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Abstract

The application of power electronics, including dc-dc converters, is expanding over
the last years. However, the control of these devices still remains a challenge that the
scientific community has to face. The main objective is to regulate the output voltage
to the desired value, while neglecting any input voltage and load variations. Several
current and voltage control methods have been developed through the years, but, due
to the nonlinear switching characteristics of the dc-dc converters, these methods have
still room for improvement.

A control algorithm that has been gaining popularity in the past years is model
predictive control (MPC). Compared to other control methods, such as the propor-
tional integral derivative (PID) controller with pulse width modulation (PWM), MPC
has gained remarkable interest both in academia and industry over the past decades.
This is true mainly because MPC can be applied in many different processes, can
implement constraints and is easy to be understood, since its basic concept can be
explained intuitively. The basic idea of MPC is to predict and optimize the future
system behavior using the system model.

In this thesis the state-space representation modelling of the MPC is used for the
control of an de-de buck converter operating in continuous conduction mode (CCM).
The formulation of the objective function for the minimization of the voltage error
is simple and is achieved by minimizing the output voltage error (difference between
output voltage and a reference voltage). Two different implementations of the con-
trol problem are presented: a mixed-integer quadratic optimization problem solved
with enumeration technique and a quadratic optimization problem solved using the
gradient and Newton’s descent methods. In addition, in order to provide offset-free
tracking of the output voltage reference, a Kalman filter is used. A voltage MPC
algorithm using these three methods (enumeration, gradient and Newton’s) is applied
in MATLAB/SIMULINK. Variations in the input voltage, the output voltage and the
load are also applied in order to examine the response of the three methods to these.

The thesis is divided into two main chapters. In Chapter 1, the theoretical back-
ground with regards to the uses of dc-dc converters and their control methods is given.
Since MPC is an optimal control scheme, the main aspects of the mathematical op-
timization theory are also introduced in this chapter. Furthermore, some important
classes of optimization problems, namely convex optimization problems, as well as
their solving techniques are presented. In Chapter 2, the system modelling for the
dc-dc buck converter is presented, the objective function is formulated and the opti-
mization problem is simulated. The results and their comparison for the three solving
techniques mentioned above are also presented in Chapter 2.

Keywords dc-dc buck converter, buck converter, control methods, model predic-
tive control, optimization, continuous conduction mode, enumeration method, gradient
method, Newton’s method






ITepiindn

H egapuoyy tov nhextpovixov toybog, cupreptiopfavouévey tov de-de petatpo-
TEwY, Topovoldlel avdmTuln ta TeEAeuTaio yedvia. 2671600, 0 EAEYYOG AUTWY TWV CU-
OEVWY TUPAUEVEL Lol TEOXANOT) TOU XUAELTAL VO AVTIUETWTIOEL 1) ETLO TNLOVIXT] XOWVOTNTA.
O xdplog otoy0¢ ebvan 1 pldulon tne tdong e€600u oTNy emYUUNTH TWH, AUEADYTOS O-
TOLEGONTOTE PETUPOAES TNG TdoME €1cOd0u Xt tou goptiou. Koatd tnv didpxeta twv
Teleutaiwy €10V, apxeTEC YEV0OOL EAEYYOU PELUNTOS Xot TAoNG £youv avartuydel, ahid
AOY® TOV U1 YROUULXDY DIXOTTIXWY YUQUXTNELO TIXWY TWV 8¢-0¢ UETATPOTEWY, AUTES Ot
uéYodol Bev €youv axdun xaTahrfiel oe eTaExES ETIMEDD EAEYYOU.

‘Evag alyoprduoc eréyyou mou €yel avadetydel tor teheutala yedvia elvon autog Tou
wovtehonotnuévou mpoPrentixol ehéyyou (model predictive control - MPC). ¥e alyxpt-
oY) UE dAAEC UEVHOOUC EAEYYOU, OGS O AVIAOYIXOG-OAOXANPWTIXOS-OLUPORIXOS EAEYHTHS
(PID) pe Swudppuaon ebpoug modgot (PWM), o npoBretindc éheyyog €yl xepdioet aftlo-
oTMUelwTO EVOLUPEROY TOGO OTOY axAdTUXG 650 %At oToY Plounyavind xhAdOo TIC TEAEUTO-
fec dexaetieg. Auto oy lel xuplwe emeldt| 0 TEOPAETTINOG EREY YOG UTOREL Vo EQUOUOC TEL
OE TOAAEC DLAPOPETIXES DLAdXAGIES, UTOREl VoL LAOTIOLAGEL TEPLOPLOUOUS o efvan €0X0A0
va yiver xatavonto, xadog 1 Bacixr| Tou évvoua umopet va e€nyniel Swnocintid. H Bacucr
10éa Tou TPOBAenTIX0) EAEYYOU Elvor va TEoBAEDEL xon VoL BEATIGTOTOAOEL T UEAAOVTIXY
CUUTEQLPORY TOU CUG THHITOS YENOHLOTOWWVTAS TO LOVTERD TOU GUGC TAUATOC.

Y1y TapoUcd DITAWUATIXY YeNOWOTOLELTOL 1) LOVTEAOTOINGT) TN AVATURdoTAGNE TOU
YOpou xoataoTdoewy (state-space representation) tou MPC yia tov éheyyo evog de-de
buck uetatponéa mou hertovpyel oe ouveyy| Aertoupyia aywywoétntag (CCM). H Buo-
TOMWON TNG AVTIXELWEVIXTS CUVAPTNONG Yo TNV EAAYIGTOTOINGT, TOU GPIAPATOS TAGTG
elvan omAT X0 ETUTUY YAVETOL EAAYLO TOTOIOYTAC TO GQEAUa Tdomg €600 (Sapopd peTa-
€0 tdong €€680u xan tdonc avopopds). Avo SLPopETIXEC UNOTOWAGELS TOU TPOBAAUTOS
eAEYYOU ToEOUGIALoVTAL: €VOL UIXTOVY OXERAiWY TETPAYWVIXS TPoBAnua BektioTonoinomng
(mixed-integer quadratic optimization problem) nou emAGinxe e teyviny| amopidun-
O™ xa EVaL TETPAYWVIXO TEOBANUA BEATIGTOTONGTG TOU EMAVVTXE YENCLHOTOWWVTAS TI¢
gradient xor Newton’s descent puedésoug. Entnpociétng, mpoxewévou vo mopéyeton mo-
eaxohotinon ywelc to offset tng avagopds tdong £€6dou, yenotuonoweiton €va pihteo
Kalman. 'Evog alyéerdyoc tdone MPC nou yenotwonoe! autée g tpewc uedodouc (o-
rapidunor, gradient xou Newton’s) epopuéleton oe MATLAB / SIMULINK. MetofSohéc
oTNY 4o EL0600L, TNV TdoT £€H00U ot To popTio epapudlovtal eniong yio Vo eEETAG TEL
1 ATOXQIOT| TWV TELWY UEVOOWY.

H Simhwuatind epyaota ywelleton oe 800 xdpla xepdhota. Xto Kegdhao 1 nagouct-
dletan 0 YewpnTind uTOBadpo avapopd Ye TS YENoE TwY de-de HETATPOTEWY %ot TwY
ueVodwy eréyyou toug. Aedouévou 6Tt o MPC ebvor éva BédTioTto oyrjua ehéyyou, ol
xOpleg mtuyec g Vemplog tng wadnuatixrc BeAtiotonolnorg ewcdyovia eniong o ou-
10 0 xe@dhato. Emmhéov, napouctdlovion UEpIXES ONUAVTIXES XATNYORIEC TPOBANUAT®Y
Beltiotomoinong, dSnhadt xuetd tpofAfuata Behtiotonoinorg (convex optimization pro-
blems), xoddc xou ot TeYVIXéC enfhuone Toug. 10 xe@dhato 2 TapouctdleToL 1) HOVTENO-
Toinoy Tou cucthuatog Yo Tov de-de buck petatporéa, xadwg eniorng dpoppoveTta 7

9



OVTIXEWEVIXT] CUVEETNOT) XAl TEOCOUOIWYETAL To TEOPBANua Pehtiotonolnong. To anote-
AEopoTa xou 1) GUYXELOY| TOUS YL TIC TEELC TEYVIXES ETIAUCTIC TOU OVAUPECOYTOL TOLAUTEVW
rapouctdloviar oto Kegdhaio 2.

