≤i≤j≤k najai , that is the number of votes that disagree with the order of
the alternatives in the k-tuple. Then, solutions to Objective 3 are the tubles that
maximize their score under this method.

Theorem 3.2.7. For every n and m there exists γ′ < 1 such that for all γ ≥ γ′,
the optimal solutions to Objective 3 under the noisy choice model are in
arg max(a1,a2,...,ak)∈Ak sc(a1, a2, ..., ak).

While extended scoring and scoring tuples methods are proved to give optimal
solutions only when the samples are very noisy (p close to 1/2), simulations show
that these methods have good accuracy when p is greater, i.e. when the noise is
lower. Thus, these easily computed results can be used to improve the quality and
the speed of human computations and affect positively the performance of many
human - computer systems.

3.3 Partial Orders

Until now, it has been assumed that every voter can compare any pair of alternatives.
However, this is not always the fact. Partial orders are desirable for two important
reasons. Voters may not be able to compare a pair of alternatives or it may not
be possible and efficient to rank all the alternatives due to the large number of the
alternatives. For example, while it is easy and reasonable to compare two cars, it
may be difficult to compare a car and a motorcycle and one may just want to declare
them as incomparable. In addition, a voter may have different preference criteria
which when combined may lead to non-total orders. For example, one may wants a
fast and a cheap car, so a 300 km/h car which costs 100000 euros is incomparable
to a 180km/h which costs 30000 euros.

Xia et al. [80] extend the previous results in MLE approach to voting with partial
orders by introducing the following model.

3.3.1 Model

Let A = {a1, a2, .., am} the set of the alternatives and o∗ the underlying ground
truth which can be either an alternative or a ranking. Under pairwise-independent
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model, votes are drawn conditionally independently given the ground truth and
each voter votes independently for every pair according to the following probability
distribution:

1. Pr[ai > aj|o∗] is the probability of ranking alternative ai higher than aj given
the ground truth

2. Pr[ai < aj|o∗] is the probability of ranking alternative ai lower than aj given
the ground truth

3. Pr[ai ∼ aj|o∗] is the probability of alternatives ai and aj being incomparable
given the ground truth

where Pr[ai > aj|o∗] + Pr[ai < aj|o∗] + Pr[ai ∼ aj|o∗] = 1.
Due to the independence mentioned above, the probability of observing a vote v is

Pr[v|o∗] =
∏

1≤i≤j≤m Pr[vij|o∗], where vij is the vote restricted only on alternatives i
and j. Furthermore, because of the independence among the voters, the probability
of observing a profile π = (v1, .., vn) of n votes is Pr[π|o∗] =

∏
1≤i≤n Pr[vi|o∗].

Then, the objective under MLE approach is to select an outcome that maximizes
the probability of observing the vote profile, i.e. arg maxo∈O Pr[π|o], where O can
be either L(A) or A.

3.3.2 Pairwise scoring rules

When the samples are taken under pairwise-independent noise model, the MLE is
a pairwise scoring rule which is defined as follows.

Definition 20. A pairwise scoring function is a function s: A × A × O → R with
value s(a, a, o) = 0 for any a ∈ A and for any outcome o ∈ O. For any partial order
v and any outcome o, s(v, o) can be computed as s(v, o) =

∑
(ai,aj)∈v s(ai, aj, o) .

Then for any profile π = (v1, .., vn) of partial orders, s(π, o) is the total s score of
all partial orders in the profile π, i.e. s(π, o) =

∑
1≤i≤n s(vi, o).

Definition 21. A pairwise scoring rule rs is defined as rs(π) = arg maxo∈O s(π, o)
with the profile of partial orders π as input.

That is, a pairwise scoring rule for a given profile and pairwise function returns
as outcome the linear ranking or alternative that obtains the highest pairwise score
for the given input.

The following definitions are required to present the relation between MLEs and
pairwise scoring rules.

Definition 22. A pairwise scoring function s is weakly neutral if for any pair of
outcomes o,o′ there exists a permutation M such that for any pair of alternatives
ai, aj ∈ A, s(ai, aj, o) = s(M(ai),M(aj), o

′).

That means a pairwise scoring function is weakly neutral if for every pair of
outcomes, when the first outcome obtains a score s with a pair of alternatives, then
there is another pair of alternatives such that the second outcome gets the same
score s. In other words, the score function treats the outcomes in an equal fair way.
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Definition 23. A pairwise noise model is weakly neutral if for any pair of outcomes
o,o′ there exists a permutation M such that for any pair of alternatives ai, aj ∈ A,
Pr[ai > aj|o] = Pr[M(ai) > M(aj)|o′).

That means a pairwise scoring function is weakly neutral if for every pair of
outcomes, when given the first outcome there is a probability p of observing ai > aj,
then there is another pair of alternatives such that given the second outcome the
probability of observing ak > al is p. In other words, the noise model treats all the
outcomes with a same way.

Theorem 3.3.1. A voting rule is a pairwise scoring rule with a weekly neutral
pairwise scoring function if and only if it is the MLE of a weakly neutral pairwise-
independent model.

Proof. Consider a weakly neutral pairwise noise model with probabilities Pr[ai >
aj|o], Pr[ai < aj|o] and Pr[ai ∼ aj|o], given o the ground truth. Then, a weakly neu-
tral pairwise scoring function can be constructed as follows: s(ai, aj, o) = log(Pr[ai >
aj|o])−log(Pr[ai ∼ aj|o]) and the score for a vote v , s(v, o) =

∑
(ai,aj)∈v log(Pr[ai >

aj|o]) −
∑

(ai,aj)∈v log(Pr[ai ∼ aj|o]) =
∑

i<j log(Pr[vij|o]) −
∑

i<j log(Pr[ai ∼
aj|o]) = log(Pr[v|o]) −

∑
i<j logPr([ai ∼ aj|o]), where vij is the vote restricted

only on the alternatives i and j.
From the definition of the weakly neutral pairwise model the following holds for

any outcomes o and o′:
∑

i<j log(Pr[ai ∼ aj|o]) =
∑

i<j log(Pr[ai ∼ aj|o′]) (1).
Then an MLE for this noise model and a voting profile π = {v1, ..vn} would be

given by the following: arg maxo Pr[π|o] = arg maxo
∑

j log(Pr[vj|o]) =
arg maxo

∑
j s(vj, o) = arg maxo s(π, o), where the third transition follows the defi-

nition of the pairwise score function and (1). Hence, the scoring rule that uses s is
equivalent to the MLE of this noise model.

On the other way, consider a pairwise scoring rule rs where s is a weakly neu-
tral pairwise scoring function. For any ai, aj ∈ A let bi,j a constant such that
2s(ai,aj ,o)+bi,j + 2s(aj ,ai,o)+bi,j + 2bi,j = 1. The existence of bi,j is guaranteed due to
the intermediate theorem, since for bi,j = −∞ the left-hand site is 0 < 1 and for
bi,j =∞ the left-hand site is ∞ > 1.

Then, a pairwise noise model can be constructed with the following probabilities:
Pr[ai > aj|o] = 2s(ai,aj ,o)+bi,j

Pr[aj > ai|o] = 2s(aj ,ai,o)+bi,j

Pr[ai ∼ aj|o] = 2bi,j

Since s is weakly neutral, the above model is also weakly neutral pairwise model.
An MLE for this noise model is arg maxo log(Pr[v|o]) = arg maxo

∑
i<j log(Pr[vi,j|o])

= arg maxo(s(v, o) +
∑

i<j bi,j) = arg maxo s(v, o), where the third transition follows
the definition of the noise model and the fourth transition follows that

∑
i<j bi,j is

constant for all outcomes. Hence, the MLE is equivalent to rs.

The above theorem shows the relation between MLEs and pairwise scoring rules
when the voting profiles consist of partial orders. Another similar result [27], in
voting settings with total orders as both input and output, shows that a voting rule
is neutral ranking scoring rule if and only if it is an MLE for some noise model.
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Ranking scoring rules similar to pairwise scoring rules given the input profile give a
score to each possible outcome and select the outcome with the highest ranking.



Chapter 4

Independent samples

In the previous chapter different settings were presented where the aim was to find
rules that were maximum likelihood estimators of specific noise models. However,
a voting rule that is a maximum likelihood estimator of a noise model, may present
a very bad behavior when it is given samples from other noise models. As different
noise models are expected to arise in practice, it is argued [18] that MLE requirement
is too restrictive. Instead of that, a setting [18] that examines how many votes
different rules need in order to reconstruct with high probability the ground truth,
will be presented in this chapter. Taking a more normative approach, it is also
examined which rules return with probability close to 1 the ground truth when they
are given infinite number of samples; a property that intuitively should be satisfied
by “good” voting rules.

4.1 Model

Let A = {1, 2, ..,m} the set of the alternatives and σ∗ the underlying ground truth
with ai the alternative that is on the ith position in the true ranking. Given the
noise model that the noisy estimators of the ground truth follow, the objective is to
find the minimum number of samples required by a voting rule in order to output
with high probability the ground truth. The samples are given in the form of full
rankings and voting rules that return full rankings as well are used. Formally, the
voting rules that will be used in this chapter are defined as follows.

Definition 24. A deterministic voting rule is a function r : ∪n≥1L(A)n → L(A).
A randomized voting rule is a function r : ∪n≥1L(A)n → D(L(A)) where D(L(A))
is the set of probability distributions over L(A).

In other words, a randomized voting rule outputs each ranking by following
a probability distribution and the notation Pr[r(π) = σ] gives the probability of
returning the ranking σ given the profile π.

Except from Mallows model, noise models parameterized by different distance
functions will be used. A distance function d has the following properties for every
σ, σ′, τ ∈ L(A):

1. d(σ, σ′) ≥ 0

49
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2. d(σ, σ′) = 0 if and only if σ = σ′

3. d(σ, σ′) = d(σ′, σ)

4. d(σ, σ′) ≤ d(σ, τ) + d(τ, σ′)

An important property of distance functions is defined below.

