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ITepiAndm

H poryBodor avémtuén tou Internet of Things(IoT) éyet ETLPEREL ONUAVTIXT AOENOT) TOV GUOEUGY
mou elvar cuVdEdEPEVEC 6TO GLadixTuo. O oprdudc autdc eCoxohovdel vor augdveTon Ue ToyL-
Totoug puUuolg.  Muvéneln autod elvol N TUEAYWYT TEEAOTIOU GYXOL TANEoYopiwy, o omoleg,
nopadootaxd, uetapépovton xan eneiepydlovioan oto Cloud. (lotéc0, ol unodouéc tou Cloud
elvoll YEQYRAUPIXE HEVTPIXOTIOUNUEVES X0 ATOPOXEUOHEVES amd Toug yerotes. 'Etol, eqoupuoyéc
ToL amatToLY emelepyacion G TEAYUATIXG Ypovo, UE YounAid latency aduvatolv va exterecToy
ETUTLUY WS, AOYW PEYSAOU YEOVOU UETAPORES TMV BEDOUEVWY, CUUPOENONG TOU OLXTUOL XL UT-
ofdduong e mowdtnTag. EmmAcov, o egupuoyéc mou amontelton W TIXOTNTU TV OESOUEVLY,
auTY| O Uunopel vor Blao@alloTel AmOAUTA O ATOUOXEUOUEVES UTOO0UES. AuTtol ol Adyol odrynoay
otn onuovpyio tou Edge Computing, émou ol aroutoluevol unoloyiouol yivovtoaw xovid ot IoT
ocuoxevéc. 'Etol ol yproteg aveaptnromootvton and Tic unodopéc tou Cloud xou, Toutdyeova,
EVIOYVETA 1) TEOOTACIN TV TEOCWTIXWY TOUS OEDOUEVHV.

H nopoloa dimhouated| mapouctdlel pla apyttextovixr) ouoxeuov IoT xa Gateways, otny
oTolo OL EPUPUOYES TWV GUOXELWY UTopoLY Vo 6Taholy Tpog extéheon oto Gateway. Ot mépot
TWY CUGXELMY £lval TEPLOPIOUEVOL, EVW oL ool Tou Gateway elvon dlaolpaloUevol xal umopovy
va. yenoworointolv amd Ohec Tic cuoxeuéc. Emouévng, amouteiton €vac amodoTids Unyaviooc
Oloyelplone mépwY, TEOXEWEVOL Vo dlaotpalovTon amodoTxd ol mopol Tou Gateway xou Vo ex-
TANpoOvVovTaL e emtuyio ot Asttoupyxég anantrioelc Twv IoT cuoxeuov.

Yta mhadoto Tng €peuvag autrg SnuoueyRinxe o DMRM: éva mhApee xaTaveunuévo oOoTnua
otayelplong mépwyv oe éva dixtuo cuoxeuwy IoT. H xevtpu 6éa Tou alyopituou etvar Bactopévn
o€ YeUeMwon povtéra tne owovouxrc Yewmploc. Ilo cuyxexpwéva, Bactileton 6To Hoviého Tpoo-
popdc xau {Amnone(supply and demand model), oto consumer perceived value pricing. o 610
smart data pricing(SDP).

Apyxd, yiveton pia ewooywyn oto IoT | oto Cloud, 6to Fog xaw oto Edge Computing, v
AVOAVETAL XL 1) CUGYETION TNG EMOTAUNG TWY UTOAOYIOT®V PE TNV oixovouxt| Vemplo. 3TN
CLUVEYELNL TTaPOUCLALETaL OYETIXT OOVAEL amd SAAeC UeAETeS, TpooeYYloelc avTioTolywy TEoBAN-
METWY PE OXOVOUXE POVTEAX, EVG YIVETOL aVvAAUCT XoL CUYXQIOT TWV OLUPORMY OLXOVOULXOY
wovtéhwy. ‘Eneita, avolvétoar 1 Abon tou TeoPfAfuaTog dloyeiplong TopmY UE EQUOUOYT TNG €&-
avTAnThc pevddou, v egapuoyr pedodou Oracle xou pe epapupoyy| tng wedodou Simulated
Annealing. T'iveton extevic avdhuorn tou DMRM Ohwv TV unyoviou®y tou olyopiduou mou
vhomotinxe xou ot cuVEYELN TaEoUGIACEToL Lot WEAETY) Xt aloAdYNoT Tou aAyopiduou autoU,
xS xon cUYXELOT ToL UE dAAeG Aooelg. O ahydprdude autdg epupudleton o mhatpodoues Rasp-
berry pi 3 Model B, Intel Galileo 1, Tegra X1. Té\og, cuvolilovton ta amoteAéopota xou yivovTon
TEOTAOELS Yot HEAAOVTIXT EQEUVAL.

AéZeig Khewdia— [oT, Cloud, Fog, Cloud, Edge, Owovouwt|, Yewpia, Ilpocgopd xaw (Hnon,
Consumer perceived value pricing, Smart Data Pricing, Iporypotixde yedvoc enelepyastiog, At
ayetplon népwyv , DMRM






Abstract

The rapid growth of IoT has exploded the number of devices connected to the Internet, a
number which keeps increasing in high pace. This has led to an enormous amount of collected
data and information, traditionally offloaded to cloud computing infrastructure.

However, cloud servers and datacenters are geographically centralized, situated far from the
end devices and as a consequence, real-time and latency-sensitive computation services often
endure large round-trip delay, network congestion and service quality degradation. Moreover,
in data-sensitive domains such as Healthcare, privacy and confidentiality concerns have been
raised owned to the storage of data to third-party infrastructure. These reasons (lower latency
and higher privacy) have driven the Edge computing paradigm, where the required computa-
tion is pushed to the Edge of the IoT network in order to alleviate the dependency on cloud
infrastructure and enhance the privacy of identifiable personal data.

The presented work regards the well-established Edge computing architecture of IoT nodes
and Gateways, where a portion of the tasks of the IoT nodes are/can be offloaded to the
[oT Gateway. In this setup, resources including available CPU, memory and communication
bandwidth on both IoT nodes and Gateways are limited and a portion of them is shared.
Thus, an efficient resource management mechanism is required to dynamically allocate the
shared Gateway resources and to designate the operating configuration of IoT nodes.

In this diploma thesis, DMRM is presented: a fully distributed market-based resource man-
agement system on loT architectures. The basic idea of the algorithm is based on fundamental
economic and pricing models. More specifically, Supply and Demand model, Consumer Per-
ceived Value Pricing and Smart Data Pricing are applied in this study.

In the beginning, there exists an introduction on IoT, Cloud, Fog and Edge Computing and
the connection between computer science and economic theory. Afterwards, there is related
work and similar research presented and basic economic models are analyzed and compared
among them. Additionally, there is presented a brute-force, an Oracle prediction and a Sim-
ulated Annealing solution to the resource management problem. Next, there is an extended
analysis of DMRM and its mechanisms and, after that, it is being studied, evaluated and com-
pared with other solutions. The algorithm is applies on Raspberry pi 3 Model B, Intel Galileo
1 and Tegra X1. Finally, the conclusions of this diploma thesis are summarized and ideas for
future research are proposed.

Keywords— IoT, Cloud, Fog, Cloud, Edge, Economic Theory, Supply and demand, Con-
sumer perceived value pricing, Smart Data Pricing, Real-time processing, Resource manage-
ment, DMRM






FEuyapiotieg

Karopyde, Yo fHleha va euyapotiow Jepud tov emPAémovta xodnynty| youv x. Anurteto
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Extetapevn Iepiindn

Eioaywy

H poryBoidor avémtuén tou Internet of Things(IoT) €yet enpépet onpavtinn 0dEnomn twy GUOXELHY
oL €lvo GUVBEBEUEVESC GTo BladixTuo. O apriude autdc eoaxoroutel va auEdveTon Pe Toy UTATOUS
evduole. Yuvénela auTol efval 1) TaEAYWYT| TEEACTIOU GYXOU TANROYORIWY, 0 OTOIES, TapABOGIIXd,
uetagépovton xan enelepydlovton oto Cloud. 26t600, o1 utodoués Tou Cloud civon yewypopixd
AEVTPIXOTIOINUEVES XOlL AMOUOXEUOUEVES amd Toug yenotee. 'Etol, epopuoyéc mou anatody ened-
gpyaoio oe TEaypaTIXd YeOVo, YE YouuNnAo latency aduvatolv Vo EXTEAEGTOUV ETTUYOG, AOYW
UEYBEAOU YEOVOU UETAPORAS TKV DEBOUEVLYV, GUUPOENOTE TOU BLXTUOL Xt LTOBAIULONE TNE TOLOTH-
Tag. Emmhéov, o eqopuoyéc mou amoutelton WIOTIXOTNTA TWV OEBOUEVWY, QUTY OE UTOPEl Vo
Ol QAo TEL AmOAUTA O AMOUUXPUOUEVES UTODOUES. AuTol oL Adyol odrynoay oTn dnuovpyia
tou Edge xat tou Fog Computing, 6nou ot anairtobuevor urohoylouol yivovtow xovtd otic IoT
ovoxevéc. To oyfuo tng apyttextovinic authc Topouctdleton otny exoéva 1. Etol ov yeroteg
aveloptnromololvTo and Ti¢ unodopéc tou Cloud xat, Tautdypova, evioyletal 1 TeOoTAGIA TOV

TEOCWTULAWY TOUS DEOOUEVWY.
=l 5%
168 1
6

Cloud data
center

Core
Cloud FAN

/e/ 0
& 9 B & ,
Terminal é @ @ & Cg“o & qua Edge

Ewéva 1: Apyttextovinf Fog xow Edge Computing [12]

H napodoo dimhowuotins mopouctdlel éva dixtuo ouoxeuwy IoT xou Gateways, oto omolo
Ol EQUPUOYES TWV CUGKEUMY UToRoUV Vo 6TaAolV Tpog extéleon oto Gateway. Ou mépol Twv

13



CUOXELGY elvol TEptoplopévol, v ol tdpol Tou Gateway elvar StapolpaloUevol xo YUmopoly va
yenoworotntoly amd Oheg Tic cuoxevéc. Enopévwe, amantelton €vag amodoTinde unyoviotog oL
ayelplong mopwY, TEOXEWEVOL Vo dlapolpalovTal amodotixd ol mopol Tou Gateway xou vor ex-
TAnpewvovTal Ue emTuylor oL Asttovpyeg anoutroelc Twv IoT cuoxeuny.

Yta mhadoto Tng €peuvag authg SnuoueyRinxe o DMRM: éva ThApe¢ XATUVEUNUEVO GOOTNUN
otayelplong mépwyv oe éva dixtuo cuoxeuwy IoT. H xevtpw 6éa Tou alyopituou etvar Bactopévn
o€ Yeuehwon povtéra tne owovouxrc Yewploc. Ilo cuyxexpwéva, Bacileton oTo woviého Tpoo-
popdc xou {itnong(supply and demand model), oto consumer perceived value pricing. xou oto
smart data pricing(SDP).

AlatOnwor tou IlgofBAAuatog

H apyitextovixs Tou 8ixtiou cuoxeu®Y Tou e€eTAleTal O AUTH| TN OLTAWUNTIXY EpYacio amoTEAE-
Tou %atd Bdon and 500 €WV CUOKEVES:

1. Edge Nodes(Gateways) : mpoxetton yior ovtotnteg tou Edge Computing, ot onolec ouve-
10@épouy oTNY avdnTun utneeowwy Edge xou otn Topoy 1| UTOAOYIGTXGY, ATOUNXELTIXGDY
%ol OLXTUAXWY TOPWY oTIC cuoxevég ToT.

2. Yuoxevég IoT : etvan xdde €ldoug Quor) GUOXELT), OYAUATA, OLIAXEC CUOXEUES Xl GANXL
AVTIXELPEV, OTO OTIOloL UTLEEY OLY EVOWUXTWHEVA UCUNTARES, AOYLOUIXO, EVEQYOTOLNTES XAl
oUVOEGT) GTO OLUBIXTUO, TOU TOUG ETUTEETEL VAL ETUXOWVMVOUY XAl VO AVTIUAALGOUY OEBOUEVY
elte petoly toug, eite pe 1o undloito BladixTVo. AUTEC Ol CUOXEVES €YOUV TEQLOPLOUEVOUC
TOEOUS OE O,TL AWPOEA TNV CPU, TN UVHUTN XAl TIC BIXTUAXES TOUG LXAVOTNTEC.

Ané T pla mhevpd, o cuoxevéc ToT Peioxoviar xovtd otoug xadnuepvoic yeroTee xaL o
ouyxexpyéva, oto terminal layer tng apyttextovixnric mou gaiveton oTny ewodva 1. And tnv dhin
mhevpd o Edge Node Boloxeton otn dienagy| Tou Fog layer xou tou terminal layer. Emmpociétwe,
ot cuoxevéc IoT etvan ouvdedepévee, cite evolpuata, elta aclpuata, pe To Gateway x6ufo xou
UTOPOUV VO ETLXOWVGVOUY X0l VO AVTUAASCOUY DEDOUEVA UE EXELVOV.

H apyrtextovind tou cuothuatog mou Yo EAETHOOUUE 6T TAALOLYL TN THEOVCUS DITAWUATIXAG
amoteheiton and €va gOvoro n IoT cuoxeuwy, uiog cuoxeuric Gateway xou evog GUVOLOU EQYAUCLOY
avd cuoxeUT, oL omoleg umopolv Vo extehectolv eite oto Gateway, elte Tomxd otny exdotote
IoT cuoxevy|, 6twe palvetar xar 6To oyfua Tne exdvac 2. O cuoxeug IoT elvon neproplopéveg oe
0,TL POREE TOUG LTOAOYIOTIXOUS TOUG n6pouc(CPU), ) cuvolix ywenuxdtnto Tng wvAung tou
X0, PUOLXA, TIC BUVATOTNTES EMXOWMVING Toug Ue To Bixtuo(bandwidth). Oswpdvtag dedouévn
™ oOvoeon twv IoT cuoxeunv oo dixTuo, elte evolpuata elte achopata, xdie uio and autég
€YEL TN DUVITOTNTOL VO ETUXOWVGWVEL Xou VoL avTaAAAGEL BEdoUEVa Ue TN ouoxeuot| Tou Gateway.

Kée IoT ocuoxeu| mou Ppeloxetar oto ev Adyw dixtuo oplleton povoorhuavto and uio Tiun
i€ {1,...,n} xou yoapoxtneileton and v nhewdda D; = {C;, M;, B;, Money;, T; }.

Ov petafintéc C;, M;, B; xadopillouv t CPU, tn pvAun xou 1o bandwidth tng cuoxourc
i avtiotoryo. H petafint Money; npocdiopilel ta GUVOMXE YEHUUTO TOU XUTEYEL 1) avTioToyN
ouoxeut), eved 1 LetoBAnth T; xadopilel To alvoro twy epyaotdv(tasks) ’7'; ¢ ovoxeurc 7. [
xde task amoutovvton 800 Bonintinéc yetafBAntéc ol onoleg mpoadiopilouvy Ty extéheoy| Tou. Ilo
ouyxexpléva, Yo To task j Tng cuoxeurc ¢, 1 UETOBANTY 0} tideton 010 1 av TO CUYXEXPWEVO
tasks extehelton o710 Gateway, dwgopetind tietan oto 0. Iapopoing, n petoBinth [ tideton 670
1 av 70 task exteieiton Tomnd otny IoT cuoxevy|, odiuwg tietar 1 Twr Tou oo 0.

Y11 ovoxeur| Tou Gateway, ol IoT cuoxguéc UmopolY VoL ATOXTAGOUY TOPOUS, TROXEWEVOU Vi
exteréoouy Tic epyaotec Toug. Tapduow pe Tic IoT cuoxouée, o Edge Node xadopileton amd pia

mhetddo petaintdv G = {C, M, B, Tg}.

14



G = {¢, M, B, T5) Legend

Task |
[i] 1oT node i

-» Offload task j to gateway
Device communication
— = Device/Task Definition

Gateway

-
-
-
-
g

——-
—————
_______
_______
_______

STy = {CQ7,Mg7,BQ7,CC7,M£7,BE7,ct7,d7,EGct7,ELct7}
D2 = {02, Mg, BQ, MO’TL@’yQ, T }

Ewxoéva 2: Apyttextovixt| Tou umod e€€Taor GUOTHUATOC

Ou petofintéc C, M, B npocdipiCouv tny CPU, 0 pviun xo to bandwidth tou Gateway. To

Tg €ivar t0 obvoho Twv tasks mou yivovtow offload oto Gateway xdde otryur. Kde task tng

ouvoxeLic @ oplleTal HOVOoavTa and To Oxd Tou uovadixd id j xou mpocbloplleton amd TNy
TAELGDL:

T; = {CG}, MG}, BGS,CL;, ML;j, BL;, ct}, ds, EGet’, ELct}} (1)

oToL ot ueToBANTES ng, MQ;, BQ; xadoplCouy Toug amautoluEVoUE TOEOUE Tou task j ov auTod
extereotel oto Gateway xou, mopouoiwe, ot cuoxouéc CL;, ML;, BL; touc avticTtoryoug népoug
TOL AMOUTOUVTOL Yia Vo EXTEAEOTEL TO avtioToryo task Tomixd. Emmiéov, n uatoSanty ct;'» opilel
xpovixh otiypr) otny onola xde task ohoxdfpwoe TNy extEAEsT| Tou, eve To dj Ebvor TO YpOVIXO
deadline, peypr To onolo mpemeL va Exel nepatwiel to task. Telog, ov petafintec EGct;, ELct;
OE(YVOUV TOUC EXTIHMUEVOUS YEOVOUS eXTEAEDTC Tou exdotote task tng ouoxeurc j otov Edge
Node xou oty IoT cuoxeur} avtictouya.

O Baoixdtepeg petaBintég Tou cuoTidatog Tou avalletar cuvoliCovtar otov Ilivaxa 1.

O Baowde ot6y0¢ BehtioTonoinong Tou CUCTAUNTOS OTKS exppdleton otny e&lowon 2, elvor
Vo ehaytoTonojcouue o TAfdog Twv tasks twv IoT cuoxeuwy mou unepéfnoay To deadline Toug.
Or meplopiopol Twv cLVONXGY TopwY ot OTL apopd T CPU, tn uvAun xou to bandwidth otig IoT
ouoxeuéc xan oto Gateway mapovcidlovton oTic e€lowoels 4 ng 9.

