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Περίληψη

Τα προβλήματα χωροθέτησης (Facility Location) είναι ένα από τα κλασσικά προβλήματα
στη συνδυαστική βελτιστοποίηση, το οποίο έχει μελετηθεί από πολλές διαφορετικές σκοπιές
και με πολλούς διαφορετικους περιορισμούς και παραλλαγές. Σύντομα, όσοι μελετούσαν το
πρόβλημα, συνειδητοποίησαν τη δυσκολία του, έτσι αντί να προσπαθούν να βρουν ακριβή
λύση, το οποίο θα ήταν πολύ χρονοβόρο για να έχει πρακτική εφαρμογή, προσπαθούσαν να
προσεγγίσουν την βέλτιστη λύση σε πολυωνυμικό χρόνο. Αλλα παρόλο που μπορούμε να
βρούμε σταθερούς προσεγγιστικούς αλγορίθμους, δεν είναι πολύ ρεαλιστικό να υποθέτουμε
ότι γνωρίζουμε όλα τα δεδομένα εισόδου εξ αρχής. Σκεφτείτε ένα δίκτυο υπολογιστών για
παράδειγμα, όπου νέοι κόμβοι προστίθενται ή αφαιρούνται συνεχώς. Αυτή η ”αβεβαιότητα”
στα δεδομένα εισόδου μας οδήγησε στο να ορίσουμε το πεδίο των online αλγορίθμων, και
το πρόβλημα Facility Location είναι ένα από αυτά που μελετήθηκαν σε αυτό το ”αβεβαιο”
περιβάλλον. Με αυτήν την υπόθεση αβεβαιότητας, όπου ο αλγόριθμος δεν γνωρίζει εξ αρχής
όλα τα δεδομένα που θα κληθεί να επεξεργαστεί, είναι αδύνατον να λύσει το πρόβλημα με
το βέλτιστο τρόπο, πόσο μάλλον για ένα πρόβλημα που είναι έτσι κι αλλιώς υπολογιστικά
δύσκολο να λυθει βέλτιστα. Χρησιμοποιώντας competitive ανάλυση, μπορούμε να μετρήσουμε
την απόδοση ενος τέτοιου αλγορίθμου και να δώσουμε εγγυήσεις ότι η λύση μας δε θα είναι
πολύ μακριά από τη βέλτιστη. Στην παρούσα διπλωματική παρουσιάζονται οι βασικές έννοιες
γενικά για online και προσεγγιστικους αλγορίθμους και ενα σημαντικό κομμάτι της δουλειάς
που έχει ήδη γίνει σε online facility location και παραλλαγές του. Τέλος, παρουσιάζεται μια
νέα παραλλαγή του online προβλήματος με έναν νεο αλγόριθμο για αυτήν.

Λέξεις κλειδιά: Facility Location, Sum Radii, προσεγγιστικοί αλγόριθμοι, online
αλγόριθμοι, clustering, competitive analysis
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Abstract

Facility Location is a classic problem in combinatorial optimization, and has been stud-
ied many years, in many different contexts and with various additions and modifications.
Soon, computer scientists realized the hardness of the problem, so instead of trying to
find an exact solution, which would be too time consuming to be useful in solving real
life problems, we can approximate the optimal exact solution in polynomial time. But,
even though we can find constant approximation algorithms for this problem, it is not
very realistic to assume that we know all the input data from the beginning. Consider a
computer network for example, where new nodes are constantly added, or deleted. This
”uncertainty” in the input data has led us to create the field of online algorithms, and
Facility Location is one of the problems to be studied under uncertainty. In this setting,
where the algorithm does not know all the data in advance, it cannot possibly make the
best decision, so much so for a problem that even with all the data available is com-
putationally hard. Using competitive analysis, we measure the performance of such an
algorithm, and provide guarantees that it will not be far from the optimal. In this thesis
we present the basic notions about approximation and online algorithms and parts of the
previous work for the Online Facility Location problem, and some interesting variants.
Finally, we will present a new variant called Radii Facility Location, provide an algorithm
for this, and discuss how the competitive ratio changes for some parameters of the problem.

Keywords: Facility Location, Sum Radii, approximation algorithms, online algo-
rithms, competitive analysis, clustering
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Chapter 1

Εκτεταμένη Ελληνική Περίληψη

Δίνουμε μια εκτεταμένη ελληνική περίληψη που συνοψίζει το περιεχόμενο αυτής της διπλωματικής.
Θα παρουσιαστούν συνοπτικά τα περιεχόμενα κάθε κεφαλαίου, χωρις αποδείξεις και τεχνικές
λεπτομέρειες.

1.1 Τεχνικό Υπόβαθρο

Σε αυτό το κομμάτι παρουσιάζονται κάποια βασικά τεχνικά εργαλεία που χρησιμοποιούνται
αργότερα στη διπλωματική και υπάρχουν αναλυτικά στο κεφάλαιο 3. Αυτά είναι ο γραμμικός
προγραμματισμός (linear programming), βασικές έννοιες και τεχνικές ανάλυσης και σχεδίασης
προσεγγιστικων αλγορίθμων μέσα από το πρόβλημα χωροθέτησης εγκαταστάσεων (Facility
Location) και κάποια βασικά πράγματα για Online αλγόριθμους.

1.1.1 Γραμμικός Προγραμματισμός

Ένα γραμμικό πρόγραμμα είναι το πρόβλημα της βελτιστοποίησης μιας γραμμικής συνάρτησης
ικανοποιώντας ταυτόχρονα περιορισμούς ισότητων ή ανισοτήτων. Η κανονική μορφή ενός
γραμμικού προγράμματος (LP) φαίνεται στον πίνακα 1.1.

1



2 CHAPTER 1. Εκτεταμένη Ελληνική Περίληψη

minimize
n∑

i=1

cixi

subject to
n∑

i=1

aijxi ≥ bj ∀j ∈ [m]

xi ≥ 0 ∀i ∈ [n]

Table 1.1: Κανονική μορφή ενός πρωτεύοντος (P)

Αυτό το πρόγραμμα λέγεται πρωτεύον και έρχεται σε ζευγάρι με ένα δυϊκό (πίνακας 1.2).
Οι βασικοί αλγόριθμοι επίλυσης LPs είναι ο Simplex, ο Ellipsoid και κάποιες Interior point
μεθοδοι.

maximize
m∑
j=1

bjyj

subject to
m∑
j=1

aijyj ≤ ci ∀i ∈ [n]

yj ≥ 0 ∀j ∈ [m]

Table 1.2: Κανονική μορφή του Δυϊκού (D)

Το πρωτεύον και το δυϊκό ικανοποιούν κάποιες συνθήκες complementary slackness,
καθώς και την ισχυρη δυϊκότητα, που λέει ότι η βέλτιστη λύση του πρωτέυντος και του
δυϊκού ταυτίζονται. Αυτές οι σχέσεις θα χρησιμοποιηθούν στη μέθοδο πρωτεύοντος-δυϊκού
για να βρεθεί λύση στο γραμμικό πρόγραμμα και να πάρουμε προσεγγιστικούς αλγορίθμους
χωρίς ουσιαστικά να λυσουμε το LP.

Είναι σημαντικό να αναφέρουμε ότι συνήθως τα προβήματα μοντελοποιούνται σαν ακέραια
προγράμματα και όχι σαν γραμμικά, δηλαδή οι μεταβλητές τους είναι ακέραιες ενώ σε ένα LP
η λύση μπορεί να δώσει και μη ακέραιες λύσεις. Συνηθίζουμε όμως να ”χαλαρώνουμε” (relax)
το ακέραιο πρόγραμμα και να επιτρέπουμε μη ακέραιες τιμές στις μεταβλητές καθως τα LPs
λύνονται σε πολυωνυμικό χρόνο ενώ τα ακέραια προγράμματα όχι.

1.1.2 Προσεγγιστικοί Αλγόριθμοι και Facility Location
Οι προσεγγιστικοί αλγόριθμοι προέκυψαν σαν αποτέλεσμα του διάσημου ερωτήματος P vs
NP . Κάθως υπάρχουν προβλήματα που δεν μπορούμε να λύσουμε σε λιγότερο απο εκθετικό

2



CHAPTER 1. Εκτεταμένη Ελληνική Περίληψη 3

χρόνο, μια λύση είναι να προσπαθούμε να τα προσεγγίσουμε. Ο στόχος του κλάδου των
προσεγγιστικών αλγορίθμων είναι να δώσει μαθηματική απόδειξη για τον αλγοριθμο ότι θα
μπορεί να βρει μια καλή προσέγγιστη της βέλτιστης λύσης.

Για αυτόν τον λόγο ορίζουμε εναν c-προσεγγιστικό αλγόριθμο ως έναν πολυωνυμικό
αλγόριθμο που για κάθε είσοδο του προβλήματος βρίσκει μια λύση με τιμή το πολύ c φορές
την βέλτιστη τιμή. Παρακάτω παρουσιάζεται το πρόβλημα Facility Location γραμμένο σε
μορφή LP. Σε αυτό το πρόβλημα, μας δίνονται ένα σύνολο από facilities και ένα σύνολο
από πελάτες τους οποίους θέλουμε να συνδέσουμε με τα facilities. Ο κάθε πελάτης για να
συνδεθεί πληρώνει την απόσταση του, ενώ ένα facility για να ανοίξει πληρώνει ένα κόστος
f . Στόχος μας είναι να ελαχιστοποιήσουμε το άθροισμα των κοστών ανοίγματος και των
κοστων σύνδεσης.

minimize
∑
i

yifi +
∑
i,j

xijcij maximize
∑
j

aj

subject to
∑
i

xij ≥ 1 ,∀j subject to aj − bij ≤ cij , ∀j, i

xij ≤ yi ,∀i, j
∑
j

bij ≤ fi , ∀i

xij ≥ 0 aj ≥ 0

yi ≥ 0 bij ≥ 0

Table 1.3: To Facility Location σαν γραμμικό πρόγραμμα, i ∈ F and j ∈ C for the
above

Οι μεταβλητές είναι ουσιαστικά δεικτες για το αν θα ανοίξει ένα facility i (yi = 1 ανν το
facility i ανοίγει), και για το αν ο πελάτης j είναι συνδεδεμένος με το facility i (xij = 1).

Οι βασικότερες τεχνικές επίλυσης τέτοιων προβλημάτων είναι η ντετερμινιστική και τυχαιο-
ποιημένη στρογγυλοποίηση ενος LP, και η μέθοδος πρωτεύοντος-δυϊκού. Στην περίπτωση
της στρογγυλοποίησης λύνουμε το LP και μετά προσπαθούμε να στρογγυλοποιήσουμε τις
μεταβλητές σε ακέραιες τιμές, για να έχουμε μια λύση που να έχει νόημα για το πρόβλημα. Η
διαφορά των δύο τεχνικών είναι στο αν η στρογγυλοποίηση γίνεται με κάποιον προκαθορισμένο
τρόπο ή περιλαμβάνει κάποια τυχαία μεταβλητη. Στην περίπτωση της μεθόδου πρωτεύοντος-
δυϊκού, προσπαθούμε να ”χτισουμε” μια λύση στο δυϊκό ή στο πρωτεύον, ικανοποιώντας τις
συνήκες complementary slackness. Ο καλύτερος λόγος προσέγγισης αυτη τη στιγμή είναι
το 1.488 [1] με lower bound το 1.463 [2].

1.1.3 Online Αλγόριθμοι
Ενώ η παραδοσιακή προσέγγιση στους αλγορίθμους λέει ότι γνωρίζουμε τα δεδομένα εισόδου
απο την αρχή, αυτό συνήθως δε συμβαίνει σε πραγματικά προβλήματα. Για παράδειγμα σε ένα

3



4 CHAPTER 1. Εκτεταμένη Ελληνική Περίληψη

δίκτυο μπορεί νέοι κόμβοι έρχονται συνέχεια και να πρέπει να εξυπηρετηθούν αμέσως, όπως
στο πρόβλημα k-server. Ένα άλλο παράδειγμα είναι το paging σε λειτουργικά συστήματα
όπου μια μικρή και γρήγορη μνήμη πρέπει να αποφασίσει ποια δεδομένα θα αντικαταστήσει
με νεα ώστε να μπορεί να φέρει τα επόμενα δεδομένα που θα ζητήσει ο χρήστης πιο γρήγορα
και να μη χρειαστεί να αναφερθούμε στην αργή και μεγάλη μνήμη.

Για την ανάλυση online αλγορίθμων ορίζουμε το competitive ratio, στο οποίο συγκρίνουμε
το αποτέλεσμα του αλγορίθμου μας με τη βέλτιστη λύση του αλγορίθμου αν είχε όλα τα
δεδομένα απ την αρχή.

1.2 Online Προβλήματα Χωροθέτησης
Σε αυτήν την ενότητα θα παρουσιάσουμε συνοπτικά τα σημαντικότερα αποτελέσματα σε On-
line προβλήματα Facility Location και μια παραλλαγή του, το Sum Radii, όπου τα facili-
ties ανοίγουν με συγκεκριμένη ακτίνα και οι πελάτες δεν πληρώνουν κόστος σύνδεσης αλλά
μπορούν να συνδεθούν σε ένα facility μόνο αν είναι εντος της ακτίνας του. Αρχικά αναφέρουμε
ότι το lower bound που υπάρχει στο online Facility Location είναι logn

log logn και αποδείχθηκε
στο [3].

Ο πρώτος που όρισε το online Facility Location ήταν ο Meyerson [4] ο οποίος παρουσίασε
και έναν πολύ απλό και διαισθητικό randomized αλγόριθμο που πετυχαίνει logn προσέγγιση.
Σε αυτόν τον αλγόριθμο κάθε φορά που έρχεται ένα πελάτης, έστω δ η απόσταση του από
το κοντινότερο facility, τοτε θα ανοίξει στη θέση που έφτασε ένα facility με πιθανότητα δ/f
όπου f το κόστος ανοίγματος του facility. Ουσιαστικά ο αλγόριθμος λέει ότι όταν είμαστε
πολύ μακρυα από το κοντινότερο ανοιχτό facility, θα πρέπει η πιθανότητα με την οποία ανοίγει
ένα νεο facility να είναι μεγάλη, ώστε και οι επόμενοι πελάτες που θα φτάσουν στην περιοχή
να μη πληρώσουν πολλά. Στο [5] μια καλύτερη ανάλυση του αλγορίθμου έδειξε ότι στη
πραγματικότητα είναι ασυμπτωτικά βέλτιστος καθώς φτάνει το logn

log logn .