Definition 25. A distance function d is swap-increasing if for every σ, σ′ and al-
ternatives a, b such that a >σ b and a >′σ b, d(σa↔b, σ

′) ≥ d(σ, σ′) + 1 where the
equation holds only when a, b are adjacent in σ′. The ranking σa↔b is obtained by
σ when all alternatives except from a, b remain in the same position and a, b are
swapped.

An example of swap-increasing distance functions is the Kendall Tau distance.

Example 4.1.1. Let A = {a, b, c, d} and consider the following rankings:
σ1 = a > c > d > b, σ′ = c > d > a > b and σ′′ = a > d > b > c, where
all three rankings prefer a to b. According to the Definition 25, σ1,a↔b = b > c >
d > a. Then, the Kendall Tau distances from σ′ and σ′′ are dKT (σ1, σ

′) = 2,
dKT (σ1,a↔b, σ

′) = 3, dKT (σ1, σ
′′) = 2, dKT (σ1,a↔b, σ

′′) = 5. Thus, it holds that
dKT (σ1,a↔b, σ

′) = dKT (σ1, σ
′) + 1 as a and b are adjacent in σ′ while in σ′′ where a

and b are not adjacent, dKT (σ1,a↔b, σ
′′) > dKT (σ1, σ

′) + 1.

4.2 Samples required in Mallows model

Firstly, Caragiannis et.al [18] study the minimum number of samples required by
different rules in order to reconstruct the underlying ranking with high probability
when the samples follow Mallows model.

The probability of a rule retuning a specific ranking when given k samples will
be a useful measure to identify the minimum number of samples required for the
ground truth. This probability can be computed as Accr(k, σ) =

∑
π∈L(A)k Pr[π|σ] ·

Pr[r(π) = σ], that is the probability for a rule r to return the underlying ranking
σ when the number of samples is k. Furthermore, using Accr(k, σ) two other useful
quantities can be defined: Accr(k) = minσ∈L(A)Acc

r(k, σ) which computes the min-
imum probability of returning the true ranking, i.e. a rule r will return the ground
truth with at least Accr(k) probability given k samples no matter what the true
ranking is and N r(ε) = min{k|Accr(k) ≥ 1 − ε} which is the number of samples
needed by rule r to return the true ranking with probability at least 1− ε.

Naturally, one may expect that Kemeny’s rule which is the maximum likelihood
estimator for Mallows model, will have a “good” behavior regarding the number of
samples that requires to return the true ranking. Indeed, it is proved that Kemeny’s
rule requires the minimum number of Mallows’ samples to return the true ranking.
However, the assumption that if a rule is a maximum likelihood estimator, then it
needs the minimum number of samples, is not true.

Example 4.2.1. Let {σ1, σ2, σ3} the set of all possible ground truths and {π1, π2,
π3, π4} the set of all outcomes that can be observed. The following table gives the
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probability of observing the outcome at column j given that the ground truth is the
ranking at row i:

π1 π2 π3 π4
σ1 1/5 1/5 1/5 2/5
σ2 1/6 1/6 1/6 1/2
σ3 1/4 1/4 1/4 1/4

Table 4.1: The probabilities of observing each outcome given the respective ground
truth in the example 4.2.1.

Given only one sample, a maximum likelihood estimator would output the rankings
in bold, as they maximize the probability of observing the corresponding profiles.
However, if the objective was to return the ground truth with probability at least
1/5 then the maximum likelihood estimator fails as when the ground truth is σ1 the
probability of returning it is 0. Then, a different rule r that returns the same results
with MLE given the outcomes π1,π2 and π4 and σ1 when π3 is observed, it returns
the ground truth with probability at least 1/5 as the probabilities of returning any of
the possible rankings are:

1. Accr(1, σ1) = 1/5

2. Accr(1, σ2) = 1/2

3. Accr(1, σ3) = 1/4 + 1/4 + 1/4 = 3/4

Thus, it is implied that maximum likelihood estimators do not always need the mini-
mum number of samples in order to return the underlying ranking with the desirable
probability.

Theorem 4.2.1. Kemeny’s rule needs the least samples to return the true ranking
with probability 1− ε, i.e. NKEM(ε) ≤ N r(ε) for every voting rule r.

Proof. In order to show the above theorem, the following two lemmas will be used.

Lemma 4.2.1. AccKEM(k, σ) = AccKEM(k, σ′),∀σ, σ′ ∈ L(A),∀k ∈ N.

Proof. For all σ, σ′ ∈ L(A) there are π, π′ such that Pr[π|σ] = Pr[π′|σ′] since
Kemeny’s rule and Mallows model treat fairly the alternatives(neutrality) and thus,
thinking that σ′ is a permutation of σ, π′ can be found from π by applying the same
permutation. As this holds for all σ, σ′ and assuming that Kemeny’s rule break the

ties uniformly, it follows that
∑

π∈L(A)k
Pr[π|σ′] ·Pr[KEM(π) = σ′] =

∑
π∈L(A)k

Pr[π|σ] ·

Pr[KEM(π) = σ]. Therefore, AccKEM(k, σ) = AccKEM(k, σ′),∀σ, σ′ ∈ L(A),∀k ∈
N.

Lemma 4.2.2. TotAccKEM(k) ≥ TotAccr(k),∀r,∀k ∈ N,
where TotAccr(k) =

∑
σ∈L(A)Acc

r(k, σ).
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Proof. For any rule r and any k ∈ N,

TotAccr(k) =
∑

σ∈L(A)

Accr(k, σ) =
∑

σ∈L(A)

∑
π∈L(A)k

Pr[π|σ] · Pr[r(π) = σ] =∑
π∈L(A)k

∑
σ∈L(A)

Pr[π|σ]·Pr[r(π) = σ] ≤
∑

π∈L(A)k

∑
σ∈L(A)

Pr[r(π) = σ]·maxσ′∈L(A)Pr[π|σ′]

=
∑

π∈L(A)k
maxσ′∈L(A)Pr[π|σ′] =

∑
π∈L(A)k

maxσ′∈L(A)Pr[π|σ′] ·

·
∑

σ∈TIE−KEM(π)

1

|TIE −KEM(π)|
=

∑
π∈L(A)k

∑
σ∈TIE−KEM(π)

Pr[π|σ] · Pr[KEM(π) =

σ] = TotAccKEM(k) ,

where the third transition follows the definition of Accr(k, σ) and the fourth transi-
tion is an exchange in the order of the two sums. Then, the fifth transition follows
that

∑
σ∈L(A) Pr[r(π) = σ] = 1 and the sixth transition holds since Kemeny’s rule

is an MLE for Mallows model. Therefore, maxσ′∈L(A)Pr[π|σ′] = Pr[π|σ] for ev-
ery σ ∈ TIE-KEM(π), where TIE-KEM are the results of Kemeny’s rule and as
the ties are broken uniformly, i.e. Pr[KEM(π) = σ] = 1

|TIE−KEM(π)| for every

σ ∈ TIE −KEM(π).

Lemmas 4.2.1 and 4.2.2 imply that Kemeny’s rule given k samples return the
true ranking with the same probability no matter what the true ranking is, and
at the same time, the total sum of the probabilities of returning the true ranking
(summed over all rankings) is greater or equal than any other rule. Using the above
lemmas, Theorem 4.2.1 follows easily. Assuming that NKEM(ε) = k, i.e. Kemeny’s
rule needs at least k samples to return any true ranking with probability at least
1 − ε, there exists σ ∈ L(A) such that AccKEM(k − 1, σ) < 1 − ε, otherwise by
definition NKEM(ε) would be k − 1. Then, from Lemma 4.2.1 it follows that for
every σ′ ∈ L(A), AccKEM(k − 1, σ′) < 1 − ε. Hence, as there are m! rankings in
L(A), TotAccKEM(k − 1) < m! · (1− ε). Lemma 4.2.1 implies that for every rule r,
TotAccr(k− 1) ≤ TotAccKEM(k− 1) < m! · (1− ε) and therefore, there should be a
σ′ ∈ L(A) such that Accr(k − 1, σ′) < 1 − ε. Otherwise, the TotAccr(k − 1) would
be greater than m! · (1− ε). Since there exists σ′ such that Accr(k − 1, σ′) < 1− ε,
by the definition of N r(ε), N r(ε) ≥ k and therefore N r(ε) ≥ NKEM(ε).

4.3 PM-c rules

As Kemeny’s rule has been shown to need the minimum number of samples to
return the truth with high probability, it is important to find out how many samples
it actually requires. However, instead of examining Kemeny’s rule individually, a
family of rules, PM-c class, that contains Kemeny’s rule is studied since all rules
in this family require the same number of samples. The following definitions are
required to define the PM-c rules.

Definition 26. A pairwise majority (PM) graph of a vote profile is a graph that has
as vertices all the alternatives and there is an edge from alternative a to alternative



4.3 PM-c rules 53

b if the number of voters in the vote profile who prefer a to b is greater than the
number of voters who prefer b to a.

When the PM graph is complete and acyclic there is a unique ranking σ such
that there is an edge (a, b) if and only if a >σ b (this ranking exists because the PM
graph is complete and therefore it provides the result of each pairwise comparison
and as it is acyclic there will not be any inconsistencies in the ranking σ). That is,
for every pairwise comparison the majority of voters agree with the comparison on
σ and it is said that the PM graph reduces to ranking σ.

Example 4.3.1. Let A = {a, b, c} the set of alternatives and consider the following
vote profile:

1. 3 votes: a > b > c

2. 2 votes: a > c > b

3. 2 votes: c > b > a

As the majority of voters prefer a to b(5 votes), a to c(5 votes) and c to b(4 votes),
the PM-graph of this voting profile is the following:

a b

c

Figure 4.1: The PM-graph of the example 4.3.1.