H ewdu) anaitnon tng povadinic extéleong evog task( Unique Ezecution) oty eiowon 10
onuotver ot xde task o€ unopel vo extereotel xou otny IoT cuoxeu Tou xou ot0 Gateway, eve

Denotation Description
7'} task j of device 7
0} 1 if task j of device 7 is executed (offloaded) to Gateway, 0 otherwise
l 1 if task j of device i is executed locally, 0 otherwise
C, M, B CPU, Memory and Bandwidth resources of Gateway
Cy, My, By CPU, Memory and Bandwidth resources of device k
CL;, ML, BL; CPU, Memory and Bandwidth resources required for task j executed locally
CGj, MGj, BG;|CPU, Memory and Bandwidth resources required for task j of device i executed on Gateway
ct’, d Completion time and deadline of task j of device ¢
EGct;, ELct) Estimated completion time of task j of device i on Gateway and locally, respectively

Hivaxag 1: Hopduetpol Tou cUOTAUATOS
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TOWTOYEOVAL 1) avolBoAT| TN exTéAEONC Tou task 4 yio pehhovtiny e€étoon etvan plar mdavr) emhoy.
H mpotewvduevn market-based Abon tne nopolcog dimhwuatixhc epyacieg, cuvelogépel ot Ao
ToU BedoUEVou TpoAUaTOC BedTioToTolong, arogacilovtag duvauixd Tou Yo extereotel xde task.

minimize  Npissed = Z(Z mZSS(T]Z)) (2)
Vi Vj

' i<l

0 if ety < dj subject to: (3)

where miSS(T;) :{ 1 otherwise

Gateway > (> 03- : CQ;) <C CPU (4)
Vi v
constraints: > (Yo - MQ;) <M Memory (5)
Vi Vj
Y O 0, -BGi) <B  Bandwidth (6)
Vi
Device k. »_1¥-CL; < Cy CPU (7)
Vi
constraints: Zlf - ML; < M, Memory (8)
Vi
Y UF-BL; < By Bandwidth (9)
v
Unique execution 0? + l;-c <1,Vj €T (10)

Emnpoc¥étoe, aliler vo avagepdel 10 yeyovog 6t tar tasks pmopoly va xatnyoplonomndoiy
O TEEIC XATNYOplEC avdAOY L UE TOUC TOPOUC TOU UTALTOUY YIOL TNV EXTEAEGY| TOUG:

e CPU intensive tasks, to onola amoutodv uPnhoic UTOAOYIETIXOUE TOPOUC YLa VOl EXTEAEGTOUY
ETUTLY O,

e Memory intensive tasks, ta omolo amoutolv udmholc TOEOUC UVAUNG YLl VO EXTEAECTOUY
ETUTUYOS XL

e Bandwidth intensive tasks, to omolo amoutody uPnhoic ToeouUC BTOOL Yia VoL EXTEAEGTOUY
ETMTUYWC.

Mé&Uoooc Brute-Force

Y10V ®O0U0 TNG EMCTAUNG TV UTOAOYLO TGOV, 1) brute-force avalftnom, yvooth xar wg e€avti-
N avalTnom ebvor pio yevixn pédodog enthuong mpofBinudtwy, cUugwve ue TNy onolo eZeTdleTon
OMOC 0 Y WO THAVEY AIGEWY X, CUUPOVL UE TOL XELTARLA TOU EXACTOTE TEOPAAUATOC, ETUAEYE-
Tou 1) xatahhnhoteen Ao, Ilapdho mou ebvor mohD amhy| oty vAomoinon xan Beloxel mdvto ™)
BérTioTn ADoT, TO UTOAOYLOTIXO X0 YPOVIXO TNG XOO0TOG Yo TNV €EETOON OAWY TWV UTOPHPLLY
ANooewy auEdvel amayopeuTixd xadog To péyeog Tou TEOBAAUATOS UEYUAWYVEL. MUVETOC pla Té-
Tolo uédodog epapuoletal xuping ot TeofAfuaTa, 6Tou To YEyedog Twv AoEWY eivol TEpLOPLOUEVO,
otay €hovue vo amoxheicoupe plo ouddo Aooewy 1), TéAog, OTay B Uag amacyolel 1 TaydTnTA
ebpeong Tng Avong.

Ev mpoxewévw, oto mpofBinua g dloyciptong mopmy Tng Tapolous SImAWUATIXNG, N e€avTA-
Nt pedodog vhomolnxe, TEOXEWEVOU Yia Eva dedouEvo oOvoho cuoxeuwy ToT xou éva Oe-
00OMEVO GUVORO EQUPUOYXY V. UTOROUUE VoL BpoUde Tn BEATIOTY BuVaTY| AUOT| AVAUESH O OAES TIC
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Algorithm 1: Brute-force Algorithm
Result: Find the minimum number of delayed tasks.
Data: Gateway, DevTuple, Tasks
1 minimum = numberOfTasks + 1; // in worst case all tasks will be delayed
Brute-Force (DevTuple, Gateway, Tasks,round) :
2 checkForTerminated Tasks(DevTuple,Gateway, Tasks,round);; // check of
terminated tasks
3 if all tasks terminated then
4 delayed = countDelayedTasks(); // count the tasks tat exceeded deadline
5 return min(delayed,minimum);

// find all possible combinations of task scheduling at current round
6  combinations = find AllCombinations(DevTuple,Gateway, Tasks,round);
7 if combinations = NULL & exist undone tasks then

8 minimum = Brute-Force(DevTuple, Gateway, Tasks,round+1); // recursive
call

9 return minimum;

10 while combinations!=NULL do

11 insert NextCombination(DevTuple,Gateway, Tasks,combinations); // on fog or
IoT device

12 minimum = Brute-Force (DevTuple, Gateway, Tasks,round+1); // recursive
call

13 return minimum,;

duvatéc Aboelg avd yopo. Ilo ouyxexpwéva, n Abon auth vtoloyilel Ghoug Toug Tiovols GuV-
OLOUOUC, UE TOUG OTOlOUG OL BLEPYUCIEC UTOPOUY Var YEOVOBEOHOAOYNUOUY Xl Vo EXTEAEGTOUY
noUL EMOTEEPEL EXElVT), 1) oTtola EhaytoToTolEl TO TAYOC TWV EQUPUOYHOY TOU EETEPAGAY TO YPOVIXO
deadline Toug xan TowTOYPOVA ENAYLOTOTOLEL XU TNV GUYVOALXY| XardUC TEPNCT TOU UTIAEYEL.

Avoutixodtepa, dedopévou evog cuvorou [oT cuoxeudv DevTuple, evdc cuvOROL £0YACLOV
Taks xou Tou Gateway Gateway, Véhouue vo e&etdoouue Oha ta duvatd schedulings. Emniéoy,
Yewpolpe 6Tl 0 ypovog petpdton o yOpoug, R, Zexwvovtog and 1o 0.0 ahydperiuoc doukelet
0¢ e€fg: apywd, oto yUpo i avalntolue GAoUC Toug BLVATOUS GUVOLACHOUS, HE TOUS OTOoUC
UTOPOUKE Vo BLOOLRdCOUNE TIC EQPUPUOYES ToU YVweiloupe péypet exctvo tov Yipo. Bdalouue évay
amO TOUG TOEATAVEL GUVOLAOUOUE TEOG EXTEAECT] X0 TROYWEUUE CTOV EMOUEVO YORO ETMAUVUA-
Bdvovtag v Bl dradixacta. Mg dheg o epyacieg 0AoxAnewdolV ETCTEEPOUNE AVUDEOULXS
TEog Tol oW, YEyet var Bdhouue GAoug Toug cuvdLacUols. MeTd To TERUC OAWY TV AVUBEOUMY
EMOTEEPETAL 1) YPOVOOROUONOY oY, 1 omola ehaytoTontolel To TARUOG TwV xUVUCTERTUEVLDY €0-
YAOLOV xat, o€ BeVTEQO YPeoOVo, Tou ehaylotomolel TN cuvolxy| xouctépnon. O avtioTtotyog
alyoprduog mapoucldletoan 6To 1 ot pop@r heudoAWOXAL.

[Tapbho mou 1 e€avtinTtinr pédodog emoteéet mdvTta T BEATIOTNH AOOT), TO UTOAOYIGTIXG Xal TO
YEOVIXO x6GTOC AUTAG XANGTOLY TNV TEAXTLXY| EPUPUOY T TNG ATAYORPELTIXT] HETA oo Eva UEYEVOC
ewo6dov. H mpocéyyion auth do yenowomomniel xuplwg yia Adyoug olyxplong Twv BEATIOTOVY
ATOTEAECUATOV.

Mé&Uoooc Oracle Prediction

H pédodog autt| ewvon mapduowa ue tn brute-force Aoorn. H Baocuxd dragopd toug elvan dtL T
mpoceyylon Oracle Prediction yvwpeilouye ex twv mpotépwy dAa ta tasks mou Yo €ptouv oe bhoug
TOUE YOPOUG. LUVETWS 1) TEOCEYYIOT| AUTH) UTOREL Vor 00N YY|OEL O oxOua XoADTEPY UTOTENECUATAL,
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XYUCTEPWVTAS TNV EXTEAEDT) 0pLopéVvwy tasks, Tpoxeyévou va xpathoetl topoug Ya tasks mou Yu
¢ptouv oe emduevoug YUpoug ue avotnpotepa deadlines. Tlapdho autd xou oe auTh TN TEOGEYYION
UTdEY oLV TOAD LUPNAEC AmAUTAGELS OE O,TL AQOEd T UVAUTN XAl TO YEOVO EXTERECTC.

Medodog Simulated Annealing

LOpgpeva PE 10 6], 1 uédodoc Simulated Annealing etvon pio teyvixr Baciopévn otic miavotnreg,
TEOXEWEVOU Vo TooeYYLoTel 660 yiveTow xohiTepa T0 OAS BEATIOTO EVOC TPOPAAUATOS 1) [ULog
ouvdptnone. Iho cuyxexpéva, elvon Evag euploTindg TeoTOC VoL TpoceYYioouue plot Abon avdueoa
o€ éva TepdoTio €0pog maveV dlaxpltdy Acewy. o tpofirjuota, ota onola etvor emuuntd va
Beolue plo utoPertiotn Adom o YR1Yopo Yedvo, 1) uedodog auTy| cuvicToTal.

O ahyoprduoc tou Simulated Annealing mnyoalet and v emotiun g Yetarreloroyiag. To
annealang eivor ouvolooTxd plo pédodog xatd Ty omola PUyovtag xou Yepuolvovtag €vo LAXOG
TEOXEWEVOU VoL UETUBIANOUNE TIC QUOLXES TOL BLOTNTES, apoV oAAELOUY 1) ECWTERIXY| BoUXT] TOU
xoTdoToom. xomE To UAG PUyeTon 1) véo Tou dour apyilel vo otodepomoleiton xat, TAEOV, TO UAXO
Tebvel va Btatneet ueTénetta TIg Véeg 1dTNTEG Tou améxtnoe. Baowlduevol ota tpoavapepiévta, 6N
uévodo Simulated Annealing Yewpolue 6Tt apywd 1 Yepuoxpacia Tou cwUATOS Elvar LYNAT Xou
otadLoned PoyeTan To UAOG %ol o alyopripog tpoywedet. ‘Oco 1 deppoxpacia eivor udmAy), t6c0o
mo mioavo ebvar vo TAnoldcoupe pla Abon 1 onola var yivel ev Télel anodex . Me autd Tov tpdTo
0 oAYOELIUOC XAUTAPEQVEL VoL UnY TarytdeUeTan o Tomwd BéATioteg Aboeic. Kadde n depuoxpacio
UELOVETOL, 1) THovOTNTOL Vo AOOEY TOUUE YELROTERES AUGELS, ONAadY| var amopaxpuviolue and To
olx6 Beltioto Tou TpoPAAUaTog UewwvoTtour onuavtxd. H didwacio xatd tnv onola to cwua
hiyeton oTadlomd eacparilel ovoloTixd To YeYovog 6Tl Vo mpooeyyloTel 1 BEATioTn AdoT xou
Yo amogeuydouy Tomixd BEAToTeC AJOELS.

Simulated Annealing

' local minima

global minimum

state

Ewxévo 3: Simulated Annealing [1]

[apdTt undpyouv xon SAREG EUPLOTIXES TEYVIXES Yia ETiALCT) TETOLOU ElBOUE TEOBANUATWY, OTwe
ebvon 1 teyviny hill climbing, umdpyer yeydhog xivduvog vor xohAioouy ce Tomxd BEATIOTH TNG
Aoone.  Avtdétwe, o ahyopriuoc simulated annealing omogedyel autév TOV (VOLVO XL, OTN
TAelodPnela TV TEQINTOCE®Y, TeoceYYlel Ty BéATiotn Abor. Autod elvar o Bacind mheovéxTnua
¢ UeVidou auTAg EvavTl TwV UTOAOITWY.
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[ty extéheon tou ahyoplduov, Beloxouue pla apyixy| xatdotaon s, 1 omolo efvar ouctaoTixd
ular oy, Tuyadar, Moo Tou TEoPAAuaToC. XTN cuvEyEL, UeTaBalvoude oe i YEITOVIXT| xoTdo-
Toom 8% xou mdavotid amogacilovue av Yo anodeytolue T Véo xutdoTtoon B Vo mopaueivouue
otny s. Edxdtepa, TEOXEWEVOU VoL amodEY TOVUE Uid YELTOVIXT XATAC TUOT G VEX ADGT) UTHEY 0LV
oLo Paoixd xprthpla. To mpwtd xputfpto elvon av 1) véa xatdotacT eivon xaADTERT TNG TEONYOU-
uevne. Tote Ty amodeyduacTe. Xe BlopopeTiny TEpINTMOT), TEETEL VoL EEETAGOUNE OGO YEIROTER
elvor 1 véa Aoom xan téoo uhnhi deppoxpacia €yet To olotnua. Auth 1) emioyT yivetow pe Bdon
NV Topoxdte miavoTnTo:

solution Energy — neighbour Energy

exp( ) (11)

Exoha xatorofalvouue 6L 660 uixpdtepn elvon 1 Slaopd TNy EVEQYELX, ONAadT| 1) dlapopd
oTN TOLOTNTA TV 000 AICEWY, xaL 6co ueyahlTepn ebvar 1 Yeppoxpaocio, t6co mavdTepo elvor
va ylvel amodext 1 véa Aoor. ‘Onwe mpoavagepinxe, o akydprdpog Evar Tohd miavd va deytel
pavoUeEVIXd YelpbTEpES hboelg otay Pploxeton oe uPniéc Yepuoxpaoiec. O olyodpriuoc umopet va
avoALdel oe Bruata we eEhc:

temperature

o Apyxomoinom Yeppoxpaciog xou apyxic xatdoTacnc-Abong.

o Zexwvdel 1 emovoAnmTixy dladxacta Tou adyopiduou uéyel va ixavorowiel n cuviixn Tep-
wotiopol. Xuvhdog elvon 6tay 1 Yepuoxpacio Tou cuoTAUATOS Yivel UixpdTeERN and xdmoLa
TeoxaJOpLOUEVY) THWN 1) OTAY PTACOUNE o€ Uio APXET xavoTom Ty Ao

o Y& xde yOpo emAéyoupe plo yertovix Aoon tne 1on utdeyoucag.
o Amogacilouue av Vo anodeytolue 1) oyt 0 VEo Aoom.
o Mewdvoupe tn deppoxpacia xou cuveyiloupe TNV emavdindn.

Ye 6,1 aopd Tig TES NG Vepuoxpaotaug, auty| utopel va xadoploel ot onuavtind Padud 1éco
™ motoTnTa TG Adong, ok xan T TayOTnTo e Ty omola Yo ptdoouue o autr. Idavixd, otic
apy € xataotdoelg 1) epuoxpacio Yo mpémel va efvon TéTola WoTe 0 alyodpriuog va et euehiiia
vo xivniel og TANUOEA YEITOVIXDY XATUACTICEMV.

Emnpooietng, yioa v vhomoinon tng yedodou simulated annealing etvon ovoryxaio vor xo-
Yoplotolv 1 ouvdptnon evépyelac E(), n Swdixacio tapaywyhc YerTovinmy Aoewmy, 1 ouvdpTtno
amodoy e, 1 apywxn Yepuoxpacio T xa o tapdyovrag uetaforic tng Yepuoxpaciog o. Ev tpoxeiuéve
1 oUVERTNON eVEpYELS Tou Oelyvel Tn moldTrTa Tng Abong ebvanr To TAlog TV E0YACLOY TOU UT-
£pEBNOAY TO YPOVIXG bpLd TOUG, EVEK OL UTOAOLTES TopdueTEOL Xordopllovtal oTaTXd.

O alyopripog 2 mapouoidler tny eletalopavn u€dodo ot popPy| heudoxMO TaUEUXAT.

H uédodog Simulated Annealing vou pev e€acgaiiCer 6Tt dev Yo xoAHoeL o ahyodpriuog o
TOTUXG BEATIOTA, OTO00 Bev eCacpalilel To TG0 x0VTd 6To Ohwd BéATIoTO Vo pTdoel. Emmiéoy,
amd TN GUOY TOU 0 UAYOEIUOG amoTEAELTOL AT TUYUOTNTA, YEYOVOC TOU OE UG ETUTEETEL UE OlO-
(pAELoL VoL TOV AELOTIOLACOUNE OE ey UaTxd cuo Thuata. ‘Onwg elvon tpogavée, Aoyw Tou YEYOVo-
T0¢ OTL 1) TEYVIY) oUTH e€eTAlEL €val Uixpd PEPOG TOU GUVOAOL TWV AUCEWY, TNV XooTd Gapg
Yenyopdtepn o€ oyéon ue TNV eavtAntiny avalhtnon. 261600, o€ Eva TEUYUATIXG GUOTNAPN TTOU
amoutel ueom andxpton xat real-time arogdoeic dev unopet va egappootel. Télog, alilel vo onuet-
Vel 6Tt yia TOAD YeydAeg EL6OBOUE, TO YEYOVOS OTL OL UTOAOYLOUOL YIVOVTOL XEVTRIXOTOLNUEVAL X Ol
OY(L XUTAVEUNUEVOL UETAED TV BLPORWY GUOXEVWY, BUCYERALVEL UXOUY TEPLOGOTEQO TNV TEAXTIXN

EQOQUOYT| TOU.
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Algorithm 2: Simulated-Annealing Algorithm
Result: Minimuze the number of delayed tasks
Data: Gateway, DevTuple, Tasks
Simulated-Annealing(Gateway, DevTuple, Tasks):

1 initialize(temperature, solution); // initial temperature and a solution

2 while coollteration <= mazlterations do

3 coollteration = coollteration + 1;

4 templteration = 0;

5 while templteration <= nrep do

6 templteration = templteration + 1;

7 newSol = createNewSolution(); // generate new solution

8 currentEnergy = computeEnergy(newSol); // energy of new solution

9 d = currentEnergy - previousEnergy;  // compare previous and current
energy

10 if d < 0 then

11 ‘ Accept new solution

12 else

13 ‘ Accept new soluiton with probability exp(-d/temperature)

