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FEuyapiotieg

Karopydic, 9€he vo exppdow Ty euyvepocsivn dou 6Tov emBAEToVTE xadny Nt pou x. Anurteto
YoOvten mou Ye eumoTeldnxe yia auTAY TNV Otmhwuatxy] epyocia. Emnpdoldeta, 9€hw vo gu-
Yoplo THow Toug unodrgloug Sdxtopec Anpoctévn Macolpo xo Baciieio Tooltooupa yio tnv
apéplotn Bordeta xou ) ouvepyaoio Toug xad ‘OAn TN didpxeta TS SimhwuaTixig wou. Ot eboto-
YEC TUEATNPEHOELS TOUC XAl OL GUVOMIALEC oG, YE EVEmveEuoay xou Pe Borinoay vo emexteive Tic
YVOOCELS Lo YUPw amd To Véua TN SImALUATIX S aUTAC cpyactac. OEhw, eniong, vo euyoplo THOW
Tov utorpo SuddxTopa Iwdvyn Ltpatdxo yior TIC TERUUATIXEG HETEHOELC TOU You Tapelye xoddg
xou OAo T UEAT Tou Microlab yio To euydiploto xou gulxd mepBdhhov epyaciag, Tapdyovtag Toh)
ONUOVTIXOS YL UEVOL

Téhog, V€AW va euyoploThHow Toug Yovelc wou Xtpdto xan Iapugodid, tnv adepgr| pou
Korepiva, to deio pov Xerioto xou toug gikoug pou xat xovtivoug pou avipnrouc Eirida, T'idpeyo,
ApyOpn, Nixo, Baoiin xo Xproto yia tnv opopen xa eviouctadn gortntixy {wi| Tou LolpacTAXAE.
Efuor suyvouwy oe dhoug toug, yia 1 d0vaun ot To Téog Tou You Bivouy vor axohouliiow To
OVELR. UOU.
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ITepiAndm

Yhuepa 1 ouveyfic TEG0BOC TNV TEYVOAOY(N £YEL OONYHOEL GTNY AVATTUEY TO TOAITAOXWY XAl
UTOAOYLO TG amanTnTix®V ahyoplluny enelepyaotag eodvac. IloAlol amd autols Toug alyodprd-
noug €youv uodetniel o evowuaTwPEVA CUCTAUAT ToL OTolal GTOYEVOLY GE ia Totxthior Eop-
HOY OV, 6T 1 autoxwvnToBlounyavia, 3D Thofynon, nemthienon, xAn. 261000, OE EVOOUATWHUEVA
CUC THUOTA TEAYHATIXOU YeOVOU, OTOU 1) XoUG TERNET UETUPORAS DEBOUEVMY XAl 1) XAUTAVIAKGCT
1oy Vog SadpapatiCouy oNUUVTXG PORO, EQUPUOYES AOYLOUIXO) TROCAUVATOMOUEVES VoL EXTEAOUVTAL
o€ eMECEPYUOTEG YEVIXAC YPNONG OEV UTOPOUV VO TROGPEROLY IXAVOTOINTIXES AUCELC.

Yxomog TN mopoloag BIMAWHATIXG epyaolaug eivon 0 OYEBIAOUOC EVOC CUOTAUATOS ETELER-
Yaolag EMOVAC YLl EVOWUUTOUEVES EQUPUOYES, 1) UAOTIOMNGT Tou ot N0oTnua-oe-Wnoida xa 1 ofl-
ohoYNoY| Tou. )¢ eapuoyr| EMAEYUNXE 1 aviyveuoT YLV Pe T yerion Tou alyopituou Harris oe
oo TN TEaYUaTX00 Yeovou dlafdlovTag Ty €lcod6 and tny camera. H emitdyuvon tou akyopli-
uou Harris - Corner Detector emtuyydveton otny mhatgopua Tegra X1 CPU-GPU-SoC ye yerion
¢ yAwooag CUDA C. Epeuvroaue duagpopetixole tpomoug emixowvwviog petald CPU xaw GPU
xodog xan mpoypauuoTio Tixée teyvixég ot GPU pe oxond v xahitepn anbddoon 6cov agpopd
TOV YPOVO eXTEAEONG TNG EQUOUOYNG AN ot TNV Xatavdhwor evépyetag. 1o ocuyxexpiuéva,
gpeuvrioope TEYVIXEC Ue Ypron Tne xowhc puvAune tne GPU, shared memory, tnc constant ohhd
xou NG texture uvAung. Télog, xodoplo Tixr| xou o GNUAVTLXA YId TNV ETULTEYUVOT] TNG EQPURUOYTC
Aoy 1) TEY VXY TNS Bloyweto TixdTtnag (separability), ue v onolo ot Siedidotateg cuveliZelg Tng
EOVAS EXTEAOUVTOL WG BV0 EEYWELOTES UOVOBIAOTATES GUVEAEELS, TEdyUo TOU BEATIOVEL OToLV-
Tixd TNV amodoor Tou cuoThdatog. Ta mewpduoata g Tehxic vhoTolnong delyvouv xépdog péyet
XT3 ouyxpluxd ue Ty apyixh LvAormoinorn tne epopuoyhc oc évav enelepyact ARM Cortex
A57. 'Etot, umopolue vor UNOTIOLAGOUPE TNV EQUPUOYY| AUTH O GUGTNUA TEAYUAUTIXOU YPOVOU, OLo-
BaCovtag tnv €loodd pog amo TNy camera, ywpelc vo topatneeiton xoduotépnon ota frames. Télog,
otoyeloupe ot oLyxplon YeToll Twv CPU-GPU xoa CPU-FPGA cuvduaouoy,tooxeévou va
amo@avIOUUE Yo TNV TLO AmOdOTIXY TAATPOPUN Tou UTopel Vo UTOGTNEIEEL TNV EQUEUOYT) AUTH.

Aé€eic Khewdd— GPU, CUDA C, Eneéepyoacio Euxévog, Liotnua-oe-Wneida, Harris Corner
Detector, Evowpatouévo Yootnua, Tegra x1, Maxwell apyttextovin.






Abstract

Nowadays the ever-increasing advancements in technology has led to the deployment of
more complex and computationally intensive image processing algorithms. Many of these algo-
rithms have been adopted in present-day embedded systems targeting a variety of applications
such as automotive, 3D navigation, surveillance, etc. However in real-time embedded systems,
where latency and power play an important role, software-oriented implementations running
on general purpose CPUs may not offer satisfactory solutions.

The purpose of this thesis is the design of an image processing system for embedded applica-
tions, its deployment on a System-on-Chip (SoC) platform and the evaluation of the developed
system. As a case study was selected the Harris Corner Detector algorithm, in a real time system
getting the input image from a camera. The thesis focus on the acceleration of the Harris-Corner
Detector algorithm on the Tegra X1 GPU SoC. More specifically, we examine different ways of
communication between CPU-GPU and various programming techniques on GPU with respect
to the execution time and the power consumption. Experimental results show an acceleration
of up to x74 compared to a pure software implementation on ARM Cortex A57 using CUDA C.
Thus, we can easily implement a real-time corner detection getting the input from the camera,
without observing any frames latency. In addition, the thesis focuses to the comparison between
CPU-GPU and CPU-FPGA (ZC702) combination for the best acceleration of the application.

Keywords— GPU, CUDA C, Image Processing, System-on-Chip, Harris Corner Detector,
Embedded System, Tegra x1,Maxwell architecture
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Extetapevn Iepiindn

Eioaywy

O topéac g emelepyaciag ewodvag xar ot ahyopriuol Tou amoTEAOUY UEYIAO XOUUATL TNG
cLVEYOUC TEOGBOUL oL €yl emTUyeL 1) Teyvoloyia. [ToAlol and touc ahydpripoug autols €youy
vtodetniel and evowpaTwPEVH CUCTHUATO To OTola GTOYEVOUY OE EQPUPUOYES OTLS 1) AUTOXIVNTO-
Bounyavio, n 3D mhoRynon xAn. 201600, Ta EVOWOUAUTOUEVN CUC TAUATO TRUYUATIXOU YEOVOoU,
AOY® TNG XUG TERNENG UETAUPORES BEBOUEVLV OANSL XAl TNG XATAVIAWOTS LoYVOG BEV UTOEOVY Vi
umootTneléouy avormolnTixd TéTolou eldoug EQupUOYES U EMECERYUOTES YEVIXTS YPN\OTS.

Hpoxewévou vo avgnldel 1 anédoon/watt, didpopes mpooeyyioe €youv tpotadel 6mou eet-
OixeLPEVO LAXO Yenoudomote{ton napdhinia ye Ty CPU yia tnv emitdyuvon xplowuewy Tunudtony 1
oouUn xat ohOXANewY akyoplduny. Ot tpooeyyioeig autéc Baotlovton ot BLdPopous GUYBUACUOUS
oe eninedo cvothuatog, 6mwe CPU-DSP, CPU-FPGA xou CPU-GPU. H napoloo Simhwuortinn
mpoydatevetar Tov CPU-GPU cuvduaoud xow oxomelel oty xahOTepn EXUETIAAEUCT] TOU OOTE
vo emTOYEL To xahUTepo duvatd performance per watt oe wa egopuoyy| enelepyasiag euxovag,
Tov alyopwiuo Harris, aviyveuty| ywwioy, xodog xar va ouyxpwiel ye tov CPU-FPGA cuvou-
0OUO, TEOXEYWEVOL VOl Amo@avioUUE Yiol TNV TO AmO00TIXT| TAATPOPUA TOU UTOPEL Vo UTOG TNeilet

TNV EQUOUOYY| AUTY).
ITAatgpdpoua YT Aormolnong

H evowpatouévn mhatgpdopa méve otny omolo Yo emtoyuviél o adydprduog Harris ewvon 1
NVIDIA Tegra x1. ITpbxetton yia pio evowpotouévn mhatgopuo (Lvotnua oe Unpida) xataoxeuao-
uévn amo v NVIDIA 7 omolo mepiéyel évav ARM enelepyaoty| xou pla GPU opyitextovinc
Mo weh.

Lo ouyxexpéva 1 mhatpopua Teypa =1 teprhopfBdver:

e ARM Cortex A57/ A53 64/32-bit CPU apyttextovixt| 1 onofo mpoo@épetl anddoan xou
YOUNAT XATAVIAWOT)

o Maxwell GPU opyitextovin| ye 256 muprivec ©OTe Vo eTTOYEL XOPUPAES ETIOOOELS XAl
AmOBOTIXOTNTA Loy VOGS Yia EQUPUOYES eTeCepyaciog VIS xot Oyl HOVO

Yty Ewéva 1 napoucidletar n opyttextovint| tne that@opuoac NVIDIA Tegra x1.

‘Ocov agopd T CPU  anotehetton and 4 ARM Cortex A57 umirc amddoong muprives xan 4
younAhc xatavihwone ARM Cortex A53 muprivec. O ARM Cortex A57 enelepyoaotic Lolpdleton
uloe 2MB L2 xeney| uviun, xodog xdide muprivag dtodétel pla 48KB L1 xpugr) uvrun evioAody xou
ula 32KB L1 xpugry uviun oedopéveyv. H GPU, o emtoyuvtfc Tng EVOWUATOUEVNG TAXATPOOUOG
uoc, aroteke(tan omo Graphics Processing Clusters (GPC), Streaming Multiprocessors (SM) xou
eheyxtéc uviunc. H Maxwell GPU oto Tegra x1 anoteiéiton ano 2 SMs mou 1o xodéva cuvohixd
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Maxwell
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4k 60 fps LPDDR4 Video

Display memaory Encode
controller controller Decode 4 A57

4k

Securi Dual
Offloads HOMIZ0  picle, W4 A53

SPI Audio
SDIO engine

Ewoéva 1: Apyitextovinr) Nvidia Tegra x1.

mepLEyel 128 muprvee. Xuvenwg cuvolnd 1 GPU pog dwodétel 256 muprvee, yeyovog mou Yo pog
YEEWOTEL 0TV a&lOAGYNOT TNS AmOBOoNC TNG EQUPUOYHAC Uoc. TNy Ewdva 2 mapouctdletar 7
apyrtextovxt] Tng GPU oty NVIDIA Tegra x1.

H xapoid plag GPU eivar to SM. Xtny neplntwo| pag 1 Tegra x1 diowdéter 2 SMs, 1o xadéva
ond ta omofo, (SMM omoxodetton ot Maxwell apyitextovixt|) meptéyel 4 dpogoloyntéc wrap
omou xdde BpopooyNTAC elvor txavog va Teélel 2 evioléc Tou xdide wrap ava xUxho. Kdde SMM
amoteheiton amo 128 muprvee, Toug Bole Tou Tépous xadne xou buffering evioawmv. Ytnyv Ewxdva 3
nopouotdleton 1 apyrtextovix Tng GPU oty NVIDIA Tegra x1.
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Ewoéva 2: Apyttextoviny) GPU otnv Nvidia Tegra x1.
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€orm  Gomw

Ewéva 3: Apyitextovue| SMIM otnv Nvidia Tegra x1.



