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Amayopevetal 1 avTypaen, amofnKeuon Kot Slvoun TG mopovcas epyaciag, €& o-
AOKAN POV M TUNHOLTOG OVTNG, Yo EUTOPIKO okomd. Emtpénetan | avatdnwon, amobr-
KEVLOT) Kot OOVOUT Y10 KOO U1 KEPOOOTKOTIKO, EKTOOEVTIKNG 1} EPEVVITIKNG GVOTG,
vtd TV TPobmOHEST VL avapEPETOL 1 TN Y| TPOEAELOTG KO va. dtatnpeital To mapdv
pvopa. Epotipate mov agopodv tn xpnom g £pyaciog yio kepOOGKOMKO GKOMTO
TpEMEL va. ameLOOVOVTOL TPOS TOV GLYYPAPED.

Ot amOWYELS KO TO GUUTEPAGLOLTA TTOV TEPLEYOVTIOL GE OVTO TO EYYPOPO EKPPALOvY TOV
ovyypagéa Kot Ogv TPEMEL v, punveLBel 0Tl avtimpoownevovy TG enionues Béoelg
tov EBvikod Metodfrov [Torvteyveiov.



ITIEPIAHYH

H eneéepyacio euwcovag elvar €vog KAAGOG TNG EMGTHUNG TOV VTOAOYLIOTAOV Kot
™G YNowokng enegepynciog oNUATOG. XAUepa, AOY® TG TANODPOS EQOUPUOYDV Kot
TOV GLVEXDS OLEAVOLEVOV amaITNOEOY GTN Propnyavio Kot 6yt pévo, To EPELVITIKO
€pyo mov oyetileTon pe TOV KAASO awTd anEAvel cuvex®G o€ dlooTdoels. Me epapplo-
YEC OTNV 10TPIKN, OTNV OVOYVOPLOT TPOTOTOV Kl OVTIKEIWEV®V, GTNV 0LTOKIVITOP1-
ounyavia, € d0PLPOPIKE CLGTHUATO KAT. TOIKIAEC KO SLOUPOPETIKES CTPATNYIKES €-
neepyoaciog UE €VPEMG AVETTVYUEVO EMIGTNUOVIKO LOPabpo éxovv mpotabel ava
Tovg Kapovs. ‘Eva amd ta khpro {ntrpato mov apopovv v enelepyacio eikovag ei-
VoL 1 amoiTnon Yo EKTEAECT) GE TPAYLATIKO YpOVO, 1| OTolo TEWVEL OTIC TEPIOCOTEPEC
TEPWTAOGELS VO Etval avEQIKTN PE TN cvvnOiopévn vAOTOINGoT Kol EKTEAECT] GE &val
VTOAOYLOTIKO GUGTNUO OV omoteAeiton amd €vav enesepyaotn. Ewdwkd av o Adyog
YIVETOL Y10l EVEOUATOUEVO, GUCTHUOTO, VITAPYEL EMIONG 1) OVAYKN Y10 OGO TO SLVATOV
MyOTEPT KOTOVAA®OOT EVEPYELNS. (26 OMOTEAEGLA, OLUPOPETIKES TEXVOAOYIEG KOl GL-
vepyaoio peta&h ovtdv elval IKavEg Vo TopEXOVVY O IKAVOTOMTIKA ATOTEAEGLOTA.

2KOTOG aVTNG NG SMA®UATIKNG gival 1 oyedioon Kot vAomoinon Hog eeap-
HOYNG eneEepyaciag KOVOG GE VO EVEOUATOUEVO GUGTNLLO TOV amoTeELEiTOl and &-
ne€epyaot kot FPGA, e okond va kaAdmtoviot ot tpoavapepdeiosg anartiosic. g
€QOPLOYN eMAEYONKE N KaTaydPLon (AmoTOITMGN) EIKOVAS Yo V0L GUVOLO SEOOUEVMV
OV OMOTEAEITOL OO PMOTOYPAPIES LATIOV YOP® amd TNV TEPLOYN NS IP1O0G. XKOTOG
™G €QPAPUOYNG €IVl 1 TOVTION SLUPOPETIKAOV EIKOVAOV KO OITOPOCT] Y10l TO OV TPOKEL-
Tat Yo 1o 1010 1 O10popeTkd patt. 'l TV VAOTOINGT TOV GLOTNUATOS YPTGLULOTO -
Onke n matedppa Zybo g Digilent, mov eivar Baciopévn oty okoyéveln ov-
okevdv Zyng-7000 All Programmable SoC. Katomy perétng tov ypovoPdpov kou-
LATIOV TNG EPOPLOYNG, EMAEYONKE O KATAAANAOG SIOUEPIGHOG DVAIKOV KOl AOYIGUIKOD
vy ) BEATIOTN duvaTh AVoT. AVt N GL-GYEdiNOT TPAYUATOTOMONKE ATd TNV TAEL-
pa tov YAkov mpoypappatitovrag pe ) yAwcscsa VHDL kot amd v mhevpd tov Ao-
YIOUKOV pe ypnom ¢ yAoooag C. Meketinkov emiong amoTeAECUATIKEG Kot €V-
ypnoteg nEBodol emkovaviog petald Yo kot Aoyiopikoy, ot omoieg pmwopovv va
EQUPUOCTOVV KOl GE TOAAEG BALES eQaploYEG TG enelepyaoiag ewovac. Télog Eyve
a&loAdYNoY TOL TEAIKOD GLGTILOTOG, GTNV 0moia Tapovctdlovtal 1 ardKAIen ard To
APYIKE OTOTEAEGLLOTO TTOV TTOPAYEL TO VAIKO, 1] ETLTAYLVCT YPOVOL TTOV EMTELYONKE, N
TEAMKN KATAVAA®GT 16006 KOl TO TOGOGTO EMTVYI0G TNG OVAYVAOPLIONG TOV LOTUDV.

Aé&Eerg Kieona

EneEepyaosia Ewovac, Image Registration, FPGA, Evoopatouéve vomuata, CPU,
Profiling, Emtdyvvon, YAonoinon Hardware, Xv-oyediaon, Bandwidth Exicowvoviag,
[Tepropiopoi Mviung, Aloldynon Zuotiuatog
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ABSTRACT

Image processing is a scientific field of computer science and digital signal
processing. Today, the multitude of applications and the constantly increasing de-
mands in the industry have imposed a great increase in the dimensions of the research
associated with this sector. With applications in medicine, pattern recognition and
recognition of objects, automotive industry, satellite systems, etc. varied and different
processing strategies with a widely developed scientific background have been pro-
posed over the times. One of the main issues regarding the image processing is a re-
quirement for real-time execution, which in most cases tends to be unfeasible with the
usual implementation on a computational system consisting of a standalone processor.
Especially if the issue regards the embedded systems, there is also the need for the
least possible energy consumption. As a result, different technologies and cooperation
between them are likely to provide more satisfying results.

The purpose of this thesis is the design and implementation of an image pro-
cessing application in an embedded system consisting of both a processor and an
FPGA, in order to meet the abovementioned requirements. As an application the im-
age registration problem was chosen, which focuses on a dataset that consists of eye
photographs around the area of the iris. The goal of this application is the identifica-
tion of different images and deciding whether or not it is the same or a different eye.
For the implementation of the system the Zybo platform made by Digilent was used,
which is based on the Zyng-7000 All Programmable SoC (System on Chip) device
family, manufactured by Xilinx. After carefully studying the time-consuming sections
of the application, an appropriate hardware and software partitioning for an optimum
solution was selected. This co-design involved using the VHDL language for pro-
gramming from the Hardware side and the C language from the software side. Effi-
cient and convenient communication methods between hardware and software were
examined, which can also be applied to many other applications of image processing.
Lastly, the final system was assessed, with a presentation of the deviation from the
initial results, the succeeded acceleration, the final power consumption and the suc-
cess rate of the eye identification.

KeyWords

Image Processing, Image Registration, FPGA, Embedded Systems, CPU, Profiling,
Acceleration, Hardware Implementation, Co-design, Communication Bandwidth
Memory Constraints, System Evaluation



EYXAPIXTIEX

®a Mela apykd va gvyaploTo® Tovg emiPAémovteg Kadnyntég pov, Anuiy-
tpro Zovvtpn EMII kan I'ddpyo Matsodmovio EMII, yuo tnv evkatpio mov pov £dmwaoav
Vo aoYoAN0® e [ evO0QEPOVGO EPUPLOYN TOV AOLTNTIKOD KAAOOL NG emelepya-
olag eovov. Méom ¢ cuvepyaoiag tov 600 epyactnpiov Mlab kot BIOMIG pov
d60nke N dvvatdTTA Vo EQAPUOc® TIS YVAOELS LoV hve oto software ko to hard-
ware Tévo o€ Evay Kovovplo yio LEva KAASO.

Idwitepa Ba MOk va evyapiotiom tov Kabnynm Anuntpio Xovvipn mov
LoV EMETPEYE VAL EKTOVIC® TN STAMUOTIKY Lov 610 Epyactipro Mikpobmoroyiotdv
Ko Ynoewkov Xvotpdatov (Microlab), kabdg kot Tovg dvo ddaktopikods Imavvn
Xrpatdko ko Baoiiero Toobtoovpa. H vmopovr tovg ko  kabodnynon tovg xob’
OAN TN SdpKeLln TG SMAGUOTIKNG NToV Gkpa Bondntikéc ywo péva kot pe Bondnoav
va Tpoywpnow kot va Eemepdom KaOe duokoiia. Emiong Ba ffeka va gvyapiotiown
tov Addktopa Oeddmpo OKOVOUOTOVAO OV OV TOPELXE TO ATOPAITTO LAKO Kol
YAPTOLES OLEVKPIVIGELG DGTE VO EUTEODC® TNV EPAPLOYN KOl VO, KATATOTIGTD TANP®G
GYETIKA LE TO OVTIKEIPEVO HEAETNG LoV, B MBeAa Vo EVXOPIGTIC® KoL OAQ TO LLEAT
tov Mlab yia to @A Kar gvydpiloto TEPIPArLoV epyaciog mov Exovv KOAMEPYNOEL.
Niwbo gvyvopmv mov glya v gukopics Vo GLVEPYAOT® LE TOLG TPOUVUPEPOEVTEG
EMOTNLOVEG.

Téhog Ba B va e0YOPIGTINC® TOLG PIAOVG LLOL KO TNV OIKOYEVELD [LOV TTOV
pe omP1Eay TVELUATIKG KOl DVAKO GTIV LEYPL TOPO GTASIOIPOUIa LoV,
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EKTETAMENH IIEPIAHYH

Ewsayoyn

H enelepyacio eikdvog elvar Evag KAAOOG TNG EMGTHUNG TV VTOAOYICTAOV Kol
™G ynowkng enegepyaciog onuatog. Avagépetal otn ddikacio eEaywyng TAnpo-
QOPLOV (CYETIKA LE YEDMUETPIKA YOPOKTNPIOTIKG, HOTIPa, YpOUATO K.AT.) amd pio €1
KOVO 1 €voL GOVOAD EIKOVAOV KOL YPT|ON TOV TANPOPOPLOV QLTMV Y10 TNV 0VOYVOPLoT
N €QAPULOYN EVOG HETAGYNUATIGLOV GE QTN TNV KOVA. ZNUePA, AOY® TNG TANODPOG
EQUPUOYADV KOl TOV GLVEXDSG LEAVOUEVOV amontNoe®V ot Bropnyavia Kot oyt povo,
10 gpeuVNTIKO €pyo mov oyetiletan pe Tov KAGOOo avtd avEdvel cuveymg o€ dooTA-
celc. Me eappoYEC GTNV WOTPIKY), GTNV OVOYVOPLGT] TPOTUTMOV KOl OVTIKELLEVOYV,
otV avtoKwnrofounyovio, e d0PLEOPIKE GLGTNLATA KAT. TOIKIAEG Kol OLOLPOPETL-
KEG oTPATNYIKES EMeepyaciog e EVPEMG AVENTLYUEVO EMGTHLOVIKO LITOPaBpo Eyovv
npotafel ava Tovg kopove. ‘Eva and ta koplo {ntiuote mov apopodv v encéepya-
clo ewovag elvar N amaitnon yuo EKTEAECT) GE TPAYUATIKO ¥POVO, M Omoin TEIVEL OTIg
TEPLOGOTEPEC MEPIMTMGELG VO Eval avEPIKTN LE TN cLVNGUEVT DAOTTOINGT] Ko EKTE-
Aeon o€ €va VIOAOYIOTIKO GVOTNU OV omoTteAeitan and évav enelepyaotr|. Eidwd
av 0 AGYog yivetal Yoo EVEOUATOUEVE GLGTNUATO, VITAPYEL EMIONG 1N AVAYKN Yot OGO
70 SVVATOV AYOTEPT KATAVAAMOT| EVEPYELQG.

‘Eva eveopatopévo oot opiletol mg 0molodnmToTe GLGKELT EVOMUATDOVEL
éva TpoypaUIaTIOUEVO ENEEePYOoTN, AL OEV ival amd POV TG £VOG VTTOAOYIGTNG
YeVIKOD oKOmo¥. Meptkég QopEg TO EVOOUATOUEVO GOGTNIO OTOTEAEITAL OO TOAAN-
TAOVG €MEEEPYOOTES, TEPLUPEPELOKA, KPLPEG UVIUES, OLOGVVOEGEIS KoL 0 GVGTOLYIN
emroma mpoypoppotilopevov miov (FPGA) pe okomd va viAomomoet po kabopt-
GUEVN OO TO YPNOTH KOl GLYKEKPEVOL LAIKOV oyediaom yuo tnv epappoyn. Tétown
GLOTNOTO ovaPEPOVTAL ®G cvothuata e yneida (SOC). Ta evoouatopéve cLoTH-
LLOTO, GTOYEVOVVY EOIKEG EPAPUOYES KOl £XOVV GYEONOTEL £TGL DGTE VO, TOPEYOLV LLLOL
BéLtion vAomoinomn dcov aeopd TV ToLTNTO EMeEpPyaciag, TNV KATAVAA®GT, TO
k6otog, ™V aflomotia k.AT. To edopa epappoydv tovg eivarl 1060 HEYAAO OV GYE-
00V 10 98% TV HKpoEMEEEPYAGTOV KATAGKELALOVTAL TPOOPILOLEVA Y10, EVOMUATO-
HEVa GLGTNUOTA.

Onwg avaeépnke, 1 vAomoinon pe amoxkieiotikn yprion g CPU dev sivan
TOVTO Amod0TIKN, KOOMS 1 o TOV epappoynv enctepyaciog ewovag yopaktmpile-
Tol amd peYAAN TopoAAnNAia, TNV omoio 0ev UTOPEl VO EKUETOAAEVTEL ETOPKAOC EVOG
eneEepyaotc. Ta cvotiuata e yneida mov evoopatdvouy FPGA kot CPU moapé-
YOLV OMOTEAECUATIKT MKOV@Vio HeTa&d TV 000, [LE AmOTELECHA VO EMTPEMETOL 1)
HElmoT KOTavAA®oN g Kot 1 avénon taydtnrag mov tpoceépet 1o FPGA og o epap-
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HOYT| TTPAYHOTIKOV YpOvov. QoTdG0 N avamTtuén TG €QPApPUOYNG UE TN GL-OYedinom
VMKOV Kol AOYIGHKOD €16AYEL ALENUEVT] TTOAVTAOKOTNTO KOl LEYOADTEPO YPOVO aVdl-
ntoénc. Ta tedevtaia ypodvia Opmg Exovv avamtvybel mokila epyareio mov Ponbovv
OTNV AVATTLEN, TOPEYOVTOS ETOUUEG AELTOVPYIEG KOl OMTOKPVTTOVTOAG OO TO OXEOINGTN
AETTOUEPELEG TOV VAIKOV Kol TNG SIETOPNG LLE TO AOYIGUIKO.

H mopovca simAopotikn €xel 0¢ oKomd tn oyediaon Kot VAOToinoT g &-
QopuLoYNG enefepyaciag ewoOvag TOV OVOUALETAL KOTAXDPIoTN (OTOTOTMOT)) EKOVOG
(image registration), yio éva 6OVOAO Sed0UEVOV TOV QMOTEAEITAL OO PMTOYPUPIES
LOTIOV YOP® oo TNV TEPLOYN TS IPdag.

Heprypopn Avartolrokig ITAakéTag

Ta FPGASs gival cuGKEVEG NUIAYOY®V TOL ATOTEAOVVTOL OO ETAVATPOYPOULL-
patifopevo vikod. Baoiloviar yopw omd po pntpo StoHopOCIUL®V UTAOK AOYLIKNG
(CLBs), ta omoia. cuvoéovial HEC® TPOYPAUUOTICOPEVOV SOCLVOEGEWV. AVTEG Ol
OLIGLVOEGELS TPOYPOULOTICOVTOL YPNCLOTOIDVTOS LUK YADCGO TEPLYPAPNS VAKOD
(HDL), 6mwg n Verilog koau n VHDL, pe okond tv vAomoinon pHog epoproyns Le
oLYKEKPLUEVN emBLUNTA AsttovpykdTnTa. Acdopévon 0Tt Kabe UTAOK AOYIKNG Hmopel
va €ivail VTOAOYIOTIKA aveEAPTNTO OO TOL LITOAOLTO, LVYNAA emineda TapaAAnAing Ko-
BilotavTon ikovd, pe amoTEAEGLO T GNUOVTIKY ETLTAYLVOT TOL ¥POVOL EKTEAECTG EVOG
TPOYPALLUOTOC.