As we can observe the PM-graph is complete and acyclic and reduces to the ranking
a > c > b.

Definition 27. A voting rule is pairwise majority consistent (PM-c) if it outputs
the ranking σ whenever the PM graph of the profile reduces to σ.

In other words, a voting rule is PM-c, if whenever a ranking σ exists such that
for every pairwise comparison, there is a majority of voters that agree with σ, then
the rule outputs σ.

Theorem 4.3.1. The Kemeny’s rule and the ranked pairs method are PM-c.

Proof. As the Kemeny’s rule returns the ranking that minimizes the total pairwise
disagreements with the voters, if the PM-graph reduces to a ranking, it has to agree
with that ranking. Otherwise, let that (a, b) is an edge of the PM-graph (which
reduces to a ranking σ) and that the Kemeny’s rule return a ranking σ′ with b >′σ a.
As (a, b) is in PM-graph the number of voters that prefer a to b is greater than n

2

and the number of voters that prefer b to a is less than n
2

(n is the total number
of voters). Therefore, if b >′σ a is replaced by a >′σ b a ranking with a smaller
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number of pairwise disagreements is obtained, which is opposed to the definition of
Kemeny’s rule.

As the ranked pairs method sorts the pairwise elections by the largest strength
of win to the smallest, if the PM reduces to a ranking, the ranked pairs method will
output the same ranking. This is because all edges in the PM graph are voted by
more than the half voters and therefore, ranked pairs method will choose all edges
in the PM graph before reach the opposite pairs(which are voted by less than the
half voters).

Theorem 4.3.2. For any ε > 0, any PM-c rule needs O(log(m
ε

)) samples from
Mallows model to return the true ranking with probability at least 1− ε.

Proof. To show that a PM-c rule needs O(log(m
ε

)) to reconstruct the truth with
probability 1 − ε, it is sufficient to show that given O(log(m

ε
)) samples the PM-

graph reduces to the true ranking σ∗ with probability 1− ε.
The PM-graph of a vote profile will reduce to σ∗ if for every pair of alternatives

a, b such that a >σ∗ b the number of voters that prefer a to b is greater than the
number of voters that prefer b to a. Therefore, if n is the total number of voters, nab
the number of voters that prefer a to b and nba the number of voters that prefer b to
a, it is wanted to have nab > nba. Since the objective is to return the true ranking
with probability at least 1− ε, the following must hold:
Pr[∀a, b ∈ A, a >σ∗ b =⇒ nab − nba ≥ 1] ≥ 1− ε.

Let a, b a pair of alternatives such that a >σ∗ b and δab = pa>b−pb<a. Then δab =
E[nab−nba

n
] since by the definition and linearity property of expectation E[nab−nba

n
] =

1
n
· (n · pa>b − n · pb<a) = pa>b − pb<a .

The probability of the number of the voters who prefer a to b to be greater than
the number of the voters who prefer b to a is :

Pr[nab − nba ≤ 0] = Pr[
nab − nba

n
≤ 0] ≤ Pr[|nab − nba

n
− E[

nab − nba
n

]| ≥ δab] ≤

2·e−2·δ2ab·n ≤ 2·e−2·δ2min·n, where the third transition holds from Hoeffding’s inequality
and δmin = mina,b∈A:a>σ∗b δab .

Hence, Pr[∃a, b ∈ A, {(a >σ∗ b) ∧ (nab − nba ≤ 0)}] ≤
(
m

2

)
· 2 · e−2·δ2min·n ≤

m2 · e−2·δ2min·n, where the second transition holds from the Union Bound. Therefore,
in order to return the correct true ranking with probability at least 1 − ε, the
probability of returning wrong ranking has to be smaller than ε, i.e. m2·e−2·δ2min·n ≤ ε

and equivalently n ≥ 1

2 · δ2min
· log (

m2

ε
) .

The number of samples required will be fully defined when δab is computed.

δab = pa>b − pb>a =
∑

σ∈L(A)|a>σb

Pr[σ|σ∗]−
∑

σ∈L(A)|b>σa

Pr[σ|σ∗] =

∑
σ∈L(A)|a>σb

(Pr[σ|σ∗]− Pr[σa↔b|σ∗]) =
∑

σ∈L(A)|a>σb

φdKT (σ,σ∗) − φdKT (σa↔b,σ∗)

Zm
φ

≥
∑

σ∈L(A)|a>σb

φdKT (σ,σ∗) · (1− φ)

Zm
φ

= (1 − φ) · pa>b = (1 − φ) · 1 + δab
2

, where the

third transition follows since σa↔b is a bijection and the fifth transition holds since
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Kendall Tau distance is swap increasing. The last transition follows by the equalities
δab = pa>b − pb>a and pa>b + pb>a = 1. Solving the last inequality, δab ≥ 1−φ

1+φ
and

hence, δmin ≥ 1−φ
1+φ

= Ω(1) and therefore, the theorem holds.

Theorem 4.3.3. For any ε ∈ (0, 1/2], any voting rule requires Ω(log(m
ε

)) samples
from Mallows model to reconstruct the true ranking with probability at least 1− ε.

Proof. Let r a voting rule and assume that N r(ε) = n. Then it is required to show
that n = Ω(log(m

ε
)). By the definition of N r(ε) it follows that Accr(n, σ) ≥ 1− ε for

any σ ∈ L(A) (1). Choosing a ranking σ, let N(σ) the set of all rankings in L(A)
that have distance 1 from the ranking σ. Therefore for any ranking σ′ in N(σ) and
a vote profile(n votes) the following holds:

Pr[π|σ] =
n∏
i=1

φdKT (σi,σ)

Zm
φ

≥
n∏
i=1

φdKT (σi,σ
′)+1

Zm
φ

= φn · Pr[π|σ′] (2)

where the second transition follows the third property of distance functions that is
d(σi, σ) ≤ d(σi, σ

′) + d(σ′, σ) = d(σ, σ′) + 1.
Then,

Accr(n, σ) =
∑

π∈L(A)n
Pr[π|σ] · Pr[r(π) = σ] =

∑
π∈L(A)n

Pr[π|σ] · (1− Pr[r(π) 6= σ]) =

1 −
∑

π∈L(A)n
Pr[π|σ] · Pr[r(π) 6= σ] ≤ 1 −

∑
π∈L(A)n

Pr[π|σ] · (
∑

σ′∈N(σ)

Pr[r(π) = σ′]) ≤

1−
∑

σ′∈N(σ)

∑
π∈L(A)n

φn ·Pr[π|σ′] ·Pr[r(π) = σ′] = 1−φn ·
∑

σ′∈N(σ)

Accr(n, σ′) ≤ 1−φn ·

(m−1)·(1−ε), where the third transition follows the fact that
∑

π∈L(A)n Pr[π|σ] = 1

and the fourth transition holds since the events {r(π) = σ′} for any σ′ ∈ N(σ) are
a proper subset of {r(π) 6= σ} and thus, Pr[r(π) 6= σ] ≥

∑
σ′∈N(σ) Pr[r(π) = σ′].

Moreover, the fifth transition follows inequality (2) and the last transition follows
inequality (1). Therefore, in order to have Accr(n, σ) ≥ 1 − ε it is required that
φn · (m− 1) · (1− ε) ≤ ε and solving for n, it follows that Ω(log(m

ε
)) .

Theorems 4.3.2 and 4.3.3 indicate the logarithmic number of samples that Kemeny’s
rule needs to reconstruct the truth and establish its best behavior regarding the
required number of samples; since any other rule requires at least logarithmic number
of samples, no rule can do better than Kemeny’s.

4.4 Scoring rules

While any other rule than Kemeny’s needs at least logarithmic number of samples
to return the true ranking with high probability, some rules need a significantly larger
number than logarithmic. For example, plurality rule will be proved to need at least
exponential number of samples.

Since plurality rule considers only the number of times that each alternative
appears on the first position, a useful measure in proving the number of samples
that plurality rule requires is the probability of an alternative appearing first in a
vote.
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Lemma 4.4.1. The probability of the alternative on the position i of the true ranking
appearing on the first position, pi,1, is pi,1 = φi−1/

∑m
j=1 φ

j−1 for each alternative i
in A.

Intuitively, the above lemma gives an indication that plurality rule may needs
exponential number of samples as the probability of observing the last or the semi-
last alternative of the true ranking in the first position is exponentially small, and
therefore there is the need of exponential samples to achieve a distinction between
them.

Theorem 4.4.1. For any ε ∈ (0, 1
4
], plurality requires Ω(( 1

φ
)m) samples from Mal-

lows model to reconstruct the true ranking with probability at least 1− ε.

Proof. Assuming that AccPL(n) ≥ 1 − ε it is needed to show that n = Ω(( 1
φ
)m).

As plurality rule considers only the number of times that each alternative appears
in the first place, it can be supposed that the rule operates on the vector v ∈ An
of the top alternatives of each vote in a profile, instead of operating on the full
profile. Then the accuracy of the plurality rule can be written as AccPL(n, σ) =∑

v∈An Pr[v|σ] · Pr[PL(v) = σ], where Pr[v|σ] is the sum of the probabilities of
observing profiles which have top vote v given the true ranking σ.

Let two rankings σ1 = (a1 > a2 > ... > am−1 > am) and σ2 = (a1 > a2 >
... > am > am−1). Then, the AccPL(n, σ) can be split into two parts, considering
in the first(denoted as A′n) the top votes in which the alternatives am−1 and am do
not appear and in the second the top votes in which at least one of am−1 and am
appears.

To compute the AccPL(n, σ1) +AccPL(n, σ2), calculation will be split for the top
votes in A′n and the top votes in An\A′n.

