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Abstract

The application of power electronics, including dc-dc converters, is expanding over
the last years. However, the control of these devices still remains a challenge that the
scientific community has to face. The main objective is to regulate the output voltage
to the desired value, while neglecting any input voltage and load variations. Several
current and voltage control methods have been developed through the years, but, due
to the nonlinear switching characteristics of the dc-dc converters, these methods have
still room for improvement.

A control algorithm that has been gaining popularity in the past years is model
predictive control (MPC). Compared to other control methods, such as the propor-
tional integral derivative (PID) controller with pulse width modulation (PWM), MPC
has gained remarkable interest both in academia and industry over the past decades.
This is true mainly because MPC can be applied in many different processes, can
implement constraints and is easy to be understood, since its basic concept can be
explained intuitively. The basic idea of MPC is to predict and optimize the future
system behavior using the system model.

In this thesis the state-space representation modelling of the MPC is used for the
control of an dc-dc buck converter operating in continuous conduction mode (CCM).
The formulation of the objective function for the minimization of the voltage error
is simple and is achieved by minimizing the output voltage error (difference between
output voltage and a reference voltage). Two different implementations of the con-
trol problem are presented: a mixed-integer quadratic optimization problem solved
with enumeration technique and a quadratic optimization problem solved using the
gradient and Newton’s descent methods. In addition, in order to provide offset-free
tracking of the output voltage reference, a Kalman filter is used. A voltage MPC
algorithm using these three methods (enumeration, gradient and Newton’s) is applied
in MATLAB/SIMULINK. Variations in the input voltage, the output voltage and the
load are also applied in order to examine the response of the three methods to these.

The thesis is divided into two main chapters. In Chapter 1, the theoretical back-
ground with regards to the uses of dc-dc converters and their control methods is given.
Since MPC is an optimal control scheme, the main aspects of the mathematical op-
timization theory are also introduced in this chapter. Furthermore, some important
classes of optimization problems, namely convex optimization problems, as well as
their solving techniques are presented. In Chapter 2, the system modelling for the
dc-dc buck converter is presented, the objective function is formulated and the opti-
mization problem is simulated. The results and their comparison for the three solving
techniques mentioned above are also presented in Chapter 2.

Keywords dc-dc buck converter, buck converter, control methods, model predic-
tive control, optimization, continuous conduction mode, enumeration method, gradient
method, Newton’s method
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PerÐlhyh
H efarmog  twn hlektronik¸n isqÔoc, sumperilambanomènwn twn dc-dc metatro-

pèwn, parousi�zei an�ptuxh ta teleutaÐa qrìnia. Wstìso, o èlegqoc aut¸n twn su-
skeu¸n paramènei mia prìklhsh pou kaleÐtai na antimetwpÐsei h episthmonik  koinìthta.
O kÔrioc stìqoc eÐnai h rÔjmish thc t�shc exìdou sthn epijumht  tim , amel¸ntac o-
poiesd pote metabolèc thc t�shc eisìdou kai tou fortÐou. Kat� thn di�rkeia twn
teleutaÐwn et¸n, arketèc mèjodoi elègqou reÔmatoc kai t�shc èqoun anaptuqjeÐ, all�
lìgw twn mh grammik¸n diakoptik¸n qarakthristik¸n twn dc-dc metatropèwn, autèc oi
mèjodoi den èqoun akìmh katal xei se eparkèc epÐpedo elègqou.

'Enac algìrijmoc elègqou pou èqei anadeiqjeÐ ta teleutaÐa qrìnia eÐnai autìc tou
montelopoihmènou probleptikoÔ elègqou (model predictive control - MPC). Se sÔgkri-
sh me �llec mejìdouc elègqou, ìpwc o analogikìc-oloklhrwtikìc-diaforikìc elegkt c
(PID) me diamìrfwsh eÔrouc palmoÔ (PWM), o probletikìc èlegqoc èqei kerdÐsei axio-
shmeÐwto endiafèron tìso ston akadhmaðkì ìso kai ston biomhqanikì kl�do tic teleuta-
Ðec dekaetÐec. Autì isqÔei kurÐwc epeid  o probleptikìc èlegqoc mporeÐ na efarmosteÐ
se pollèc diaforetikèc diadikasÐec, mporeÐ na ulopoi sei periorismoÔc kai eÐnai eÔkolo
na gÐnei katanohtì, kaj¸c h basik  tou ènnoia mporeÐ na exhghjeÐ diaisjhtik�. H basik 
idèa tou probleptikoÔ elègqou eÐnai na problèyei kai na beltistopoi sei th mellontik 
sumperifor� tou sust matoc qrhsimopoi¸ntac to montèlo tou sust matoc.

Sthn paroÔsa diplwmatik  qrhsimopoieÐtai h montelopoÐhsh thc anapar�stashc tou
q¸rou katast�sewn (state-space representation) tou MPC gia ton èlegqo enìc dc-dc
buck metatropèa pou leitourgeÐ se suneq  leitourgÐa agwgimìthtac (CCM). H dia-
tÔpwsh thc antikeimenik c sun�rthshc gia thn elaqistopoÐhsh tou sf�lmatoc t�shc
eÐnai apl  kai epitugq�netai elaqistopoi¸ntac to sf�lma t�shc exìdou (diafor� meta-
xÔ t�shc exìdou kai t�shc anafor�c). DÔo diaforetikèc ulopoi seic tou probl matoc
elègqou parousi�zontai: èna mikt¸n akeraÐwn tetragwnikì prìblhma beltistopoÐhshc
(mixed-integer quadratic optimization problem) pou epilÔjhke me teqnik  aparÐjmh-
shc kai èna tetragwnikì prìblhma beltistopoÐhshc pou epilÔjhke qrhsimopoi¸ntac tic
gradient kai Newton’s descent mejìdouc. Epiprosjètwc, prokeimènou na parèqetai pa-
rakoloÔjhsh qwrÐc to offset thc anafor�c t�shc exìdou, qrhsimopoieÐtai èna fÐltro
Kalman. 'Enac algìrijmoc t�shc MPC pou qrhsimopoieÐ autèc tic treic mejìdouc (a-
parÐjmhsh, gradient kai Newton’s) efarmìzetai se MATLAB / SIMULINK. Metabolèc
sthn t�sh eisìdou, thn t�sh exìdou kai to fortÐo efarmìzontai epÐshc gia na exetasteÐ
h apìkrish twn tri¸n mejìdwn.

H diplwmatik  ergasÐa qwrÐzetai se dÔo kÔria kef�laia. Sto Kef�laio 1 parousi-
�zetai to jewrhtikì upìbajro anaforik� me tic qr seic twn dc-dc metatropèwn kai twn
mejìdwn elègqou touc. Dedomènou ìti to MPC eÐnai èna bèltisto sq ma elègqou, oi
kÔriec ptuqèc thc jewrÐac thc majhmatik c beltistopoÐhshc eis�gontai epÐshc se au-
tì to kef�laio. Epiplèon, parousi�zontai merikèc shmantikèc kathgorÐec problhm�twn
beltistopoÐhshc, dhlad  kurt� probl mata beltistopoÐhshc (convex optimization pro-
blems), kaj¸c kai oi teqnikèc epÐlushc touc. Sto kef�laio 2 parousi�zetai h montelo-
poÐhsh tou sust matoc gia ton dc-dc buck metatropèa, kaj¸c epÐshc diamorf¸netai h
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antikeimenik  sun�rthsh kai prosomoi¸netai to prìblhma beltistopoÐhshc. Ta apote-
lèsmata kai h sÔgkris  touc gia tic treic teqnikèc epÐlushc pou anafèrontai parap�nw
parousi�zontai sto Kef�laio 2.

Lèxeic Kleidi� dc-dc metatropèac, mèjodoi elègqou, montèlo prìbleyhc, bel-
tistopoÐhsh, kat�stash suneqoÔc agwg c, mèjodoc aparÐjmhshc, mèjodoc gradient,
mèjodoc Newton’s
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Chapter 1

Introduction

1.1 DC-DC Converters

1.1.1 Uses

Dc-dc converters are power electronic circuits that convert one level of electrical voltage

into another level by switching action and this has received an increasing deal of

interest in many areas. The main functions of the dc-dc converters, as these can be

found in [25, 31], are summarized here:

– Convert a dc input voltage Vs into a dc output voltage V0

– Regulate the dc output voltage against load and line variations;

– Reduce the ac voltage ripple on the dc output voltage below the required level;

– Provide isolation between the input source and the load;

– Protect the supplied system and the input source from the electromagnetic in-

terference;

– Satisfy various international and national safety standards.