Στη συνέχεια υπήρξαν και άλλοι αλγόριθμοι, όπως στο [6], ο οποίος χρησιμοποιεί τη
μέθοδο πρωτέυοντος - δυϊκού και την έννοια του ”δυναμικού” μιας περιοχής. Το δυναμικό ειναι
ουσιαστικά το πόσο πολύ θέλουν οι γύρω πελάτες να ανοίξει facility σε ένα συγκεκριμένο
σημείο του χώρου. Οταν οι πελάτες κερδίζουν περισσότερο από το f τότε θα ανοίξει facility
στο σημειο. Ένας ακόμα ενδαιαφέρον αλγόριθμος [7], ξεκινάει με ένα τετράγωνο με διαγώνιο
f και όσο έρχονται νεοι πελάτες χωρίζει το τετράγωνο κάθε φορά σε 4 μικρότερα τετράγωνα
οταν το κόστος σύνδεσης ξεπεράσει ένα όριο. Αυτό είναι ουσιαστικά παρόμοιο με την έννοια
του δυναμικού. Και οι δύο αυτοί αλγόριθμοι πετυχαίνουν λογαριθμικό λόγο προσέγγισης.

Τελικά στο [3] δοθηκε ένας βέλτιστος ντετερμινιστικός αλγόριθμος, με σχετικά περίπλοκη
ανάλυση, που δίνει ratio όσο το lower bound, και χρησιμοποιεί πάλι την έννοια του δυναμικού
αλλά το σημείο που θα ανοίξει το νεο facility επιλέγεται πιο προσεκτικά.

4



CHAPTER 1. Εκτεταμένη Ελληνική Περίληψη 5

Στο πρόβλημα Sum Radii, που περιγράφηκε παραπάνω, έχουν δοθεί δύο αλγόριθμοι, ένας
ντετερμινιστικός και ένας randomized με λόγο προσέγγισης logn και οι δύο. O randomized
για κάθε πελάτη που φτάνει και δεν καλύπτεται, προσπαθεί να ανοίξει ένα facility με ακτίνα
2if με πιθανότητα 1/2i. Στον ντετερμινιστικό, χρησιμοποιείται πάλι η μέθοδος πρωτεύοντος-
δυϊκού.

1.3 Μια Νεα Παραλλαγή στο Πρόβλημα - Radii
FL

Τέλος, ορίζουμε μια νέα παραλλαγή στο πρόβλημα την οποία ονομάζουμε Radii-Facility Lo-
cation (Radii-FL για συντομία) η οποία είναι ουσιαστικά ο συνδυασμός δύο προβλημάτων
που συζητήθηκαν πιο πριν: του Facility Location και του Sum Radii. Σε αυτο το πρόβλημα,
υπάρχει ο περιορισμός των ακτινών, δηλαδη όταν ανοίγουμε το facility πρέπει να αποφασίσουμε
με τι ακτίνα θα ανοίξει. Τελικά θα πληρώσουμε για κάθε ανοιχτό facility ένα κόστος
ανοίγματος, ένα κόστος για την ακτίνα και το άθροισμα των αποστάσεων για να συνδέσουμε
τους πελάτες. Το γραμμικό πρόγραμμα για το πρόβλημα φαίνεται στους παρακάτω πίνακες.

minimize
∑
i,r

y
(r)
i (f + fr) +

∑
i,j,r

x
(r)
ij f3d(i, j)

subject to x
(r)
ij ≤ y

(r)
i ,∀i, j, r∑

i,r

x
(r)
ij ≥ 1 ,∀j

x
(r)
ij ≥ 0 ,∀i, j, r

y
(r)
i ≥ 0 ,∀i, r

Table 1.4: Πρωτεύον, i ∈ F and j ∈ C

Στην περίπτωση μας, προσθέσαμε και έναν συντελεστή στο κόστος σύνδεσης. Αυτό
έγινε γιατί αν f3 = 1 δε θα είχε νόημα το πρόβλημα: το κόστος σύνδεσης θα μέτραγε τόσο
πολύ σε σχέση με το κόστος ακτίνας και το κόστος ανοίγματος, που πάντα θα μας συνέφερε
να ανοίξουμε νεο facility με την ελάχιστη ακτίνα παρά να συνδέσουμε τον πελάτη με κάποιο
ήδη ανοιχτό, πιθανότατα με μεγαλύτερη ακτίνα.
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maximize
∑
j∈C

bj

subject to bj ≤ a
(r)
ij + f3d(i, j) ,∀j, i, r : d(i, j) ≤ r∑

j∈C

a
(r)
ij ≤ f + fr , ∀i, r

a
(r)
ij ≥ 0 ,∀i, j, r

bj ≥ 0 ,∀j

Table 1.5: Δυϊκό, i ∈ F and j ∈ C

Αυτό σημαίνει ότι για διαφορετικές τιμές του συντελεστή f3 θα πρέπει και ο αλγόριθμος
να συμπεριφέρεται διαφορετικά. Δηλαδή, αν πούμε OPT την βέλτιστη offline λύση στο
πρόβλημα, για μεγαλες τιμές του f3 η OPT δε θα ανοίγει πολύ μεγάλα facilities, άρα δεν
έχει νόημα και εμείς να ανοίγουμε μεγάλα. Ο αλγόριθμος κάνει ακριβώς αυτό, για πελάτες
που δεν καλύπτονται θα προσπαθει να ανοίξει τοσο μεγάλα facilities όσο θα μπορούσε να
ανοίξει και η OPT. Στην περίπτωση που ο πελάτης καλύπτεται, ουσιαστικά θα τρέχουμε τον
αλγόριθμο του Meyerson. Ο αλγόριθμος φαίνεται αναλυτικά στο 1. Για λογους απλότητας
και για να διευκολυνθούμε στην ανάλυση λέμε ότι f3 = 1/2M .

Algorithm 1: Ο αλγόριθμος FL_Radii
Data: M

1 New demand p:
2 if p is covered by ci then
3 δ = min{d(i, p)|i ∈ F};

// 2ui rad of facility covering p
4 u = ui − 1;
5 With pcov = δ

2uf+f open facility at p (cost: 2uf + f)
6 end
7 else

// ui is not covered
8 With puncov = 1

2i
, ∀i ∈ [M ] open facility at p (cost: 2if + f)

9 end

Μελετώντας το competitive ratio, περιμένουμε να εξαρτάται από την παράμετρο M , κάτι
που όντως συμβαίνει καθώς αποδεικνύουμε ότι έχουμε ratio: max{ logn

log logn ,min{logn,M}}.

6
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Αυτό ουσιαστικα μας λέει, ότι για μικρές τιμές του M , αυτό που υπερισχύει στο competitive
ratio είναι το logn

log logn που ουσιαστικά προκύπτει επειδή ο OPT αναγκάζεται να λύσει facility
location μέσα στα μικρά clusters που ανοίγει. Σε αντίθετη περίπτωση, το M υπερισχύει του
Facility Location, και το πρόβλημα τείνει να γίνει σαν το Sum Radii. Στην περίπτωση που
το M είναι πολύ μεγάλο, άρα το κόστος σύνδεσης πολύ μικρό, ουσιαστικά έχουμε το Sum
Radii.

7
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Chapter 2

Introduction

The problem of finding a point that minimizes the sum of distances from a given set of
points is known since the early 17th century. Since then, it has been studied in many
different contexts, from economics and location theory, to operations research and lately
to computer science, known as the Facility Location Problem. This is a classic problem
in combinatorial optimization, and people soon realized it is hard to solve; it belongs to a
class called NP -Hard problems, so there is a chance that we will never be able to find a
polynomial time algorithm for them.

In this case, we try to find a solution ”close” to the optimal, and this is what we call an
approximation algorithm: an algorithm with a mathematical guarantee of how ”far from
the optimal we are in the worst case. This led us to define the concept of Approximation
ratio, which is defined as c(n) = max{ALG/OPT,OPT/ALG} where ALG is cost of the
solution given by our algorithm, and OPT is the optimal solution. Using this definition,
the approximation ratio is > 1 for both minimization and maximization problems. So if we
prove that c(n) ≤ f(n) for any input of the algorithm, then we have a f(n)-approximation
to the problem.

Usually, the traditional setting in algorithms is that we are given the input from the
beginning, and then try to find a solution, or approximate it as we said before. However,
this is not the case in real world problems, where parts of information of the input, or
even the whole input is not available from the beginning. Consider for example that we
want to divide some data into groups, according to their similarity. This could be medical
data or consumer preferences for example. It is clear that in any context, algorithms for
these problems will never have the whole input, but we should potentially make decisions
based on the input given until now. Therefore, it comes as a natural ”extension” of almost
every problem to be considered in such an uncertain environment. This setting entails
many different approaches on algorithms (online, incremental, or dynamic, streaming)
depending on how we can change the solution in each step, or if we care about space or
time complexity.

9



10 CHAPTER 2. INTRODUCTION

The tools and techniques used in the analysis of online and incremental algorithms,
which are the ones we will discuss in this thesis, are very similar to those used in ap-
proximation algorithms. This happens because competitive analysis, which will be used
throughout this thesis to measure the performance of an online algorithm, is essentially
an extension of the notion of the approximation ratio to online algorithms. The Com-
petitive ratio is the measure of performance for an online algorithm and is defined as:
c = CA(σ)/COPT (σ) where σ is an input sequence to the online algorithm, A is the solu-
tion given by our algorithm and OPT is the optimal offline solution. So if we prove that
c ≤ a, we have an a-competitive algorithm.

In all these settings, we need a way to formally define these problems, in order to try
to find mathematical guarantees for competitiveness or the approximation ratio. To do
this we use Linear Programming, perhaps one of the most powerful tools in solving combi-
natorial optimization problems. A typical linear program consists of an objective function
to be minimized, of the form cTx and constraints Ax ≥ b, x ≥ 0. LP tells us that this
comes as a pair with a dual maximization problem: max{bT y|AT y ≤ c,y ≥ 0}. The main
concept of linear programming, that makes it so powerful, is that of duality. Duality tells
us that the two aforementioned problems have the same optimal solution, and using this
we can actually obtain guarantees of optimality for either the primal or the dual problem.
Except for this, complementary slackness, which is derived from duality, gives us the con-
nections between x and the dual constraints and vice versa, so exploiting this structure of
the primal and dual programs we can find approximations to problems, without actually
solving the LP. This is what the quite elegant primal-dual method essentially does: by
maintaining a dual feasible solution, and satisfying approximate complementary slackness
conditions, we get the approximation guarantee. Other typical techniques involve round-
ing, where we first solve the LP, and then try to round the solution to an integer one,
either deterministically or using randomization.

Facility Location
Facility Location is a very naturally motivated problem, and this is why it has been studied
in so many settings. For example, imagine you are the mayor of a city which has no fire
stations yet (a dangerous city to live in!). As a good mayor, you want the residents to feel
safe, so you want to build fire stations throughout the city, in places where in case of fire,
there will be a fire station relatively close. Of course we could just build a fire station in
each road, but unfortunately the city’s budget is limited. So, there is a cost to open a fire
station, and the ”sum of distances” metric is a very natural way to measure how good a
placement of the station will be. Since the city does not want to pay much, we want to
minimize the opening costs, and the sum of distances from the closest station.

Formally, we are given a set of potential facility locations F , a set of clients C, a
function d : F × C → R (usually a metric) and opening costs fi for each i ∈ F . We

10
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want to open a subset of facilities F ′ ⊆ F (by paying an opening cost for each one) and
connect every client to an open facility in such a way as to minimize the sum of opening
and connection costs: minimize

∑
i∈F ′ fi +

∑
i∈F ′,j∈C dij .

This problem however proved to be NP -Hard and in [2] Guha and Khuller showed a
lower bound of 1.463 on the approximation ratio, assuming NP ̸∈DTIME[nO(log logn)].

Given the hardness of the problem, computer scientists tried to tackle it using many
different approaches, but perhaps the more interesting ones - giving the most elegant
algorithms- are those using linear programming. Linear programs provide a very pow-
erful tool in optimization, mainly because of strong duality. Duality gives us far better
understanding of the variables and the constraints of the problem, especially when the
dual has a nice intuitive interpretation, as in the case of Facility Location and generally
covering/packing problems. This information the dual gives us, can be used to guide us
in the search for the solution, as for example in the primal - dual schema which utilizes
the concept of complementary slackness - a direct implication of strong duality.

Currently the best approximation algorithm for Uncapacitated Facility Location gives
a 1.488-approximation, proved by Li in [1], using a modification of Byrka’s 1.5 - approx-
imation algorithm in [8]. However, since the proof of the lower bound in 1998, many
different approaches were tried on the problem, giving different approximations ; among
them were LP rounding ([9], [10], [11]), the primal dual schema ([12]), greedy approaches
some using the factor revealing LP ([13], [14]) or a combination of some of the above ([15],
[2], [16]). Some of these techniques are presented in chapter 4 where we discuss two simple
LP rounding algorithms, and most importantly the first primal-dual algorithm for Facility
Location given by Jain and Vazirani.

As we discussed previously though, it is not always a realistic scenario that we know
all the clients/demands right from the beginning. Consider the fire stations problem ;
new residents arrive as the city grows, and they also want to be close to a fire station.
Towards this direction, Meyerson [4] first introduced the online Facility Location, where
the demands arrive one by one, and we must decide whether to assign them to an already
open facility, or open a new one, giving a quite simple and intuitive randomized algorithm.
Since then, there is much work done in this problem, most notably Fotakis in [3] who gave
a lower bound of logn

log logn , showed [5] that Meyerson’s algorithm is asymptotically optimal,
achieving this lower bound, and gave a more complicated optimal deterministic algorithm.
A simpler and more intuitive deterministic algorithm, giving a logarithmic competitive
ratio was given in [6]. The interesting element of this algorithm is that it defines the
notion of the potential of an area, which essentially quantifies how much an area will
“benefit” from the opening of a facility there. The interesting thing is that this is exactly
what the LP of the problem tells us should happen; the potential should not exceed the
facility cost in the area. Another interesting algorithm, again using the notion of the
potential, was given by Anagnostopoulos et al. [7], achieving a logarithmic competitive
ratio. In this case, they gave an algorithm for the plane, implicitly using binary search,
to find the best facility position, using the potential as a guide.

11
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It is worth noting that the optimal deterministic algorithm of [3] is quite complicated
to analyze, since it needs to exploit the potential and the ”area” around demands in a non
trivial way, compared to [7] and [6], but on the other hand, it is very easy and intuitive
to get an optimal algorithm using randomization, as in [4], where the analysis is also
straightforward.

Sum Radii
Imagine now, you are the Dean of an anonymous university, where there are many labs
and teaching rooms, where we want people sitting there to have access to the university’s
wifi. Therefore, we need to be sure, that the wifi repeaters, that consume different power
each and have analogously different range, will be placed in the best possible positions,
so that everyone will have access. Since (as always) the university’s budget is limited, we
cannot give everyone a wifi repeater of their own, so we need to place different ones on
different places throughout the university campus, to satisfy everyone, while paying the
less possible.

Formally in this problem, we are given a set of clients C, and a function d : C×C → R.
We want to open k clusters from the set C, lets say C ′, in order to minimize the sum of
cluster radii, where the radius of a cluster K is ri = maxi∈C′,j∈C\C′d(i, j). So we want to
minimize

∑
i∈C′(ri).

For this problem, in [17] they give a log(n/k) using at most 10k clusters, while in the
more recent [18] they first find a 3 approximation for the problem without restriction to
the number of clusters, and a 3.504 approximation randomized algorithm using at most k
clusters.