AeZeg KAewdwd de-de yetatporéag, uévodot eréyyou, uoviého mpdfredng, Bei-
Tiotomolnoy, xutdcTaoT cuveyols aywyrg, pédodog amaptdunong, uédodog gradient,
pédodoc Newton’s
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Chapter 1

Introduction

1.1 DC-DC Converters

1.1.1 Uses

Dc-dc converters are power electronic circuits that convert one level of electrical voltage
into another level by switching action and this has received an increasing deal of
interest in many areas. The main functions of the dc-dc converters, as these can be

found in [25, 31], are summarized here:
— Convert a dc input voltage V; into a dc output voltage V;

— Regulate the dc output voltage against load and line variations;

Reduce the ac voltage ripple on the dc output voltage below the required level;

Provide isolation between the input source and the load;

— Protect the supplied system and the input source from the electromagnetic in-

terference;
— Satisfy various international and national safety standards.

Modern applications of dc-de converters can be found in electric vehicles [37, 8, 33,
26, 1], renewable energy systems [11, 29, 4, 30] and other [34] sectors.

An interesting example of the use of dc-dc converters in photovoltaic (PV) systems
is [36] where a PV system with dc-de converters is developed for water pumping in
developing countries. This study is mentioned here for showing a basic application
of de-dc converters in PV systems and for emphasising the importance of control
techniques in order to optimise the power output and therefore the performance of a

whole PV system.

19



20 Chapter 1. Introduction

1.1.2 Control Methods

In their simplest form dc-dc converters comprise two semiconductor switches that are
periodically switched on and off, and a low pass filter with an inductor and a capacitor.
The filter is added to pass the dc component of the input, and to remove the switching
harmonics from the output voltage. The detailed topology and main electrical circuit
of the dec-de converter is presented in Section 2.1.1

Despite the fact that the switch-mode dc-de conversion is a well-established technol-
ogy, the problems associated with these applications and their closed-loop controlled
performance still pose theoretical and practical challenges. The main control objective
for the dc-dc converters, is the regulation of the output voltage, while rejecting the
impact of variations in the input voltage and the load. The difficulty in this, lies on
the unregulated input voltage conditions, time-varying load, switched nonlinear char-
acteristics, component-varying values due to temperature and pressure conditions, etc.
Therefore, the control of the output voltage should be performed in a closed-loop man-
ner using principles of negative feedback. The two most common closed-loop methods
for dc-dc converters are the voltage-mode control and the current-mode control. These
are schematically represented in Fig. 1.1.

In the voltage-mode scheme shown in Fig. 1.1a, the converter output voltage is
measured and subtracted from an external reference voltage in an error amplifier. The
error amplifier produces a control voltage that is used to determine the switching duty
ratio by comparison with a constant frequency waveform. This duty ratio is used to
maintain the average voltage across the inductor and is eventually setting the output
voltage to its reference value without variations.

In the current-mode scheme shown in Fig. 1.1b, an additional loop feeds back
an inductor current signal. This current signal, converted into its voltage analog,
is compared to the control voltage and is used to control the duty cycle. An error
signal is produced after comparing the output voltage to the reference voltage and
this error signal is used to generate the reference current. The next step is to measure
the inductor current and compare it to the reference current to generate the duty
cycle and drive the switch of the converter. It is to be noted here that although the
current-mode controllers have two loops, they are more often employed since the design
procedure is simpler.

In general, pulse width modulation (PWM) techniques are used in the controller
loop to turn on and off the controllable switch and maintain the output voltage equal
to the reference. This means that by conforming the pulse width, i.e. by modifying
the duty cycle d', the output voltage is regulated to the desired level. However, there

are also strategies where a modulator is not required. According to these methods

ld =ty /Ts, where t,, is the time the switch is closed and T is the switching period.
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Figure 1.1: Main control schemes for de-dc converters [31].

the switch is directly manipulated without the presence of an intermediate modulator.

Therefore, the PMW used in Fig. 1.1 is optional and can be bypassed.

In literature many different approaches to the control problem can be found. These
are mainly divided into two main groups: the linear and the nonlinear controllers.
The majority of the controllers are based on the conventional proportional integral
deviation (PID) controller and are tuned in the basis of the linear state-space average
model of the converter. Throughout the years several nonlinear controllers based on the
averaged or nonaveraged state-space model of the converter have been proposed as well.
Although many of the approaches applied have been shown to be reasonably effective,
several challenges such as the ease of the controller design and tuning as well as the
robustness to the load variations have not been fully addressed yet. Moreover, the aim
to improve the performance of the closed-loop system and enable a systematic design
and implementation procedure still exists. Last but not least, the recent theoretical
advances with regards to controlling hybrid systems, as well as the emergence of fast
microprocessors that enabled the implementation of more computationally demanding

algorithms, allow one to tackle these challenges in a novel way [17].

Model predictive control (MPC) is a control strategy that was developed an an
alternative to the conventional PID control and has been gaining popularity in the
field of power electronics the last years. Its success is based on the fact that it uses a

mathematical model of the plant, which allows the controller to predict the impact of
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its control actions. Furthermore, MPC is capable of handling complex and nonlinear
dynamics, while several design criteria can be explicitly included in a simple and
effective manner [17]. The basic idea of the MPC as well as its basic elements are

presented Chapter 2.

1.1.3 Thesis Aim

The aim of this Thesis is to compare three different methods (enumeration, gradient
descent and Newton’s) to control the dc-dc buck converter using model predictive
control (MPC) in terms of computational efficiency and complexity.

In the next paragraphs of this Chapter, a mathematical background is introduced
in order for the reader to get familiar with the optimisation theory and how this is
applied in the case of MPC. The formulation of the MPC problem is presented in the

next Chapter, together with the simulation results and the conclusions.

1.2 Convexity

Definition 1.2.1. The set C' C R" is said to be convex if ax + (1 — a)y is in C
whenever  and y are in C, and « € |0, 1].[16]

Geometrically this means that for every two points & and y in the set C' the straight
line that connects the two points is also in the set. In Fig. 1.2 and 1.3 there are some

examples of convex and nonconvex sets.

o

Figure 1.2: Convex sets Figure 1.3: Nonconvex set

Definition 1.2.2. Let C' be a nonempty convex set in R™. A function f : C' — R is
said to be conver on C when, for all pairs (z,y) € C' x C and all a € (0,1), there
holds[16]
flax 4+ (1 - a)y) < af(z) + (1 —a)f(y). (1.1)
Geometrically this means that for every two points x and y in the set C the
straight line that connects the points (, f(x)) and (y, f(y)) lays above the function
graph between these points, as show in Fig. 1.4.
When (1.1) holds as a strict inequality for & # y, the function f is said to be
strictly conver. A very useful property of strictly convex functions is that they have

at most one global minimum.
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f(y))

(x,£(x))
Figure 1.4: Convex function

1.3 Convex Optimization

Model predictive control is an optimal control scheme and therefore, an introduction
to the basic terminology of the mathematical optimization theory here is necessary.
In addition, some important classes of optimization problems, namely convex opti-
mization problems, linear optimisation problems, quadratic optimization problems,
mixed-integer linear optimization problems, and mixed-integer quadratic optimisation

problems are presented. [17, 9]

According to [35], an optimisation problem is of the form:

minimize f(x)
subject to  g;(x) <

i=1,....m (1.2)
hi(x) =0 j

1,...
7=1...,p
The goal is to find the optimization variable € R™ that minimizes the objective
function f: R"™ — R, while satisfying the conditions g;(x) < 0,i = 1,...,m and
hj(x) = 0,5 =1,...,p. The inequalities g;(x) < 0 in (1.2) are called inequality con-
straints and the corresponding functions g; : R” — R inequality constraints functions.
The equalities hj(x) = 0 in (1.2) are called equality constraints and the corresponding
functions h; : R®™ — R equality constraints functions.