Modern applications of dc-dc converters can be found in electric vehicles [37, 8, 33,

26, 1], renewable energy systems [11, 29, 4, 30] and other [34] sectors.

An interesting example of the use of dc-dc converters in photovoltaic (PV) systems

is [36] where a PV system with dc-dc converters is developed for water pumping in

developing countries. This study is mentioned here for showing a basic application

of dc-dc converters in PV systems and for emphasising the importance of control

techniques in order to optimise the power output and therefore the performance of a

whole PV system.
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20 Chapter 1. Introduction

1.1.2 Control Methods

In their simplest form dc-dc converters comprise two semiconductor switches that are

periodically switched on and off, and a low pass filter with an inductor and a capacitor.

The filter is added to pass the dc component of the input, and to remove the switching

harmonics from the output voltage. The detailed topology and main electrical circuit

of the dc-dc converter is presented in Section 2.1.1

Despite the fact that the switch-mode dc-dc conversion is a well-established technol-

ogy, the problems associated with these applications and their closed-loop controlled

performance still pose theoretical and practical challenges. The main control objective

for the dc-dc converters, is the regulation of the output voltage, while rejecting the

impact of variations in the input voltage and the load. The difficulty in this, lies on

the unregulated input voltage conditions, time-varying load, switched nonlinear char-

acteristics, component-varying values due to temperature and pressure conditions, etc.

Therefore, the control of the output voltage should be performed in a closed-loop man-

ner using principles of negative feedback. The two most common closed-loop methods

for dc-dc converters are the voltage-mode control and the current-mode control. These

are schematically represented in Fig. 1.1.

In the voltage-mode scheme shown in Fig. 1.1a, the converter output voltage is

measured and subtracted from an external reference voltage in an error amplifier. The

error amplifier produces a control voltage that is used to determine the switching duty

ratio by comparison with a constant frequency waveform. This duty ratio is used to

maintain the average voltage across the inductor and is eventually setting the output

voltage to its reference value without variations.

In the current-mode scheme shown in Fig. 1.1b, an additional loop feeds back

an inductor current signal. This current signal, converted into its voltage analog,

is compared to the control voltage and is used to control the duty cycle. An error

signal is produced after comparing the output voltage to the reference voltage and

this error signal is used to generate the reference current. The next step is to measure

the inductor current and compare it to the reference current to generate the duty

cycle and drive the switch of the converter. It is to be noted here that although the

current-mode controllers have two loops, they are more often employed since the design

procedure is simpler.

In general, pulse width modulation (PWM) techniques are used in the controller

loop to turn on and off the controllable switch and maintain the output voltage equal

to the reference. This means that by conforming the pulse width, i.e. by modifying

the duty cycle d1, the output voltage is regulated to the desired level. However, there

are also strategies where a modulator is not required. According to these methods

1d = ton/Ts, where ton is the time the switch is closed and Ts is the switching period.
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(a) Voltage-mode control

(b) Current-mode control

Figure 1.1: Main control schemes for dc-dc converters [31].

the switch is directly manipulated without the presence of an intermediate modulator.

Therefore, the PMW used in Fig. 1.1 is optional and can be bypassed.

In literature many different approaches to the control problem can be found. These

are mainly divided into two main groups: the linear and the nonlinear controllers.

The majority of the controllers are based on the conventional proportional integral

deviation (PID) controller and are tuned in the basis of the linear state-space average

model of the converter. Throughout the years several nonlinear controllers based on the

averaged or nonaveraged state-space model of the converter have been proposed as well.

Although many of the approaches applied have been shown to be reasonably effective,

several challenges such as the ease of the controller design and tuning as well as the

robustness to the load variations have not been fully addressed yet. Moreover, the aim

to improve the performance of the closed-loop system and enable a systematic design

and implementation procedure still exists. Last but not least, the recent theoretical

advances with regards to controlling hybrid systems, as well as the emergence of fast

microprocessors that enabled the implementation of more computationally demanding

algorithms, allow one to tackle these challenges in a novel way [17].

Model predictive control (MPC) is a control strategy that was developed an an

alternative to the conventional PID control and has been gaining popularity in the

field of power electronics the last years. Its success is based on the fact that it uses a

mathematical model of the plant, which allows the controller to predict the impact of
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its control actions. Furthermore, MPC is capable of handling complex and nonlinear

dynamics, while several design criteria can be explicitly included in a simple and

effective manner [17]. The basic idea of the MPC as well as its basic elements are

presented Chapter 2.

1.1.3 Thesis Aim

The aim of this Thesis is to compare three different methods (enumeration, gradient

descent and Newton’s) to control the dc-dc buck converter using model predictive

control (MPC) in terms of computational efficiency and complexity.

In the next paragraphs of this Chapter, a mathematical background is introduced

in order for the reader to get familiar with the optimisation theory and how this is

applied in the case of MPC. The formulation of the MPC problem is presented in the

next Chapter, together with the simulation results and the conclusions.

1.2 Convexity

Definition 1.2.1. The set C ⊂ Rn is said to be convex if αx + (1 − α)y is in C

whenever x and y are in C, and α ∈ [0, 1].[16]

Geometrically this means that for every two points x and y in the set C the straight

line that connects the two points is also in the set. In Fig. 1.2 and 1.3 there are some

examples of convex and nonconvex sets.

Figure 1.2: Convex sets Figure 1.3: Nonconvex set

Definition 1.2.2. Let C be a nonempty convex set in Rn. A function f : C → R is

said to be convex on C when, for all pairs (x,y) ∈ C × C and all α ∈ (0, 1), there

holds[16]

f(αx + (1− α)y) ≤ αf(x) + (1− α)f(y). (1.1)

Geometrically this means that for every two points x and y in the set C the

straight line that connects the points (x, f(x)) and (y, f(y)) lays above the function

graph between these points, as show in Fig. 1.4.

When (1.1) holds as a strict inequality for x 6= y, the function f is said to be

strictly convex. A very useful property of strictly convex functions is that they have

at most one global minimum.
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(x,f(x))

(y,f(y))

Figure 1.4: Convex function

1.3 Convex Optimization

Model predictive control is an optimal control scheme and therefore, an introduction

to the basic terminology of the mathematical optimization theory here is necessary.

In addition, some important classes of optimization problems, namely convex opti-

mization problems, linear optimisation problems, quadratic optimization problems,

mixed-integer linear optimization problems, and mixed-integer quadratic optimisation

problems are presented. [17, 9]

According to [35], an optimisation problem is of the form:

minimize f(x)

subject to gi(x) ≤ 0 i = 1, . . . ,m

hj(x) = 0 j = 1, . . . , p

(1.2)

The goal is to find the optimization variable x ∈ Rn that minimizes the objective

function f : Rn → R, while satisfying the conditions gi(x) ≤ 0, i = 1, . . . ,m and

hj(x) = 0, j = 1, . . . , p. The inequalities gi(x) ≤ 0 in (1.2) are called inequality con-

straints and the corresponding functions gi : Rn → R inequality constraints functions.

The equalities hj(x) = 0 in (1.2) are called equality constraints and the corresponding

functions hj : Rn → R equality constraints functions.

The domain O of the optimization problem (1.2) is the set of the points for which

the objective function f and the constraint functions g and h are defined, thus

O = domf ∩
m⋂
i=1

domgi ∩
p⋂

j=1

domhj. (1.3)

A point x ∈ O is said to be feasible if it satisfies all the constraints gi(x) ≤ 0, i =

1, . . . ,m and hjx = 0, j = 1, . . . , p. The problem (1.2) is feasible if there exists at least
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one feasible point, else it is infeasible.