210 moperBov, ta FPGAs dev evoouat®voviav 6to 1010 Tout pe tov eneéep-
vootn. Q¢ amotéleoua, 1 off-chip emkowmvia petadld Toug NTov SVGKOAN Kot avamo-
teleopotikn. To 2010 n etarpeian Xilinx gionyaye v owoyévela SOC cuokev®dv
Zyng-7000-All Programmable otv ayopd, n 0omoic. EVEOUOTMOVEL TPOYPOUUATICUO
Aoyiopikod evog ourupnvov ARM Cortex-A9 pe tov mpoypappoatiopd vAkol tov
28nm Artix-7 FPGA, mpoc@époviog emtdyvvorn pe xpion LAIKOD Kol EVOOUAT®ON
CPU, DSP, pviung kot ToAL®V meprpepelokav o€ pio povo cvokevn (Ewkova 1). Ae-
dopévov 6t 0 ARM emelepyaotg eivar tkavog va vrootnpi&el mAnpn Aettovpyka
GLOTNHHOTA, (TO 7O GLYVE YPNOCLUOTOLOVUEVO amtd T omoia eivan To Linux, dedopévov
OTL glval avoryToL KMOIKO Kol TOPEYEL L0, EOPULMUEVT] VITOCTNPIKTIKY KOWOTNTO) O
TPOYPOUUUOTIOTNG £XEL T OLVOTOTNTO VO OVOTTOCGEL TNV EPOUPLOYT YPNOLLOTOUDVTOG
cuvepyacio VAKOV/Aoyiopkol, 1 onoia ival WaVIKT Yo 6YESINOT] GE EVOOUATMOUEVO.
ovotquato.  H Xilinx ypnowonotei to tpotokorho AMBA AXI yio v entkovm-
vio peta&y g mpoypouuatilopevng Aoyikng (FPGA) kot tov ene€epyoaotn. To AXI
(ITponypévn Enextdoun Atacvvoeon) eivarl pépog tov ARM AMBA, o otkoyévela
OlwAmVv emkowvoviog yio ukpoeieyktés. To AMBA eivon éva cuvnBicpévo mpodtumo
YO T GUVOEST KOt TN SLOXEIPION TOV AEITOVPYIKOV Pmhok o€ Eva SOC. AtgvkoAdvel
TN GOOTN OVATTLEN GYESIACEMY TTOL EUTEPLEXOVY TOAAATAOVG EMEEEPYACTEG e PEYEL-
Ao apBpd eleyktdv ko meprpepetaxd. To AXI4 napéyetl PeATiOOELS, TPOG OPENOG TNG
TAPOyOYIKOTNTAG, TNG vEMELNG KOl TNG SOECIUOTNTOC.
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1
Processing System l
Flash Controller NOR, NAND, Multport DRAM Controller
SRAM, Quad SPI DDR3, DDR3L, DDR2

MPCore

NEON™ SIMD and FPU NEON™ SIMD and FPU

ARN® Cortex™ - AS ARM® Cortex™ - AS.

Processor 1/0 Mux

Snoop Control Unit

GPIO
. 2010 . 512KB L2 Cache. 256KB On-Chip Memory
. with DMA .

2xUSB
. with DMA .

2x Gigk

with DMA

AXI Ports

2 A’:l‘c“.nMux Prerammabb LDgIC PCle? Gen 2
Thermal Sensor (System Gates, DSP, RAM) 1-8 Lanes

Serial Transceivers

Multi-Standard 1/0s (3.3V & High Speed 1.8V)
[
Ewova 1: H apyirektoviki Tov svekevdv Zyng-7000 [4].

Yrdpyovv 1petg Tomot demapmv AXI4:

o AXI4 (1 AXI4-full) — yio amoutnoelg VYNNG omOd0oNG Kol QUEIOPOUNG
memory mapped enikowvoviag. Emtpénet putéc 256 dedopévav / dievbuvon.

e AXI4-Lite — ywo andn, younAng tayxdtntog memory mapped smikovovio
Hovo. Xyedov o eaeptd mopaiiayn tov AXI4-full odhd pe putéc 1 dedopé-
vovu/dtevbvvon.

e AXI4-Stream — ywo vynAng TayvTag pon dedopévav. Iapéyel ameplopt-
0TEC PUTEG OEOOUEVOV UE VO LOVOOIKO KOVAAL Y10 LETAPOPE GVVEXOVS PONG.
H emitpent @opd ¢ pong eivon pdvo amd tov Master otov Slave.

To SoC FPGA mov ypnoomodnke otnv mapovsa doTptPr] Yo To oyedto-
oud Tov registration og éva evompotopévo cvotnuo Ntav to Zybo Development
Board, mov katackevaletor and v Digilent ypnoiomoidviog to HKpOTEPO HEAOG
¢ owkoyévewng Xilinx Zyng-7000, to Z-7010. To Z-7010 Baciletor otV apyirekto-
vik) Xilinx System-on-Chip (SoC), mov evoopotodvel £vav dumbpnvo enelepyaotn
ARM Cortex-A9 pe éva Xilinx 7-series FPGA o610 1610 ohokAnpouévo. Akpipag o-
OGS KOl Ol TEPLOCOTEPES amMd TIG GAALEC GLOKEVEG NG oKoyévelag Zyng-7000, to
FPGA ovtd ivol kataokevaopuévo pe to mpdtumo g Artix-7 TpoypoppotilOnevng
AOYIKNG.

11



2ovropno Ocwpntiko Yrnopfabpo

To image registration givot pio epoppoyn eneéepyaciog IKOVAG TOV GVVAVTA-
TOL GUYVA GE €QAPUOYEC OPOONG VTOAOYIGTAV, TPIKNG OTEIKOVIONSG, GLUOTNUATOV
AGPOAEING KO CVTOOTNG OVOLYVOPLOTG GTOYOV, KOOMDS KOl Yiol TV 0VAALGT EKOVOV
Kol 0£d0UEVOY TOV GVAAEYOVTAL OO TOLG doPLPOPOLS. T Tapaderya, N evBLYPhLL-
Lo EIKOVIKOV OEO0UEVOV EMTPENEL GE 1ATPIKOVE EUTEPOYVAOUOVES VO, GUYKPIVOLV
OLOLPOPETIKA OTIYHOTLTO, 6TO ¥POVO HIOG CLYKEKPUUEVNG OVOTOMKNG TEPLOYNG, WE
oKOTO TNV 0E0A0YNOo™N TNG TPOAdOL 1N TNG KOTAGTOANG OPIGUEVOV TOONGEMY 1| TOL
TOGOGTOV EMTVYING L0 TPOTEVOUEVG Depameiog.

Optimizer
Lo
N T MM
::Tlt'latl_" L (~|—>——{ Transformer (< :r-i—-u
oin I__m__: ! ol
L3 g
No |:g': MT) (8!
'3 12
Ll I8!
T Yes P i Fy
opt =— ] :i—!

Ewéva 2: Apyrrektoviki Tov Registration Solver [6].

H Ewova 2 mapovctdlet ta S1dpopa cuGTOTIKA £VOG YeVIKOD registration solv-
er, e To o KVPLYL VoL gfvar Evag LETOGYNUOTIOTNG, £vO LETPO GUYKPLONG Kot piol pé-
Booog Peitiotomoinong. 'Eva pétpo g opodttog 1 ¢ andotacng vroAoyileton
HETOED TOV EIKOVOV € KADE EMOVOANYN KO YPNCLOTOIEITOL Y10 VO aropavOel yia To
av givol «emapk®dcy» gvbvypoupicpéves. Avt 1 dodikacioo eEAEyyetal amd tov opti-
mizer, mov Eexwvdel omd pio opykn extipmon kot kabopilel pa oepd amd endueva
Prinata yio va emtevyfel o PéATIoT gvBuYpdupion. [Hapakdte yivetal o covo-
un mopovasioen tov Kafevog amd ta Tpio ovTd KHPLO CLGTOUTIKA.

Métpnon opowdtyrac: o v pétpnon opotdtntog £xovv tpotadel drapopa
povtéda. Kamowo and avutd givar 1o dOpotspa TeTpay®dvev dlapopds Kot To afpoicua
AmOATOV O10PopdV. Q6TdG0 aVTES 01 dVO PEBOSOL Elvar eE0PETIKA AOVVAES KoL OEV
Tapdyovv KaBOAOL TPOKTIKA 1 ypNolpa amoteréopata. ADVO TKOVOTOUTIKEG Kol O
ovvnOopéveg péBodot eivar n péBodog Tov cLVTELESTH GLGYETIONG Ko 1| LEB0SOG TG
amd kovol mAnpoeopiag tov Matte. Kai ot 600 avtéc uébodotl petpovv opoldtra,
TPAYLLO TOV GNUOLIVEL OTL OVO TOVOUOLOTUTIEG E1KOVEG Ba £xoVV €val LETPO OPOLOTNTOG
ico pe éva, mov Ba peidveton kabmg ot ikdvee Ba amopakpdvovtar. H cuoyétion,
OmMG avaPEPEL Kal 0 10106 0 Op0og, eKPPAalel T0 TOG0 Kovtd eivar dVO peTaPAnTéC oTO
va £Youv ol Ypopptkn oxéon petasd toug. O cuvtedeotng cLoYETIONG VIToAoYileTan
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SLUPOVTOS T GLVOLOKVLOVOT) TOV dV0 PETOPANTOV LE TO YIVOUEVO TMV TUTIK®V TOVG
anokAlcewv. 'Eotm py y 1 cvoyétion petadd tov 6vo petafintov X kot Y, oy, Oy ot
TUTKEG TOVG OMOKAIGELS KO Lk, Ly Ol AVOUEVOUEVEG TIEG TOVG. Me v mapakdtm &-
Elowon vroloyileTon 0 GUVTEAEGTNG GLGYETIONG Py, y LETAED TV 600 EIKOVOV:

X;yYi — nxy nYXiyi — LX; ;
rx,y=2 i ~ 1Ry LXiyi — XX LY (EE.1)

(nZ— Ex0? [n v - Ew

Matte’s Mutual Information: Avt n puébodog petpd v auoPaio eEdptnon peta&d
TV 000 petafAntov, cppwva pe v Bewpia mBavotitewv. H egicowon and v o-
noio e&dyeton M amd Kool TANpoeopio givor n akdiovdn, 6mov p(X,y) eivor n and
KooV whavomra tov petafintov X kot Y kot p(x), p(Y) ot cuvaptioelg mokvoTn-
tag mhavotnrag twv X kot Y aviietolywg.

1K) = Y ) pllog RS20 (8. 2)
yEeY xeX

Ot mokvotnteg mbavotntog vroloyiloviar ypnowomoiwvtag to Kernel Density
Estimation (KDE), emiong yvoot) g uébodog Parzen wotoypaupatoc oty enekep-
yocio GNHOTOC.

Meraoympatiotig: O HETOAOYNUATIOTNG OmEWKOVILEL oNpeia TNG KIVOOUEVNG EIKOVOG
o€ véeg tonobeoieg oty ewoOva mov petacynuotiCetor. Baoel tov amoitmoemy tov
npofAnuartog registration, o HETAGYNUATIOTAG UTOPEL €ITE VO €IVl GUYYPOUUIKOS 1
TAPOLOPOAOCILOG. O GLYYPOUUIKOS HETAGYNUATICHOG opiletot amd po pqTpa 2 x 2.
[MTopaderypo GUYYPAUUKOD LETAGYTLOTIGULOV, O OTO10G KOl YPTCLULOTOMONKE GE VTN
™ dumhopatiky givor o affine petaoynuatiopds, Tov omoiov 1 e&icwon eaiveton mo-
POKAT®, O OTOIOG TPOLYLATOTOLEITAL YUP® OO TO KEVTIPO TNG EKOVOC!

[ ] [a11 a12 [9;:'::;;]+ IZ)Z:T:;Z] (E€.3)

az1 04z

, OTIOV Q11,022 Ol GUVTEAEGTEG KAUAKMONG TOV UETAGYNUATICHOD, Ol12,021 Ol GUVTEAE-
OTEC MEPIGTPOPNG, b1,bz 01 cuVTEAESTEG peTaTOTIoNG, X,y Ol TEMKES GUVIETOYUEVEG,
X,y ol apykéc ovvietoypéveg kot mMw=mh=500 otobepd yioa péyeboc edvaov
1000x1000 (middle Height, middle Width).

Optimizer: O optimizer gival veHOLVOG Y10 TNV EPAPLOYT IO OTOTEAEGLOTIKTG KOl
oLyva un eEAVIANTIKNG OTPATNYIKNG Yo avalnTnomn e KOAVTEPNG AVTIOTOYIoG Le-
0D TOV EIKOVOV GTOV EMTPENTO YDOPO TOV TAPAUETPMOV HETASYNUATICHOV. Ot dv0
uébodot Bertiotomoinong mov peketnOnkav eivor oo Downhill Simplex kou Powell Di-
rection Method. H pébodog Powell epappolet pia mo e&oviintikn avalntnon kot og
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AmOTEAEGHO OmonTel TOAD TTEPLoGOTEPO YPOVo enelepyacioc. [Tapatnpndnie dpmg 6Tt
Yo Tig avaykeg tig epappoync o Downhill Simplex Ntav erapkng Kot Tapdyet tKavo-
TOMTIKG ATTOTEAEGLLOLTOL.

"Eva mapddetypa mov divel pua 10€a yio 1o xpOvVo eKTEAEONC Kot TIG PEATIOTEG
napoyopueveg mapapétpovg (T1-T6) yio ektédeon oe vav eneEepyocTy TPOSMOTIKOD
vrohoyiot) TV 2.4 GHz givon 10 mapakdto. To mapddetypa avagépeTor oe emttuyn
registration peta&v 600 SLOPOPETIKAOV EIKOVAOV TOV 1610V HoTLoD.

Mivakag 1: Arotehéspata Tov Registration ywa avrirpoconsvTiké deiypa o€ ypiiyopo enclepyaoti

Measure Time(s)

1.0039 -0.0163 177.0986 0.0262 1.0002 -62.3076 0.78388 7.750371

Ev yéver mapatnprinke 6t Kot ot Vo péBodotl GuyKplong Tov avapEpnkay
apdyovv Topdpola anoteAécpata. Agv Topatnpnnke mepintmon 6TV onoio KOO0
registration métuye pe tn o kot amétuye pe v GAAN. o to Adyo awtd emhéydnke
va vhomomBei n néBodog cuoyéTions, Kabdg n evon TV eElo®cemv TG elval o a-
AN Kot o e0KoAo va vioromBel oto FPGA.

Pofy Ene€epyaciog

Méypt topa, Exel yivel pia mepNTTikn avaivon g Bewpiog wicw and to im-
age registration. Topa Oa yivel pa mapovoiocn g enelepyaoTiKng pong G€ mPO-
YPOUUOTIOTIKO ETimEdO Yoo TNV VAoToinon tov cvotiuatos. H Ewkdva 3 aneucovilet
aVTH TN PON, TOL HOLALEL e P amAomoinpuévn exdoyn g Eucovag 2.

To Final

Transformation and

Calculate
Load . ..
. Initial Optimizer
images .
Points

Transform and

Edge Detection

Measure

Ewovo 3: Po1j enelepyaciog Tov Registration Solver
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210 TPOTO 6TAS10 01 dVO EIKOVEG TPOG GVYKPIoN PopTmdvovTal ord to dataset
670 TPOYPOULO. AVTO Hmopel va Yivel pe SPOPOLS TPOTOVS, OTTMG T.Y. LE XPNON TNG
B1pAoONKNng OpenCV 7 pe avdyvoon amd apyeio KeEWEVon. Xe Eva O TPAKTIKO TE-
PRAALOV 6oL Ba EPaPLOGTEL TO CUGTNUA Y10 IUTPIKEG EQPAPULOYES, Ba VITAPEEL emiong
éva 6TAd0 TPV Yol T ANYN TOV EIKOVOV 0O KATO10 KAUEPO KOl OPTMCN TOVS GT1)
Hviun.

TN cLVEYELD, TPOKEUEVOD VO, EKKIVIoEL 0 aAdydpiBpoc Downhill simplex yua,
N+ 1 (dnhadn 7 oty mepintwon avtn) apyikd onueio 0o Tpénet va VToAOYIoTOV.
‘Eva oet apyikav (gvydv TOpoUETp®V UETACYNUOTIGHOD TOV OVIUTPOCSHOTELOVY TO
OploL TOL YOPOL VAL TNONG APYIKOTOLOVVTOL KOl VITOAOYILETOL 1 OHOIOTNTO UETOED
TOV EKOVOV Yo KaOe Eva amd avtd Ta (edyn.

O Optimizer yw t péBodo Downhill Simplex kolel opiopéveg cuvaptioelg
v va, dte€dyet v egpebvnon Tov Ydpov avalntnong. Mo amd Tig GLVUPTNCELS Ov-
té¢ oyetifeTon pe 1N PeAtiotomoinomn ¢ TPEYOLCOS KATAGTOONG TMV TOPAUETPOV,
EVA 0L SLOPOPETIKN YPNOILOTTOIEITOL Y10 va. peTtpnBel n opordta petald g otabe-
PNG EIKOVOG KO TNG KIVOOUEVNC EIKOVAG, OV TNV KIVOUHEVT] EIKOVA EPAPLOGTEL O TPE-
Yo petacynuoatiopos. To pérpo opordtnrog mov vroloyiletal oty ev Ady®m cuvdptn-
o1 XPNCLOTOLEITOL £TELTA Y10 VO 0TOPacicel 0 Optimizer wowo Ba mpémel va givor to
emopevo Prua Bektioctonoinomng.

To 40 otddio, mov ovopdleton “Transform and Measure” givat ovtd oL TTEPL-
ypaonke mapandve. O optimizer Ba eléyEel mpdTo AV KOVOTOlEITOL KATOW0 0O TOL
dvo kprtpla TepaTIopoV. Av var tote Teppatiel, aAlmg avalntd to enduevo Lev-
YOG HETAGYMNUATIGHOV oL O avénoet v opotdtnta. Ta dvo avtd kprtipla gival o
HEYI0TOC apOUOG EMAVOAYEDY KOl TO KATOPAL AVOYNG.

To tehkd otddio givar éva off-line otdd10 ¢ dadikaciog Kot TPOSPEPEL Lo
OTLTIKY| OVOTTOPAGTOOT TV OOTELEGUAT®V TOV registration pe yprion evtomopod ox-
LAV KOl GLYYDOVELONG EKOVOV. Emedn o otdyog ¢ datpiPng avtig NTav va emto-
yxOveL Tov alydpipo Tov registration, avtd to otado Epeve EE® omd TNV TEAKN LAO-
moinon ywo Adyovg anhdtnrtag. MeALOVTIKEG EMEKTAGELG LLE 0L TTLO TPOKTIKY EQOPLLO-
M 6o uropoHGaV Vo EVOOUATOVOLY 0UTO TO TEMKO GTASI0 GTO KOUUATL TOV AOYIGUL-
K0V, T0 omoio 0ev emPapvvel onuavtikd v enegepyacio xpovikd.

Ymhpyovv opiopuEVES TOPAUETPOL Ol OTTOT1EG EKTOC OO TNV OMOTEAECUOTIKOTT-
Ta. Tov aAyopiBuov emnpedlovv kot 10 ¥poOvo extéreonc. Mia amd aVTEC TPOPAVAS
gtva to péyebog g ekovag. Oco peyoldtepn N avaAvon TOV EKOVOV TOGO HEYOAD-
TEPOG 0 OYKOG dedOUEVDV PO eneEepyacio. Exiong ta dvo mpoavagepbévia kprrmpia
emnpealovv kot avtd pe ™ oelpd Tovs. [ToAy pkpdc apBpog emavaAnyemy pmopet va
unv glvon emopkng yio tov optimizer va Bpet pia BEATIoT AdoT, EVEO TOAD HEYAAOGC
Uopel vo. £yl O¢ AmOTELEGHO TEPITTEG EMOVOANYELS (emeldn o optimizer £yel Mon
Bpet to BEATIGTO dLVATO pETOTYNUOTIONO Ko cuveyilel va ydyvel dokomra). Katd ma-
popoto TpoTo emMpedlet Kot To KatdPAL avoyns. 'Eva moAd pukpd t€t010 0p1o mpoodi-
del otov optimizer éva ToAD avoTNPO KPLTHPLO TEPUOTIGUOD, LE OTOTELECUO TOMAES

15



QopéG M odkacia va yivetar agvarn, AOY® advvapiog ebpeons TOGO HKPNG OVOYTS.
Ao v GAAN av avtd 10 Op1o givar ToAD peydro o optimizer Bo vouilel 6t Bprike
BéAdTiotn Abon powpa kot Ba teppaticel Tpotoh dvimg TV meTHYEL. TELOC oNUavTL-
KO pOLo TailovV Kot 01 HEYIOTEG EMTPENTEG TYLES OTIG TOPAUETPOVS LETACYLOTIGHLOV
nov emiParel o ypHots. Avtég eEaptdvtal cuVHOOG and TG TPodiaypoapéc Tov da-
taset, Kot €meldn YPNGILOTOOVVTAL KOl GTNV OPYIKOTOINGT TV TOPAUETPOV EXNPED-
Couv Oyt novo tov Apdvo eKTEAEONG OALG KoL TNV OTOTEAEGHLOTIKOTITO TOV OAyopif-
Lov.