As we discussed in the Facility Location problem before, knowing all the demands
from the beginning is not usually the case in the real world. Consider the university wifi
problem from before, when the university grows, and new buildings and labs are built, we
need to cover them too with wifi (or the researchers there will get very angry with the
Dean).

In this online setting, we usually consider the Facility Location-like objective, where
we drop the ”at most k clusters” restriction and we want to minimize

∑
i∈C′(f + ri),

where f is an ”opening” cost for the center of each cluster. The demands arrive one by
one, and must be irrevocably assigned to a cluster or open a new facility with a radius
fixed at opening time.

In this direction, Fotakis and Koutris in [19] gave a primal-dual deterministic and
a randomized algorithm that both give logarithmic competitive ratio, while proving a
logarithmic lower bound on deterministic algorithms and a log logn lower bound on ran-
domized algorithms. In a slightly different setting, where we are allowed to make changes
to the current solution i.e. close an open facility, or ”merge” two opened facilities, Fotakis
in [20] gave a constant-competitive algorithm again using the notion of potential (as in

12
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[3]) to open facilities, but ensuring with the merge rule, that essentially the location of
the facility converges to the optimal one.

In the incremental setting, where we also have the ”at most k clusters” restriction,
Charikar and Panigrahy in [18] gave a deterministic algorithm which uses the primal dual
schema and achieves a 160-approximation using at most 4k clusters.

Other Related Problems

There are many problems closely related to Facility Location and Sum Radii. A problem
very close to Uncapacitated Facility Location is the k-median problem, where the objective
is to divide the data into k clusters in order to minimize the sum of connection costs.
In this direction, in the offline metric setting, Lin and Vitter in [21] proved a 2(1 +
1/ϵ)-approximation using at most (1 + ϵ) centers. Later, Charikar et al in [22] gave
a 6 2/3-approximation, and Jain-Vazirani in [12] showed a 6-approximation for the k-
median problem using as a building block a 3 approximation algorithm for the Facility
Location problem, proved earlier in the paper. The problem was first introduced to the
online setting by Mettu and Plaxton [23] who also gave a constant-competitive algorithm
using a recursively greedy criterion, in order to avoid fixing the location of the center
too early (and yield an unbounded competitive ratio). In the incremental setting, where
we can also merge clusters, Charikar and Panigrahy [18] provide a constant competitive
algorithm using O(k) centers, but assuming that we know the number of demands from
the beginning. It is worth noting, that in this paper the technique used is the primal-dual,
which essentially tries using binary search to find the best ”size” of the clusters. Later,
Fotakis [20] proved a constant competitive algorithm using again O(k) enters, without this
assumption.

Another variant, closer to Sum Radii, is the k-center problem, where we want to min-
imize the maximum radius of a cluster. Gonzalez in [24] proved a greedy 2-approximation
algorithm, while more recently, Badoiu et al. in [25] showed a (1 + ϵ)-approximation for
the Euclidean space. Motivated by problems in information retrieval, Charikar et al. [26]
defined the incremental version of this problem where demands arrive online, but we can
also merge two existing clusters. They provide various deterministic and randomized al-
gorithms, achieving constant approximation ratios to the problem. This is very closely
related to clustering algorithms, especially agglomerative clustering, where we start with
many points, and try to merge them into k clusters (see [27] for a survey on hierarchical
clustering algorithms).

13
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Radii Facility Location
Imagine now, that in a PC lab we wanted to cover with wifi repeaters, we also want an
ethernet cable to reach every seat. This would mean that apart from the wifi repeater,
which we will pay according to how much power it consumes, also the cable should be
paid.

This new variant, which we call Radii Facility Location (Radii FL for short), addresses
exactly that problem in the online setting; demands arrive one by one, and must be
irrevocably assigned to an already open facility, which they can only do if the are inside
its radius, or decide to open a new facility with a radius fixed at opening time. Formally,
we are given a set of points C and a distance function d : C × C → R. We need to open
a set F ′ ⊆ C of facilities, with radii ri, i ∈ F ′, and assign each client to a facility in F ′.
The objective in this case is to minimize

∑
i∈F ′(f + ri) +

∑
j∈C,i∈F ′ f3d(i, j). f3 is a scale

factor that essentially says how expensive is the connection cost.
This variant is the main contribution of this thesis, and is presented in more detail

in chapter 6. Specifically, we explain the role of the scale factor for our problem, the
reasons why it is necessary and how the problem changes for different values of it; when
f3 = 0 for example, it is easy to see that the problem reduces to Sum Radii, while for
large values of f3, when the assignment cost is more ”expensive”, the problem essentially
becomes Facility Location. Following this, we design a randomized algorithm, naturally
depending on this factor, by combining the two simple randomized algorithms for Sum
Radii and Facility Location presented in chapter 5 of the thesis. This is quite natural,
since the problem changes from Facility Location to Sum Radii for different values of f3,
so we just needed to incorporate this in our combination. Since the algorithm depends
on f3, we also expect such dependency to exist in the competitive ratio, which naturally
does; we prove the competitive ratio to be max{ logn

log logn ,min{logn,M}} where f3 = 1/2M

for simplicity. This shows clearly that for small values of f3 the logn factor coming from
Sum Radii dominates the competitive ratio, while for larger values of f3 the logn

log logn factor
originating from the Facility Location problem is larger. This essentially tell us where the
difficulty of the problem lies in each case.

Chapters Overview
In chapter 3 we give a brief introduction to the tools we will use later in the thesis in the
analysis and design of the algorithms. The basic one is linear programming, mainly du-
ality and complementary slackness, presented in section 3.1. After this, we introduce the
basic notions of approximation algorithms and competitive analysis, used for the online
algorithms.

In chapter 4 we introduce the reader to the classic offline Facility Location problem

14
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and the previous work done in this direction. We also give three algorithms, each one us-
ing a different design technique used generally in approximation algorithms; deterministic
rounding, randomized rounding and primal - dual schema.

In chapter 5, we formulate the online version of Facility Location alongside the Sum
Radii variants and present in more detail some of the most important previous work done
in terms of algorithms and lower bounds for these problems.

Finally in chapter 6 where we formally define the Radii Facility Location variant,
and discuss how the scale factor f3 affects the optimal solution. Following this, we give
an algorithm, based on this scale factor and discuss how the competitive ratio of this
algorithm changes for different values of f3.
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Chapter 3

Preliminaries

In this section we present some basic tools that are used in the analysis and design of the
algorithms presented later in this thesis. We start by introducing the basic concepts of
Linear Programming that are used to formulate and solve algorithmic problems. In section
3.2 we present the basic concepts used in approximation algorithms, while in section 3.3
we introduce the reader to online algorithms and to the well known problems in the area.
Finally, in 3.4 we define some basic facts about metric spaces and Hierarchically Well
Separated trees, in order to use them later in the thesis.

3.1 Linear Programming
A linear program is the problem of optimizing a linear objective function subject to in-
equality or equality constraints. The standard form LP is shown below. Typically this is
the called the Primal and comes as a pair with a Dual, which is shown in table 3.2.

minimize
n∑

i=1

cixi

subject to
n∑

i=1

aijxi ≥ bj ∀j ∈ [m]

xi ≥ 0 ∀i ∈ [n]

Table 3.1: Canonical form of Primal problem (P)

The intersection of the constraints of the program above, define a polyhedron in Rn.
For a point x ∈ Rn to be called a feasible solution, x needs to satisfy all the constraints of
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the problem. If additionally x∗ = min cTx, then x∗ is called an optimal solution. If there
is at least one x that is a feasible solution, then the LP is feasible.

maximize
m∑
j=1

bjyj

subject to
m∑
j=1

aijyj ≤ ci ∀i ∈ [n]

yj ≥ 0 ∀j ∈ [m]

Table 3.2: Canonical form of Dual problem (D)

There are many algorithms for solving linear programs. The first one was proposed by
Dantzig in 1947, which is exponential in the worst case. In 1980 however, LP was proved
to be in P [28] by Khachiyan who proposed the ellipsoid algorithm. And finally, in 1984
Karmarkar [29] introduced another poly-time algorithm, which is better in practice than
ellipsoid.

3.1.1 Duality
Duality is maybe the most important concept in Linear Programming since it allows us
to give proof of optimality for a solution. Weak duality says essentially that the dual
maximization problem is a lower bound for the primal minimization problem. Strong
duality, says that the optimal solution is the same for both primal and dual problems, so
they are essentially trying to reach the same point, from different directions.

Theorem 3.1.1 (Weak Duality). Let x, y be feasible solutions for the primal and the dual

respectively. Then:
n∑

i=1

cixi ≥
m∑
j=1

bjyj

Theorem 3.1.2 (Strong Duality). The primal is feasible iff the dual has a finite optimal

solution. In this case:
n∑

i=1

cixi =
m∑
j=1

bjyj

Weak duality is easily proved using the fact that x, y are primal and dual feasible
so they satisfy the respective constraints, while for the strong duality we need Farkas’
Lemma.
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3.1.2 Complementary Slackness
Another important concept, used heavily in the design of algorithms, especially in the
primal-dual schema is that of complementary slackness. This reveals the relation between
the variables of the primal and the dual constraints and vice versa. Specifically, it says
that when a primal variable is strictly greater than zero, the respective dual constraint
must be tight- meaning it is satisfied with equality.

Definition 3.1.1 (Complementary slackness). x∗ and y∗ are optimal solutions for (P)
and (D) respectively iff:

• Primal CS: x∗i
( m∑

j=1

aijy
∗
i − ci

)
= 0, ∀i ∈ [n]

• Dual CS: y∗i
( m∑

j=1

aijx
∗
j − bj

)
= 0, ∀j ∈ [m]

We could say, that each dual variable that corresponds to a primal constraint, indicates
how much this constraint ”matters” to the solution. In an optimal solution x∗ there are
n constraints satisfied with equality, since x∗ is a vertex of the polytope. This essentially
says, that if a constraint ”matters” for the solution, i.e. has positive ”weight” it should be
tight, (satisfied with equality).

There are many cases where we relax the complementary slackness conditions in order
to prove an approximation factor. Specifically we have the approximate primal and dual
complementary slackness conditions:

• Primal: if xi > 0 then for α ≥ 1, ∀i ≥ 0 we have ci
α ≤

m∑
j=1

aijyj ≤ ci

• Dual: if yj > 0 then for β ≥ 1, ∀j ≥ 0 we have bi ≤
n∑

i=1

aijxj ≤ β · bj

It is easy to see that if we have two solutions to the primal and dual programs
that satisfy the approximate complementary slackness conditions, we get

∑n
i=1 cixi ≤

αβ
∑m

j=1 bjyj . This means that if we find primal and dual solutions that satisfy approxi-
mate complementary slackness, then we have a αβ-approximation to the optimal.

3.1.3 Integer Programming
Linear programs usually find fractional solutions, meaning that variables xi ∈ R. When
modeling real life problems, this may not exactly reflect reality, and usually we need
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the variables to be natural numbers. Similarly to 3.1, if we substitute the non negativity
constraints with xi ∈ Zn+ we get an integer program. Typically, the variables are xi ∈ {0, 1}
since they represent a yes/no decision. For example in the Set Cover problem, we define
variables: xi = 1 iff we choose set i in the final solution and xi = 0 otherwise.

However, since Integer Programming is NP -Hard, we usually get the LP of table 3.1
as the relaxation of the problem, and solve a linear program instead of an integer one.
We should be careful when we relax a program though, since the fractional optimal will
be less than the integer optimal. This is easy to see, since the fractional allows us more
freedom in the choice of the variables. This is quantified as the integrality gap between
the Integer and the Linear programs. Formally integrality gap is defined as the ratio
Frac/Int for minimization problems, where Int and Frac are the optimal Integer and
fractional solutions respectively.

For a brief introduction to Linear Programming and the basic algorithms see [30] and
for a more in depth view with some applications to problems see [31].

3.2 Approximation Algorithms
Sometimes we are required to find a minimum or maximum solution to a problem - in
short to solve an optimization problem- for which there is no fast algorithm known to be
good in any practical setting. These problems are usually NP -Complete or even NP -
Hard, which means that possibly we will never be able to find an algorithm that runs in
less than exponential time. In cases when the instances are small, exponential time may
not be a problem, or sometimes there are special cases of a problem, that arise from real
life and are actually easy to solve, these usually do not occur however. This leads us to
the natural thought: maybe if we relax the ”exact solution” constraint, we could obtain
algorithms that run in reasonable time to be useful to applications since many real life
problems are NP -Hard.

The target of the design of an approximation algorithm, is to give a mathematical guar-
antee of how close the approximate solution will be to the optimal for each instance. More
specifically, we give the definition of a c approximate algorithm and of the approximation
ratio, which is the central concept in the field.

Definition 3.2.1. A c(n)-approximation algorithm for an optimization problem is a
polynomial- time algorithm that for all instances of the problem produces a solution whose
value is within a factor of c(n) of the value of an optimal solution, where n is the size of
the input.

The factor c(n) is essentially the performance guarantee of the algorithm, it is called
the approximation ratio and is usually defined to be c ≥ 1.
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Therefore, for a minimization problem we have that ALG ≤ c(n) · OPT and for a
maximization problem ALG ≥ c(n) · OPT where ALG and OPT are the values of the
solutions of our algorithm and the optimal solution respectively.

3.2.1 Approximation Schemes
There are some problems, which we can approximate as much as we want, by ”paying”
more in computation time the closer we get to the optimal. These algorithms are called
Approximation Schemes and require as input, except for the input of the problem, a
number ϵ > 0 which tells the algorithm how close we want to get to the optimal solution-
essentially the approximation ratio we require the algorithm to have.

In such algorithms, the running time is polynomial in n, but the running time involves
the parameter ϵ, for example O(n1/ϵ), and they are called Polynomial Time Approximation
Schemes or PTAS. In the case where the running time is also polynomial in ϵ apart from
n the algorithm is called Fully Polynomial Time Approximation Scheme or FPTAS; for
example an algorithm running in O((1/ϵ)3n4) would be an FPTAS.

For anNP -Hard problem, an approximation scheme is the best we can hope for. In the
process of designing approximation algorithms, we actually achieve a better understanding
of the real difficulty of a problem ; set cover for example, is even hard to approximate
within a constant factor: we cannot find a better than c logn approximation algorithm,
for c < 1/4 unless NP ⊆DTIME(npoly logn) [32].

For an excellent introduction to approximation algorithms see [33], or the slightly more
advanced [34]. For an even more advanced approach see [35].

3.3 Online Algorithms
The traditional approach on algorithm design is to assume that the entire input is known
to the algorithm beforehand. This is not realistic for many practical settings, where we
learn parts of the input while the algorithm is running, and we should make decisions
on the fly, while new data arrive. We present some examples of real life problems that
require this approach, shown in [36]. In section 3.3.3 we present some examples of online
algorithms in more detail. For a more detailed introduction to this area, see the book of
Borodin and El-Yaviv [37].