For the top votes in A′n we have:∑
v∈A′n

((Pr[v|σ1] · Pr[PL(v) = σ1]) + (Pr[v|σ2] · Pr[PL(v) = σ2])) =
∑
v∈A′n

Pr[v|σ1] ·

(Pr[PL(v) = σ1] + Pr[PL(v) = σ2]) ≤
∑
v∈A′n

Pr[v|σ1] ≤ 1 (1), where the first

transition holds since for any v ∈ A′n, P r[v|σ1] = Pr[v|σ2]. This holds since σ2 can
be obtained from σ1 by swapping am−1 and am and for any profile π that has top
vote v a profile π′ can be found with Pr[π|σ1] = Pr[π′|σ2] by swapping am−1 and
am. The profile π′ also has top vote v as alternatives am−1 and am do not appear in
the top vote v.

Let ti,j the number of votes in which the alternative ai appears in the position

j. Then, for the top votes in An\A′n we get:
∑

v∈An\A′n
Pr[v|σ1] · Pr[PL(v) = σ1] ≤∑

v∈An\A′n
Pr[v|σ1] = Pr[(tm−1,1 > 0) ∨ (tm,1 > 0)] ≤ Pr[tm−1,1 ≥ 0] + Pr[tm,1 ≥ 0] ≤

n · (pm−1,1 + pm,1) (2), where the second transition holds since the probability of
observing a top vote in An\A′n, i.e. a top vote which contains am or am−1, equals the
probability of am or am−1 appearing in the first position that is (tm−1,1 ≥ 0)∨(tm,1 >
0). The third and fourth transition hold due to the union bound and specifically,
as pi,1 is the probability of the alternative i to appear in the first position then the
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probability that ai appears in the first position of at least one vote (which equals
the probability of ti,1being positive) is at most n · pi,1.

In a similar way, it can be proved that
∑

v∈An\A′n
Pr[v|σ2] · Pr[PL(v) = σ2] ≤

n · (pm−1,1 + pm,1) (3).
Therefore by adding equations (1),(2) and (3) it follows that:

AccPL(n, σ1) + AccPL(n, σ2) ≤ 1 + 2 · n · (pm−1,1 + pm,1) .
Considering that AccPL(n) ≥ 1− ε, it follows that

AccPL(n, σ1) + AccPL(n, σ2) ≥ 2 · (1− ε) and hence it is needed that
1 + 2 · n · (pm−1,1 + pm,1) ≥ 2 · (1− ε).

Then solving by n, the lower bound follows:

n ≥ 1− 2 · ε
2 · (pm−1,1 + pm,1)

≥ 1

8 · pm−1,1
=

∑m−1
j=0 φ

j

8 · φm−2
≥ 1

8 · φm−2
and hence,

n = Ω(log(m
ε

)).

Although plurality is a positional scoring rule, it does not follow that all po-
sitional scoring rules need at least exponential number of samples. The following
theorem shows that some positional scoring rules need polynomial number of sam-
ples.

Theorem 4.4.2. Consider a positional scoring rule r given by score vector
(a1, .., am) and βi = ai − ai+1 for any i ∈ {1, ...,m − 1}. Let βmax = maxi<mβi,
βmin = mini<mβi and β∗ = βmax/βmin with βmin > 0. Then for any ε > 0, rule r
needs O((β∗)2 ·m2 · log(m/ε)) samples to return the true ranking with probability at
least 1− ε.

Thus, Theorems 4.4.1 and 4.4.2 show that rules other than PM-c rules need
considerable larger numbers of samples to output the underlying ranking. In par-
ticular, plurality needs exponential number of samples and positional scoring rules
with positive difference between any pair of consecutive scores (in the score vector)
need polynomial samples. Plurality needs at least exponential and not polynomial
number of samples as the minimum difference between consecutive scores is zero,
i.e. βmin = 0 and therefore, it does not satisfy the conditions of Theorem 4.4.2.

4.5 Generalizations

4.5.1 Infinite samples

While the number of samples that a voting rule requires in order to return the
true ranking with high probability gives an indication of the rule’s behavior, in this
subsection another natural characteristic is examined. Voting rules should be able
to return surely the true ranking if they are given infinite number of samples. A
voting rule with this property is said to be accurate in the limit, that is a voting rule
reproduces with probability 1 the ground truth if it is given infinite many samples.

Since PM-c rules need logarithmic number of samples, they are obviously accu-
rate in the limit. Plurality is also another rule that can be proved to return with
probability 1 the true ranking given if it is given infinite samples. In fact, it can be
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shown that all positional scoring rules satisfy accuracy in the limit.
Instead of examining positional scoring rules individually, a new family of voting

rules, PD-c class, that includes scoring rules is studied.
Position dominance graph of a voting profile should be defined in order to define

the PD-c rules.

Definition 28. Given a profile π = (σ1, σ2, ..., σn) ∈ L(A)n,alternative a and j ∈
{1, ..,m− 1}, sj(a) is the number of votes in which the alternative a is between the
first j positions. For a, b ∈ A it is said that alternative a dominates alternative
b whenever sj(a) ≥ sj(b) ∀j, 1 ≤ j ≤ m − 1. The position dominance graph(PD
graph) of the profile π has as vertices all the alternatives and there is an edge (a, b)
(directed) if a position dominates b.

As position dominance is a transitive property PD graph is always acyclic. When-
ever PD graph is complete, in a similar way with PM graph, it reduces to a ranking.

Example 4.5.1. Let A = {a, b, c} the set of alternatives and the following vote
profile:

1. 3 votes: a > b > c

2. 3 votes: a > c > b

3. 2 votes: c > b > a

Then the scores of each alternative are s1(a) = 6, s2(a) = 6, s1(b) = 0, s2(b) = 5,
s1(c) = 2, s2(c) = 5 and therefore a dominates b and c, and c dominates b. The
PD-graph of this voting profile is the following:

a b

c

Figure 4.2: The PD-graph of the example 4.5.1.

As we can observe the PD-graph is complete and it reduces to the ranking a >
c > b.

Definition 29. A Position-dominance rule (PD-c) is a rule that outputs ranking σ,
whenever the PD graph reduces to a ranking σ.

By the definition of PD-c rules, it is demonstrated that the class of PD-c rules
includes rules that give higher preference to alternatives that appear at the first
positions. Intuitively, one may expect that positional scoring rules are PD-c since
the total score of each alternative depends only on the places he appears and the first
places are associated with higher scores. Indeed, it can be proved that all positional
scoring rules are PD-c.
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Theorem 4.5.1. All positional scoring rules are PD-c.

Theorem 4.5.2. PD-c rules are accurate in the limit.

Proof. In order to show that PD-c rules are accurate in the limit, it is sufficient
to show that PD graph reduces to the true ranking when given infinite samples.
Given a profile with n samples then E[sj(ai)] = n · qi,j where qi,j is the probability of
alternative ai to appear between the first j positions. As by the definition of Mallows
model qi,j > ql,j for any i < l (since it is more probable to observe a ranking that
is closest to the ground truth and hence, it is more probable alternative ai to be
ranked higher than al as it is ranked higher in the ground truth), given infinite
samples Pr[sj(ai) > sj(al)] = 1 for any j,1 ≤ j ≤ m− 1 and i < l. Hence, the PD
graph will reduce to the true ranking given infinitely many samples.

Thus, the classes of PM-c and PD-c rules satisfy the natural requirement of
returning the ground truth given infinite many samples. Common voting rules such
as Kemeny’s and ranked pairs which are PM-c and positional scoring rules which
are PD-c are all accurate in the limit.

4.5.2 PM-c and PD-c rules

Although the definitions of PM-c and PD-c rules at first glance do not imply any
relation between the two classes, in reality the two classes are disjoint. That is,
there are not any rules that are both PM-c and PD-c.

Example 4.5.2. Let A = {a, b, c} and a profile π consisting of the following votes:

(a) 4 votes : a > b > c

(b) 2 votes: b > a > c

(c) 3 votes: b > c > a

(d) 2 votes: c > a > b

The PM graph of the above profile reduces to a > b > c and the PD graph reduces to
b > a > c. Therefore, PM-c rules and PD-c rules output a different ranking for the
specific profile. Hence, if there were rules that were both PM-c and PD-c, they would
have to output two different rankings for the above profile, which is impossible.

From the above example, the theorem below follows.

Theorem 4.5.3. There is no rule that is both PM-c and PD-c.

If one considers that PD-c rules are a generalization of positional scoring rules
and PM graphs that reduce to a ranking have a Condorcet winner this impossibility
result is not surprising; a previous result [39] mentioned in the introduction states
that no positional scoring rule can be Condorcet extension.
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4.5.3 Noise models

All the above results consider only samples taken from Mallows model. However, it
is unrealistic to expect that all noisy samples would fit Mallows model. Therefore,
there is the need to anticipate any reasonable noise models that would arise in
practice. Trying to study only realistic noise models, d-Monotonic noise models will
be studied as these models satisfy an expected requirement; it is more probable to
observe a sample that is closer to the ground truth than a sample with a larger
distance.

Definition 30. Let σ∗ the true ranking and d a distance function. A noise model
is d-Monotonic if for any σ, σ′ with d(σ, σ∗) < d(σ′, σ∗) then, Pr[σ|σ∗] > Pr[σ′|σ∗]
and for any σ, σ′ with d(σ, σ∗) = d(σ′, σ∗) then, Pr[σ|σ∗] = Pr[σ′|σ∗].

In other words, a noise model is d-monotonic if it is more likely to observe a
ranking that is closer to the true ranking according to distance function d. For
example, Mallows model is KT-monotonic.

Definition 31. A voting rule is d-monotone-robust if it is accurate in the limit
when it is given infinite samples from any d-monotonic noise model.

In other words, d-monotone-robustness express the requirement that a rule is
accurate in the limit in any “realistic” noise model parametrized by distance function
d.