Yvoyeoioocn Yikov/Aoytopikov s E@appoyig oto
Zybo

O 6pog cvoyedioon avapépeTal oTnV ToPdAANAN TOGO TOL VAIKOV OGO KOl TOL
Aoyopkov. To Aoylopkod givat ovtd mov EKTEAEITOL TNV KEVTIPIKT LOVAdQ EMeEepya-
olag (CPU), evd 1o vAkd 610 FPGA. Mg KatdAANAN EKUETAAAELGT] TV SLVOTMV Y0
POKTNPLOTIKOV TOV KaBevog amd to dvo medio glvar duvatdv va vhomomBel o wo
amoteAespatikn oxedioot. O daympiopds € AOYIGUIKO Kot VAKO yivetol VoTepa amd
EKTEVN LEAETN SL0QPOPOV YOPOKTNPICTIKAOV TOV TPOYPALLATOS, LE TO KOPLo VoL Efval 1)
TOAVTTAOKOTNTO, TOV TPAEEMV, O ATALTOVUEVOS YPOVOS EKTEAECTG KOl Ol ATOUTIOELS GE
UVAUN. 2T GUYKEKPIUEVT] EQAPLOYT TPOTAYOVIGTIKO POLO Yo TO Soy®plopd Emanée
0 ¥poOvog ektédeons. Extoc amd ) pétpnon 1ov cuvoiikol ypovov, HETPONKE Kot O
xPOVog ov damoavdrtal oe kKaOe Eva and ta mpoavapepOivia otdda enetepyaciog. O
TOPAKATO TIVOKAG AVTITPOc®REVEL To Ypovo (pnali pe ta mocootd) tov “Transform
and Measure” otadiov oto Zybo. Miag kot To d€0HTEPO GTASIO TOL APOPE TNV APYLKO-
moinon kaAetl v o GuVAPTNON, 61O YPOHVO TOV TAPOVGIALETAL £YEL GLVUTOAOYICTEL
0 ypovog tov 2% ka1 tov 4” otadiov. Onmg eivor mpogavéc, n cvvaptnon “af-
fine_correl_func” givar to o ypovoPopo otoryeio tov alyopiBuov oe dAeg TIC TEPL-
TTOGCELC.

Mivakoeg 2: Katapérpnen povov oto Zybo yia keké kot kKaké (EOyos patidv

Good Pair Bad Pair

Total Time (s) 39,923572 103,084555
Transform and 39,921616  103,080554
Measure time (S)

Percentage 99,99% 99,99%

Me po o) obykpion pe to ypdvo ektéhecns mov mapovoidotnke otov I1i-
vaka 1 yivetar eavepd to 6o apyog eivar o ARM enelepyaotng mov mpoopiletat yia
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£va EVOOUOTOUEVO oot o oxéon pe évav emeepyaotny Desktop vroloyiot.
[iveton mpogavég 6t n svvaptnon “affine_correl_func” eivon avti mov Ba vAomomOsei
oto FPGA. O 6pog Good Pair avagépetal og gmitvuyég registration peto&d dvo eikod-
vov 1oV id10v patiov. O dpog Bad Pair avagépetar og gikdveg Tov id10v patiov ot o-
moieg dev NTav duvaTd v EVBVYPAUIIGTOVV, giTte AOY® EVIOVOV OPYIKOV TOPEKKAIGE-
OV gite MOY® NG TOPOLGING EAUCTIKMOV TOPALOPPDOCEDV TIC OTTOIES OV UTMOPEL vaL o~
vripetonioel to affine povtéhov petaoynuatiopov. Mropei eniong Tpoeavmg va a-
VOQEPETOL 6€ SOKILOoUEVO registration yia £1KOVEC SLOPOPETIKMOV UATIOV, UE TIC O-
moieg etvon BEParo ot dev vrdpyetl dSvvaty gvBuypauuon. Etvar cuvnbéotepo ta “ka-
K&’ Cevydpia va ypetdloviol Tapamdve xpovo ekTtéleong, eneldn o optimizer Oa wpo-
onafnocel vo a&lomomaoel OA0 10 TAND0G TOV ETTPENTMOV ETAVOANYEWDY TOL TOL TOPE-
YETOL.

A6 10 TOPATAVE OTMG emmONKE YiveTon avTiAnmTd T0 KOUUATL Tov B VAO-
nomBel oto FPGA. H @dptwon g €kovag kot o optimizer mpdkertor vo, VAOTOU-
Bovv 610 Aoyiopkd. Kébe popd mov o optimizer anattei Tov VITOAOYIGHO TOV HETPOV
opolOTNTOG HETOED NG oTafepn|g €KOVOS KOt TG €KOVAG OV petacynuotiletol, o
eneEepyaotc Ba emkowvmvel pe 1o FPGA kot Ba mepiuéverl péypt var ohokAnpmBet n
enefepyacia Tov. H dadikaoio ovtr Oo emavarapufdavetar péypt 0 optimizer vo neto-
¥l ovykhon kot va teppaticet. To akdAovbo oynpo avamapioTd QTR TV opYLTE-
KTOVIKN, HE EUPOOT) GTO SO MPIGHO VAKOV/AOYIGUIKOD KOl GTNV EXKOVOVIAL.

/ Software \

No
.
: To Later
Load Images Optimizer Yes—» C t "
‘omponents

f \ / Hardware \
Initial Points Transform
Calculation and Measure

Ewova 4: Avayopropds vMKov/Loyioptkod
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YLomoinon Tov XveTHHETOS

IMopovsioon TOV XvoTtaTIKOV XTorysimv oto Hardware

H gpappoyn avt cvopneptrappdvel tAnddpo aptOumtikdv tpdéemv oyt Hovo
He akepOiovg, AL Kuplog He OeKadOKOVS apBIOVE. Q¢ OmOTELECUO TPOKVTTEL TO
StAnupo oyetikd pe to TL axpifela Oa ypnowomomOel. Mikpn axpipela dekadikmv
umopel va. odnynoel e coPapd GPAALATO VOTEPO OMO TOAAEG EMAVOANYELS HE TN
GLOCMPELGT TOAGDV apUNTIKOV TPA&emv, Tov Ba Exovv MG amoTéAEsHO TOAVAG
avemtuyég registration. H apyikn vAomoinon omokAEIGTIKG 6€ AOYIGUIKO YPTGLULOTOL-
ovoe 64-bit avorapdotacn Tov dekadikdv. Qotdc0, enedn ot Topot tov FPGA egival
TEPLOPIGHUEVOL Kat TO, aptOUNTIKA KukAdpoTo dutAng akpifetog (64-bit) kataiapupd-
VOUV TOAAOVG TOPOVG, SOKIUAGTNKE Ko 1 povi axpifela pe 32-bit avamapdotoon.
[MopatmpnOnke 0Tt To amoteAéopata eiyov TOAD HIKPO COAALLO GE GYECT LE TNV OpyL-
K1 VAOTOINGN, GOAApA TO 0Toio OmTIKd dev YiveTan avtiAnTtd 610 TéA0C. 'Etotl emAé-
yOnke n povn axpifeta yio vioroinom oto FPGA. Eneidn ta ymoelokd KokAdpoTo yo
TNV VAOTOINGT| aPOUNTIKOV TPAEEDV LE OEKAOTKOVG aptBpovg eivar ToAdTAOKa, KoL M
BeAtiotomoinon kabevog amd avtd Eexwplotd amoterel Eva epeuvnTikd £pyo omd Hovo
TOL, £Yve XpnoM ETO®V KUKA®UATOV oV TTopéxel | Xilinx g popoen IP (intellectual
property) kot tov oroimv 1 AEITOVPYIKOTNTO EIVaL TPOGAPUOGIUT, AVALOYO UE TIG O-
vaykeg Tov oxedtaot. [0 cuykekpyéva, To TOPAKAT® YOPUKTNPIGTIKE UTOPOVV Vo
TPOGUPLOGTOVV:

e Asgtrovpyia: To IP pnopel va pvOpiotel yio vo vAomom|cel SopopeTIkEG TPa-
Eelg (0mmg TpdcOeon, TOALUTANGLOGLO, CLGCOPEVGCT], AVTIGTPOPT] KAT.).

e Latency: Latency ivotl o aptBpodc Tov KOKA®Y TOL amalTOVVTOL LEYXPL TO OTO-
téleopa pog Tpdéng va eival étotpo, amd ™ otiyun| mov Oa 00000V o1 £yKupeg
gloodot oto kOKAwpa. H Xilinx éyet Bécel avtd 10 YapaKTNPIOTIKO GE L0 G-
VIGTOUEVT TN, 0AAG av ypelaoTel, umopel va pewbel e fapog g cuyvotn-
Tag Aettovpyiag Kot pe emmAéov dEcuevon TOpwv. Avth 1 Lelwon woTdG0 dev
elvatl GNUOVTIKY Yo TNV EMTAYLVON TNG EPAPUOYNGS, KAOMDS 1 OAN dtadtkacia
etvon pipelined kot éto1 0 ypdvog emeEepyaoiog e€aptdtar omd Tov aplOpd TV
enovaAyev Tov yperalovtar va yivovv. Emopévmg, 1 HEYIOTN CUVIGTONEVT
TN emAEYONKe Y OAo oVTé T KVKAOUATE, OGTE Vo eEotkovounBovv 6o
TEPLGGATEPOL TOAVTLLOL TOPOL YIVETAL.

o  Xyuyvotnto Asttovpyiag: Avti 1 TOPAUETPOG VIAYOPEVEL TN UEYIGTN GLYVO-
TNTO TOV UTOPEL VO AEITOVPYNGEL TO KOKA®Ua. Atotnpdvtag to latency vynid
Kot ypnotponolmvtog mepiocotepa DSPS pmopel va odnynost oe peyarvtepn
EMTPEMTY] GLYVOTNTO AELTOVPYING.

o Xpnon nopov: Adym tov pEYOAOL TOGOD TTPAEEMV TOL TPEMEL VO, EKTEAE-
6TOVV, 1 TOPAKOAOVONGN TV TOP®V TOL YPNCLOTOOLVTOL Elval daitepal
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ONUOVTIKTY, DOTE VO SGPAAOTEL OTL TO TEAIKO GTAO10 VAOTOINOoNG Elvar €1~
K10, Yo vAomoinon oto ZYBO. E&owkovounon ndépwv emrvyydveton gite da-
mpovtog YnAd to latency eite ypnoonowwvrag nteptocdtepa DSPS.
Axkpipera £1660mv kar £06wv: Ot drubéoueg akpifeteg rav 1 pon (16-bit
avomapdotacn aptOudv Kivnmge vodlactoAng), n omAn (32-bit) kot 1 dutkn
(64-bit).

AVTd 660V aPopA TIG WOTNTES TV KVUKA®UATOV TTov Ba xpnoipomomBovv yio

Vv vAomoinon tev tpdéemv. H oyediasn Tou GuvoAlKoh GUGTHUATOG TOV VAOTOLEL TO
“Transform and Measure” amottel TV KATAAANAN S10GVVIEST] TOV AVOTEP® KUKA®-

UATOV, TPOGEKTIKO GUVTOVICUO TMV CNUATOV Kol TOV 0E00UEVOVY, KOOMS Kol KOTAA-
AnAovg edeyktég Asttovpyiag. [ ) devkodAvven g oyediaong N enelepyacia Y-
piomke o€ 4 01A01, TO KAOE £va amd TOL OOioL GUVOEETOL E TOL EMOUEVA TOV, KOl V-
AomomOnkav Kot 4 povadeg eréyyov. [opakdtm yivetar meprAnmtiky napovsiocn ov-

TOV:

Meraoympatiepog (Transformation): Eeoppoler to petacynuotiopd o€
Kabe éva and to pixel g kvovpevng ewkovac. Eicodot ivar or mapapetpot
LETOGYNUOTIGHOD KOl Ol GUVTETAYUEVES KOl ££0001 Ol LETAGYNUATICUEVEG GL-
VTETAYIEVES (e TO OeKAOIKO HEPOG ATOKOUEVO), Kot 600 THES TOov Ba ypeta-
GTOVV Y10 TNV TOPEUPOAT.

Ynoloyiopog Bapodv Iapeppoing (Interpolation weights): A&omotel tig
dvo Tég mov avagépnkay Kot vTohoyilel Ta TEGoEPA amattoVpEVa PApT Yo
EQAPUOYN oG TOPEUPOANG o€ Lo YelTovid tecaapmv pixel yopm amd Tig te-
AKEC GUVTETOYUEVEG.

Ynroloyiopog teMKNG TG petacynuaticpévov pixel petd v mopeppo-
M (Interpolation calculation): Aéyetar og €166d0v¢ T1g TIuéG TV PixXel yia
kabéva, and ta 4 pixel kot o 4 Bapn tov Tponyoduevov otadiov. E&odoc eivar
N teAkn tun pixel Tov TpowOeitar 610 TEAIKO GTAS10

Yvoonpevtég (Accumulations): Yroloyilet ta abpoicpata g E&icwong 1,
Aoppavoviag og €16000VG TV ££000 TOV TPONYOVUEVOL oTadion, KabmG Kot
v T Tov pixel e otabepng ewkdvag. KatdAinrog eheyktig avaiapupdavet
v Tpom®Onon tev pixel and ™ uviun otav avtd yperalovrat.

Ot gheyKTéC TOV GYEOAGTNKOV TTEPTYPAPOVTOL TALPOUKATO:

T'evitpro Xvvretaypévov (Coordinate Generator): Tlapdyet ypouur ava
ypopun {edyn cvvtetaypévov Kot 0€tel katdAAnia onpata eykvpotnroc. Emni-
ong eréyyetl 1o mote teppotilel n emeepyacio Kot avopével Kot KATGAANAO
onuo emavekkivnong oo to software.

Awyepretic Mvijung (Memory manager): Aéyetol g (6000 GLVTETOYUE-
veg and to, 6Tadw eneEepyaciog Kot EMGTPEPEL TIUEG TV PiXel mov aviieTot-
¥oUV o115 cvvietaypéveg avtés. Eniong sivar vrevBovog yio ™ @optwon tov
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ewovov otig Block Rams tov FPGA oty apyn tov npoypdupotos. To mog
AapBavovtal ot eikoveg and to software Bo. avapepbei apydtepa.

e Eykvpotnra Xvvretaypévov: Kdmoeg cuvietaypéveg Umopet vo aviiotoryt-
6TOVV G€ U1 £yKupeg Tomobecieg HETE TO HETAGYNUATIGHOV, PByaivovtag Onia-
oM ektd¢ opimv. AvTtdc 0 eAeyKTnG Ppovtilel va BEcel To oNUa EYKLPOTNTAG
TOV GLVTIETAYUEVOV 0VTOV 6T0 0.

o Koarayopntéic (Registers): ®povtifovv 10 cvvioviopod, kabvotepmvtag omn-
pota 1 0ed0UEVA TOGOVE KOKAOLG pOAOY1I0D 0G0V XPELGLOVTaL.

H Ewova 5 mopovotdler OAa ta avapepOévto cuotatikd otoryeio T oyedio-
oNG o€ £va TANPES GOGTN .

Seoftware Software
application application

Ao

=
H 2
2 =
- w
7] ‘=
£ =
) =
£ FPGA &
=
2
£
Memory 2
Manager/ Pixel values Registers e
BRAMSs g
=]
=
ransformed S
5 i 2]

Initial Coordinates pondiales
Intcr"p'olatlon » In‘tcrpola‘tmn ¥ o xecomilationg
Weights Calculation
h A
Termination Signal

Legends

_— Control signals

—_— Data

=> Software/FPGA

communication

B Processing Blocks
Q Control Units

Ewova 5: Yhomoinen tov Xvotipatog 6to Hardware

20



Ylomoinon Emkowovieg Metalv Enelepyacti) kot FPGA

Agdopévov 6t to péyebog e pvnune BRAM oe éva FPGA dev sivan apketd
peydAo yio va amobnkevtel pia oOAOKANPN elkOVa VYNANG gvkpivelag (256kB ocuvolt-
KN uvAun oto Zybo), amorteiton po amoteAecuatiky, a&lomotn Kot ypyopng Uetd-
doong petaeopd dedopévav. To tpwtdkoiro AXI4-stream givor 1) wo amotelecpartt-
K1 StBécun emioyn.

H yevikn otpoamnyiky] oTic mepIocoTePes e@apuoyEs encéepyasiog eikovag ei-
vo va EEKIVGEL TO Streaming tov Tpdtov YPOUU®V TNG EKOVIS, £T01 OOTE VO UTOPEL
va ekkvnoel v eneéepyacia tov to FPGA. Ta dedopéva mov Aappdvovror amodn-
kevovtal Ttpocwpvé o€ BRAMS, Kot o1 ETOUEVES YPOUUES LTOPOVV VOL GUVEYXICOVV VL
amocté hovtar 6tav 1 emelepyacio Exel PTACEL KATOL GTN HECT] KoL TO apyIKd d€d0-
péva mov elvar Mo amobnkevpéva ot BRAM dev eltvan ma aropaitnta. Xpnoyto-
TOLOVTOG £va EVINi0 KavaAL pong, éva véo 32-bit dedouévo pmopet vo petapepbei kabe
S1000y1KO KOKAO poroylod (mov wodvvapei pe téocepa pixel, ylati Eva greyscale pix-
el amattei 8 bits yio v avanapdotacn tov). Avtd T0 HOTIBO ATOTEAECUATIKNG ETL-
Kowaviog otnpiletot 6To unyavicpod aueonc tpocmédacns wiune (DMA).