• Data Structures: In this case, we have a data structure, for example a tree, on which
we perform some operations such as insertion, search, deletion etc, which we need to
be done fast. This is used in databases for example, where the data we will search
or insert is not known in advance. An example for this is the list update problem.
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• Scheduling: Job scheduling on processors is also a well known problem. The jobs
arrive one by one, so their number and duration is not known beforehand, and
we must decide when to schedule them. In some settings, the number of available
machines/processors is different in each step - when a machine breaks down and
cannot service any job.

• Networks: In networks many times, we need to maintain a set of open servers in
order to service a set of clients/nodes of the network. We need to service every
client the moment he arrives, by paying something towards maintaining the servers
open and towards the power needed to service a client. In this case, there can be
uncertainty in the number and location of clients that arrive or the servers that are
capable of opening at each given time.

• Resource management in Operating Systems: Paging is a classic problem in operat-
ing systems. Usually there are two types of memory, cache memory, which is small
in capacity, but fast, and Random Access Memory which is slower but with larger
capacity. It is easier to retrieve data from cache memory than RAM, so when the
user requests something, and it is not in the cache, the operating system must decide
which data to evict from the cache, in order to be faster in the future. Obviously,
this depends on the user’s decision on which data to request, which cannot be known
in advance.

In order to analyze the algorithms running on such settings, Sleator and Tarjan in
[38] introduced the notion of competitive analysis where the performance of the online
algorithm is compared to that of the optimal offline i.e. the algorithm that knew the en-
tire input data from the beginning. Competitive analysis is in a sense worst-case analysis
for online algorithms since we keep the worst possible output of our algorithm compared
to the best possible offline algorithm’s output. Additionally we assume total absence of
information regarding the input data ; we could assume some distribution on the input
data, which is something that would possibly improve the performance of our algorithm,
but can be crude sometimes and not exactly reflect the reality. A better way, in order to
get more accurate bounds on the algorithms is to use amortized analysis, introduced by
Tarjan in [39]. In this case we essentially analyze more carefully the decisions made by
the algorithm and how bad they can actually be ; for example a very bad decision now,
may not allow us other bad decisions later.

Formally, an online algorithmA is presented with a request sequence σ = σ(1), σ(2), . . . ,
σ(m). The requests σ(t), 1 ≤ t ≤ m must be served in order of occurrence. When serving
σ(t) the algorithm does not know σ(t′), t′ > t.

Definition 3.3.1 (Competitiveness). Let CA(σ) denote the cost of the algorithm and
COPT (σ) the cost of the optimal offline algorithm. Algorithm A is called c-competitive if
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there exists a constant a such that CA(σ) ≤ c · COPT (σ) + a. If a ≤ 0 we say that A is
strictly c-competitive.

In the case when the algorithm is randomized, we define the competitive ratio against
the oblivious adversary, and the only difference in the definition is that instead of CA(σ)

we have the expected cost: E[CA(σ)].
Note that the competitive ratio is essentially an extension of the approximation ratio

for offline algorithms ; a strictly c competitive algorithm is essentially a c approximation
algorithm with the restriction that the algorithm must make decisions online.

Typically, in online algorithms the decisions made are irrevocable, or in some cases we
are allowed constant number of changes. For example when we decide to open a server to
service some demands, we cannot close it in later time. However there are many different
approaches to uncertainty in algorithms. Another popular one is dynamic algorithms,
where we are mostly concerned with the running time of the algorithm. On the other
hand, in streaming algorithms, we place a limit on the space the algorithm uses.

3.3.1 Adversary Models
The competitive ratio of any online algorithm is defined with respect to an adversary.
There are three main adversary models, depending on how much freedom the adversary
has when he generates the request sequence, ranging from the oblivious adversary -the
weakest one- to the adaptive offline - the strongest one.

• Oblivious Adversary: This type of adversary even though he knows the description
of the online algorithm, must fix the request sequence before the algorithm starts
to process demands.

• Adaptive Online Adversary: In this case, the adversary generates the next request
in each step, after having seen the algorithm’s decisions in all the previous steps,
and must serve it immediately.

• Adaptive Offline Adversary: This adversary knows everything, every decision of the
algorithm, even the random number generator. This adversary is so strong that
randomization does not help against him.

It is easy to see that the oblivious and the adaptive online adversary are equivalent
for any deterministic algorithm, since the algorithm’s answers are completely predictable.
The following two theorems proved in [40] show the relation between the different types
of adversaries.

Theorem 3.3.1. If there is a randomized algorithm that is α-competitive against any
adaptive offline adversary, then there also exists an α-competitive deterministic algorithm
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Theorem 3.3.2. If G is a c-competitive randomized algorithm against any adaptive on-
line adversary, and there is a randomized d-competitive algorithm against any oblivious
adversary, then G is a randomized (c ·d)-competitive algorithm against any adaptive offline
adversary.

3.3.2 Lower Bounds: Yao’s Principle
Yao in [41] studied the expected running time of algorithms from two different point of
views, namely the distributional and the randomized approach. In the first one, some
distribution is assumed for the input data, and we try to find fast algorithms under this
assumption. In the second approach, we make no assumptions for the input, but we allow
the algorithm to make random decisions. This led to the definitions of two different com-
plexities: distributional and randomized for a problem P, whose definitions are presented
below.

Let R be a randomized algorithm, and E[cost(R, x)] is the expected cost paid by algorithm
R when the input is x. Randomized complexity is defined as follows:

Definition 3.3.2 (Randomized complexity). F1(P) = inf
R

max
x
E[cost(R, x)]

This essentially is the best randomized algorithm on its worst input. As for the dis-
tributional complexity, let D be an input distribution, A a deterministic algorithm and
cost(A,D) the expected cost paid by the algorithm for input coming from distribution D.
The distributional complexity is defined as follows:

Definition 3.3.3 (Distributional complexity). F2(P) = sup
D

min
A∈A

cost(A,D)

This is essentially the best deterministic algorithm for a fixed distribution. Yao’s principle
says that these two complexities are equivalent.

Theorem 3.3.3 (Yao’s Principle). F1(P) = F2(P)

So, for any specific randomized algorithm R we have that:

max
x
E[cost(R, x)] ≥ inf

R
max
x
E[cost(R, x)]⇒ max

x
E[cost(R, x)] ≥ sup

D
min
A∈A

cost(A,D)

So, when we want to derive a lower bound on our randomized algorithm, we just pick a
”difficult” distribution, and show that any deterministic algorithm A has a high cost. This
technique is used in [3] to prove the lower bound on online Facility Location, as we will
see in a later section.
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3.3.3 Examples of Online Algorithms
In this section, we will briefly mention two representative online problems. The list up-
dating problem, which was one of the first online problems to be defined, and the k-server
problem where some interesting results were shown.

3.3.3.1 Data Structures - The List Update Problem
The List Update problem was historically one of the first online problems to be defined.
It was first proposed in [38] alongside the notion of competitive ratio. In this problem, we
have a linked list, which we can only traverse linearly starting from the first one. A series
of demands arrive, where each one requires to access an item in the list.

The total cost paid for each request, is the number of elements in the list we traverse
in order to find the item specified by the demand. After serving the request, we can move
the item in any position earlier in the list, with no extra cost. Additionally, we can swap
two items on the list, any time, with a cost of 1.

For this problem there are some very simple and intuitive deterministic algorithms ;
Move To Front where every accessed item is moved to the front of the list, and Transpose
where we just swap the accessed item with the previous on the list. We should note here,
that the simplest idea i.e. the Move to Front algorithm, is 2-competitive which is also the
lower bound for deterministic algorithms for this problem.

The lower bound for randomized algorithms for this problem is 1.5 proved in [42]. In
[43] Albers et al. provided a 1.6−competitive randomized algorithm, which is a combina-
tion of two randomized algorithms: BIT and TIMESTAMP. This is the best one known
until now.

3.3.3.2 The k-server Problem
k server is perhaps the most famous online problem. It was first formulated by Manasse
and McGeoch in [44]. Specifically, we have a graph with n nodes, and distances dij between
edges that satisfy the triangle inequality. The graph G and the number of servers k is
given to us on the beginning while requests arrive online. We can see the graph as a metric
space. Each request is a node of the graph and to service it there should be a server one
that node. If we need to transport one to service the demand, we will pay the distance
traveled. Note that we can move more than one server, and in this case we will pay the
sum of the distances covered. Each demand should become satisfied on arrival time, before
any of the next demands are satisfied.

Manasse and McGeoch found a lower bound of k for deterministic algorithms on sym-
metric metric spaces, when they first introduced the problem in [44]. Later, Koutsoupias
and Papadimitriou in [45] came close to this lower bound by proving 2(k − 1) competi-
tiveness using the work of Chrobak and Larmore [46] on the work-function algorithm.
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The lower bound for randomized algorithm was shown in [47] to be Ω(logn). In a
very recent work [48] which is yet to be published, Lee found an O((logn)6)-competitive
randomized algorithm for the k-server problem on any metric space, improving thus Pa-
padimitriou’s and Koutsoupias’ previous result.

At this point, it is worth mentioning theMetrical Task Systems; aMetrical Task System
is a pair (S, d): a set of states S and a metric d on the elements of S. The input to the
algorithm is a sequence of tasks where each one needs to be processed. The algorithm each
time, pays the transition from the previous state and the processing cost. Metrical Task
Systems were introduced by Borodin et al. in [49], and generalize many online problems,
such as k-server, paging and the list updating problem. In this work, Borodin et al. also
proved a tight bound 2n− 1 for deterministic online algorithms’ competitive ratio, where
n is the number of states.

3.4 Metric Spaces and HSTs
The more interesting variants of Facility location are usually defined in a metric space. We
will present the basic definitions and some properties along with a construction in metric
spaces called Hierarchically Well Separated tree that we will use in later section for the
construction of lower bounds.

Definition 3.4.1 (Metric Space). Let X be a set and d a real function d:X × X → R.
Then d is called a metric on X iff ∀a, b, c ∈ X:

• positive property d(a, b) ≥ 0, with equality iff a = b

• symmetric property d(a, b) = d(b, a)

• triangle inequality d(a, b) ≤ d(b, c) + d(c, b)

We say that d(a, b) is the distance between a and b with respect to the metric d.

We usually write (X, d) is a metric space to specify both the set of points and the metric
on it.

Next, we define k-Hierarchically Well Separated Trees - HSTs for short. They are
simply complete k-ary trees of height h, such that the distance from the root to its children
is D and on every path from root to leaf the distance drops by a factor of m on every
level. So the distance from node v of level j to its children is D/mj . If Tv is a subtree
rooted at v, every point z ∈ Tv satisfies these two properties:

• For u ∈ Tv: d(z, u) ≤
h∑

i=j

D

mi
=

1

mj−1(m− 1)
≈ D

mj
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• For all u ̸∈ Tv: d(z, u) ≥ D
mj−1

level 0− root

level 1

level h− 1

1

D
m

D

…

…

…

Figure 3.1: A binary HST
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Chapter 4

Facility Location

In this chapter, we present three algorithms for offline Facility Location, each one using a
different technique based on linear programming. These three techniques are widely used
to design approximation algorithms for many different problems. After formulating the
problem as an LP, in sections 4.2 and 4.3 we see deterministic and randomized rounding
as presented in [33], while in section 4.4 we discuss the quite elegant primal - dual method
through an algorithm first presented in [12] which is the technique we will mostly use in
the subsequent chapters, for online Facility Location algorithms.

We discuss the simplest variant of Facility Location, namely the Uncapacitated Facility
Location. We are given two sets of points: F -the set of potential facilities, and D-the set
of demands/clients. Additionally ∀i ∈ F and ∀j ∈ D there are numbers cij ≥ 0 that
represent the cost of connecting client i to facility j and ∀i ∈ F , we are given a number
fi which is the cost of opening a facility at point i. The goal is to choose a set F ′ ⊆ F
of facilities to open, and connect every client to an open facility while trying to minimize
the total opening cost and assignment cost, namely

∑
i∈F ′ fi +

∑
j∈D mini∈F ′ cij . It is

important to note that in this problem, cij is a metric. There is also the non-metric
variant of this problem (non-metric Facility Location).

4.1 LP Formulation

We can write the Facility Location problem as an integer program with variables yi, xij ∈
{0, 1} where i ∈ F, j ∈ D. yi = 1 iff facility i is open, and xij = 1 iff client j is connected
to facility i else they are 0. For the reasons explained in section 3.1.3, we will work with
the LP relaxation of the problem and its dual, shown in table 4.1.
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minimize
∑
i

yifi +
∑
i,j

xijcij maximize
∑
j

aj

subject to
∑
i

xij ≥ 1 ,∀j subject to aj − bij ≤ cij , ∀j, i

xij ≤ yi ,∀i, j
∑
j

bij ≤ fi , ∀i

xij ≥ 0 aj ≥ 0

yi ≥ 0 bij ≥ 0

Table 4.1: LP formulation of the problem, i ∈ F and j ∈ C for the above

4.2 Deterministic Rounding
In this section we present a deterministic rounding algorithm for Facility Location. Say we
have formulated the linear relaxation of the problem, and solved it. This will almost always
give us a fractional solution. But what does it mean for a facility to be 0.3 open? In de-
terministic rounding, we try to recover a solution to the problem that makes sense for our
setting, i.e. the variables should be integers. Since the fractional solution will be less than
the integer, we want to round in a way such that the additional cost will not be very much.

We define the neighborhood for each client j to be: N(j) = {i ∈ F : xij > 0}. This
is essentially the facilities that client j is fractionally connected to in the optimal LP so-
lution. We also define the augmented neighborhood of each client j: N2(j) = {l ∈ D :
∃i ∈ N(j) ∧ i ∈ N(l)}, which is essentially the clients that are connected to a facility in
j’s neighborhood.

Algorithm 2: Deterministic rounding for FL
Data: Primal and dual optimal solutions (x∗, y∗), (a∗, b∗)

1 temp← D;
2 k ← 0;
3 while temp ̸= ∅ do
4 k ← k + 1;
5 jk = argminj∈temp{a∗j};
6 ik = argmini∈N(jk)fi;
7 open ik;
8 assign jk and {j ∈ N2(jk) : j is unassigned}, to ik;
9 temp← temp− {jk} −N2(jk);
10 end
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Note that the neighborhoods form a partition of the facilities, because in each round,
we assign every client l ∈ N2(j) that is unassigned, and therefore no facility of N(jk) can
be chosen in a subsequent round.
Theorem 4.2.1. This algorithm achieves an approximation factor of 4 for Uncapacitated
Facility Location.
Lemma 4.2.2. ∑k fik ≤

∑
i∈F fiy

∗
i ≤ OPT

Proof. We bound fik and then sum for all k.

fik = fik
∑

i∈N(jk)

x∗ijk ≤
∑

i∈N(jk)

fix
∗
ij ≤

∑
i∈N(jk)

y∗i fi

Where the equality is due to
∑

i∈N(jk)
x∗ijk = 1, the inequality follows from the fact that

i = argmink∈Fk
fk, and the second inequality follows from the second primal constraint:

x∗ijk ≤ y∗i
Summing up for all k (i.e. all the facilities we open) we get:

∑
k

fik ≤
∑
k

∑
i∈N(jk)

y∗i fi =
∑
i∈F ′

y∗i fi ≤
∑
i∈F

y∗i fi

Where the equality is due to the fact that N(jk) is a partition of F ′. ■

Now we are ready to prove the algorithm is 4-approximation.