ITooyeappatiotixd Moviého CUDA

To mpoypouuoatiotind poviého CUDA emitpénel 6Toug TpoYRouuaTio TEG VoL TRy UATOTOLOUY EQoo-
woyéc oe etepoyevy ouothuata CPU-GPU. Ané tnv oxomd tou mpoypauuatioTts yivetar 1 e€rg
OLdxpLo):

e Host: n CPU xat n pvAun g (host memory)
e Device: n GPU xou 1 uvun e (device memory)

A€En »hetdl yio To povtého pog eivon o kernel, o xwdwac-cuvdptnon mou exteieiton ot GPU.
Mio CUDA egopuoyt) anotekeitar omd oetptaxd xwddxa (host, ypoppévog oe ANSI C) xon and
ToEAAANAO HDOLX (device, yeauuévog o CUDA C).H XAAVTERT] AHOOCT) TOU GUGTHUATOC TEQRAL
amo TNV XUAOTERT BUVOTH TEPLYEAPT) TOU OF TUPIAANAD YOO ETNEEALETOL XOL ATO TUPAYOVTES
mou oyetilovton we o Ao g GPU. O tpdnog opydvwong twv threads xau blocks o o tpémog
uetapopdc dedouévmy uetalh CPU-GPU eivar xdnotol and toug mo onuavtixols napdyovIed.

Opydvwon twv threads / blocks armotehel n emhoyy| tou apripol twv blocks péoa oe éva grid
xou Twv threads péoa oe éva block, xadne xou ot dlotdoeg Toug. O yevixdg xoavévag yio Tov
TEOGOLOPIoUO Toug elvon OTL TEETEL 0 apLiuog Twv threads va eivon TohhamAdolo tou 32 péoa oe
eva block xa vo uny drnutovpyolvton threads ta onolo var yévouv adpovy).

O TpoTOC UETAUPORAS BEDOPEVLY UTOTEREL XpNTIXd ONUED OGOV aPOoEd TIC ETEQOYEVEIC apyLTex-
Tovwés. H meplntowon pag BéBona, pag euvoet agod o CPU xaw GPU powpdCovton xowv)y DRAM
uvAun. Tloag” okt awtd, 1 ovéryxn yia Ty xoAOTepn emhoyr Tou 1pémou emixovwviog CPU-GPU
TOEOUEVEL.

Ou tpomot yetagopdc mou emitpénet  GPU elvon o e€vc:

e Classic TpoTO¢ YETAPOLC - amouTelTan SECUEUOT) Y WEOL UVAUNG oTo host xou oTo device, xau
METOPORE. TwV OEBOUEVLY

e Pinned tpémog petagods - amouteiton SEGUELUTT) YOEOL uvAuNg oTo host xou oto device, xau
HETOPORE TwV BEBOUEVLY TN oTtolag 1 xaductépnor elvar TOAD uixer

o Zero-Copy TpOTOC UETAPOLS - ATOUTELTAL BEGUELTT] Y WEOU UVAUNS H6vo oTo host Aev amantei-
TOL PETAPOEE TOV OEDOUEVLYV

e Unified Virtual Address (UVA) tpémoc METOPOAC - UMOUTELTOL BECUEUTT) YWOEOU UVAUNG HOVO
oto host Aev amanteiton YeTapopd Twv BeBOPEVLDY

e Pitch tpoémog petagodc - amouteiton deoucuoT yweou uvAung oto host xou oto device, xau
HETOPORE TV OedoUEVeY 1 ottola emitpenel amd 1 GPU mo anodotiny| npdoffacn ota Oe-
oopéva

To amoteréopator TV TUEUTAVE TEOTLY Vo Pavoly TUPUXAT® OTU TEWUUAUTIXG UTOTEAECUATA.
Téhog yiow TNV xoh0TeRn AmdBOCT GUVICTAVINL TEOYEUUUATIOTIXES TEYVIXES, Wla and T omoleg
elvon 1 yenon TS xOWVhAC UvAUNG (shared memory), ular youninc xaduotéonong uvhAun Ty onola
Vv potpdlovton petoly toug ta threads mou avixouv o éva SMM. AZiler va onueiwdel mwe
7 shared uvAun xou n L1 xpugy, uviun améyouv Ayotepo arno to SMM and ot n L2 xpuen
uvhun xou 1 global pvAun. T Tov Adyo autd amotelel TOAD BNPOPIATY ETAOYT 1 POETWOT GUY VA
YENOWOTOLOUUEVWY dedouévey aro Ty global otny shared pvAun xou 1 extéheon toug amo exel.
Trv teyviny| auty| TV e€eTdloVUE TOEUXETE.
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ANyopwpog Harris xouw v vAomoino? tou

O ahyopripog Harris eiorydnxe ano toug Chris Harris xou Mike Stephens to 1988 ue oxond
™ Behtiwon tou alyoplduou Tou Movarek yio aviyveuon ywviov. Aéyeton g elcodo pio grayscale
emdvaL xa avty veleL TIC YOVIES NS (onuela oty Eixévo Tou Tapoustdlouy oNuovTxy TomxT dtoxd-
HovoT oV EVTaoT 0 OREC TIC XUTEVIUVOELS), Ol OTOIEC UTOPOVY VoL VLY VEUTOUY ETOVELATUUEVYL
ue apxeTr axpiBela xdtw and dupopeTinég ocuvirxes. H dnuogiiia Tou Harris xou ot mowiieg un-
ONOYIOTXES TEYVXES TOU (T.). CLUVEMET, oTadepric xou xvnThAC UTOSLIG TOAS oEtdunTINY)) *évouv
Tov Harris o 18lodtepa avTImpocWTEVTIXT EQUEUOYY| VLol TOUG OXOTIOUE TNG ERYATiag.

[N xdde etxovootoryeio, o ahybprduoc Harris unohoyilet tnv 80vaun pac yoviag (“corner-
ness”) olpgwvo e tov tomo R = 212 — (I,1,)2 — 0.04 - (I2 4+ 12)2, 6mou 12,12 xou LI, aviimpoow-
mebouv ta Gaussian-smoothed ywoueva twv Topoy®yYwy TNg ewovog, ta onola unohoyilovia
uéow evog gihteou Sobel. Twéc tou cornerness mou LTEEBAVOUY EVal GUYXEXQWEVO OPLO YO TIC
aVTIC TOLYES TWES TGV UTOAOLTIWY GE L0 YELTOVLA 3 X 3 TOU U6 £Z€TAOT ELXOVOG TOLYElOU (amoteholv
ToTIXO péytoro), optlouv ywvieg otny eodva 6mwe otveton otny Eixdva 4.

Ewéva 4: Kpttriplo emhoyrg Yooy

I tnv vhorolinor tou odyoplduou otny Tegra x1, anoutodvtan Tar e€Hg Brivarta:

o Kartaoxeut| tou Iz, Iy ye ouvélln tng emoévag pe tov 5 X 5 Sobel operator

o Kotooxeuh tov T2, Iy?, Ixy Sedouévey tov Iz, Iy

o Kotooxevh véwy 122, Ty?, Txy pe cuvéNEn tov ey T[22, Ty?, Try pe 7 x 7 tap kernel

e Trohoyiopés tou R = LI — (I,1,)2 — 0.04 - (IZ + I2)? dedopévey tov véwv T3%, Ty?, Iry
Yy Ewoéva 5 galvovtar to T0c0cTd TG Ypovixig Odpxelag ovd Briua yior SlapopETIXES

avahboelg exovog otny NVIDIA Tegra x1.
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Harris execution latency percentage per step for different image sizes.

49

11%

t;or = 43.96 msec tior = 574.86 msec

(a) 512x384 (b) 1024x1024

t;o: = 2508.02 msec tior = 11774.4 msec

(c) 2048x2048 (d) 4096x4096

B 7x7 convolution M 5x5 convolution Others

Ewdéva 5: TTocootd 1wy empépoug cuvapthoeny Tou alyopituou Hopelg yio Stapopetind pueyédn
eovaC

Eivou gavepd mwg mpotepandtnta oty emtdyuvon ue GPU €youv ol 800 Siodidotateg cuvehil-
€1C xou €A 1) 7X 7 ouvENET. TTop” dhor auTd, yior Vo amopUyYOUUE TNV avery X METOPORAS BEBOUEVGY
uetolh CPU-GPU, Aettoupyio dwitepa ypovofBopa, extelolue Ao To BAUATA UTOAOYIOU®Y GTN
GPU. O tpémoc ue tov omoiov to xdvoupe auto eivon o e€hc: xde thread avtiototyiletan oe éva
pixel Tng emdvag TopdAAnia. AUTOUATME QUTO CNUALVEL TWE O GLUYORXOS oELIUOS Twy threads pe
ToVv onolov opyavmvoule Tov kernel pag elvon 0 cuvohixdg apriudg Twy pixels Tng ewdvog pag Tou
€)OLUE VoL ETEEEQYUC TOUYE.

ITépa amo TiC TEYVIXES TTOU U TROGPEREL TO TEOYPoUUATIO TG poviero Tng CUDA, e€atpetind
omoteléopoto em@EpeL 1) ahyoprduy| Teyvixy g SlayweloTixdtntag (separability). ITpdxeiton
oTNv oucia Yot tAAXYT) TOU TEOTOL UE ToV 0Tolo UTOAOYILEToN Lot BLoBIG ToTr) CUVEMET, AL OV-
TOG TOV TPOTO TOU (POPTMVOVTAL X0t ATOUNUEVOVTAL To DEBOUEVAL TNG EMOVICS, TEOCPELOVTIS ETOL
MY OTEREC UETUBAOELS OTNV UVAUY] XUl CUVETWS UXPOTERO YEOVO EXTEAECTC.

H ouvéh&n plagc M x N exdvae pe évav P x @ kernel (6nwe ovoudlouye tov mivoxo ue tov
omolov cuvehicoupe pio eéva) amawtel M x N X P x Q TohhamAacLacpols xal tpoc¥écelc. Av
6unc o kernel pog eivan Staywpioog (Umopet va TeoxOel wg ToAamAaCLopOS Piog OTAANG xou plog
Yeouurc) TOTE 0 UToAOYLoPOC TN BLodidoTatng CUVEMENS Uag Unopel Vo uTtoloytoTel ot 2 Bruoto.
Ye pio govodidototn oUVENMEN T ewdvac pe TN ypouuh-topdyovia(M X N x P mpociécelg
xou ToMomAactaopol) xou ot uior GhAn HoVOBLIoTATY GUVEAET TOU AMOTENECUUTOC UE TN OTHAN-
nopdyovia(M x N x () npocdéoeic xou TOMATAACIUOPOL). LUVETMS, 0 cUVOAXOS aptdudc Twy
ned&ewv etvan (M x N)(P + Q) capode uxpdtepoc ano 1o M x N x P x @ dtoav mpoxeitar yio
P,Q ueydhoug apripoic. Me dhlo Aoyl omwe Yo Sellouue xon GTo TEQLOOTIXG ATOTEAEGUOTA O
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TEOTOG TNG Ol WELCTIXOTNTAS ouvicTaTal UOVo Yia kernels ye ueydheg dlaotdoels.

Hetpocpocnxo’c ocrcors)\éoptoc‘coc

‘Onwe €yer Non avageplel, €vag amd TOUC O GNUAVTIXOUS TORAYOVTES YIoL TNV OTOO0CT) UG

egopuoyrc oe GPU eivon o tpdmog petagopdc dedopévev aro CPU o GPU xou avtiotpoga.
Yy Ewxéva 6 mapouctdletar 0 ouvolxdg ypeovog TN EQUpUOYAS Yo BlapopETIXOUS TPOTOUG
emowvoviog. Ilpdxettan alyoprduxd Yoo Tov To amhd TEOTO EXTEAEOTS TNG EPUPUOYTS, Yweic
TEYVIXES oL avapEpUnay Topomdve.  TIpdxettan yio Tov Aeyouevo "naive' tpémo 6mou xdie
thread enelepydleton €va eixovooTtolyelo mapdhhnha.