To DMA glvar évag moAd onuavtikdg Unyavicos mTov TAE0V XpnoLLomoteiTaL
070, TEPIGGOTEPO EVOMUOTMOUEVO GLGTNIATO, 0AAG Kot 6€ OAovg Tovg desktop vrolo-
Y1oTéG Ko Oyt povo. Empénetl v anotedecpatikny emkowvovia petald tov enelep-
YOOTN, TNG KEVIPIKNG LUVIUNG KoL TV TEPLPEPELIK®Y TavTdg eldove. Xwpig 1o DMA,
6€ TOAOTEPO VTTOAOYIGTIKA GUGTNATO O EXECEPYOACTNG EMPETE VO EKTEAEL GLVEYMG
EVIOAEG aVAYVEOONG KoL EYYPOPNG GE LVIUN Y10 VO, EMKOWVAOVEL LE TEPIPEPEIOKA, LE
OTOTEAEGILO TOAAEG POPES VOL TPETEL VAL TEPIUEVEL ACKOTTO LEYPL TO OEOOUEVA VOL ETvar
£TOLOL KOl VO GTTATOAGEL TOADTILO XPOVO TTOV ol LITOPOVGE VO, APLEPDVEL GE OLULPOPE-
TIKEG EQOPUOYEC, pe amotédeopo Ty e€oupetikn peiowon tov throughput kot g olt-
KNG ToyvTToS Kot Kotavdiwons. To DMA cuvdéet Tig eEmTtepicéc GUOKEVES e TOV
KOp1o diowAo peTapopds dedopévav Tov cuvdéel Tov emelepyaotr| pe ™ pwvnun. ‘Etot
TAEOV 0 EMEEEPYOUOTNG AMOAAAGGETAL OO TO KOONKOV TOV TOAAATADY YEPAYLDY TOV
elye ko TAéov pecorafel povo pia eopd oty apyn Kot 6To TEA0G TNG HETAPOPAS de-
OoUEVOV, EMITLYYAVOVTOG £TGL VO EKTEAEL GAAO KOONKOVTO EVED TEPIUEVEL OEOOUEVQL
amto TN GLOKELY).

Eme1on n oyediaomn evog amoteAeoUATIKOD UNYOVICHOD EMIKOIVOVING TOL XP1-
ocwyonotel o DMA givan pio apkeTd ToAVTAOKN 010 01KAGio TOV OTOLTEL YVMOGT TOAV-
mAokmv drivers kot emPaphvel Tov oxedLOGTH XPOVIKA, £V, ETOLLO EPYAAEIO TTOV OVO-
paletar Xillybus ypnoyomombnke yio tv viomoinon g enkovoviag. Extog tov
ot o mopnvag tov Xillybus evoopatdvetar edvkola oty epappoyn, eivar kot mpo-
GOPUOGLUOG OTIG AVAYKES KOl TPOATOLTIGELS TNG EPOPLOYNG.
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Ta Xillybus IP ko Xillybus-Lite IP Cores

To Xillybus eivar pia owcoyévelo mopnivev vikod IP mov avartoydnkay and
v Xillybus Ltd. ka1 eivar cvpParoi pe moAhote kataockevaotég FPGA (Xilinx, Al-
tera) ko avamtvélakdv Thaketdv (Zybo, ZedBoard), kabmg kat pe SlopopeTIKA Agt-
tovpyikd cvotiuata (Windows, Linux). To Xillybus eivon éva cvotnuo mov viomoiei
to unyavicpd DMA kot Tapéyet pia £Tolun demoen yio Enkovovio Letalhd tov eme-
EepyaoTn Kot TNG TPOYpappatioung Aoyikng oto FPGA.

[Two ovykekpyéva, o emttayvving oto FPGA cuvdéeton pe to IP ypnopomolod-
vtag ovvnOiouéveg FIFOs (First-In-First-Out douég dedopévav), to mAdtog Kot to Pd-
0og TV omoiwv umopovv va puBueTovV amd T0 GYedlaoTy. Alagpopetikr FIFO ypnot-
pomoteitan yo. ta. dedopévo mov petadidoovrar amd tov host mpog tov accelerator ko
drapopeTikn Yo Tov accelerator mpog tov host. Katd tnv ekkivinon tov cuotnUaTog, 0
Xillybus driver exyowpei koatdAiniovg DMA buffers oty xOpio pviun. Ta dedopéva
OV UETAPEPOVTOL OO 1) TPOG TOV EMTAYLVIN ATOONKEVOVTAL TPAOTO GE AVTOVS TOVG
buffers. And v mlevpd ToV AOYIGHIKOD, Exel avamtuyBel Eva TETPYUUEVO TPOYPOLL-
HaToTikd HovTEAO TTov dtaxelpileTan 10 KAOe pedpa emkotvaviag (avayvwoon Kot Y-
ypaen) o¢ apyeio. cvokevdv (device files). Avtd onpaivel 6t vroopilovtar ot
KMaookég eviodég “open”, “close”, “read”, “write”. To 6voua TG GLOKEVNG EMAEYE-
To Katd to 6THoo tov ovotiuatog oto IP core factory xoi pmopel va Ppebel oto
/dev/ directory og éva Linux Aettovpyikd cvotmua. ‘Etotl pia tumikr eviodn avoiypo-
10G ToV apyeiov Ba pmopovce va givar kbmmg £Tot:

fd=open(‘“/dev/host to fpga device”,O_ _WRONLY);

To Xillybus-Lite eivon évag mopivag mov VAoToLEl T0 TPMOTOKOALO ETKOWV®VI-
ag AXI4-Lite, To omoio eivar Poikd KOl OTOTEAEGLOTIKO Y10, EMIKOWVOVIO, OTULATOV
(.. oNUOTO EKKIVNOMG, TEPUATIGHOV, EVNUEPOONG KAT.), 0OV TPOCPEPEL EVKOAN
mpocPaon oe povadeg pvnung evtog tov FPGA. To mpoypalloTioTikd Hoviého sivort
oxedov id10 pe avtd tov Xillybus, pe ™ povn dwpopd va éykertor oto 6tL 11 CPU ko
10 PL mpémnet va €ovv pia Kowvn avtiotoiyion UvAung yo avoeopd oTig idteg dtev-
Bvvoeic. Emopévaog, n diebbuvon oto ydpo ewovikng pviung g depyaciog software
TPEMEL VO OVTIOTOUYIGTEL GTNV TPAYUATIKY) QUOIKY] 01evBvven g doung uvnung (m
omoio givor cvvBog wo 32x32bit RAM). Metd tig katdAinieg pvBuiceic kot opyt-
KOTOWOELS, M avAyveOon 1N €yypaen otn euoikn dievbouvon e pviung RAM avdaye-
TOLl G€ oL amAn Agttovpyio ovabeong petald HETAPANTOV GE TPOYPUUUATIOTIKO EMi-
nedo.
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To IIpopinna Mviung kot n ExiAvon tov

H apyrtektovikn mov meprypdonke dev pmopet vo Aettovpynoet yio 1o dataset
aLTAG NG OaTPIPNC, emeldn 1o péyebog TV eOVOV givol pHeyaldtepo amd T Stdé-
own pvnun otig Block Rams tov FPGA. Kabe ewcova €xer péyebog 1Mbyte, evid M
GLVOMKT uviun Ttov givan dtabéoun otig Block Rams eivar 256Kbytes. Avtd 1o mpod-
BAnuo Oa propovoe va amopevydel €dv to registration ypnoyomoloboe £vo KAOOGIKO
potifo mpdéGPacng ot HUVAUN OTMOC Ol TEPICGOTEPEG EQPUPUOYEG otV enelepyacio
eKOVOV. Avtd Tov cuvnBmg yiveTon etvar va oTéEAVOVTOL Alyec YPOUUES KAOE popd e
YPOUUIKO TPOTO (ONAOY| ad TNV apyn Kot Uil 1 TEPIOCOTEPES SLUOOYIKES YPOUUES
KGOe Qopd) €161 MOTE VoL £l 0 EMTAYLVTNG OedopEva Vo, emeEepyaoTel, Kol Log Kot
Ba eivol yvooto to mota dedopéva Ba ypelaoctel 6T cuvEKEL, AT Vo TPOETOUALOo-
VTOL Y10, VO, 0T0GTOAODV OUECMG LETA.

Avto dev vpioToTon oty mEpintmon tov registration solver, yati and ™ evon
TOV LETOCYNUATICUAOV dgv glvar duvaTdv va eitvat yvmoto to potifo tpocmélaong g
LVAUNG €K TOV TPOTEPWV, KOOMG O1POPETIKA TPOCTLLAL KOt TIES TOV 6 TOPAUETPOV
001 YOUV G€ SLaPOPETIKES dleLBHVGELS Kivong He dPOPETIKES KAMOES LEGO OTNV €1-
kova. ‘Eva oymuotikd mopddstypo yio vo yivel auti 1 GOUTEPLPOPH KATAVONTH Oive-
o otV Ewcova 6. Etov apiotepd mivoko @aivetal to apyiko pixel g otabeprg €i-
KO6vog Kot pe kitpvo ovuPoriletor 1 KAOOGGIKY YPOUUIKY TNG TPOOTEANCT. XTO LE-
oaio mivako to KOKKivo pixel ivatl 1o peTacynUATIoUéEVO KOKKIVO TOV aploTepol -
voka, Kot pe K40 d1apopeTikd ypdpo copforileton kot pio S1opopeTiky mhovn dev-
Buvon mpooméraong. Malota, AOy® amoKomG ToV deKadikoh HEPOVS UETH TO LETO-
oynuatiopd, N mpoomédact pmopel va eivar akdpo mo moAVTAOKY, OT®MG QoiveTol
otov de€1d mivaka. Qg amotélecpa sivor advvatov vo PBpebdel évag amotelecpaTikog
TPOTOGC TPOGTELUCNG TNG UVIUNG, YIOTl atAd 0vTOG Oev elval YvwoTdg €K TOV TPOTE-
POV, OALE TPOKOTTEL KOTA TN d1dpKELW TG ENEEEPYOTIOG.

=n’ N

Ewéva 6: AlogopeTikd potifoa mpoctélacng HeTd TNV EQUPROYH TOV HETACYNLATIGHOD

Mo mv aroguyn tov TPoPANUATOG 0LTOV, SOKIUAGTNKE Vo, Yivel Glikpuvon
(downsizing) tng ewovag e draotdoelg 256X256. Avtd mov mapotnpOnke fTav mo-
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A0 evdlopépov kat xprotpo. O telkog PEATIOTOC HeTOoYNUATIGUOG TOV TOPAYEL O OP-
timizer yio tic downsized sikoveg £xel ToAD pikpd oEAAUATO OGOV aPOPE TIC YWVIES
KoL TG KAMUOK®OGELS, KO Ol TOPAYOLEVES LETATOTICELS Elvat GYedOV TO Va4 TV apyIKOV
(6nwg mpokvtel amd ™ dwipeon 1000/256). Avtd onuaivel 6Tt pwopovv va xpnot-
pomomBovv ot downsized ewdveg yio vo Bpebel o PEATIOTOC pETAGYNUATIONOC TOV
ApYIKAOV eKOVOV. Adym Mydtepwv dedopuévav TTpog encéepyocio emTuyydveTol £T61
KOL [0 EMTAYLVVOT], G€ cLVOVACUO pe TV emttdyvvon mov Ba emitevybel Aoy tov
FPGA. Amouteitar BEPata va evoopatmbel Loyiopkd koppdtt mov Bo viomolel
ouikpovvon, Tov omoiov 0 ¥pdvog ekTédeonC ival LIKPOG o€ oxéon e To registration.
Y10 TAaicto TG SUTAMUOTIKNG, XPNooromonke Eva étolpo epyaieio yio va Anedodv
ot downsized siwovec Tov dataset, ondte dev evoouaT®ONKE Gov TPOHYPOUUUA GTO AO-
Yokd 1 dtadikacio avT.

A&oA0yN 61 TOL XVOTHHOTOG

210 keQAAao avtd Bo yivel TOPOLGINGN TV VTOAOYIGTIKOV TOP®Y TOL
ypetaletal n telMkn vAomoinot, kabdg Kol o GUYKPIOT TOPAYOUEVOV OTOTEAEGLLA-
TOV Kol YpOvev ektéheong petad g viomoinong pe ovoyediaomn  vAko-
V/Aoy1opiKoD Kat d1apopmv dAL®mV viomomoewy. O mivakag 3 Tapovotdlel To TAR00g
TV dbéoiuwv Ttopov tov FPGA mov decpevtnkav amd ) oyedioon.

Mivakag 3: Xpnowponoinon Mopav

Z-7010 resources Available Used Utilization

LUT 17600 14164 80.48%
FF 35200 22621 64.26%
BRAM 60 35 58.33%
DSP 80 76 95%

[Mveton eavepd yiati n epappoyr| amortel TOAAOVS TOPOVGS, MG ATOTEAEGLO, TNG
EKTETAUEVIC YPNONG TNG OPLOUNTIKNG KIVITAG VITOSUGTOANG, Kot yioti 1 Ot akpi-
Bewo 0 Ba pmopovoe va vaomomBel, dedopuévou OTL amaitel TOAD TEPIGGOTEPOLS TO-
povg amd v 32-bit avomapdctacn. Adym opraxng xpnong tov Look Up Tables
(LUTS), to ovykekpuévo FPGA dev pmopei va vroompi&el maporiniia. Av vanpye
enapkég TANO0g TEPIEGEVOVTOV TOPWV, O UTOPOVGE TO LAIKO VO SITAACIOGTEL 1 TPL-
mAoclooTel Kot OAOKAN PN M emeCepyacia va yopiotel og avedptnto Koppdrtio mov fo
Aertovpyov mapaAAN A, TOAAATAACIALOVTOG £TGL TV EMTAYLVON KOTA Evav Topdyo-
vta 2 1 3 avtictoya.
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O mopaxdto® mivakog emOekviel TO LeTafdAietor To TANH0C AOYIKOV HoVA-
d®V TOV YPNOOTOLEITAL OO £V KOKAMUO TOAALOTANGIOGLOD LE TNV EIGOYMYN ETL-
mAéov DSPs. H minpnc a&lonoinon twv DSP frav arapaitntn dote va “yopéoel” n
oyedioon oto FPGA tov Zybo.

MMivaxoeg 4: Metapoin Iépov Morremracracty o€ oyéon pe thibog DSPs

Number of LUTs FFs
DSPs

1 245 437

2 115 242

O tehkdg ypovog ektéheons g ovoyediaong oto Zybo cvykpidnke pe tov
AVTIGTOL(O YPOVO EKTEAESTG YpNotpomoldvtag eEolokAnpov tov ARM tov Zybo (ue
péytom ovyvotmta Aettovpyiog 900MHz ka1 DDR uvfun 512 MB) kot pe tov avti-
OTOLYO XPNOLLOTOIOVTOG Hia YpRyopn, avtovoun CPU evdg desktop vmoroyiot) (pe
péytot ovyvotra Aettovpyiog 2.4GHz kot RAM 6GB). ITpotod topovciactel 1 60-
YKPLOT TOV ¥POVOV EVOL GNUOVTIKO YOPOKTINPIOTIKO TOV KUKADUOTOG GUGGMOPEVCNG
OV XPNGLOTOLEITAL Y10 TOV VTOAOYIGHO TV abpolcudtov otnv E&locwon 1 npénet va
avorvbei. Avtd to kKoKlopa (Tov givor oyedacpévo and v Xilink) Tpota otpoyyv-
homotel T1g €16600V¢G Kot petd extedel TNV cCLGGMPELON. UG ATOTEAEGHA, VO LKPO
COAALO GLGGMPEVONG TPOcTifeTal GE KABE EmMOVAANYT GTOV TEMKO VITOAOYIGUO AD-
Yo TG oTpoyyvromoinone. Ev amovcio ehaotik®v Topapopemdcsmy, 6mov o optimizer
glval evotadng, avtd T0 cEAApa givor Pikpd Kot 0ev EXNPEALEL OPVNTIKA TV OTTIKN
ATEIKOVIOT) TG KOTOYMDPLOTG.

Ymapyovv 6vo aKOUN TOPEYOVTEG TOL EIGAYOVV COAALN. GTOVS VITOAOYIGHOVC.
O évag eivar n emAoyn| petald povng Ko duthng axpipeiag yio tnv aplOuntikn Kwn-
TG VOGS TOANG. O devTEPOG elvar M HEBOSOG avlyvmong TG EIKOVAG GTO AOYIGLLL-
k6. H @ooptoon tov swoévov pmopel va yivel gite ypnoomoldvoag tn PrAtodnim
OpenCV eite anobnkedoviog v oOve 0¢ apyelo KEWWEVOL Kol KAVOVTOS avayvmon
and avtd. Agdopévov 0Tt ) gykatdotaon g Pipaodnkng OpenCV oto Zybo dev 1-
TaV €QIKTH, ypnolomodnke n devtepn péBodoc. Xty mepintwon gvotabdv opti-
mizers yio KoAd gvOVYPOUUIGUEVEG EIKOVEG YWPIG EAAOCTIKEG TOPUUOPPDOGCELS, TO
oQAAOTE OVTA dgv elval TOAD onuovtikd. MoOMg ot 256X256 ekdvec PLETOGYNUATL-
otovv Eava oe 1000x1000, to péytoto oceaipa petatdmiong mov Ppébnke (mov gival
TO TO CNUOVTIKO) HETAED TOV dapopov uedddwv ntav 9 pixels mov eivor Arydtepo
and 10 1% Tov TAATOVG NG ekOVaG. [TpakTikd avTd onpaivel 6TL OTTIKA TO registra-
tion e&axolovBel va meTvyaiveL.

Agdopévov 6tL o optimizer gEgpevvd 10 YHOPO TOPAUETPOV Yo pio BEATIOT
AOoN, Kpd GEAALOTO OTIG LETPOVUEVEG OLOIOTNTEG UTOPEL VAL 001 YOOVV GE dLOPO-
PETIKA Prjpato kotd tn odpkela g Pedtiotonoinone. H tehkn obykhon pmopel va
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glvonl axopa epimov 1 1010, AAG avaioya pE To GEAALOTO, EVa S1oPOPETIKO TAN00G
EMOVOAYEWDY EVOEYETOL VO ATOLTOVVTOL HEYPL Vo emitevydet n ev Adym cvykhon. To
AMOTEAEC LA AVTOV TOL PAVOUEVOD lvar OTL 1 emitdyvvon dgv glvar 1 101 o€ OAES TIG
TEPMTOGELS, OAAE TOWKIAAEL OVAAOYO LE TIG EIKOVEG-ELGOO0VE. O TOPAKATO TIVOKOG
amewkovilel 1o ypdvo extéheong yio 3 emtuynuéva registrations wkon 1 ovemtuyés yio.
v enegepyacio Tov downsized ewovov (256x256). Kabe ypdvog mov ameikovileton
TPoépyeTol omd To PEGO Opo TV Ypovev 100 ektedécemv Yoo po o otabepn kot
GTOTIOTIKAOG 0pOT| HéETpN oM.