The optimal value q∗ of the problem (1.2) is defined as

q∗ = inf{f(x) | gi(x) ≤ 0, i = 1, . . . ,m, hj(x) = 0, j = 1, . . . , p}. (1.4)

The optimal value q∗ may be equal to ±∞. If the problem is infeasible then q∗ =∞;

if the problem is unbound below, i.e. there are points xk such that f(x) → −∞ as

k → −∞, then q∗ = −∞. The solution x∗ of the optimisation problem (1.2)is called

optimal point, if x∗ is feasible and f(x∗) = q∗. The set of all optimal values

Xopt = {x | f(x) = q∗, gi(x) ≤ 0 i = 1, . . . ,m, hj(x) = 0, j = 1, . . . , p} (1.5)

is called optimal set. The optimal value is achieved, if there exists an optimal point x∗

for the problem (1.2), otherwise the set Xopt is empty. If the optimal value is achieved,

then the optimization problem is solvable. A feasible point x is locally optimal if it

minimizes f in a subset of the feasible set, i.e. if there is an R > 0 such that

f(x) = inf{f(z)|gi(z) ≤ 0, i = 1, . . . ,m, hj(z) = 0, j = 1, . . . , p, ||z−x||2 ≤ R}, (1.6)

with z ∈ R or, equivalently, if it is the solution to the optimization problem

minimize f(z)

subject to gi(z) ≤ 0 i = 1, . . . ,m

hjz = 0 j = 1, . . . , p

||z − x||2 ≤ R

(1.7)

If a feasible point x minimizes f for the whole feasible set, then it is called globally

optimal.

An important class of optimization problems are convex optimization problems.

These are of the form

minimize f(x)

subject to gi(x) ≤ 0 i = 1, . . . ,m

aT
j x = bj j = 1, . . . , p

(1.8)

where the objective function f and the inequality constraints functions g1, . . . , gm are

convex, and the equality constraints functions are affine. Furthermore, the feasible

set is convex; it is the intersection of the domain of the convex optimization problem

(1.8), which is a convex set, with m convex sublevel sets {x|gi(x) ≤ 0, i = 1, . . . ,m}
and p hyperplanes {x|aT

j x = bj, j = 1, . . . , p}, i.e.
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O = domf
m⋂
i=1

domgi. (1.9)

Based on the above a fundamental property of convex optimization problems is

derived; any locally optimal point is also globally optimal.

1.3.1 Linear Programming

When the objective and constraint functions are all affine, the problem is called a

linear program (LP). A general linear program has the form

minimize cTx + d

subject to Gx � h

Ax = b,

(1.10)

where G ∈ Rm×n and A ∈ Rp×n. Linear programs are, of course, convex optimization

problems.

It is common to omit the constant d in the objective function, since it does not

affect the optimal (or feasible) set. Since we can maximize an affine objective cTx+d,

by minimizing −cTx − d (which is still convex), we also refer to a maximization

problem with affine objective and constraint functions as an LP.

1.3.2 Quadratic Programming

The convex optimization problem (1.8) is called a quadratic program (QP) if the objec-

tive function is (convex) quadratic, and the constraint functions are affine. A quadratic

program can be expressed in the form

minimize (1/2)xTPx + qTx + r

subject to Gx � h

Ax = b,

(1.11)

where P ∈ Sn
+, G ∈ Rm×n and A ∈ Rp×n. [22, 6, 35]

1.3.3 Mixed-Integer Linear Programming

The optimization variable in some cases may contain a continuous component and a

binary part. The optimization problem (1.10) in this case is called mixed-integer linear
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program (MILP), and it is of the form

minimize cTx

subject to Gx � h

Ax = b

xb ∈ {0, 1}nb

(1.12)

where x =
[
xT
r xT

b

]T
, with xr ∈ Rnr , xb ∈ {0, 1}nb , and n = nr + nb. Furthermore,

c ∈ Rn, G ∈ Rm×n, h ∈ Rm, A ∈ Rp×n, and b ∈ Rp.

It should be noted that despite the fact that the objective function and the con-

straints functions are linear (or affine), the problem (1.12) is nonconvex because of the

presence of the binary component. This means that the important property of convex

optimization problems does not apply to MILPs; the locally optimal points may not

be globally optimal. Finally, an MILP is NP-hard, i.e. the running time depends

exponentially on the number of the binary components, as it is written in [17]

1.3.4 Mixed-Integer Quadratic Programming

If the optimization variable of the problem (1.11) contain both a real-valued part and

a binary part, i.e. it is of the form x =
[
xT
r xT

b

]T
, with xr ∈ Rnr , xb ∈ {0, 1}nb ,

and n = nr + nb, then the formulated optimization problem is called mixed-integer

quadratic program (MIQP)

minimize (1/2)xTQx + pTx

subject to Gx � h

Ax = b

xb ∈ {0, 1}nb

(1.13)

with Q ∈ Sn
+, p ∈ Rn, G ∈ Rm×n, h ∈ Rm, A ∈ Rp×n, and b ∈ Rp. As already

mentioned in Section 1.3.3, problem (1.13) is non-convex because of the binary part

xb, and it is NP-hard, as it is written in [17]

1.4 Solution Methods for Optimization Problems

1.4.1 Enumeration Method for Mixed Integer Programming

In general, solving the mixed-integer optimization problems (MIPs) presented in Sec-

tions 1.3.3 and 1.3.4 is a very challenging task. For determining the solution of an

MIP, either in the form of 1.12), or in the form of (1.13), for an MILP or an MIQP,

respectively, a straightforward option is to use an enumeration strategy.
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According to the complete enumeration method at each integer variable are pro-

gressively assigned the different values of its domain. The procedure is repeated until

no more free integer variables are left, and the complete solution for the integer vari-

ables x̃b is obtained. Therefore, the MILP is simplified to an LP (or to a QP if

the problem is an MIQP). By solving the resulting LP (or QP) the optimal value

q∗ = f(x∗) of the real-valued variables is determined, as it is written in [17]

1.4.2 Descent Methods for Quadratic Programming

For these particular optimization problems one can take advantage of the convexity

property they hold (meaning they have exactly one global minimum or maximum) and

use descent iterative methods for the solution of the problem.

These methods produce a minimizing sequence x(k+1), k ∈ N where

x(k+1) = x(k) + t(k)∆x(k).

∆x(k)is the step or search direction, is a vector in Rn and must be consider an entity.

The scalar t(k) > 0 is called step size or step length at iteration k

These methods are called descent in the sense that the value of the function to be

minimized f is reduced in every iteration, or

f(x(k+1)) < f(x(k))[9].

In general the descent method is as follows.

Algorithm 1.1 General descent method

given a starting point x(k) ∈ domf
repeat

1. Determine a descent direction ∆x(k).

2. Line search. Choose a step size t(k) > 0.

3. Update. x(k+1) = x(k) + t(k)∆x(k).

until stopping criterion is satisfied

One line search method is the backtracking line search and it depends on two

constants 0 < α < 0.5 and 0 < β < 1. The backtracking line search minimizes f along

the ray {x(k) + ∆x(k)|t(k) ≥ 0} approximately.

Different descent methods exist depending on the way the descent direction ∆x is

chosen. Two of them are the gradient descent method and the Newton’s method.



28 Chapter 1. Introduction

Algorithm 1.2 Backtracking line search [9].

given a descent direction ∆x(k) for f at x(k) ∈ domf , α ∈ (0, 0.5), β ∈ (0, 1).
t := 1.
while f(x(k) + t(k)∆x(k)) > f(x(k)) + αt(k)∇f(x(k))

T
∆x(k), t(k) := βt(k).

It should be noted that both methods are actually solution techniques for uncon-

strained optimization but can be used in certain cases of constrained optimization.

1.4.2.1 Gradient Method

For this method the negative gradient is chosen as the descent direction,

∆x(k) = −∇f(x(k)).

This is a natural choice considering that the gradient points in the direction of the

maximum increase (and thus the negative gradient points in direction of the maximum

decrease.)

For this method the stopping criterion is usually of the form ‖∇f(x(k))‖2 ≤ η,

where η is a small positive number which expresses the accuracy of the calculation.

The gradient method is as outlined in algorithm 1.3.

Algorithm 1.3 Gradient descent method [9]

given a starting point x(k) ∈ domf
repeat

1. ∆x(k) = −∇f(x(k)).

2. Choose a step size t(k) > 0 using backtracking line search.

3. Update. x(k+1) = x(k) + t(k)∆x(k).

until stopping criterion is satisfied

1.4.2.2 Newton’s Method

In Newton’s method the Newton step is chosen as the descent direction. The Newton

step is

∆x(k) = −∇2f(x(k))−1∇f(x(k)).