Proof of theorem 4.2.1. Fix an iteration of the algorithm, and let i = ik and j = jk. The
cost of assigning j to i is cij ≤ a∗j . This follows from the fact that x∗ij > 0 and then using
complementary slackness and bij > 0. We can bound the cost of assigning an unassigned
client l ∈ N2(j) to i by:

cil ≤ cij + chj + chl ≤ a∗j + a∗j + a∗l (4.1)
where h ∈ N(j). Since we selected j to be j = argminj∈tempa

∗
j , we get that aj ≤ al,

thus cil ≤ 3a∗l So, we get for the assignment cost
∑

xijcij ≤ 3
∑

j∈D a∗j ≤ 3OPT following
from weak duality. Finally, using lemma 4.2.2 we get that we are within 4 of OPT .

■

This algorithm contains implicitly a greedy idea in the way it does the rounding. It is
natural to assume that when xij > 0 we should probably consider opening this facility and
connect j to it, since it is so in the fractional optimal solution, but if we did this blindly
for all clients, we could end up paying a very large facility opening cost. This is where the
greedy comes in ; we should open the cheapest facility we can, in j’s neighborhood, and
then use triangle inequality to bound the assignment cost of the N2 neighbors of i instead
of opening a new facility for every client.
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4.3 Randomized Rounding
In this section we show a randomized rounding algorithm for the Facility Location prob-
lem, which is a modification of the previous deterministic rounding algorithm. In this
case, the rounding involves some random variable, hence the name.

In this algorithm, we do not choose deterministically which facility ik we will open for
the client jk, but we choose the facility according to the distribution xij instead (note that∑

i xij = 1). This will improve the previous analysis since, generally, in the deterministic
setting we need to make worst case assumptions in order to find upper bounds.

We define C∗
j =

∑
i∈F x∗ijcij - the cost incurred by client j in the fractional LP solution.

Algorithm 3: Randomized rounding for FL
Data: Primal and dual optimal solutions (x∗, y∗), (a∗, b∗)

1 temp← D;
2 k ← 0;
3 while temp ̸= ∅ do
4 k ← k + 1;
5 jk = argminj∈temp{a∗j + C∗

j };
6 Choose ik according to probability distribution x∗ij ;
7 assign jk and {j ∈ N2(jk) : j is unassigned}, to ik;
8 temp← temp− {jk} −N2(jk);
9 end

Theorem 4.3.1. Algorithm 3 is a 3-approximation algorithm for Uncapacitated Facility
Location

Proof. As before, fixing an iteration k, the expected facility opening cost is:∑
i∈N(jk)

fix
∗
ijk
≤

∑
i∈N(jk)

fiy
∗
i (using the second primal constraint).

Since the neighborhoods N(jk) form a partition of a subset of the facilities, we get:∑
k

∑
i∈N(jk)

fiy
∗
i ≤

∑
i∈F

fiy
∗
i (4.2)

In a certain iteration, let i = ik and j = jk, the expected cost of assigning j to i is
exactly C∗

j we defined previously. Therefore, the expected assignment cost is:
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cij ≤ chl + chj +
∑

i∈N(j)

cijx
∗
ij = chl + chj + C∗

j

Using again that cij ≤ a∗j we get that cij ≤ a∗j + a∗l + C∗
j .

But since argminj∈tempa
∗
j + C∗

j we finally get that the total expected cost is:∑
i∈F

fiy
∗
i +

∑
j∈D

(2a∗j + C∗
j ) =

∑
i∈F

fiy
∗
i +

∑
i∈F,j∈D

cijx
∗
ij + 2

∑
j∈D

a∗j ≤ 3OPT

■

In this type of rounding, the randomization inserted by the probability distribution to
the algorithm affects only the cost. There are cases, where the randomization affects also
the feasibility of the final solution given. In such cases we should use other techniques to
ensure that the algorithm will give a feasible solution with high probability.

4.4 The Primal-Dual Approach
In contrast to the two previous methods, in the primal dual method we do not need to
actually solve the linear program and then do something with the solution. By exploiting
the properties of a dual optimal solution, we construct one without solving the LP, which
leads us to a much faster algorithm. This is the technique that will mostly be used in the
sections to follow, where we describe the online variant of Facility Location since it has a
nice intuitive interpretation for the problem.

This algorithm for Facility Location was proposed by Jain and Vazirani in [12]. It
achieves a tight 3-approximation in m logm running time, where m = nc · nf is the
number of ”edges” between the facilities and the clients (nc = |C| and nf = |F |).

From primal complementary slackness conditions we get:

• if i ∈ F ′ ⇒
∑

i:ϕ(j)=i bij = fi

• if j is connected to i, then bi′j = 0, ∀i′ ̸= i and aj−bij = cij . We can think of this as
aj being the total price paid by client j, which breaks down to cij : the contribution
of the client towards the edge (i, j) and bij : the contribution towards facility i

The algorithm works in two phases: in the first phase will find a set of facilities, we
name them temporarily open-Ft, a set T of tight edges (i, j). Also let Con be the set of
connected clients. In the second phase it will choose a set F ′ ⊆ F of facilities to open,
and it will find a mapping ϕ : C → F ′.

More specifically, in phase 1 the algorithm raises the dual variables aj . When the client
has reached the connection cost, after declaring the edge (i, j) to be tight, he will start to
actually contribute to the opening of the facility. This is done by raising also the variable
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bij while maintaining dual feasibility. Since variables a and b increase simultaneously, at
some point a facility will be fully paid for i.e. the second dual constraint will be tight, so
this facility will be declared temporarily open, and the tight demands will be assigned to
it. The algorithm for phase 1 is shown in 4.

Algorithm 4: Jain-Vazirani - Phase 1
1 T ← ∅, Con← ∅, Ft ← ∅;
2 aj ← 0∀j;
3 bij ← 0∀j, i;
4 while C \ Con ̸= ∅ do
5 aj+ = 1 ∀j ∈ C \ Con;
6 bij+ = 1 for tight edges (i, j);
7 if ∃j1 ∈ C, ix ∈ F : aj1 = cixj1 then
8 T ← T ∪ (i, j);
9 end
10 if ∑

j

bij = fi then

11 Ft ← Ft ∪ i;
12 Con← Con ∪ j;
13 ϕ(j) = i;
14 end
15 end

// The set of special edges
16 Spec = {(i, j) : bij > 0};

In phase 2, the algorithm needs to decide which facilities from the set of temporarily
open will stay open in the final solution, and how will the clients be assigned to them.
Phase 2 of the algorithm is shown below in 5. Initially we get T = G{Spec} to be the
edge-induced subgraph of G using the edges Spec. Then we take T 2 which is essentially T
with some extra edges when there is a path of length 2 from a node of T to another. Then
H = G[Ft] is the vertex-induced subgraph of T using the vertices of Ft. Finally we find a
maximal independent set in H and we open these facilities. This means that each client
will contribute to at most 1 open facility. Finally, to find the assignment ϕ, in the way we
created the graphs, they will either be connected to a facility in the independent set F ′ (so
they will be directly connected) or there will be a facility at most one ”hop” from them,
so they will be indirectly connected. Essentially we get an idea of where the algorithm
would have connected each client, and which facilities whould be open, and then try to
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open the best possible subset of facilities to minimize the objective.

Algorithm 5: Jain-Vazirani - Phase 2
// Decide which facilities to open

1 T ← G{Spec};
2 T 2 ← (T, e) where ∃ edge e = (i, j) iff there is a path at most 2 from i to j

in T ;
3 H ← G[Ft];
4 F ′ ← maximal independent set on H;
5 Open facilities in H;

// Create assignment ϕ
6 Sj ← {i ∈ Ft|(i, j) ∈ Spec};
7 if ∃i ∈ Sj : i ∈ I then
8 ϕ(j)← i;

// j Directly connected
9 end
10 else
11 Let tight edge (i′, j) : i′ is connecting witness of j;
12 if i′ ∈ I then
13 ϕ(j)← i′;

// j Directly connected
14 end
15 else
16 Let i′′ ∈ I be a neighbor of i′ in H;
17 ϕ(j)← i′′;

// j Indirectly connected
18 end
19 end

The algorithm essentially tries to maintain the primal approximate complementary slack-
ness condition for indirectly connected clients: 1/3cϕ(j)j ≤ aj ≤ cϕ(j)j . Using this, the
analysis will be very straightforward. We say that aj = aej + afj for every dual variable,
where the two different type of contributions of client j are the contribution towards
opening a facility (afj ) and the one towards the connection cost (aej). When j is indirectly
connected, he does not contribute towards the opening of any facility, so afj = 0 and
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aj = aej . If j is directly connected, we have that aj = bij + cij (so aej = bij and afj = cij).
It is easy to see, that when i ∈ F ′ we have that

∑
j:ϕ(j)=i a

f
j = fi, and since afj = 0 for

indirectly connected, we have that
∑

i∈I fi =
∑

j∈C afj .
Using this, and the fact that for indirectly connected clients cij ≤ 3aej it is straightfor-

ward to prove that: ∑
i∈F,j∈C

xijcij + 3
∑
i∈F

fiyi ≤ 3
∑
j∈C

aj ≤ 3OPT (4.3)

Essentially what we do in prima-dual method is that we start with a feasible dual
solution and we raise the dual variables, usually in a uniform way until some dual inequal-
ities become tight. This tells us that we should add the corresponding primal variable
to the solution. And usually by requiring that the relaxed version of the primal or dual
complementary slackness conditions be satisfied, we get the approximation ratio.

36



Chapter 5

Online Facility Location and
Variants

In this section we will present the most important results for the online Facility Location
problem and the Sum Radii problem. The combination of these two problems, will give
us the new variant of section 6.

In the online Facility Location, we do not know the number and positions of demands,
that arrive one by one and need to be irrevocably connected to a facility upon arrival. We
will only consider these problems in metric spaces. To the author’s knowledge, as for now,
the online Facility Location is not studied yet in the non metric setting. There are slight
differences in the settings of the prolem, for example in some settings, every demand can
open a facility, but in some other settings, the facilities can open anywhere in the metric
space. We can think of online Facility Location as a variant of clustering, where not all
the points are known beforehand. This is more realistic on the internet for example, where
new data are generated continuously and we want to divide them into clusters-teams of
similar objects. Another potential motivation for this problem, is if we have a network
where every computer needs to be connected to a server by cable, and new users arrive
online. We have a cost to purchase the server, and a cost proportional to the length of
the cable.

In the online Sum Radii (or Sum Diameters), as before, the demands arrive online,
and must either be inside an already open cluster or open a new one. In this case, the
objective is to minimize the sum of radii, or the sum of diameters. It is easy to see that
these two problems are the same, and the optimal solution of Sum Radii is within 2 of
the optimal solution of sum - diameters. For a possible application of this problem, apart
from applications to clustering and data analysis, we can think that an internet provider
wants to provide internet access via wireless network to people coming to live in an area.
The company pays in order to open a new tower, and the larger its radius is, the more
power it needs, so it would be more expensive. Every time a new customer arrives, if he
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cannot be serviced by an already open tower, the company needs to open a new one, in
order for the customer to have wireless internet access.

5.1 Algorithms
5.1.1 Online Facility Location
Meyerson [4] introduced the Online Facility location problem and presented an elegant and
very intuitive randomized algorithm, giving O(logn) against adversarial input and O(1)
for demands arriving in random order. Each demand that arrives, must be irrevocably
assigned to a facility or open itself one. Note that facilities can only open on points where
a demand has arrived.

Let F be the set of currently open facilities, we define d(uj , F ) = mini∈F {d(uj , i)} i.e.
the distance of demand uj to the closest open facility. The algorithm is presented below,
when a new point arrives, if δ is its distance from the closest already open facility, we
open a facility at this point with probability δ

f .

Algorithm 6: Meyerson OFL
Data: Points set S

1 while S ̸= ∅ do
2 take new point p;
3 δ = d(uj , F );
4 with probability δ

f open facility at p (pay f) ;
5 else connect p to closest open facility (pay δ);
6 end

The intuition behind this is quite simple ; when the demands arrive close to a currently
open facility we want them to connect to the facility rather than opening a new one, hence
the lower probability. However, when demands arrive further away from currently open
facilities, we want them to be able to open a facility, in order to avoid paying a high
assignment cost, and potentially cover other far away demands that will arrive in the area
later. So, when many demands arrive in a certain area, they will eventually open a facil-
ity, having already paid on expectation only f plus f for the opening of the new facility.
Note that we cannot change the facility the demands are assigned to, so the demands that
contributed to the opening of the new facility will remain assigned to the one they were
before, but all subsequent demands in the area will have a closer facility to connect to.
The proofs of lemmas 5.1.1 and 5.1.2 were both first presented in [4]
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Lemma 5.1.1. Algorithm 6 is O(1) competitive for random ordered demands

Proof Sketch. Let C∗
i be the optimal cluster, d∗p be the distance of point p from closest

open facility in the optimal solution, Ai =
∑

p∈C∗
i
d∗p, ai = A∗

i /|C∗
i | average distance of

points in cluster C∗
i and γp the cost point p pays (either as assignment or as facility cost).

The half points that are closest to the center are named ”good”, and the others ”bad”.
Essentially the ”good” points that are closer to the center, will either pay a small

amount in connection cost, if there is a facility opened close to the optimal or they will
quickly open a facility close to the optimal, so the subsequent ones (that are many) will
benefit from it and will not pay much in connection cost. The ”bad” ones on the other
hand, do not have that nice property, and this may result in them paying to open a facility
which will not benefit much subsequent demands.

The proof continues by bounding the expected cost paid by all good points E[
∑

g γg]
by 2f + 2A∗

i + 2
∑

g d
∗
g which holds regardless of the order they arrive, and the cost paid

by a bad point E[γb] by 2d∗b +
2

|C∗
i |
(f +

∑
g(E[γg] + 2d∗g)).

Combining these two inequalities, we get that the expected cost paid by the algorithm,
is within 8 of the offline optimal.Note that this holds if the bad points are injected randomly
in an ordering of the good points, and are not presented adversarially to the algorithm.

■

When the demands arrive adversarially however, Meyerson [4] showed that no algo-
rithm can be O(1) competitive. However, this analysis is not tight, Fotakis showed [5]
that this algorithm is asymptotically optimal i.e. it achieves Θ( logn

log logn) competitive ratio,
which is the lower bound for Online Facility Location. We will show proof sketches for
both results, for the sake of completeness and since the proof shown in section 6.5 for our
variant is similar to Meyerson’s proof.

Lemma 5.1.2. Algorithm 6 is O(logn) competitive against adversarial input

Proof Sketch. Let c∗i be an optimal center. We divide the area around it in zones (cycles
with center c∗i ). Zone Sa contains all the demands with 2a−1a∗i ≤ d∗p ≤ 2aa∗i . Note that
there are only logn zones ; if a demand was outside zone Slogn, it would pay more than
the cost of the cluster.