Mivakag 5: Zoykpion ypoveov ektéreons netacd 0LV TOV VAOTOGEOV

CPU/FPGA  Standalone CPU Standalone CPU

co-design ARM in Zybo in desktop com-

puter

First Successful regis- | 0,31169519 12,583982 1,10332952

tration time(seconds)

Speedup x40,37 x3,53

Second Successful regis- | 0,29721025 19,729760 0,87024528

tration time(seconds)

Speedup - X66,38 x2,93

Third Successful regis- | 0,29172961 10,775993 0.6954013

tration time(seconds)

Speedup ! x36,94 x2,38

Unsuccessful  registra- | 0,26560579 11,236088 0,98315164

tion time(seconds)

Speedup ! x42,30 x3,37

To telkd Bépa mov mpénet va Anebel vedoyn eivon n modtNTa TOV TOPOLLE-
TPOV UETACYNUATIOUOD TOV TPOKOITOVY amd To registration mov vAomoigiton pe ov-
oyediaon vAKov/Aoyiopkoy. Ot cuykpicelg Bo yivouv e oyéon UE TIG aVTIOTOLXES
TOPAUETPOVG TOL dnutovpyovvtot og Eva Desktop PC mov ypnowomotei Evav avtdvo-
po emeepyacty). XTNV TPAYLATIKOTNTO, M0 O EKTETAUEVN GOYKPLon EAafe ympa,
KoL TOPAKATO YIVETOL L0l OTEIKOVIOT] TOV ATOTEAECUATMOV TOV TPOKVLITOVY Otd 4 O1-
aPOPETIKESG Pefddovg:

e Avtovoun Desktop CPU yio apywkd peyén ewcdvag (1000x1000) ypnoyto-
nowwvtag OpenCV ko dimAn axpifeta. (Method 1)

e Avtovoun Desktop CPU ywa downsized ewoveg ypnoporoidvrag OpenCV
ko St akpifeta. (Method 2)

e Avtovoun ARM CPU oto Zybo yio. downsized gikoveg ypnoIUOTOIOVTOS [O-
vn akpifeto kot avayvoon amd apysio. (Method 3)

26



e FPGAJ/CPU ocvoyediaon oto Zybo yioa downsized ekdveg ypnoLOTOIOVTOG
povn akpifeta kot avayvoon amd apyeio. (Method 4)

®a peremnBodv dvo mapadeiypato yro ke péBodo, To Eva pe mOAD PIKpO Te-
MK6 o@dipa (OVCLOGTIKG OIGULOVTO) Kol TO GAAO UE VO GYETIKA HEYOADTEPO GOAA-
po. Kot ta dvo mopadeiypota avapépovtal o€ emttvynuéva. registrations. O Iivakeg

6 Kol 7 oVOPEPOVTOL OTO. ATOTEAECUATO TOV TPMOTMOV dVO0 HeBOGOWV.

ivaxkag 6: Amoteréopoata Me0édov 1

Parameters First pair Second pair
T1 1.009586 0.992332
T2 -0.016319 0.018466
T3 178.587102 -194.799257
T4 0.027438 -0.015719
T5 1.003454 0.990693
T6 -62.193396 -23.551012
Measure of Match 0.783938 0.827221

MMivaxag 7: Amoteréopata MeBodov 2

Parameters First pair Second pair
T1 1.002974 1.045161
T2 -0.015803 0.026128

T3 45.320175 -48.672958
T4 0.024869 0.000492
T5 0.997309 1.011216
T6 -16.065662 -5.656442
Measure of Match 0,792186 0,797225

[Tpokeyévov va amo@avBodpe yuo to €av 1 dgvtepn LEBodog elvar emapkng
oe&ayeton por cHyKplomn TV TapouETpmy pe ™ pébodo 1. Ao tic mapapétpouvg T1,
T2, T4 ka1 TS5 mov ava@épovtarl oty KAUAK®ON Kol TNV TEPIGTPOPY| TAPATNPELTOL
01t amokAicelg petald Tov 000 pueddowv eivatl moAd pkpés. Ot o GNUOVTIKES Tapd-
petpot givar ot T3 kou T6 mov avapépovror ot petatomor. [loAhamiacidlovtag v
T3 oto mpdto Levydpt pe to 1000/256 = 3, 90625, mpokvmter T3new = 177, 032, 10
omoio givor mepimov 1,5 pixel Aydtepo amd 1o T3 g pebodov 1. Avtd 10 opdiua
€lvol 0OTLOVTO OTNV OTTIKY OTEIKOVIOT), LETO TOV EVIOMIOUO OKUMV Kol TOL Image
fusion.
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puéonKav oto Zybo.

Ot ITivaxeg 8 ko 9 avagépovtal oTig emdpeveg 600 neBodoLS, 01 omoieg ePap-

MMivaxag 8: Amoterhéopata Me0odov 3

Parameters First pair Second pair

T1 1.010045 1.040799
T2 -0.015795 0.025317
T3 45.801357 -48.795601
T4 0.027911 -0.001520
T5 1.003294 1.009725
T6 -15.859092 -5.936245

Measure of Match 0,792874 0,799729

Mivaxkag 9: Anoteréopata Medddov 4

Parameters First pair Second pair

T1 0.990064 1.002257
T2 -0.017116 0.023562
T3 44415871 -48.941826
T4 0.021519 -0.011582
T5 0.989229 1.034919
T6 -15.909966 -5.749107

Measure of Match 0,780669 0,806234

[Mvetol apéomg avepd OTL ToL GEAAUATO OEV ETNPEALOVY TNV TOLOTNTO TOL
registration solver, apkei BéBata vo unv vadpyovy EAACTIKEG TAPAUOPPDCELS KOL O
optimizer va givon evotabng. Inpeidvetor 6Tt OAa ta (evyn €1KOVOC 6TO GUVOLO d€50-
pévov, ta omtoio, uropohv vo, VBVYPOUUIGTOOV EMLTUYMG LE TN YPNON TOL GLYKEKPL-
pévov registration solver, eiyov 1o 1610 KOVOTOMTIKG OTOTEAECUATA LE XPTOT OOV
TV peBOdwV oV avaeépOnkay mponyovuévec. g amoTéAeola, emTeLYONKe emTd-
xovon Oyt Lovo Ady® TG GLPPIKVMOOT| TG EIKOVOG, OAAGL emiong Adym Tng Yp1oNg Tov
FPGA, smruyydvovtog akoun peyodlutepec taydtnteg omd ot apykd. [lapatnpovue
ot registrations wov apykd yperaloviovoay icwg kot 100 devteporenta oto Zybo yio
va oAokANpwBohv, Topa yperalovtal poig 200-300msec, sakorlovbdvTag vo mopd-
YOULV 1IKOVOTOMNTIKG OTOTEAEGLLOLTOL.
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CHAPTER 1. INTRODUCTION

1.1 EMBEDDED SYSTEMS AND IMAGE REGISTRATION

An embedded system is defined as any device that incorporates a programma-
ble processor, but is not by itself a general-purpose computer. Programming of em-
bedded systems can be done in machine code or by using any higher level program-
ming language, given that the compiler of the corresponding language is available for
the particular processor. Sometimes the embedded system consists of multiple proces-
sors, peripherals, caches, interfaces and a field-programmable gate array (FPGA), in
order to implement a user defined and hardware specific design to the application.
Such systems are referred to as Systems on Chip (SoC).

Embedded systems target specific applications and are designed to be optimal
when it comes to processing speed, power consumption, cost, reliability etc. Range of
applications is actually so immense that almost 98% of all microprocessors are manu-
factured as components of an embedded system. Concerning the main fields of appli-
cation, cars and robotics stand out, because of the wide variety of sensors and cameras
these systems use and the amount of data that needs to be processed. Noteworthy is
also their widely use in the majority of domestic devices or appliances, such as refrig-
erators and electrical ovens, as well as in medical applications.

Image processing is a field of computer science and a subcategory of digital
signal processing that has a huge variety of applications. It refers to the process of ex-
tracting information (regarding geometrical features, patterns, colors etc.) from an im-
age or a set of images and using that information for recognition or to apply a trans-
formation to that image. Image processing is the practical solution to the following
problems:

e Classification

e Pattern recognition
e Feature extraction
e Projection

Image Registration is a fundamental task frequently encountered in image pro-
cessing applications. It is used in computer vision, medical imaging, security systems,
military automatic target recognition and analyzing images and data collected from
satellites.
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Figure 1.1: Registration Example

Figure 1.1 presents an example of how image registration works. The left pic-
ture is the so called floating image, meaning the image that will be transformed in or-
der to be aligned with the middle picture, which is called the reference image. If the
alignment works and the algorithm returns a good measure of match, then by observ-
ing the result of the transformation one can conclude whether or not these two photo-
graphs are of the same place.

In medical applications, images of similar or differing modalities often need to

be aligned as a preprocessing step for many planning, navigation, data-fusion and vis-
ualization tasks. Commonly, the alignment of imaging data allows medical experts to
compare different snapshots in time of a specific anatomical region, hence evaluate
the progression or regression of certain pathomorphic conditions or the success rate of
a followed treatment scheme.
It is quickly understood why embedded systems are widely used to run image pro-
cessing applications. Application specific design will allow the effective use of the
available resources in order to (sometimes) achieve real-time execution if required,
and help meet the low power requirements.

1.2 SOC FPGA IN IMAGE PROCESSING/IMAGE REGISTRA-
TION

Designing the application using FPGA has both advantages and disadvantages. The
main advantages are listed below:

1. High parallelism: Since the FPGA consists of a large amount of inde-
pendent (but connected in a programmable way) logic elements, it enables
high levels of parallelism, since different segments of the program’s code can
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be mapped into different logic blocks and run separately from the rest of the
code. Of course, data dependencies will still exist, obliging careful synchroni-
zation and design flow.

2. Effective Pipelining: The multi-stage pipelining of a standard processor is
highly affected by data-dependencies, which means that a Read-after-Write
dependency will always have to stall until the required data is valid and ready.
This pipelining is also limited to only a few streams of operations. The FPGA
however allows a multi-stage pipelining in which the data dependencies will
only stall once in the first operation in a loop of operations (stall will be equal
to the latency of the operation), whereas the processor’s pipelining would need
to stall in each of the iterations. What this means is that in the FPGA the IPC
(instructions per cycle) will be equal to 1 (or n, where n the level of parallel-
ism), whereas in a standard processor system that will never be the case. This
means that operations that will be repeated multiple times in a loop will be ex-
ecuted a lot faster in an FPGA.

3. Processing Speed: Because of the first two reasons it is easily concluded
that programs that require multiple iterations will be executed a lot faster in an
FPGA. In most image processing applications, if the available resources in the
FPGA allow it, the image can also be split in sub-blocks and the whole process
will be partitioned into independent parallel processing blocks.

4. Lower power consumption: One of the major factors of power consump-
tion in digital systems is the clock frequency. Since the FPGA can achieve
higher speeds using parallelism and pipelining, the clock’s period can be sig-
nificantly increased (thus reducing the frequency proportionally), resulting in
lower power consumption.

The main disadvantages are listed below:

1. High complexity and development time: Despite the obvious advantages
that were previously listed, the development time in designing an application
on an FPGA can be longer than expected. The main reasons are the high com-
plexity of the lowest possible level of design, in combination with the time-
consuming debugging, which requires re-generation of the bitstream that pro-
grams the FPGA every time a new change needs to be tested.

2. Resource and Memory Limitations: Although FPGAs have plenty of re-
sources that can be sufficient for most common applications, it may not always
be the case. Certain complex algorithms with a higher than average data pro-
cessing may not be optimally implemented on an FPGA, because of limited
resources. Also, unorthodox memory access patterns may render the problem

memory-bound, thus making it difficult to implement the design effectively.
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1.3 THE GOAL OF THIS THESIS

As mentioned above, it is obvious that image processing has a wide variety of
applications and as such, more and more different algorithms have been introduced in
order to address each one of the different problems. However, since the demand for
better image quality, reliability and effectiveness has dramatically increased, the com-
putational complexity of these algorithms is growing more and more. As a result, both
the processing time and the power consumption have also been affected, rendering the
standard processing system, using a standalone processor, not the optimal choice of
hardware. Another important thing to keep in mind is that the processor of an embed-
ded system is of a much lower cost and a lot slower in speed than a processor used in
desktop computers, meaning that if a costly efficient, and yet fast and with low-power
solution needs to be found a different architecture needs to be adopted. Such systems
that aim for this kind of solution make use of a combination of the processor with a
DSP or a GPU or a SoC FPGA. All these systems aim to exploit the parallel nature of
the image processing algorithms, which the processor cannot make efficient use of,
and also accomplish a reduction in the power needed.

The goal of this thesis is to make use of a SoC FPGA to accelerate and reduce
the power required by an image registration algorithm. More specifically, the design
will focus on acknowledging which parts of the algorithm are the most computational-
ly expensive and implement a hardware design on the FPGA specifically for these
parts. The application’s dataset includes photographs of the iris of different eyes taken
by high resolution cameras. Registration of these eyes can have security or medical
purposes. The system will be receiving two images at a time, one reference and one
floating, and will continuously apply geometric transformations to the floating image
in an effort to align it to the reference image. The parameters of this transformation
will be regulated by an optimizing algorithm, whose exact functionality will be pre-
sented later. Once and if a satisfactory transformation has been found (which achieves
the best possible alignment) the optimizer will stop. Later a final transformation can
be applied to produce the final image, as well as an edge detection algorithm to enable
us to visually compare the reference image with the optimally transformed floating
image and decide whether the alignment was successful or not.

One of the most important steps of the design is the application timing profil-
ing to identify which part of the algorithm is required to be implemented on the FPGA
as described previously. The hardware components of the design will be described
using the hardware description language VHDL, the synthesis and implementation
using the Vivado tool, while the software part of the application will be described us-
ing the programming language C. One final idea that is important to keep in mind, is
that despite the fact that the first time development of a software-hardware co-design
can be time consuming and complex for an engineer, the basic ideas and methodolo-
gies that he will use will act as great experience and guidelines for his future work and
projects.
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CHAPTER 2: RELATED WORK

There have been other research studies that deal with the acceleration of regis-
tration methods using an FPGA hardware implementation. Omkar Dandekar et al.
[11] present a field-programmable gate array-based architecture for accelerated im-
plementation of mutual information (MI)-based deformable registration. Their design
addresses the need to register pre and intraprocedural images for improved in-
traprocedural target delineation in the image-guided-intervention (IGI) workflow.
They managed to reduce the execution time of this complex and time-consuming al-
gorithm from hours to a few minutes, thus making it usable and efficient in a clinical
environment. Figure 2.1 illustrates a comparison of intraprocedural and preprocedural
images for the same subject. The left image is an example of intraprocedural noncon-
trast Computed Tomography (CT), and the right image shows a preprocedural con-
trast-enhanced CT (preCT).

preCT

Figure 2.1: Example of an Image pair pre and intraprocedural CT.

In addition, Brandyn Allen White [12] presents a high performance FPGA-
based direct affine image registration core. Direct methods are known for their high
accuracy, however are very computationally expensive, due to the continuous intensi-
ty derivatives calculation, which often prevents their use in an embedded system. The
system is run at 100Mhz and achieves a registration speed of 82 frames per second
(0.01222 seconds per frame) for image sizes of 640x480, while a floating point
Matlab Implementation on a 2.4Ghz Inter Core 2 Quad required 5 seconds per frame,
thus succeeding a speedup of over 400 times. Figure 2.2 shows the results of the
known transformation registrations. The proposed method achieves a better fit in
these situations as compared to the feature-based method.
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(a) Image (b) Warped Image

Figure 2.2: Result of the direct method registration (a) on a warped image (b).

Finally, Mainak Sen et al. [13] developed an innovative method for represent-
ing and exploring the hardware design space when mapping image registration algo-
rithms onto configurable hardware. They designed a rigid image registration applica-
tion under real-time performance constraints. Their workflow is quite similar to the
one that will be presented in this thesis, with a major difference being the measure of
match they chose, which is the Mutual Information. They achieved interesting results
with a maximum PL operating Frequency of 74Mhz. Figure 2.3 depicts their architec-
ture’s processing flow, which is practically the same as the one that will be presented
later in Figure 3.1.

Floating Image Reference Image
Transformation |- Optlmlgatnon
Algorithm
4
Mutual
> -

Information

Transformed Image

¥/_\‘

Figure 2.3: Mutual-Information-based image registration
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CHAPTER 3: THEORETICAL BACKGROUND

3.1 THEORY ON IMAGE REGISTRATION

So far the idea of image registration has been presented, as well as its range of
applications. A key element in fully understanding what it deals with is its practical
distinction to a pattern recognition algorithm. The latter’s goal is to identify certain
characteristics within an image and recognize objects, patterns or regularities in data,
which is why it is most commonly referred to as a branch of machine learning. In im-
age registration the problem is not that of a classification as is the case with pattern
recognition, but more like a comparison between two (or more images) to determine
their differences. For example, in medical applications registration can be used to de-
tect changes over time by comparing a new image to older images or to monitor tu-
mors and other anomalies. In security applications, a new image of an iris of the eye
can be compared to a dataset of valid images to determine whether the person can
have access to a building or not. Since the range of applications to which image regis-
tration can be applied is vast, multiple methods have been studied and used, each de-
signed to be optimal in a different case. These different methodologies concern the
choice between different combinations of the major components that will be presented
later and each combination is designed to meet specific requirements, such as accura-
cy, noise tolerance, processing speed and image quality.

Image registration algorithms can be divided in two categories: intensity based
and feature based. As already described, one of the images will be the moving or the
source, while the others will be the fixed or the targets. The reference frame in the
fixed images is stationary, and the moving image is spatially transformed to match the
target. Intensity-based methods compare intensity patterns in images via correlation
metrics, while feature-based methods find correspondence between image features
such as points, lines, and contours.
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3.2 HIGH LEVEL PRESENTATION OF THE ALGORITHM
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Figure 3.1: Registration Solver’s Architecture [6].

Figure 3.1 shows various components of a general registration solver, with the
main components being a transformer, a measure, and an optimizer. A measure of
similarity or distance is computed between the images at each step and used to deter-
mine if they are “sufficiently” aligned. This process is controlled by the optimizer that
starts from an initial guess and determines subsequent steps to reach an optimal
alignment. Below there is a brief presentation of each of these three main components.