The domain O of the optimization problem (1.2) is the set of the points for which

the objective function f and the constraint functions g and h are defined, thus

m p
O =domf N ﬂ domg; N ﬂ dombh;. (1.3)

i=1 j=1

A point € O is said to be feasible if it satisfies all the constraints g;(x) < 0,7 =
1,...,mand hj& =0,j = 1,...,p. The problem (1.2) is feasible if there exists at least
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one feasible point, else it is infeasible.

The optimal value ¢* of the problem (1.2) is defined as

¢ =inf{f(x) | gi(x) <0,i=1,...,mhj(x)=0,7=1,...,p} (1.4)

The optimal value ¢* may be equal to £o00. If the problem is infeasible then ¢* = oc;
if the problem is unbound below, i.e. there are points @) such that f(x) — —oo as
k — —oo, then ¢* = —oo. The solution «* of the optimisation problem (1.2)is called

optimal point, if «* is feasible and f(x*) = ¢*. The set of all optimal values
Xopp ={x| f(®) =q",gi(x) <0i=1,....mh;(x)=0,7=1,...,p} (1.5)

is called optimal set. The optimal value is achieved, if there exists an optimal point a*
for the problem (1.2), otherwise the set X,,; is empty. If the optimal value is achieved,
then the optimization problem is solvable. A feasible point « is locally optimal if it

minimizes f in a subset of the feasible set, i.e. if there is an R > 0 such that
fl@) =nf{f(2)]gi(z) <0,i=1,....m hi(z) =0,j=1,....,p |[z—x|]2 < R}, (1.6)
with z € R or, equivalently, if it is the solution to the optimization problem

minimize f(z)

subject to ¢;(z) <0 t=1,...,m (17)
hjz =0 j=1,...,p '
|z —=|l: < R

If a feasible point & minimizes f for the whole feasible set, then it is called globally

optimal.

An important class of optimization problems are convex optimization problems.

These are of the form

minimize f(x)

subject to g;(x) <0 i=1,...,m (1.8)
alx=>b; j=1,...p

where the objective function f and the inequality constraints functions gy, ..., g,, are
convex, and the equality constraints functions are affine. Furthermore, the feasible
set is convex; it is the intersection of the domain of the convex optimization problem
(1.8), which is a convex set, with m convex sublevel sets {x|g;(x) < 0,i =1,...,m}

and p hyperplanes {z|a]x = b;,j =1,...,p}, ie.
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O = domf[ | domy;. (1.9)
i=1
Based on the above a fundamental property of convex optimization problems is

derived; any locally optimal point is also globally optimal.

1.3.1 Linear Programming

When the objective and constraint functions are all affine, the problem is called a

linear program (LP). A general linear program has the form

minimize ¢’z +d
subject to Gx < h (1.10)

Ax =0,
where G € R™*" and A € RP*". Linear programs are, of course, convex optimization

problems.

It is common to omit the constant d in the objective function, since it does not
affect the optimal (or feasible) set. Since we can maximize an affine objective ¢’z +d,
by minimizing —c’x — d (which is still convex), we also refer to a maximization

problem with affine objective and constraint functions as an LP.

1.3.2 Quadratic Programming

The convex optimization problem (1.8) is called a quadratic program (QP) if the objec-
tive function is (convex) quadratic, and the constraint functions are affine. A quadratic

program can be expressed in the form

minimize (1/2)x” Px +q"x +r
subject to Gx < h (1.11)
Ax = b,

where P € S, G € R™" and A € RP*". [22, 6, 35

1.3.3 Mixed-Integer Linear Programming

The optimization variable in some cases may contain a continuous component and a

binary part. The optimization problem (1.10) in this case is called mixed-integer linear
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program (MILP), and it is of the form

minimize cTx

subject to Gx <X h
Ax=0b
Tp € {O, 1}nb

(1.12)

where © = [mf asz]T, with @, € R™ | xp € {0,1}™, and n = n, + n;. Furthermore,
ceR" GeR™" heR™ AecRP and b € RP.

It should be noted that despite the fact that the objective function and the con-
straints functions are linear (or affine), the problem (1.12) is nonconvex because of the
presence of the binary component. This means that the important property of convex
optimization problems does not apply to MILPs; the locally optimal points may not
be globally optimal. Finally, an MILP is NP-hard, i.e. the running time depends

exponentially on the number of the binary components, as it is written in [17]

1.3.4 Mixed-Integer Quadratic Programming

If the optimization variable of the problem (1.11) contain both a real-valued part and

T
a binary part, i.e. it is of the form x = [mf a:bT} , with @, € R™ | a, € {0,1}™,
and n = n, + n,, then the formulated optimization problem is called mixed-integer

quadratic program (MIQP)

minimize (1/2)xTQx + pTx
subject to Gx <X h

Ax =0

xp € {0,1}™

(1.13)

with Q € 87, p e R", G € R™" h € R", A € RP’*" and b € RP. As already
mentioned in Section 1.3.3, problem (1.13) is non-convex because of the binary part

@p, and it is NP-hard, as it is written in [17]

1.4 Solution Methods for Optimization Problems

1.4.1 Enumeration Method for Mixed Integer Programming

In general, solving the mixed-integer optimization problems (MIPs) presented in Sec-
tions 1.3.3 and 1.3.4 is a very challenging task. For determining the solution of an
MIP, either in the form of 1.12), or in the form of (1.13), for an MILP or an MIQP,

respectively, a straightforward option is to use an enumeration strategy.
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According to the complete enumeration method at each integer variable are pro-
gressively assigned the different values of its domain. The procedure is repeated until
no more free integer variables are left, and the complete solution for the integer vari-
ables & is obtained. Therefore, the MILP is simplified to an LP (or to a QP if
the problem is an MIQP). By solving the resulting LP (or QP) the optimal value

q* = f(x*) of the real-valued variables is determined, as it is written in [17]

1.4.2 Descent Methods for Quadratic Programming

For these particular optimization problems one can take advantage of the convexity
property they hold (meaning they have exactly one global minimum or maximum) and
use descent iterative methods for the solution of the problem.

These methods produce a minimizing sequence **1, k € N where
20+ — ) 4 A g ®)

AzWis the step or search direction, is a vector in R™ and must be consider an entity.
The scalar t*) > 0 is called step size or step length at iteration k
These methods are called descent in the sense that the value of the function to be

minimized f is reduced in every iteration, or
Fa™) < ")),

In general the descent method is as follows.

Algorithm 1.1 General descent method

given a starting point *¥) € dom f
repeat

1. Determine a descent direction Az™®.
2. Line search. Choose a step size t*) > 0.
3. Update. £ 1) = g® 4 t®) Az,

until stopping criterion is satisfied

One line search method is the backtracking line search and it depends on two
constants 0 < a < 0.5 and 0 < # < 1. The backtracking line search minimizes f along
the ray {z® + Az®[t™ > 0} approximately.

Different descent methods exist depending on the way the descent direction Ax is

chosen. Two of them are the gradient descent method and the Newton’s method.
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Algorithm 1.2 Backtracking line search [9].

given a descent direction Az® for f at «® € domf, a € (0,0.5), 5 € (0, 1).
t:=1.

while f(z®™ +t®Az®) > f(2®) 4 ozt(’“)Vf(zc(k))TAw(k), tk) .= gtk

It should be noted that both methods are actually solution techniques for uncon-

strained optimization but can be used in certain cases of constrained optimization.

1.4.2.1 Gradient Method

For this method the negative gradient is chosen as the descent direction,
Ax® = Vv f(x®).

This is a natural choice considering that the gradient points in the direction of the
maximum increase (and thus the negative gradient points in direction of the maximum
decrease.)