We will bound the cost paid by each zone: demands in zone Sa will pay at most f until
a facility opens at this zone, and all subsequent demands will pay at most 3d∗p to connect
to this facility (this results from the triangle inequality). This gives us expected cost of 6d∗p.

Finally we need to bound the cost of the points within a∗i . Since they are the ones
closest to the center, they are the ones bound to pay much more than their optimal cost.
This is not the case however, since they will also pay an expected f until opening a facility,
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and then all subsequent demands will pay at most 2d∗p.

Summing up for all zones, we pay (logn+ 1)f + 8A∗
i .

■

Note that the logn factor results essentially from the opening of a facility in each zone,
so logn facilities, and not from the assignment cost.

Lemma 5.1.3. Algorithm 6 is logn
log logn competitive

c∗

pout

pin

F

mj−1a∗i mja∗i

…
mj+1a∗i mha∗i

…

Figure 5.1: Phases for the tight analysis

Proof Sketch. Let m,h be any positive integers such that mh > n and F ∗ be the optimal
facility cost. In this case, the proof is similar to Meyerson’s with the difference that the
analysis is divided into h disjoint phases starting from h as seen on figure 5.3. The j’th
phase begins when the algorithm opens a facility F such that: mja∗i ≤ d(F, c) ≤ mj+1a∗i .
There is also a phase after phase 0 which never ends. All demands p such that d∗p ≤ mja∗i
are inner, and all the others are outer. We will bound the cost of inner and outer demands
for a phase separately. This distinction is similar to Meyerson’s good and bad demands, ;
we will be able to charge the outer demands’ cost to their optimal assignment cost (since
there is a facility open within distance mj+1a∗i of the center) but the inner are the ones
that can pay much more in our solution, since they pay very little in the optimal.

Outer demands: d(F, p) ≤ d(F, c∗) + d∗p ≤ (m+1)d∗p from the definition of the phases.
For the final phase, we get d(F, p) ≤ 2(a∗i + d∗p). Therefore the total assignment cost for
outer demands is 2(m+ 2)A∗

i .
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Inner demands: since each phase stops when an inner demand opens a facility, we need
to bound the cost paid until that facility opens, which is 2f . Thus, we will pay 2(h+1)F ∗

Therefore, setting h = m = logn
log logn we get a competitive ratio of logn

log logn . ■

5.1.2 A Primal Dual Algorithm for Online Facility Loca-
tion

In [6] Fotakis presented a simple O(logn) deterministic primal dual algorithm for non
uniform Online Facility Location. The setting is the same as Meyerson’s Online Facility
Location [4]; demands arrive online and we must decide whether they will be assigned to
an already open facility or open a new one on a point of the metric space. The assignment
and opening decisions are irrevocable. Although, note that in this setting, facilities can
open on any point of the metric space, while in Meyerson’s setting, facilities only open on
points of demands.

Let (M,d) be a metric space, L the set of demands seen so far, and F the current facil-
ity configuration. For each point there is a facility opening cost fz. For each point z ∈M ,
we define its potential as p(z) =

∑
j∈L max{(d(F, j) − d(z, j), 0}. The LP relaxation for

the problem is shown in tables 5.1 and 5.2 ; variables xzj indicate whether demand j is
connected to facility z, yz indicate whether facility z is open, and dual variables aj show
essentially how much each client pays towards the solution.

minimize
∑
z∈M

yzfz +
∑

z∈M,j∈L

xzjd(z, j)

subject to
∑
z∈M

xzj ≥ 1 ,∀uj

xzj ≤ yz ,∀z ∈M, j ∈ L
xzj ≥ 0, yz ≥ 0 ,∀(z, j)

Table 5.1: Primal relaxation for Online Facility Location

The algorithm maintains the invariant that the potential for every point in M is less
than the cost of opening a facility at this point. If we set the dual variables aj to be
the distance of the demand from the currently open facility, this invariant is essentially
ensuring dual feasibility. So when the constraint is violated, we open a facility at the
point of the most violated constraint. This is where linear programming and duality come
in ; the notion of the ”potential” of a point is a quite natural thought and we see that
it also appears as a result of a mechanical process - when deriving the dual from the primal.
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maximize
∑
j∈L

aj

subject to
∑
j∈L

max{aj − d(z, j), 0} ≤ fz ,∀z ∈M

aj ≥ 0 ,∀uj

Table 5.2: Dual program for Online Facility Location

The intuition behind the invariant is similar to the one for Meyerson’s probability in
the randomized Online Facility Location. When a point has high potential, it means that
many demands will benefit from opening a facility there, and they will pay towards it
(through variable aj). The potential aims to quantify exactly this amount: how much do
nearby demands want a demand in point z ∈ M . In a sense, this says that the facility
locations converge to the optimal positions, since every demand contributes positively only
when the potential new facility is closer to it than the one it is assigned to. This means,
that many demands will cause a facility to open closer to them. The algorithm is shown
in 7.

After showing that the invariant is maintained by the algorithm in each step, Fotakis
bounds the algorithm’s assignment cost by log(n+1)F ∗+(2(logn+1)+1)Asg∗ and the algo-
rithm’s facility cost by

∑
j∈L aj which is in turn bounded by (logn+1)F ∗+(2 logn+1)Asg∗,

thus giving us the O(logn) competitive ratio. It is still an open problem to find a tight
example for this algorithm or improve the analysis to give a better than the logarithmic
competitive ratio.

5.1.3 Simple Deterministic Online Facility Location
In [7] Anagnostopoulos et al. presented a simple deterministic algorithm for uniform
online Facility Location, based on hierarchical partition of the plane, which gives O(logn)
competitive ratio. This algorithm works for both Meyerson’s setting, where facilities are
only placed on demands, and Fotakis’ setting where facilities can be placed anywhere on
the plane.

The algorithm’s idea is quite simple, and uses -in a way- the concept of the ”poten-
tial” of an area, used explicitly in [3] and [6], and implicitly in Meyerson’s randomized
algorithm [4]. The algorithm starts with a quadrant of diagonal length f - an assumption
which is generalized later - which opens a facility and is partitioned into 4 smaller ones
(figure 5.2), once the cost of the demands associated with this exceeds a threshold.
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Algorithm 7: Fotakis’ Online Facility Location Primal-Dual
Data: Points set S

1 F ← ∅, L← ∅, p(i) = 0, ∀i ∈M ;
2 while S ̸= ∅ do
3 take new point p ∈ S;
4 L← L ∪ {p};
5 foreach z ∈M do

// Update potentials
6 p(z)← p(z) +max{d(F, p)− d(z, p), 0};
7 end

// Find most violated
8 w ← argmaxz∈M{p(z)− f(z)};
9 if p(w) > fw then
10 F ← F ∪ {w};

// Calculate new potentials
11 foreach z ∈M do
12 p(z)←

∑
u∈L max{d(F, u)− d(z, u), 0}

13 end
14 end
15 assign p to nearest open facility;
16 end

More specifically, we say that the demands that arrive in a quadrant are its support,
and the total assignment cost of a quadrant Q (cost(Q)) is the assignment cost of all the
support demands. We also say that the quadrant Q is open if it has an open facility
associated with it, else it is recruiting. We define d(p, F ) = minfi∈F d(p, fi) to be the
minimum distance of point p from the set of open facilities F .

It is easy to see that the algorithm cannot partition the plane into more than logn
levels ; in every quadrant of depth i the distance of a demand in this quadrant to the
closest facility is at most f/2i (the distance to the facility of the parent quadrant, that
was partitioned in a previous step). In order for this quadrant to be partitioned, it needs
to have potential (cost of support demands) more than a2i. Therefore if all the n demands
arrive always in the same quadrant, we can have at most logn− log a levels.
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√
2f
4

√
2f
2

Figure 5.2: Breaking of initial square into quadrants

Algorithm 8: Simple DFL
Data: Points set S

1 while S ̸= ∅ do
2 take new point p;
3 Q← quadrant of p;
4 support(Q)← support(Q) ∪ p;
5 cost(Q)← cost(Q) + d(p, F );
6 if cost(Q) > af then
7 partition(Q);
8 open facility at center of Q;
9 end
10 assign closest p to closest fi;
11 end

In the proof, the authors proceed to show that for each optimal facility c∗ there is
a constant number of quadrants of a certain depth, which contain demands allocated to
c∗. In turn, the cost of these quadrants is again constant. This means, that summing
up for all levels, for each optimal facility we get a logn factor approximation. The key
observation that allows us to get the constant number of quadrants and constant cost is
that in the optimal solution, there is a facility not too far away from each quadrant.

Intuitively, we can think that we have an image that is revealed to us in steps. When
we partition a quadrant, it is like increasing the resolution of the image in this part ; since
there is much information there, we need more resolution to distinguish the details. The
threshold quantifies the amount of information that is enough to need better image quality.
The difference between this algorithm and the Primal-Dual one, that both use the notion
of potential, is that in this case the decomposition of the metric space is more restricted
in a way ; we partition a certain quadrant into certain parts and consider the potential
only in this area, while in the Primal - Dual one, the potential can cause a facility to open
anywhere.
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Algorithm 9: The partition function
Data: Quadrant Q

1 X ← break Q into 4;
2 foreach new quadrant q do
3 support(q)← ∅;
4 cost(q)← 0;
5 end
6 Quadrants← (Quadrants− {Q}) ∪X;

The restriction that the area should be enclosed in a square of diagonal length f is
easily dropped. If the region is larger, we can ”cover” it with more than one square of
diagonal length f , and execute the algorithm in each one separately, depending on where
each new client arrives.

In Meyerson’s model, the only modification the algorithm needs, is that we will open
the new facility in the demand closest to the center of the quadrant instead of the center
itself. And since in the proof, the authors used only the size of the quadrant and not the
location of the facility, the algorithm is logn competitive in this setting too.

5.1.4 An Optimal Deterministic Algorithm
Fotakis in [3] presented an optimal deterministic algorithm, that even though it achieves
the logn

log logn approximation ratio, it is not practical in use, and has a complicated analysis.
We will briefly present the algorithm here, without getting into the details of the analysis.

The algorithm uses the set of unsatisfied demands L, to ensure that each demand will
contribute at most once to the cost of the algorithm.

The algorithm opens a facility only when the potential of a certain Ball around the newly
arrived demand exceeds the facility opening cost f , where Ball(u, r) = {u ∈M : d(u, v) ≤
r}. This idea seems familiar, since all the previous algorithms used it to some extend. The
two main differences in this case are the area which we consider in order to open a facility
(Ball(p, rp)) and the location of the new facility to open, which is chosen more carefully.
Specifically, when the condition for opening a new facility holds, we try to find the smaller
ball inside Bp such that: the potential accumulated is more than half the potential of
the large ball or for every smaller ball the potential is less than half. When the facility
is opened, all the demands inside Bp become satisfied, so they cannot contribute in the
opening of a facility later on.

The main result of this work is the following theorem.

Theorem 5.1.4. For x ≥ 10 the competitive ratio of algorithm 10 is logn
log logn
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Algorithm 10: Optimal Deterministic OFL
Data: Points set S

1 x ≥ 10;
2 F ← ∅, L← ∅;
3 while S ̸= ∅ do
4 take new point p;
5 L← L ∪ {p};
6 rp ← d(F, p)/x;
7 Bp ← Ball(p, rp) ∩ L;
8 Pot(Bp)←

∑
u∈Bp

d(F, u);
9 if Pot(Bp) ≥ f then
10 if d(F,w) ≤ f then
11 Find the largest v such that:

Pot(Bp ∩ Ball(p̂, rp/2v)) > Pot(Bp)/2 and
∀u ∈ Bp, Pot(Bp ∩ Ball(u, rp/2v+1)) ≤ Pot(Bp)/2;

12 end
13 else
14 p̂← p;
15 end
16 F ← F ∪ {p̂};
17 L← L \Bp;
18 end
19 assign p to nearest facility in F ;
20 end

In the analysis presented in [3], Fotakis proceeds to bound the cost of one optimal
center, by dividing the area into disjoint phases according to the distance of the optimal
center and the algorithm’s facility configuration, and then using a non trivial potential
function argument. Then, dividing the optimal centers into groups -or coalitions- of cen-
ters that are closer to each other than any of the algorithm’s facility, he bounds the cost
for arbitrary many optimal centers. It is also proved that this algorithm can be generalized
to give the logn

log logn approximation for non-uniform facility location also.

All these algorithms for online Facility Location use the same implicit idea, which is
maybe more apparent in Anagnostopoulos’ et al. algorithm of section 5.1.3 ; they all try
to approach the optimal position of the facility using binary search. In Anagnostopoulos’
algorithm this is quite clear since we begin with a large quadrant, saying initially that the
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optimal is somewhere inside this, but using the potential of the sub areas, we divide each
time into 4 parts when we think we found the location with better accuracy. The potential
in each of the above algorithms, is essentially what guides us in this binary search, and
tells us how close we really are to the optimal position.

5.1.5 Online Sum Radii
Fotakis and Koutris in [19] presented one deterministic primal - dual and one simple ran-
domized algorithm for the Sum - Radii problem. In this problem, demands arrive online
and we want them to be covered by a facility, either by connecting them to an already
open one (if they lie inside its radius) or by opening a new one. The objective in this case
is to minimize the sum of radii and opening costs for each open facility.

Let (M,d) be a general metric space, and N = N ∪ {−1}. For simplicity, we can
say that radii are rk = 2kf by losing a factor 2 in the approximation as we will show in
proposition 5.1.5. The LP-relaxation of the problem is shown in table 5.3

minimize
∑

(z,k)∈M×N

xzk(f + rk) maximize
n∑

j=1

aj

subject to
∑

(z,k):d(uj ,z)≤rk

xzk ≥ 1 ∀uj subject to
∑

j:d(uj ,z≤rk)

aj ≤ f + rk ∀(z, k)

xzk ≥ 0 ∀(z, k) aj ≥ 0 ∀uj

Table 5.3: Primal - Dual for the Sum-Radii problem

Lemma 5.1.5. Let C(z, r) be the clusters that the optimal solution to Sum-Radii uses.
We can use radii 2if and lose a factor 2 from the OPT solution.

Proof. Let k = max{log(r/f), 0}. For each cluster C(z, r) of the optimal solution, we
will open one of radius 2kf . The optimal cluster pays f + r while we pay f + 2kf . If
r < f ⇒ k = 0 we pay 2f . If f ≤ r we pay f + 2log r/ff = 2r. So in every case, we are
within 2 of the optimal. And since we open a cluster of radius r of f > r our solution will
be feasible. ■

In the integer version of the problem, variables xzk ∈ {0, 1} indicate whether there is
a cluster of radius rk open on point z of the metric space, whereas in the above relaxation
they indicate the extend to which the cluster is open. In the primal constraint, we require
that every demand is covered. In the dual problem, each variable aj corresponds to the
”amount” each demand uj pays towards the solution, while we require that no facility is
overpaid.