4.6 More generalizations

To move to the next step of generalizations, there is the need to use different distance
functions from the KT distance. Therefore, it is studied whether PM-c and PD-c
rules are monotone-robust to any distance functions other than the KT distance.

4.6.1 Distances and PM-c rules

It is proved that PM-c rules are monotone robust for the Majority-Concentric dis-
tances which are defined as follows.

Definition 32. Considering a distance function d, a ranking σ ∈ L(A) and an
integer k ≥ 0, Nk

a>b(σ) is the set of the rankings that have distance at most k
(according to distance function d) from the ranking σ and have a > b. A distance
function d is Majority-Concentric (MC) if for any σ ∈ L(A) and alternatives a, b
with a >σ b, |Nk

a>b(σ)| ≥ |Nk
b>a(σ)| for every k ≥ 0.

In other words, a distance function is MC if for each distance k, the majority
of rankings that have at most distance k from a specific ranking σ agree with σ on
every pair of alternatives.

Lemma 4.6.1. A distance function is MC if and only if for every σ ∈ L(A) and
every alternatives a, b with a >σ b there exists a bijection La>b(A)→ Lb>a(A) which
is weakly-distance increasing to σ.
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Proof. Assume that d is a MC distance, σ the initial ranking and a pair of alterna-
tives a, b with a >σ b. After sorting the rankings with a > b and the rankings with
b > a in increasing distance from σ, a bijection f : La>b → Lb>a is constructed that
maps the ith ranking of the first set to the ith ranking of the second set. Assume
that f is not weakly-distance increasing. Then, there is a mapping from a ranking
with a > b and distance k to a ranking with b > a and distance k′ and k′ < k. Then,
the Nk′

b>a(σ) ≥ Nk
a>b(σ) which is opposed to the definition of MC distance.

On the other hand, assume a distance function d, a ranking σ, two alternatives
a, b with a >σ b, and a weakly-distance increasing bijection f : La>b → Lb>a. Then
for any k ≥ 0, Nk

b>a ⊆ {f(τ)|τ ∈ Nk
a>b}. Therefore, |Nk

a>b(σ)| ≥ |Nk
b>a(σ)|. If this

holds for each ranking and pair of alternatives, then d is MC.

Theorem 4.6.1. All PM-c rules are d-monotone robust if and only if d is MC.

Proof. Assume that d is MC and consider any d-monotonic noise model G. Assume
that σ∗ is the true ranking and a, b two alternatives with a >σ∗ b. As d is MC, from
the Lemma 2.4 there exists a weakly-distance increasing bijection f from La>b to
Lb>a. Then, for any σ ∈ La>b it holds that d(σ, σ∗) ≤ d(f(σ), σ∗)) and therefore by
the definition of the d-monotonic noise model, Pr[σ|σ∗] ≥ Pr[f(σ)|σ∗]. However,
specifically for σ∗, d(σ∗, σ∗) < d(f(σ∗), σ∗) and hence Pr[σ∗|σ∗] > Pr[f(σ∗)|σ∗] as
only for σ∗ it holds that d(σ∗, σ∗) = 0.

Therefore, Pr[a > b|σ∗] =
∑

σ∈La>b(A)

Pr[σ|σ∗] >
∑

σ∈La>b(A)

Pr[f(σ)|σ∗] =∑
σ∈Lb>a(A)

Pr[σ|σ∗] = Pr[b > a|σ∗] , where the third transition holds because f is a

bijection.
As a result, given infinite samples there will exist the edge from a to b and the

PM graph will reduce to the true ranking (since the above holds for any pair a, b).
Hence, all PM-c rules will output the true ranking.

On the other hand, consider a distance function d that is not MC. Then, it
is needed to show that there exists a PM-c rule that does not surely output the
true ranking given infinite samples from some d-monotonic noise model G. As d is
not MC, there exists a σ∗ ∈ L(A), an integer k and alternatives a, b with a >σ∗ b
such that |Nk

a>b(σ
∗)| < |Nk

b>a(σ
∗)|. Let M = maxσ∈L(A) d(σ, σ∗) and T > M .

Then, the noise model G have as probabilities of observing a specific ranking σ,
Pr[σ|σ∗] = wσ/

∑
τ∈L(A)wτ , where if d(σ, σ∗) ≤ k then wσ = T − d(σ, σ∗) else

wσ = M − d(σ, σ∗). The distribution of G is indeed a probability distribution as∑
σ∈L(A) Pr[σ|σ∗] =

∑
σ∈L(A)(wσ/

∑
τ∈L(A)wτ ) = 1 and for each σ ∈ L(A), 0 ≤

Pr[σ|σ∗] ≤ 1.
For the above noise model, constant T can be defined so that Pr[a > b|σ∗] <

Pr[b > a|σ∗] which is equivalent to
∑

σ∈L(A)|a>σbwσ <
∑

σ∈L(A)|b>σawσ.

If l = |Nk
a>b(σ

∗)| then,∑
σ∈L(A)|a>σb

wσ ≤
∑

σ∈Nk
a>b(σ

∗)

T +
∑

σ∈L(A)n\Nk
a>b(σ

∗)

M ≤ l · T + m! ·M , where for the l

rankings that are in Nk
a>b(σ

∗) the maximum possible number of wσ is T and for the
rest rankings the maximum possible number of wσ is M .
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On the other hand,
∑

σ∈L(A)|b>σa

wσ ≥
∑

σ∈Nk
a>b(σ

∗)

(T − k) +
∑

σ∈L(A)n\Nk
b>a(σ

∗)

0 ≥

≥ (l + 1) · (T − k), where for the at least l + 1 rankings that are in Nk
b>a(σ

∗) the
minimum possible number of wσ is T − k since their maximum distance from σ∗ is
k and for the rest rankings the minimum possible number of wσ is M −M = 0 as
M is the maximum possible distance of any ranking from σ∗.

Therefore, T should be chosen so as that l ·T +m! ·M < (l+ 1) · (T −k) which is
T > (l+1)·k+m!·M . By choosing a suitable value of T , Pr[a > b|σ∗] < Pr[b > a|σ∗]
and as a result given infinite samples from G, the edge from a to b will not exist
and the PM graph will not reduce to σ∗. A PM-c rule that outputs a ranking with
b > a when the PM-graph does not reduce to a ranking, will surely not output the
true ranking given infinite samples.

4.6.2 Distances and PD-c rules

It is proved that PD-c rules are monotone robust for the Position-Concentric dis-
tances which are defined as follows.

Definition 33. Considering a distance function d, a ranking σ ∈ L(A) , an integer
k ≥ 0 and an integer 0 ≤ j ≤ m − 1, Skj (σ, a) is the set of the rankings that have
distance at most k (according to distance function d) from the ranking σ and have
the alternative a between the first j positions. A distance function d is Position-
Concentric (PC) if for any σ ∈ L(A), j ∈ {0, ..m − 1} and alternatives a, b with
a >σ b, |Skj (σ, a)| ≥ |Skj (σ, b)| for every k ≥ 0 and strict inequality holds for a k ≥ 0.

In other words, a distance function is PC if for each distance k and position j,
the majority of rankings that have at most distance k from a specific ranking σ rank
at the first j votes the alternative a rather than b, where a, b is a pair of alternatives
with a >σ b.

Lemma 4.6.2. A distance function is PC if and only if for every σ ∈ L(A) and
every alternatives a, b with a >σ b there exists a bijection Sj(a) → Sj(b) which is
distance-increasing (weakly distance increasing and for some ranking the inequality
holds) to σ .

Theorem 4.6.2. All PD-c rules are d-monotone robust if and only if d is PC.

A result of the Theorems 4.6.1 and 4.6.2 is that if a distance function d is both
PC and MC then all PM-c and PD-c rules are d-monotone robust. On the other
hand, if a distance function is not MC(PC), there is a PM-c rule (PD-c rule) that
is not d-monote robust.

Corollary 4.6.1. All PM-c and PD-c rules are d-monotone robust if and only if d
is both MC and PC.

Lemma 4.6.3. A swap-increasing distance function is both MC and PC.

Since KT-distance is swap increasing, the corollary below follows.
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Corollary 4.6.2. All PM-c and PD-c rules are KT-monotone robust.

That is, PM-c and PD- c rules are not only accurate in the limit in Mallows
model which is a KT-monotonic model, but in fact they are accurate in the limit
for any KT-monotonic model.

In this section, it has been shown that different rules require different number of
samples in order to return with high probability the ground truth. Two important
classes of rules, PM-c rules which are in some way a generalization of Condorcet
extension rules and PD-c rules which are a generalization of positional scoring rules,
both reconstruct surely the true ranking when they are given infinite number of
samples from Mallows noise model. In an attempt to generalize the results for
Mallows model in models that may arise in practice, it is shown that PM-c and
PD-c rules are also accurate in the limit when the infinite samples are from any
d-monotonic noise model with d MC or PC, respectively.

However, as noise can take unpredictable forms [51], it would be ideal to have
a voting rule that is monotone-robust against any monotonic noise model, i.e. it is
desirable to have a voting rule that will return almost surely the ground truth given
infinite samples from any “realistic” noise model. The attempt to find a robust
voting rule will be presented in the next subsection.

4.7 Modal ranking

Caragiannis et. al [19] study which voting rules return with probability close to 1
the ground truth when they are given an extremely large number of samples from
any “realistic” noise model; an approach that is natural in crowd-sourcing systems
[49] where the aim is to aggregate the preferences of a massive set of agents.

4.7.1 Model

Let A = {1, ..,m} the set of alternatives and σ∗ the underlying true ranking. Given
an input profile π, the voting rules that will be examined in this section will be
randomized SWF, that are formally functions f : L(A)→ D(L(A)), where D(L(A))
is the set of probability distributions over L(A). The objective is to find a voting
rule that will be robust against multiple noise models. With the aim to study only
“reasonable” noise models that are expected to arise in practise, d-monotonic noise
models for any distance function d will be studied.