14 T=a*T, // 0<a<1

DMRM: Distributed Market-based Resource Management

ITpoxewévou va AOGoulE amodoTixd xat Ye1yopa To TeoBAnue Tng dtayelptong ToOpwmY TNE Taeolcag
OtmAwpaTxhc, vhomouinxe ula xatoveunuévn hbon tou mpolAfuatog, 1 omola eivon Baotlopévn
oe Vepehddrn povtého tne owovouxic VYewplog. Boowde oxomdc tou olyopituou autol ef-
vaiL vor OnioupYiooupe éva TEpBAANOY ayopdc, 0TO OTolo Ol GUOXEVES ayopdlouY XaL TOUAGVE
TOPOUC PETAEY TOUC, EvavTl xdmotou avtoAldyuatoc. ITo cuyxexpwéva ol cuoxeuéc loT cuunep-
LEQOVTOL WS ayOPAOTEC Xt {NTAVE TOPOUC TROXEWEVOL VO EXTEAECOLY TIC EpYAOieC Toug. Av-
tiotowya, o Gateway Spot ¢ TWANTAC TOEWY XAl TAUPEYEL TOUC TOPOUS TOU GTIC CUGKEVEC TOU
owtoou. To mAcovexTAuaTa TG TEooeYYoNe auThg elvar OTL (1) to vrnoloywotxd xboT0C g
Mne amogdoewy eivar xataveunuévo petad twv IoT cuoxeudv xa (2) xdde xéuBoc IoT éyel
™V ovotnTa Vo xadopllel exelvog TN OTOUBUOTNTO XAl TN TEOTEQULOTNT TWV EQYUCLOY TOU.
Auto €yel wg anotéheoya, o xouPBog Tou Gateway vo £YEL YVOOT HOVO EVOC UTOGUVOLOU TOV E0-
Yaol)y tou cuoThUaToC. ‘Etol amogeldyeton cucowpeuuévn AN arogdoewy oto Gateway. Auto
eVOEYOPEVWC Var 00N YHOEL OE UTOPBERTIoTEC ADOELC.
O olyobpriuog mou viomordnxe Baciletu oe 3 Baocd owxovouxd TepdTUTA:

e Movtélo Ilpooyopds xaw Z¥tnong(Supply and Demand Model) : To povtéio
TE0GQoEAS xat {ATnomg elvor évar amd Tol To Yepehaddn povtéha tng owovouhc Vewplag. H
Baowr| Tou apy elvar OTL OE plor AVTAYWVIGTIXT 0YORd, 1) TYL| EVOS CLUYXEXQPUEVOU ayordol
OLopopOTOLELTAL BLaEXS, HEYEL TO ONUEID OTIOU 1 TEOCYPEPOUEVT TOGHTNTA ToU ayardol auToU
va yivel (on pe v amoutolpevn nocétnta. To onueio autd ovopdletan onpeio wwopponiog
™me ocyopdcg(market equilibrium). H oyéon uetadl NS TEoo@opdc ot NG CATNONG Lo
ovtoTnTag ebvon auth Tou xadopllel T Tehxr Tiwr Tou. Ao Tn oTiyur mou Yo gTdcouue oe
oruelo 16oppoTHag OAOL Ol GUUUETEYOVTES OTNV ayopd Elval xavoTolnuevol. Xto oyfua 4
TOEOUCLACETOL Kol YRuPIXd TO OMuEio LooppoTiaC.
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Ewéva 4: Népog npocgopde xon {htnoneg (2]

e Consumer Perceived Value Pricing : ITpdxciuévou o twintic evog ayodol vo auvénoet
T daxporpoieoua x€pdT Tou, ToAD cuyva xodopllel TNV Tr Tou ue Bdorn Tig emduieg xan
TIC BUVITOTNTES TWV AYORUCTAY, dNAAdY| To Tocd To omoio ol Teheutaiol Topotidevta Vo
TATPOCOLY.

e Smart Data Pricing : Y0ugova ye autd 1o oovouxd Loviého, Tpoxeuevou va puuloTel
xotdhhnhor 1) peyolr) {Rtnom A i yanAy) {nomn yio éva oryardo, 1 T outod xardoptletan pe
Bdomn To yedvo TOV omolo yenotuonolelTal and Evay ayopaoTy|, xomg xou ETIONG XL OE T
Boduod yenowponoteitar and tov ayopaoth. Ilio cuyxexpwéva, 660 auidvel o ypdvos yerong
ToU ayordo Xal 1) TOGOTNTA TOU YENOWOTOLEL 0 oyORUGTAC, TOCO ALEAVEL 1) TWUT TOU EXEIVOC
Yo xhniel ev téhel va tAnpwoet. 'Etol and ol TwAnTég unopoly Vo amo@lyouy QuvOUEVY

unepPoAnd udming {ATnone.

Apyxd, to yoviého mpoopopds xou {ATnong yenowonotinxe Teoxeévou Vo amo@eLyYoly
PAVOUEVAL UEYAATG aviocopoTiag PeTal) TPocpopds xat {HTNONG TWY UTOAOYIO TIXGOY TopwY. Emi-
mAéov, ta Smart Data Pricing xou Consumer Perceived Value Pricing cuvdudlovto petagd toug,
TEOXEWEVOU VoL Xo0PIGTOUY UE GUPHVELX Ol TWES TOANONE TwV Topwv. Ol TEMXES aAmOPUCELC
Aopfovovtar oto Gateway, oTov 0mol0 amOGTENAOVTAL OAEC Ol TPOGPOREC.

‘Onwe oupPaiver o xde ayopd, xdle ovTOTNTA TOU GUUUETEYEL OE AUTH €YEL TOUS O0US TNG
otoyous. 'Etol xan €66 €youue Toug e€ng 0Td)0US:

o Ytoyoc IoT ouoxsuo’ov(ocyopocorég) : vor ohoxANew o0y Ohec ol epyaoiec Tou emuuoly uTd
TOV TEPLOPIOHUO TWV TOPWY XAl TOU YEOVOU.

e X16y0¢ Fog x6Bou(nwintrc) : va yeytotonotfoet o x€pdn Tov.

e Ytoyog YuotAuatog : va ehaylotomomnlel to TARlog TWV EQYACLOY TOU LUTERERNCAY TO
ypovix6 deadline Toug xou vor @TdoeL 1) Teoc@opd xou N {ATNOT TOLU CUGTHUATOS GE LOOPEOTI.

To povtého ayopdc mou vhomotfinxe ToEOUCLELETOL OTNY EXOVAL 5.
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Gateway G/Edge Node(seller)

Gateway G={C,M,B,T}
Device i D;={C,M,B,Money, T}

- Task j of D; Tj={CG, MG, BG, CL, ML, BL, ct,
e~ d, EGcet; Elct;}
\\ Device Communication
\ /" \\ — —» Message exchange or Task offloading
l.ll ! f"f \\\ n Task j
,.fl n{ \\ ; loT Node /Device i
s / AN \\

\
| ( H .. ’. ﬂ I

loT Node/Device O(buyer)  IoT Node/Device 1{buyer) 1oT Node/Device nfbuyer)

Ewoéva 5: Apyitextovi] tng Ayopdg

Mnyavicpoi tou DMRM

Loppova Pe To TeoavapepUEVTA OVTENX Xou TOUg GTOY0oUG Tou Eyouy tevel LhoToUnXe Eva
HOTAVEUTUEVO, U1 XEVTPIXOTIOINUEVO GUCTNUA, TO oTtolo amoTeheiton and Toug €Ng UnNyaviopols:

1. Money Distribution Mechanism(Mnyovioude Atoporpacpold Xenudtov)
2. Task Selection Mechanism(Mnyaviopdc emhoyic epyaotodv)
3. Offloading Mechanism(Mnyoviopde Offloading)

4. Bidding Mechanism(Mnyovioude anotiunone xéotoug)

Ou unyoavioyol Money Distribution xou Task Selection amoteholv pépn tne AOyXhAc Tou ex-
teleloTov otov Edge Node, evey ou unyaviopol Offloading xo Bidding exteholvrtan o xdde IoT
x6ufo. O ouVeBLACUOS TWV UNYOVIOUMY QUTLY, GE GUVOUNCHUO HPE TNV EMULTUYT AVIUAAXDY| Oe-
douévey UeToll Twv ToT xouBwv xou tou Gateway amoteholv tov. DMRM xou emipépouy o
emduunTd anotehéopata, dNAadY| TN dadixacta opdnc APNe amogdoenmy oe OheC, aveluEéTeg, TIC
OUOXEVEC.

Efvar mohl onuoavTind vor avapepoue To YEYOVOS OTL 1) TROCEYYIOT) AUTH EXEL EVOL ONUOVTIXO
mAeovéxtnua. Me 1 Sopxt| abénomn xou eméxtoon tou Edge computing apyilet vo Siapotveton 6Tt
Yo eappootel pla oovouxr TohTixr Tapduola ue autr Twv utneeotoy tou Cloud. Xiugwvo pe
auTY), ot utnpeeoiec xan ol ool evog Gateway Vo eivon Stodéoiueg mpog THANCY oTOUS YENOTES,
AVIAOYA PE TIC OVAYXES Xou amauTAcES Tou xodevoc. Emmiéov to poviélo mou mopouctdleton
Yo umopoloe va TpocupUooTel o €va business yovtého, agol ta Yepéhd tou otrpiCovial o
OLXOVOULXE LOVTENL.

AN anopdoewy ctoug 10T xo6uLoug tou DMRM

H herrovpyia xdde IoT xouBou BaciCeton o 600 €&icou oNUavTIXOUE UNYAVIOUOUS: TO UMY AVIOUO
Task Offloading »on To unyavioud Bidding.

22



Task Offloading Mechanism

O unyoviopode Task offloading ivon exeivog mou Aapfdver Tnv amdaoT yio o av éva task Yo exte-
Aeotel Tomxd 1) Yo otakel oto Gateway, €yovtag mévia we otdyo vo ehaylotonondel To tAfdoc
Twv tasks mou unegfaivouv to deadline. Ilpoxewévou va emteuydel autd yio xdde YepovLUEVO
task optletan pla uetpnr), N omotd extdel T miavoTnTa vo utepPel To ouyxexplévo task To
deadline tou. H ev Aoyw petpixr ovopdleton sensitivity (s) xou yio to task T NG CUOXEVNS 1
optleTon w¢ e&ne:

(dy — EGet, — 1) + (dj — ELct; — 1)

i = 12
: (12)

6mou To refvan 1 TeEyouoa yYeovixt otiyur(oe yOpouc) Tou custhuatos. ‘Oco younhdtepo elvor to
sensitivity, t6co miavotepo etvon yio o task va umepBel To deadline Tou.

Avddoya, ooy ye Tov umohoytopd Tou sensitivity yio xdle task, to tasks Tng cvoxeurc
TovodolvTon o abouoa oeld olupwva Ue autd. Enopéveg, 1o mpoto task otn Aota xdie
cuoxeurc elvon 1o To Emivouvo' va uTepPel To ypovixd Tou deadline. Zexwvaovtoag amd TO TEGOTO
task tng AMotac xan e€etdlovtac oha ta tasks, o IoT xépufog éyel tpewg dardéoueg emhoyéc:

e vo xdvel offload to task oto Gateway,
e Vo exTeAéoEL ToTUXd To task

o va avofBdiel Ty extéleot) Tou task xou vo To emeveleTtdoetl UEANOVTIXG.

Ocwpolpe, Yevxd, 6Tl To uTo e&étaon tasks oe xde yUpo elvan exelva T omolo Bev €youv
exTEAEOTEL Ao, EVE) BEV EYOLUE xaia YV yio ueAovTixd tasks. Me dAho Adyia, oL armogdoelg
o€ xde YUPO eCUPTMVTAL UTOXAEICTIXG XUl HOVO OO TN TUPEANJOVTIXT) Xl TOEOVTIXT XATACTAUCT
NG OUOXEUNC. LUUPOVA PE TA TURoxdTe xplthpla, xdle cuoxeur| anogocilel av éva task Jo
otokel oto Gateway 1) Oyt

e Av n IoT ocuoxeur 8e Slrdétel Toug amoutoluevou TOPOUS Yo TNV exTéAeon Tou task, toTe
10 otélvel oto Gateway.

o Av 1 IoT cuoxeuy| Slrdétel Toug anoutodUEVOUC TOPOUS Yo TNV eXTERECT) Tou task, ahhd
exTWdeL 6TL 1) exTéAeor| Tou 6To Gateway Vo yivel yenyopdtepa, toTe 10 Xdvel offload oto
Gateway.

o Y& dlaopeTiny| TERITTWOT), AV €YEL TOUC TOPOUC 1) GUGKELY| exTEREL TO task, ahide avof3dhet
TNV EXTENECY] TOU YL TO UEANOV.

I exetva T tasks, to onola arogaciotnxe vo otaholv oo Gateway, evepyonoteitoan o Bidding
unyoviopoe, tpoxeévou 1 IoT cuoxeur| va utofdiel Tnv avtiototyn mpocgopd oto Gateway.

Bidding Mechanism

O unyovioude Bidding elvor €vog omd ToUG TWO OTUAVTIXOUE TR YOVTES Yiot TNV 001 Xou amodoTIXT
enidoon tne market-based npocéyyione Tou mpofifuatoc. Méow autrc tng dwdixactiog xadoplCe-
Tou 1 Teoo@opd mou Vo yiver yia xde task mou eivon mpdduun n IoT cuoxeur; va xdver. O
UMY OVIOUOC oUTOC Efval OYEDLUOUEVOC PE TETOLO TPOTO, ETOL WOTE VO CUVUTHPYEL AQUOVIXY. UE TOV
Money distribution unyoviond(o onolog napouctdleton ToEaUxdT®), SNAadY| 1) TIH TOANONS TV
TOPWY TEETEL VoL TEOGUPUOLETon xdUE Popd OTIC BUVITOTNTES TWV CUGKXEUMY VoL TANROGCOLY YId
TOUC TOPOUC. LT1 TEALY, 1) TY| TWV UTOAOYLOTIXGY Topwy xadopiletal ue tétolo TeoT0o, €10t
Oote 1 TAslodnpla TV cuoxeuwy va uropel va utootneilel TNV ayopd Touc. Me autév Tov
TEOTO BLPBEBoULdVOUNE OTL OL THWES TWV TOPMY X0k Ol TEOCPORES Yo auToVG O Vot Etvon eCapeTIXG
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UEYUAES, €TOL MOTE VAL UTOEOUV Vol TIS UTOOTNRIEOUY Ol GUOXEUEC Xot, ToUTOYpova, de Yo elvor
wiodtepa younée, €tot doteg vo dtatnpeitar 1 avtorywvioTixdtnta T ayopde. H npoogopd(bid)
mou Yo yivel yio xde task vmoroyileton and tnv avtiotoyn [oT cuoxeur| xou 1 auth, pall ye Tne
aranthoelg Tou task otéhvovtan oto Gateway.

H npoocgopd, 1 onola yiveton yio xdde task mou yivetan offload oto Gateway umoloyileton
ULV UE TOUg Topoug Tou amantel To task yio va exteheotel oto Gateway, To Tp€yov sensitivity
Tou task xa, PUOLXE, TS OOVOUXES BUVITOTNTES TN CUOXELNG TN TeEyouoa ypovixr otiyur. Iho
CUYXEXPUIEVQL, 1) TYT| TNE TEOGPopdc Yo To  task T; xadopiCeton otny edlowon 13.

cg;i + ,/\/lg; + Bg; = Spi % b, if S <0

B CGj+ MG +BG; + Lxe,  ifsa >0 "

)
Tt
J

O otodepéc b xon ¢ opiCovton otic Tiwée 1000 xou 800 avtiotoryo xou €youv xodoploTel PeTd
am6 TOMAEC TROGOUOWWGELS ToL cucTAUaToS. H extipuduevun mtpoogopd, otn cuvéyeia, cuyxpiveto
ue To evaropetvavta yeruato Money tne IoT cuoxeuric. Trdpyouv 600 miavd oevdpla:

1. Av BTJZ; < Money t61€ 10 task otéhveton oto Gateway ue mpoc@opd (o UE TNV EXTWWOUEVT.

2. AwpopeTind, ov BTJZ; > Money, n IoT cuoxeun dev €yel Tal ATOUTOVUEVOL YEHAMATOL VIO VoL UT-
oo tneiel TNy extunon mou éxave olu@wva e TNy eicwon 13. Yuvenwg, To task otéhvieTon
UE TPoGpopd {on ue Tor cuVoAd yefuata Money tng cuoxeung. Me dAio AdyLa, 1) GUCKEUT
TEOGMEREL O TNG TAL YEAUATA.

Algorithm 3: DMRM functionality on IoT nodes
Data: Gateway, loT device Tuple, Set of Tasks
ToT-Algorithm(Gateway, DevTuple, Tasks, Money):

volatile curRound /* Round updated at background */

/* Remaining Tasks */

RemTasks = checkTasks(Tasks, curRound)

while length(RemTasks) > 0 do

/* Invoke Task Offloading Mechanism */
oTasks = offloading(Tasks, DevTuple, curRound)
/* Invoke Bidding Mechanism */
bids = bidding(oTasks, Money)
/* Send offloading proposition to Gateway */
send TasksGateway (o Tasks, bids)
/* Wait for answer */
answer = waitAnswers(Gateway, offloaded)
for t in oTasks do
if answer(t) = "Accept” then
‘ payGateway(Money) /* Pay Gateway */
else
L RemoveFromList(t, oTasks)

© 0 N o otk W N

[ e T e e
J 0o o & W N = O

—_
o]

RemTasks = checkTasks(Tasks, curRound)

O ahyopriuoc 3 cuvolilel Tic hertoupyiec Tou DMRM oe xdde IoT ouoxeur, n onola xatéyet
€val 0OVOLO YENUdTLY xot €val oOvoho antd Tasks Tou TEETEL VoL EXTEAEGTOUY UTO XYTOLOUG TIEPL-
optopoue. Iapouctdlel v adknhenidpoon petalld twv unyaviouwy Task Offloading xou Bidding
xoddg emione xou Tov TeOTO PE ToV oTolo oL TPoCcPOoEES Yl Ta tasks xau ol amavTHoelc oTéAvovTol
am6 xat meog 1o Gateway.
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AN anogpdocewy oto Gateway tou DMRM

Avtiotorya pe tic IoT cuoxeuée, n Aertovpyia Ttou Gateway Pocileton oe 600 e&icou onuavTixoie
unyoviogolc: to unyovioud Money Distribution xou to unyovioud Task Selection. O mpwrtog
unyoviouog ebvon uTeLYuVog Yo Tov 0pU6 BLIUOLEACUS TWV YENUATWY OTIC EVERYES CUOXEVES TOU
CUOTAUATOS, EV® 0 BEUTEPOC elvan exelvog mou amogacilel Tt Yo cuuPel ye ta Angdévta tasks tou
Gateway.

Money Distribution Mechanism

O Money Distribution unyoviopoc dwcgaiiler 6Tt ot IoT cuoxeuéc o €youv cuveyde yeruata
OLoOLEALOVTOC TOXTIXG YENUATO OE AUTEC UE EVary BiXalo TEOTO, BLUTNEMVTIC £TOL TNV AVTOYWVIC-
TIXOTNTA TNG AYORAS TOU UG TANNTOS o€ LUPYNAL erineda. H Sraduacio diopolpacuol yenudteny oe
x&e ouoxeur) xadopileta and Toug utoloylotxoig topouc(CPU), Toug tdpoug uviAung xat Toug
ductuaxole mopoug(bandwidth) t6co tng Blog e cuoxeuic, 600 xar Tou Gateway. OewpdvTog
ot to  Gateway T Tp€yovoa otiyur| €yel cuvolxols Bladéoipoug tépoug C, G xar B xou 6Tt
undpyouv N IoT cuoxeuéc cuVOESEUEVES O auTO excivn) TN oTiyun, 1 cuoxeur| ¢ Yo Aéfel emmhéov
yenuota olupova ye tny eiowon 14.

C
Money; = Money; + ——————+ & + — + — (14)

omou a ebvon yior otodepd (on pe 10000 xon €yel mpoodloploTel EMELTo amd TOAAEC TEOCOUOLOCELS
ToU cuoThuaToc. O unyaviopog autdg evepyomoleiton xdie @opd mou To cuvolxd TAHYOS TKV
YENUATOV OAWY TV CUOXELKOY ToL elvor cuVOEdEUEVeG oTo Gateway @Tdoel o €va eAdyioTo
xortdhL(threshold). Autd 1o xatdght mpoodiopileton duvouxd xar e€optdtar and 1o TAROC Twy
OUOXELGY Tou elvon cuVOEdEPEVEG oTo Gateway. I'a N cuoxeuéc to xattd@hL Tpoodlopileton
olugwva ye tny eéiowon 15.