47



48 CHAPTER 5. ONLINE FACILITY LOCATION AND VARIANTS

The primal - dual algorithm is shown in 11 ; it maintains a dual feasible solution by
updating the variables aj for each new demand that arrives, opening a suitable cluster
when a dual constraint becomes tight.

More specifically, when a demand arrives, if it is already covered by a cluster C(z, rk),
we assign it to z and set its dual variable to 0, since it did not contribute anything to the
opening of a facility.

On the other hand, if the demand is not covered, its dual variable becomes f so that
at least the constraint of the (uj ,−1) cluster is tight, in order to maintain feasibility: the
demand will not be left uncovered. If more than one constraints are tight, we open a
cluster on the point z ∈ M that we obtain the maximum radius. Intuitively we open the
largest cluster that is already paid for by the demands.

Algorithm 11: FL_Radii_Primal_Dual
Data: F: Set of open clusters

1 F ← ∅;
2 foreach new demand uj do
3 if uj is covered by ci then
4 assign uj to ci;
5 aj ← 0;
6 end
7 else
8 aj ← f ;
9 x ∈M :

∑
j:d(uj ,z≤rk)

aj = f + rk and ∄k′ > k :
∑

j:d(uj ,z≤rk′ )
aj = f + rk′ ;

10 F ← F ∪ {C(x, 3rk)};
11 end
12 end

Dual feasibility follows easily from the fact that variables aj are either 0 or f , so the
dual constraint cannot be violated before becoming tight. Additionally, every time we
open a new cluster, all subsequent demands that could increase the left-hand side of the
tight constraint will be covered, so they will have aj = 0.

Lemma 5.1.6. Algorithm FL_Radii_Primal_Dual is O(logn) competitive.

Proof Sketch. Initially we observe that clusters C(z, k) where k ≥ logn cannot exist ; the
constraint will never be tight since the right hand side will be nf but the left hand side is
always < nf .
For k ≤ logn it is easy to see that every demand uj with aj > 0 will potentially cause at
most one cluster C(z, 3rk) to open, by making C(z, rk) tight (we reach a contradiction if we
assume that uj caused more clusters to become tight). Therefore since we open clusters
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C(z, 3rk) when C(z, rk) is tight, the cost for each cluster is at most cost(C(z, 3rk)) =∑
uj∈C(z,rk)

3aj so the total cost of our solution is
∑

(z,rk):C(z,rk) opens cost((C(z, 3rk))) ≤∑
(z,rk):C(z,rk) opens

∑
uj∈C(z,rk)

3aj ≤ logn
∑

aj
■

The randomized version of this algorithm also gives a logn approximation. In this case,
for the uncovered demands the algorithm tries to open clusters of exponentially large radii
with geometrically reduced probability i.e. radii 2if with probability 1/2i. The intuition
behind this is that we want to open some large clusters, in order to cover more demands,
but not too many, for we will pay too much.

Algorithm 12: FL_Radii_Rand
1 New demand uj ;
2 if uj is covered by ci then
3 assign uj to ci;
4 end
5 else
6 With puncov = 1

2i
, ∀i ∈ [logn] open facility at uj with radius 2i

7 end

This algorithm will be one of the building blocks of the algorithm presented in the
next chapter, for our new variant. The proof of the following lemma given in [19] will be
presented in detail since we will use the main idea in the proof of the competitive ratio in
section 6.5.

Lemma 5.1.7. Algorithm FL_Radii_Rand is O(logn) competitive.

Proof. We bound the expected cost of the algorithm until they open a facility of radius
2k+1 which will entirely cover ck.

Let T1 ∈ N be the time when the cluster of size 2k+1 opens and let Xi be the random
variable of the cost paid by the algorithm for each new demand uj . The total cost paid by
the algorithm until time Tx is

∑Tx
i=1E[Xi]. However, we cannot know the probability of a

demand arriving covered (thus paying 0) and arriving uncovered (thus paying the opening
and radius cost). In order to bound the cost, we define a random variable Yi which is the
cost paid for each demand as if they al arrive uncovered, therefore, following from this
definition: Xi ≤ Yi hence

Tx∑
i=1

E[Xi] ≤
Ty∑
i=1

E[Yi] (5.1)
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Note that the stopping times are different for variables Yi and Xi (Ty < Tx), since Xi

do not always try to open a 2k+1 cluster while for Yi in each round there is a non zero
probability of opening one. This is not a problem for 5.1 since the left-hand side sum is
not increased for the times Xi does not try to open a large cluster.

Recall from algorithm 7 that for each demand we try i ∈ [logn] times with probability
1
2i

to open facility of radius 2i. Therefore:

E[Yi] =

logn∑
i=0

1

2i
(f+f2i) =

logn∑
i=0

f+
f

2i
= f(logn+2)+f(2−2−(logn+1)) ≤ f(logn+2)+2f

Clearly Ty is a stopping time since Ty ∈ N and depends only on the previous values
of Yi. Also Ty ∼ G0

(
2−(k+1)

)
thus E[Ty] = 2k+1

The expected cost until time Ty is E[cost] = E[
∑Ty

i=0 Yi]. We observe that Yis are iid
with the same mean (E[Y ]) and Ty has finite expectation, so we can use Wald’s equation
to get:

E[cost] = E[Y ]E[Ty] ≤ 2k+1(f(logn+ 2) + 2f)

Adding the cost for the large cluster, the total cost is:

cost ≤ 2k+1(f(logn+ 2) + 2f + f) + f (5.2)

■

5.1.6 Incremental k - Sum Diameters
In [18] Charikar and Panigrahy also presented a constant bicriteria approximation algo-
rithm for Sum k diameters in the incremental setting. In this problem, we need to cover
points in the plane that arrive online, by opening at most k clusters/facilities with a cer-
tain radius. The objective is still to minimize the sum of radii (or equivalently the sum
of cluster diameters). The main difference that distinguishes this problem from a pure
online is that the choice of cluster center and radius is not irrevocable ; we can change
the radius of an open cluster and possibly close an opened cluster. Charikar and Pani-
grahy presented an algorithm that uses at most 4k centers with cost within 160 of optimal.

The LP formulation of the problem is shown below. For the variables we have that:
y
(r)
i = 1 iff there is an open center at point i with radius r and each dual variable aj

corresponds to a demand point.
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minimize
∑
i,r

y
(r)
i (r + fi) maximize

∑
j

aj

subject to
∑

i,r:d(i,j)≤r

y
(r)
i ≥ 1 , ∀j subject to

∑
j:d(i,j)≤r

aj ≤ r + fi ,∀i, r

y
(r)
i ≥ 0 , ∀i, r aj ≥ 0 ,∀j

Table 5.4: LP formulation of the problem, i ∈ F and j ∈ C

We define two sets that are used in the algorithm.

C: core clusters, set of currently open clusters (i.e. the solution to the problem for the
points seen so far)

W : witness set, all the points whose dual variable is ap = L
k in the current phase.

Additionally, a cluster Ci(r) is called near tight if
∑

j:j∈Ci(r)
aj ≥ r/2 + L/k.

Algorithm 13: Charikar - Panigrahy SinglePhaseSumDiam(S, L)
Data: Points set S, Lower Bound L

1 while S ̸= ∅ and |W | ≤ 4k do
2 Take new point p;
3 if p ∈ near tight cluster then
4 goto 1;
5 end
6 else
7 W ←W ∪ {p}, ap = L

k ;
8 IncrMerge();
9 end
10 end
11 SinglePhaseSumDiam(C ∪ S, 2L);

The algorithm tries to maintain a feasible dual solution with at most 4k points, which
automatically gives a lower bound on the primal’s value. The SinglePhaseSumDiam rep-
resents a single phase of the algorithm, which sets a lower bound for the algorithm that
translates to an upper bound for the radii values that the algorithm uses to try to cover
the points. Essentially in each phase the algorithm sets an upper bound for the radii that
the open centers can have, and tries to cover everything with at most this radius and at
most 4k centers. If this fails (which means that the 4k centers are too few and the upper
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bound on the radius too restrictive), in the next phase the radii can be larger, in order to
cover more area with less centers.

The witness set is essentially the points that ”contribute” to the opening of a center or
the points where the center is opened. In each phase, there are some points that will not
be processed again later in the algorithm. Those points are of two types:

• Were covered by an open cluster on arrival (so ap = 0)
In this case, they will always be covered either by the same cluster Ci(r) (which will
be passed on to the next phase through the set C and can only increase its radius)
or by another cluster Cj(r

′) which will fully cover Ci(r). However they will never
contribute anything to ”enlarging” the radius of the cluster about to cover them.

• Were not covered on arrival, but were at some point part of the witness set (ap =
Lz/k) of some phase z of the algorithm
In this case, at some point they intersected with another opened cluster, which
covered them and was removed from the solution. However, since ap ̸= 0 they will
still ”help” the cluster covering them to obtain larger radius.

The function that merges the clusters:

Algorithm 14: IncrMerge()
Data: Core set C, Sol set of clusters in current solution

1 Examine new near tight clusters in decreasing order of radius;
2 Let Ci(r) the currently examined cluster;
3 if Ci(r) ∩ C = ∅ then
4 C ← C ∪ Ci(r);
5 Sol← Sol ∪ Ci(5r);
6 end
7 else
8 foreach Ci′(r

′) that Ci(r) intersects do
9 if r′ ≥ r

2 then
// Ci(r) is already covered by Ci′(r

′) ∈ Sol
10 break;
11 end
12 else

// Ci(5r) covers all sets intersecting with r′ < r
2

13 C ← (C ∪ Ci(r)) \ Ci′(r
′);

14 Sol← (Sol ∪ Ci(5r)) \ Ci′(5r
′);

15 end
16 end
17 end

52



CHAPTER 5. ONLINE FACILITY LOCATION AND VARIANTS 53

This is a simple merge rule: just try not to have overlaps in the core set i.e. ”spread
out” the centers as far as possible, to cover more area. Note that clusters Ci(r) do not
have overlaps, but the clusters Ci(5r) may do.

In the last two algorithms for online sum-diameters, the implicit idea we mentioned
for the online facility location algorithms is also present; both algorithms use implicitly
binary search in order to approach the optimal radius, and not the optimal position this
time. This may be more apparent in Charikar and Panigrahy’s algorithm than Fotakis and
Koutris’ randomized one, since each time we double the largest possible radius a cluster
can have and try again to cover the area. In the next chapter we will see how to combine
the algorithms for the two different problems into one.

5.2 Lower Bounds
In this section, we will briefly present some important lower bounds for the above variants.
Specifically, we will prove the logn

log logn lower bound for Online Facility location presented
in [3], and briefly present the one for Sum Radii presented in [19]

5.2.1 Online Facility Location
Theorem 5.2.1 (OFL Lower Bound). Every randomized algorithm for Online Facility
Location cannot be better than Ω( logn

log logn)-competitive against an oblivious adversary.

Proof. We will prove this claim using Yao’s Lemma, which was described in section 3.3.2,
by defining a probability distribution on the data, and proving that every deterministic
algorithm cannot perform better than logn

log logn . We will construct the lower bound on a
binary HST of height h, the construction of the lower bound can be seen in figure 5.3.

Let OPT be the cost paid by the optimal and ALG the cost paid by any deterministic
algorithm. We will show that OPT ’s cost is at most f + hD/(m − 1) and ALG’s cost is
at least min{f/2, Dm} for the first (h − 1) phases, and min{f,Dm} for the last phase.
Using these, and setting m = h and D = m/h we get

ALG
OPT ≥

(h+ 1)f/2

(2h+ 1)f/(h− 1)
=

(h+ 1)(h− 1)

2(2h+ 1)
≈ h (5.3)

and since the total demands are mh, we need mh ≤ n, so setting h = logn
log logn we get the

desired result.
Specifically, the demands arrive in the following manner: at level 0 there will be only

1 demand, and on every level i after the root, lets say we look at node ui, we will choose a
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node from ui’s children uniformly at random, and place mi demands there. The optimal
solution will open a facility at level h, thus incurring cost at most: f + hD m

m−1 which is
the cost of one facility and mi demands paying assignment cost in each level 0 ≤ i < h.

As for the cost of the algorithm, we will find a lower bound in each phase, for the
demands in the subtree we will not ”see again”. So, for example, if the distribution has
chosen the right child of ui, we will bound the cost for the demands arriving on the left
child’s subtree. Specifically, we fix the adversary’s choices until ui. We distinguish the
cases below:

ALG has not opened a facility in Tui , the demands in Tui \ Tui+1 will either open a
facility (paying f) or pay assignment costmiD/mi−1 = Dm, so in every case: min{f,Dm}.

ALG has opened a facility in Tui , then with probability 1/2 there will be a facility in
Tui \ Tui+1 , so demands will pay min{f/2, Dm}.

level 0− root

level 1

Tui
level i

Tui
\ Tui+1

Tui+1
level i+ 1

level h− 1

1

D
mi+1

D
mi

D

………

……… …

Figure 5.3: The HST used for the lower bound, gray nodes are in the Tui+1
subtree,

blue are in Tui
\ Tui+1

■

What this lower bound says essentially, is that with this distribution, in the HST we
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will either pay the lower bound as assignment or as facility cost.

5.2.2 Sum Radii
For the Sum Radii problem, Fotakis and Koutris in [19], initially present a Ω(logn) lower
bound for deterministic algorithms for Sum - Radii on tree metrics, using ternary HSTs.
Then they proceed to prove a Ω(logn) lower bound, again for deterministic algorithms on
the Euclidean plane. While this proves that the deterministic algorithm presented later in
the paper is tight, the O(log logn) lower bound for randomized algorithms on the problem
leaves it open to improve the current logn-competitive randomized algorithm.
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Chapter 6

Radii Facility Location

In this thesis, we introduce a new variant which is essentially a combination of the classic
online Facility Location and the online Sum Radii problem.

In this variant, each facility opens with a radius fixed at opening time, and it can only
service demands within this radius. Each facility pays an opening cost, and a radius cost,
while each client pays its distance to the facility it is assigned. This is an online problem,
so the demands are not known from the beginning, and once a facility opens, it cannot
close or change its radius. Initially we formulate this as an integer program. The IP and
its relaxation are presented in detail in the following sections. We will see that we need to
scale the assignment cost for the problem to be meaningful, and we provided a randomized
algorithm depending on this scale factor. Finally, we studied how the competitive ratio
changes for all values of the scale factor.

One possible motivation for this problem is to think that clients arrive in an area and
want to have access both to wifi and to cable, so they need, upon arrival, to be inside the
radius of a facility. In the end, we will pay the opening cost of each facility, a radius cost,
since the larger the radius the more power we need to operate it, and a connection cost,
so that each client is also connected with a cable to the facility that covers it.

6.1 LP Formulation
Let F be the set of facilities, C the set of Clients/Demands, f : the initial opening cost,
j ∈ C, i ∈ F, r ∈ R. For the radii cost, we we will use clusters of size 2if , as in the Sum
Radii problem, and loose at most 2 in the approximation factor. This was proved for Sum
Radii in lemma 5.1.5, which is easy to see that applies also to our problem without any
changes in the proof.