Naive Implementation for 512x384

3} v
>
50 Qo b‘@ —
(2]
E w0
£
5 30
o
[0}
S 20
9 "%
O N O > ™
T 10 " o7 o .
S
. m m m N
Classic Pitch Pinned Unified UVA Zero-Copy

Data transfer way

Ewdéva 6: Xpdvog aviyveuong ywvimy yia SLldpopous TedToug emxovmviag yio exodva 512x384
pixels

‘Eyovtac mAéov Lo O€a yior TNV CUUTERLPOEE TOU xdle TEOTOU PETUPORAS amd TNV Eudva 6,
MTOPOUUE €0XOAN VO GUUTIERAVOUUE TS TOUAGYLGTOV YL TNV EQUQUOYT UAC, OEV GLVICTAVTOL OL
tpémol Unified Virtual Address (UVA) xa Zero-Copy. Xtnv Ewxéva 7 nopovotdloupe toug ypo-
VOUG TNG QVEYVEUOTS YOIV -TNG CUVOMXAC EQUOUOYNG- Yol DLUPORETX00S TPOTIOUG UETUPORHC
(ext6¢ 1wv UVA | Zero-Copy mou Toug anoxAelcope) yiar SLopopeTxéc avahloeLS eOvoC.

Naive Implementation for all resolutions

/g 300 —@— Pitch
I | - A~ Unified
= 200
: —--4-— Classic
2
5 |l - Pinned
o 100
o
=
-

0 M=

512x384 1024x1024 2048x2048 4096x4096

Image resolution (pixels)

Figure 7:  Xpbdvog aviyveuong ywvlmy e naive TpOTo yia dldpopeg avahloelg OV
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Hapatneolue mwg yior dAo To pey€dn o omola EpeuvollEe, oL xahOTEPOL TPOTOL UETAUPORAS Elvar
o classic xat o pinned tpdTOC UE ParvoUEVIXA xaia BLaPOES GTOUS YPOVOUS. LUVETMS O XUAVTEROC
TeoTOoC Vo xpLdéL YeTald Tev 600, ue TEwpaduaTta Tou Vo 00UV AETTOUEPECTEQO AMOTEAEGUATAL.

‘Onwe avapépdnue napondve, 1 xowr wvAun (shared memory) anotehél dnpopiiéototn emt-
AOYY| TWV TREOYEAUUUITIO TGV Yia TN BeAtiwon Tng amddoong Twv egapuoyomy toug. 'Etot, xa otny
TEPIMTWOY| UUC UTOTEAECE TPOTEQUUOTNTAL VO EQEUVACOUNE QUTHY TNV TEYVIXY| Yo TNV XAAUTEEN
duvaty an6doon Tou cucTHUaTog. O TEdTOC PE Tov oTolo Yenotuomololue anodoTxd T shared
memory TopouctdleTton oty Ewdva 8:

Image in the GPGPU memory
(Apron is not considered.)

/ Filter-size portion
ﬁ%

111111111 111
1231132231 123
131]1161421 131
141571121

171121121 /'r_;.(._}
153232231 :
192161421 -101 -
141571121 20 2
1111111111—1[}1

Image block in Filter kernel
shared memory

Ewoéva 8: Tpdnog uhonolnong ue xengr| uviun

Kde block poptdvel amo tnv global ot shared uvrun evay mtivaxa e Slaotdoelg Tng emhoyhc
woc. Amo exel, o kernel ta @optdvel yia Tic Acttoupyieg Tou, TEdyUd TOU XAVEL TIC TEOCBACELC
mo yeryopes. To mpdfAnua 1o onolo xahoduacTe Vo avTHIETOTICOUUE lvon To axplavd pixels Tou
OTOUTOVVTAL Y10 TOV UTOAOYIOUO TNG xde véag Tiunc Tou block tng emdvag. Autd onuaiver tog av
n axtiva Tou kernel pag ebvar a %o 1o block pog Wéhouue va €yer dlactdoelg b x ¢ toTe 0 mivaxog
ot shared pviun emPBodieton v €yel Srootdoec (b+ a) x (¢ + a)

‘Etot, Bdoel autol, ahhd xou Tou yevixol xovéova oTL To cOvoho Twv threads oe évo block
TeENEL va elvon To TOALU 1024 %o TOAAATAGGLO TOU 32, CUUTEQUVOUNE TIw¢ Ol TWIUVES BLUOTAUOELS
TWY TVAXOY 0TI ontoleg Yo amotnxeuTtody To dedouéva ot shared puviun etvon ToAd teploplouéveg
xou xatorypdpovtar otov Iivoncor 1.
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Table 1: Possible dimensions of blocks-arrays in shared memory

5x5 tap kernel | 7x7 tap kernel
4x4 2x2
12x12 10x10
28x28 26x26
28x12 26x10
12x28 10x26
28x4 26x2
4x28 2x26
12x4 10x2
4x12 2x10

Avalnrovtag Tig dlaotdoelc tou Yo pog tpocgépouy BéATioteg Aioelg, oTic Eixdvee 9 xou 10
nopovotdloviar ot ypdvor exTéreons Twv BVo BlodldoTtatwy cuvekiZewy (5 X 5 % 7 X 7) yi
4096 x 4096 pixels hote va aivovian EUXORGTERPA OL BLAPOPES TWV YPOVWY UTOAOYLOUMY TOUG.

5x5 convolution time vs. block size of shared memory

40 AN

35 % &
30 A°

o
<)
T B VoA e N
© A\ © SN
20 ¢ 57 N

5x5 convolution time (ms)
= =
o o1 O O
—
|

28x28 12x12 4x4 28x12 12x28 28x4 4x28 12x4 4x12 naive
Shared block size (pixels)

Ewéva 9: Trohoyioude tng 5 X 5 cuvéh&ng uetall naive xou shared tpomou

7x7 convolution time vs. block size of shared memory

1200 o

800
600
400 o N
200

7x7 convolution time (ms
—
o
o
o
%
X
%
z
<
%
CP\Q
%3
o
<
2
&7
99
<
%
4
<
)
d)d)
X
7o

II’I‘II 1

26x26 10x10 2x2 26x10 10x26 26x2 2x26 10x2 2x10 naive

Shared block size (pixels)

Ewxoéva 10: Trohoyioude e 7 X 7 cuvéhiing uetall naive xou shared tpomou
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5x5 convolution time between naive and shared way

S

— 30 2

£ 2

(]

£ 20 shared '\Q)Q)

+ ..

5 15 Hnaive b

% 10 b:\’ o

5 .

SN RN RN N B

(&)

- 0 .

& 512x384 1024x1024 2048x2048 4096x4096
H] Image Resolution (pixels)

Ewéva 11: Trohoylopds 5 X 5 ocuvéhéne uetalld naive tpémou xou shared

And Ty mapamdve exovo ETAEYOUNE TIC BlaoTdoelS 28 X 12 xon 26 X 26 yiot Tic 5 X 5 xou 7 X 7
ouveMielc avtiotoyo. ‘Etotl, oty Ewoéva 11 xaw 12 napoucidlouue toug ypdvous UTtohoyiouo
TV 500 GUVEAEEWY EEYWELOTA YLoL TIC OUVIXES OLUCTAOELS Yo OAEC TIG ELXOVES TIOL O EVOLUPECOLY
CLYXELTXE UE TN naive LAoTolnoT Toug.

7x7 convolution time between naive and shared way

(b.
g

—~ %

250

E

QE) 200

= shared Q

S 150 Ny

. "

_45, 100 Hnaive N Q)‘b‘b‘

Q 5 Oy

S0 e A B

v 0 _—

N~ 512x384 1024x1024 2048x2048 4096x4096

Image Resolution (pixels)

Ewova 12: Trohoyioude 7 X 7 cuvéhing Uetall naive tpoémou xou shared

Arno tic Ewdveg 11 xou 12 yioo v péypl otyunc avalAtnoy| hog yio xaAUTERY anddocT T
ouumepdopata TeoTelvouv TNy Yenorn tng shared pvAung xou yia Tic 600 cuVEMEELC.

‘Onwe umg avaepinxe, 1 TEYVIX TN LY WELC TIXOTNTS QPUiVETOL TOAAY UTOGYOUEVT] OTAY
TeOXEToL Yior BlodldoTateg ouvehlZelg pe kernel yeyding axtivoc. Xtic Ewxovee 13 xou 14
Topouctdaloval oL YedVoL UTOAOYIOUOU TeV 8U0 GUVEALEWY EEYWEIGTY UE TOV naive xal ToV Ol
AYWELO TG TEOTO.
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5x5 convolution with naive and separable way

o 40 Y- ——
) M separable ) )
£ 30

=

g H naive

- 20

=)

2 10

c A PAN

2 0

ok 512x384 1024x1024 2048x2048 4096x4096

Image Resolution (pixels)

Ewova 13: Xpdvog extélecne Tou UTOAOYIGUOU TNG oLUVENENS 5 X 5 yio naive xau yia separable
TEOTO

7x7 convolution with naive and separable way

>
— v
§/250
GEJ 200 W separable
)
_5 150 H naive
_*g 100 o
S \2)
S 50 > & S >
8 N o7 Y
'5 0 |
512x384 1024x1024 2048x2048 4096x4096

Image Resolution (pixels)

Ewoéva 14: Xpdvog extéleons Tou UTOAOYIoUOU Tng oLUVENENS 7 X 7 yio naive xau yia separable
TEOTO

And TIC TopATAVE EXOVES, CUUTEQUIVOUUE OTIMC TEQUIEVOHE, TWS 1) OLOWELOTIXOTNTA o)L
HOVO DeV w@ehel TNV GUVEMEN & X 5 ahhd TNy emBaplvel auEdvovTag TOV YPOVO TOU UTOAOYLO-
pol¥ tne. Avtileta, mapatneolue Teg yior T GUVEALT 7 X 7, 0 YpOVOS UEWWVETOL EVTUTILOLOXS
TEPTOVTAG TUPATAV® omd To wod. [a vy emhoyr g xahlitepng emtdyuvong mou avalnTolye,
ot Eixdveg 15 xon 16 napovoidlouye 0 olyxplon UETOED TV TROYEUUUATIO TIXWY TEYVIXWY TOU
0OXIUACOUE Yo Tal ETLUEPOUS BrUoTol TV GUVEAILEWY.
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Comparison of 5x5 convolution for the best
acceleration

)

£ 40 > - —
~ shared ‘19 ®
o N5}
£ 30 W separable v

Z Hnaive Q;p

o 20 N

5 N N A® o

o 10 A2 Y9 ™

2 Q2 O P NN

8 o

2 512x384 1024x1024 2048x2048 4096x4096
)

Image Resolution (pixels)

Ewova 15: Xpdvog extéheonc Tou umohoyiogol tng cLvEAENS 5 X 5 yla naive , separable xou
shared tpémo

Comparison of 7x7 convolution for the best
acceleration

0 Vv
2 .
E 250 P
Cé) 200 shared

42 150 M separable ,Q,Q N

.2 M naive 5 O)

5 100 N 9

o) b( b( - P

S 50 N R AN GO v

8 o — |

E 512x384 1024x1024 2048x2048 4096x4096

Image Resolution (pixels)

Ewoéva 16: Xpodvog extéheonc tou unohoylopol tng cLvEMENG 7 X 7 yio naive , separable xou
shared tpomo

‘Oneg Aoy avoeVOUEVO 1) SlaywEoTiXOTNTa 8ev euvoel TNy 5 X 5 cLVEMEN. Euvoel duwcg
™V 7 X 7 cUVENEN plyvovTag ToV Yeovo LTOAOYIoPoU Tng oto pod. Méoo amo tnv olyxpelon
TV Exévev 15 xou 16 mpoximtel 1 dour| tng BEATIOTNC Abomg oL TPOGPEPOUUE GTNY TapoVoH
otmhwpatixt|. Xenon shared puvAung yio Ty 5 X 5 cUVEALT), ye\on Bl WEIGTIXMY GUVEMEEWY Yid
™V 7 X 7 cuvéM&n xou naive pédodog yia Tor UTOAOLTA BUATO TNG EQUPUOYHAS TTOLU EXTEAOUVTOL
otn GPU.

‘Eyovtag yvoorn avtol, otny Ewdva 17 cuyxpivoude toug ypdvoug extéAeons Tng GUVOAIXYS
epappoyfic Finding Corners aviyveuone ywviayv yio Toug classic xau pinned tpdmoug petopopdc.
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Comparison between classic and pinned way of
transfer vs. image size

/\
200 Qv
classic Y

)

E 150

9} H pinned

£ 100

é >0 @ q,c-g) ,\}f?%

é 0 R

£ 512x384 1024x1024 2048x2048 4096x4096

Image resolution (pixels)

Ewoéva 17: Y0yxplon v 600 EmxpatolvIwy TEOTWY HETUPORIS

Anéd v Ewéva 17,cuunepatvoupe mwg yior eixoveg Uixpotepes tov 1024 x 1024 euxovoo-
Totyelwv ouvictatar o classic TpdTOC xon Yiol EOVES UeYaAlTEREC ouvioTaton o pinned TEOTOC
uetapopdc. ‘Eyovtoag xatahnier otny BEATION EMITAYUVOT TOU UTOROUUE VO TPOCPEQOUNE UE TNV
mhoxéta Tegra x1, oty Ewdva 18 moapoucidloupe to %€p00¢ To onolo xepdloaue cUYXQITIXG e
Vv extéheon tng egapuoyrc o évav ARM Cortex A57 CPU.