N
> Money; <1000 x N (15)
i=1

Me aut6 Tov T6T0 Blac@ahiCoude OTL OAEC Ol GUOKEVES GTO GUGTNUA Vol EYOUV YRNAHATA AVIAOY X

UE TIC OVEYXHES TOUC, UE UTOTEAECHA VoL EEVALL IXOVES VOL UTIOROUY VO AYTOY WVIGTOVY Yol TOUC TTOPOUC

tou Gateway. Autd ebvan Wwiadtepa onuavTd Yoo T €TTLY T AEtToupYio ToU CUGTHUATOS, aPoD

0ev uTdpyel dAhog TEOTOC Vo AdBouv yeruoTa ot cuoxeuéc. Evdeyouévwe, o Eva TEoYUATING

obotnua Edge Computing, o unyaviouoc autdc 6 Yo Aoy amapaitntog, xodng xdide nehdtng o

elye TNV UTOYPEWOT] VoL AMOXTACEL Ta O TOU Ae@Td.

Task Selection Mechanism

H cuoxeun Gateway Aopfdver Oheg Tic mpoo@opés and Tic IoT cuoxeuég xan mpenet vor AdPet
amo@doelg oyetixd Ye to Tmota tasks Vo yivouv amodextd, péow Ttou unyoviopol Task Selec-
tion. O unyaviouég autéc cLVBUALEL TNV adENCT TV OOVOUXGY XEEOWY Tou Gateway ue Ty
ehayotomoinon Tou TAloug Twy tasks mou unepPaivouy To deadline.  MOugwva pe Ty e€lwon 13
Yvopilouue 6Tt 600 UixpoTEROD elvar To sensitivity, T6co yeyahlteen elvor 1) Tpoopopd Tou yiveTon
oto Gateway. Yuvenwg, 600 uPnhotepn elvan 1 TEoo@opEd yia Eva task, T6o0 ueyahiTERO XEPBOC
Yo amoxopioter o Edge Node. Q¢ anotéheoya, av ta tasks pe tic udmidtepec mpoopopéc emihe-
YOUV Vo EXTEAEGTOUV TEMTA, TOTE TO cUoTNUa Yo mpooeyyioel To onuelo woppotiag Yetald Tng
UEYloTOTONON S TWV %EEOWY Tou Gateway xou Tng eAayloTonolnone Twv tasks mou unepéfnoay o
deadline Touc.

‘Otav o unyavioudg Task Selection evepyomoleiton, ta eloepyoueva tasks amd OAeg TIC CUOKEVES
oto Gateway tagivopoiviar oe gplivouca oelpd ue Bdon tic tpoopopéc toug(bids).
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Algorithm 4: DMRM functionality on the Gateway
Data: Gateway, IoT devices’ Tuples
Gateway-Algorithm( Gateway, NDevs, DevTuples):

1 volatile curRound /* Round updated at background */

2 totalMoney = 0 /* Initialize Money */

3 /* Determine Money re-distribution threshold */

4 threshold = determineT(NDevs)

5

6

7

while ActiveDevs(DevTuples) > 0 do

if totalMoney < threshold then
/* Invoke Money Distribution Mechanism */ totalMoney += moneyD(NDevs,
DevTuples)
8 /* Wait for offers */
9 taskBids = waitForBids(NDevs, DevTuples)
10 /* Invoke Task Selection Mechanism */
11 sTasks = taskSelection(taskBids)
12 /* Reply to IoT nodes */
13 send Answers(sTasks, NDevs, DevTuples)

Zevixwvtag and 1o npwto task otn AloTa, av ot Slodéctuot topol Tou Gateway emapxolv yia
VoL IXOVOTIOLAOOLY TIC avayxeg Tou task toTE autd emAéyeton mpog extéheon. e dVaQopeTixn
nepintwon to task anoppinteton. H Siadixaota auts| emavoropfdveton yia dha Angoévta tasks. To
amotéleopa yia xdie task otéhvetan oty avtiotoryn IoT cuoxeuvr. Av to task emiéydnxe yia
extéheon, 10te 1 IoT cuoxeuy| ypewveton avdhoyo Pe Tr TEOGPOEd Tou elye Vel GOUPWVIL UE
ToV unyoaviopo Bidding. e diupopetiny tepintwor, av To task anoppipiel o, mpopavag, 1 IoT
CUOXEUT OE YpewveTal xat PeTémeLtar efvon Suxr) Tng eudivn var amogaviel yior To Tt Yo cupPel pe o
CUYXEXPLIEVO task.

Ou mpoavagepieioec Acttoupyieg Tou DMRM  anotedolv onuavtind pépog tng Aoyixig Ttou
Gateway, 1 omolo Tapouctdleton o€ uop@t Peudoxwdixa oTov alyoeo 4.

O ahyodpriuog autdg extelelton dlapxms, 660 UTEEYOUY GUVOEBEUEVES EVERYES OUCXEUES GTO
Gateway.

O unyaviopde Money Distribution extelelton cOPQOVAL UE T0 TANYOC TV CUVOEDEUEVHY CUOKEUGY
070 dixtuo. O unyoviopog Task Selection exteleiton dtav to Gateway Adel VEeg TpooPopES amod
Ti¢ IoT cuoxeuég xou 6T CUVEYEL EVIUEQMOVEL AVTIOTOLY XL TIG CUGKEVES YO TIG ATOQACELS TOV.

Yy edva 6 napouctdletar o TeéTOC PE Tov omolo o alyoprduoc DMRM exteheiton pe v
Tdpodo Tou Ypedvo 660 otic loT cuoxeuéc, 600 xar oto Gateway. XOu@vo UE TN XATAGTAGT TOU
O(TO0L ol TIC EMVUUIES TWV GUOXEVWY, OL BLAPOEOL UMY UVIOUOL EVERYOTIOLOUYTOL ot AduBdvovTon
Ol XATIAANAES amogdoelg. M autd To onuclo, elvar TOAD onuavtixd va avagepdel To yeyovog ot
oe xdde ocuoxeun, eite Gateway, eite IoT Node, ot epyasieg extehobvtan oto background. Auto
ornuodvel OTL TNV {BLol OTLYUT| OL GUGKEVEC UTOPOVY VAl TTEQOUV ATOQPUCELS.

Iewpapatixd AnoteAécuata

‘Okeg o mpoavagepieloeg teyvinég vhotouinxay otn YAOcoo mpoypouuatiopol C xan ex-
TEMEGTNHAY OE TANIOEA EVOWUATOUEVDY CUOXEUNDY UE OLUPOPETIXEC UTOAOYIOTIXESC IXUVOTNTES.
ILo ouyxexpwéva, o DMRM egapudéotnxe otn cuoxeur| Intel Galileo Gen 1 oto 400MHz »ou
256MB RAM , ot ouoxeur} Raspberry pi 3 Model B ue 4 Cortex-A53 CPUs ota 1.2GHz, 1GB
RAM xa, téhog ot cuoxeur| Nvidia Tegra X1 pe 4 ARM Cortex A-57 processors oto 1.9GHz
xot 4GB RAM.
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IoT Node Gateway(Edge Node)

1. Check dynamic threshold for Total Money of N devices.
2. Decide to distribute money or not.

3. Send data(CPU, MEM,BW) to Gateway if Money*
Distribution Mechanism is enabled. —

4. Distribute Money to N devices according to Gateway's

resources and device’s resources.
5. Receive Money and add them to current Money. |

6. Task Offloading Mechanism : decide which tasks will be
offloaded to Gateway, executed on loT or postponed
according to sensitivity and loT’s remaining Money.

7. Bidding Esimation Mechanism: for each offloaded task

make a bid.

9. Receive offloaded tasks.

10. Task Selection Mechanism: decide which of the offloaded
tasks will be accepted or rejected.

11. Send answers to each loT Device for its corresponding
tasks.

11.Receive answers. According to the answer pay or not. |

12. Receive payment.

8. Send offloaded tasks and bids to Gateway.

*On the background tasks are executed *On the background tasks are executed. Results are sent
back to corresponding loT devices.

Ewéva 6: DMRM execution through time

'Ewcodoc¢ IoT Yuoxsuvwv xou Tasks

Trotétouye pio mowahia SlapopeTdv oevaplwy, ota omtolo T6c0 ol IoT cuoxevée, 660 o Ta
tasks toug emhéyovton Tuyaio. ITo cuyxexpuEva, ol GUVOAIXOL TOEOL TWV CUGHEUGY XAl OL ATUTOV-
uevol topot Twv tasks AauBdvovtor tuyaio anéd xatavopéc Normal xou Poisson pe ebpog [0 — 100].
Me autédv Tov TpbT0 UToEOUUE Vo BNUtoVEYioOUNE dlaopeTixd oevdpta oyeTd ue CPU intensive,
memory intensive xot Bandwidth intensive tasksxot cuoxeuéc.

‘Evag bladtepa onuoveixds mapdyovtog elvon ot yedvol deiing ot 1 muxvotnto twv tasks
otic IoT ouoxevéc. H mpoooyr) oc auth TNV €0EUVA ETUXEVTPWVETAUL O 0V0 OLUXQELTEC TEQLTTG-
OEIg. LT TPWTY TEPITTWOT YPNOYLOTOLOUUE XAVOVIXT| XAUTAVOUT], TROXEWEVOU VA OTULOVEYTICOUUE
TOUTOYEOVY APIEN EQYUCIOY Xal Vo EMTOYOUPE €Tol UdmMAY {ATnon Topwy. XT1o BelTeEpo GEVApLo
AowPdvoude Toug yeovoug ApiEng olupemva Ue TN xatavour) Poisson, mpoxewévou vo anogiyouue
HEYSAES TawToOyPoVES apielc epyaotwy. Téhog, Yewpdvtac T0 ypedvo dpigng tou task 7']? e Ar;'-,
xadopllouue o deadline clugpwva pe ) cuvdptnon 16.

(EGctl 4+ ELcth 4 2 - Ar})
2

Lopgpwva ye auth 0 ouvdpetnor, to deadline evéc task eCoptdton dueco and To TN YPOVIXT
oYU TNG ARG TOU XaL TOV EXTWUEVO Yeovo extéheorc Tou otnyv IoT cuoxeuvr| xou oto

(16)

d§:Oa*
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Gateway ovtictorya. To deadline e€optdton and tn tun g yetafintic Cy, 1 omola Yyl TNV
eCoYWYT) TOV TELRAUUATIXGY ATOTEAEOUATODY TE€UNXE oTr Ty 1.4.

O IoT ocuoxeuéc xou tar tasks mopdydnxoay YeNOWOTOLOVTUS TN YAWMCOH TROYEUUUUTIOUOU
Python.

Yuyxertix) Mekétn

Y autr) TNV evotnTa anoTdton xou cuxpiveton 1 uédodog DMRM pe tn puédodo Simulated An-
nealing, n omolo Onw¢ mpoavapéplnxe elvon war Tey Vi AVorng mpoPinudteny BeAtioTtonolnong
Baotopévn otn Vewplor miovottwv xon €yel Ndn e@apuocTel oe mpoPAfuata oyetixd ue task
scheduling [13, 14] xou application mapping [19]. Emniéov, vionouiinxe xou egopudotnne i
eCavtanTixy brute-force mpocéyyion Tou TEOBAAUATOS, TEOXEWEVOL VoL UTOPOVUUE VoL GUYXEIVOUNE
™ TOWOTNTA TV AoEWY U TI¢ BéATioTeg Aioelg. 20T600, 1) TPoGEY Yo auTH EQupuoleTal UOVo
otay @tdvouy véeg epyaoiec. o autd to Adyo, vhomo|inxe xan o unyaviouds Oracle predic-
tion, o omolog yvwpeilel a priori Gha ta tasks moua Yo Epouv 6T0 GUGTNUA. BUVETMS, UTOPOVUUE
vo Bektidooupe xon dhho Tor BEATIOTO amoTEAEOUATY, XUDUCTEPMVTUC TNV EXTEAECT) EQYUOLOY,
TEOXEWEVOU VoL DLATNEHCOUKE TOROUS Yia epyaoiec mou Vo épdouv apydtepa xat Yo efvon o) To
amoutnTiXEG o€ 6TL agopd o deadline Toug.

4
% B DMRM

8 3.5 Simulated Annealing

9 3 M Oracle prediction

5 2.5 W Exhaustive search

T 2

©

%5 2

g 15

E

s 1

2

o 0.5

2 0

<))

3: 1-2-n 1-2-p 2-4-n 2-4-p 2-8-n 2-8-p 4-8-n 4-8-p

Number of Devices-Number of Tasks-Distribution

Ewova 7: #Tasks pe yopéva deadlines (Ilepropiopévn eicodoc)

210 TpwTo TElpopa olYXEIoNG, EXTHIdUE TNV anodotixotrta Tou DMRM oe oycon pe dieg Tig
dAheg evahhaxtixég AVoelg mou uhomot|dnxay. To netpduota auTd EQaUEUOC TNV Yio YUUNAS UEYE-
Yog e16600U, TEOXEWEVOU Vo atoPeUyJoLY TEQAG TIOL YPOVOL EXTEAECTIC AOY W TNG TOAUTAOXOTNTOG
TV e€avTANTIXGY PeVodwy. Ta arnoteréoyata tng oUyxplong ouvodiCovton oty Ewdva 7, édmou
o d€ovac X mpoodipiletl o mAlog Twv IoT cuoxeudy, T0 GUVOAXS TARYOC TWV EQYACLOY XoL TN
xoravour] TaveTNTIS TOU YEOVoU dPLEng TWV EPYAOLMY, 1 omtola efvon M yior XavovixT| xatavoun
xou 'p’ yu xotavopr] Poisson. O d€ovag T avanopiotd to tAflog twv xoduotepnuévey tasks.
Ye autd To omuelo mEémel va avapepvel OTL 1 e€avTAnTiny gUon Twv brute-force xou Oracle pre-
diction ewodyouv tepdoTieg anutroelc o eninedo ypdvou xou uvnunc.Emmiéov, n uédodog Oracle
prediction efvon piot ovix| Tpocéyyiomn, xadhe OAe ot epyacicg VewpolvTon NON YVWO TEC EXT TOV
TEOTEPWV.

‘Onwe ebvar gavepd, t600 1 Teotevduevn pédodoc DMRM, 6co xau 1 pedodog Simulated
Annealing mpooeyyilouv avomomntxd to BEATIOTA AnOTEAEOUATO TV EOVTANTIXGY YEVOBWV.

H npwtn extiunon delyvel 6tL 1 npotewvouevn yedodoroyia npoceyy(let to fEATIoTa amoTEAED-
pota. Eivon amopaltnto duwe vor eXTEAEGTOOY %ol O amaTnTIXNd TELRdUoTa UE MEYaAOTERO TAHYOC
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Ewéva 8: #Tasks with missed deadlines (Demanding input)

cuoxELOY xat gpyaotey. H exdva 8 mapouotdlel melpduoto Yo HEYUAITEQRES ELGOOOUC, BLUTNEWV-
g Tor BEdOPEVYL TwY alovev X xou T (Bl pe mponyoupévwe. Tlopatneodue 61t xaddg 1o péyedog
elo6d0u audvel 1 pédodoc DMRM gaivetar vor mopouctdlel xaAdTepa amoTeAEoUATA OE OYENC UE
outd e pedodou Simulated Annealing. ITo cupxexpuyéva, Topatneeitor 6Tt T0 TARYOC TV Xo-
VUOTEPNUEVWY ERYAOLOY TIOU ETUOTEEPEL 1) TROTEWVEUEVT Moo elvar xatd uéoo bpo 3.22% uxpedtepo
amb out6 Tne hevddou Simulated Annealing.

Arné n otiyuy| mou t6c0 1 pédodoc DMRM, 660 xau 1 uédodoc Simulated Annealing e&dyouv
OYETXE xOVTWVE amoTeAéopota, elvon ovoryxolo va e€eTacTolV xat dhhe mopdueteol. ITio ouy-
UEXPWEVDL, 0TO TElpopal ToL Topouctdleton oTNy eixova 9 gaivetal 1) éomn cuvohxt| xaduc Tépnon
TV gpyaotoy tou €youy utepPel To deadline toug, uetpnuévn oe yipoug. Ta amoteréouarto dely-
vouv 0Tt 1 uédodoc DMRM uneptepet, xadodc o cuvolixde ypdvoe xaduotépnorng etvar uxedtepog
xotd 12.35% o€ oyéon ue ) npocéyyion Simulated Annealing.

1000
900

E DMRM

800
700 Simulated Annealing
600
500
400
300
200
100 I I
0 B B B
N

MO S SO S SN - AN - AP

Number of loT Devices-Number of Tasks-Distribution

B

Average Task Delay (rounds)

6

Ewéva 9: Total rounds of exceeded deadlines (Demanding input)
Ye 6,1 agopd tn yévodo Simulated Annealing a{Cet vo avagepdel o yeyovog 6t n mdoyv-

ot QUM Tou akyoplduou dev eacolilel T Tpocéyylon TV BéATiIowy Aboewy mdvta. Ilo
CUYXEXPUIEVD, EVOEYETOL Yiol TIC (BIEC TUQUUETOUC GUOXELUMY Xal EQYAOLOY 1) uéPodog auTy yid
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Galileo berry Pi 3 Tegra

Ewoéva 10: Yuyxpruxde yeévog extéheong tov pedodwv DMRM xo SA oe dugopetinéc Gateway
OUOXEVEC

OLadoyég exTERETELC Vo ETOTEEPEL BLlapopeTid anoTeréoyato. Emmiéov, 6mmg @dvnxe xou amod
TOL TELRQUOTA, OF TEPLTTWOELS, 0TS onoleg undpyouv Alya Bértiota schedulings twv epyaoiay,
MELOVETOL ONUAVTLXS 1) TavOTNTA VoL TG TEOCEYYIoEL.

Emnpoc¥étne, éva emtuynuévo olotnua duvauixic dtayelpione tépwy xadopiletor onuovTixd
oo TNV AvoTNTE ToL Vo AauBdvel amogdoelg TayUTata. ot autd o AdYOo, YeAETdTAUL TO GUVORLXO
execution latency twv 600 eUPIETIXWY TPooEYYioEWY OTIC EVowUaTwPEVES cuoxevéc Intel Galileo
Gen 1, Raspberry Pi 3 Model B xou Nvidia Tegra X1.
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Ewéva 14: CPU vy 2 tasks(Poisson)
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Ewéva 15: Mvrun yio 2 tasks(Poisson)
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Ewéva 13: Bandwidth yia 2 tasks(Normal) Ewéva 16: Bandwidth yux 2 tasks(Poisson)

H ewdva 10 mapovoidler tig Twwée latency mou uetprdnxay, delyvovtog 6Tt yio younhoé mafdoc
IoT tasks xat ot 500 AOoelg £youv xovvd anoteréopota. 261600, xomg 10 TANY0C TV EpYAUCLOY
au&dvet, toTe To execution latency tng yevoédou Simulated Annealing oveBaivel onuavtixd, eve
tou DMRM ebvan e€onpetind wixer). Autd ebvon epgavég, xadde otn nepintwn mou €youue g
eloodo 256 tasks 1 pédodoc DMRM ebvar 2000 yenyoteen. Auty| 1 cuumeplpopd. ogpeiieton
OTNV 0UGLKOON BLapopd Twv 600 uedodwy, 1 omola eivar 6Tt 11 DMRM elvon xataveunuévn, oe
avtiieon ye Tnv SA, 1 onola elvor xevtpionoinuévn. Me autd Tov 1p6T0, T0 UTOAOYLOTING XOGTOG
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e TEOTNS dlootpdletan oTic dtapopeTixéc IoT cuoxeuéc Tou Buxthou.