For this method the stopping criterion is usually of the form ||V f(x®)|, < n,
where 7 is a small positive number which expresses the accuracy of the calculation.

The gradient method is as outlined in algorithm 1.3.

Algorithm 1.3 Gradient descent method [9]

given a starting point ) € dom f
repeat

1. Az®™ = Vv f(x®).
2. Choose a step size t*) > 0 using backtracking line search.
3. Update. 1) = g® 4t Ag®),

until stopping criterion is satisfied

1.4.2.2 Newton’s Method

In Newton’s method the Newton step is chosen as the descent direction. The Newton
step is
Ax® = V2 f(xW) 1V f(2).

The Newton decrement
A= (Vf@®) V2 f(a®) v f(a™)?

is used in the stopping criterion [9].
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Algorithm 1.4 Newton’s descent method

given a starting point £*) € domf, tolerance 1 > 0
repeat

1. Compute the Newton step and decrement
Az® = -V f(x®) IV f(2®), A2 = V f(a®) TV f(2®) 71V f(a®)

2. Stopping criterion. quit if \?/2 <
3. Choose a step size t*¥) > 0 using backtracking line search.

4. Update. 1) = 2®) 4 B Ag®

In comparison to the gradient method, which takes into account only the slop of
the function, the Newton’s method uses the curvature of the function in the form of
the Hessian matrix V2 f as well, which makes it the fastest method of the two, meaning

it needs less iterations to find the minimum.

Example 1.4.1. This example is designed to demonstrate the different paths the two
methods discussed in sections 1.4.2.1 and 1.4.2.2 choose to minimize a function.

To demonstrate how these two methods work the function f(xy,z3) = 32% + 23 —
2x1219 — 629 + 3 will be minimized using them. In accordance with the minimization

problem (1.11) the function f can be written in vector form as:

6 -2
-2 2

x+ [o —6] x4 3, (1.14)

where © = [z; ,]7. In both cases the same starting point (4,7) was chosen, with
n=1075.

From Fig. 1.5 we can see that Newton’s method follows a more direct path to the
minimum than gradient method and thus is faster needing less iterations (78 iterations)

than gradient method (123 iterations) to find the minimum.

For more information about the descent methods the reader may refer to [28] and

[9].
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Figure 1.5: Minimization of the function f(x1,z2) = 322 + 22 — 22122 — 622 + 3 with the
use of gradient descent (red dots) and Newton’s descent (green dots) methods,
starting from the same point (blue star) (4,7)

1.5 Model Predictive Control

Model predictive control (MPC) has gained interest both in academia and industry
over the past few decades compared to other control methods, such as PID or PWM
control. This is true mainly because MPC can be applied in many different processes,
can implement constraints and is easy to be understood, since its basic concepts can
be explained intuitively.[10, 20]

The basic idea of model predictive control is to predict and optimize the future

system behaviour using the system model. The basic elements of MPC are:

1. The system model, which describes the plant’s behaviour over time.

2. The control problem, where an objective function is formulated with regard to
the system model to calculate the optimal control sequence for a specific number
of future instances (prediction horizon)

3. Receding horizon policy,
The following sections explain these elements in detail.

1.5.1 System Representation

Modelling is a very important part of the MPC algorithms, since different models

produce algorithms with different complexity influencing the time needed to find the
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Figure 1.6: MPC structure,[10]

optimal solution to the control problem.[21] Many different forms of modelling can be
used in MPC [10], but for the purposes of this thesis the state space representation

will be used.

The use of microprocessors makes MPC a discrete-time controller, thus the state-

space representation in discrete-time is in order for the system model:

x(k+1) = f(z(k), ulk)) (1.15a)
y(k) = g(z(k)) (1.15b)

where (k) € R™ is the state vector of the system at time instant kT, u(k) € R™ is
the input vector at time instant k7T, y(k) € RP is the output vector at time instant
kT, the functions f and g are the state-update and output functions, respectively,

which can be linear or nonlinear, and T is the sampling interval.

Starting from the current state x(k), this model is used for the calculation of the
state and the output future values over a finite number N of planed control actions
{u(k),u(k+1),...,u(k+ N)}.

Starting from the step k + 1 for the state it holds:

8
ol
+
o
I
g
8
=
+
=
g
=
+
=
I
=
g
8
=
g
=
g
=
+
=

(1.16)
x(k+N)=f(e(k+N—-1),u(k+N —1))
=f(f...(f(x(k),u(k)),u(k+1)),..u(k+N—1))
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Thus the output over N steps is

(1.17)
yk+N)=g(f(x(k+ N —-1),u(k+N —1)))
=g(f(f ... (flx(k),u(k),u(k +1)),..u(k+ N —1)))

Linear model For a linear model the discrete time state-space representation is:

x(k+1) = Azx(k) + Bu(k) (1.18a)
y(k) = Cx(k) (1.18b)

where A, B and C are the system matrices.

Following the same procedure as in (1.16) and (1.17), the state over a finite number

of planed actions N is:
x(k+1) = Ax(k) + Bu(k)

x(k+2)=Ax(k+ 1)+ Bu(k+1)
= A’z(k)+ ABu(k) + Bu(k +1)

x(k+ N)=Ax(k+ N —-1)+ Bu(k+ N —1)
= AVz(k) + AV 'Bu(k) + AN ?Bu(k+1)+---+ Bu(k+ N - 1)

(1.19)
or in a matrix form:
x(k+1) A B 0 e 0 u(k)
w(k.+ 2)| _ %2 (k) + A:B 1:3 o U(k:+ 1) (1.20)
w(k}N) AN AN;lB AN;QB é u(k+N— 1)

Using the last applied control action w(k — 1) (which is known) it is possible to
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write the future control actions w(k), w(k +1),...,u(k+ N — 1) in the form:
u(k) =ulk) —u(k—1)+ulk —1)
= Au(k) +u(k —1)
w(k+1)=Au(k+1)+ Au(k) + u(k — 1) (1.21)

u(k+N—-1)=Au(k+N—-1)+---+ Au(k) + u(k — 1)
where Au(k+1—1)=wuk+1—-1)—ulk+1—-2),1=1,...,N.

Combining (1.19) and (1.21) we get:

x(k+1) = Az(k) + B(Au(k) + u(k — 1))
= Ax(k) + Bu(k — 1) + BAu(k)
x(k+2) = A’z(k) + AB(Au(k) + u(k — 1))+
+ B(Au(k+1) + Au(k) + u(k — 1))
= A’z(k) + (AB + B)u(k — 1) + (AB + B)Au(k) + BAu(k + 1)

z(k+ N)= AVz(k) + AN ' B(Au(k) + u(k — 1))+
+- 4+ B(Au(k+ N — 1)+ + Au(k) + u(k — 1))
= AN (k) + (AY'B + -+ B)u(k — 1)+
+ (AN !B +---+ B)Au(k) + -+ BAu(k+ N — 1)

(1.22)
The equations 1.22 can be written in a matrix form as:
x(k+1) A B
: = | |xk)+ : u(k — 1)+
z(k+N)| |AY >, A'B
B 0 Au(k)
o z (1.23)
SYYA'B - B| [Au(k+N 1)

The equations 1.20 and 1.23 describing the state evolution over a prediction horizon

N are of course equivalent and for the system’s output in both representations it holds
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in a matrix form:

y(k +1) o 07 [k +
y(k + 2 0 C -+ 0| |=x(k+2

=1, . . (1.24)
y(k+ N) 0 0 - C| |alk+N)

1.5.2 Optimal Control Problem

In order to obtain the control law a cost function is needed. In general, the cost
function is formulated in regard to the output difference to a specific reference signal

and the required control effort. Such a function is of the form:

Ja®) UR) = S Pl + 1k, u(llk) (1.25)
where U (k) = [uT(k:) ul'(k+1) -+ uf(k+N-1) ! is the control input se-

quence and P is a function based on the norm:

n 1/p
||-||p:=(2|-|p) p>LpeR
=1

The most commonly used norms in MPC are p = 1 | p = oo, which produce a linear
function, and p = 2, which produces a quadratic function.
The aim of the optimization problem is, using the formulated cost function J, to

find the control sequence U (k) that results in the best performance of the system:

minimize J(k)
subject to x(l+1) = f(x(l),u(l)) (1.26)
l—kk+1,... N—1

The solution of this problem is the optimal control sequence at step k, U™ (k) =
T
wl(k) wT(k+1) -+ wT(k+N-1)

1.5.3 Receding Horizon Policy

The basic concept of receding horizon policy is as follows. Having obtained the optimal
control sequence U™ (k) at step k, only the first term w*(k) is used as the control input
and the rest are discarded. Afterwards, the procedure is repeated, calculating a new
optimal control sequence U*(k + 1) = |w*T(k) wT(k+1) -+ wT(k+N—-1) !

for step k+1 using new state measurements. In this way, plant uncertainties and distur-



bances can be taken into account in the future control actions, providing feedback.[20]

Algorithm 1.5 MPC algorithm

Obtain state measurements (k)

Based on x(k), solve optimization problem (1.26)

Obtain optimal control sequence U*(k) = [w*" (k) wT(k+1) - wT(k+ N — 1)}T
Apply only w*(k) to the plant

Update k:=k + 1

Go to step “1”
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DC-DC Buck Converter

2.1 Model of the DC-DC Buck Converter

2.1.1 Continuous-Time Model

The de-de buck converter, shown in fig. 2.1, reduces the dc input voltage v;,(t) to a
lower dc output voltage v,(t). The converter consists of an output load R, an inductor
L with internal resistance R;, which, depending on the conduction mode, stores and
delivers energy to the load, and a capacitor C' with equivalent series resistance R,
connected in parallel with the load in order to continuously provide voltage to the
output. There are two power semiconductors; the switch S which is controllable and

the diode D.

When the switch S is on (S = 1) energy is stored to the inductor and the inductor
current 7;(t) is increasing. When the switch is off (S = 0) the energy stored in the
inductor flows to the output causing the inductor current 4,(t) to decrease. If the
inductor current becomes zero (4;(t) = 0) then both the switch S and the diode D are
off and the converter operates in discontinuous conduction mode (DCM). Otherwise
(namely when the inductor current is positive, ¢;(t) > 0), the converter operates in
continuous conduction mode (CCM). In this thesis only the CCM is taken into account
for the system’s modelling. Figures 2.2, 2.3, 2.4 describe graphically the modes of
operation of the buck converter. In these figures the parasitic resistances are not

shown for simplicity reasons.

The continuous-time state-space equations, as they are defined in [14], are:

= A, x(t) + B.u(t) (2.1a)
y(t) = Coal) (2.1b)
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Figure 2.1: DC-DC Buck Converter

where .
2(t) = [i(t) ()]

is the state vector, 7;(t) is the inductor current, v,(t) is the output voltage,

y(t) = vo(t)
is the system output,
_B _1 v 1
Ac: N N 7Bc:ﬂ aCc:[O 1]
RL-ReRC  _ L+R.RC L | RR.
(R+R.)CL (R+R:)CL R+R.

are the system matrices and u(t) is the control input.

There are two ways to define the variable v depending on the given physical mean-
ing. The control input u can either denote the state of the switch S or the duty cycle.
In the first case u is discrete, since the switch state is either off or on, with u € {0,1}.
In the second case it is continuous since u is the duty cycle, namely u = t,, /T, where
ton is the interval the switch stays on over one switching period 7. Here it holds
u € [0,1].

Based on these two different definitions of u, two different optimization problems

are implemented for the buck converter in Section 2.2.

2.1.2 Discrete-Time Model

As already mentioned, MPC is a discrete-time controller and for this reason the
continuous-time equations (2.1) need to be discretised. For the discretisation the

Euler method is used
de(t) =x(k+1) — (k)

dt T,
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alent circuit when the switch is on (Mode I); (c) equivalent circuit when the diode
is conducting (Mode II); (d) equivalent circuit when none of the semiconductors

conduct (Mode IIT). [25]
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where T} is the sampling period. The discrete-time state-space equations are:

B
o
—+
N
Il

y(k) = Cax(k) (2.2b)

The matrices of the discrete time system are Ay = I+ AT, By = B./T; and Cy = C,
where I is the identity matrix of size two and A., B., C. are the matrices described
in Section 2.1.1

2.2 Optimal Control of Buck Converter

The main control objective is to regulate the output voltage v, (k) to the desired voltage

reference v, ref, minimizing the voltage error, by appropriately manipulating the switch

S.

In this section two different implementations of the control problem are presented.
In the first implementation a mixed-integer quadratic optimization problem is for-
mulated, which is solved with enumeration technique, whereas in the second one a

quadratic optimization problem.

2.2.1 Objective Function

The formulation of the objective function is achieved with respect to the prediction
horizon N and the main control aim, which is to force the output voltage to track its
reference v, et Or, in other words, to minimize the output voltage error. Therefore, the

objective function is:

k+N-1

T(k) = (lve(l + 1k) = voerl 3 + Al Au(l]K)|[3) (2.3)
=k

The first term of the objective function expresses the minimization of the voltage error

whereas the second term
Au(l|k) = u(l|k) — u(l — 1|k) (2.4)

penalizes the difference between two consecutive control values. A > 0 is a weighting

factor that sets a trade-off between the two function terms.

The terms of the objective function (2.3) can be written in a vector form. As it is
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described in Chapter 1, for an N—step prediction horizon it holds:
x(k+1) [ Ay By
ar;(k'—i— 2) _ A:dQ o By + :AdBd alk— 1)+
x(k + N) _A;N SN Adin
[ By 0 e 0 Au(k)
N |l
[ Adin PPl .Adin éd Au(k +'N —1)
y(k Cs O 0 x(k
v _ y(k+2 _ 0 C.Yd O x(k+2) (2.6)
y(k+ N) 0 0 éd x(k+ N)

Combining equations (2.5) and (2.6), the output vector Y can be written in the

form:
Y = Px(k)+ Qu(k— 1)+ SAU
where
CdAd CdBd

CiAg° CyBs+ CyA By

)

CiA" Zi]\:ol C,Aq' By

C;By 0 R 0
g CiBy+ C4A By C.By, e 0
SN CiAS By Y N2CiASBy -+ CuBy
Au(k)
Au(k +1)
AU = |
Au(k+ N —1)

(2.7)

(2.8)

(2.9)

(2.10)

The sizes of the matrices P, Q, S and AU are N x 2, N x1, N x N and N x 1,

respectively.
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Thus, the first term of the objective function (2.3) can be now rewritten as:

k+N—-1

D Mol +1[k) = vorell3 = [| Y = Vsl = [|P2(k) + Qu(k — 1) + SAU — Vigs[5
1=k
T
with Vi = [vwef Uoref * vojref} a N x 1 vector. For the second term, it can be
easily perceived that
k+N—1
> ARz = [1AU]5.
1=k

The reformulated objective function, with its terms expressed in vector form, is
J(k) = ||Pz(k) + Qu(k — 1) + SAU — V|5 + A||AU|}3. (2.11)

In order to obtain the control input at time instant k7§, the objective function

(2.11) needs to be minimized over the optimization variable, which is the control
T

sequence U (k) = [u(k:) ulk+1) -+ wulk+ N — 1)] . The fact that the elements
of U (k) can denote either the state of the switch S, being binary, or the duty cycle,
being continuous variables, leads to the formulation of two optimization problems, one

for each representation, for the reasons stated in Chapter 1.

2.2.2 Mixed-Integer Quadratic Optimization Problem for Buck

Converter

Considering the case where the control input is u € {0, 1}, the control problem is of

the form:
minimize J(k)

_ (2.12)
subject to (2.2).