4.7.2 Classes of rules

Rules from important classes such as PM-c and PD-c rules [18] as well as generalized
scoring rules which will be defined below [76], are examined in order to determine
robust rules.

The following extra definitions are required for the definition of generalized scor-
ing rules.

Definition 34. A pair of vectors y, z ∈ Rk is equivalent if for every i, j ∈ {1, .., k}
it holds that yi ≥ yj ↔ zi ≥ zj.
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Definition 35. A function is compatible if for every equivalent pair of vectors
y, z ∈ Rk it holds that g(y) = g(z).

Definition 36. A generalized scoring rule(GSR) is given by a pair of functions
(f, g), where f : L(A) → Rk maps every ranking to a k-dimensional vector and
a compatible function g : Rk → D(L(A)) maps every k-dimensional vector to a
distribution over rankings. Then, given a profile π = (σ1, .., σn) the rule outputs
g(
∑n

i=1 f(σi)).

The above classes contain almost all prominent voting rules such as Kemeny’s
rule (PM-c and GSR), ranked pairs (PM-c and GSR), positional scoring rules (PD-c
and GSR), maximin(PM-c and GSR) and STV(GSR).

A figure that shows the relationship between these classes of voting rules is the
following [19]:

Figure 4.3: Three important families of rules.

Mossel et.al [53] give a geometrical equivalent class with GSR, the hyperplane
rules. Given a profile π, xπσ denotes the fraction of times the ranking σ ∈ L(A)
appears in π. Then, the point xπ = (xπσ)σ∈L(A) lies in a probability(as

∑
σ∈L(A) x

π
σ =

1 and 0 ≤ xπσ ≤ 1,∀σ ∈ L(A)) simplex ∆m!, i.e the m! rankings in L(A) are
used to indicate the m! dimensions of every point in the simplex ∆m! . Assigning
weights wσ ∈ R to every ranking σ ∈ L(A) a hyperplane H can be formed as
H(x) =

∑
σ∈L(A)wσ · xσ for any point x in ∆m!.

Example 4.7.1. Let A = {a, b, c} and π the voting profile with the following votes:

1. a > b > c

2. b > a > c

3. b > a > c

4. c > b > a
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Then the point xπ would have the dimensions (1, 0, 2, 0, 0, 1) with the dimensions
being indicated by the rankings a > b > c, a > c > b, b > a > c, b > c > a,
c > a > b, c > b > a respectively.

Definition 37. A hyperplane rule is given by r = (H, g), where H = {Hi}li=1 is a
finite set of hyperplanes, and g : {+, 0,−}l → D(L(A)) is a function that takes as
input the signs of all the hyperplanes at a point and returns a distribution over rank-
ings. Thus, r(π) = g(sgn(H(xπ))), where sgn(H(xπ)) = (sgn(H1(x

π)), ..., sgn(Hl(x
π)))

and sgn : R→ {+,−, 0} is the sign function .

Using this equivalent definition of GSR , the no holes property can be defined.
Informally, a hyperplane rule (GSR) is without holes if whenever it outputs the
same ranking (without ties) almost everywhere around a point xπ in the simplex,
then the rule outputs the same ranking (without ties) on π. Examples of common
rules which are GSR without holes are the Kemeny’s rule, STV, the maximin rule,
the ranked pairs method and all positional scoring rules. As all prominent rules that
are known to be GSR are also GSR without holes, it is believed [19] that without
holes property is quite mild and does not restrict the GSR class significantly.

4.7.3 A robust rule in GSR

Caragiannis et. al [19] study a natural voting rule in GSR denoted as modal ranking
rule, that selects the ranking that appears the highest number of times in a voting
profile, i.e. it selects the most common ranking among the given votes. It is very
interesting that this natural rule is proved to be a monotone-robust rule for all
d-monotonic noise models given any d distance function. In fact, it is the unique
robust rule against any monotonic noise model among a large class of voting rules,
GSR rules without holes.

Theorem 4.7.1. Let r be a (possibly) randomized generalized scoring rule without
holes. Then, r is monotone robust with respect to all distance functions if and only
if r selects the most common ranking rule with probability 1 where it is unique.

The above theorem shows that a natural ranking rule, the modal ranking rule is
the unique rule among a large class of rules that will output with probability close
to 1 the ground truth given infinite samples from any “realistic” (d-monotonic for
any distance function “d”) noise model.

4.7.4 Robust rules in PM-c and PD-c class

Extending the search for robust rules to the classes of PM-c and PD-c rules, it is
proved that the modal ranking rule continues to be the unique robust rule against
any monotonic noise model as there is no PM-c or PD-c rule with this property.

Theorem 4.7.2. For m ≥ 3 alternatives, no PM-c rule or PD-c rule is monotone-
robust with respect to all distance functions.
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Therefore, we get that the modal ranking rule, a rule that has passed by in tra-
ditional social choice, it can be extremely useful in human-computation and crowd-
sourcing systems. Indeed, while modal ranking rule does not satisfy many desirable
properties such as monotonicity, it is the unique rule among these large classes of
voting rules that can output the underlying ranking given a massive number of
samples from any “realistic” noise model.



Chapter 5

Voting in social networks

In the previous chapters it has been assumed that the preferences of each voter are
independent. In reality, however, voters are clearly influenced by the opinions of
people who are related to them, i.e. the people in their social network. As it is
acknowledged, social networks play an important role in the individuals’ behavior
[21] and their structure can be used to explain the ways that people’s behavior
is correlated. Because of this, social choice in social networks is deemed to be
extremely important[62]. While until recently social choice in social networks has
received little attention, the emergence of online social networks and the availability
of data that reveals these relationships, has led to an increasing research in this
direction [10, 15, 17].

In this chapter, voting in social networks, and specifically, voting under the
maximum likelihood approach will be presented.

5.1 Maximum Likelihood Approach and Social Net-

works

Until now, the noise models that were presented assumed that the votes are drawn
conditionally independent given the ground truth. However, as it has been explained
above, the assumption that the voters’ preferences are independent can be easily
disputed. Thus, in this section, noise models in which the social network structure
affects how the votes are formed will be examined.

5.1.1 A noise model that does not affect the MLE

The first noise model [28] that will be presented takes into account the social net-
work structure but it ends up with an MLE that is not affected by the social network
structure.

Let V the set of vertices in the social network graph where each vertex v denotes
a voter and N(v) the voter’s neighbors, i.e. the voters with whom v is connected.
Consider Av the vote of voter v and AN(v) the vote profile consisting of the votes
of all the neighbors-voters of v. Then, supposing that the ground truth is o∗, the
probability of observing a vote profile π is Pr[π|o∗] =

∏
v∈V fv(Av, AN(v)|o∗), where

67
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fv is a function associated with a voter v and it is intended to illustrate the inter-
action between v and its neighbors given the ground truth.

Moreover, it is assumed that functions fv take a particular form. Specifically, it
is assumed that for any voter v, there exist functions gv and hv such that fv can be
factored as fv(Av, AN(v)|o∗) = gv(Av|o∗) · hv(Av, AN(v)). That means, there is one
factor (gv) that captures the tendency of v to vote for the correct outcome o∗ and
one factor(hv) that captures the tendency of v to vote similarly with his neighbors.
As gv does not depend on AN(v) and hv does not depend on o∗, the tendency of any
voter to vote for the correct outcome is independent of his tendency to agree with
his neighbors. For example, in this model, there is still a positive probability for the
voter to vote for the correct outcome, even when all the neighbors of a voter vote
for the incorrect outcome.

It must be noticed that the model makes no assumption about the form of the
votes and the outcome space, i.e. an outcome could be an alternative, a subset of
the alternatives or a full ranking and similarly a vote could take these forms, inde-
pendently of what the outcome space is.

Taking samples of this model, under maximum likelihood approach, the objec-
tive is to return an outcome that maximizes the conditional probability of observing
the given profile π, i.e. an outcome in arg maxo Pr[π|o].

Example 5.1.1. Let A the set of two alternatives and V the set of two voters which
in the social network graph are connected via an edge. Suppose that each voter votes
for a candidate and the outcome is one of the two alternatives. For each voter v ∈ V
let gv(Av = o|o) = 0.7 and gv(Av = o′|o) = 0.3, showing that each voter is more
likely to vote for the true winner, where the true winner is denoted with o and the
remaining alternative with o′. It is also assumed that hv(Av = o, Av′ = o) = 1.142,
hv(Av = o, Av′ = o′) = 0.762 indicating that it is more likely that the voters agree
with each other, where v is any voter and v′ the remaining voter.

Then, the probability of a voter v to vote for the correct winner is Pr[Av = o|o] =
Pr[Av = o, Av′ = o|o] + Pr[Av = o, Av′ = o′|o] = 0.7 · 1.142 · 0.7 · 1.142 + 0.7 · 0.762 ·
0.3 · 0.762 = 0.761.

In contrast, assume that the two voters are not connected with each other. Then,
for any voter the probability of voting for the correct winner would be Pr[Av = o|o] =
0.7 which is less than the probability of voting for the correct when the two voters
are connected.

Thus, in this example it could be concluded that when the voters are connected,
they benefit from each other and they are more likely to vote for the true winner.

5.1.2 Computing the MLE

Having defined the noise model, the maximum likelihood estimator can be computed.
As it is mentioned above, while the social network has been taken into account, it
ends up that the structure of social network does not affect the maximum likelihood
estimator and Lemma 5.1.1 follows.

Lemma 5.1.1. Given the functions fv, hv, gv, the maximum likelihood estimator
does not depend on the social network structure, i.e. it does not depend on the
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functions hv and the maximum likelihood estimator of the correct outcome is given
by arg maxo

∏
v∈V gv(Av|o).