Speedup gained vs ARM
x73

-
-
-

512x384 1024x1024 2048x2048 4096x4096

Image resolution

Ewoéva 18: Xoyxpion yetald Tegra x1 xou ARM Cortex A57 CPU

‘Onwg €yel HoN avopeplel, 1 %xaTavdAnon 1oy 00¢ amoTeAel €var TOMD xpitixd onueio otny
ETUTAYUVOT) EQUPUOYWY UE EVOWUATWUEVE UG THUaTo. 'Eyovtag xatahniel otn BEATIOT -%0Td TOV
Ypovo extéleonc- uédodo, oty Ewdva 19 napousidlouue TNy cUVOAIXY XATAVIAKOT] Loy VO TOU
Tegra x1 yio xapio epapuoyn, epoapuoyt Tou aryoplduou yio 512 x 384, 1024 x 1024, 2048 x 2048
xar 4096 x 4096 pixels eixovac.
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Average Power Consumption for different Image sizes
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Ewdéva 19: Katavdhwon woybog tou Tegra x1 yio Stopopetind uey€dn ewxdvog

20yxeLon TV entayVVoEwyY Tou aiyoplduou Harris oe

NVIDIA Tegra x1 »xouw ZC702

‘Onwe €xel Mo avagepiel, oxonde Tng Tapoloug SimAwuatixig etvar vor cuyxerdel 1 emitdyuvon
mou emtUyape péow tou Tegra x1 CPU-GPU-SoC, e tov ZC702 CPU-FPGA-SoC, npoxewévou
VoL Amo@avIOUUE YLOL TNV TO ATOBOTIXY) TAATPOQUO TTOU UTOREL VoL UTOGTNRIEEL TNV EQURUOYT| AUTY.
'Etol, otic Ewdveg 20 o 21 mopouctdlouye Toug Ypovoug eXTENEONS TNG EQopUOYAS Yiol 600
EVOOUUTOUEVES TAUTPOPUES TIOU EQEUVOULE.

Execution time on Tegra X1 vs. Zynq-7020 for
512x384 image

—
o

Execution Time (msec)

Zyng-7020 Zyng-7020 Zyng-7020 Tegra x1
200 Mhz 250 Mhz 300 Mhz

Ewdva 20: X0yxplon yeovev extéheons twv BeAtiotonoimnuévey akyopliuwy Harris oe Tegra x1
xou ZCT702 v 512 x 384 pixels emdvec
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Execution time on Tegra X1 vs. Zynq-7020 for 1024x1024 image
45

40 M 1 Harris engine 2 Harris engines M Tegra X1
35

30

25 y

20 o
15 x1.67

10

5

0

Zyng-7020 Zyng-7020 Zynqg-7020 Zyng-7020 Zynqg-7020 Zyng-7020  Tegra x1
200 Mhz 250 Mhz 300 Mhz 200 Mhz 250 Mhz 300 Mhz

Eexecution Time (msec)

MANANN

Ewdva 21: X0yxplon yeovey extéheons twv Bedtiotonoimnuévey aryopliuwy Harris oe Tegra x1
xou ZC702 v 1024 x 1024 pixels etxdvec

Amé tic Eudveg 20 xan 21 gaivetar nwg n CPU-GPU vhornoinon urepéyel aro tnv xallbTepn
viotoinon touv CPU-FPGA (2 engines, 300 MHz) xoto x2.1 xou x1.67 yio eixdveg 512 x 384
xon 1024 x 1024 pixels avtiotouya.

‘Ocov agopd TNV xotavdiwon woyboc, oty Ewdva 22 tapovoidlovue Tic Tég oe Watt mou
HETERUMMAY Yiar T 6V0 mAaT@opues. Etvor gavepd mwe 1 Tegra x1 xatavolodver 2.7 neplocdtepo
oYV and 1o Zyng-7020.

Power consumption of Tegra X1 vs. Zynq-7020 for 1024x1024
image
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Average Power Consumption (Watt)

INNEEN

Zyng-7020 Zyng-7020 Zyng-7020 Zyng-7020 Zyng-7020 Zyng-7020  Tegra x1
200 Mhz 250 Mhz 300 Mhz 200 Mhz 250 Mhz 300 Mhz

o

Ewoéva 22: Xiyxpon xatavdhwone toyvog yetald Tegra X1 xaw ZCT702 yr 1024x1024 pixels
EMOVOC
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Chapter 1

Introduction

1.1 Image Processing on Embedded Systems

Image processing is a method to convert an image into digital form and perform some
operations on it, in order to get an enhanced image or to extract some useful information from
it. It is a type of signal dispensation in which input is image, like video frame or photograph and
output may be image or characteristics associated with that image. Usually Image Processing
system includes treating images as two dimensional signals while applying already set signal
processing methods to them. It is among rapidly growing field today, with its applications in
various aspects of technology. Image Processing forms core research area within engineering
and computer science disciplines too.

The operations of Imagine Procdessing can be grouped according to the type of data that
they process as presented in Figure 1.1.

Objects Recognition
Classification
Features Intermediate Level
Segmentation
Pixels Low Level Preprocessing

Figure 1.1: Image processing pyramid.

At the lowest level of the image processing pyramid are those operations which deal with
the raw pixel values and can be though as prepossessing steps like distortion correction, con-
trast enhancement and filtering for noise reduction or edge detection. At the middle are the
algorithms which utilize results from the low level processing and at the highest level are those
methods which attempt to extract semantic meaning from the information provided by the
lower levels.

An embedded system is some combination of computer hardware and software, either fixed
in capability or programmable, that is designed for a specific function or for specific functions
within a larger system. Industrial machines, agricultural and process industry devices, auto-
mobiles, medical equipment, cameras, household appliances, airplanes, vending machines and
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toys as well as mobile devices are all possible locations for an embedded system. They are
getting more and more common in cars, cameras, and even on washing machines and fridges
like auto-focus cameras, battery chargers, cell phones, temperature controllers etc.

Embedded systems are particularly well suited to process data streams at high speeds with
fairly small programs, that is why recent years have witnessed a dramatic increase in the use
of embedded systems to run image processing applications. Other than on CPUs, data can be
processed in a highly parallel fashion, with high speeds and low power requirements.

1.2 GPUs in Image Processing

A graphics processing unit (GPU) is a specialized electronic circuit designed to rapidly
manipulate and alter memory to accelerate the creation of images in a frame buffer intended
for output to a display device. Modern GPUs are very efficient at manipulating computer
graphics and image processing, and their highly parallel structure makes them more efficient
than general-purpose CPUs for algorithms where the processing of large blocks of data is done in
parallel. It is also becoming increasingly common to use a general purpose graphics processing
unit (GPGPU) as a modified form of stream processor (or a vector processor), running compute
kernels. This concept turns the massive computational power of a modern graphics accelerator’s
shader pipeline into general-purpose computing power, as opposed to being hard wired solely
to do graphical operations. In certain applications requiring massive vector operations, this
can yield several orders of magnitude higher performance than a conventional CPU.

GPUs are made of a large number of processing units which by themselves aren’t very
powerful, but become formidable when used in tandem. So, if you have processing to be done
that is parallelizable, the GPU will be a great fit. With that in mind,it is almost obvious
that image processing is a great fit for GPUs. A lot of image processing algorithms are data-
parallel, meaning the same task/computation needs to be performed on many elements of the
data. Lots of image processing algorithms either operate on pixels independantly or rely only
on a neighborhood around pixels (like image filtering).

1.3 Thesis Goals and Organization

Nowdays many advanced algorithms have been adopted in present-day embedded systems
targeting a variety of applications such as automotive, 3D navigation, surveillance, etc. However
in real-time embedded systems, where latency and power play an important role, software-
oriented implementations running on general purpose CPUs may not offer satisfactory solutions,
because of the fact that CPUs have limited parallel processing capabilities to support the
performance requirements of these applications and consume considerable power. In order to
increase the performance per watt, various approaches have been proposed where dedicated
accelarators is deployed alongside the CPU to accelerate the critical parts of the task or even
the entire algorithm.

The goal of this thesis it to design and implement an image processing system for embedded
applications and its deployment on a SoC GPU. As a case study the corner detection of an
image is selected. Individual parts are implemented on GPU using CUDA C and the rest being
developed as software components using the C programming language. The remainder of this
thesis is organized as follows:

e Chapter 2 discusses about the related work that has examined the field of Image Process-
ing on embedded devices.
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Chapter 3 presents Tegra X1, the CPU-GPU-SoC device we will use.

Chapter 4 presents the Cuda Programming Model and what posibilities it can give de-
velopers.

Chapter 5 presents some theoretical and technical background on key features of Harris
algorithm and introduces the system implementation.

Chapter 6 presents the experimental evaluation of our implementation of the Harris corner
detection algorithm, as well as provides a comparison with a Zyng-7020 FPGA device.

Chapter 7 concludes this thesis giving an overview of this thesis and provides some ideas
for future work.
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Chapter 2

Related work

2.1 Image Processing Algorithms on GPU SoCs

There are several works that have accelerated Image Processing Algorithms even with Com-
pute Unified Device Architecture (CUDA) or OpenCL. Youngwan Lee et al. [7] present an im-
plementation of Viola-Jones face detector algorithm on a mobile SoC GPU, Galaxy S5-LTEA
smartphone. Using Cascade classifier, this work experiments with two datasets. Image of
groups, where this work reach up to x3.3 gain and INHA FACE dataset where it reach up
to x6.29 gain in comparison with a well-optimized OpenCV implementation on a CPU. The
results of the two datasets are presented in the Figure 2.1 and in the Figure 2.2. For the best
acceleration the authors propose CPU-GPU coordination and not only a GPU implementation
to succeed the overlap between CPU and GPU operations.

Figure 2.2: Results from the INHA FACE dataset

In addition, D. Hernandez-Juarez et al. [6] present an accelerated implementation of a
computation of a stixel world as shown in Figure 2.3 using the embedded SoC GPU board
NVIDIA Tegra X1. The authors’ implementation using Dynamic Programming for the stixel
estimation, reach a performance improvement up to 2 times, while the performance per watt
ratio is 25 times better. Their proposal achieves real-time performance for realistic problem
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sizes, proving that the low-power envelope and remarkable performance of embedded CPU-
GPU hybrid systems make them good target platforms for most real-time video processing
tasks, paving the way for more complex and larger applications.
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Figure 2.3: Example of Stixel World estimation. Sky stixels are represented on blue, object
stixels are represented on green-to-red (read= close, green= far), and ground stixels are trans-
parent.

Finally, Onur Ulusel et al. [11] present a power and performance evaluation of three low
cost feature detection and description algorithms (Features from Accelerated Segment Test
(FAST), FAST + Binary Robust Independent Elementary Features (BRIEF) and FAST +
Binary Robust Invariant Scalable Keypoints (BRISK)) implemented on embedded CPUs, GPUs
and FPGAs. More specifically, the devices are a MicroZED development board featuring a 28nm
Zynq 7020 SoC, which integrates an Artix-7 FPGA with a dual-core ARM Cortex A9 CPU,
and a 1GB DDR3 for embedded FPGA and a Tegra K1 SoC with an integrated Kepler GPU
with 192 CUDA cores that run at 950MHz and a quadcore ARM Cortex A15 CPU that runs
at 2.50GHz for embedded CPU and GPU. They show that FPGA implementations outperform
the state-of-the-art embedded CPUs and GPUs in terms of both power and performance.

2.2 Implementation of Harris algorithm on embedded
devices

As far as the specific algorithm will be implemented in this thesis concerned, the Harris Corner
Detector algorithm, there are several studies that have accelerated it using embedded devices.
Alexandru Amaricai et al. [2] using Xilinx Spartan6 and Xilinx Virtex-5 FPGA device propose
a performance friendly solution for both the two SoC boards with significant less BRAM usage
with respect to other approaches.