Measure: There are several methods of measuring the similarity of the two
images. Based on what measure of match is used, the algorithm is distinguished as
feature-based or intensity-based. The two methods that were examined in this thesis
are the cross-correlation coefficient and the Matte’s mutual information. Both these
methods measure similarity, which means that two identical images will have a meas-
ure of match equal to one. That will decrease as the images move farther away. Corre-
lation as a term refers to how close two variables are to having a linear relationship
with each other. The correlation coefficient is calculated by dividing the covariance of
the two variables by the product of their standard deviations. Let pyy be the correla-
tion between the two variables x and y, oy, oy their deviations and py, py their ex-
pected values. With the following equation the correlation coefficient px, can be ob-
tained:

cov(X,Y) E[(X —pu)(¥ — uy)]
Ox Oy a Ox Oy

pxy = corr(X,Y) =

A more useful equation to calculate the correlation between the two images is the fol-
lowing:
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LXYi—NXy _ nYXYi—XXiXYi
Y -G [y -y’

(Eq.1)

Txy =

The X;, y; refer to the corresponding pixel values of the image X and Y respectively
and n is the total number of the valid pixels in the images (which depends on the reso-
lution of the image). Valid refers to whether or not the transformation generates a pix-
el, whose coordinates are within the accepted boundaries of the image coordinate sys-
tem. In the algorithm the power of 2 of the said coefficient is used as a measure of
match, to eliminate potential negative values.

Matte’s Mutual Information: This method measures the mutual dependence between
two variables, according to the probabilistic theory. The equation from which the mu-
tual information is derived is the following, where p(x,y) is the joint probability of the
variables X and Y, and p(x), p(y) the marginal probability distribution functions of X
and Y respectively.

p(x,y)
1X,Y) = ;;p<x Pog SEES)

The probability distributions are obtained using the Kernel Density Estimation (KDE),
also known as Parzen histogram method in signal processing. It is easily understood
that if the two variables are independent (or in the case of images they are very differ-
ent) then p(x, y) = p(x) p(y) and log1=0, meaning that the mutual information will re-
turn a similarity of 0, as it should.

There are also other methods for calculating the similarity between the two images,
like the sum of absolute differences, the sum of squared differences and the gradient
correlation. The first two are rather weak methods and almost never produce a practi-
cal or realistic estimation of the similarity of the images. The third one was not evalu-
ated in the context of this thesis and therefore shall not be examined.

Transformer: The transformer maps points in the moving image to new locations in
the transformed image. Based on the requirements of the registration problem the
transformer can either be collinear or deformable. The collinear transformation is de-
fined by a 2x2 matrix for grayscale images. Examples of collinear transformations
include rigid, affine and projection. The rigid transformation includes translation and
rotation only, whereas the affine transformation also includes scaling and shear. The
equation of the rigid transformation is described as below:
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[x’] _ [ cos@ sinB] [x] N [b1]
y'|  l—sin® cos6llyl " |b,
, where x’, y’ are the coordinates of the transformed point, x and y are the initial coor-
dinates of the moving image, and the rest are the parameters of the transformation.
More specifically b, and b, are the parameters that represent the displacement of the
transformation and 0 represents the rotation. The method that was used in this thesis is

the affine, which describes a transformation around the center of the image. The equa-
tion that described it is the following:

[xl] _ [all alz x mW] [bl + mw
y'|  laz azz }’ mhl| " [b, + mh

, Where

. mw is the Width divided by two (midWidth) and mh the Height di-
vided by two (midHeight).
o ai1, Ay, describe the scaling and a4, a4 the rotation.

In the case of our dataset the mw and mh parameters are constant and equal to 500.
As can immediately be observed the complexity of the affine transformation is the
same as that of the rigid transformation. Another important thing to note is the need to
use an interpolation after the pixel’s initial coordinates have been transformed. As is
expected since the parameters are not integer numbers, the x* and y’ will also not be
integer numbers. Therefore, in order to determine which one of the neighboring pixels
should be chosen as the final pixel, an interpolation of a neighborhood of 4 pixels is
being used.

Initial coordinates Transformed coordinates

Figure 3.2: Interpolation example

In Figure 3.2 an example of this transformation is demonstrated. The pixel with coor-
dinates (0, 0) is transformed to non-integer coordinates somewhere within the red
boundaries in the right image. With the interpolation a different weight is calculated
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for each of the red-filled pixels, which is then multiplied by the corresponding pixel’s
value (which is in the range 0-255 for grayscale images) and the four different prod-
ucts are then added to produce the final value of the wanted transformed pixel. Of
course, what was just described will only occur if the transformed coordinates are
within the accepted boundaries of the image. In that case, the required pixel will be
loaded from the memory and propelled to the measure of match calculator.

Other transformation models are, as already mentioned, the deformable ones. These
are used in registration applications, where the deformations present on the data sets
are elastic, which is met when a change in the shape of a material is caused at low
stress. This change is recoverable after the stress is removed. When such deformations
take place, rigid models are not sufficient to describe the required transformation
function and lead to misalignments around the elastically deformed regions of the im-
age. This transformation is much more complex than the rigid model, provides more
accurate results, but is also much more computationally expensive and requires a
much larger execution time. Sometimes a pre-processing stage using a rigid-based
registration scheme is used before the elastic transformation in order to partially align
the images and greatly reduce the execution time.

Optimizer: The optimizer is responsible for applying an efficient and often
non-exhaustive strategy to search the allowed transformation space for the best match
between the images. According to the mathematical approach of the selected strategy,
an optimizer can be categorized as gradient-based or gradient-free and global or local.

Gradient-based methods try to find the minimum value of a cost function through
constant computation of its partial derivatives, in addition to the computation of the
value of the cost function itself. Numerical estimations are used for the computation
of the derivatives with use of finite differences. Gradient-based optimizers require
fewer iterations to converge to the optimal parameters, but at the cost of computation-
ally heavier iterations. The convergence rate depends on the size of the parameter
space, the initial misalignment of the images and the termination criteria.

Local methods greatly depend on the selection of the initial point in the parameter
space. They may converge to a misalignment if not properly initialized, as they try to
find a local optimum within the area of the current point. Global methods on the other
hand are given a specific acceptable range of parameters and find a global optimum.
They can be more robust than the local methods, but converge a lot slower to the op-
timal point. These two methods are often combined to increase robustness and con-
vergence rate.

In this thesis the two optimizing methods that were used are the Downhill Simplex,
which is often used in multidimensional problems, and the Powell, both of which are
classified as gradient-free and local. A brief presentation of each method is given be-
low:
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Downhill Simplex: This method requires only function evaluations, not derivatives. It
is not very efficient in terms of the number of function evaluations that it requires. A
simplex is the geometrical figure consisting, in N dimensions, of N + 1 points (or ver-
tices) and all their interconnecting line segments, polygonal faces, etc. In two dimen-
sions, a simplex is a triangle. In three dimensions it is a tetrahedron, not necessarily
the regular tetrahedron. In general we are only interested in simplexes that are
nondegenerate, i.e., that enclose a finite inner N-dimensional volume. If any point of a
nondegenerate simplex is taken as the origin, then the N other points define vector di-
rections that span the N-dimensional vector space. The downhill simplex starts with
N+1 initial points (which in our case means 7 points, since the number of parameters
Is 6) , defining an initial simplex. If one of these points is Py then the other N points
can be taken as:

Pi = Py + Aei

where A is a constant describing the problem’s characteristic length scale and ei N-
vectors. After the initialization the downhill simplex takes a series of steps, trying to
reshape the simplex in such a manner, so as to move its highest point to a lower point.
These steps can either be reflections away from the high point, or reflections com-
bined with expansions away from the high point, or contractions along one dimension
from the high point or multiple contractions towards the low point. These actions are
illustrated in Figure 3.3. An appropriate sequence of such steps will always converge
to a minimum of the function.

simplex at beginning of step

low

reflection

reflection and expansion
contraction

Iy multiple
A g F contraction
_r-:‘:'_- _j_

Figure 3.3: Possible Downhill Simplex Steps [8].
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The termination criterion recognizes the convergence by measuring the distance the
vector moved between two steps and comparing that to a constant tolerance. If the
step distance is smaller in magnitude than that tolerance then the program terminates.
Another criterion requires that the decrease in the function’s value in that step is
smaller than another tolerance “ftol”.

Direction Set Powell’s Method: Powell introduced a direction set method that produc-
es N mutually conjugate directions. This method practically searches for a multidi-
mensional function’s minimum or maximum by searching along set directions. The
problem lies in choosing these directions and quickly finding the best point along that
direction. The method starts by initializing a set of directions u; to the basis vectors e;.

ui:ei,i=1,...,N

Now the following sequence of steps is repeated until the function stops decreasing:

« Save the starting position as PO.

Fori=1,...N, move Pi—1 to the minimum along direction ui and call this
point Pi.

eFori=1,...,N—1,setui« ui+l.

* Set uy «— Py — Po.

» Move Py to the minimum along direction uy and call this point Po.

To find the minimum along a direction a procedure called linmin is used, whose defi-
nition is: Given as input the vectors P and n, and the function f, find the scalar A that
minimizes f (P+An). Replace P by P + An. Replace n by An. This procedure is used by
many multidimensional direction set minimization methods. In Powell’s method this
procedure does not use calculation of gradients. Figure 3.4 presents the search of a
minimum along a direction.
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start i

Figure 3.4: Powell’s method minimum search across a direction [8].

So far the major components of the registration solver have been described. The 4 dif-
ferent pairs that were examined in this thesis are the following:

e Affine transformation/Correlation/Downhill Simplex

e Affine transformation/Mutual Information/Downhill Simplex
e Affine transformation/Correlation/Powell’s

e Affine transformation/Mutual Information/Powell’s

Another obvious observation that needs to be pointed out is that the registra-
tion will not always work. When the two images are of a different eye, then there is no
possible transformation, capable of aligning the two images. The solver will just keep
trying to find one until either of the termination criteria is satisfied, which either
means satisfaction of tolerance or maximum number of iterations exceeded. There is
also the possibility that images of the same eye cannot be aligned using the affine
transformation model, either because of a very large initial misalignment or because
of the presence of elastic deformations. Finally, there is the possibility of two images
being successfully aligned, despite having a relatively small final measure of match.

There are also a few parameters that affect the performance of the solver. First
of all the termination tolerance can have an effect on how correct and realistic the
found solution is. Too small and the solver will terminate prematurely, most probably
failing to align, even if the two images could be aligned. Secondly, the number of it-
erations can also have an effect, since again too few iterations may not be sufficient
for the optimizer to approach the optimum solution, and too many may be unneces-
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sary and pointlessly increase the computation time. The typically used values for these
parameters that always perform sufficiently for this dataset are 10™ for the tolerance
and 500 for the maximum number of iterations.

Rules regarding the allowed transformation parameters also need to be consid-
ered. Limitations need to be set to these parameters on the maximum value they can
reach. If the displacement is for example 600, the optimizer may find a higher correla-
tion, although the measure of match can be unrealistic. In all of the images in the da-
taset, it was noticed that no more than 300 pixels of displacement are required. That
means that if the optimizer goes for an even higher displacement than that, most of the
transformed image would go off-bounds and the similarity measure will take into ac-
count only a small isolated part of the two images. These two parts may be quite simi-
lar and give a high measure of match, meaning that the optimizer will think it is mov-
ing in the right direction, while the registration will be failing even though with proper
handling it could succeed. For the same reason maximum limitations need to be ap-
plied on the rotation and scaling. An exploration was conducted regarding the optimal
use of these maximum values, the results of which are presented below. As the maxi-
mum rotation and scaling don’t affect the results as much and their typical values of
30° and 10% accordingly are sufficient, Tables 3.5 and 3.6 concern the maximum dis-
placement and how it affects the final measure of match (correlation coefficient or
mutual information) between the fixed image and the optimally transformed one.

Table 3.5: Final Measure of Match for a good pair of eyes

Maximum Simplex  Simplex Powell Powell
Displacement Correlation Mutual Correlation  Mutual

50 0,157844 | 0,261021 | 0,227008 | 0,285423
100 0,231213 | 0,374724 | 0,487449 | 0,385665
200 0,783975 | 0,788725 | 0,784077 | 0,788861
300 0,784035 | 0,789102 | 0,784041 | 0,789113

Table 3.6: Final Measure of match for a pair of eyes that can be aligned, but with a low measure of match

Maximum Simplex  Simplex Powell Powell
Displacement Correlation Mutual Correlation Mutual
50 0,205226 0,23432 0,271067 | 0,255322
100 0,425701 | 0,264828 | 0,463098 | 0,266285
200 0,447005 | 0,468757 | 0,463086 | 0,468897
300 0,463059 | 0,468894 | 0,463074 | 0,468902
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What is also important to note here is a comparison between the results gener-
ated by the mutual information measure of match and that of the correlation, as well
as the corresponding execution time measurements. Table 3.7 illustrates an example
of the mentioned values, using the downhill simplex optimizer.

Table 3.7: Comparison between correlation and mutual information, where T stands for the six transfor-
mation parameters (T3 and T6 are the two displacements, T2 and T4 the rotations, and T1 and T5 the scal-

ing).

First-pair First-pair ~ Second-pair Second-pair
correlation mutual correlation mutual
T1 1.003900 1.010139 1.008103 1.010794
T2 -0.016374 0.017403 -0.073785 -0.073385
T3 177.098624 | 178.385146 | -19.983910 -18.699687
T4 0.026220 0.027185 0.082441 0.081337
T5 1.000249 1.001831 1.006750 1.008789
T6 -62.307664 | -62.081498 | -97.090582 -96.832628
Measure 0.783880 0.783464 0.463121 0.461139
of Match
Total 7.750371 12.823528 22.896096 18.051921
Time(s)

What was concluded from the measurements is that both methods achieve sim-
ilar results when the maximum parameters are chosen wisely. The execution times for
each can also vary, and since the mutual information needs to call the correlation
function once at the end of the registration to finalize and normalize the results, the
method that was chosen to be implemented was that of the correlation. The first pair
of eyes in Table 2.7 refers to a well aligned set of images, where the registration suc-
ceeds and the optimizer terminates fast, needing a small number of iterations, as it
converges fast to the optimum solution. As a result, since the optimizer is stable for
aligned images, the results will be very close to each other, whatever measure of
match is chosen and whatever precision is used (double or single). The second pair on
the other hand, although the images are of the same eye and can be aligned, has a low
measure of match, meaning that it is not enough to determine whether the registration
was successful or not, rendering the edge detection and fusion steps necessary at the
end of the processing flow. The optimizer in this specific example required a larger
amount of iterations to converge to the optimum solution, a feature which is reflected
in the execution time required. Visual representation of the result ensures that the reg-
istration was successful, despite the low measure of match.

If the images contain elastic deformations, the solver may be unable to find a
transformation capable of aligning the two images. Some misaligned images can lead
to the optimizer producing very different transformations if the precision is not strict
enough, because of the instability of the registration in such cases.
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Table 3.8 indicates the behavior of the solver for the above image sets, if the
chosen optimizer is the Powell’s Method. As is observed, the execution time is greatly
increased and the produced parameters are almost the same, rendering the use of the
Powell’s Method unnecessary in these examples. In the given dataset for this thesis,
no cases in which Simplex failed and Powell succeeded were found.

Table 3.8: Comparison between correlation and mutual information using Powell’s Method as the optimizer

First-pair First-pair Second-pair  Second-pair
correlation mutual correlation mutual
T1 1.003894 1.010139 1.008103 1.010722
T2 -0.016374 -0.017403 -0.073769 -0.073385
T3 177.089815 178.377445 -19.983500 -18.704472
T4 0.026516 0.027185 0.082441 0.081360
T5 1.000425 1.001831 1.006750 1.008632
T6 -62.307664 -62.081499 -97.090619 -96.832628
Measure of 0.783901 0.789116 0.463121 0.468892
Match
Total 34.360532 22.546205 31.134632 36.850267
Time(s)
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CHAPTER 4: APPLICATION/SYSTEM DESCRIP-
TION

4.1 FPGAS

Field Programmable Gate arrays (FPGAS) are semiconductor devices consist-
ing of reprogrammable hardware. They are based around a matrix of configurable log-
ic blocks (CLBs) connected via programmable interconnects. These interconnects are
programmed using a Hardware Description Language (HDL), like Verilog and VHDL
in order to match an application’s desired functionality. Since each logic block can be
computationally independent from the other ones, high levels of parallelism are ena-
bled, capable of greatly speeding up the computation time of a program. This is one of
the main advantages of the FPGA compared to conventional chips like a CPU, which
are static and designed to be as efficient and fast as possible, but are limited to execut-
ing one command at a time. If the design has errors or needs to be updated, or even if
one wants to execute a different application with the FPGA, all that needs to be done
is reprogram it, which comes in contrast with the Application Specific Integrated Cir-
cuit (ASIC) idea. ASICs need to be very carefully designed and simulated before
manufactured, since an unnoticed bug would mean that it has to be re-manufactured,
greatly increasing the cost. A figure is shown below, presenting the abstract architec-
ture of an FPGA as described above.

Configurable
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Figure 4.1: FPGA’s abstract architecture
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The configurable logic blocks consist of a large number of logic units, such as
flip flops, multiplexers and Look-Up Tables (LUTs). Each FPGA has a set amount of
instances of each of these units, which varies from model to model. An n-bit LUT can
encode any n-input Boolean function by storing the truth table of the function inside
it. This is an efficient way of encoding Boolean logic functions. Aside from these
units, the FPGA also contains a number of memory blocks called Block Rams
(BRAMS), which are small in size. Finally, recent FPGASs also contain a number of
Digital Signal Processors (DSPs) which are extremely efficient in many digital signal
processing applications, where accumulations and multiplications are repeated, and
help speed up many processes due to the higher frequency in which they can operate.
Usual cases where DSPs prove very useful are in the implementation of an FIR-filter,
floating point mathematical operations and many more.

4.2 SOC FPGAS

In the past, the FPGAs would not be integrated on the same chip as the Pro-
cessor. As a result, the off-chip communication between them was hard and ineffi-
cient, due to the limited I/0O bandwidth. In 2010 Xilinx brought the Zyng-7000 all
programmable SoC family devices to the market, which integrates the software pro-
grammability of a dual-core ARM Cortex-A9 processor with the hardware program-
mability of a 28nm Artix-7 or Kintex-7 based programmable logic, enabling key ana-
Iytics and hardware acceleration while integrating CPU, DSP, memory and multiple
peripherals on a single device (Figure 4.2). Since the ARM processor is capable of
supporting full operating systems, (the most frequently used of which is Linux, since
it is open source and has an established community support) the programmer is al-
lowed to develop the application using hardware/software cooperation, which is ideal
for embedded system designs, since the on-chip connectivity allows for high band-
width, and low power consumption and latency. Xilinx uses the AMBA AXI protocol
for communication between the Programmable Logic and the Processing System.
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Figure 4.2: Zyng-7000 devices’ architecture [4].

The AXI protocol: AXI (Advanced eXtensible Interface) is part of the ARM
AMBA, a family of micro controller buses. AMBA is an open standard for the con-
nection and management of functional blocks in a System-on-Chip. It facilitates right-
first-time development of multi-processor designs with large numbers of controllers
and peripherals. AXI4 provides improvements and enhancements, benefiting Produc-
tivity, Flexibility, and Availability.

More specifically, the AXI protocol:

e issuitable for high-bandwidth and low-latency designs

e provides high-frequency operation without using complex bridges

e meets the interface requirements of a wide range of components

e issuitable for memory controllers with high initial access latency

e provides flexibility in the implementation of interconnect architectures
e is backward-compatible with existing AHB and APB interfaces.