The Newton decrement

λ = (∇f(x(k))T∇2f(x(k))−1∇f(x(k))1/2

is used in the stopping criterion [9].
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Algorithm 1.4 Newton’s descent method

given a starting point x(k) ∈ domf , tolerance η > 0
repeat

1. Compute the Newton step and decrement

∆x(k) = −∇2f(x(k))−1∇f(x(k)), λ2 = ∇f(x(k))T∇2f(x(k))−1∇f(x(k))

2. Stopping criterion. quit if λ2/2 ≤ η

3. Choose a step size t(k) > 0 using backtracking line search.

4. Update. x(k+1) = x(k) + t(k)∆x(k).

In comparison to the gradient method, which takes into account only the slop of

the function, the Newton’s method uses the curvature of the function in the form of

the Hessian matrix ∇2f as well, which makes it the fastest method of the two, meaning

it needs less iterations to find the minimum.

Example 1.4.1. This example is designed to demonstrate the different paths the two

methods discussed in sections 1.4.2.1 and 1.4.2.2 choose to minimize a function.

To demonstrate how these two methods work the function f(x1, x2) = 3x21 + x22 −
2x1x2 − 6x2 + 3 will be minimized using them. In accordance with the minimization

problem (1.11) the function f can be written in vector form as:

f(x) =
1

2
xT

[
6 −2

−2 2

]
x +

[
0 −6

]
x + 3, (1.14)

where x = [x1 x2]
T . In both cases the same starting point (4, 7) was chosen, with

η = 10−6.

From Fig. 1.5 we can see that Newton’s method follows a more direct path to the

minimum than gradient method and thus is faster needing less iterations (78 iterations)

than gradient method (123 iterations) to find the minimum.

For more information about the descent methods the reader may refer to [28] and

[9].
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Figure 1.5: Minimization of the function f(x1, x2) = 3x21 + x22 − 2x1x2 − 6x2 + 3 with the
use of gradient descent (red dots) and Newton’s descent (green dots) methods,
starting from the same point (blue star) (4, 7)

1.5 Model Predictive Control

Model predictive control (MPC) has gained interest both in academia and industry

over the past few decades compared to other control methods, such as PID or PWM

control. This is true mainly because MPC can be applied in many different processes,

can implement constraints and is easy to be understood, since its basic concepts can

be explained intuitively.[10, 20]

The basic idea of model predictive control is to predict and optimize the future

system behaviour using the system model. The basic elements of MPC are:

1. The system model, which describes the plant’s behaviour over time.

2. The control problem, where an objective function is formulated with regard to

the system model to calculate the optimal control sequence for a specific number

of future instances (prediction horizon)

3. Receding horizon policy,

The following sections explain these elements in detail.

1.5.1 System Representation

Modelling is a very important part of the MPC algorithms, since different models

produce algorithms with different complexity influencing the time needed to find the
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Figure 1.6: MPC structure,[10]

optimal solution to the control problem.[21] Many different forms of modelling can be

used in MPC [10], but for the purposes of this thesis the state space representation

will be used.

The use of microprocessors makes MPC a discrete-time controller, thus the state-

space representation in discrete-time is in order for the system model:

x(k + 1) = f(x(k),u(k)) (1.15a)

y(k) = g(x(k)) (1.15b)

where x(k) ∈ Rn is the state vector of the system at time instant kTs, u(k) ∈ Rm is

the input vector at time instant kTs, y(k) ∈ Rp is the output vector at time instant

kTs, the functions f and g are the state-update and output functions, respectively,

which can be linear or nonlinear, and Ts is the sampling interval.

Starting from the current state x(k), this model is used for the calculation of the

state and the output future values over a finite number N of planed control actions

{u(k),u(k + 1), . . . ,u(k +N)}.

Starting from the step k + 1 for the state it holds:

x(k + 1) = f(x(k),u(k))

x(k + 2) = f(x(k + 1),u(k + 1)) = f(f(x(k),u(k)),u(k + 1))

...

x(k +N) = f(x(k +N − 1),u(k +N − 1))

= f(f . . . (f(x(k),u(k)),u(k + 1)), ...u(k +N − 1))

(1.16)
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Thus the output over N steps is

y(k + 1) = g(f(x(k),u(k)))

y(k + 2) = g(f(x(k + 1),u(k + 1))) = g(f(f(x(k),u(k)),u(k + 1)))

...

y(k +N) = g(f(x(k +N − 1),u(k +N − 1)))

= g(f(f . . . (f(x(k),u(k)),u(k + 1)), ...u(k +N − 1)))

(1.17)

Linear model For a linear model the discrete time state-space representation is:

x(k + 1) = Ax(k) + Bu(k) (1.18a)

y(k) = Cx(k) (1.18b)

where A, B and C are the system matrices.

Following the same procedure as in (1.16) and (1.17), the state over a finite number

of planed actions N is:

x(k + 1) = Ax(k) + Bu(k)

x(k + 2) = Ax(k + 1) + Bu(k + 1)

= A2x(k) + ABu(k) + Bu(k + 1)

...

x(k +N) = Ax(k +N − 1) + Bu(k +N − 1)

= ANx(k) + AN−1Bu(k) + AN−2Bu(k + 1) + · · ·+ Bu(k +N − 1)

(1.19)

or in a matrix form:
x(k + 1)

x(k + 2)
...

x(k +N)

 =


A

A2

...

AN

x(k) +


B 0 · · · 0

AB B · · · 0
...

...
. . .

...

AN−1B AN−2B · · · B




u(k)

u(k + 1)
...

u(k +N − 1)

 (1.20)

Using the last applied control action u(k − 1) (which is known) it is possible to
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write the future control actions u(k),u(k + 1), . . . ,u(k +N − 1) in the form:

u(k) = u(k)− u(k − 1) + u(k − 1)

= ∆u(k) + u(k − 1)

u(k + 1) = ∆u(k + 1) + ∆u(k) + u(k − 1)

...

u(k +N − 1) = ∆u(k +N − 1) + · · ·+ ∆u(k) + u(k − 1)

(1.21)

where ∆u(k + l − 1) = u(k + l − 1)− u(k + l − 2), l = 1, . . . , N .

Combining (1.19) and (1.21) we get:

x(k + 1) = Ax(k) + B(∆u(k) + u(k − 1))

= Ax(k) + Bu(k − 1) + B∆u(k)

x(k + 2) = A2x(k) + AB(∆u(k) + u(k − 1))+

+ B(∆u(k + 1) + ∆u(k) + u(k − 1))

= A2x(k) + (AB + B)u(k − 1) + (AB + B)∆u(k) + B∆u(k + 1)

...

x(k +N) = ANx(k) + AN−1B(∆u(k) + u(k − 1))+

+ · · ·+ B(∆u(k +N − 1) + · · ·+ ∆u(k) + u(k − 1))

= ANx(k) + (AN−1B + · · ·+ B)u(k − 1)+

+ (AN−1B + · · ·+ B)∆u(k) + · · ·+ B∆u(k +N − 1)

(1.22)

The equations 1.22 can be written in a matrix form as:
x(k + 1)

...

x(k +N)

 =


A
...

AN

x(k) +


B
...∑N−1

i=0 AiB

u(k − 1)+

+


B · · · 0
...

. . .
...∑N−1

i=0 AiB · · · B




∆u(k)
...

∆u(k +N − 1)

 (1.23)

The equations 1.20 and 1.23 describing the state evolution over a prediction horizon

N are of course equivalent and for the system’s output in both representations it holds
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in a matrix form: 
y(k + 1)

y(k + 2)
...

y(k +N)

 =


C 0 · · · 0

0 C · · · 0
...

...
. . .

...

0 0 · · · C



x(k + 1)

x(k + 2)
...

x(k +N)

 (1.24)

1.5.2 Optimal Control Problem

In order to obtain the control law a cost function is needed. In general, the cost

function is formulated in regard to the output difference to a specific reference signal

and the required control effort. Such a function is of the form:

J(x(k),U(k)) =
k+N−1∑
l=k

P (x(l + 1|k),u(l|k)) (1.25)

where U(k) =
[
uT (k) uT (k + 1) · · · uT (k +N − 1)

]T
is the control input se-

quence and P is a function based on the norm:

‖·‖p :=

( n∑
i=1

|·|p
)1/p

, p ≥ 1, p ∈ R.

The most commonly used norms in MPC are p = 1 , p = ∞, which produce a linear

function, and p = 2, which produces a quadratic function.