The same algorithm are trying to accelerate Tak Lon Chao et al. [3], using the Avnet
Zedboard(FPGA: Xilinx xc72z020-clg484-1), an OmniVision OV7670 image sensor and a VGA
monitor to show the result achieve up to 144 frames per second with an implementation based
on using low budget of hardware (9485 6-bit LUTS and 4131 registers only without using any
DSP resources). A frame of the output image of their application is shown in Figure 2.4
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Figure 2.4: Harris Corner feature detected by their FPGA hardware method

Eventually, Toannis Stratakos et al. [10] propose a design of an image processing system for
embedded applications, included the Harris Corner detector, where using Xilinx’s Zyng-7020
(ZC702 All Programmable SoC), he achieved to outperform the pure software implementations
running on ARM and Intel processors achieving speedup of 71.6 and 2.5 respectively.
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Chapter 3

Target Hardware Platform

3.1 Graphic Processing Units

A Graphics Processing Unit (GPU) is a single-chip processor that performs rapid math-
ematical calculations, primarily for the purpose of rendering images. In the early days of
computing, the central processing unit (CPU) used to perform these calculations. As more
graphics-intensive applications were developed, their demands degraded performance of CPU.
GPU was introduced as a way to offload those tasks from the CPU, freeing up its processing
power. Nvidia introduced the first GPU, GeForce 256, in 1999. This GPU model could process
10 million polygons per second and had more than 22 million transistors.

Nowadays, GPUs are widely used in embedded systems, mobile phones, personal computers,
and game consoles. Modern GPUs are very efficient at manipulating graphics as well as in
image processing. Furthermore, their highly parallel structure makes them more effective than
general-purpose CPUs for algorithms where processing of large blocks of data is done in parallel.
As a result, a large discrepancy in floating-point capability between the CPU and the GPU was
emerged. The main reason is that GPUs are specialized for compute-intensive, highly parallel
computation and therefore designed such as more transistors are devoted to data processing
rather than data caching and flow control, as is the case for the CPU. More specifically, GPU is
especially well-suited to address problems that can be expressed as data-parallel computations
with high arithmetic intensity. Because the same program is executed in each data element,
there is a lower requirement for sophisticated flow control. Memory access latency can be
hidden with calculations instead of big data caches. GPUs can therefore be considered as
general-purpose, high-performance, many-core processors capable of very high computation
and memory throughput.

By the end of 2010, multicore processors had entered the mainstream of affordable comput-
ing. Nearly all new desktop computers used dual-core and even quad-core processors. Mean-
while, advances in semiconductor technology led GPUs to grow in sophistication and complexity.
Those developments gave rise to heterogeneous computing systems. Heterogeneous architec-
tures use more than one kind of processor (CPUs, GPUs, FPGAs etc.) and gain performance
not just by adding cores, but also by incorporating specialized processing capabilities of each
kind of processor to handle particular tasks.

GPUs are widely used in heterogeneous systems. A GPU is currently not a standalone
platform but a co-processor to a CPU. Therefore, GPUs must operate in conjunction with a
CPU-based host through a PCI-Express bus, as shown in Figure 3.1. That is why, in GPU
computing terms, the CPU is called the host and the GPU is called the device.
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Figure 3.1: Heterogeneous architecture

An heterogeneous application consists of two parts:
e Host code
e Device Code

Host code runs on CPUs and device code runs on GPUs. An application executing on a
heterogeneous platform is typically initialized by the CPU. The CPU code is responsible for
managing the environment code and data for the device before loading compute-intensive tasks
on the device.

With computational intensive applications, program sections often exhibit a rich amount of
data parallelism. GPUs are used to accelerate the execution of this portion of data parallelism.
When a hardware component that is physically separate from the CPU is used to accelerate
computationally intensive sections of an application, it is referred to as a hardware accelerator.
GPUs are arguably the most common example of a hardware accelerator.

3.2 NVIDIA Tegra x1 System-on-Chip

A system on chip (SoC) is an integrated circuit that integrates all components of a computer
or other electronic systems. These components typically include a central processing unit
(CPU), a hardware accelrator, memory, input/output ports and secondary storage — all on
a single substrate. It may contain digital, analog, mixed-signal, and often radio-frequency
functions, depending on the application. SoCs are very common in the mobile computing
market because of their low power consumption. SoCs are commonly applied in the area of
embedded systems.

Tegra, the system on chip developed by NVIDIA that we will use in this thesis, integrates
an ARM architecture central processing unit (CPU), graphics processing unit (GPU)-sharing
a common DRAM memory with CPU-, northbridge, southbridge, and memory controller onto
one package. More specifically Nvidia’s Tegra X1 (codenamed "Erista') features four ARM
Cortex-A57 cores and four ARM Cortex-A53 cores (not to be accessed by the operating system
and are used automatically in very low power scenarios), as well as a Maxwell-based graphics
processing unit. Clearly the components of Tegra X1 are:

e CPU: ARMv8 ARM Cortex-A57 quad-core + ARM Cortex-A53 quad-core (64-bit)
e GPU: Maxwell-based 256 core GPU
e MPEG-4 HEVC and VP9 encoding/decoding support
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e TSMC 20 nm process

e TDP (Thermal Design Power) 15 watts, with average power consumption less than 10
watts

Tegra X1 is NVIDIA’s newest mobile processor, and includes NVIDIA’s highest performing,
and power efficient Maxwell GPU architecture. Utilizing a 256 CUDA Core Maxwell GPU,
Tegra X1 delivers class-leading performance and incredible energy efficiency, while supporting
all the modern graphics and compute APIs.

Maxwell
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Display memory Encode
controller controller Decode 4 AS7
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SPI MIPI Audio
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Figure 3.2: NVIDIA Tegra X1 Mobile Processor [§]

3.2.1 Tegra X1 CPU Architecture

The NVIDIA Tegra X1 CPU architecture uses four high performance ARM Cortex A57
cores in conjunction with four power-efficient ARM Cortex A53 cores. The Cortex A57 CPU
complex on Tegra X1 shares a common 2MB L2 cache, and each of the four CPU cores has a
48KB L1 instruction cache and a 32KB L1 data cache. The lower performance, more power-
efficient Cortex A53 CPU complex shares a common 512KB L2 cache, and each of its four CPU
cores has its own 32KB L1 instruction cache and 32KB L1 data cache. Workloads that require
high performance are processed by the A57 CPU cores, and lower performance workloads are
processed by the energy-efficient A53 CPU cores. Intelligent algorithms analyze workloads
presented by the operating system to dynamically switch between the high performance and
low performance cores to deliver optimal performance and power efficiency.
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3.2.2 Maxwell Graphics Architecture in Tegra X1

Maxwell GPU architecture is organized in Graphics Processing Clusters (GPC), Streaming
Multiprocessors (SM), and memory controllers. The Maxwell GPU in Tegra X1 contains two
SMs; each SM consists of fundamental compute cores called CUDA Cores, texture units, and
a Polymorph engine. Each Maxwell SM (called SMM) includes 128 CUDA cores. The SM is
the heart of our GPUs. Almost every operation flows through the SM at some point in the
rendering pipeline. Maxwell GPUs feature a new SM that’s been designed to provide dramati-
cally improved performance per watt. Each SMM contains four warp schedulers, and each warp
scheduler is capable of dispatching two instructions per warp every clock. The Maxwell SMM
is partitioned into four distinct 32-CUDA core processing blocks (128 CUDA cores total per
SM), each with its own dedicated resources for scheduling and instruction buffering as shown
in Figure 3.3.

Figure 3.3: Maxwell SMM diagram [§]
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Chapter 4

Cuda Programming Model

At first, we have to present the basic idea of how GPU works with CUDA. The CUDA
programming model enables the programmer to execute applications on heterogeneous com-
puting systems by simply annotating code with a small set of extensions to the C programming
language. A heterogeneous environment consists of CPUs complemented by GPUs. Therefore,
you should note the following distinction:

e Host: the CPU and its memory (host memory)

e Device: the GPU and its memory (device memory)

A key component of the CUDA programming model is the kernel — the code that runs
on the GPU device. As developers we can express a kernel as a sequential program. Behind
the scenes, CUDA manages scheduling programmer-written kernels on GPU threads. From the
host, you define how your algorithm is mapped to the device based on application data and
GPU device capability. The intent is to enable you to focus on the logic of your algorithm in a
straightforward fashion (by writing sequential code) and not get bogged down with details of
creating and managing thousands of GPU threads. A typical CUDA program consists of serial
code complemented by parallel code. As shown in Figure 4.1, the serial code (as well as task
parallel code) is executed on the host, while the parallel code is executed on the GPU device.
The host code is written in ANSI C, and the device code is written using CUDA C.

CUDA C/C++ Application

Host = CPU
Host code g

Device = GPU
S NIE
VR | | 2%)

Device = GPU

) -\

Figure 4.1: Separation between host and device

Parallel code

Parallel code

Apart from the implementation of the application, as developers we aim to the best per-
formance that GPU can give us. There are many factors that affect the perofrmance of the
implentation of an algorithm on the CPU-GPU system like thread/blocks organization, choise
of data transfer way e.t.c. Some of the most important are:
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In the rest of this Chapter we discuss the most important factors and techniques that CUDA
provides us.

4.1 Organizing Threads/Blocks

When a kernel function is launched from the host side, execution is moved to a device where
a large number of threads are generated and each thread executes the statements specified by
the kernel function. Knowing how to organize threads is a critical part of CUDA programming.
CUDA exposes a thread hierarchy abstraction to enable you to organize your threads. This is
a two-level thread hierarchy decomposed into blocks of threads and grids of blocks, as shown
in Figure 4.2. Grids and blocks can be organized on 1, 2 or 3 dimensions.

Kernel —— | piock Block Block

Block' || Block || Block
R (1.1 2

Figure 4.2: Two-level thread hierarchy decomposed into blocks of threads and grids of blocks [4]

All threads spawned by a single kernel launch are collectively called a grid. All threads in a
grid share the same global memory space. A grid is made up of many thread blocks. A thread
block is a group of threads that can cooperate with each other using:

e Block-local synchronization
e Block-local shared memory

Threads from different blocks cannot cooperate. Threads rely on the following two unique
coordinates to distinguish themselves from each other:

e blockldx (block index within a grid)
e threadldx (thread index within a block

Depending on the compute capability of each GPU there are technical specifications that
concern the organization of threads and blocks. For us, having a compute capability 5.3 in the
Maxwell GPU of the Tegra x1, gives us the restriction of:
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e Max threads per block: 1024
e Max thread dimensions: (1024, 1024, 64)
e Max grid dimensions: (2147483647, 65535, 65535)

A general rule for organization of threads is that every block has to contain multiples of
32 threads. This is because threads that execute to the GPU are divided into groups that
are called “warps'. All GPU generations have a warp size of 32 threads and all threads in
the same warp execute the same instruction, typically on different data (Single Instruction
Multiple Threads). Optimizing the workloads to fit within the boundaries of a warp (group of
32 threads) will generally lead to more efficient utilization of GPU compute resources.

4.2 Data transfer way

Memory management in CUDA programming is similar to C programming, with the added
programmer responsibility of explicitly managing data movement between the host and device.
There are various data transfer ways.

4.2.1 Classic Memory Transfer

The allocation of the device global memory on the host is implemented with the function:
cudaError_t cudaMalloc(void **devPtr, size t count);

Once global memory is allocated, you can transfer data to the device from the host using the
following function:

cudaError_t cudaMemcpy(void *dst, const void *src, size_t count, enum cudaMemcpyKind kir

This function copies count bytes from the memory location src to the memory location dst.
The variable kind specifies the direction of the copy and can have the following values:

cudaMemcpyHostToHost
cudaMemcpyHostToDevice
cudaMemcpyDeviceToHost
cudaMemcpyDeviceToDevice

The data transfer from the host to the device is labeled HtoD, and from the device to the host
DtoH.

4.2.2 Pinned Memory Transfer

Allocated host memory is by default pageable, that is, subject to page fault operations that
move data in host virtual memory to different physical locations as directed by the operating
system. Virtual memory offers the illusion of much more main memory than is physically
available, just as the L1 cache offers the illusion of much more on-chip memory than is physically
available.
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The GPU cannot safely access data in pageable host memory because it has no control over
when the host operating system may choose to physically move that data. When transferring
data from pageable host memory to device memory, the CUDA driver fi rst allocates temporary
page-locked or pinned host memory, copies the source host data to pinned memory, and then
transfers the data from pinned memory to device memory, as illustrated on the left side of
Figure 4.3.

Pageable Data Transfer Pinned Data Transfer
Device Device

DRAM DRAM
Host Host

Pageahle Pinned Pinned
Memaory Memory Memory

Figure 4.3: Transfer between host pinned and device memory [4]

The CUDA runtime allows you to directly allocate pinned host memory using:
cudaError_t cudaMallocHost(void **devPtr, size_t count);

This function allocates count bytes of host memory that is page-locked and accessible to the
device. Since the pinned memory can be accessed directly by the device, it can be read and
written with much higher bandwidth than pageable memory. However, allocating excessive
amounts of pinned memory might degrade host system performance, since it reduces the amount
of pageable memory available to the host system for storing virtual memory data.