Proof. The maximum likelihood estimator of the correct outcome given an input
profile π is arg maxo Pr[π|o] = arg maxo

∏
v∈V fv(Av, AN(V )|o) =

arg maxo
∏

v∈V (gv(Av|o) · hv(Av, AN(v))) = arg maxo(
∏

v∈V gv(Av|o) ·∏
v∈V hv(Av, AN(v))) = arg maxo

∏
v∈V gv(Av|o), where the last transition holds since

the term
∏

v∈V hv(Av, AN(v)) does not depend on the ground truth.

From Lemma 5.1.1 it follows that the results derived in the maximum likelihood
approach with the standard independence among the voters still hold in this setting.
For example, in the case where there are only two alternatives and each voter votes
for one alternative, the maximum likelihood estimator of the correct outcome is still
the alternative which gets the larger number of votes, i.e. the majority winner.

Thus, one may conclude that modeling the social network structure does not
necessarily change the maximum likelihood estimator. However, it would be “naive”
to suppose that the social network structure can be ignored. Other models and in
particular models that do not assume that the tendency of any voter to vote for the
correct outcome is independent of his tendency to agree with his neighbors, may
lead to different results. One such model where the social network structure affects
the voting rule will be presented in the next subsection.

5.1.3 The Independent Conversations Model

Under the independent conversations model [29], it is assumed that there are two
alternatives and every voter talks with all of his neighbors, with each conversation
ending up in favor of one of the two alternatives. In other words, for every edge in
the social network graph, exactly one conversation takes place and it is supposed
that the outcomes of the conversation are independent and identically distributed.
Then, according to the results of the conversations that each voter participated, he
votes for the alternative that the majority of conservations selected. A more formal
definition of this model is given below.

Let V the set of vertices which denote the voters and E the set of edges of a
social network graph. Each edge e = (v, w) ∈ E is associated with a vote Ae which
is equal to the true winner with probability p > 1/2 and to the other alternative
with probability 1− p. The edge profile AE = {Ae|e ∈ E} is not directly observed,
but each voter v votes according to the majority of his incident edges that means
Av =maj{A(v,w)|w ∈ N(v)}. Hence, the probability of observing a vote profile
π = (Av)v∈V given that the correct alternative is o∗ is the sum of the probabilities
of all edge profiles AE that can produce the vote profile π which is,

Pr[π|o∗] =
∑

AE :∀v∈V,Av=maj{A(v,w)|w∈N(v)}

pno∗ (AE) · (1− p)|E|−no∗ (AE), where no∗(AE) is

the number of edges associated with o∗ when the edge profile is AE. Then, the
maximum likelihood estimator of the outcome is the alternative that maximizes the
above expression i.e. the alternative in arg maxo Pr[π|o].
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Example 5.1.2. Let A = {1,−1} the set of alternatives and the social network
given by the figure 5.1 [29]. The first graph gives the vote profile where each voter
denoted with an open vertex votes for candidate -1 and each voter denoted with a
close vertex votes for candidate 1. The other two graphs, give the only two edge
profiles which are compatible with the given vote profile, where every open edge is
associated with alternative -1 and every close edge is associated with alternative
1. Then the probability of observing any one profile of the two edge profiles given
that alternative 1 is the correct winner is p5 · (1 − p)4 as there are four edges that
vote for the incorrect alternative and 5 edges that are associated with the correct
winner. Hence, the probability of observing the vote profile given that the correct
winner is 1 is Pr[π|1] = Pr[AE1|1] + Pr[AE2|1] = 2 · p5 · (1 − p)4. Similarly,
the probability of observing the vote profile given that the correct winner is −1 is
Pr[π| − 1] = 2 · p4 · (1 − p)5. Therefore, a maximum likelihood estimator of the
correct winner would select alternative 1 as he maximizes (p > 1/2) the conditional
probability of observing the given vote profile.

Figure 5.1: A social network structure with a vote profile for the vertices, and the
two edge profiles that are consistent with this vote profile.

As the example shows, computing the probability of observing a vote profile
is associated with computing the probabilities of observing the compatible edge
profiles. However, it has to be noticed that not all vote profiles have compatible edge
profiles. For example, the vote profile that consists of two voters that are connected
via an edge and the two voters vote for a different alternative, is not consistent with
any edge profile. This could be faced by extending the model so that every voter
has a small probability of voting against the majority of his incident edges.

While in the Example 5.1.2 enumerating the consistent edge profiles was easy, it
has to be examined what happens in general.

5.1.4 Computational Complexity

One may wonder whether there is an easy way to enumerate or just count the
different compatible edge profiles. However, theorem 5.1.1 shows that this is not the
case and suggests thats it is a hard counting problem.
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Theorem 5.1.1. Computing the probability of observing a vote profile π given the
correct outcome o∗, Pr[π|o∗], is #P − hard under the independent conversations
model.

Intuitively, the computational complexity of computing the probability of observ-
ing a vote profile indicated by Theorem 5.1.1 is due to the hidden variables (edge
profiles) over whose possible values must be summed. Another approach would be
to estimate the hidden variables together with the true winner rather than summing
over all the hidden variables.

Specifically, under independent conversations model, that means estimating the
correct winner o∗ with the edge profile A∗E so as to maximize the probability
Pr[π,A∗E|o∗]. Considering that Pr[π,AE|o] = Pr[π|AE, o] · Pr[AE|o], where
Pr[π|AE, o] = Pr[π|AE] = 1 if AE is compatible with π and 0 otherwise, then the
goal is to find the o∗ and a compatible A∗E with π that maximize the probability
Pr[A∗E|o∗]. It is proved that this can be done in polynomial time even under a richer
model that is defined below.

5.1.5 Independent weighted conversations model

Independent weighted conversation model [29] is identical to the independent con-
versations model, except the fact that here there is not a universal probability p of
ending up with the correct alternative; different edges have different probabilities
pe ≥ 1/2 of associating with the correct alternative. The existence of different prob-
abilities pe associated with different edges stems from the same idea with a previous
model [56] where some voters are more skillful and thus, they have a greater prob-
ability of voting for the correct alternative.

As it is mentioned above, estimating the edge profile along with the correct win-
ner can be done in polynomial time under the independent weighted conversations
model.

Theorem 5.1.2. An element of arg max(o∗,A∗E)
Pr[π,A∗E|o∗] can be computed in poly-

nomial time, even in the independent weighted conversations model.

Until now, three different noise models that take social network structure into
account have been presented. While the first noise model ends up with an optimal
rule that is not affected by the social network structure, under the independent con-
versations model and the independent unweighted conversations model, the optimal
rule is affected by the social network, showing that it would not be right to assume
that social network structure can just be ignored. Although these models try to cap-
ture the interaction among the voters, they ignore one important aspect; the time
[29]. It could be much more realistic if the gradual evolution of a voter’s preference
was modeled. Nevertheless, these simple models give a little insight into how a social
network may affect the optimal voting rule [29]. However, as it was explained in
the previous chapter, finding an optimal rule (MLE) is restrictive [18]. Thus, it is
equally important to examine the setting presented in the previous chapter in the
social network context.
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5.2 Dependent samples

In this section, it will be studied how many samples are needed to reveal the ground
truth when the samples are dependent reflecting the social network structure among
the agents. Specifically, the model that will be used assumes that the agents are
divided into different areas with each area having its own ground truth stemming
from a global ground truth. It is interesting to notice that this model indeed fol-
lows reality. It is a fact that people living in the same geographical area evaluate
many things in a similar way but possibly different from people in other areas. For
example, assume that people from different areas are asked to rank the football
teams of the country. It is expected to observe that the rankings will differ in the
teams associated with the areas that the samples come from, as it is quite natural
to overestimate “their” team but they will also have commons in the teams that
are independent of the areas. Furthermore, another important reason that justifies
the selection of this model is that a geographical area is often associated with peo-
ple with specific socioeconomic status. For instance, in some areas wealthy people
live, while in others, most of the people are unprivileged. Thus, it is expected that
different samples will arise when people from different areas are asked to evaluate
a number of alternatives, since their different socioeconomic status may make them
evaluate some things differently.

The model that captures these situations is defined formally below.

5.2.1 Model

Let A = {a1, .., am} the set of alternatives and σ∗ the global underlying ground truth
with ai the alternative that is on the ith position in the true ranking. It is assumed
that there are k different areas with the ith area having its own underlying ground
truth σ∗i , for any i ∈ {1, .., k}. Any ranking σ∗i has at most l distance from the
global ranking σ∗, that means any ranking σ∗i can be derived from σ∗ by at most l
swaps. Given that the samples follow the Mallows model, the purpose is to identify
how many samples are required to reveal with high probability the true rankings of
the k areas.

5.2.2 A lower bound

By Theorem 4.6.1, it follows that taking O(log(m
ε

)) from every area. i.e. a total
of O(k · log(m

ε
)) samples, it would output the underlying rankings with probability

1− ε. However, this approach ignores the fact that the rankings of the k areas are
derived from the global ranking σ∗ and thus, they have many common pairs.

Taking this into account, the first approach that will be examined assumes that
O(log(m

ε
)) samples are taken from the pth area i.e. σ∗p is known with high probability

and then it is examined how many extra samples from any area q, q 6= p are required
in order to output with high probability the σ∗q . Although these approach seems to
take advantage of the fact that the rankings of any two teams have common pairs,
it is proved that given the ranking σ∗p, the number of the required samples is the
same with the number of the required samples when none ranking is known.
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Theorem 5.2.1. Given that σ∗p, p ∈ {1, .., k} is known, then Ω(log(m
ε

)) samples
from Mallows model are required to reconstruct the true ranking σ∗q with probability
at least 1− ε, for any q ∈ {1, .., k}.