The aim of the optimization problem is, using the formulated cost function J , to

find the control sequence U(k) that results in the best performance of the system:

minimize J(k)

subject to x(l + 1) = f(x(l),u(l))

l = k, k + 1, . . . , N − 1

(1.26)

The solution of this problem is the optimal control sequence at step k, U ∗(k) =[
u∗T (k) u∗T (k + 1) · · · u∗T (k +N − 1)

]T
1.5.3 Receding Horizon Policy

The basic concept of receding horizon policy is as follows. Having obtained the optimal

control sequence U ∗(k) at step k, only the first term u∗(k) is used as the control input

and the rest are discarded. Afterwards, the procedure is repeated, calculating a new

optimal control sequence U ∗(k + 1) =
[
u∗T (k) u∗T (k + 1) · · · u∗T (k +N − 1)

]T
for step k+1 using new state measurements. In this way, plant uncertainties and distur-



bances can be taken into account in the future control actions, providing feedback.[20]

Algorithm 1.5 MPC algorithm

1: Obtain state measurements x(k)
2: Based on x(k), solve optimization problem (1.26)

3: Obtain optimal control sequence U ∗(k) =
[
u∗T (k) u∗T (k + 1) · · · u∗T (k +N − 1)

]T
4: Apply only u∗(k) to the plant
5: Update k := k + 1
6: Go to step “1”
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DC-DC Buck Converter

2.1 Model of the DC-DC Buck Converter

2.1.1 Continuous-Time Model

The dc-dc buck converter, shown in fig. 2.1, reduces the dc input voltage vin(t) to a

lower dc output voltage vo(t). The converter consists of an output load R, an inductor

L with internal resistance Rl, which, depending on the conduction mode, stores and

delivers energy to the load, and a capacitor C with equivalent series resistance Rc

connected in parallel with the load in order to continuously provide voltage to the

output. There are two power semiconductors; the switch S which is controllable and

the diode D.

When the switch S is on (S = 1) energy is stored to the inductor and the inductor

current il(t) is increasing. When the switch is off (S = 0) the energy stored in the

inductor flows to the output causing the inductor current il(t) to decrease. If the

inductor current becomes zero (il(t) = 0) then both the switch S and the diode D are

off and the converter operates in discontinuous conduction mode (DCM). Otherwise

(namely when the inductor current is positive, il(t) > 0), the converter operates in

continuous conduction mode (CCM). In this thesis only the CCM is taken into account

for the system’s modelling. Figures 2.2, 2.3, 2.4 describe graphically the modes of

operation of the buck converter. In these figures the parasitic resistances are not

shown for simplicity reasons.

The continuous-time state-space equations, as they are defined in [14], are:

dx(t)

dt
= Acx(t) + Bcu(t) (2.1a)

y(t) = Ccx(t) (2.1b)

37
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Figure 2.1: DC-DC Buck Converter

where

x(t) =
[
il(t) vo(t)

]T
is the state vector, il(t) is the inductor current, vo(t) is the output voltage,

y(t) = vo(t)

is the system output,

Ac =

 −Rl

L
− 1

L

R L−RcRlC
(R+Rc)CL

− L+RcRC
(R+Rc)CL

 ,Bc =
vin
L

 1

RRc

R+Rc

 ,Cc =
[
0 1

]

are the system matrices and u(t) is the control input.

There are two ways to define the variable u depending on the given physical mean-

ing. The control input u can either denote the state of the switch S or the duty cycle.

In the first case u is discrete, since the switch state is either off or on, with u ∈ {0, 1}.
In the second case it is continuous since u is the duty cycle, namely u = ton/T , where

ton is the interval the switch stays on over one switching period T . Here it holds

u ∈ [0, 1].

Based on these two different definitions of u, two different optimization problems

are implemented for the buck converter in Section 2.2.

2.1.2 Discrete-Time Model

As already mentioned, MPC is a discrete-time controller and for this reason the

continuous-time equations (2.1) need to be discretised. For the discretisation the

Euler method is used
dx(t)

dt
≈ x(k + 1)− x(k)

Ts
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Figure 2.2: Buck converter and equivalent circuits of modes of operation. (a)Power (b) equiv-
alent circuit when the switch is on (Mode I); (c) equivalent circuit when the diode
is conducting (Mode II); (d) equivalent circuit when none of the semiconductors
conduct (Mode III). [25]



40 Chapter 2. DC-DC Buck Converter

Figure 2.3: Buck converter waveforms when inductor current is continuous. (a) Inductor
current; (b) switch S current; (c) diode D current; (d) inductor voltage; (e)
capacitor current; (f) output voltage; (g) output current; (h) diode voltage; (i)
gating signal.[25]
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Figure 2.4: Buck converter waveforms when inductor current is discontinuous. (a) Inductor
current; (b) switch S current; (c) diode D current; (d) voltage across diode D;
(e) gating signal. [25]
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where Ts is the sampling period. The discrete-time state-space equations are:

x(k + 1) = Adx(k) + Bdu(k) (2.2a)

y(k) = Cdx(k) (2.2b)

The matrices of the discrete time system are Ad = I +AcTs, Bd = BcTs and Cd = Cc

where I is the identity matrix of size two and Ac, Bc, Cc are the matrices described

in Section 2.1.1

2.2 Optimal Control of Buck Converter

The main control objective is to regulate the output voltage vo(k) to the desired voltage

reference vo,ref, minimizing the voltage error, by appropriately manipulating the switch

S.

In this section two different implementations of the control problem are presented.

In the first implementation a mixed-integer quadratic optimization problem is for-

mulated, which is solved with enumeration technique, whereas in the second one a

quadratic optimization problem.

2.2.1 Objective Function

The formulation of the objective function is achieved with respect to the prediction

horizon N and the main control aim, which is to force the output voltage to track its

reference vo,ref or, in other words, to minimize the output voltage error. Therefore, the

objective function is:

J(k) =
k+N−1∑
l=k

(
||vo(l + 1|k)− vo,ref||22 + λ||∆u(l|k)||22

)
(2.3)

The first term of the objective function expresses the minimization of the voltage error

whereas the second term

∆u(l|k) = u(l|k)− u(l − 1|k) (2.4)

penalizes the difference between two consecutive control values. λ > 0 is a weighting

factor that sets a trade-off between the two function terms.

The terms of the objective function (2.3) can be written in a vector form. As it is
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described in Chapter 1, for an N–step prediction horizon it holds:


x(k + 1)

x(k + 2)
...

x(k +N)

 =


Ad

Ad
2

...

Ad
N

x(k) +


Bd

Bd + AdBd

...∑N−1
i=0 Ad

iBd

u(k − 1)+

+


Bd 0 · · · 0

Bd + AdBd Bd · · · 0
...

...
. . .

...∑N−1
i=0 Ad

iBd

∑N−2
i=0 Ad

iBd · · · Bd




∆u(k)

∆u(k + 1)
...

∆u(k +N − 1)

 (2.5)

Y =


y(k + 1)

y(k + 2)
...

y(k +N)

 =


Cd 0 · · · 0

0 Cd · · · 0
...

...
. . .

...

0 0 · · · Cd



x(k + 1)

x(k + 2)
...

x(k +N)

 (2.6)

Combining equations (2.5) and (2.6), the output vector Y can be written in the

form:

Y = Px(k) + Qu(k − 1) + S∆U (2.7)

where

P =


CdAd

CdAd
2

...

CdAd
N

 ,Q =


CdBd

CdBd + CdAdBd

...∑N−1
i=0 CdAd

iBd

 , (2.8)

S =


CdBd 0 · · · 0

CdBd + CdAdBd CdBd · · · 0
...

...
. . .

...∑N−1
i=0 CdAd

iBd

∑N−2
i=0 CdAd

iBd · · · CdBd

 (2.9)

∆U =


∆u(k)

∆u(k + 1)
...

∆u(k +N − 1)

 . (2.10)

The sizes of the matrices P , Q , S and ∆U are N × 2, N × 1, N × N and N × 1,

respectively.



44 Chapter 2. DC-DC Buck Converter

Thus, the first term of the objective function (2.3) can be now rewritten as:

k+N−1∑
l=k

||vo(l+ 1|k)− vo,ref||22 = ||Y −Vref ||22 = ||Px(k) +Qu(k− 1) +S∆U −Vref ||22

with Vref =
[
vo,ref vo,ref · · · vo,ref

]T
a N × 1 vector. For the second term, it can be

easily perceived that
k+N−1∑
l=k

||∆u(l|k)||22 = ||∆U ||22.