Ewova 18: MvAun yio 8 tasks(Normal) Ewova 21: Mvrun yio 8 tasks(Poisson)

80.00% 100.00%

Ewéva 19: Bandwidth yia 8 tasks(Normal) Ewéva 22: Bandwidth yio 8 tasks(Poisson)

Téhog, exTENET TNV OPLOPEVA TIELRAUOTAL, TIPOXEWEVOL VoL XTI oOUPE To Badud yenowonoinong
TV TopwY Tou Gateway xou vo cuyxpivouus Tov DMRM ye tig uméhoineg uetdddoug mou vAomoLinxoy.
ITo cuyxexpwéva, Ta YRuPHUaTa TV Exévwy 11- 16 xou 17- 22 napouctdlouv T Yéor yenon tne
CPU, tng uvAunc xou tou bandwidth tou Gateway, yio ei.0660uUC 2 xou 8 e@apuoy®Y avtioTorya.
‘Ohot T TELpdPaTo EXTEAES TNV TOGO Yol EI6OB0UE TTou axoloutoly xotavouy| Poisson, 6co xou
YLot €L0600U¢ ToL axoloLoly xavovixt| xatavour. O dfovag X mopouctdlel To yedvVo, UETENUEVO
o€ yUpoug, eve 0 dZovag T avamoploTd To TOC0CTO Yenoionoinong Tou exdotote mopou. Ot
TeAeleg otov X dZovo UTOBEIXVOOUY TIC YROVIXEC OTIYHES OTIC OTIOlEC £0YOVTOL OL DLAPOPES EPUp-
HOYES, xadd¢ xan eXEIVEC YLoL TIC OTOLEC Ol EQPUPUOYES OAOXANEMVOVTOL YENOWOTOLWVTS T1 UEYodo
DMRM, tn pédodo Oracle Prediction xou tn pyédodo Simulated Annealing.

Onwe pabvetan 0TIC YRUPKES QUTEC, 1) YPNOYLOTOINOT TV TOPWY YTAVEL GYEDOY OTOV 85% twv
oLVOAX®Y TopwY Tou Gateway. Autéd onuaiver 6Tt ol IoT cuoxouéc mpooTatoly Vo EXUETOAAEU-
ToUV TApwS Toug Topoug Tou Gateway xou vo xdvouv Ta tasks toug offload. Autéd cuvendyeto
OTL oL {Bleg oL cuoxeuég eCoovouoly Tépoug, uratopio xoL evEpYEld. AuTO BIVEL OTIC CUGKEVES
ueyoAuTepn dudpxeta Long oe O,TL agopd TN unatapla Toug. Emmiéov, mapatnpolue 6Tt 1 yenot-
pomoinom Twv Topwy ou xdvel 1 pedodog DMRM efvar mohl xovtve| ue auth| tng pedodou Oracle
Prediction, evey v B otiyus| n npocéyyion Simulated Annealing qaiveton 611 yenoylonotet
aeUnTd Arydtepo Toug mépoug tou Gateway.

IHapatnenoeic yiao to DMRM

e auTH) TNV EVOTNTO AVOBEXVIOVTOL ELOWE YURUCTNEOTIXG TG TROTEWOUEYNS Abong DMRM,
TEOXEWEVOU VoL UTOREGOUUE VAL AoQovIOUUE Yo TNV amod0TIXOTNTE TNC.
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Apyixd, yiveton pio mapatripnomn oyetixd ye 1o ypovo extéreons tou DMRM. ITo cuyxexpipéva,
TOL TEWRAUATO TTOU EXTEAECTNXAY OTIC EVOWUATWOUEVEC CUOXEUES EBELY OTL O UECOS YPOVOS EX-
téheonc Tou DMRM anotehel xupiidg ouvdptnon tou mhfdoug Twv epyactav xot 6yt Tou TAfloug
TV cuVoEdEUEVWY [oT cuoxeudyv. H ewdva 23 mapovoidlel to péoo ypovo extéreonc tou DMRM
oe oyéon pe to mthfdog twv IoT cuoxsumy xan twv tasks.

DMRM's Execution latency on Intel Galileo DMRM's Execution latency on Raspberry Pi 3 DMRM's Execution latency on Nvidia Tegra
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(a) Xpovoc extéheone tou (b))  Xpbvog extéheong tou  (c) Xpbvoc extéleonc  Tou
DMRM o7o Intel Galileo DMRM o7o Raspberry Pi 3 DMRM oo Nvidia Tegra

Ewoéva 23: ZEpdvoc extéheonc tou DMRM oe diagpopetinéc Gateway cuoxeuéc

Hoapatnpolue 6Tt 0 Y€cog ypovog exTENECC Tou e€opTdToL and TO TARUOC TWV EPYACUOY TEOG
exTtéheoT), eve 1o TAYog Twv cuvdedeuévwy IoT cuoxeumy oo Gateway @aiveton va uny ennpedlet
Wiaitepa. Luvenwe, o DMRM uropel va egapuootel emtuy o yio peydho naidoc IoT cuoxeumy
xan tasks. Me dhho Aoyia, To DMRM elvon xApaxadotuo yia peydAes lobooug.

Y€ 0,TL aopd T LoVTERA TNG owovouxrg Yewplag, etvar gavepd 6TL ta Smart Data Pricing xou
Consumer Perceived Value Pricing yenotuomouinxay yio tov xadoploud tne Tiung Twv tépwy.

Amnotiunorn tou DMRM

Téhog, ouvolilovtag dha ta npoavageplévia, n DMRM npocéyyion yapoxtneileton and to e€nc:

e Optimality: To npotevouevo chotnua tpoceyyilel ixavomoinTixd BEATIOTES ot UTOBIATIO TE
AOGELC TOL TROBAYUUTOS TOCO YLo TEPLOPIOUEVES, OGO %Ol YL ATAUTNTIXEC El06O0UC. Emiéoy,
oe oyéon e e pedodoUC EMLPEREL XUADTEQO AMOTEAEGUN GE O,TL aopd Tn WEoT Xa-
Yuotépnon avd epyasta.

o Katavepnuévo: Ou ano@doelc xal 10 UTOAOYIOTIXG XOGTOC AUTMY EVAL XUTOUVEUNUEVO
uetoCy Twv IoT cuoxeudy Tou BixTloL.

o Khipoaxwowpo: 1o DMRM unopel va egapuocTel ixavomomnuxd yio Ueydheg elo6o0uC.

e XaunAo execution latency: ocuyxpitd e diiec uedosoug, to DMRM éyer youniéc
amoutrioelC ot latency. YLuvemde, umopel VoL EQUpROCTEL GE GUOTHUNTA TOL amontoLy AYnreal-
time cxrcocpé(oecov WOl éxouv latency-sensitive scpappoyég.

o Ilpocapuoy? oe duvaulxeg alayeg: H mpotewduevn Ao uropel va tpocapuooTel
OE QUVOIXES OAAAYES GTIC TOU OLXTUOU, OTIWG ELCUYWYT| 1) EEXYWYT) CUGKEUWY OF QUTO.
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Chapter 1

Introduction

1.1 Internet of Things and Cloud Computing

The Internet of things(IoT) is becoming an increasingly growing topic of conversation both in

academic and industrial community. Simply put, IoT is a network of physical devices, vehi-
cles, home appliances and other items embedded with electronics, software, sensors, actuators,
and connectivity which enables these things to connect and exchange data. IoT refers to a
self configuring, adaptive and complex network, which allows extending internet connectivity
beyond standard devices, such as desktops, laptops, smartphones and tablets, to any range
of traditionally dumb or non-internet-enabled physical devices and everyday objects. In the
majority of the cases, these devices need to interact and cooperate with each other, in order to
reach common goals.

i

2y 76 20 Tt 6.58 b=
L2 42 11 3.47 0oz

2y 68 125 #11.84 a0

2003 . 3 g_‘ﬁg * U 0 B
Billicm L EE
WORLD COMNECTED
PFOFULATION DEVICES Cﬁﬂfggft'
PER PERSCH B e 3, Sy 1

Figure 1.1: IoT growth over the last years

Looking to the future, Cisco predicts there will be approximately 50 billion devices connected
to the Internet by 2020. That is a huge amount of data being generated, which need to be
processed and analyzed. The current paradigm for the processing of that huge amount of data is
uploading, storing and processing using Cloud computing. Cloud computing is an information
technology(IT) paradigm that enables ubiquitous access to shared tools of configurable system
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resources and higher-level services that can be rapidly provisioned with minimal management
effort, often over the Internet.

However, many applications require real-time processing of data and decision making as well
as data anonymity, which is difficult to guarantee under the current processing architecture.
Cloud datacenters are geographically centralized and situated far from the proximity of the
end devices. As a consequence, real-time and latency-sensitive computation services requests
to be responded by the distant Cloud datacenters often endure large round-trip delay, network
congestion and service quality degradation. For instance, healthcare companies don’t want to
stream critical data points generated by life-saving systems. That data needs to be processed
locally not only for faster turnaround but also for anonymizing personally identifiable patient
data. The demand for distributing the IoT workloads between the local data center and cloud
has resulted an architectural pattern called Fog computing(aka Edge computing).

1.2 Fog and Edge Computing

1.2.1 Fog Computing

Fog could be described as a middle layer between the 10T devices and the Cloud, which offers
compute, networking and storage facilities so that Cloud-based services can be extended closer
to the IoT devices/sensors, which aims to enhance low-latency, mobility, network bandwidth,
security and privacy. In figure 1.2, the fundamental architecture of Fog Computing is presented.
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Figure 1.2: The hierarchical architecture of Edge and Fog computing [12]

Fog nodes
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The hierarchical architecture, as described in [12], is composed of the following three layers:
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e Terminal Layer: This is the layer closest to the end user and physical environment. It
consists of various IoT devices. These devices are widely geographically distributed in
general. They are responsible for sensing the feature data of and transmitting these data
to the upper layer for processing and storage.

e Fog Layer: This layer is composed of a large number of fog nodes, which generally include
routers, gateways, switchers, access servers, base stations and specific fog servers.These
nodes are widely distributed between the end devices and cloud. The end devices can
connect with fog nodes to obtain storage and compute services. The real-time analysis
and latency-sensitive applications can be accomplished in fog layer. Fog nodes are also
responsible for the interaction with Cloud services.

e Cloud Layer: The cloud computing layer consists of multiple high-performance servers
and storage devices and provides various application services. It has powerful computing
and storage capabilities to support for extensive computation analysis and permanent
storage of an enormous amount of data.

1.2.2 Edge Computing

Similar to Fog computing, Edge computing is a method of optimizing applications or Cloud
computing systems by taking some portion of an application, its data, or services away from
one or more central nodes (the "core") to the other logical extreme (the "edge") of the Internet
which makes contact with the physical world or end users [7]. In one vision of this architecture,
specifically for IoT devices, data comes in from the physical world via various sensors, and
actions are taken to change physical state via various forms of output and actuators; by per-
forming analytics and knowledge generation at the edge, communications bandwidth between
systems under control and the central data center is reduced. Edge Computing takes advantage
of proximity to the physical items of interest and also exploits the relationships those items
may have to each other. Another, more broad way of looking at "Edge Computing" is to put
any type of computer program that needs low latency nearer to the requests.
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Figure 1.3: Edge Computing Architecture

Edge computing pushes applications, data and computing power (services) away from cen-
tralized points to the logical extremes of a network. Edge computing takes advantage of mi-
croservices architectures to allow some portion of applications to be moved to the edge of
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the network. While Content Delivery Networks have moved fragments of information across
distributed networks of servers and data stores, which may spread over a vast area, Edge Com-
puting moves fragments of application logic out to the edge. As a technological paradigm,
edge computing may be architecturally organized as peer-to-peer computing, autonomic (self-
healing) computing, grid computing, and by other names implying non-centralized availability.

To ensure acceptable performance of widely dispersed distributed services, large organiza-
tions typically implement edge computing by deploying server farms with clustering and large
scale storage networks. Previously available only to very large corporate and government or-
ganizations, edge computing has disseminated technology advances and cost reductions from
large-scale implementations and made the technology available to small and medium-sized busi-
nesses. Small, low-cost cluster hardware and freely-available cluster management software have
increased accessibility.

The target of Edge Computing is any application or general functionality needing to be closer
to the source of the action where distributed systems technology interacts with the physical
world. Edge Computing does not need contact with any centralized Cloud. Edge Computing
does use a similar or the same distributed systems architecture as centralized Clouds but closer
to or directly at the Edge.

Edge computing imposes certain limitations on the choices of technology platforms, ap-
plications or services, all of which need to be specifically developed or configured for edge
computing.

It should be mentioned that each IoT device is connected to gateways wired, or wireless,
and each entity in the Fog layer is linked into the Cloud services through the internet.

The architecture of Fog and Edge computing has some special characteristics and several ad-
vantages, as listed below:

e Low latency and real-time interactions

Save bandwidth

Support from mobility

Geographical distribution and decentralized data analytic

Heterogeneity

Interoperability

Data Security and privacy protection

e Low energy consumption

Obvious as it is, all the above-mentioned characteristics compose a huge area of research
and challenges:

e Resource Management

e HW/SW co-desigm

safety

security

reliability and robustness
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1.3 Resource Management on Edge and Fog Computing

One of the most crucial and challenging topics of research is the way that the resources of the

devices are going to be managed. It is necessary to find out efficient techniques for managing
resources and allocating tasks, considering factors such as energy and time restrictions, devices
limits, system and network constraints. To be more specific, we need a global policy in the
network of devices, Fog and Edge entities, which will distribute computational tasks and ser-
vices among IoT devices/sensors and Edge infrastructures. Resource management, in general,
includes resource estimation, workload allocation and resource coordination:

e Resource estimation in Fog and Edge computing helps to allocate computational re-
sources according to some policies so that appropriate resources for further computation
can be allocated, desired Quality of Service(QoS) can be achieved and accurate service
price can be imposed.

e Workload allocation in Fog and Edge computing should be done in such a way so that
utilization rate of resources become maximized and longer computational idle period get
minimized. More precisely, balanced load on different components is ensured.

e Coordination among different Fog and Edge resources is very essential as they are het-
erogeneous and resource constrained. Due to decentralized nature of these architectures,
in most cases large scale applications are distributively deployed in different Fog nodes.

Recently, several studies have been conducted, from different points of view, as far as the
resource management problem in IoT networks is concerned.

1.4 Computer Science, IoT and Economic Theory

Over the last decades, major research advances have taken place in the intersection of computer

science and economics (especially microeconomic theory). There are multiple motivations for
these lines of work. On the one hand, as computer systems become increasingly interconnected,
their users end up competing for scarce resources, necessarily introducing economic phenom-
ena. On the other hand, advances in computing have made the use of various novel economic
mechanisms possible. The multiagent systems community has played a prominent role in these
developments, as it seeks to employ techniques from economics in the design of multiagent sys-
tems, as well as to contribute to the design of new economic systems by exporting techniques
from AI and multiagent systems. In this interdisciplinary research area, much of the focus has
been on game theory-the theory of how to act rationally/strategically in environments with
other players who strategically pursue their own objectives- and the closely related theory of
mechanism design, which concerns the design of systems that result in good outcomes when
used by such strategic agents, based on pricing and market theory.

Economic theory and pricing models can be also applied to [oT, Fog and Edge computing
architectures. Considering a network consisted of IoT devices, these devices cannot only per-
form normal functions, but they also make optimal decisions without or with minimal human
intervention given their constraints resources and the dynamic of the environment for the re-
quested IoT services. In addition, with billion of devices connected to the Internet, it leads to
many challenges in efficiently controlling and managing IoT’s devices.

1.5 Thesis Goals and Organization

The rapid growth of IoT has exploded the number of devices connected to the Internet, a
number which keeps increasing in high pace. This has led to an enormous amount of collected

38



data and information, traditionally offloaded to cloud computing infrastructure.

However, cloud servers and datacenters are geographically centralized, situated far from the
end devices and as a consequence, real-time and latency-sensitive computation services often
endure large round-trip delay, network congestion and service quality degradation. Moreover,
in data-sensitive domains such as Healthcare, privacy and confidentiality concerns have been
raised owned to the storage of data to third-party infrastructure. These reasons (lower latency
and higher privacy) have driven the Edge computing paradigm, where the required computa-
tion is pushed to the Edge of the IoT network in order to alleviate the dependency on cloud
infrastructure and enhance the privacy of identifiable personal data.

The presented work regards the well-established Edge computing architecture of IoT nodes
and Gateways, where a portion of the tasks of the IoT nodes are/can be offloaded to the IoT
Gateway [21]. In this setup, resources including available CPU, memory and communication
bandwidth on both IoT nodes and Gateways are limited and a portion of them is shared.

Thus, an efficient resource management mechanism is required to dynamically allocate the
shared Gateway resources and to designate the operating configuration of IoT nodes. The
essential tuning knob of the system is the designation of tasks to be offloaded to the Gateway,
an NP-complete problem which has already been addressed using centralized decision making
on the Gateway [21].

The main goal of the presented work is to take advantage of the inherently distributed
nature of IoT architectures in order to avoid the pitfalls of centralized decision making, i.e.
increased execution latency and lack of performance scalability. The novel contributions of
this thesis are as follows:

e An analytical model of an Edge computing setup, where tasks can be offloaded from the
[oT nodes to the Gateway is presented. The model captures the properties and constraints
of the involved devices and formulates the system objective as deadline miss minimization
problem.

e We design and implement DMRM, a distributed, market-based algorithm for Edge com-
puting resources management, which employs economic and pricing theory in order to
minimize task deadline misses.

e An evaluation of the proposed algorithm is presented, which highlights its ability to
designate near-optimal solutions, while achieving orders of magnitude lower execution
latency and scalable performance in comparison to centralized approaches.

The remainder of this thesis is organized as follows:
e In chapter 2 is presented similar reasearch on Resource Management and similar problems.
e In chapter 3, basic economic models are discussed.

e In chapter 4, the resource management problem that will be tackled in this thesis, is
presented. There is also analyzed a brute-force solution, an Oracle Prediction and a
solution based on Simulated Annealing method.

e In chapter 5 DMRM is presented.

e In chapter 6, the results of the algorithm are extracted, analyzed and compared with
other algorithms. The implemented system is evaluated.

e In chapter 7, finally, is the conclusion of this thesis and provides some ideas for future
research.
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Chapter 2

Related work

2.1 Resource Management on IoT and Similar Problems

Over the last decades, several works have been conducted on resource management on Edge
Computing. Farzard Samie et al. [21] address the problem of QoS management for IoT devices
under bandwidth, battery and processing constraints. They propose a centralized, pseudo-
polynomial solution based on a dynamic programming approach, which enables reusing pre-
computed solutions. Experiments show that their proposed solution improves the overall QoS
by 50% compared to an unsupervised system while both meet the constraints as shown in
figure 2.1.

= 250 T mmmm s
200 + Q- -------- - m e mmmm oo
150 T4 ==z mmm o
100 + {0t -t - - - oo - - mmmmmmmmmmmmmmeee

o
o
|
T
1
1
1
1
]
1
1
1
1
|
1
1
I
1

QoS improvement (%

o

#of devices

Figure 2.1: QoS imporvement [21]

In [15] the problem of computation offloading on mobile edge computing is tackled, while
et al. [16] a similar problem is examined, using queuing theory.