4.2.3 Zero-Copy Memory Transfer

In general, the host cannot directly access device variables, and the device cannot directly
access host variables. There is one exception to this rule: zero-copy memory. Both the host and
device can access zero-copy memory. GPU threads can directly access zero-copy memory. There
are several advantages to using zero-copy memory in CUDA kernels, such as: 1)Leveraging host
memory when there is insufficient device memory 2)Avoiding explicit data transfer between the
host and device 3)Improving PCle transfer rates

Zero-copy memory is pinned (non-pageable) memory that is mapped into the device address
space. You can create a mapped, pinned memory region with the following function:

cudaError_t cudaHostAlloc(void **pHost, size_t count, unsigned int flags);

You can obtain the device pointer for mapped pinned memory using the following function:
cudaError_t cudaHostGetDevicePointer(void **pDevice, void *pHost, unsigned int flags);

The advantage of this way is that the data storing in the Zero-Copy memory causes very low
load and store throughput from the function kernels because this kind of memory does not use
at all the cache data memory. This way of transfer data is recommended for applications that
use simple-operations function-kernels and many data transfers between CPU-GPU because
there is no need for data transfers.
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4.2.4 Unified Virtual Addressing Memory Transfer

Devices with compute capability 2.0 and later support a special addressing mode called
Unified Virtual Addressing (UVA). UVA, introduced in CUDA 4.0, is supported on 64-bit
Linux systems. With UVA, host memory and device memory share a single virtual address
space, as illustrated in Figure 4.4.

CPU GPUD GPUN CPU GPUO GPLN
Memary Memory Memaory Memaory Memory Mamaory
D=0i000 Ie=0000 OO0 0=0000
DxFFFF OxFFFF OxFFFF UxFFFF
GPU GPUD GPU1 GPU GPUD GPU1
| | | pcie | | | pcre
Mo UVA: multiple memaory spaces UVA: single memary space

Figure 4.4: Unified Virtual Addressing Memory Transfer
The allocation of the data that will be executed by the host and the device is implemented
with the function:

cudaHostAlloc((void **)&h_ A, nBytes, cudaHostAllocMapped);

4.2.5 Unified Memory Transfer

With CUDA 6.0, a new feature called Unified Memory was introduced to simplify memory
management in the CUDA programming model. Unified Memory creates a pool of managed
memory, where each allocation from this memory pool is accessible on both the CPU and
GPU with the same memory address (that is, pointer). The underlying system automatically
migrates data in the unified memory space between the host and device. This data movement is
transparent to the application, greatly simplifying the application code. You can also allocate
managed memory dynamically using the following CUDA runtime function:

cudaError_t cudaMallocManaged(void **devPtr, size_t size, unsigned int flags=0);

This function allocates size bytes of managed memory and returns a pointer in devPtr. The
pointer is valid on all devices and the host.

4.2.6 Pitch Transfer

CUDA provides the cudaMallocPitch function to “pad” 2D matrix rows with extra bytes
so to achieve the desired alignment. Assuming that we want to allocate a 2D padded array of
floating point (single precision) elements, the syntax for cudaMallocPitch is the following:

cudaMallocPitch(&devPtr, &devPitch, Ncols * sizeof (float), Nrows);
CUDA provides also the cudaMemcpy2D function to copy data from/to host memory space

to/from device memory space allocated with cudaMallocPitch.

45



cudaMemcpy2D (devPtr, devPitch, hostPtr, hostPitch, Ncols * sizeof (float), Nrows,

When accessing 2D arrays in CUDA, theoretically memory transactions are much faster if each
row is properly aligned, but we need to make experiments to ensure that that this proposal.

4.2.7 Comparison

There is not simple answer to the question what is the better way of transfer. It depends
on the application and the hardware we are working for. To have an idea of the behavior
of each transfer way on NVIDIA Tegra X1, we implement a 2d arrays multiplication using
the beforementioned ways for transfering the arrays from host to device and vice versa. In
the Figures 4.5, 4.6, 4.7, 4.8, 4.9, 4.10, 4.11, 4.12 we present the memory operations and the
execution times of Matrix Multiplication for various sizes of arrays.
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Figure 4.6: Execution time for 512 x 512 MM

46

cudaMer



Elapsed Time for Memory operations for 1024x1024

MM
0.1
__0.08
)
&2 0.06
[}
£ 0.04 I
|_
0
Classic Pitch Pinned Unified uv ZeroCopy
B Memory Allocation m Host2Device Device2Host
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Figure 4.9: Memory operations time for 2048 x 2048 MM
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From the Figures above, we can conclude that transfering data time is not the most impor-
tant issue as those ways are concerned. We see that execution kernel times varies from way
to way. UVA and ZeroCopy transfer way cause high-latencies function kernels beacuse of their
cache unfriendly behavior. These conclusions are very useful to us for the full exploration of
transfer ways and other programming and algorithmic techniques that will be presented in the
next Chapter.

4.3 Shared Memory

GPUs are equipped with two types of memory:

e On-board memory

e On-chip memory

Global memory is large, on-board memory and is characterized by relatively high latencies.
Shared memory is smaller, low-latency on-chip memory that offers much higher bandwidth
than global memory. It as a program-managed cache that is generally useful as:

e An intra-block thread communication channel
e A program-managed cache for global memory data

e Scratch pad memory for transforming data to improve global memory access patterns

Shared memory (SMEM) is one of the key components of the GPU. Physically, each SM
contains a small low-latency memory pool shared by all threads in the thread block currently
executing on that SM. Shared memory enables threads within the same thread block to coop-
erate, facilitates reuse of on-chip data, and can greatly reduce the global memory bandwidth
needed by kernels. Because the contents of shared memory are explicitly managed by the ap-
plication, it is often described as a program-managed cache. As illustrated in Figure 4.13 , all
load and store requests to global memory go through the L2 cache, which is the primary point
of data unifi cation between SM units. Note that shared memory and L1 cache are physically
closer to the SM than both the L2 cache and global memory. As a result, shared memory
latency is roughly 20 to 30 times lower than global memory, and bandwidth is nearly 10 times
higher.

SM
SMEM L1 Read Constant
‘ \ ‘ \ Only \ ‘ \

Figure 4.13: Shared Memory
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There are several ways to allocate or declare shared memory variables depending on your
application requirements. You can allocate shared memory variables either statically or dy-
namically. Shared memory can also be declared as either local to a CUDA kernel or globally in
a CUDA source code fi le. CUDA supports declaration of 1D, 2D, and 3D shared memory arrays.

A shared memory variable is declared with the following qualifi er:
__shared__

The following code segment statically declares a shared memory 2D float array. If declared
inside a kernel function, the scope of this variable is local to the kernel. If declared outside of
any kernels in a file, the scope of this variable is global to all kernels.

__shared__ float tile[size_y] [size_x];

If the size of shared memory is unknown at compile time, you can declare an un-sized array
with the extern keyword. For example, the following code segment declares a shared memory
1D un-sized int array. This declaration can be made either inside a kernel or outside of all
kernels.

extern _ shared _ int tilel[];

Because the size of this array is unknown at compile-time, you need to dynamically allocate
shared memory at each kernel invocation by specifying the desired size in bytes as a third
argument inside the triple angled brackets, as follows:

kernel<<<grid, block, isize * sizeof(int)>>>(...)

Note that we can only declare 1D arrays dynamically.
4.4 Constant and Texture Memory

Constant memory is a special-purpose memory used for data that is read-only and accessed
uniformly by threads in a warp. While constant memory is read-only from kernel codes, it is
both readable and writable from the host. It resides in device DRAM (like global memory)
and has a dedicated on-chip cache. Like the L1 cache and shared memory, reading from the
per-SM constant cache has a much lower latency than reading directly from constant memory.
There is 64 KB limit on the size of constant memory cache per SM. Constant memory has a
different optimal access pattern than any of the other types of memory mentioned already. It is
best if all threads in a warp access the same location in constant memory. Accesses to different
addresses by threads within a warp are serialized. Thus, the cost of a constant memory read
scales linearly with the number of unique addresses read by threads within a warp.

In addition, Texture memory resides in device memory and is cached in a per-SM, read-only
cache. Texture memory is a type of global memory that is accessed through a dedicated read-
only cache. The readonly cache includes support for hardware fi ltering, which can perform
fl oating-point interpolation as part of the read process. Texture memory is optimized for 2D
spatial locality, so threads in a warp that use texture memory to access 2D data will achieve the
best performance. For some applications, this is ideal and provides a performance advantage
due to the cache and the filtering hardware. However, for other applications using texture
memory can be slower than global memory.
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Chapter 5

The Harris Corner Detector

5.1 Feature Detection

In computer vision and image processing feature detection includes methods for computing
abstractions of image information and making local decisions at every image point whether
there is an image feature of a given type at that point or not. The resulting features will
be subsets of the image domain, often in the form of isolated points, continuous curves or
connected regions. Features can be categorized as follows:

e Edges : Edges are points where there is a boundary between two image regions. In
general, an edge can be of almost arbitrary shape, and may include junctions. In practice,
edges are usually defined as sets of points in the image. Edges have a one-dimensional
structure.

e Corners : The terms corners or interest points refer to point-like features in an image,
which have a local two dimensional structure.

e Blobs : Blobs provide a complementary description of image structures in terms of
regions, as opposed to corners that are more point-like.

e Ridges : From a practical viewpoint, a ridge can be thought of as a one-dimensional
curve that represents an axis of symmetry, and in addition has an attribute of local ridge
width associated with each ridge point.

The interest of this thesis is on corner detection. The corner detection, or interest point
detection, is a useful method that used of an image to extract the feature or infer the context.
It is predominantly applied in many aspects such as image mosaicing, tracking and recognizing.

In image processing, a point can be considered as a corner if there is a intersection of two
edges. A good indicator that determines the quality of a corner detection algorithm is to see
if it can detect the same corner under multiple circumstances, in other words, different similar
pictures that had done some other image processing such as rotation, darken, etc. The most
frequently used algorithm for corner detection is proposed by Harris and Stephens [5], which is
a further work on a method developed by Moravec [9] and was first published in 1988. In this
thesis, the Harris Corner Detector is chosen and implemented as an accelerator.

5.2 Theoretical Background
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(a) (b) (c)

Figure 5.1: An example of (a) a flat region, (b) an edge and (c) a corner.

Harris Corner Detector was first introduced by Chris Harris and Mike Stephens in 1988
upon the improvement of Moravec’s corner detector. Compared to the previous one, Harris’
corner detector takes the differential of the corner score into account with reference to direction
directly, instead of using shifting patches for every 45 degree angles, and has been proved to
be more accurate in distinguishing between edges and corners.Since then, it has been improved
and adopted in many algorithms to preprocess images for subsequent applications.

Assuming a 2-dimensional image, whose intensity is denoted as I, Moravec starts with a
window W centered at the pixel p(x,y) and moves (shifts) this window in the neighborhood
of p. If the movement is (u,v) the changes of the intensity are measured with the help of the
auto-correlation function as

E(u,v) = w(@ y)l(zr+uy+v) —I(z,y) (5.1)

.y
where :
e w(x,y) a window function equal to 1 inside the window W and 0 outside
o [(x+u,y+wv) the shifted intensity, where the shifts are (u,v) = (1,0), (1,1),(0,1),(—1,1)
e [(x,y) the intensity of the image at position (x,y)

Small changes will appear in all directions for a constant intensity in the neighborhood of
p(z,y), which means there is a flat region (Figure 5.1a). Small changes in only one direction
can be found for an edge (Figure 5.1b) whereas the direction of nearly no changes resembles
the direction of the edge and finally big changes in all directions will be observed for a corner
(Figure 5.1c).