This is a mized-integer quadratic optimization problem and in order to be solved an
enumeration strategy is used. The objective function is evaluated for the 2V different,
possible control sequences U (k). Out of these 2V control sequences, the one that
results in the smallest (minimum) value for J(k) is selected. This sequence U™ (k) is

the optimal solution of the control problem, given by
U™ (k) = argmin J(k) (2.13)

The first element u*(k) of the optimal sequence U™(k) is applied to the switch as
control input and the rest are discarded. In the next time instant (k + 1)7, new
measurements are taken and the process to determine the control input is repeated.

Since the output of the controller is the state of the switch, no other stage between
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Figure 2.5: Switching frequency comparison of enumeration and descent methods. At time
1ms, where input voltage gets doubled and the operating point changes, the
switching frequency for the enumeration technique increases whereas for the de-
scent methods the switching frequency stays the same for the two operating
points and only the duty cycle changes.

the controller and the switch is needed to manipulate the switch successfully. This
results in a control sequence that causes the switch S to operate with variable frequency
(in contrast to the method of Section 2.2.3), Nonetheless, the switching frequency fs,
has an upper bound that depends on the sampling time 77,

1
2T,

Looking at the objective function (2.11), it be easily perceived that the second term,

fS’LUS

which penalizes the difference between two consecutive control actions, can be used as

a way to manipulate the switching frequency through the weighting factor .

2.2.2.1 Control Algorithm

The proposed enumeration strategy is summarised in the Algorithm 2.1.

2.2.3 Quadratic Optimization Problem for Buck Converter

Considering the case where the control input is u € [0, 1], the control problem is of

the form:
minimize J(k)

(2.14)
subject to (2.2)

This is a quadratic optimization problem and therefore the use of a descent method

is appropriate of the minimization of J(k). Descent minimization methods, starting
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Algorithm 2.1 Voltage MPC algorithm with Enumeration Strategy for Buck Con-
verter
function BuCKMPCENUM(z(k),u(k — 1))
J* =00, u*(k) =0
for all U (k) over N do
J=0
forl=ktok+ N —1do
Au(l) = u(l) —u(l — 1)
end for
J=||Px(k)+ Qu(k — 1)+ SAU — V,et||5+ N|AU||3
if J < J* then
Jr=J
u*(k) = U(1)
end if
end for
end function

from an initial point (control sequence) U (k), converge to the control sequence that

minimizes the objective function (2.11), calculating the optimal solution

U™ (k) = argmin J (k). (2.15)

Out of the the N elements of the optimal solution U*(k) only the first element
u*(k) is applied on the switch as control input. New measurements are taken in the

next time instant (k+ 1)7; and the process to determine the control input is repeated.

In order to increase the rate of convergence, the last optimal solution U™(k) is
used as the new starting point of the iterative method. This choice is made based on
the fact that the control input u(k — 1) is actually the duty cycle. When the converter
operates in steady state the duty cycle remains unchanged from time instance k7T to
(k + 1)Ts. Consequently the controller’s output (i.e. u*(k)) does not change (or has
only a small change) and the use of the last optimal solution as the starting point
of the iterative method means that few (or even none) iterations are required for the

method to converge.

In this method the use of a PWM stage between the controller and the switch S
is necessary to successfully translate the controller output to the pulses that drive the
switch, in contrast to the method analysed in Section 2.2.2, where no such stage is
needed. In this stage the controller output is compared to a triangle wave to produce
the needed pluses (fig. 2.6). This means that the switching frequency in this case is
fixed and depends only on the frequency of the triangle wave. Choosing the period of

the wave to be equal to the sampling period T}, the switching frequency is
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Figure 2.6: The controller’s output(dark blue line) is compared to a triangular wave (light
blue line) to create the pulses (red line) that drive the switch S.

To solve this optimization problem, two descent methods are presented; gradient
descent method and Newton’s method.

2.2.3.1 Gradient Descent Method

The objective function of the control problem in question is (2.11) and is repeated

here for the reader’s convenience:
J(k) = ||Pz(k) + Qu(k — 1) + SAU — V|2 + M|AU|2.

As mentioned in Section 1.4.2.1, gradient descent method minimizes a convex func-
tion f using as search direction the function’s gradient V f. This means that the

calculation of VJ is needed to proceed.
T
J (k) is a function of U (k) = [u(kz) wk+1) - ulk+N-— 1)] , so its gradient

VJis a N x 1 vector, the entries of which are the partial derivative of J(k) with respect
to U(k) and is given by:

VJ =2E"(Px(k)+ Qu(k — 1) + SAU — V,ep) + 2A\FTAU (2.17)
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where
(1 0 0 0]
C,B, 0 e 0
C,A,B C,B 0 - 0 0
_ | e o |, F=]0 -1 1 0
c,A,"'B;, Cc;A;"?B; --- Cy4B
d{id d d4{id d dDd 0 O 1 1

with the matrices P,Q,S and Vs been those described in Section 2.2.1. The matrices
E. F are both of N x N size. The gradient V.J is calculated analytically in Appendix
A.

The proposed gradient descent method is summarised in Algorithm 2.2 where o €
(0,1) is the step size and StopTolerence is a small positive number which expresses

the accuracy of the calculation.

Algorithm 2.2 Voltage MPC algorithm with gradient descent method for buck con-
verter
function BUCKMPCGRAD(z(k),U(k — 1))
Upa = U(k—1)
VJ = f(a:(k), Uold)
Unew = old — OéVJ
while || Upew — Ugia||2 > StopTolerance & Upew =0 & Upew < 1 do
Uold = Unew
VJ = f(.’l)(k’), Uold)
Unew = Uold —aVJ
end while
u*(k) == Uold(l)
end function

2.2.3.2 Newton’s Method

Newton’s Method for minimization uses the first and the second order (partial) deriva-
tives of the function which is minimized (see Section 1.4.2.2). The first order partial
derivatives of the objective function J(k) are given by equation (2.17) in Section 2.2.3.1.

The second order partial derivatives of J(k) are:

92J(k) 9%J (k) 82J (k)
ou2(k) du(k)du(k+1) T du(k)ou(k+N—-1)
92J(k) 2 J (k) . 92 J (k)
V2J(k) _ Ou(k+1)0u(k) Ou?(k+1) Ou(k+1)0u(k+N—1)
: : e : (2.18)
92J (k) 9%J(k) 82J (k)
du(k+N—-1)ou(k) Oulk+N—1)ou(k+1) ou2(k+N—1)

=9ETE + 2\F'F
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From 2.18 can be perceived that V2J (k) depends on the values of the circuit’s elements
and the input voltage vs and not on U™ (k) and thus changes only when v, changes as
well. Consequently, [V2J]|~! needs to be calculated only when v, changes.

V2.J as well as the gradient V.J are calculated analytically in Appendix A.

The proposed Newton’s method is summarised in Algorithm 2.3, where a € (0, 1)
is the step size and StopTolerence is a small positive number which expresses the

accuracy of the calculation.

Algorithm 2.3 Voltage MPC algorithm with Newton’s method for buck converter

function BuCKMPCNEwTON(x(k),U (k — 1))
V2J =2ETE + 2\F'F
Upas = U(k—1)
VJ = f(w(k)u Uold)
Uiew = Uoia — Oé[V2J]_1VJ
while %[VJ]T[VQJ]AVJ > StopTolerance & Upew = 0 & Upew =1 do
Uold = Unew
VJ = f(.’l?(k‘), Uold)
Uiew = Upia — a[VQJ]_IVJ
end while
U*(k’) = Uold(l)
end function

2.2.3.3 The Use of Descent Methods in Constrained Optimization

1 - : ‘ —
\ \ NN
\ N\
0.9 P \ N NN

NN AN
N \

i 0 i* o . i
0.8 1 0 0.2 0.4 0.6 0.8 1

(a) At kT instance (b) At (k + 1)T instance

Figure 2.7: Gradient method during transient

In Section 1.4.2 it was stated that descent methods can be used for constrained
minimization even though they are methods of unconstrained minimization. Figures
2.7 and 2.8 demonstrate why this is possible.