With respect to economic theory, authors of [22] propose a distributed power management
framework for heterogeneous multi-cores, based on price theory, aiming at minimizing power
consumption, while satisfying performance goals under a power budget constraint. Further-
more, in [11] authors present a power budget economy for performing thermal management
in many-core architectures, in order to reduce high peak temperatures. In this work, many
distributed Market agents are present, serving the bids from multiple Local thermal agents.
Additionally, [24] proposes a combinatorial auction-based service provider selection in Mobile
Edge Computing Networks (MECs). The authors study the computation offloading, where
MEC Service Providers are equipped with limited wireless and computation resources. An
auction is utilized and the users’ bid strategy is designed based on multi-round priority rule
and the winner determination process is formulated as a two-dimensional Knapsack problem.
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In [10], authors design a device-to-device offloading framework that integrates a distributed
incentive scheme and a distributed reputation mechanism. In [18] Agora is presented, a resource
management framework based on market principles, which deals with unavailable resources
and distributes the computation burden among the chip’s resources. The allocation of jobs to
resources is decided by the jobs’ offering price. The offering price is based on their waiting
time and the price that the resources are willing to accept is based on their utilization under
their current state. Additionally, the authors of [17] propose several pricing, game theory and
auction-based models that can be applied in IoT issues and authors et al. [20] discuss the
data offloading problem and implement an auction-based mechanism. Finally, Wong et al. [23]
studied a variant of resource allocation problem at the edge of network, to control network
usage from the devices.

In overview of the literature, economic models have been already used for resource manage-
ment allocation purposes but have not been applied to a setup of IoT devices competing for
limited, shared resources, under deadline restrictions. In addition, this thesis distinguishes from
other works by introducing a more flexible, per-application awareness where the price of the
resources is defined by the willingness of each distributed agent (device) to pay instead of letting
the resource seller de facto define the selling price. Using this concept, a distributed market
place is developed using fundamental pricing models instead of auction based approaches.
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Chapter 3

Economic Theory and Models

3.1 Economic and Pricing Models on Edge Computing
Architectures

Apart from classical approaches, e.g., optimization-based, economic and market based ap-
proaches have been widely applied in IoT systems. Authors et al. [17] compared the classical
approaches with the economic and market based approaches. The latter provide the following
benefits:

e The primary and most important benefit of economic approach is the revenue generation.
The profit of [oT systems must be maximized given the revenue and cost incurred.

e Components in IoT have different objectives and constraints since they may belong to
different entities. Pricing approaches can be introduced to determine optimal interactions
among these self-interested and rational entities.

e In order to attract users to contribute their data, incentive mechanisms using pricing and
payment strategies can be adopted. These strategies can guarantee the stable scale of
participants and improve the accuracy, coverage and timeliness of the results.

e Finally, using economic and pricing models, allows selecting [oT devices with the highest
remaining resources to perform sensing tasks. This can guarantee a trade-off between
maximizing the network lifetime and providing the required data quality for sensors.
Moreover, the pricing models can easily eliminate data redundancy without the complex-
ity computation.

Considering all the above-mentioned benefits, economic and pricing approaches in developing
[oT systems have become a great issue of research in IoT research and development industry.
Figure 3.1 presents the basic economic models that can be applied on IoT networks and Edge
Computing. The models are categorized into three groups based on how to set the price:
economic concepts based pricing, game theory and auction based pricing, and optimization
based pricing.
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Figure 3.1: A taxonomy of economic and pricing models in ToT [17]

This diploma thesis focuses on economic concepts based pricing. These models are analyzed
on the subsections below and their basic advantages are presented.

3.1.1 Cost-based Pricing

Cost-based pricing is a pricing strategy which involves determining total cost of a commodity
and adding a percentage of the cost as a desired income or profit. Mathematically, the selling
price of a commodity is defined by:

P=Cx(14+m) (3.1)

where C is the total cost, m is the markup which is the profit percentage added to the total
cost. The main advantage of the cost-based pricing is its simplicity since it requires only the
internal cost information to set and adjust the selling price. However, this strategy does not
consider external market factors, e.g, the competitors, the demand and the response of the
buyers. Therefore, this model cannot be applied to competitive markets with various buyers
and sellers.

3.1.2 Consumer Perceived Value Pricing

In order to maximize long-term profits, a seller needs to set the price by considering the buyer’s
perceived value from the commodity or the service rather than using traditional costs. The
buyer’s perceived value is the overall benefit derived at the price that the buyer is willing to
pay. To set the price on the perceived value, it is necessary to identify the set of valued drivers
that:

1. present value perceptions about the commodity and seller,

(\)

. create positive attitudes and feelings,

w

. provide the basis for differentiation and,

W

. Provide the reason to buy the commodity.

Generally, since the perceived value pricing is the tradeoff between the perceived utility to be
received and the perceived price for acquiring the information, sellers should understand these
tradeoffs to maximize the buyer’s value and seller’s outcomes.
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In IoT market, consumer perceived value pricing model is efficient to estimate the consumers
potential demand for the data through determining their willingness and affordability.

3.1.3 Supply and Demand Model

Although consumer perceived value pricing considers more about the demand of buyers, it
ignores the incomplete information conditions and market competition. Supply and Demand
model, which is one of the most fundamental concepts of economics, can tackle the problem. In
microeconomics, supply and demand is an economic model of price determination in a market.
It postulates that, holding all else equal, in a competitive market, the unit price for a particular
good, or other traded item such as labor or liquid financial assets, will vary until it settles at
a point where the quantity demanded (at the current price) will equal the quantity supplied
(at the current price), resulting in an economic equilibrium for price and quantity transacted.
The supply and demand are parts of economic model in which the relations between these two
factors can be exploited to determine the price of a commodity in a market. Price, therefore,
is a reflection of supply and demand. The relationship between demand and supply underlie
the forces behind the allocation of resources. In market economy theories, demand and supply
theory will allocate resources in the most efficient way possible. Let us take a closer look at
the law of demand and the law of supply as presented et al. [2] :

1. The Law of Demand : The law of demand states that, if all other factors remain equal,
the higher the price of a good, the less people will demand that good. In other words, the
higher the price, the lower the quantity demanded. The amount of a good that buyers
purchase at a higher price is less because as the price of a good goes up, so does the
opportunity cost of buying that good. As a result, people will naturally avoid buying a
product that will force them to forgo the consumption of something else they value more.
The chart below shows that the curve is a downward slope.

Demand
Relationship

Demand
(D)

1
o) Qz Qr  Quantity
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Figure 3.2: Demand Law [2]
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A, B and C are points on the demand curve. Each point on the curve reflects a direct
correlation between quantity demanded (Q) and price (P). So, at point A, the quantity
demanded will be Q1 and the price will be P1, and so on. The demand relationship curve
illustrates the negative relationship between price and quantity demanded. The higher
the price of a good the lower the quantity demanded (A), and the lower the price, the
more the good will be in demand (C).

2. The Law of Supply : Like the law of demand, the law of supply demonstrates the
quantities that will be sold at a certain price. But unlike the law of demand, the supply
relationship shows an upward slope. This means that the higher the price, the higher
the quantity supplied. Producers supply more at a higher price because selling a higher
quantity at a higher price increases revenue. A, B and C are points on the supply curve.
Each point on the curve reflects a direct correlation between quantity supplied (Q) and
price (P). At point B, the quantity supplied will be Q2 and the price will be P2, and so
on.
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Figure 3.3: Supply Law [2]

When supply and demand are equal (i.e. when the supply function and demand function
intersect) the economy is said to be at equilibrium. At this point, the allocation of goods is at
its most efficient because the amount of goods being supplied is exactly the same as the amount
of goods being demanded. Thus, everyone is satisfied with the current economic condition. At
the given price, suppliers are selling all the goods that they have produced and consumers are
getting all the goods that they are demanding.
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Figure 3.4: Supply Law [2]

Consider a competitive market in which multiple sellers and buyers compete for commodi-
ties. Assume that the relationship between the price P for the commodity and the quantity
demanded @)y is expressed by the linear function as P = a — b()4, where a and b are coefficients
of the function. Similarly, a linear supply function which presents the relationship between P
and the quantity supplied @), is given by P = ¢ + d(Q,. Accordingly, the sellers and the buyers
tend to change the price and the quantity to maximize their objective functions, e.g, profit
and utility, budget to some constraints. Both buyers and sellers try to determine a unique
point called market equilibrium, at which Q¢ = @s = Q" and P = P* = 72Q". The market
equilibrium has some basic properties :

1. The behavior of sellers and buyers is consistent since the demand equals supply.

2. No seller or buyer has an incentive to change its behavior since their actual trades equal
to their desired trades.

3. At any non-equilibrium price, there will be excess supply or demand which leads to a
movement in price towards the equilibrium.

3.1.4 Smart Data Pricing

To avoid large peak demands created by users’ simultaneous consumption of scarce resources,
the Smart Data Pricing(SDP) schemes are proposed.The SDP refers to various techniques such
as charging buyers depending on the resource usage time, setting location based tarrifs, and
imposing prices based on buyer activity levels. Two common approaches are used in IoT which
are time-dependent pricing and usage-based pricing:

e Time-dependent Pricing : The prices of the resource have a temporal component, i.e.,
the prices vary over different time to discourage large peak demands. Only when buyers
be incentivized to diffuse their demands over time, thus improving resource efficiency by
reducing the peaks and filling up the valley periods.
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e Usage-based pricing : On that approach, buyers are charged according to access rate
on resource usage. If the price is set based on usage, a fair and efficient use of resources
would be moderately promoted to some extent.

The two above approaches to managing resources can create a "win-win" solution for both
buyers and sellers. The sellers benefit by reducing peak congestion while users are offered more
choices and technologies to save on their costs. Compared to Supply and Demand model, the
SDP has no need of the iteration to determine the market-cleaning price, meaning that the
market is cleared as soon as buyers have submitted their bid for access.

On IoT and Edge computing, SDP be can introduced as an alternative solution to address
resource management issues, e.g, power management, resource demand management, and price
setting for resources in Cloud computing applications.

3.1.5 Option Pricing

An option concept in finance is a contract which gives the buyer, i.e., the owner of the option,
the right to buy or sell an underlying asset or instrument at a fixed price, i.e., a specified strike
price, at any time on or before a specified date. The buyer then pays a price, also known as the
premium, to the seller in exchange for the right granted by the option. To determine the price
or value of an option, the Black-Scholes model in the option pricing theory is typically used.
Accordingly, the price of a real option depends on various factors such as the current value and
the uncertainty of expected cash flows, the value of fixed costs, the risk free rate of return, the
time to maturity of the option, and any value lost over the duration of the option.

In IoT architectures, this model can basically be applied for the IoT investment evaluation,
the resource reservation in Machine-to-Machine communications and the task scheduling.

3.1.6 Other models

As shown previously, apart economic concepts based pricing models, there exist other ap-
proaches based on game theory and auction based pricing, and optimization based pricing. As
authors et al. [17] mention, game theory and auctions are the formal study of decision-making
where several players must make choices that potentially affect the interests of the other players.

Game theory can be defined as "the study of mathematical models of conflict and cooper-
ation between intelligent rational decision-makers'. There exists a variety of models based on
game theory that can be applied on IoT networks and Edge Computing Architectures. The
most significant and common used are:

1. Non-cooperative game : A game is known as non-cooperative if it is not possible for
the players to form coalitions or make agreements. Non-cooperative games are basically
used for resource allocation in wireless networks. In the Cloud computing area this model
is used to maximize profits gained of the competitive cloud providers.

2. Stackelberg game : The Stackelberg leadership model is a strategic game in economics
in which the leader firm moves first and then the follower firms move sequentially.

3. Bargaining games : Bargaining games refer to the situations in which two or more
players must reach an agreement regarding how to distribute an object.

Additionally, an auction is a process of buying and selling goods or services by offering
them up for bid, taking bids, and then selling the item to the highest bidder [8]. Similar to
game theory, several auction-based theorems and models exist and can be applied on Edge
Computing. Some of them are:
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1. Sealed-bid auctions: In [9] sealed-bid auction is defined as a type of auction process in
which all bidders simultaneously submit sealed bids to the auctioneer, so that no bidder
knows how much the other auction participants have bid. The highest bidder is usually
declared the winner of the bidding process.

2. Forward, reverse, and double auctions: The sealed-bid auctions mentioned above are
classified based on the seller’s side and they are the forward auctions. Considering the
buyer’s side, there are reserve and double auctions. In a forward auction, buyers bid
for items by offering increasingly higher prices. In a reverse auction, sellers compete for
buyers’ attraction by submitting their asks to the auctioneer and in a double auction,
buyers and sellers simultaneously submit their bids and asks to an auctioneer and the
auctioneer tries to define the perfect match.

3. Combinatorial auction: In a combinatorial auction, a buyer submits its bid among with
the need of a whole bundle of multiple items.

3.2 Economic Models and Resource Management

[oT devices are generally very limited as far as their computational, memory, bandwidth and
battery resources is concerned. Traditional resource allocation algorithms often assume that
the available resources in a system such as network bandwidth do not change. However, the
amount of available resources on the devices is not constant. Pricing mechanisms are used as
solutions in which all scarce resources, e.g., CPU, storage, bandwidth, and battery, can be best
utilized with the variability of resource budget. Similar to resource allocation, task allocation
is to assign sensing tasks to specific devices in the network for execution. Given the constrained
resource and distributed structure of IoT devices and Fog nodes, the goal of the task allocation
scheme is to achieve a fair energy and resource balance among the sensors while minimizing
the delay. To address this problem, price formulations can be used as they can continuously
adapt to changes of the resource availabilities. Supply and demand model can be applied for
resource allocation in order to reach an equilibrium for the resources supplied and the resources
demanded. Furthermore, the smart data pricing can be employed to make users aware of high
cost when consuming bandwidth during the peak demand periods. Finally, auctions can be
used for task allocation and game theory model for competing the available resources.

In this diploma thesis, the Supply and Demand, Smart Data Pricing and Consumer Per-
ceived Value Pricing, which are presented in chapter 3.1 are applied in order to deal with the
resource management and task allocation in a network consisted of heterogeneous IoT devices.
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Chapter 4

Problem Formulation and Solutions

This diploma thesis tackles a resource management problem on Edge computing systems and
IoT networks. In this chapter the problem is strictly formulated. More specifically, the ar-
chitecture of the IoT network is described, the characteristics of all devices and applications
are analyzed and the basic goals are presented. Afterwards, three different approaches of the
problem are analyzed:

e Brute-force Approach
e Oracle Prediction

e Simulated Annealing(SA) Approach

4.1 System and Problem Formulation
The architecture of the examined network consists of two basic types of devices:

1. Edge Nodes(Gateways) : Edge computing entities, which enable the deployment of Edge
and Fog services and offer computation, storage and networking resources to [oT devices.

2. IoT Devices : physical devices, vehicles, home appliances and other items embedded with
electronics, software, sensors, actuators, and connectivity which enables them to connect
and exchange data. These devices are resource constrained as far as their cpu, storage
and networking capabilities is concerned.

On the one side, the IoT devices exist on the terminal layer of the network and they are
close to end users. On the other side, Gateway exists between Fog layer and terminal layer.
Considering the networking and the communication of the devices, all [oT devices are connected
with different network technologies(wired or wireless) to the Gateway, with which they can
exchange data. However, [oT devices cannot communicate among them directly.

Our target architecture envisions a system of n IoT nodes, one Gateway device and a
number tasks per device, which can be executed either on the Gateway or locally on the IoT
node, as shown in Fig. 4.1. The IoT nodes are resource constrained as far as their CPU,
memory capacity and communication capabilities are concerned, and can offload their tasks
to the Gateway device. Considering the communication of the devices, [oT devices can be
connected with any wired or wireless communication protocol supported by the Gateway.

Each IoT device is uniquely defined by a value ¢ € {1,...,n} and is specified by the tuple
D; ={C;, M;, B;, Money;, T}

Variables C;, M;, B; denote the CPU, memory and bandwidth resources of device 7, respec-
tively. Money; denotes the total money of the device and 7; is the set containing all the tasks
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Figure 4.1: Target system architecture

7']?' of device 7. For every task, two auxiliary variables characterize its execution. For the task j
of device i, 0f is set to 1 if the task is executed on the Gateway or set to 0, otherwise. Similarly,
[; is set to 1 if the task is executed locally or set to 0, otherwise. The case that both variables
are set to zero is valid, meaning that that execution of the task has been postponed.

On the Gateway, the IoT devices can acquire resources, in order to have their tasks executed.
Similar to the IoT devices, the Gateway is defined by a tuple G = {C, M, B, 75}.

Variables C, M, B denote the CPU, memory and bandwidth resources of the Gateway, re-
spectively. Tg is the set of tasks offloaded from the IoT devices to the Gateway, at any moment.
Every task of device i is defined by its own unique id ;7 and is specified by the tuple:

={CG}, MG’ BG:,CL;, ML;j, BLj, ct’, ds, EGet’, ELct}} (4.1)

where CQ;, ./\/lgé, Bg; denote the utilization requirements of task j if executed on the Gate-

way and CL;, ML;, BL; the respective requirements if executed locally. The variable ct; is the

time that a task completes its execution, while d; is its associated deadline. Variables EGctj,

ELct’; also indicate the estimated execution time of each task of device j on the Gateway and
locally, respectively.

The key parameters of the system model are also summarized in Table 4.1.

The optimization objective of the system as expressed in Eq. 4.2, is to minimize the number
of tasks of IoT nodes that exceed their deadline. The solution is constrained by the available
CPU, memory and bandwidth resources both in IoT nodes and Gateway (Eq. 4.4 to Eq. 4.9).

minimize  Npissea = (Y miss(7})) (4.2)
Vi Vj
. y 1 < (2
where miss(7;) :{ (1) thfczirwzjé subject to: (4.3)
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Denotation Description
T]Z: task j of device ¢
0} 1 if task j of device i is executed (offloaded) to Gateway, 0 otherwise
[ 1 if task j of device i is executed locally, 0 otherwise
C, M, B CPU, Memory and Bandwidth resources of Gateway
Ch, My, By CPU, Memory and Bandwidth resources of device k
CL;, ML, BL; CPU, Memory and Bandwidth resources required for task j executed locally
CGj, MG%, BG: |CPU, Memory and Bandwidth resources required for task j of device i executed on Gateway
ct’, di Completion time and deadline of task j of device 4
EGct;, ELct; Estimated completion time of task j of device i on Gateway and locally, respectively

Table 4.1: Key system model parameters

Gateway Y (> O; : Cg§) <C CPU (4.4)
Vi V)
constraints: Y (> 0;- - ./\/lg;) <M Memory (4.5)
Vi V)
YO 0BG <B  Bandwidth (4.6)
Vi V)
Device kY 15 -CL; < C CPU (4.7)
Vi
constraints: Y lf - ML; < M, Memory (4.8)
v
Y UF-BL; < By Bandwidth (4.9)
vy
Unique execution 0? + lf <1,Vj €Tk (4.10)

The specified requirement of Unique Fxecution in Eq. 4.10 means that a task is prohibited
to be executed both on an IoT node and Gateway, while the postponing of a task ¢ remains a
valid choice. Our proposed market-based solution aims at solving the optimization problem by
dynamically designating where each task of the IoT nodes will be executed on.