The reformulated objective function, with its terms expressed in vector form, is

J(k) = ||Px(k) + Qu(k − 1) + S∆U −Vref ||22 + λ||∆U ||22. (2.11)

In order to obtain the control input at time instant kTs, the objective function

(2.11) needs to be minimized over the optimization variable, which is the control

sequence U (k) =
[
u(k) u(k + 1) · · · u(k +N − 1)

]T
. The fact that the elements

of U (k) can denote either the state of the switch S, being binary, or the duty cycle,

being continuous variables, leads to the formulation of two optimization problems, one

for each representation, for the reasons stated in Chapter 1.

2.2.2 Mixed-Integer Quadratic Optimization Problem for Buck

Converter

Considering the case where the control input is u ∈ {0, 1}, the control problem is of

the form:
minimize J(k)

subject to (2.2).
(2.12)

This is a mixed-integer quadratic optimization problem and in order to be solved an

enumeration strategy is used. The objective function is evaluated for the 2N different,

possible control sequences U (k). Out of these 2N control sequences, the one that

results in the smallest (minimum) value for J(k) is selected. This sequence U ∗(k) is

the optimal solution of the control problem, given by

U ∗(k) = arg min J(k) (2.13)

The first element u∗(k) of the optimal sequence U ∗(k) is applied to the switch as

control input and the rest are discarded. In the next time instant (k + 1)Ts new

measurements are taken and the process to determine the control input is repeated.

Since the output of the controller is the state of the switch, no other stage between
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Figure 2.5: Switching frequency comparison of enumeration and descent methods. At time
1ms, where input voltage gets doubled and the operating point changes, the
switching frequency for the enumeration technique increases whereas for the de-
scent methods the switching frequency stays the same for the two operating
points and only the duty cycle changes.

the controller and the switch is needed to manipulate the switch successfully. This

results in a control sequence that causes the switch S to operate with variable frequency

(in contrast to the method of Section 2.2.3), Nonetheless, the switching frequency fsw

has an upper bound that depends on the sampling time Ts,

fsw ≤
1

2Ts
.

Looking at the objective function (2.11), it be easily perceived that the second term,

which penalizes the difference between two consecutive control actions, can be used as

a way to manipulate the switching frequency through the weighting factor λ.

2.2.2.1 Control Algorithm

The proposed enumeration strategy is summarised in the Algorithm 2.1.

2.2.3 Quadratic Optimization Problem for Buck Converter

Considering the case where the control input is u ∈ [0, 1], the control problem is of

the form:
minimize J(k)

subject to (2.2)
(2.14)

This is a quadratic optimization problem and therefore the use of a descent method

is appropriate of the minimization of J(k). Descent minimization methods, starting
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Algorithm 2.1 Voltage MPC algorithm with Enumeration Strategy for Buck Con-
verter

function BuckMPCEnum(x(k),u(k − 1))
J∗ =∞, u∗(k) = 0
for all U (k) over N do

J = 0
for l = k to k +N − 1 do

∆u(l) = u(l)− u(l − 1)
end for
J = ||Px(k) + Qu(k − 1) + S∆U −Vref ||22 + λ||∆U ||22
if J < J∗ then

J∗ = J
u∗(k) = U (1)

end if
end for

end function

from an initial point (control sequence) U (k), converge to the control sequence that

minimizes the objective function (2.11), calculating the optimal solution

U ∗(k) = arg min J(k). (2.15)

Out of the the N elements of the optimal solution U ∗(k) only the first element

u∗(k) is applied on the switch as control input. New measurements are taken in the

next time instant (k+1)Ts and the process to determine the control input is repeated.

In order to increase the rate of convergence, the last optimal solution U ∗(k) is

used as the new starting point of the iterative method. This choice is made based on

the fact that the control input u(k−1) is actually the duty cycle. When the converter

operates in steady state the duty cycle remains unchanged from time instance kTs to

(k + 1)Ts. Consequently the controller’s output (i.e. u∗(k)) does not change (or has

only a small change) and the use of the last optimal solution as the starting point

of the iterative method means that few (or even none) iterations are required for the

method to converge.

In this method the use of a PWM stage between the controller and the switch S

is necessary to successfully translate the controller output to the pulses that drive the

switch, in contrast to the method analysed in Section 2.2.2, where no such stage is

needed. In this stage the controller output is compared to a triangle wave to produce

the needed pluses (fig. 2.6). This means that the switching frequency in this case is

fixed and depends only on the frequency of the triangle wave. Choosing the period of

the wave to be equal to the sampling period Ts, the switching frequency is
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fsw =
1

Ts
. (2.16)
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Figure 2.6: The controller’s output(dark blue line) is compared to a triangular wave (light
blue line) to create the pulses (red line) that drive the switch S.

To solve this optimization problem, two descent methods are presented; gradient

descent method and Newton’s method.

2.2.3.1 Gradient Descent Method

The objective function of the control problem in question is (2.11) and is repeated

here for the reader’s convenience:

J(k) = ||Px(k) + Qu(k − 1) + S∆U −Vref ||22 + λ||∆U ||22.

As mentioned in Section 1.4.2.1, gradient descent method minimizes a convex func-

tion f using as search direction the function’s gradient ∇f . This means that the

calculation of ∇J is needed to proceed.

J(k) is a function of U (k) =
[
u(k) u(k + 1) · · · u(k +N − 1)

]T
, so its gradient

∇J is a N×1 vector, the entries of which are the partial derivative of J(k) with respect

to U (k) and is given by:

∇J = 2ET (Px(k) + Qu(k − 1) + S∆U −Vref ) + 2λF T∆U (2.17)
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where

E =


CdBd 0 · · · 0

CdAdBd CdBd · · · 0
...

...
. . .

...

CdAd
N−1Bd CdAd

N−2Bd · · · CdBd

 ,F =



1 0 0 · · · 0

−1 1 0 · · · 0

0 −1 1 · · · 0
...

. . . . . . . . .
...

0 · · · 0 −1 1


with the matrices P ,Q ,S and Vref been those described in Section 2.2.1. The matrices

E , F are both of N ×N size. The gradient ∇J is calculated analytically in Appendix

A.

The proposed gradient descent method is summarised in Algorithm 2.2 where α ∈
(0, 1) is the step size and StopTolerence is a small positive number which expresses

the accuracy of the calculation.

Algorithm 2.2 Voltage MPC algorithm with gradient descent method for buck con-
verter

function BuckMPCGrad(x(k),U (k − 1))
Uold = U (k − 1)
∇J = f(x(k),Uold)
Unew = Uold − α∇J
while ‖Unew −Uold‖2 ≥ StopTolerance & Unew � 0 & Unew � 1 do

Uold = Unew

∇J = f(x(k),Uold)
Unew = Uold − α∇J

end while
u∗(k) = Uold(1)

end function

2.2.3.2 Newton’s Method

Newton’s Method for minimization uses the first and the second order (partial) deriva-

tives of the function which is minimized (see Section 1.4.2.2). The first order partial

derivatives of the objective function J(k) are given by equation (2.17) in Section 2.2.3.1.

The second order partial derivatives of J(k) are:

∇2J(k) =


∂2J(k)
∂u2(k)

∂2J(k)
∂u(k)∂u(k+1)

· · · ∂2J(k)
∂u(k)∂u(k+N−1)

∂2J(k)
∂u(k+1)∂u(k)

∂2J(k)
∂u2(k+1)

· · · ∂2J(k)
∂u(k+1)∂u(k+N−1)

...
...

. . .
...

∂2J(k)
∂u(k+N−1)∂u(k)

∂2J(k)
∂u(k+N−1)∂u(k+1)

· · · ∂2J(k)
∂u2(k+N−1)


= 2ETE + 2λF TF

(2.18)
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From 2.18 can be perceived that∇2J(k) depends on the values of the circuit’s elements

and the input voltage vs and not on U ∗(k) and thus changes only when vs changes as

well. Consequently, [∇2J ]−1 needs to be calculated only when vs changes.

∇2J as well as the gradient ∇J are calculated analytically in Appendix A.

The proposed Newton’s method is summarised in Algorithm 2.3, where α ∈ (0, 1)

is the step size and StopTolerence is a small positive number which expresses the

accuracy of the calculation.