Harris and Stephens [5] improved upon Moravec’s corner detector by considering the differ-
ential of the corner score with respect to direction directly, instead of using shifts. To eliminate
Moravec’s algorithm shortcomings, which were noisy response due to the binary window func-
tion and anisotropic response due to the shifts used, first they applied a Gaussian window
function

_ <12+y2>)

w(x,y) = e< 207 (5.2)

and secondly they approximated I(x + u,y + v), by a Taylor expansion to consider all small
shifts, as
Iz 4+u,y+v) = I(z,y) + L(z,y)u+ I,(x,y)v (5.3)
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where I, I, partial derivatives of I. Based on this approximation the expression 5.1 becomes

E(u,v) & 3 w(@, y)[Lo(z, y)u + L(z,y)v]? (5.4)
E(u,v) ~ [u v} A lﬂ (5.5)

where A is a 2x2 matrix computed from the image derivatives

2
2 Ime] (5.6)

A:Zw(x7y) |]I I2
x,y Yy Yy

The eigenvalues A; and Ay of this matrix describe the changes inside the window similar to the
moving window of Moravec. The way to compute the exact value of eigenvalues is computa-
tionally expensive and complex, in which the calculation of square root is needed, so Harris
and Stephens developed another approach to “measure” the eigenvalues or in other words the
corner response (“cornerness”) by means of the function

R =det A — k(Tr A)? (5.7)

where det A = Iili — (IL)* = MXa, TrA = A\ + Ay and k = 0.04 — 0.06. Based on the value
of R the following cases are considered:

e when |R| is small, which happens when \; and Ay are small, the region is flat.
e when R < 0, which happens when A\; > Ay or vice versa, the region is an edge.
e when R is large, which happens when A;, \s are large and A\; ~ Ay, the region is a corner.

Figure 5.2 shows a visual representation of the classification of image points into corners,
edges and flat regions based on Harris Corner Detector.

Figure 5.2: Classification of image points based on their corner response.
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5.3 Hardware Implementation

As presented earlier, from an algorithmic point of view, for each pixel, Harris calculates
a “cornerness” strength according to the formula R = Iilz — (I.I,)% - 0.04 - (12 + 112/)2, where
1925715 and I,I, denote the Gaussian-smoothed products of the image derivatives, which are
themselves computed via a Sobel operator. More specifically, the steps of the implementation

of the algorithm are presented below:

e Construction of I, I, by convolving the image with a 5x5 tap kernel

212

e Construction of I}, Il I,I, given the I, T,.

e Convolution of Ii, Iz and I,I, with a 7x7 tap kernel
e Calculation of R = I2, 112/ — (L1,)% = 0.04 - (2 + 15)2, given the new 12, IZ, LL,.

e Selection of pixels as corners that they have the value R as local maximum

In the Figure 5.3 we show the Harris execution latency percentage per step implemented
on the ARM Cortex A57 single-thread, for different resolutions of images.

Harris execution latency percentage per step for different image sizes.
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Figure 5.3: Harris execution latency percentage per step for different resolutions of image

It is already clear that the steps with the biggest execution latency are those that concern
the 2D convolutions and especially the 7 x 7 convolution. It is obvious that the bigger the
tap kernel with whom we convolve the image with is, the bigger the execution latency will be,
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because of the many accesses to the memory and operations. These are the pieces of code that
have the priority of acceleration with the GPU. A first though would be that it is enough to
accelerate just the 7 x 7 convolution, but with this implementation, after this step we had to
transfer the result back to CPU to continue the processing. To avoid these transfers that would
cause more latency to the whole application, we prefer to exeute all steps on the GPU.

We have already mentioned some techniques that CUDA provides us, to achieve the best
performance. Following the idea of taking the advantage of parallelism and keeping the opera-
tions of a single thread of the GPU simple -due to the lack of branch predictors and complex
ALUs-, every thread is corresponded to a pixel of the image. That means that the number of
the total threads we will launch the compute kernel has to be equal with the total pixels of the
image that we input to the system. Apart from the programming techniques we mentioned in
the Chapter 4 and we will use them in the Chapter 6 there is an interesting suggested algo-
rithmic technique to achieve better performance for applications that concern 2D convolutions.
The technique of separability promises smaller implementation latency of a 2D convolution
especially when we have big filter kernels.

Filtering an MxN image with a PxQ filter kernel requires roughly MxNxP xQ multiplies
and adds (assuming we aren’t using an implementation based on the FFT). If the kernel is
separable, you can filter in two steps. The first step requires about MxNxP multiplies and
adds. The second requires about MxNxQ multiplies and adds, for a total of (MxN)(P + Q).
Thus, the computational advantage of separable convolution versus nonseparable convolution
is (P x Q)/(P+ Q). From a theoritical point of view, that means that the separability is
suggested for convolutions with filter-kernels bigger than 2 x 2.

The proof of separable convolution 2D is presented below.

Proof. By the definition of Convolution 2D:

o0 oo

ym,n] = z[m,n]* him,n] = > > [, jlhlm —i,n — j]

Jj=—001=—00

Since convolution is commutative

(x[n] * y[n] = y[n] * z[n])
Thus, we can swap the order of convolution. So

ylm,n] = hlm,n] x x[m,n| = Z thg m—i,n— jj

Jj=—001=—00

And, if h[m,n] is separable to (Mx 1) and (1xN) then
hlm,n] = hi[m]ha[n]
Therefore, by substituting h[m, n] into the equation, we get:

y[m,n] = hlm,n] x z[m,n]] = Z thy m—i,n—j]=

Jj=—001t=—00

i i ha[ilho[g)alm —i,n — j] =

Jj=—001i=—00

Z h2 Z hl —Z,n—j]]

j—foo 1=—00

Since the definition of convolution 1D is
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o0

yln] = x[n] « hin] = 3 w[k]h[n — k]

k=—o0

it is convolving with input and hy, then convolve once again with the result of previous convo-
lution and hy. Therefore, the separable 2D convolution is performing twice of 1D convolution
in horizontal and vertical direction.

y[m,n] = (hi[m]ha[n]) * z[m, n] = ha[n] * (ha[m] * x[m,n]) = hi[m] * (he[n] * x[m, n])
]

Finally, in addition to the techniques already mentioned for the improvement of perfor-
mance, we used Constant and Texture 2D Memory too. Unfortunately, they did not offer us
better efficiency and for this reason we do not record the experimental results we extracted.
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Chapter 6

Experimental results

6.1 Experimental setup

Our target evaluation System-on-Chip, as mentioned in the Chapter 3, is NVIDIA SoC
Tegra x1. It includes two distinct ARM multi-core processors, Cortex A57 and Cortex Ab3,
coupled together with a 256-core GPU. Moreover, it includes a video accelerator (for H.265 and
VP9 compression), display controller, memory controller (for external DDR4), audio engine,
and other peripherals for interfacing via USB, SDIO, eMMC, HDMI, etc. The two Cortex
processors of Tegra X1 are based on the latest 64-bit ARMv8-A architecture with floating-
point units and SIMD extensions (NEON engine). Each one is equipped with 4 processing
cores (8 in total) that operate on frequencies of up to 1.9 GHz. The differences between A53
and A57 are mainly in their pipeline (in-order dual-issue on A53 versus out-of-order multi-
issue on A5T), their cache size (512KB shared L2 on A53 versus 2MB shared L2 on A57), and
energy efficiency approach (A57 is more power-hungry). In total, A53 can achieve up to 2.3
DMIPS/MHz/core, whereas A57 can achieve up to 4.7 DMIPS/MHz/core.

The GPU included in Tegra X1 utilizes 256 processing cores arranged in a Maxwell ar-
chitecture (with its conventional CUDA cores, Streaming multiprocessors (SMs), Polymorph
engines, Warp schedulers, Texture caches, etc.) and operates at frequencies of up to 1 GHz.
More specifically, X1 includes two SMs with 128 CUDA cores per SM and 4 warp schedulers
per SM (practically, the CUDA core can be viewed as an ALU-FPU pair). The total L2 cache
is 256KB. Tegra X1 can achieve up to 512 GFLOPs peak performance (single-precision FP32).
Overall, the Tegra X1 architecture focuses on power efficiency and targets embedded applica-
tions. To this direction, its power consumption is only 10 Watts, however it features 3x-12x
less performance compared to the latest desktop GPUs, which consume 90-250 Watts of power.
The entire SoC is supervised by an Linux Operating System (Ubuntu 16.04), while supporting
CUDA 8.0.

For the scope of this thesis, the conducted experiments focus on the Harris algorithm Corner
Detector application, using as input images with resolution of 512 x384, 1024 x 1024, 2048 x 2048
and 4096 x 4096 pixels. In order to create an unbiased input dataset, random images were
acquired from the world wide web. In addition, we compare the accelerated performances
between CPU-GPU-SoC (Tegra x1) and CPU-FPGA-SoC (ZC702), according to the results
presented in [10]. In the following Section 6.2 we present the techniques and the steps for
building the GPU accelerated version of the the Harris-Corner detection on Tegra x1. In
Section 6.3 we present the comparison between the results of our work and of an acceleration
implementation on a CPU-FPGA-SoC [10].
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6.2 Acceleration on NVIDIA Tegra x1

6.2.1 Naive implementation

In the computer science context the term naive implementation, refers to a straightforward,
initial design with limited or no optimizations. For the rest of the experiments, we use the
naive implementation of our target application as a baseline, without using any of the special
techniques mentioned in the Chapter 4. More precisely, we merely launch a kernel with total
number of threads as many as the pixels of the image, so that every thread processes a pixel,
thus achieving elementary parallelism.

In the naive implementation, despite the fact that the parallelization strategy is trivial, there
is still the open design choice with respect to the way that data will be exchanged between the
CPU and GPU of the SoC. As presented in Section 4.2, there is a variety of different options
for the implementation of this communication, and the impact of each one of these choices to
the execution time of the target application is the focus of our first experiment. Figure 6.1
summarizes the Finding Corners execution time (See Section 5.3) all examined communication
was for an image size of 512 x 384 pixels, based on the naive implementation.

Naive Implementation for 512x384
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Figure 6.1: Finding Corners time for various ways of communication for 512x384 pixels image

According to the measured results, we reject the UVA and the Zero-Copy transfer ways
as candidate solutions for our optimal configuration. We observe that despite the fact that
the rejected ways avoid transfer latencies (see Subsections 4.2.3 and 4.2.4), the total execution
latency of the application remains very high, because of the low load and store throughput. That
means that data being stored in the global device memory from UVA or Zero-Copy memory is
not read and written efficiently from the kernel in comparison with the other ways. However,
the gain we achieved using the classic, pitch, pinned and unified ways is quite impressive, if we
taking into consideration that the total time of finding the corners in a single-thread software
implementation on an ARM Cortex A57 CPU is 43.96 ms (see Figure 5.3.)

The experiment is repeated for scaled image size, excluding the already rejected the UVA
and the Zero-Copy memory communication alternative. The examined image resolutions are:

o 512x384 (0.196 MP)
o 1024x1024 (1.0 MP)
o 2048x2048 (4.2 MP)
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e 4096x4096 (16.8 MP)

In Figure 6.2 we present the Finding Corners execution time of various ways of communications
for different resolution of the input image.

Naive Implementation for all resolutions
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Figure 6.2: Finding Corners time for various ways of communication for various resolutions

From the Figure 6.2, it is obvious that for both small and big images the classic and the
pinned ways are more efficient, achieving almost similar results. In general, although it is not
clearly shown in the Figure 6.2, pinned memory communication outperforms the classic one
for large image sizes and this will be thoroughly presented in the following Sections. In total,
having already reached a gain of up to x9.74 for 512 x 384 pixels image, we are going to explore
other programming techniques to gain a better performance.

6.2.2 Implementation with Shared Memory

In the effort to optimize the aforementioned naive implementation, we proceed to a version
of the application where the computations are performed using shared memory. As analyzed
in Section 5.3, the vast majority of the computations is dedicated to the execution of the 2D
convolutions with 5 x 5 and the 7 x 7 tap kernels. Therefore, we will focus our optimization
efforts only on these two kernels. As mentioned in Section 4.3, using shared memory as a
managed cached memory causes lower latency, thus leading to higher application execution
efficiency.

The implementation is as follows. To begin with, we load blocks of the image into arrays
in shared memory, do a point-wise multiplication of a filter-size portion of the block, and then
write this sum into the output image in device memory as presented in Figure 6.3. Each thread
block processes a block of the image, stored in a shared memory array, accessible from all
threads in a block. Fach thread generates a single output pixel.
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Figure 6.3: Convolution implementation between image and kernel matrix

The problem is that the the processing of pixels at the edge of the shared memory array
depends on pixels non existent the in shared memory. The solution of this problem is for each
thread block to load into shared memory the pixels to be filtered and the apron pixels. The
apron pixels are the pixels needed at the edge of each image block. This means that if I choose
a 28 x 28 image block, my thread block needs to contain (28 + 2a) x (28 + 2a) threads, where a
is the radius of the tap kernel. For our application the image blocks will be (28 +4) x (28 +4)
for the 5 x 5 and (28 + 6) x (28 + 6) for the 7 x 7 convolution.