Last but not least, it should be mentioned that the tasks can be grouped in three categories
according to their required resources:

e CPU intensive tasks, which are those that require high CPU resources in order to be
executed,

e Memory intensive tasks, which are those that require high memory resources in order to
be executed and

e Bandwidth intensive tasks, which are those that require high bandwidth rate resources
in order to be executed on time.

4.2 Brute-Force Solution

In computer science, brute-force search or exhaustive search, also known as generate and
test, is a very general problem-solving technique that consists of systematically enumerating all
possible candidates for the solution and checking whether each candidate satisfies the problem’s
statement. While a brute-force search is simple to implement, and will always find a solution if
it exists, its cost is proportional to the number of candidate solutions — which in many practical
problems tends to grow very quickly as the size of the problem increases. Therefore, brute-force
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search is typically used when the problem size is limited, or when there are problem-specific
heuristics that can be used to reduce the set of candidate solutions to a manageable size. The
method is also used when the simplicity of implementation is more important than speed. For
instance, a brute-force algorithm to find the divisors of a natural number n would enumerate
all integers from 1 to n, and check whether each of them divides n without remainder.

4.2.1 Algorithm

The brute-force approach was implemented on the resource management problem of this
diploma thesis, in order to be able to find for any set of given IoT devices and tasks the
best possible scheduling among all possible schedulings. More Specifically, this algorithm finds
all possible schedulings and returns the best possible scheduling, for which the number of tasks
that exceeded their deadline d is minimized and, on the same time, the delaytion of these tasks
is minimized. Additionally, it must be mentioned that this exhaustive solution is executed
when new tasks arrive and we don’t anything about the set of tasks in future rounds.

Given a set of tasks 7| a set of [oT devices I and a Fog node F' we need to find all possible
schedulings. Assume that the time is counted on rounds R, starting from round 0. Firstly, we
find all possible combinations that exist on round 7. Then we insert each of these combinations
to the corresponding devices and start the execution. Afterwards, we get to the next round
to find again all possible combinations. This process happens recursively until all tasks have
been executed and terminated. Finally, the function returns the current minimum number
of delayed tasks to the previous call and the next combination is inserted. The brute-force
recursive algorithm is presented in Algorithm 5.

Algorithm 5: Brute-force Algorithm
Result: Find the minimum number of delayed tasks.
Data: Gateway, DevTuple, Tasks
1 minimum = numberOfTasks + 1; // in worst case all tasks will be delayed
Brute-Force (DevTuple, Gateway, Tasks,round) :
2 checkForTerminated Tasks(DevTuple,Gateway, Tasks,round); // check of
terminated tasks
3 if all tasks terminated then
4 delayed = countDelayedTasks(); // count the tasks tat exceeded deadline
5 return min(delayed,minimum);

// find all possible combinations of task scheduling at current round
¢  combinations = find AllCombinations(DevTuple,Gateway, Tasks,round);
7 if combinations = NULL & exist undone tasks then

8 minimum = Brute-Force(DevTuple, Gateway, Tasks,round+1); // recursive
call

9 return minimum;

10 while combinations!=NULL do

11 insertNextCombination(DevTuple,Gateway, Tasks,combinations); // on fog or
IoT device

12 minimum = Brute-Force (DevTuple, Gateway, Tasks,round+1); // recursive
call

13 return minimum;
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4.2.2 Results

From the algorithm presented in subsection 4.2.1, if we have a number of N tasks, M devices
and Fog node at round 7 , the number of possible combinations extends from 0 to 2¥*1. The
upper limit of the consists of a huge number of combinations, which means that the complexity
and the execution time of the algorithm. The number of combinations is exponentially related
to the number of tasks and the possible combination is calculated. almost on every round of the
recursion. Consider an input of 100 tasks. At round 0, there can exist from 0 to 2!°* different
combinations and this process will be executed recursively. Therefore, the memory needed and
the complexity of the algorithm becomes prohibitively high. The results of this algorithm are
further analyzed and compared at chapter 6.2.

4.3 Oracle Prediction

Similar to brute-force solution, the Oracle prediction is an exhaustive search of all possible
candidates for the solution. The basic difference with brute-force is that Oracle prediction
mechanism knows a priori all the tasks that will arrive at the system. Therefore, the Oracle
scheduler can lead to less deadline misses by postponing the execution of a task in order to
save resources for a task arriving in later rounds and has stricter deadline. However, the time
and the memory required for this solution skyrocket.

4.4 Simulated Annealing

4.4.1 Theoretical Background

According to [6], simulated annealing (SA) is a probabilistic technique for approximating
the global optimum of a given function. Specifically, it is a metaheuristic to approximate
global optimization in a large search space. It is often used when the search space is discrete
(e.g., all tours that visit a given set of cities). For problems where finding an approximate
global optimum is more important than finding a precise local optimum in a fixed amount
of time, simulated annealing may be preferable to alternatives such as gradient descent. The
simulated annealing algorithm was originally inspired from the process of annealing in metal
work. Annealing involves heating and cooling a material to alter its physical properties due
to the changes in its internal structure. As the metal cools its new structure becomes fixed,
consequently causing the metal to retain its newly obtained properties. In simulated annealing
we keep a temperature variable to simulate this heating process. We initially set it high and
then allow it to slowly ’cool’ as the algorithm runs. While this temperature variable is high
the algorithm will be allowed, with more frequency, to accept solutions that are worse than our
current solution. This gives the algorithm the ability to jump out of any local optimums it finds
itself in early on in execution. As the temperature is reduced so is the chance of accepting worse
solutions, therefore allowing the algorithm to gradually focus in on a area of the search space
in which hopefully, a close to optimum solution can be found. This gradual 'cooling’ process
is what makes the simulated annealing algorithm remarkably effective at finding a close to
optimum solution when dealing with large problems which contain numerous local optimums.
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Figure 4.2: Simulated Annealing [1]

Although other similar algorithms for global optimums, such as hill climbing algorithm, can
be surprisingly effective at finding a good solution, they also have a tendency to get stuck in
local optimums. The simulated annealing algorithm is excellent at avoiding this problem and is
much better on average at finding an approximate global optimum. That is the basic advantage
of simulated annealing over other algorithms.

Simulated annealing (SA) has been already used for task scheduling [13, 14] and application
mapping [19].

4.4.2 Algorithm

The basic iteration of the algorithm is that at each step, the simulated annealing heuristic
considers some neighboring state s* of the current state s, and probabilistically decides between
moving the system to state s* or staying in-state s. These probabilities ultimately lead the
system to move to states of lower energy. Typically this step is repeated until the system
reaches a state that is good enough for the application, or until a given computation budget
has been exhausted. More specifically, in order to accept a solution(state) first we check if the
neighbour solution is better than our current solution. If it is, we accept it unconditionally. If
however, the neighbour solution isn’t better we need to consider a couple of factors. Firstly,
how much worse the neighbour solution is; and secondly, how high the current 'temperature’ of
our system is. At high temperatures the system is more likely accept solutions that are worse.
The math for this is pretty simple:

solution Energy — neighbour Energy

exp( ) (4.11)

temperature

Basically, the smaller the change in energy (the quality of the solution), and the higher the
temperature, the more likely it is for the algorithm to accept the solution. Given the acceptance
function on the above, the basic implementation of the algorithm is pretty simple:
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First we need set the initial temperature and create a random initial solution.

Then we begin looping until our stop condition is met. Usually either the system has
sufficiently cooled, or a good-enough solution has been found.

From here we select a neighbour by making a small change to our current solution.

We then decide whether to move to that neighbour solution.

e Finally, we decrease the temperature and continue looping.

As far as the temperature initialization is concerned, for better optimisation, when ini-
tialising the temperature variable we should select a temperature that will initially allow for
practically any move against the current solution. This gives the algorithm the ability to better
explore the entire search space before cooling and settling in a more focused region.

In order to apply the simulated annealing method to a specific problem, one must specify the
following parameters: the state space, the energy (goal) function E(), the candidate generator
procedure neighbour(), the acceptance probability function P(), and the annealing schedule
temperature() and the initial temperature <init temp>. These choices can have a significant
impact on the method’s effectiveness. Unfortunately, there are no choices of these parameters
that will be good for all problems, and there is no general way to find the best choices for a
given problem.

The algorithm is presented using pseudocode on Algorithm 6. The constants and the initial
values of the algorithm can be set empirically and can determine the quality of the final solution
and the speed of convergence, in order to reach this solution.

Algorithm 6: Simulated-Annealing Algorithm
Result: Minimuze the number of delayed tasks
Data: Gateway, DevTuple, Tasks
Simulated-Annealing(Gateway, DevTuple, Tasks):

1 initialize(temperature, solution); // initial temperature and a solution

2 while coollteration <= mazlterations do

3 coollteration = coollteration + 1;

4 templteration = 0;

5 while templteration <= nrep do

6

7

8

9

templteration = templteration + 1;

newSol = createNewSolution(); // generate new solution
currentEnergy = computeEnergy(newSol); // energy of new solution

d = currentEnergy - previousEnergy;  // compare previous and current
energy

10 if d < 0 then

11 ‘ Accept new solution

12 else

13 ‘ Accept new soluiton with probability exp(-d/temperature)

14 T=a*T; // 0<a<1

The simulated annealing method was applied on the resource management problem. The
goal is to find a task scheduling among the devices, which will minimize the number of tasks
that exceeded their deadline. In other words, we search for a global minimum. Firstly, an
initial solution(an initial task scheduling) is randomly defined. Afterwards, at each step a new
solution is generated. Each solution is estimated, according to the number of delayed tasks
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that is extracted and the result compared with the already accepted solution by previous steps.
According to the comparison of the solutions with the acceptance function, the best solution is
chosen. Finally, after a specific number of iterations(when the system has cooled) the algorithm
terminates.

4.4.3 Results

The Simulated Annealing method can guarantee that the algorithm will not get stuck to local

optimums. However, it cannot guarantee that it will reach the global optimum. Additionally,
not all the solution space is examined. This means that the simulated annealing will be executed
faster compared to the brute-force approach. The execution time and the convergence of the
algorithm depends on the initial temperature, the initial solution and the randomness of the
solutions generated. The results of this method are analyzed further and compared with other
approaches in chapter 6.2.
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Chapter 5

DMRM: Distributed Market-based
Resource Management

In order to achieve an efficient solution to the problem that has been formulated in chapter 4,
DMRM has been implemented: distributed market-based resource management approach. In
this chapter the theoretical background and the basic idea of DMRM is presented and analyzed.
Afterwards, the basic mechanisms, which contribute the DMRM solution are analyzed.

5.1 Theoretical Background-Main Proposed Concepts

The key idea of the proposed algorithm is to create a distributed marketplace, where buyers
and sellers interact with each other and compete for shared resources. The IoT devices act
as buyers, who demand resources according to the virtual money in their possession. The
Edge Gateway is the seller of the market, who supplies its computing, memory and bandwidth
resources in a specific price. The advantage of this approach is that (i) decision making burden
is distributed to numerous agents and (ii) each IoT node is empowered with the ability to
specify the priority and importance of its tasks. The downside of these attributes is that the
final decision maker (in our case the Gateway) may have knowledge of only a subset of the IoT
tasks. This might lead to sub-optimal scheduling decisions and this explains our meticulous
design of the reasoning in the IoT nodes, to avoid this pitfall. Our proposed solution is built
according to the following fundamental pricing and economic models.

e Supply and Demand model, which postulates that, holding all else equal, in a com-
petitive market, the unit price for a particular good or commodity will vary until it settles
at a point where the quantity demanded equals the quantity supplied, resulting in an eco-
nomic equilibrium. In the examined case, the relationship between demand and supply
underlie the forces behind the allocation of resources.

e Consumer Perceived Value Pricing, where in order to maximize long-term profits, a
seller needs to set the price by considering the buyer’s perceived value from the commodity
or the service rather than using traditional costs. The buyer’s perceived value is the overall
benefit derived at the price that the buyer is willing to pay.

e Smart Data Pricing, where buyers are charged according to access rate on resource
usage. If the price is set based on usage, a fair and efficient use of resources is promoted.

Consumer perceived value pricing and smart data pricing are combined to create a pricing
mechanism. In particular, the bidding price for a resource is set by the buyers (IoT nodes)
according to their estimated resource usage each time. The final decisions are made on the
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Gateway, where all bids are accumulated. There, the supply and demand model is used to
reach an equilibrium between the demanded and supplied resources, while maximizing the
Gateway profit and minimizing deadline misses of the IoT tasks. In order for a market to
operate efficiently, disequilibrium and excess supply and demand must be avoided.

The basic goals of the algorithm for each entity of the system are listed on the below:

e 10T Devices(buyers) : Have all their tasks done on time, under the resources and deadline
constraints.

e Gateway(seller) : Maximize its profit from the resources sold.

e System Goal : Execute the tasks under their resources and deadline constraints and reach
a market equilibrium.

The market implemented is presented in figure 5.1

Gateway G/Edge Node(seller)

Gateway G={C,M,B,T}
Device i D;={C,M,B,Money, T}
Taskj of D, Tj={CG, MG, BG, CL, ML, BL, ct,

S—— d, EGct;, Elcty}
\\ Device Communication
\ !/ \\ — —» Message exchange or Task offloading
llll J f/ \\\ n Task j
,f' n{ \\ E loT Node /Device i
/ \ \\

- ~

AN
- . - — . — —
( .‘ ( .I ( ﬂ |

loT Node/Device O(buyer)  IloT Node/Device 1{buyer) loT Node/Device nfbuyer)

Figure 5.1: Market Architecture

5.2 DMRM’s Mechanisms

To achieve the aforementioned goals, DMRM is introduced, composed of four core mechanisms
divided amongst IoT nodes and Gateways.

e Money Distribution Mechanism
e Task Selection Mechanism

e Offloading Mechanism

e Bidding Mechanism

Money Distribution and Task Selection mechanisms are executed on the IoT Gateway, while
the Offloading and Bidding mechanisms are executed on each IoT node. The combination of
these mechanisms via data exchange between IoT nodes and the Gateway completes DMRM
leading to its outcome, i.e. the decision of where each task of the IoT nodes will be executed,
either on the Gateway or locally.
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It is important to note the following advantage of the market-based approach to resource
management in Edge computing systems. With the continuous integration and adoption of
Edge computing by commercial enterprises, it is foreseen that the provided services, while
follow a business model similar to the one of cloud resources. According to this model, the
services and resources of an IoT Gateway, will be available for sale according to the specific
needs of each customer. Consequently, a market-based resource management model can be
seamlessly customized to such a business model, since pricing of resources is the principle idea.

5.2.1 Decision making functions of DMRM on the IoT node

The portion of DMRM executed on an [oT node is composed of two critical parts, i.e. the Task
Offloading and Bidding mechanisms.

Task Offloading Mechanism

The Task offloading mechanism, defines whether a task will be executed locally or offloaded to
the Gateway, with the aim to minimize the number of the tasks that exceed their deadline. To
achieve that, for every single task a metric is defined, which estimates the probability of the
specific task to miss its deadline. We introduce this metric as sensitivity (s) and for the task
7, of device i it is defined as (Chapter 4):

. (d: — EGet: — 1) —2}— (d: — ELct) — ) (5.1)
J

where 1 is the current execution moment (measured in rounds) of the system. The lower the
sensitivity, the more likely it is for the task to outrun its deadline.

Subsequently to the per task calculation of sensitivity, the tasks are sorted in ascending
order, according to it. Therefore, the first task in each device is the most likely to exceed the
time deadline. Starting from the first task and traversing through all of them, the IoT node
has three options:

e offload the task to the Gateway,
e cxecute the task locally or

e suspend the execution of the task for future execution on the Gateway or on the IoT
device.

We assume, that the tasks examined at each round are those that have not been executed
yet and assume no knowledge about future tasks. In other words, the decisions made at each
round depend only on the past and present condition of the device. According to the following
criteria, each device decides if a task will be offloaded or not.

e If an IoT device does not possess the required resources of the task then it decides to
offload it to Gateway.

e If an [oT device has all the required resources, but the estimated offloading latency is
lower than the estimated local execution latency, then it decides to offload it.

e Otherwise, the IoT device executes the task locally, or postpones its execution.

For those tasks that are decided to be offloaded a bid should be defined via the Bidding mech-
anism, in order for the IoT node to buy the required resources from the Gateway.
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Bidding Mechanism

The Bidding mechanism is one of the most crucial factors of the market-based approach, in
order for the system to operate efficiently. This process defines the bidding that each IoT
device is willing to pay for the required resources and by design it can efficiently cooperate
with the Money distribution mechanism, i.e. the selling price of the resources is adapted to the
total available money in the market. In practice, the price that a resource is sold is defined
so that it is affordable by the majority of the IoT devices. This assures that resource prices
and biddings are not be prohibitively high, so that devices are able to pay for those resources,
and not extremely low, thus creating a competitive marketplace. The bidding estimation for a
task is calculated on the corresponding IoT device and the final bid and task details are sent to
Gateway. The actual bidding for a specific task is calculated according to its required resources
on the Gateway, its sensitivity and, of course, the current bidding capabilities of the IoT device.
The bidding calculation function for task 7'; is provided in Eq. 5.2.

ng.+/\/lg§.+Bg§—sT;*b, if 5,0 <0
§TNCG + MG+ BG + Lxe, s >0 (5:2)

H
J

B

Constants b and ¢ are set to 1000 and 800 and have been defined according to extensive
system simulation. The estimated bidding is compared to the total money Money of the device.
There exist two possible scenarios:

1. If B« < Money then the task is offloaded to Gateway with the estimated bidding.

2. Otherwise, if B,.i > Money, the IoT device cannot afford the bidding price that has been
J
calculated Eq. 5.2. Then, the task is sent with bidding price equal to Money, i.e. the
device bids all its remaining money.

Algorithm 7: DMRM functionality on IoT nodes
Data: Gateway, loT device Tuple, Set of Tasks
TIoT-Algorithm(Gateway, DevTuple, Tasks, Money):

volatile curRound /* Round updated at background */

/* Remaining Tasks */

RemTasks = checkTasks(Tasks, curRound)

while length(RemTasks) > 0 do

/* Invoke Task Offloading Mechanism */
oTasks = offloading(Tasks, DevTuple, curRound)
/* Invoke Bidding Mechanism */
bids = bidding(oTasks, Money)
/* Send offloading proposition to Gateway */
send TasksGateway (oTasks, bids)
/* Wait for answer */
answer = waitAnswers(Gateway, offloaded)
for t in oTasks do
if answer(t) = "Accept” then
‘ payGateway(Money) /* Pay Gateway */
else
L RemoveFromList(t, oTasks)

© 0 N o otk W NN

[ e e T e e
J 0 ok W N o= O

—
o

RemTasks = checkTasks(Tasks, curRound)
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Algorithm 7 summarizes the DMRM software functionality on an IoT node, which possess
an amount of Money and a set of Tasks to be executed under specific deadlines.

It specifies the interaction of the Task Offloading and Bidding mechanisms, as well as how
bids and responses are transmitted to and from the Gateway and appropriately handled.

5.2.2 Decision making functions of DMRM on the Gateway

The portion of DMRM executed on the Gateway is also dominated by two parts, i.e. the Money
Distribution and Task Selection mechanisms.