Additionally, in order for the problem to have meaningful cases, we scale the assignment
cost with f3. We will see in section 6.4 that if we did not have this scale, i.e. f3 = 1, the

57



58 CHAPTER 6. RADII FACILITY LOCATION

problem would have a trivial and optimal algorithm.
In the integer version, y(r)i indicates if facility i is open with radius r, and x

(r)
ij indicates

if demand j is connected to facility i within radius r.

minimize
∑
i,r

y
(r)
i (f + fr) +

∑
i,j,r

x
(r)
ij f3d(i, j)

subject to x
(r)
ij ≤ y

(r)
i ,∀i, j, r∑

i,r

x
(r)
ij ≥ 1 ,∀j

x
(r)
ij ≥ 0 ,∀i, j, r

y
(r)
i ≥ 0 ,∀i, r

Table 6.1: Primal formulation of the problem, i ∈ F and j ∈ C

In the above primal, we want to minimize the sum of the radii cost, the facility opening
costs and the sum of the assignment costs for each client. The first condition says that a
client can be connected to a facility only if it is opened. The second one says that every
client j should be connected to at least one facility (in the fractional solution a client can
have non zero connection to more than one facility).

maximize
∑
j∈C

bj

subject to bj ≤ a
(r)
ij + f3d(i, j) ,∀j, i, r : d(i, j) ≤ r∑

j∈C

a
(r)
ij ≤ f + fr , ∀i, r

a
(r)
ij ≥ 0 ,∀i, j, r

bj ≥ 0 ,∀j

Table 6.2: Dual formulation of the problem, i ∈ F and j ∈ C

The intuition behind the dual variables is that bj is what client j pays for its part
of the solution and a

(r)
ij is the share of client j for facility i. In the above dual, we want
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to maximize what all clients pay. The first constraint says that the cost each client pays
should not exceed it’s share for a certain facility plus it’s assignment cost. The second
one, says that no facility can be ”overpaid” (we should not pay for a facility more than it
actually costs).

Note that this is a typical covering-packing primal dual since all coefficients a(r)ij , d(i, j), f+
fr are non negative.

6.2 Complementary Slackness Conditions
In this section we briefly present the primal and dual complementary slackness conditions
with the intuitive meaning of each one. These more or less are the same for these types
of primal dual problems.

• a
(r)
ij > 0 ⇒ x

(r)
ij = y

(r)
i : If client j has paid for facility i with radius r then either j

is connected to i, or the facility i is not open (and client is not connected to it

• bi > 0 ⇒
∑
i,r

x
(r)
ij = 1: every client who has paid a non zero cost towards the

solution, will be connected to a facility (contrapositive:
∑
i,r

x
(r)
ij ̸= 1⇒ bj = 0)

• y
(r)
i > 0⇒

∑
j

a
(r)
ij = f + fr: Every open facility is fully paid for

• x
(r)
ij > 0⇒ bj = a

(r)
ij + d(i, j): If j is connected to i with radius r the cost he pays is

exactly the assignment cost d(i, j) plus the cost towards opening the certain facility

6.3 The Scale Factor
Let for simplicity f3 = 1/2M . We will see that for different values of M the problem
changes from Facility Location (when f3 > 1) to Sum Radii, when f3 < 1/2n as seen in
figure 6.1. More specifically, we distinguish the cases below:

• f3 > 1: In this case, OPT will never open clusters with radius larger than f since
is will always be cheaper to open a facility on the demand than connecting it to an
open facility.

• 1 ≥ 1
2M
≥ 1

2logn : In this case, OPT will have profit when opening larger clusters than
f , but how much larger? It is easy to see, that OPT will never open a cluster larger
than 2M+1, for the same reason as above, it will be more expensive to connect a
demand this far away rather than opening a facility.
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• 1
n ≥ f3: OPT will never open a cluster larger than n, even if the assignment cost is
multiplied by 1/n

f3

FLSum Radii

1
2logn

1
4

1
2 1 2

Figure 6.1: Chance of the problem for different values of f3

So, in every case, OPT may open a cluster at most min{2M , 2logn}, therefore we only
need to try to open radii of at most min{M, logn}. This is a result of the fact that since
the radius cost is scaled as multiples of the facility cost, and the assignment cost has as a
natural upper bound the radius, the demand can have as much cost as paying for a facility
of δ to open. This fact, led us to scale down the assignment cost, in order for it to not
”count” as much in the solution, to allow the OPT to open larger clusters.

6.4 The Algorithm

The algorithm, shown below, is a combination of Meyerson’s randomized algorithm, in
the case the demand is covered, and Fotakis’ and Koutris’ randomized algorithm for Sum
Radii-in the case the demand arrived uncovered. In the case of a covered demand, we
open a cluster with half the radius of the cluster that covers the demand, including in the
probability the radius cost. In the case of an uncovered demand, our only modification is
that the larger cluster we try to open - with the accordingly changed probability- is not
nf , but the larger one that could be opened by optimal, depending on f3. In the algorithm
below, we have facilities ci with radii ri = 2ui , and clients/demands p.
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Algorithm 15: FL_Radii
Data: M

1 New demand p:
2 if p is covered by ci then
3 δ = min{d(i, p)|i ∈ F};

// 2ui rad of facility covering p
4 u = ui − 1;
5 With pcov = δ

2uf+f open facility at p (cost: 2uf + f)
6 end
7 else

// ui is not covered
8 With puncov = 1

2i
, ∀i ∈ [M ] open facility at p (cost: 2if + f)

9 end

6.5 Competitive Ratio
In this section, we will study the competitive ratio of the algorithm above. As someone
might expect, the competitive ratio changes according to M , as we will prove in theorem
6.5.1. We will see that when M > logn

log logn , it dominates in a way the competitive ratio,
which then becomes O(M), while when M ≤ logn

log logn it is the logn
log logn that dominates. This

is to be expected since when M is small, f3 grows, so the assignment cost becomes more
expensive and since OPT cannot open large clusters, the problem becomes essentially
facility location in many balls of radius f . On the other hand, when M is large, it means
that the assignment cost is cheaper, so we can open larger clusters, and in the extreme
case where M > logn, we essentially have the Sum Radii problem with the O(logn)
competitive ratio.

Theorem 6.5.1. The competitive ratio of the algorithm is: max{ logn
log logn ,min{logn,M}}

Let ck be a simple cluster of radius 2k. The optimal assignment cost in this cluster
is Asg∗, and therefore its optimal cost is OPT = f + 2kf + f3Asg

∗. We will bound
separately the expected cost of the algorithm for demands in the cases they are uncovered
and covered the moment they arrive (lemmas 6.5.2 and 6.5.3).

Lemma 6.5.2. The expected cost of uncovered demands is E[costuncov] ≤ 2k+1(f(M +
4) + f) + f

Proof. We will bound the expected cost of the algorithm until they open a facility of radius
2k+1 which will cover all ck. The analysis is similar to [19].
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For a sequence of demands u1, . . . , um we define Xi to be the random variable equal to
the cost the uncovered demand i will pay. Recall from algorithm 15 that for each demand
we try i ∈ [M ] times with probability 1

2i
to open facility of radius 2i. Therefore:

E[Xi] =

M∑
i=0

1

2i
(f + f2i) =

M∑
i=0

f +
f

2i
= f(M + 2) + f(2− 2−(M+1)) ≤ f(M + 4)

We also define T as the time when a facility of radius 2k+1 opens. Clearly T is
a stopping time since T ∈ N and depends only on the previous values of Xi. Also
T ∼ G0

(
2−(k+1)

)
thus E[T ] = 2k+1

The expected cost until time T is E[cost] = E[
∑T

i=0Xi]. We observe that Xis are iid
with the same mean (E[X]) and T has finite expectation, so we can use Wald’s equation
to get:

E[cost] = E[X]E[T ] ≤ 2k+1f(M + 4)

Adding the cost for the large cluster, the total cost is:

costuncov ≤ 2k+1(f(M + 4) + f) + f (6.1)

■

This implies that uncovered demands pay something directly proportional to the in-
verse of the scale parameter f3. In the second lemma, we will bound the cost paid by
covered demands.

Lemma 6.5.3. The covered demands’ cost is at most 18 + logn
log logn

Proof. The proof of this lemma is a somewhat more complex version of Meyerson’s proof in
the case of adversarial input. Since when we consider only covered demands, the restriction
of radius does not exist, therefore our problem is essentially Facility Location with an extra
radius cost.

Let d∗u be the optimal assignment cost of demand u, Fu be the demand that covers u
and has radius R and δ = d(Fu, u) be the distance of u from Fu.

We divide the optimal cluster into zones (as seen in figure 6.2). Each zone Sa (a ≥ 1)
contains all the demands u such that 2a−1f ≤ d∗u ≤ 2af . Zone S0 contains demands that
0 ≤ d∗u ≤ f . We will bound the expected cost paid by demands in each zone. Since each
demand opens a facility with probability δi

Rj/2f+f the expected cost paid is:

E[cost of u] = δ
Rj/2f+f · (

Rj

2 f + f) + (1− δi
Rj/2f+f )δ ≤ 2δ

Let a demand u ∈ Sa and is covered by facility Fu ∈ Sb with radius R. We will bound
the cost of each zone, until a facility opens in this zone that covers it. After that, the
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ck

u Fu

f 21f 2a−1f
…

2af 2kf

…

δ

d∗u

d(Fu, ck)

Figure 6.2: Proof for covered demands

cost will be within constant of Asg∗. We distinguish the following cases according to the
facility’s zone’s position:

• b ≤ a+ 2 (type 1)
In this case, the facility is either in a previous zone or at most 2 zones after the zone
of the demand. If the facility’s zone is one of the next 2 zones, it is not guaranteed
that if a demand opens a facility, its radius will be large enough to cover zone Sa.
Since d(Fu, ck) ≤ 2a+2f = 8 · 2a−1f = 8d∗u, from the triangle inequality we get:
d(Fu, u) ≤ d∗u + d(Fu, ck) ≤ 9d∗u.

Therefore, the expected cost paid is bounded by 2δ ≤ 18d∗u and summing up for all
zones, we get E[cost type 1] ≤ 18Asg∗

• a+ 2 < b (type 2)
In this case, we get that δ ≥ 2a+2 − 2a = 3 · 2a ≥ 2a+1, but since the facility covers
the demand: R ≥ δ. Therefore if one of these demands opens a facility, the de-
mand’s zone (and all the previous zones) will be covered.

The intuition for this part of the proof is that we cannot pay the optimal cluster
(2kf +f) too many times, since from the way the algorithm works, the facilities will
open every time closer to the center and with half the radius than before. This is
true for all but the closest zone to ck (where the radii do not reduce in cost) which
will be considered separately.
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Let Fu be the closest facility to the center. The expected cost paid by demands
covered by Fu to open a facility (of radius R/2) is R/2f +f , so in total 2(R/2f +f)
after the facility opens. This facility will open closer to the optimal center (since
we care about demands between ck and Fu). We distinguish in two cases based on
whether Fu covers all previous zones or not. We will see that these two cases are
not very different in the end.

– R ≥ 2b (demands of zone Sa are covered all by Fu)
In this case, since this is the closest facility to ck, all demands of previous zones
are connected to this, and will pay E[cost] = 2(R/2f + f) towards opening a
facility of radius R/2, which will open in a zone closer to the center than Fu.

Therefore, after the algorithm opens a facility in a zone that covers all the
smaller ones, the new facilities will open always closer to the center and with
half the radius. Summing up in this expected cost in each zone, in the worst
case we will get:

∑k
i=0 2(2

if + f) ≤ 2
∑k

i=0 2
i+1f = 8 · 2kf

– R < 2b (the demands of the zone Sa are covered by facilities other than Fu)
This case is in fact similar to the previous one since only the radius of the
facility covering the demands matters for the cost, and not the position of the
facility.

More specifically, since all facilities are more than 2 zones away, every new
facility will cover previous zones, so we will pay at most the expected cost for
the largest one that covers the demands, to open a new one. After this opens,
we are within optimal as shown in case a+ 2 < b

So E[cost type 2] ≤ 8 · 2kf

The above analysis does not hold for the S0 where the algorithm reduces to Meyerson’s
online Facility Location ([4]) with facility cost 2f . This algorithm was shown in [5] to be
asymptotically optimal, therefore the competitive ratio is logn

log logn .
We proved that totally, the cost of the covered demands is within 18 + logn

log logn of the
optimal cost.

■

Now we will prove the main theorem.

Proof of theorem 6.5.1. Since we allow the opening of clusters inside larger clusters, it is
possible that the optimal cluster will have other smaller clusters inside it. We say that a
cluster is simple, if it has no other clusters inside it.
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Using Lemmas 6.5.2 and 6.5.3 we bound the optimal cost for any simple cluster by
max{M, logn

log logn}, since the M factor comes from uncovered demands, and the logn
log logn fac-

tor from the covered. Therefore, in a larger cluster we bound the cost considering only
the demands assigned to the large. The cost of the demands in the smaller ones, will have
been charged to the optimal cost for the smaller ones.

We should be careful though, since the competitive ratio cannot be more than logn.
This is easily seen from lemma 6.5.2 ; if M > logn, the assignment cost count so little,
that it can always be charged to the facility opening cost, so our problem degenerated to
the Sum Radii problem with essentially the same algorithm as [19]. ■

Observe that in the case we are closer to Facility Location, the algorithm is tight: we
achieve the logn

log logn lower bound. On the other side however, when the problem is closer to
the Sum Radii one, we do not know whether it gives the best possible competitive ratio.
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Chapter 7

Open Problems, Future Work

Continuing the work on this variant, it would be interesting to study the problem in the
case where each potential facility has a different opening cost fi, namely the non uniform
facility costs variant. In this case, the scale factor f3 would not be necessary, since the
assignment, radius and opening cost would not be of the same order, which was causing
the limitations in the optimal in our case with f3 = 1.

Additionally, it is worth mentioning that another, slightly better motivated, variant is
when we allow clients to connect to facilities outside their radius, and pay the connection
cost, while the clients inside the facilities would pay nothing. We can think of the demands
as clients who want internet access, but have no restriction as to what type of access they
will be provided with (cable or wireless). In this case however, we run into the same
problem as before: since the opening, assignment and radius costs will be of the same
order, we will need a scale factor for the assignment cost, in order for the problem to be
non trivial. It seems that generally in the variants where we impose both a connection
and a radius cost, we will always run into the same problem.

Another interesting direction would be to resolve the open question of [19], namely
close the gap of the Sum Radii algorithm (logn) and the lower bound of log logn for
randomized algorithms, which will also prove whether our algorithm is optimal or not, in
the case we are closer to the Sum Radii problem.

An interesting direction, though quite different from the online setting we discussed
before, would be to assume a distribution on the input data instead of trying to find the
worst case one. In some problems, the input indeed is drawn from a distribution, so this
is sometimes a setting closer to the real world than the worst case one.

Finally, since it is clear that Facility Location and its variants have numerous appli-
cations, an interesting direction would be to consider some of the other offline Facility
Location variants, like capacitated or fault tolerant Facility Location in the online or
incremental settings.
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