Algorithm 2.3 Voltage MPC algorithm with Newton’s method for buck converter

function BuckMPCNewton(x(k),U (k − 1))
∇2J = 2ETE + 2λF TF
Uold = U (k − 1)
∇J = f(x(k),Uold)
Unew = Uold − α[∇2J ]−1∇J
while 1

2
[∇J ]T [∇2J ]−1∇J ≥ StopTolerance & Unew � 0 & Unew � 1 do

Uold = Unew

∇J = f(x(k),Uold)
Unew = Uold − α[∇2J ]−1∇J

end while
u∗(k) = Uold(1)

end function

2.2.3.3 The Use of Descent Methods in Constrained Optimization
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Figure 2.7: Gradient method during transient

In Section 1.4.2 it was stated that descent methods can be used for constrained

minimization even though they are methods of unconstrained minimization. Figures

2.7 and 2.8 demonstrate why this is possible.

Figures 2.7 and 2.8 show the gradient’s and Newton’s convergence respectively at

time instances kTs and (k + 1)Ts.
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For both methods at time instance kTs (Fig. 2.7a and 2.8a)the algorithm does

not find the optimal solution, due to the use of gradient and Newton’s methods in

constrained optimization. At the next time instance (k + 1)Ts (Fig. 2.7b and 2.8b)

the algorithm finds the optimal solution for both methods, due to the nature of MPC.

Even though at kTs the controller output is not correct, at the next time instant the

controller manages to find the right one and correct the previous mistake.

This behaviour can be apparent only during transient. It may create an overshoot

in output voltage, when the controller’s output is greater than the optimal solution,

or a delay in transient, when the controller’s output is less than the optimal solution.
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Figure 2.8: Newton’s method during transient

2.2.4 Load Uncertainties

Up to this point the analysis assumes that the load resistance is known and time-

invariant, but in most applications this is not the case. Since the model of the converter

depends on the load, its variations will cause a steady-state output voltage error. A

Kalman filter [27] is used to provide offset-free tracking of the output voltage reference.

In order to model the effect the load variations have on the inductor current and the

output voltage, the model of the converter is augmented by two integrating disturbance

states ie and ve. The Kalman filter is used to estimate the augmented state vector

xa =
[
il vo ie ve

]T
. (2.19)

The stochastic discrete-time state equation of the augmented model is

xa(k + 1) = Aaxa(k) + Bau(k) + w1(k) (2.20)
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and the measurement equation

x(k) =

[
il(k)

vo(k)

]
= Caxa(k) + w2(k). (2.21)

The matrices are

Aa =

[
Ad 0

0 I

]
,Ba =

Bd

0

0

 ,Ca =
[
I I

]

where I is the identity matrix of dimension two and 0 is a square zero matrix of

dimension two. The variables w1 ∈ R4, w2 ∈ R2 express the process and the mea-

surement noise respectively, with normal probability distributions. Their covariances

are E[w1w1
T ] = W1 and E[w2w2

T ] = W2 and are positive semi-definite and positive

definite respectively.

The equation of the estimated state x̂a(k) is

x̂a(k + 1) = Aa x̂a(k) + KCa(xa(k)− x̂a(k)) + Bau(k), (2.22)

where K is the Kalman gain and is calculated based on the covariance matrices W1

and W2. These matrices are chosen in such a way to assign high credibility to the

physical states (i.e. il and vo) and low credibility to the disturbance states (i.e. ie and

ve). Using the estimated states îl and v̂o as inputs to the controller, instead of the

original measured states, and adjusting the output voltage reference to

ṽo,ref = vo,ref − v̂e, (2.23)

it is possible to estimate the disturbances and remove their influence from the system.

2.3 Simulation Results

In this section simulation results with MATLAB/SIMULINK are presented to demon-

strate how the controller works with each of the three methods, namely with enumer-

ation, with gradient method and Newton’s method.

The circuit parameters are C = 220µF , RC = 0.5Ω, L = 250µH RL = 1Ω. The

load resistance is R = 10Ω. Initially the converter operates under nominal conditions,

namely the input voltage is vin = 20V and the output voltage reference is vo,ref = 12V .

The prediction horizon is N = 8 and the sampling period for enumeration strategy is

Ts,enum = 5µs.
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Figure 2.9: Weighting factor λ

As stated in Section 2.2.2, the switching frequency with the enumeration strategy

is variable and changes for different operation points, while with the descent methods

it is not (see Section 2.2.3). So, it is important that the converter operates with

the same (or almost the same) switching frequency in all methods for the results to

be comparable. Figure 2.9 shows how the weighting factor λ affects the switching

frequency fsw and the output voltage error vo,err, where

vo,err =

√√√√ 1

n

n∑
i=1

(vo,ref − vo(i))2, (2.24)

where n is the number of samples needed to calculate vo,err. An appropriate choice

for the weighting factor is λ ∈ (0.16, 0.33) where both the output voltage error and

the switching frequency are constant (fsw ≈ 20kHz). The weighting factor is chosen

λ = 0.25.

Thus, the sampling period for the iterative methods must be Ts,desc = 50µs, to

correspond to the enumeration strategy switching frequency of 20kHz.

The covariance matrices of the Kalman filter are chosen

W1 =


0.1 0 0 0

0 0.1 0 0

0 0 50 0

0 0 0 50

 ,W2 =

[
1 0

0 1

]
(2.25)

2.3.1 Start up

Figure 2.10 shows the output voltage and the inductor current of the converter in

nominal operation during start-up for the three methods. As can be seen, the controller

increases the current to charge the capacitor to the reference voltage level as fast as

possible and then the controller quickly restores the current to its nominal value. The
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output voltage reaches its desired value faster with the enumeration technique (in

about t ≈ 0.6ms) than with gradient and Newton’s methods (in about t ≈ 1.3ms).

This is due to the use of Kalman filter which, in the case of the iterative methods,

causes the controller’s output (the duty cycle) to oscillate delaying the system.

After the transient, the converter operates in steady state with a voltage ripple

vo,pp ≈ 0.5V, for all methods.
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Figure 2.10: Start up

2.3.2 Step-up change in output voltage reference

With the converter operating in steady state in nominal conditions (vin = 20V,

vo,ref,1 = 12V) a step-up change in the output voltage reference occurs at t = 0.5ms.

The new voltage reference level is vo,ref,2 = 15V. The system exhibits similar behaviour

for all the methods (fig. 2.11); initially the current increases to bring the output volt-

age to the new reference level and then decreases to its normal value. Similarly to

the start up results (fig. 2.10), the converter reaches the steady state faster with the

enumeration technique than with the descent methods (0.5ms and 1ms respectively),

a behaviour that is attributed to the Kalman filter.

2.3.3 Step-up change in input voltage

Next, with the converter operating in steady state at vo,ref,2 = 15V, a step-up change in

the input voltage takes place (at t = 0.5ms in fig. 2.12) from vin = 20V to vin = 40V.

After the change, the output voltage follows the voltage reference for all methods,

but the ripple is bigger. In the case of enumeration the switching frequency has also
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Figure 2.11: Step-up change in output voltage reference

changed from approximately 20kHz to 35kHz. This difference in switching frequency

between enumeration and the descent methods explains why the ripple for gradient

and Newton’s methods is bigger.
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Figure 2.12: Step-up change in input voltage

2.3.4 Step-down change in the load resistance

As a last test, a step-down change in the load resistance is examined from R = 10Ω to

R = 5Ω (at t = 0.5ms in fig. 2.13). At the moment the change occurs there is a drop
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in the output voltage for all methods. With enumeration technique the system settles

faster (almost immediately) than with gradient and Newton’s methods (t ≈ 1ms).

Moreover there is a difference in the output voltage ripple between the enumeration

and the descent methods that is due to the switching frequency difference. In this

operation mode the switch operates at about 35kHz for enumeration compared to

20kHz of the descent methods.

0 0.5 1 1.5 2 2.5 3

14

15

16

Time [ms]

v o
[V

]

Reference

Enumeration

Gradient

Newton

(a) Output voltage after a step-down change
in the load

0 0.5 1 1.5 2 2.5 3
0

1

2

3

4

Time [ms]

i l
[A

]
Enumeration

Gradient

Newton

(b) Induction current after a step-down
change in the load

Figure 2.13: Step-down change in load

2.3.5 Runtime comparison of enumeration, gradient and New-

ton’s methods

In order to compare the three methods (enumeration, gradient and Newton’s) in terms

of efficiency, the mean time each of these algorithms need to find the optimal solution is

calculated. For this purpose, a test with the following conditions took place. Starting

up with nominal conditions, each simulation run for 0.5s with a step-up change in the

input voltage at 0.25s, measuring the execution time of each iteration of the algorithm,

i.e. the needed time to find the optimal solution. All simulations run in a Intel R©
Pentium R© Dual-Core E5500 CPU.