The key features of the AXI protocol are:

e separate address/control and data phases

e support for unaligned data transfers, using byte strobes

e uses burst-based transactions with only the start address issued

e separate read and write data channels, that can provide low-cost Direct
Memory Access (DMA)

e support for issuing multiple outstanding addresses
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e support for out-of-order transaction completion
e Permits easy addition of register stages to provide timing closure.

There are three types of AXI4 interfaces:

e AXI4 (or AXI4-full) —for high-performance, bidirectional, memory-mapped
requirements. Allows bursts of 256 data/ address.

e AXI4-Lite—for simple, low-throughput memory-mapped communication (for
example, to and from control and status registers). Practically a light variant of
AXI4-full but with bursts of 1 data/address.

e AXI4-Stream—for high-speed streaming data. Provides unlimited, unidirec-
tional (from master to slave only) data bursts.

The protocol allows several AXI masters and slaves to be connected using a structure
called an Interconnect block. AXI4-full and AXI4-lite interfaces consist of the follow-
ing 5 channels, which can also be observed in Figure 4.3.

e Read Address Channel

e Write Address Channel
e Read Data Channel

e Write Data Channel

e Write Response Channel

Read address channel

Address
and
control
Master Slave
interface Read data channel interface
Read Read Read Read
data data data data
Whrite address channel
Address
and
control
—_—
Write data channel
Master Write Write Write Write Slave
interface data data data data interface

Write response channel

Whrite
response

-—

Figure 4.3: AXl4-channels architecture [5].
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The top figure illustrates how a Read transaction takes place using the Read
address and Read data channels. The bottom figure illustrates how a Write transaction
uses the Write address, Write data and Write response channels. The Write Response
practically informs the master that the write operation is successfully completed or in
action and greatly helps in the communication and synchronization of certain opera-
tions.

Zybo Development Board

The SoC FPGA that was used in this thesis for the design of the registration
solver in an embedded system was the Zybo Development Board, manufactured by
Digilent using the smallest member of the Xilinx Zyng-7000 family, the Z-7010. The
Z-7010 is based on the Xilinx System-on-Chip (SoC) architecture, which tightly inte-
grates a dual-core ARM Cortex-A9 processor with Xilinx 7-series field programmable
gate array (FPGA) logic. Just like most of the other Zyng-7000 family devices, the
FPGA is fabricated in the logic of the Artix-7 Programmable logic. Below is a list of
the device’s available resources. This information is highly important to note out, for
reasons that will be explained later.

e Look-up Tables(LUTs): 17600

e Flip Flops: 35200

e Block Ram (# 36kb Blocks): 2.1Mb (60)
e DSP slices: 80

The board’s features are listed below:

e 650Mhz dual-core Cortex-A9 processor

e DDR3 memory controller with 8 DMA channels

e High-bandwidth peripheral controllers: 1G Ethernet, USB 2.0, SDIO

e Low-bandwidth peripheral controller: SPI, UART, CAN, 12C

e 512MB x32 DDR3 w/ 1050Mbps bandwidth

e Dual-role (Source/Sink) HDMI port

e 16-Dbits per pixel VGA source port

e Trimode (1Gbit/100Mbit/10Mbit) Ethernet PHY

e MicroSD slot (supports Linux file system)

e OTG USB 2.0 PHY (supports host and device)

e External EEPROM (programmed with 48-bit globally unique EUI-48/64™
compatible identifier)

e Audio codec with headphone out, microphone and line in jacks

e 128Mb Serial Flash w/ QSPI interface

e On-board JTAG programming and UART to USB converter

e GPIO: 6 pushbuttons, 4 slide switches, 5 LEDs
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e Six Pmod ports (1 processor-dedicated, 1 dual analog/digital, 3 high-speed dif-
ferential, 1 logic-dedicated)

In Figure 4.4 the board is presented with all the peripherals attached to it, as well as its
functional features.
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Figure 4.4: Zybo Peripherals and components
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4.3 PROCESSING FLOW

Up until now, the theory behind image registration has been analyzed. Now
the processing flow in a programming level will be presented. Figure 4.5 illustrates
this flow, which looks like a simplified version of the Figure 3.1.

Calculate
Load . ..
. Initial Optimizer
images .
Points

A

Edge Detection

To Final
Transformation and

Transform and

Measure

Figure 4.5: Processing Flow of the Registration Solver

In the first part the images from the dataset need to be loaded in the program.
This can be done in various ways. Using the OpenCV library is one way, while read-
ing an image from a text file is another. In a more practical environment where the
solver will be applied for medical requirements, there will also be a stage before for
the images to be captured by a camera.

Next, in order for the downhill simplex algorithm to begin, N+1 initial points
need to be calculated. That’s what is being done in the second stage. A set of initial
parameters that cover the range of the exploration space are created, and for each of
them a transformation is applied and the match is measured between the transformed
images and the fixed image. Since a simplex has been created, the optimizer is ready
to begin and a series of the previously presented steps regarding reflection, expansion
etc. can be initiated.

The optimizer for the Downhill Simplex Method calls some functions to
search the exploration space. One of the functions is related with optimizing the cur-
rent state of the parameters, while the other is used to measure the matching between
the fixed image and the transformed moving image, if the given transformation was to
be applied, without actually generating the transformed image as a separate file and
binding unnecessary memory. The calculated measure of match calculated by the
aforementioned function is then used to decide what the next step of the method
should be.

The 4™ stage, called Transform and Measure is the one that was described
above. The optimizer will first check if either of the two termination criteria is satis-
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fied, before seeking for the next transformation matching measurement. These criteria
are the maximum number of iterations and the tolerance threshold.

The final stage is an off-line stage of the procedure and refers to the visual rep-
resentation of the registration’s results. Because the goal of this thesis was to speed up
the registration algorithm, this part of the flow was left out of the final implementation
for simplicity reasons only. If the optimum calculated parameters of the transfor-
mation are the same before and after the co-design, it is indicated that the implementa-
tion was successful. Future extensions with a more practical application could include
this final low time-consuming stage in the software part of the system.

Figures 4.6 and 4.7 illustrate a successful and an unsuccessful registration ex-
ample accordingly. The affine transformation with the downhill Simplex method was
used to match two images of the same eye. The figures illustrate a fusion between the
fixed image and the detected edges of the optimally transformed moving image.

Figure 4.6: Affine Simplex Successful Registration Example
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Figure 4.7: Affine Simplex Unsuccessful Registration Example

4.4 APPLICATION PROFILING IN ZYBO

The first matter that is taken in consideration when wanting to optimize an ap-

plication’s design is measuring the execution time in the platform of interest. The total
execution time for the registration problem depends on a few parameters:

Size of images: The bigger the image, the more the pixels that need to be
transformed and measured, and as an obvious result the execution time is line-
arly dependent on the image size.

Maximum number of iterations: If the tolerance threshold is not surpassed,
the optimizer will keep searching for an optimum solution until the threshold
is reached. This may never happen if the two images are of a different eye or
the initial misalignment is too extended, meaning that the optimizer could po-
tentially run forever. That’s why a typical number of 500 maximum iterations
are used. Less than that may negatively affect the optimization, while more
than that is most often redundant and needlessly increases execution time.
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e Tolerance threshold: Much like the maximum number of iterations, a large
value of threshold would result in a premature termination of the program,
with no satisfying matching achieved, whereas a rather small one would lead
the optimizer to perpetually try and achieve something that is impossible.

e Maximum Displacement, Rotation and Scaling: Since the initialization pa-
rameters depend on these values, and certain transformations can be rejected
based on whether the boundaries are respected, these parameters also have a
direct effect on the execution time. After extensive exploration of the maxi-
mum values space and consideration of the nature of the given dataset, the typ-
ical numbers that were used were 200 pixels, 0.5 rad (~30°), 1.1(10% scaling)
respectively.

Aside from measuring the total execution time, a complete profiling of the ap-
plication was conducted to measure the time required by each of the different compo-
nents. Table 4.7 represents the time (along with the percentages) of the transformation
and measuring component on the Zybo. The initial point calculation is practically a
call of the “Transform and Measure” component N+1 (which means 7) times, so the
two corresponding times are merged. Because the final transformation and edge de-
tection was not part of the on-line procedure in this thesis, their execution times are
ignored (but nonetheless they are not very time consuming components). As is evi-
dent, the transformation and measure component is the most time consuming in all
cases.

Table 4.8: Time profiling on Zybo for a good and a bad pair
Good Pair = Bad Pair

Total Time (s) 39,923572 | 103,084555

Transform and 39,921616 | 103,080554
Measure time (S)
Percentage 99,99% 99,99%

Bad pairs sometimes require a lot more time until the registration is complet-
ed, because the optimizer will make use of the maximum number of allowed iterations
before it terminates. The same behavior is noticed when using either of the two opti-
mizers or either of the two measuring methods. A quick comparison with the execu-
tion time required in a desktop PC with a higher frequency processor, as shown in Ta-
ble 3.7 is that the registration requires 4-5 times more execution time on the Zybo.

The timing measurements indicate that the “Transform and Measure” compo-
nent is the one that will be implemented on the hardware. The image loading and the
optimizer are going to be implemented on the software. Whenever the optimizer re-
quires the calculation of the measure of match for the transformed image, the proces-
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sor will communicate with the FPGA and wait for its processing to complete. This
procedure will be repeated until the optimizer terminates. Figure 4.8 represents this
architecture, emphasizing on the referred hardware/software partitioning and commu-
nication. Finally, it is important to note that once the hardware implementation of the
“Transform and Measure” component is completed, both the optimizers can make use
of'it (i.e. the Downhill Simplex and the Powell’s Method).
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Figure 4.9: Hardware/Software Partitioning
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CHAPTER 5: SYSTEM IMPLEMENTATION

5.1 PRESENTATION OF HARDWARE COMPONENTS

The presented registration algorithms make use of floating point arithmetic.
Depending on the required precision, different representation sizes can be used, with
the most common being the 32-bit and 64-bit (type float and double in programming
language C respectively). Although the two sizes produce a different result, the per-
centage deviance between the two is rather small (less than 0.5 %), meaning that both
can be used without any practical error that can disrupt the registration. This small
difference in the results is due to possible minor accumulated errors in each iteration
(total of one million iterations for the given image size). In order to save resources in
the FPGA the 32- bit size was chosen for representing the floating point numbers.
Since arithmetic operation circuits for floating point numbers are very complicated,
Xilinx provides ready components for most floating point operations (addition, sub-
traction, multiplication, divider, comparators and more) in the form of Intellectual
Property (IP). This IP is completely synchronous and pipelined, meaning that a new
input can be given each subsequent clock cycle, and after a given initial latency, the
corresponding results will be getting ready in each new clock cycle. The following
IP‘s characteristics can be configured by the designer:

e Operation: As already mentioned, the IP can be configured to implement
many different operations.

e Latency: Latency is the number of cycles required for the result of an opera-
tion to be ready after the corresponding valid operands are given as inputs to
the circuit. Xilinx has set this characteristic to a recommended value, but if re-
quired, the latency of these circuits can be reduced at the cost of extra re-
sources and reduced operating frequency. Reducing the latency however is not
important in speeding up the registration’s calculations, as the whole process
is pipelined and so the processing time will depend on the number of opera-
tions needing to be done. For example, if one million operations need to be
done repeatedly, then one million clock cycles are required, whereas the initial
latency of each IP is going to be less than 20 clock cycles, which is insignifi-
cant in comparison. Therefore, the maximum recommended value was chosen
for all these components, so as to save as many valuable resources as possible.

e Operating frequency: This parameter dictates the maximum frequency in
which the circuit can operate. Keeping the latency high is the only way pro-
vided by Xilinx to configure the highest possible frequency, which is obvious-
ly greatly needed.
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e Resource utilization: Due to the great amount of operations that need to be
executed, keeping track of the resources used is highly important, to ensure
that the final-stage implementation is feasible when using the ZYBO board.
Reducing the latency leads to more resources used, explaining the reason be-
hind the maximum latencies selection. An interesting feature of this IP is the
option to save resources through the usage of DSPs. Making use of the total of
80 DSPs available in the Zybo can greatly reduce the resources, and allows for
higher operating frequencies.

e Precision of inputs and output: The available precisions were the half preci-
sion (16-bit representation of floating-point numbers), single precision (32-
bit), double precision (64-bit) and custom precision.

Having analytically presented the hardware used for executing the operations,
it is time to describe the overall system of the transformation and measure design in
hardware. Four calculation components were designed, one for each different func-
tionality. Each component is connected to the ones that follow. Aside from these,
there were also a number of control components, used to determine the flow of data
within the programmable logic and synchronize the whole procedure.

e Transformation: Applies the affine transformation to each of the pixel’s co-
ordinates. Its inputs are the transformation parameters and the pixel coordi-
nates. The outputs are the transformed coordinates (with the decimal part cut
off), as well as two values that are to be used in the next stage, which is the in-
terpolation.

e Calculation of Interpolation weights: Making use of the two previously re-
ferred values, each of the four different interpolation weights required (Figure
2.2) is calculated in this component. All four weights need to be available
simultaneously, so proper synchronization with the addition of registers was
required. The method of adding registers to delay signals was used in most of
the components, as it is a very efficient and easy way to synchronize the de-
sign.

e Interpolated pixel’s final value: The inputs of this component are the previ-
ously calculated weights, as well as the four corresponding to each weight pix-
el values. The pixel values are loaded from the memory, therefore a special
control unit takes care of synchronously loading these values from the block
rams (BRAMS) where the images are loaded. The output is the pixel value
which originates from applying the interpolation on the four neighboring pix-
els, as described in Figure 2.2.

e Accumulations: This is the final calculating component implemented on the
hardware. Its inputs are the interpolated pixel’s value and the floating image’s
value, which is synchronously supplied by another controller. The component
calculates the sums in Equation 1. Knowing the latency of all the components
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combined, it is possible to halt the accumulation after the final pixel’s pro-
cessing, so as to be able to send the valid data to the software, where the corre-
lation is to be quickly calculated.

As mentioned, control units were used for synchronization and some addition-

al functionalities. These control units are described below:

Coordinate generator: This control unit contains a process which creates a
new pair of coordinates in each clock cycle and sends it as an input to the
transformation block. This generation is linear, meaning that the image will be
accessed line by line. It is also responsible for terminating the calculating pro-
cess when the final coordinate is generated, by setting the validity of the sig-
nals to 0, unless a reset signal is activated, in which case the whole procedure
will be restarted.

Memory manager: Some of the calculation components need the pixel values
as inputs, as already described. This control unit is responsible for this coordi-
nation. It takes as inputs the transformed coordinates, loads the required values
from the BRAMSs and synchronously supplies them to the components that
need them. The manager is also responsible for saving the image’s pixel val-
ues sent from the software in the Block Rams. This only happens once at the
start of the registration, and the BRAMs don’t need to change, as long as the
registration takes place. The way the image is sent to the FPGA from the Host
will be described in the next section.

Coordinate validity: Considering that the transformation may produce invalid
coordinates that are out of bounds, a controller that makes the necessary com-
parisons is required, in order to reject them and not include them in the calcu-
lations. This controller takes as inputs the transformed coordinates and gives
them as outputs with the appropriate validity signals.

Registers: A simple register component with a generic cycle delay and signal
width was designed and broadly used in all the components, as well as in be-
tween them to effectively synchronize the design.

Figure 5.1 shows how the abovementioned components are interconnected and

make up the implementation of the hardware system. The images are streamed once at
the beginning of the registration and saved in the Block Rams, using the AXI4 stream-
ing protocol, as will be explained later. Since the division required in Equation 1 is
only executed once at the end of the measure, it is not wise to include it in the hard-
ware, as the divider for floating point number takes up a large amount of valuable re-
sources. Generally, the mentality is to not use the FPGA for calculations that do not
occur often. Having explained why, the accumulator sends the sum amounts of Equa-
tion 1 to the software, where the final division is executed.
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Figure 5.1: Implementation of the Hardware System

5.2 HARDWARE/SOFTWARE COMMUNICATION

Since the BRAM memory size in an FPGA is not large enough to save an en-
tire high definition image (only 256kB total memory in the case of the Zybo), a suffi-
cient data transfer with a high throughput is required in most image processing appli-
cations. The AXI4-stream protocol is therefore the most effective choice available,
since the CPU handshakes will take place only once at the start and end of the trans-

fer.
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The general idea in image processing is to start streaming the first two or three
pixel lines, so that the accelerator can begin processing the image’s data. The data
streamed can be saved in BRAMS, and after the data is used, new lines can start get-
ting streamed, writing over the BRAM, so as not to waste cycles waiting for the data
to be transferred. Using a single streaming channel, a new 32-bit data can be trans-
ferred each consecutive clock cycle, which is equivalent to four pixels, as a greyscale
pixel requires 8 bits for its representation. This efficient communication pattern relies
on the Direct Memory Access (DMA) mechanism.

DMA is a very important mechanism used in most embedded systems for the
effective communication between the processor, the memory and the peripherals.
With the use of a proper controller, DMA links the external devices with the main bus
that connects the processor with the memory. Older architectures without a DMA con-
troller required the processor to continuously perform memory access operations, in
order to manage the necessary data transfers. This would also mean that if the needed
data was not yet ready, the processor would remain occupied for the entire duration of
the read or write operation and wait for a corresponding interrupt to let it know the
data is finally ready. As a result, the throughput was greatly reduced and valuable
computation time of the CPU was being wasted. With the use of a DMA, this problem
is solved, since the CPU no longer needs to intervene all the time. It simply initiates
the transfer, and then it deals with other operations while the transfer is in progress,
until it finally receives an interrupt from the DMA controller when the operation is
completed. While it is waiting for data it can do something else, as the DMA control-
ler will be the one to perform the required data transfers from or to the peripherals.
Not only is the throughput increased, but a better exploitation of the available archi-
tecture and resources is achieved, leading to higher overall performance and lower
power consumption.

The DMA controller is used to control an AXI4-Stream protocol in SoC
FPGAs image processing applications. However, implementing the entire protocol
from scratch on the hardware level and installing the necessary drivers (which in-
cludes checking for correct version and kernel module insertions, a rather time con-
suming activity) on the operating system level is a highly complex procedure. As a
result simpler protocols are often used. In the case of this thesis, in order to simplify
the communication, while also maintaining high throughput and effectiveness, the
Xillybus IP cores were used. These IP cores implement a communication based on the
AXI4-Stream protocol, but provide a much more simplified interface from the FPGA
side.
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9.3 XILLYBUS IP CORE

Xillybus is an FPGA IP core for easy DMA communication, available in the
Windows and Linux operating systems and developed by Xillybus Ltd. The Xillybus
IP core as presented in Figure 5.2 implements an effective DMA-based streaming
communication between the processor and the application logic that is ready to use
using well-known interfaces. More specifically, the FPGA application logic connects
to the IP using standard FIFOs (First-In-First-Out data structure), the data width and
depth of which can be configured based on the designer’s desired functionality. The
“empty” and “full” signals of the FIFO are checked by the Xillybus (depending on the
data direction) and when the FIFOs are ready for it, the data transfer is initiated. A
different FIFO is used for data streamed from the host to the accelerator and from the
accelerator to the host. For the software development on the side of the host, the user
application simply needs to perform I/O operations on pipe-like device files.

full ~
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Application rd_en F

FIFO - data .