Money Distribution Mechanism

The Money Distribution mechanism, ensures that the IoT devices will not run of money by
frequently re-distributing money to them in a fair way, thus ensuring the existence of a compet-
itive market. This distribution takes into account their CPU, memory and bandwidth resources
as well as the respective resources of the Gateway. Assuming, an IoT Gateway with C, G and
B available resources and N IoT devices connected to it, the device ¢ will receive extra money
according to Eq. 5.3.

Moneyi:]\/[oneyi+(w]\[—i_6+gi+]\cj[i+gi (5.3)
where a is a constant equal to 10000 and has been defined according to multiple simulations of
the system. This mechanism is activated every time the total money of all N devices connected
to the Gateway reach a minimum threshold. This threshold is dynamic in the sense that it
takes N into account, i.e. varying number of connected devices. In this way, it is guaranteed
that no device will run out of money and thus will be able to compete for resources. This is
crucial for a system, where there is no means for the IoT nodes to earn more money. In an
actual price-based Edge computing system, this mechanism would not be necessary as each
customer would have the obligation to renew its money reserve.

Task Selection Mechanism

Algorithm 8: DMRM functionality on the Gateway
Data: Gateway, [oT devices’ Tuples
Gateway-Algorithm( Gateway, NDevs, DevTuples):

1 volatile curRound /* Round updated at background */

2 totalMoney = 0 /* Initialize Money */

3 /* Determine Money re-distribution threshold */

4 threshold = determineT(NDevs)

5

6

7

while ActiveDevs(DevTuples) > 0 do

if totalMoney < threshold then
/* Invoke Money Distribution Mechanism */ totalMoney += moneyD(NDevs,
DevTuples)
8 /* Wait for offers */
9 taskBids = waitForBids(NDevs, DevTuples)
10 /* Invoke Task Selection Mechanism */
11 sTasks = taskSelection(taskBids)
12 /* Reply to IoT nodes */
13 send Answers(sTasks, NDevs, DevTuples)
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The Gateway receives all biddings from the IoT nodes and must decide which will be
accepted via the Task Selection mechanism.

This mechanism, combines the profit maximization of the Gateway with the minimization
of the delayed tasks. From Eq. 5.2 it follows that the lower the sensitivity is, the higher the
bidding price is. Similar to that, the higher the bidding price is, the higher the profit gained
by the Gateway is. As a result, if the tasks with higher bids are chosen to run first, the
system is approaches an equilibrium between the maximization of profits of the Gateway and
the minimization of delayed tasks of the IoT nodes.

Inside the Task Selection mechanism, after the offloading propositions are received by the
Gateway, they are sorted according to their bids in descending order. Starting from the first
task on the list, if the resources of the Gateway are enough to satisfy the requirements of the
task, then it is selected for execution. In the opposite case, the task is rejected. This process is
repeated for all the received tasks, and the outcome is transmitted back to the corresponding
devices. If a task was chosen to be executed, then the IoT device is charged according to
the bid made. Otherwise, if a task is rejected then the IoT device is not charged and it is a
responsibility of the IoT node to decide its execution fate.

The aforementioned DMRM functionality is executed in the software stack of the Gateway
and it is summarized in Algorithm 8. The algorithm is executed as long as there are active
connected devices to Gateway.

loT Node Gateway(Edge Node)

1. Check dynamic threshold for Total Money of N devices.
2. Decide to distribute money or not.

3. Send data(CPU, MEM,BW) to Gateway if Money
Distribution Mechanism is enabled.

I

4. Distribute Money to N devices according to Gateway's
resources and device’s resources.

5. Receive Money and add them to current Money.

6. Task Offloading Mechanism : decide which tasks will be
offloaded to Gateway, executed on loT or postponed
according to sensitivity and loT’s remaining Money.

7. Bidding Esimation Mechanism: for each offloaded task

make a bid.

9. Receive offloaded tasks.

10. Task Selection Mechanism: decide which of the offloaded
tasks will be accepted or rejected.

11. Send answers to each loT Device for its corresponding
tasks.

11.Receive answers. According to the answer pay or not.

12. Receive payment.

8. Send offloaded tasks and bids to Gateway.

*0On the background tasks are executed *On the background tasks are executed. Results are sent

back to corresponding loT devices.

Figure 5.2: DMRM execution through time

The Money Distribution is executed conditionally according to the total amount of money

66



of the IoT nodes. The Task Selection function is executed when the Gateway has received new
bids by the IoT nodes and then the nodes are informed accordingly.

Figure 5.2 presents how DMRM is executed through time on both IoT Nodes and Gateway.
According to the state of the network and devices will mechanisms are activated and decisions
are made. At this point, it should be mentioned that each device, Gateway or IoT Node,
executes jobs on the background. Therefore, decisions can be made on the same time.
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Chapter 6

Experimental Results

In this chapter, we present the numerical results that illustrate the validity of the proposed
approaches to implement the market-based algorithm for resource management on Edge Com-
puting and I[oT architectures. Firstly, the experimental setup and the specifications of the
boards, on which the experiments were conducted, is presented. Afterwards, the extracted re-
sults are analyzed and compared among them. More specifically, the brute-force approach, the
Oracle Prediction, the Simulated Annealing and the DMRM solution are evaluated. Finally,
the results based on economic models are extracted.

6.1 Experimental Setup

All the techniques presented in chapters 4.2, 4.3, 4.4 and 5 are implemented in C language
and executed on variety of contemporary embedded devices with increasing computational
capabilities, which represent diverse design choices with respect to the specifications of the
Gateway device. Specifically, the utilized devices are Intel Galileo Gen 1 at 400 MHz, 256 MB
RAM, Raspberry pi 3 Model B with 4 Cortex-A53 CPUs at 1.2 GHz, 1 GB of RAM and Nvidia
Tegra X1 with 4 ARM Cortex A-57 processors running at 1.9 GHz and 4 GB of RAM. The
basic specifications of each of the aforementioned boards are presented on the next subsections.

6.1.1 Raspberry pi 3 Model B

The Raspberry Pi is a low-cost Linux and ARM-based computer on a small circuit board
sponsored by the charitable Raspberry Pi Foundation in the UK. The basic specs of this board
are:

e Processor Chipset: Broadcom BCM2837 64-bit quad-core processor
e Processor Speed: 1.2GHz
RAM: 1GB

Storage: MicroSD
GPU: 4x Cortex-A53 1.2GHz

On-board network: 10/100 Mbit/s Ethernet, 802.11n wireless, Bluetooth 4.1

Operating System: Raspbian Stretch Lite
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Figure 6.1: Raspberry pi 3 Model B [3]

6.1.2 Intel Galileo 1

Intel Galileo is the first in a line of Arduino-certified development boards based on Intel x86
architecture and is designed for the maker and education communities. Intel Galileo com-
bines Intel technology with support for Arduino ready-made hardware expansion cards (called
"shields") and the Arduino software development environment and libraries. The development
board runs an open source Linux operating system with the Arduino software libraries, enabling
re-use of existing software, called "sketches". The sketch runs every time the board is powered.
Intel Galileo can be programmed through OS X, Microsoft Windows and Linux host operating
software. The board is also designed to be hardware and software compatible with the Arduino
shield ecosystem.

The Galileo is the first product to feature the Intel Quark SoC X1000, a chip designed for
small-core products and low power consumption, and targeted at markets including the Internet
of Things and wearable computing. The Quark SoC X1000 is a 32-bit, single core, single-thread,
Pentium (P54C/i586) instruction set architecture (ISA)-compatible CPU, operating at speeds
up to 400 MHz. The use of the Pentium architecture gives the Galileo the ability to run a fully-
fledged Linux kernel. What’s more, an on-board Ethernet port provides network connectivity,
while also the underside provides a mini-PCI Express slot, designed for use with Intel’s wireless
network cards to add Wi-Fi connectivity to designs.

The Galileo board’s technical specifications:

e Operating System: Yocto Project-based Linux

e Processor: Single-Core 400MHz Intel Quark X1000

e Memory: 256MB RAM

e Networking: 1x Wired 10/100 Ethernet, Optional PCle Wireless
The Quark X1000 features:

e Up to 400MHz clock speed
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Figure 6.2: Intel Galileo Gen 1 [4]

16KB L1 Cache

512KB SRAM

Single core, single thread

Integraded SDIO, UART, SPI, USB, 12C, Ethernet, RTC

The CentOS release 6.9 operating system is applied on Tegra X1 for this study.

6.1.3 Tegra X1

Tegra is a SoC developed by NVIDIA and integrates an ARM architecture central processing

unit (CPU), graphics processing unit (GPU)-sharing a common DRAM memory with CPU-,
northbridge, southbridge, and memory controller onto one package. More specifically, Nvidia’s
Tegra X1 (codenamed "Erista'") features four ARM Cortex-A57 cores and four ARM Cortex-
AB3 cores (not to be accessed by the operating system and are used automatically in very low
power scenarios), as well as a Maxwell-based graphics processing unit. Nvidia’s Tegra X1 is
composed by:

e ARMv8 ARM Cortex-A57 quad-core + ARM Cortex-A53 quad-core (64-bit) at 1.9GHz
Maxwell-based 256 core GPU

e MPEG-4 HEVC and VP9 encoding/decoding support

e 4GB of RAM

e TSMC 20 nm process

e TDP 15 watts, with average power consumption less than 10 watts

Tegra X1 is NVIDIA’s newest mobile processor, and includes NVIDIA’s highest performing,
and power efficient Maxwell GPU architecture.
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Figure 6.3: Nvidia’s Tegra X1 [5]

6.2 Results Comparison and Evaluation

In this section, the results of the implemented approaches are presented. Each solution is
analyzed and evaluated and, afterwards, they are compared among them.

6.2.1 TIoT Devices and Tasks Inputs

We consider a variety of scenarios where the IoT devices and the tasks are randomly selected.
The resources of the devices and the required resources of the tasks are randomly sampled
from Normal or Poisson distributions in the range of [0 — 100]. In this way, we are able to
construct diverse scenarios of CPU intensive, memory intensive and bandwidth intensive tasks
and devices.

A second important experimental parameter is the arrival time and density of incoming
tasks at IoT nodes.

We focus our attention on two distinct cases. In the first one, created using the Normal dis-
tribution, tasks are arriving almost simultaneously, thus creating a huge demand for resources.
The second scenario involves cases, where simultaneous high peaks of demand are avoided and
Poisson distribution is selected for this goal. Last, assuming that the arrival time of task T; is
Ar?, we calculate its deadline according to Eq. 6.1.

) (EGct’ + ELct: + 2 - Ar})
2
According to this function, the deadline of the task is correlated to its arrival time and its
estimated execution latency both on the Gateway and locally. The actual deadline is scaled
according to coefficient C,, which in the context of this evaluation was set equal to 1.4.
The IoT devices and the tasks were for each experiment were generated with Python.

di = C, (6.1)

6.2.2 Comparative Study

We evaluate DMRM against an offloading decision mechanism based on Simulated annealing
(SA), a well-known probabilistic metaheuristic, which has been already used for task schedul-
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ing [13, 14] and application mapping [19]. SA is configured to solve the optimization problem
presented in Chapter 4 and has been analyzed further in section 4.4. We also calculate the
optimal solution of the problem using an exhaustive, brute-force approach, to quantify the
quality of the solutions provided by the heuristic ones as shown in section 4.2. However, this
exhaustive solution is executed only when new tasks arrive. Consequently, we augment the
comparison by adding an Oracle prediction mechanism as presented in 4.3, which knows a
priori all the tasks that will arrive at the system. Therefore, the Oracle scheduler can lead to
less deadline misses by postponing the execution of a task in order to save resources for a task
arriving in later rounds and has stricter deadline.

4
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Figure 6.4: #Tasks with missed deadlines (Constrained input)

In the first comparative experiment, we evaluate DMRM against all other decision making
alternatives. However, due to the exhaustive approaches, the experiments are conducted only
for inputs with limited number of IoT tasks and devices, to avoid exploding the available
scheduling combinations. The results of the comparison are summarized in Fig. 6.4, where the
values of the X axis include triplets of the number of IoT devices of the examined scenario, the
total number of tasks and the probability distribution function of tasks’ arrival time, denoted
as 'n’ for Normal and 'p’ for Poisson. The Y axis represents the number of delayed tasks.
At this point, it should be mentioned that the exhaustive nature of both Oracle prediction
and brute-force approach implies huge memory and time complexity. Furthermore, the Oracle
prediction is an ideal approach, as all tasks are considered as known. In a real-life system this
cannot happen. Obviously, these two methods cannot be executed for higher inputs and are
only used for comparative study on small inputs.

As shown, both DMRM and SA algorithms achieve similar results, which are very close to
the misses of the exhaustive experiments.

This first evaluation, shows that the proposed methodology provides results close to the
optimal ones, but further more demanding experiments with scaled number of IoT devices and
tasks are necessary. Fig. 6.5 presents the results of such an evaluation, maintaining the same
format for X and Y axes. We observe that as the input workload of the system is higher, both
in number and devices and tasks, DMRM outperforms the SA approach, achieving an average
reduction of 3.22% in the number of delayed tasks.

Since both DMRM and SA are approximate solutions, we further evaluate their compar-
ative properties in terms of the severity of their deadline misses. Specifically, the experiment
presented in Fig. 6.6 shows the total amount of rounds that the delayed tasks exceeded their
deadline, using the same input as the one of the experiments presented in Fig. 6.5. The results

73



140

- 120 B DMRM
(o] - == — =
g £ 100 - Simulated Annealing
€ 80 -
S
2 g 60
Q > T
oo B =
© 8 40 -
7]
2 LN
0 '_-_ T -_ T - - T -= T T T T T T T T
Q PN Q PN} Q R Q Q PN PNy Q pNy
© © © © YV v X X Gl So) Sel b
N N N N o) > © v W W% W%
% N4 & & & & < o g g Y Y
S N N‘o ,\/‘o ,»b‘ ,\y‘

Number of loT Devices-Number of Tasks-Distribution

Figure 6.5: #Tasks with missed deadlines (Demanding input)

show, that DMRM also decreases this value up to 12.35 % compared to the SA approach.

As far as the simulated annealing is concerned, the probabilistic nature of the algorithm,
cannot guarantee in every execution that optimal solutions will be found. More specifically,
given the same input of tasks and IoT devices, the simulated annealing approach may extract
different solutions. Additionally, for cases, in which there exist few optimal schedulings, this
approach is less possible to reach optimal, or close to optimal, solutions.
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Figure 6.6: Total rounds of exceeded deadlines (Demanding input)

Last, a successful dynamic resource management scheme should also be characterised by
the ability to make decisions in an online manner. Therefore, we perform a comparison of
the execution latency of the two heuristic approaches on the embedded devices presented in
Section 6.1.

Fig. 6.7 illustrates the measured latency values, showing that for low number of [oT tasks,
both solutions are characterised by similar performance.

However, as the number of tasks rises, the execution latency of the SA approach skyrockets,
while DMRM is insubstantially affected. This gap in the execution latency requirements is
highlighted in the case of 256 tasks, where DMRM concludes 2000x faster. This behaviour is
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Figure 6.7: Comparative performance evaluation of DMRM and SA based resource management
on embedded Gateway alternatives

attributed to the inherent differences of the centralized nature of the SA approach as opposed to
the scalable approach of the proposed market based solution, where the computational burden
is distributed to the all involved devices of the system. In total, the execution overhead of
DMRM is less than 1 second in the average case, while it only surpasses this in the least
computationally powerful device (Intel Galileo), where at the worst case it reaches an overhead
of 4 seconds.
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Figure 6.11: CPU for 2 tasks(Poisson)
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Last but not least, there are some experiments conducted, in order to evaluate the gate-
way’s cpu, memory and bandwidth utilization and compare DMRM to other approaches. More
specifically, charts in figures 6.8- 6.13 and 6.14- 6.19 illustrate the average CPU, memory and
bandwidth utilization of Gateway for 2 and 8 tasks, respectively. Both experiments were exe-
cuted for Normal and Poisson inputs. X axis denotes the time, measured in rounds, while Y
axis describes the percentage of usage of the corresponding resource. The dots on X axis, illus-
trate the incoming and termination time of tasks for DMRM, Oracle prediction and Simulated
Annealing approach.
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As shown on these graphs, the utilization of the resources of DMRM reaches almost 85% of
the total resources of the Gateway. This means that, the IoT devices of the system try to ofload
their tasks, firstly, on the Gateway. Therefore, they can save battery and energy. Additionally,
we can extract the fact that the utilization of DMRM is similar to the Oracle Prediction, while
Simulated Annealing seems that it does not take advantage of all the resources of the Gateway.

6.3 DMRM Special Results

In this section we present several characteristics of DMRM, in order to illustrate the validity
of this approach.

Firstly, an observation is extracted as far as the execution time of DMRM is concerned.
More specifically, the examined testcases on the embedded devices showed that the average
execution latency of the DMRM approach basically depends on the total number of the tasks.
Figure 23illustrates the average execution time of DMRM implementation depending on the
number of IoT devices and the number of tasks.

We are able to extract that the execution latency of DMRM depends basically on the number
of total tasks, while the number of IoT devices in the network seems that it does not influence.
Therefore, DMRM can afford higher number of 0T devices and tasks without having serious
time overhead. In other words, we claim that DMRM is scalable for more than 256 tasks and
16 IoT devices.

As far as the pricing models that were applied in DMRM, it is obvious that Smart Data
Pricing and Consumer Perceived Value Pricing were used in order to define the selling price of
the resources each time.
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Figure 6.20: Execution latency of DMRM on embedded devices according to number of IoT
devices and tasks

6.4 DMRM Evaluation

Finally, to sum up all the aforementioned in previous sections, DMRM solution has several
evaluations that can be extracted:

e Optimality: The proposed system reaches optimal and suboptimal solutions for low and
high inputs, while on the same time, compared to SA reaches more optimized solutions.
Additionally, DMRM reaches better results as fas as the delaytion per task is concerned.

e Distributed: The decision making is distributed among all IoT devices of the system.
e Scalable: DMRM is scalable for demanding number of IoT devices and tasks.

e Low execution latency: compared to other approaches, DMRM has low latency de-
mands. Therefore, it could be applied in systems which require real-time execution and
have latency-sensitive applications.

e Adapt to dynamic changes of the network: the proposed solution can easily adapt
to dynamic changes of the network, such as IoT devices insertion and extraction.
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Chapter 7

Conclusions

7.1 Thesis Summary

Resource management on Edge Computing systems and IoT architectures is a very demanding
and challenging field, where both academic and scientific industries try to find efficient ways
and solutions in order to tackle it.

In this diploma thesis, DMRM was presented, a novel resource management scheme for Edge
Computing under CPU, memory, bandwidth and deadline constraints. A distributed solution
based on economic and pricing models is proposed, implemented and evaluated on embedded
devices. The decentralized nature of the algorithm distributes the computation burden among
the devices and allows the system to behave efficiently and adapt in dynamic changes of the
network. The experiments showed that the proposed solution, not only reaches results very
close to optimal, but its distributed nature exhibits high scalability and tightly constrained
execution latency.

7.2 Future work

The resource management in IoT and Edge Computing systems has a variety of open issues
that need to be studied. At first, the same, or a similar problem could be solved using other
pricing and market models, auctions and game theory. Other architectures can be implemented
and studied. Additionally, the DMRM could be executed in real distributed systems, in order
to examine how our approach responds and study parameters, such as fault tolerance, which
do not show up in a simulation. Issues such as energy consumption need to be examined. Last
but not least, issues that concern the security, the reliability and the confidentiality of data and
users need to be addressed.
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