Proof. Let r a voting rule and assume that N r(ε) = n. By the definition of N r(ε)
(subsection 4.2), it follows that Accr(n, σ) ≥ 1 − ε for any σ ∈ L(A). Since the
true rankings of the two areas have a maximum KT-distance l from the ranking
σ∗, then the rankings σ∗p and σ∗q have KT-distance at most l′ = 2 · l as it follows
from the following probability of distance functions: dKT (σ∗p, σ

∗
q ) ≤ dKT (σp, σ

∗) +
dKT (σ∗, σ∗q ) ≤ l + l = 2 · l. Thus, the possible results of the rule r are restricted in

N l′(σ∗p), which is the set of rankings that have l′ or smaller distance from σ∗p . Hence

for any σ ∈ N l′(σ∗p), Pr[π|σ∗q ] =
n∏
i=1

φdKT (σi,σ
∗
q )

Zm
φ

≥
n∏
i=1

φdKT (σi,σ)+2·l′

Zm
φ

= φ2·n·l′ ·Pr[π|σ],

where the second transition follows the following property of distance functions:
dKT (σi, σ

∗
q ) ≤ dKT (σi, σ) + dKT (σ, σ∗q ) ≤ dKT (σi, σ) + 2 · l′.

Then, Accr(n, σ∗q ) =
∑

π∈L(A)n
Pr[π|σ∗q ] · Pr[r(π) = σ∗q ] =∑

π∈L(A)n
Pr[π|σ∗q ] · (1 − Pr[r(π) 6= σ∗q ]) = 1 −

∑
π∈L(A)n

Pr[π|σ∗q ] · Pr[r(π) 6= σ∗q ] =

1−
∑

π∈L(A)n
Pr[π|σ∗q ] ·

∑
σ∈N l′ (σ∗p)

Pr[r(π) = σ] =

1−
∑

σ∈N l′ (σ∗p)

∑
π∈L(A)n

Pr[π|σ∗q ] · Pr[r(π) = σ] ≤

1−
∑

σ∈N l′ (σ∗p)

∑
π∈L(A)n

φ2·n·l′ · Pr[π|σ] · Pr[r(π) = σ] = 1− φ2·n·l′ ·
∑

σ∈N l′ (σ∗p)

Accr(n, σ) ≤

1−φ2·n·l′ ·(m−1)·(1−ε), where the last transition holds since m−1 ≤ |N l′(σ∗p)| ≤ ml′ .

Therefore, in order to have Accr(n, σ∗q ) ≥ 1−ε we get that φ2·n·l′ ·(m−1) ·(1−ε) ≤ ε
and solving for n we get the bound Ω(log(m

ε
)) .

Intuitively, the above approach fails to output the true rankings of the k areas
with a smaller number of samples than O(k · log(m

ε
)) given the ranking of the p area,

as the common pairwise comparisons for all areas will be estimated more than one
time, in all areas. In order to overcome this result, the next approach is to take
samples from all areas in oder to estimate the pairwise comparisons that all true
rankings have in common and then take extra samples from each area in order to
estimate the remaining pairs. It is proved that this approach indeed gives better
results and the number of samples required is reduced.

Theorem 5.2.2. Under the approach that the common pairs for all areas are es-
timated first and then extra samples are taken from each team to estimate the re-
maining pairs of alternatives, the total number of samples required to estimate all
σ∗i forall i ∈ {1, .., k}, is O(log( (m−l

′·k)·l′·k
ε

) + k · log( l
′·k
ε

)).

Proof. Taking n
k

samples from each area it is wanted to define with high probability
the pairs that they have in common by selecting the pairs (a,b) which have the
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greatest difference in nab − nba. Hence we want,

Pr[∀a, b,∈ A, a >σ∗i
b,∀i ∈ {1, ..k} =⇒ (a, b) ∈ arg

x
max

(a,b)∈A2
nab−nba] ≥ 1− ε, where

x is the number of common pairs between all areas and holds that x ≥
(
m
2

)
− l′ ·

(
k
2

)
since any pair of teams have at most l′ pairs of alternatives different and there are(
k
2

)
different pairs of areas.

Let a and b a pair of alternatives such that a >σ∗i
b, ∀i ∈ {1, .., k}. Then the

probability that the difference nab − nba is not in the arg maxx(a,b)∈A2 nab − nba is:

Pr[(a, b) /∈ arg
x

max
(a,b)∈A2

nab − nba] = Pr[∃c, d ∈ A, ∃i ∈ {1, .., k}, d >σ∗i
c ∧ ncd − ndc ≥

nab − nba] (1)

Let c and d a pair of alternatives such that c is not preferred to d by all areas.
Then the probability of difference y = ncd − ndc being larger than z = nab − nba is:
Pr[z− y ≤ 0] ≤ Pr[|z− y−E[z− y]| ≥ δ] ≤ 2 · e−2·δ2·n ≤ 2 · e−2·δ2min·n (2), where
δ = E(z − y).

Then from (1) and (2) and union bound we have that :

Pr[(a, b) /∈ arg
x

max
(a,b)∈A2

nab − nba] ≤ 2 · l′ ·
(
k

2

)
· e−2·δ2min·n .

Thus, Pr[∃a, b,∈ A, a >σ∗i
b,∀i ∈ {1, ..k} ∧ (a, b) /∈ arg

x
max

(a,b)∈A2
nab − nba] ≤

(

(
m

2

)
− l ·

(
k

2

)
) · l ·

(
k

2

)
· 2 · e−2·δ2min·n ≤ ε and solving by n we get that

n ≥ 1
2·δ2min

· log(
((m2 )−l·(k2))·l·(

k
2)

ε
).

As the common pairs are defined, we want to define the pairs that differ in any
area by taking extra samples from each area. Firstly, the extra samples for the first
area are computed by selecting the pairs (a, b) such that the number of agents that
prefer a to b is larger than the number of samples that prefer b to a.

Hence we want,
Pr[∀a, b,∈ A, a >σ∗1

b ∧ ∃i ∈ {1, ..k}, b >σ∗i
a =⇒ nab − nba ≥ 1] ≥ 1− ε.

Let δ = pa>b − pb>a. Then for a and b such that a >σ∗1
b ∧ ∃i ∈ {1, ..k}, b >σ∗i

a
the probability that the number of voters from the first team that prefer a to b is
not larger than the number of voters that prefer b to a is:

Pr[nab − nba ≤ 0] = Pr[
nab − nba

n1

] ≤ Pr[|nab − nba
n1

− E[
nab − nba

n1

]| ≥ δ] ≤ 2 ·

e−2·δ
2·n1 ≤ 2 · e−2·δ2min·n1 .

The probability of returning a wrong ranking is:

Pr[∃a, b ∈ A, a >σ∗1
b ∧ ∃i ∈ {1, ..k}, b >σ∗i

a ∧ nab − nba ≤ 0] ≤ 2 · [
(
m

2

)
− x] ·

e−2·δ
2
min·n1 ≤ 2 · l ·

(
k

2

)
· e−2·δ2min·n1 ≤ ε and hence, we have n1 ≥ 1

2·δ2min
· log(

l·(k2)
ε

) .

Similarly, we want ni ≥ 1
2·δ2min

· log(
l·(k2)
ε

) samples to define the pairs for each true

ranking i ∈ {1, ..k} and thus, the theorem follows.

Although this approach decreases the number of required samples, it is not op-
timal as the number of common pairs used is the minimum possible number but
in reality the k areas will have a larger number of common pairs. However, it
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gives an insight of how the social network structure affects the minimum number
of samples required to reveal the ground truth; ignoring the social network and the
dependencies among the agents would result in a much bigger number of required
samples.





Chapter 6

Conclusion

In this thesis, important results in both traditional social choice theory and com-
putational social choice have been presented. In particular, after the introduction
to basic concepts and results in social choice theory, emphasis has been given on
the maximum likelihood approach. Under the maximum likelihood approach, vot-
ing methods, given a number of votes that are assumed to be noisy estimators of
the ground truth, aim to reveal the underlying truth which ranks the alternatives
according to a quality measure. Different settings and noise models that define the
way that different samples can be observed were examined under the maximum like-
lihood approach and important results were presented.

Specifically, studying the problem of selecting a set of “good” alternatives [59]
suggested that the selection of the appropriate voting rule is important as it can sig-
nificantly affect the performance. Moreover, since in many theoretical and practical
applications agents are not able to give a total order of the alternatives, maximum
likelihood approach was examined in the case of partial orders [80]. Under this
model, pairwise scoring rules play an important role as they are the only maximum
likelihood estimators for neutral-pairwise noise models.

However, it was argued that the maximum likelihood estimator requirement is
too restrictive and thus, it was studied how many samples different rules need in
order to output the underlying ranking with high probability [18]. It was supposed
that samples follow the Mallows model but at the same time, some generalizations
were made in order to predict some noise models that may arise in practice. A
possible future direction would be to extend the analysis of the number of required
samples to models where the input votes are not given in the form of total orders
but rather, the agents give partial orders or lists with top alternatives. This would
be of great importance as in practice the number of required samples translates into
the budget that will be consumed to draw the votes and in many real applications,
taking total orders as input is unrealistic due to the extremely large number of al-
ternatives [18].

All the aforementioned settings, though, made an assumption that can be easily
disputed; it was assumed that the agents’ preferences are conditionally independent
given the ground truth. Hence, in the last chapter, maximum likelihood approach
under the social network context was examined. Some preliminary results, that give
an insight of how the social network structure affects both the maximum likelihood

77
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estimator and the samples that a rule needs to reconstruct the ground truth with
high probability, were presented. It would be interesting to study further these
models with the inclusion of some real-world aspects such as the evolution of the
voter’s preference over the time [28] as well as the extension of the independent
conversations model to the case where the number of alternatives is larger than two
and the agents give total orders.
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