Figures 2.7 and 2.8 show the gradient’s and Newton’s convergence respectively at
time instances kT, and (k + 1)Ts.
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For both methods at time instance kT, (Fig. 2.7a and 2.8a)the algorithm does
not find the optimal solution, due to the use of gradient and Newton’s methods in
constrained optimization. At the next time instance (k + 1)7s (Fig. 2.7b and 2.8b)
the algorithm finds the optimal solution for both methods, due to the nature of MPC.
Even though at KTy the controller output is not correct, at the next time instant the
controller manages to find the right one and correct the previous mistake.

This behaviour can be apparent only during transient. It may create an overshoot
in output voltage, when the controller’s output is greater than the optimal solution,

or a delay in transient, when the controller’s output is less than the optimal solution.

i
0.8 1

u(k)

(a) At kT, instance (b) At (k + 1)Ts instance

Figure 2.8: Newton’s method during transient

2.2.4 Load Uncertainties

Up to this point the analysis assumes that the load resistance is known and time-
invariant, but in most applications this is not the case. Since the model of the converter
depends on the load, its variations will cause a steady-state output voltage error. A
Kalman filter [27] is used to provide offset-free tracking of the output voltage reference.

In order to model the effect the load variations have on the inductor current and the
output voltage, the model of the converter is augmented by two integrating disturbance

states i, and v.. The Kalman filter is used to estimate the augmented state vector
T
Ty = [il v i ve] . (2.19)
The stochastic discrete-time state equation of the augmented model is

To(k +1) = Agxa(k) + Bau(k) + wq(k) (2.20)
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and the measurement equation
] = Cuxq(k) + wa(k). (2.21)
The matrices are

Ag 0

A, =
0 1

B,= 0 ,Caz[I I}

where I is the identity matrix of dimension two and 0 is a square zero matrix of
dimension two. The variables w; € R* wy € R? express the process and the mea-
surement noise respectively, with normal probability distributions. Their covariances
are E[wyw,T] = Wy and E[wsw,”] = W5 and are positive semi-definite and positive
definite respectively.

The equation of the estimated state &, (k) is
Ta(k+1)=A2q(k) + K Co(xo(k) — Zo(k)) + Bau(k), (2.22)

where K is the Kalman gain and is calculated based on the covariance matrices Wy
and W5. These matrices are chosen in such a way to assign high credibility to the
physical states (i.e. i; and v,) and low credibility to the disturbance states (i.e. i, and
ve). Using the estimated states i, and 0, as inputs to the controller, instead of the

original measured states, and adjusting the output voltage reference to
@o,ref = Vo,ref — @ea (223>

it is possible to estimate the disturbances and remove their influence from the system.

2.3 Simulation Results

In this section simulation results with MATLAB/SIMULINK are presented to demon-
strate how the controller works with each of the three methods, namely with enumer-
ation, with gradient method and Newton’s method.

The circuit parameters are C' = 220uF, Rc = 0.5, L = 250uH R; = 1§2. The
load resistance is R = 10§2. Initially the converter operates under nominal conditions,
namely the input voltage is v;, = 20V and the output voltage reference is v, e = 12V
The prediction horizon is N = 8 and the sampling period for enumeration strategy is

Ts,enum = 5,“/3 .
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Figure 2.9: Weighting factor A

As stated in Section 2.2.2, the switching frequency with the enumeration strategy
is variable and changes for different operation points, while with the descent methods
it is not (see Section 2.2.3). So, it is important that the converter operates with
the same (or almost the same) switching frequency in all methods for the results to
be comparable. Figure 2.9 shows how the weighting factor A\ affects the switching

frequency fs, and the output voltage error v, ey, where

1
s = |37 Dot 1) (224
where n is the number of samples needed to calculate v,ey,. An appropriate choice
for the weighting factor is A € (0.16,0.33) where both the output voltage error and
the switching frequency are constant (fs, ~ 20kHz). The weighting factor is chosen
A =0.25.
Thus, the sampling period for the iterative methods must be T gese = 50us, to
correspond to the enumeration strategy switching frequency of 20k H z.

The covariance matrices of the Kalman filter are chosen

01 0 0 O
0 01 0 O 10
0 0 50 0 01
0 0 0 50

2.3.1 Start up

Figure 2.10 shows the output voltage and the inductor current of the converter in
nominal operation during start-up for the three methods. As can be seen, the controller
increases the current to charge the capacitor to the reference voltage level as fast as

possible and then the controller quickly restores the current to its nominal value. The
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output voltage reaches its desired value faster with the enumeration technique (in
about t ~ 0.6ms) than with gradient and Newton’s methods (in about ¢ ~ 1.3ms).
This is due to the use of Kalman filter which, in the case of the iterative methods,
causes the controller’s output (the duty cycle) to oscillate delaying the system.

After the transient, the converter operates in steady state with a voltage ripple
Vopp ~= 0.5V, for all methods.

14 1 16 ; ‘
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]_2 - 14 [ : Gradient H
Newton
10 - 4 12
10
— 8 I o
= =,
S 5 SRS
6
4 : - - - Reference
Enumeration 4 ‘
Gradien —
2 Newtont 2
0 | 1 | I I O
0O 05 1 15 2 25 3 0 05 1 15 2 25 3
Time [ms] Time [ms]
(a) Output voltage during start up (b) Induction current during start up

Figure 2.10: Start up

2.3.2 Step-up change in output voltage reference

With the converter operating in steady state in nominal conditions (v, = 20V,
Uoref1 = 12V) a step-up change in the output voltage reference occurs at ¢ = 0.5ms.
The new voltage reference level is v, et 2 = 15V. The system exhibits similar behaviour
for all the methods (fig. 2.11); initially the current increases to bring the output volt-
age to the new reference level and then decreases to its normal value. Similarly to
the start up results (fig. 2.10), the converter reaches the steady state faster with the
enumeration technique than with the descent methods (0.5ms and 1ms respectively),
a behaviour that is attributed to the Kalman filter.

2.3.3 Step-up change in input voltage

Next, with the converter operating in steady state at v, ef2 = 15V, a step-up change in
the input voltage takes place (at t = 0.5ms in fig. 2.12) from v;, = 20V to v, = 40V.
After the change, the output voltage follows the voltage reference for all methods,

but the ripple is bigger. In the case of enumeration the switching frequency has also



9/ Chapter 2. DC-DC' Buck Converter

16 6 T \ I

Enumeration

Gradient
5 B Newton

15

14

v, [V]

13

- — - Reference

Enumeration ||

12 i

Gradient

Newton

11 | 1 | I I
0 05 1 15 2 25 3

Time [ms] Time [ms]

(a) Output voltage after step-up change in (b) Induction current after a step-up change
output voltage reference in output voltage reference

Figure 2.11: Step-up change in output voltage reference

changed from approximately 20kHz to 35kHz. This difference in switching frequency
between enumeration and the descent methods explains why the ripple for gradient

and Newton’s methods is bigger.
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(a) Output voltage after a step-up change in (b) Induction current after a step-up change
input voltage in input voltage

Figure 2.12: Step-up change in input voltage

2.3.4 Step-down change in the load resistance

As a last test, a step-down change in the load resistance is examined from R = 102 to

R =50 (at t = 0.5ms in fig. 2.13). At the moment the change occurs there is a drop
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in the output voltage for all methods. With enumeration technique the system settles
faster (almost immediately) than with gradient and Newton’s methods (¢t ~ lms).
Moreover there is a difference in the output voltage ripple between the enumeration
and the descent methods that is due to the switching frequency difference. In this
operation mode the switch operates at about 35kHz for enumeration compared to
20kHz of the descent methods.