Table 2.1 summarises the mean running time of each algorithm for various predic-

tion horizons N . As can be seen, the running time of enumeration technique increases

exponentially with prediction horizon, whereas the running time for gradient and New-

ton’s methods remains relatively constant with that of Newton’s method being the

fastest of the three. Therefore, the enumeration technique is the least computation-

ally efficient of the three, while Newton’s method is the most efficient.
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N Enumeration Gradient Newton’s

1 46.9 373.5 87.6
2 55.0 138.7 104.7
3 75.4 171.1 215.1
4 125.2 161.5 28.9
5 232.8 192.0 27.9
6 487.2 217.5 30.0
7 1100 217.2 33.9
8 2300 269.1 31.8
9 5000 283.6 43.3
10 10000 272.5 39.8
15 0.5s 268.2 52.4
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Table 2.1: Running time in µs of enumeration,
gradient and Newton’s methods for
the dc-dc buck converter

Figure 2.14: Scatter-plot of running time of enu-
meration, gradient and Newton’s
methods for the dc-dc buck con-
verter

2.3.6 Conclusions

In this chapter, a buck converter voltage-mode controller formulated in the framework

of MPC has been proposed. The discrete-time model of the converter is designed such

that it accurately predicts the plant behavior in CCM. Two different implementations

of the control problem have been presented and simulated: a mixed-integer quadratic

optimization problem solved with enumeration technique and a quadratic optimiza-

tion problem solved using the gradient and Newton’s descent methods. In addition, a

Kalman filter has been used as a load estimation scheme for providing offset-free track-

ing of the output voltage reference. The voltage MPC algorithm for these methods

(enumeration, gradient and Newton’s) has been applied in MATLAB/SIMULINK. In

addition, a step-up change in the output and input voltage as well as a step-down in

the load have been investigated.

The simulation results show the fast dynamics achieved by the controller and

demonstrate potential advantages of the discussed algorithms. In addition, the Kalman

filter effectively rejects the variations in the load and quickly adjusts the voltage ref-

erence following any such change.

With regards to the three solving methods applied, the switching frequency with

the enumeration strategy is variable and changes for different operation points, while

with the descent methods it is not. This is a clear drawback of the enumeration method

on the absence of a modulator and the direct manipulation of the converter switches.

During start-up, the converter immediately increases the current to charge the

capacitor to the reference voltage level and then the controller quickly restores the

current to its nominal value for all three methods. The output voltage reaches its
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desired value faster for the enumeration technique than for gradient and Newton’s

methods due to the Kalman filter. After the step-up of the output voltage, the system

exhibits again similar behavior for all the methods. Initially the current increases to

bring the output voltage to the new reference level and then decreases to its normal

value. Similarly to the start-up results, the converter reaches the steady state faster

with the enumeration technique than with the descent methods, a behavior that is

again attributed to the Kalman filter. With the step-up change in the input voltage,

the output voltage remains at the same level showing the ability of the controller to

successfully reject the input voltage variations. In the case of the descent methods, a

higher ripple is identified. With the step down of the load resistance, a drop in the

output voltage is observed for all three methods. With the enumeration technique,

the system settles faster to its final operating point.

Finally, concerning the running time, this increases exponentially for enumeration

technique with the prediction horizon, whereas the running time for gradient and

Newton’s methods remains relatively constant with that of Newton’s method being the

fastest of the three. Therefore, the enumeration technique is the least computationally

efficient of the three, while Newton’s method is the most efficient.

2.3.7 Future work

As far as the buck converter is concerned in this thesis only the continuous conduc-

tion mode (CCM) was taken into account. This decision was made to simplify the

optimization problem, but in the general case a buck converter can operate in discon-

tinuous conduction mode (DCM). This is something that could be explored in future

work following the steps shown for the CCM.

The methodology used in this thesis for the dc-dc buck converter could be also

used in other types of dc-dc converters, such as the boost converter. Contrary to the

buck converter, the state space representation of the boost converter is nonlinear which

by extension means that the objective function will not be convex. Nonetheless, the

move-blocking technique can be potentially helpful to overcome this problem. This

method has been already used in [18, 19, 17] to control dc-dc boost converter using

the enumeration technique. The application of gradient descent and Newton’s method

in a similar system can be the subject of future work.





Appendix A

Partial derivatives of the objective

function

As it was described in Section 1.5.1, there are two equivalent ways to express the state

evolution of a linear system over a N -step prediction horizon. In Section 2.2.1 the ex-

pression in respect to ∆U (eq. 1.23) was used for the formulation of the objective func-

tion J , whereas here the expression in respect to U =
[
u(k) u(k + 1) · · · u(k +N − 1)

]T
(eq. 1.20) will be used to calculate the first and second order partial derivatives of the

objective function J used in Sections 2.2.3.1 and 2.2.3.2.

According to the analysis in Section 1.5.1, the state evolution over a N -step pre-

diction horizon for the dc-dc buck converter is
x(k + 1)

x(k + 2)
...

x(k +N)

 =


Ad

Ad
2

...

Ad
N

x(k) +


Bd 0 · · · 0

AdBd Bd · · · 0
...

...
. . .

...

Ad
N−1Bd Ad

N−2Bd · · · Bd




u(k)

u(k + 1)
...

u(k +N − 1)

 .
(A.1)

The corresponding output in matrix and vector form respectively is

Y =


y(k + 1)

y(k + 2)
...

y(k +N)

 =


Cd 0 · · · 0

0 Cd · · · 0
...

...
. . .

...

0 0 · · · Cd



x(k + 1)

x(k + 2)
...

x(k +N)

 (A.2)

Y = Px(k) + EU (k) (A.3)
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where

P =


CdAd

CdAd
2

...

CdAd
N

 ,E =


CdBd 0 · · · 0

CdAdBd CdBd · · · 0
...

...
. . .

...

CdAd
N−1Bd CdAd

N−2Bd · · · CdBd

 , (A.4)

U (k) =
[
u(k) u(k + 1) · · · u(k +N − 1)

]T
. (A.5)

and Ad , Bd , Cd are the matrices in Section 2.1.2.

Comparing (2.7) to (A.3) it is easy to see that

EU (k) = Qu(k − 1) + S∆U . (A.6)

where the vector ∆U can be written as

∆U =



1 0 0 · · · 0

−1 1 0 · · · 0
...

. . . . . . . . .
...

0 · · · −1 1 0

0 · · · 0 −1 1


U (k)−



1

0

0
...

0


u(k − 1) = FU (k)−Gu(k − 1) (A.7)

Using (A.3) and (A.7), the objective function can be formulated as:

J(k,U (k)) = ||Y −Vref||22 − λ||∆U ||22
= ||Px(k) + EU (k)−Vref||22 − λ||FU (k)−Gu(k − 1)||22
= U T (k)ETEU (k)− 2(Vref −Px(k))TEU (k) + (Vref −Px(k))T (Vref −Px(k))

+ λ(U T (k)F TFU (k)− 2GTFU (k)u(k − 1) + GTGu2(k − 1))

(A.8)

The first order partial derivatives of J(k,U (k)), combined with (A.6) and (A.7),

are1:

∇J(k,U (k)) = 2ETEU (k)− 2ET (Vref −Px(k)) + λ(2F TFU (k)− 2F TGu(k − 1))

= 2ET (EU (k)−Vref + Px(k)) + 2λF T (FU (k)−Gu(k − 1))

= 2ET (Px(k) + Qu(k − 1) + S∆U −Vref) + 2λF T∆U

(A.9)

1In [12] it is stated that the derivatives of the function y = Ax, where y, x are m− and n− column
vectors respectively and A is a m×n matrix are ∂y

∂x = AT , whereas those of the function y = xTBx,

with B a m×m symmetric matrix, are ∂y
∂x = 2BTx
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The second order partial derivatives of J(k,U (k)) are:

∇2J(k,U (k)) = 2ETE + 2λF TF (A.10)
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