The challenge here is that we need to choose image blocks that allow us to use thread blocks
which contain multiple of 32 threads for the best performance as presented in the Section 4.1.
With the extra restriction that the maximum number of threads in a block must be 1024, we
designate in Table 6.1 that the possible dimensions of image blocks are:

Table 6.1: Possible dimensions of blocks-arrays in shared memory

5x5 tap kernel | 7x7 tap kernel

4x4 2x2

12x12 10x10
28x28 26x26
28x12 26x10
12x28 10x26
28x4 26x2
4x28 2x26
12x4 10x2
4x12 2x10

In Figures 6.4 and 6.5 we present the execution latency of the implementation of the 5 x 5
and 7 x 7 convolution, with the respect to the possible shared block dimensions.
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5x5 convolution time vs.

block size of shared memory
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Figure 6.4: Implementation of 5 x 5 convolution between naive and shared way
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Figure 6.5: Implementation of 7 x 7 convolution between naive and shared way

From Figures 6.4 and 6.5, we conclude that the ideal image blocks are 28 x 12 for the 5 x 5
and 26 x 26 for the 7 x7 tap kernel. This happens because the ideal organization for the compute
kernels that convolve the image are (28+4) x (124+4) = 32x 16 and (2646) x (26+6) = 32 x 32
threads in a block for the 5 x 5 and 7 x 7 convolutions, respectively. In addition, both number
of threads are multiple of 32, as it is required. An interesting observation that stems from
the above Figures is the fact that the dimensions axb result in different execution time from
the dimensions bxa. More specifically, we observe smaller latencies when we have the big
dimension in the horizontal dimension of the image. This is explained by contemplating the
GPU architecture and the way it works. To explain it, as 2D arrays are stored in DRAM
memory as ld arrays, that means that they are stored in row and not in column. Having
this in mind, a very important characteristic that we need to taking into about GPUs is the
coalesced access of memory. Memory coalescing is a technique which allows optimal usage of
the global memory bandwidth. That is, when parallel threads run the same instruction, they
access consecutive locations in the global memory as presented in the Figure 6.6. In this way,
the most favorable access pattern is achieved. Thus, by operating on an image block where
the width is larger than the height, we make use of the coalescing abilities, leading to better
performance. This is why block dimensions like 26 x 2 offer a higher efficiency than 2 x 26.
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Figure 6.6: Implementation of coalesced and non coalesced memory

Figures 6.7 and 6.8 illustrate a comparison of the naive and the shared way -with ideal
image blocks selected in the previous Figure- of implementation for the 5 x 5 and 7 x 7 2D
convolutions:

5x5 convolution time between naive and shared way
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Figure 6.7: Implementation of 5 x 5 convolution with naive and shared memory way for various
image resolutions
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Figure 6.8: Implementation of 7 x 7 convolution with naive and shared memory way for various
image resolutions

From Figures 6.7 and 6.8 it becomes clear, that the shared memory programming technique
leads to the higher efficiency in the execution of the both 2D convolutions. This was expected
since the computations of the 2D convolutions make use of the same data many times. Conse-
quently, by storing these data in shared memory we avoid many high-latency accesses to global
memory. The achieved gains for both convolution kernels are similar, however the 7 x 7 exhibits
higher gain, since it is a bigger tap kernel and for its computation more accesses to the memory
are needed.

6.2.3 Separable Implementation

Image convolutions as convolutions between 2D arrays require many accesses to the global
memory, causing big latencies in our application. That is why, convolutions are the highest
latency steps of the application. To achieve a better performance we have to reduce these
memory accesses. As we showed in the Section 5.3, separable convolution might be an effective
solution to our problem.

Let us express a convolution as y = x x k where y is the output image, x is the input
image, and k is the kernel. They are all 2D arrays. Let us assume that k can be calculated as
k = k1 x k2 where k1 is a collumn and k2 is a row. If tap kernel k could be written at this
form, then we have the ability to implement the separable convolution. Instead of doing a 2D
convolution with k, we could get to the same result by doing 2 1D convolutions with k1 and
k2 as it has been proven in the Section 5.3. As we proved there, the theoritical computational
advantage of separable convolution versus nonseparable convolution is (P x Q)/(P + Q). That
means that the separability is suggested for convolutions with the biggest possible filter kernels
as it helps us to achieve to reduce many global memory accesses.

Figures 6.9 and 6.10 summarize the 5 x 5 and the 7 x 7 convolution execution time, imple-
mented in a naive and separable way:
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5x5 convolution with naive and separable way
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Figure 6.9: Comparison between naive and separable way for the 5 x 5 convolution
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Figure 6.10: Comparison between naive and separable way for the 7 x 7 convolution

By examining Figure 6.9 we reach the conclusion, that the separable implementation of the
5 x 5 convolution does not provide any gains in the execution latency. Conversely, as shown in
Figure 6.10, in the 7 x 7 convolution, the separable implementation leads to significant gains of
up to x2.5 for all the examined resolutions of image with respect to the naive implemntation.
These results are aligned with the theoretical expectations, since the separable implementation
is not advised in the case of small tap kernels.

6.2.4 Optimum configuration

Given these results, it is up to our comparison to find the best accelerated implementation
for our application. In order to achieve it, we have to combine the more efficient implemen-
tations of the 2D convolutions, and follow the naive one for the rest of the compute kernels
(functions implemented in parallel on GPU). In the Figure 6.11 and Figure 6.12, we present
a comparison between naive, separable and shared memory way of implementation as concern
the 2d convolutions, the heaviest and the most high-latency pieces of Harris application.
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Figure 6.11: Comparison of 5 x 5 convolution between naive, shared and separable way
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Figure 6.12: Comparison of 7 x 7 convolution between naive, shared and separable way

From the Figures 6.11 and 6.12 we conclude that for the 5 x 5 convolution is required
the shared memory implementation and for the 7 x 7 convolution is required the separable
implementation. To achieve the best performance and to end up to our optimum configuration,
we have to explore the best way of CPU-GPU communication for the implementation we
proposed. As we discovered in the subsection 6.2.1, the classic and the pinned ways of transfer
are suggested for our application. In the Figure 6.13 we present the comparison for the latency
of the complete application between classic and pinned ways for various image resolutions.
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Figure 6.13: Comparison of classic and pinned way of transfer for the optimum configuration

As we can find out from the Figure 6.13, for images smaller than 2048 x 2048 pixels (4 MP)
the classic way of transfer is recommended and for images bigger than 2048 x 2048 pixels (4 MP)
the pinned way is recommended. Generally, pinned memory is recommended for transferring
large amounts of data, between CPU and GPU, so these results are the expected ones.

In the Figure 6.14 we present the speedup gain we achieved with Tegra x1 acceleration
compared with a single-thread software implementation on an ARM Cortex A57 CPU.

Speedup gained vs ARM

512x384 1024x1024 2048x2048 4096x4096

Image resolution

Figure 6.14: Achieved speedup gain with respect to a single-threaded software implementation
on an ARM Cortex A57 CPU

6.2.5 Power and Energy Consumption

In embedded systems power plays an important role to the evaluation of the performance.
Thus, in the 6.15 we present the power consumption of our optimum configuration of Harris
algorithm as it is shown and described in the Subsection 6.2.4 for various resolutions of image.
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Average Power Consumption for different Image sizes
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Figure 6.15: Power consumption of Tegra x1 SoC for various image resoutions

The Idle bar of this figure refers to the base power consumption of the board when no
operation is executed by a user. Therefore, Tegra X1 consumes approximately 2 Watts for its
basic operation, which mainly consists of the activities performed by the operating system. As
far as our implementation is concerned, from this figure we can conclude that the maximum
power that can be consumed is 10 Watt for the most high-quality image of our experiment, i.e.
the 4096 x 4096 pixels image, which is expected

6.3 Comparison between NVIDIA Tegra x1 and ZC702

As mentioned in the Section 2.2, Toannis Stratakos et al. [10] have implemented an FPGA-
based acceleration of the Harris corner detector for 512 x 384 and 1024 x 1024 image resolutions.
The accelerated kernel has been evaluated on a ZC702 board which consists of a Zyng-7000
SoC and more specifically, Zyng-7020. On the Processing System (PS) side, Zyng-7020 features
a Dual-core ARM Cortex-A9 MPCore, with maximum frequency of up to 866 Mhz. On the
Programmable Logic (PL) side, Zyng-7020 features 85K logic cells, 53200 Look-Up Tables
(LUT), 4.9Mb of Block RAM (BRAM), 220 DSP Slices and a maximum of 200 I/O Pins.
Figure 6.16 show a block diagram of the Zyng-7000 SoC family.

We compare our implementation with two different deployments on the FPGA, i.e. 1 Harris
engine and 2 Harris engines. 1 Harris engine refers to an implementation where the whole
input image is processed by a single engine on the PL side, whereas 2 Harris engines refers to
an implementation where the input image is divided in the middle and then processed by two
distinct engines. So for example, in case of a 1024x1024 image, 1 Harris engine processes the
whole image. On the other hand, 2 Harris engines implementation separates the image in two
images of 512x512 pixels each and then, each engine process each sub-image in parallel. Tables
6.2 and 6.3 depict the resources utilization of the FPGA for each one of the aforementioned
implementations for a 1024x1024 pixels image.

Table 6.2: Resources Utilization of ZC-702 for 1 Harris engine

Resources | Utilization | Available | Utilization (%)
LUT 11620 53200 21.84
LUTRAM 657 17400 3.78
FF 15884 106400 14.93
BRAM 92 140 65.71
DSP 54 220 24.55
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Table 6.3: Resources Utilization of ZC-702 for 2 Harris engines

Resources | Utilization | Available | Utilization (%)
LUT 19156 53200 36.00
LUTRAM 1016 17400 5.84
FF 27383 106400 25.74
BRAM 98.5 140 70.36
DSP 108 220 49.09
t
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Figure 6.16: Zyng-7000 Block diagram [1]

First, we compare our implementation with the one presented in [10], using 1 Harris engine
for a 512x284 image size. Figure 6.17 shows the execution time of corner detection algorithm.
This measurement refers to the time for executing the corner detection algorithm and does
not take into account the time needed for transferring the data from/to the FPGA/GPU.
In addition, the accelerated FPGA algorithm has been designed using three different clock
frequencies, i.e. 200Mhz, 250Mhz and 300Mhz. As shown in the chart, the GPU implementation
achieves x2.1 speedup compared to the best implementation on the FPGA device.
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For the 1024x1024 image, Tegra still outperforms Zynq, but the speed-up is reduced to
x1.67 compared to a 2 Harris engines implementation using a 300 Mhz clock frequency (6.19.
Here, it is worth mentioning that the resources on the fpga are not 100% utilized. Therefore,
a possible implementation with 3 Harris engines might reach even better performance close to
the one that Tegra achieves.
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Execution time comparison between Tegra x1 and ZC702 for 1024 x 1024 image

Concerning the power that the 2 SoC boards consume, in the Figure 6.19 we present the
Power consumption comparison between Tegra x1 and ZC702 for 1024 x 1024 image resolution.
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Power consumption of Tegra X1 vs. Zynq-7020 for 1024x1024
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Figure 6.19: Power consumption comparison between Tegra x1 and ZC702 for 1024 x 1024
image resolution

We can clearly see the trade-off between the two devices, as Tegra achieves better perfor-
mance whereas the Zynq device achieves better power consumption.
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Chapter 7

Conclusions

7.1 Thesis summary

Image processing is a very demanding field, where both scientific community and industries try
to provide new clever solutions to efficiently deploy image processing algorithms. Especially
when targeting embedded systems the strict restrictions that these systems impose make the
development of embedded image processing applications even more challenging.

This thesis dealt with image processing from a practical point of view. The main goal
was to design and implement an image processing system and deploy it to a SoC CPU-GPU
platform, specifically NVIDIA Tegra x1. The case study of our acceleration is Harris Corner
detector. After explorating various programming techniques that take the advantage of the
GPU architecture we achieved a final acceleration using CUDA C up to x73 compared to a
pure software implementation on ARM Cortex A57 and x2.1 compared to an implementation
of the same algorithm on ZC702 (Zynq 7020 FPGA). Through our exploration, we reached the
conclusion that there is a trade-off between power consumption and execution time with regard
to the dilemma of using GPU or FPGA as an accelerator, that we have to exploit as smarter as
possible in order to create the device wich will be a panacea in the field of embedded systems.

7.2 Future Work

In applications where frames per second (fps) are not that important and we care most about
keeping power consumption low, we can use other programming techniques like different data
transfer ways, for instance UVA or Zero-Copy memory which consume low power but cost time.
It could be a good idea to create a controller with the ability to choose the ideal programming
technique depending on the consumption and time needs of the real time application or user.

In addition, taking into consideration the fact that FPGA appears lower power consumption
than GPU, it could be very promising approach to enrich the aforementioned controller with the
capability of cooperation GPU-FPGA in terms of an embedded SoC platform. This approach
could also be enhanced with a thermal management controller, in order to avoid heat sinks on
an embedded device.
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