. Hluh “' Wik, - '” l\H\H\HlHHH‘\\ il ‘l i
0 055 iTir;;f)[ms]é 2f5 3 OO 0f5 iTir;;E)[mS]é 2%5 3

(a) Output voltage after a step-down change (b) Induction current after a step-down
in the load change in the load

Figure 2.13: Step-down change in load

2.3.5 Runtime comparison of enumeration, gradient and New-

ton’s methods

In order to compare the three methods (enumeration, gradient and Newton’s) in terms
of efficiency, the mean time each of these algorithms need to find the optimal solution is
calculated. For this purpose, a test with the following conditions took place. Starting
up with nominal conditions, each simulation run for 0.5s with a step-up change in the
input voltage at 0.25s, measuring the execution time of each iteration of the algorithm,
i.e. the needed time to find the optimal solution. All simulations run in a Intel®)
Pentium@®) Dual-Core E5500 CPU.

Table 2.1 summarises the mean running time of each algorithm for various predic-
tion horizons N. As can be seen, the running time of enumeration technique increases
exponentially with prediction horizon, whereas the running time for gradient and New-
ton’s methods remains relatively constant with that of Newton’s method being the
fastest of the three. Therefore, the enumeration technique is the least computation-

ally efficient of the three, while Newton’s method is the most efficient.
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N Enumeration Gradient Newton’s
5) I
1 46.9 373.5 87.6 o : Z‘r‘:;::“"“
2 55.0 138.7 104.7 E 4 o Newton's 7
3 75.4 171.1 215.1 o
4 125.2 161.5 28.9 2 3r 1
5 232.8 192.0 27.9 = .
6 487.2 217.5 30.0 g2 iy
7 1100 217.2 33.9 = i
8 2300 269.1 31.8 e Ir ]
9 5000 283.6 43.3 S B s 2 %
10 10000 272.5 39.8 1 2 3 4 5 6 7 8 9
15 0.5s 268.2 52.4 Prediction Horizon N
Table 2.1: Running time in pus of enumeration, Figure 2.14: Scatter-plot of running time of enu-
gradient and Newton’s methods for meration, gradient and Newton’s
the de-dc buck converter methods for the dc-dc buck con-

verter

2.3.6 Conclusions

In this chapter, a buck converter voltage-mode controller formulated in the framework
of MPC has been proposed. The discrete-time model of the converter is designed such
that it accurately predicts the plant behavior in CCM. Two different implementations
of the control problem have been presented and simulated: a mixed-integer quadratic
optimization problem solved with enumeration technique and a quadratic optimiza-
tion problem solved using the gradient and Newton’s descent methods. In addition, a
Kalman filter has been used as a load estimation scheme for providing offset-free track-
ing of the output voltage reference. The voltage MPC algorithm for these methods
(enumeration, gradient and Newton’s) has been applied in MATLAB/SIMULINK. In
addition, a step-up change in the output and input voltage as well as a step-down in
the load have been investigated.

The simulation results show the fast dynamics achieved by the controller and
demonstrate potential advantages of the discussed algorithms. In addition, the Kalman
filter effectively rejects the variations in the load and quickly adjusts the voltage ref-
erence following any such change.

With regards to the three solving methods applied, the switching frequency with
the enumeration strategy is variable and changes for different operation points, while
with the descent methods it is not. This is a clear drawback of the enumeration method
on the absence of a modulator and the direct manipulation of the converter switches.

During start-up, the converter immediately increases the current to charge the
capacitor to the reference voltage level and then the controller quickly restores the

current to its nominal value for all three methods. The output voltage reaches its
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desired value faster for the enumeration technique than for gradient and Newton’s
methods due to the Kalman filter. After the step-up of the output voltage, the system
exhibits again similar behavior for all the methods. Initially the current increases to
bring the output voltage to the new reference level and then decreases to its normal
value. Similarly to the start-up results, the converter reaches the steady state faster
with the enumeration technique than with the descent methods, a behavior that is
again attributed to the Kalman filter. With the step-up change in the input voltage,
the output voltage remains at the same level showing the ability of the controller to
successfully reject the input voltage variations. In the case of the descent methods, a
higher ripple is identified. With the step down of the load resistance, a drop in the
output voltage is observed for all three methods. With the enumeration technique,
the system settles faster to its final operating point.

Finally, concerning the running time, this increases exponentially for enumeration
technique with the prediction horizon, whereas the running time for gradient and
Newton’s methods remains relatively constant with that of Newton’s method being the
fastest of the three. Therefore, the enumeration technique is the least computationally

efficient of the three, while Newton’s method is the most efficient.

2.3.7 Future work

As far as the buck converter is concerned in this thesis only the continuous conduc-
tion mode (CCM) was taken into account. This decision was made to simplify the
optimization problem, but in the general case a buck converter can operate in discon-
tinuous conduction mode (DCM). This is something that could be explored in future
work following the steps shown for the CCM.

The methodology used in this thesis for the de-dc buck converter could be also
used in other types of dc-dc converters, such as the boost converter. Contrary to the
buck converter, the state space representation of the boost converter is nonlinear which
by extension means that the objective function will not be convex. Nonetheless, the
move-blocking technique can be potentially helpful to overcome this problem. This
method has been already used in [18, 19, 17] to control de-de boost converter using
the enumeration technique. The application of gradient descent and Newton’s method

in a similar system can be the subject of future work.






Appendix A

Partial derivatives of the objective

function

As it was described in Section 1.5.1, there are two equivalent ways to express the state
evolution of a linear system over a N-step prediction horizon. In Section 2.2.1 the ex-
pression in respect to AU (eq. 1.23) was used for the formulation of the objective func-

tion J, whereas here the expression in respect to U = [u(k:) wk+1) - ulk+N— 1)] '
(eq. 1.20) will be used to calculate the first and second order partial derivatives of the
objective function J used in Sections 2.2.3.1 and 2.2.3.2.

According to the analysis in Section 1.5.1, the state evolution over a N-step pre-

diction horizon for the de-de buck converter is

x(k +2 A’ A,B B e 0 u(k+1
O I e T S
JJ(]{Z + N) AdN AdN_le AdN_QBd cee Bd U(k + N — 1)
(A1)

The corresponding output in matrix and vector form respectively is

y(k+1) C; 0 --- 0 x(k+1)
o e T (A2
J 4 ) T ok 4 )
Y = Pa(k) + EU(k) (A.3)

99
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where
CiA, CyB, 0
CyA? CyA.B C,B
_ d'd E- d.d d d.d , (A4)
CdAdN CdAdN_le CdAdN_QBd s CdBd
T
U(k) = [u(k) wk+1) - uk+N-1)]| (A.5)
and A4, By, Cy are the matrices in Section 2.1.2.
Comparing (2.7) to (A.3) it is easy to see that
EU (k)= Qu(k—1)+ SAU. (A.6)
where the vector AU can be written as
B . . _
-1 1 0O --- 0 0
AU=|: . . . Uk —|0|luk—-1)=FU(k)— Gulk—1) (A.7)
-1 1 0 :
0 -1 1 0

Using (A.3) and (A.7), the objective function can be formulated as:

J(k, U(k) = |Y = Vil = AJATU3
= [|[Pz(k) + EU (k) — Vil[3 = M|F U (k) — Gu(k - 1)||3
= UNK)ETEU (k) — 2(Viet — Pz (k)" EU (k) + ( Vit — Px(k))T (Vieg — Px(k))
+MUT(K)FTFU(k) - 2G"FU (k)u(k — 1) + GT Gu*(k — 1))
(A.8)

The first order partial derivatives of J(k, U (k)), combined with (A.6) and (A.7),

arel:

VJ(k,U(k)) =2ET"EU (k) — 2E" (Ve — Px(k)) + \QFTFU (k) — 2F" Gu(k — 1))
=2E"(EU (k) — Vig + Px(k)) + 2AFT(F U (k) — Gu(k — 1))

=2E"(Px(k) + Qu(k — 1) + SAU — Vi) + 2AFTAU
(A.9)

Tn [12] it is stated that the derivatives of the function y = Ax, where y,  are m— and n— column
vectors respectively and A is a m X n matrix are % = AT, whereas those of the function y = z7 Bz,

with B a m X m symmetric matrix, are % =2B":
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The second order partial derivatives of J(k, U (k)) are:

V2J(k, U(k)) =2ETE + 2\F"F

(A.10)
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