T —_—

Figure 5.2: Communication interface of PS and PL using the Xillybus IP core [1].

There are plenty of advantages in using the Xillybus IP cores. First of all, it
offers high flexibility in creating a different communication interface between differ-
ent logic components (simply through the addition of extra FIFOs). Each of these
components can be considered as a slave, while the Xillybus is the master of the
communication protocol. Aside from that, the core is compatible with various operat-
ing systems (e.g. Windows, Linux), as well as different development boards (Zybo,
ZedBoard, MicroBlaze etc.). Also, there is a simple and trivial programming model
for different programming languages for the software part of the design, which will be
illustrated later. Finally, there is support for both synchronous and asynchronous
streams.

During system startup, the Xillybus driver allocates DMA buffers in the
board’s main memory. Data transferred from or to the accelerator is first saved to
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these buffers. When a stream is marked asynchronous, it’s allowed to communicate
data between the FPGA and the host’s kernel level software without the user space
software’s involvement, as long as the respective device file is open. Asynchronous
streams have better performance, in particular when the data flow is continuous. Syn-
chronous streams are easier to handle, and are the preferred choice when tight syn-
chronization is needed between the host program’s actions and what happens in the
FPGA. Figure 5.3 illustrates the asynchronous stream’s functionality.
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Figure 5.3: Memory Management of the Asynchronous stream [2].

On user application level, the two streaming interfaces (Host-To-FPGA,
FPGA-To-Host) are treated as device files, and as such all the known system calls ap-
ply in the exact same way for Xillybus as well. This means that the driver supports the
“open”, “close”, “read” and “write” commands. The device name is chosen when set-
ting up the system in the IP core factory and can be found under the /dev/ directory in
a Linux operating system. So typically an open command could be like this:

fd=open(‘“/dev/host to fpga device”,O_ _WRONLY);
The O_WRONLY indicates that the file is only available for writing to, and cannot be

read from. The file descriptor returned by the open command can then be used as an
argument to the “read”, “write” or “close” commands to refer to the device.
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9.4 XILLYBUS-LITE IP CORE

The Xillybus IP core is responsible for implementing the AXI4-Stream com-
munication protocol as explained before. However, with the hardware/software co-
design of an application, a simpler protocol is required for the control communication.
This is the kind of communication used when the processor wants to let the accelera-
tor know when to start processing data, or when to halt the process and wait for some
data to be sent, or to know at which processing stage the accelerator is if needed. In
other words, control communication is very important in synchronizing the design and
establishing a complete connection between the processor and the FPGA. Since the
amount of control signals needing to be transferred are usually few in numbers, using
a streaming protocol is a complex and undesired solution. That’s where the AXI4-Lite
protocol that was presented in chapter 3 comes to use. The Xillybus-Lite IP core of-
fers the user application easy and shared access to registers or memory structures in
the FPGA. Both the accelerator and the host can have access to these structures, al-
lowing for quick and easy communication. Since this kit consists of an IP and a Linux
driver, the designer is freed from having to deal with the complex AXI-bus interface
and Linux kernel programming. Figure 5.4 demonstrates the IP’s functionality.

............
||||||||||||

Processor Application
instance logic
user_* module

Xillybus
Lite i

IP core

Top level module

Figure 5.4: lllustration of the Xillybus Lite IP-core [3].

As stated, both the user space process and the accelerator have access to the
same memory structure, which means that they need to have a common memory
mapping to refer to the same addresses. Therefore, the address in the process’s virtual
memory space needs to be mapped to the actual physical address of the memory struc-
ture (which is usually a 32x32 bit RAM). Figure 5.5 depicts the standard code seg-
ment used for opening the Xillybus-Lite device file, mapping the address from the
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virtual memory space to the physical one and accessing the memory structure with
read/write operations:

int fd;
void *map_addr;

int size = ...}

fd = open("/dev/uicl", O_RDWR});

map_addr = mmap (NULL, size, PROT_READ | PROT_WRITE, MAP_ SHARED,

fd, 0);
volatile unsigned int *pointer = map_addr;
*pointer = the_wvalue_to_write;
the_walue_read_from_register = spointer;

Figure 5.5: Code Segment for Lite memory access [3].

The mmap() function is called to obtain the physical address for accessing the
device. As can be noticed, reading or writing to the physical address of the RAM is
deduced to a simple data operation in software level. The communication overhead
for the signal to be transmitted is quite small, making it a highly efficient and produc-
tive method of communication.

5.5 HARDWARE/SOFTWARE INTEGRATION IN A COMPLETE
SYSTEM

Having described all the hardware components used for implementing the af-
fine transformation/measuring of the correlation measure of match on the accelerator
and managing the communication between hardware and software, it is time to illus-
trate how the registration solver was implemented in a complete system.

The recurrent function that calculates the measure of match takes up over 99%
of the processing’s execution time as presented in Chapter 3. As a result, this is the
function which was solely implemented on the hardware. The remaining components
of the processing flow described in Chapter 3 (aside from the calculation of the initial
components, which is practically a call of the previous function) were implemented in
the software. The transformation parameters needed by the transformer are sent to the
accelerator via the Xillybus-Lite system, together with the communication signals.
The outputs of the function required for the correlation computation are sent to the
user space via the Xillybus-Lite system as well. The Xillybus-IP is used to stream the
images to the FPGA using the AXI4-Stream protocol in the initial stage of the image
loading.
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It is also important here to discuss the software environment that was used.
Together with the Xillybus IPs presented above, Xillybus Ltd. provides the user with
an already set up Linux distribution called Xillinux, which is based on the Ubuntu TS
12.04 for ARM which can be immediately deployed on Zybo. Xillinux is an operating
system supporting most of the features as a regular desktop computer with a Linux
operating system. The most important is the Graphical User Interface (GUI), which is
greatly important in any image processing application for a visual understanding of
the results and functionalities. Aside from that, Xillinux also supports a native com-
piler of user applications, relieving the designer from the need to use a cross-compiler
in a desktop computer, and as such greatly reducing the debugging and development
time. If necessary, multithreading is also supported to improve the execution time in
parallel processing.

5.6 THE MEMORY PROBLEM & ITS SOLUTION

The implementation of the so far described architecture cannot work on the
dataset of this thesis, because the size of the images is larger than the available
memory in the FPGA’s Block Rams. In fact, each image has a size of 1Mbyte, while
the total memory available in Block Rams is 256Kbytes. This problem could be
avoided if the registration had a typical memory access pattern like most image pro-
cessing applications. This usually encountered pattern is based on streaming only a
few pixel lines at a time and limiting the processing on these specific segments of the
image. When the processing is even half way through these segments, the next seg-
ment transfer can be initiated, so as to be ready in the BRAMSs when required. A pre-
requisite for this streaming pattern to be accurate and useful is that the access pattern
is known beforehand.

However, that is not the case with the registration solver. Although the fixed
image can be accessed with this pattern, the moving image cannot. The reason lies in
the nature of the transformation itself. There is no standard pattern that can describe
the memory accesses that will occur, due to the transformation parameters changing in
every iteration of the optimizer. Assuming that the pixel with coordinates (0,0) is
transformed to a pixel with coordinates (X1,y1), then the access pattern can either be
linear or diagonal, with all 8 possible directions being possible (as shown in Figure
5.6), based on the sign and value of the six transformation parameters. The red painted
pixel in Figure 5.6 symbolizes the initial pixel in the left image and the initial trans-
formed pixel in the middle and right images. The location of this pixel can be com-
pletely random and this is just an example given for the comprehension of the pattern.
The yellow color in the left image indicates the linear access pattern of the first image
and each different color in the middle image indicates some of the possible direction
patterns. Aside from the nine different patterns depicted in the second image, there are
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even more, as the removal of the decimal part in the transformed coordinates can re-
sult in even more complex patterns, as depicted in the third image.

"

Figure 5.6: Different image access patterns with application of the transformation

This unorthodox access pattern is highly complex and cannot be optimally im-
plemented using the DMA AXI4-Stream protocol that was described, as there is no
way to predict each iteration’s pattern before the transformation takes place. As a re-
sult, the transformation of the first pixel would first need to be completed in order to
know where the streaming would have to begin from, and keeping in mind that some
transformations will not be valid because of the out-of-bounds generated coordinates
the throughput would be significantly reduced, even if an accurate control pattern
could be designed.

In an attempt to bypass this problem, a downsizing of the images was tried out
on software level. Image downsizing is a procedure in which the pixel information is
changed and “shrinked”, by discarding information, so as to reduce its size. The
length and width of the image need to remain the same in order to fit the dataset pre-
requisites. After careful and detailed research of the generated transformation parame-
ters, the best downsize produces images of 256x256 dimensions. The results of the
registration for the downsized images were compared to those of the initial images
and what was discovered was very interesting and useful. When it comes to the scal-
ing and rotation parameters, the deviation between the two methods was very small
(less than 1%) and the displacement parameter of the downsizing method (which is
usually the most important parameter) was approximately 4 times smaller than the
corresponding parameter of the initial method. Since 1000+256=4 this observation is
very important, as the results of the downsized method can be used to get a highly ac-
curate estimation of the results of the initial method. In fact, the scaling and rotation
parameters will remain the same, while the displacement ones will be multiplied by 4.

Naturally, since the required calculations are now a lot less, there is an execu-
tion speedup caused by the downsizing. The execution time in a software implementa-
tion is 5-10 times faster, depending on the image pairing. A careful choice of the max-
imum allowed values for the transformation parameters is required to ensure that this
method will be precise and accurate. Obviously, the initial downsizing of the images
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constitutes an extra component at the start of the processing flow, which adds a small
burden on the execution time. However this time interval required is much smaller
than the time saved in the registration and therefore is not a problem. For the purpose
of this thesis, an existing software tool was used to downsize the images, and the
downsizing algorithm was not included in the design.

Since the image size is now 256x256=65536 bytes, both images can fit in the
FPGA’s Block Rams. The images will be streamed once at the beginning of the regis-
tration and whenever a pixel is required a simple memory addressing can be used to
gain access to it.
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CHAPTER 6: SYSTEM EVALUATION

6.1 RESOURCE UTILIZATION

This chapter provides an analytical view of the total FPGA resources used by
the designed system, as well as problems that were encountered and how they were
solved. Table 6.1 presents the detailed resource utilization of the finalized architec-
ture.

Table 6.1: Resource Utilization of the completed architecture

Z-7010 resources | Available | Used | Utilization
LUT 17600 14164 80.48%
FF 35200 22621 64.26%
BRAM 60 35 58.33%
DSP 80 76 95%

It becomes obvious now why the application requires a lot of resources, as a
result of the extended use of floating point arithmetic, and why the double precision
could not be implemented, since it requires a lot more resources than the 32-bit single
precision. Floating point circuits are bigger and more complex than the integer ones.
As a result, the specific FPGA cannot support a processing parallelization, as that
would multiply the amount of resources required, which is not feasible given the table
above. In a platform with sufficiently more FPGA resources, the whole design could
be doubled or tripled, thus dividing the processing in two or three independent parti-
tions that will operate parallel to each other. As a result the speedup would be multi-
plied by a factor of 2 or 3 accordingly.

The routing algorithm of the Vivado tool that is part of the implementation of
the design on the FPGA sometimes crashes when the resource utilization is stretched,
for example more than 85%. This problem appeared a couple of times during the de-
velopment. In order to avoid it, some of the floating point arithmetic circuits described
in chapter 4 were modified to use more DSPs and fewer LUTSs. This adjustment does
not affect the final performance, since it only refers to which of the available hard-
ware components are to be used to implement arithmetic circuits. Table 6.2 provides
an example of how the use of DSP affects the utilization of LUTs and FFs. The cho-
sen circuit was the multiplier of single precision floating point arithmetic and the de-
tailed resource usage is presented for 1 and for 2 DSPs used separately. As a large
number of multipliers and adders were part of the design, using more DSPs for each
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of them significantly reduced the amount of logic blocks, freeing up valuable space
for the design to be successfully implemented

Table 6.2: Resources based on DSP Usage of multiplier IP

Number of LUTs FFs
DSPs

1 245 437

2 115 242

What is also important to note out is the amount of resources bound by the
Xillybus IP cores, which were used for the hardware/software communication, as
shown in Table 6.3. Keeping this information in mind during the development was
important in order to make sure that some resources would be saved in the end for the
implementation of the Xillybus cores.

Table 6.3: Xillybus IP Cores resource utilization

Z-7010 resources | Available | Used | Utilization
LUT 17600 2768 15.72%
FF 35200 2656 7.54%
BRAM 60 1 1.66%
DSP 80 0 0%

6.2 EXECUTION TIME COMPARISON

The final execution time of the hardware/software co-design on the Zybo was
compared to the execution time on the software using the standalone ARM of the
Zybo (with a maximum CPU frequency of 900MHz and DDR memory of 512 MB)
and to the corresponding one using a fast standalone CPU of a desktop computer
(with a maximum CPU frequency of 2.4GHz and a RAM memory of 6GB). Before
presenting the times’ comparison an important feature of the floating point circuit for
the accumulation needs to be analyzed. This component (made by Xilinx) first rounds
the floating point inputs and accumulates after. As a result, a small accumulation error
is added to the final calculation because of the rounding. In the absence of elastic de-
formations, where the optimizer is stable, this error is small and insignificant
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There are two more factors that introduce error to the calculations. One is the
choice between single and double precision for the floating point arithmetic. The sec-
ond is the method of reading the image in the software. The loading of the images can
be done either by using the OpenCV library or by saving the image as a text file and
reading from it. Since the installation of the OpenCV library in the Zybo was not fea-
sible the second method was used. In case of stable optimizers for well aligned images
without elastic deformations, these errors are not very important. After converging the
256x256 found parameters to the correct ones for the image size of 1000x1000 (by
properly adjusting the displacement), the maximum displacement error that was found
(which is the most important) between the different methods was 9 pixels, which is
less than 1% of the image’s width. Practically this means that visually the registration
will still succeed.

Although the quality of the results regarding the errors will be examined in
section 6.3, it is important to say how this error affects the execution time speedup as
well. Since the optimizer searches the exploration space for an optimum solution,
small errors in the measured matches can lead to different steps taken during the pro-
cessing. The final convergence might still be about the same, but depending on the
errors, a different amount of iterations may be required for the optimizer to converge
to the said solution. The outcome of this phenomenon is that the speedup is not stand-
ard, but varies depending on the inputs. Table 6.4 illustrates the execution time for 3
successful registrations and 1 unsuccessful for processing of the downsized images
(256x256). Each time presented is derived from the average of 100 executions for a
more stable and statistically correct measurement.

Table 6.4: Execution time comparison between all implementations

CPU/FPGA | Standalone CPU
co-design

Standalone CPU
in desktop com-
puter

ARM in Zybo

First Successful regis- | 0,31169519 12,583982 1,10332952
tration time(seconds)

Speedup x40,37 x3,53
Second Successful reg- | 0,29721025 19,729760 0,87024528
istration time(seconds)

Speedup _I X66,38 x2,93
Third Successful regis- | 0,29172961 10,775993 0.6954013
tration time(seconds)

Speedup x36,94 x2,38
Unsuccessful registra- | 0,26560579 11,236088 0,98315164

tion time(seconds)

Speedup x42,30 x3,37

N I
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6.3 QUALITY OF RESULTS COMPARISON

The final matter that needs to be considered is the quality of the parameters
generated by the registration solver implemented using the co-design, which is to be
compared to the respective parameters generated in a Desktop PC using a standalone
processor. In fact, a more extensive comparison will take place in this sub-chapter, as
there will be a display of results generated in 4 different methods:

e Standalone Desktop CPU for initial image sizes (1000x1000) using OpenCV
and double precision. (Method 1)

e Standalone Desktop CPU for downsized images using OpenCV and single
precision. (Method 2)

e Standalone ARM CPU on Zybo for downsized images using single precision
and reading from text file. (Method 3)

e FPGAJ/CPU co-design on Zybo for downsized images using single precision
and reading from text file. (Method 4)

Two examples for each method will be illustrated, one with a very small (prac-
tically insignificant) error and one with a relatively larger one. Both are examples of
registrations that were successful. Tables 6.5 and 6.6 refer to the results of Methods 1
and Method 2.

Table 6.5: Method 1 results

Parameters First pair Second pair
T1 1.009586 0.992332
T2 -0.016319 0.018466
T3 178.587102 -194.799257
T4 0.027438 -0.015719
T5 1.003454 0.990693
T6 -62.193396 -23.551012
Measure of Match 0.783938 0.827221
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Table 6.6: Method 2 results

Parameters First pair Second pair

T1 1.002974 1.045161
T2 -0.015803 0.026128
T3 45.320175 -48.672958
T4 0.024869 0.000492
T5 0.997309 1.011216
T6 -16.065662 -5.656442

Measure of Match 0,792186 0,797225

In order to decide whether the second Method is sufficient a comparison of the
parameters with the Method 1 is conducted. Since the parameters T1, T2, T4 and T5
which refer to scaling and rotation have small deviations between the two methods,
the most important ones to look are T3 and T6 which refer to the displacement. Mul-

tiplying T3 in the first pair by the fraction%=3,90625, one can get

T3new=177,032, which is about 1.5 pixels less than the T3 of Method 1. This error is
insignificant in the visual representation after the edge detection and fusion are ap-
plied. Thus, we conclude that using the registration solver on the downsized images
one can get a very satisfying estimation of the required transformation, which can
then be effectively applied on the initial images, without any significant errors.

Tables 6.7 and 6.8 refer to the relevant results regarding the next two methods,
both of which were implemented on Zybo. A small error between them and Method 2
will result in a successful registration, where the errors are of no practical signifi-
cance.

Table 6.7: Method 3 results

Parameters First pair Second pair
T1 1.010045 1.040799
T2 -0.015795 0.025317

T3 45.801357 -48.795601
T4 0.027911 -0.001520
T5 1.003294 1.009725
T6 -15.859092 -5.936245
Measure of Match 0,792874 0,799729
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Table 6.8: Method 4 results

Parameters First pair Second pair
T1 0.990064 1.002257
T2 -0.017116 0.023562

T3 44.415871 -48.941826
T4 0.021519 -0.011582
T5 0.989229 1.034919
T6 -15.909966 -5.749107
Measure of Match 0,780669 0,806234

It immediately becomes obvious that the errors do not affect the performance
and the credibility of the registration solver, as long as there are no elastic defor-
mations and the optimizer is stabilized. It was noted that all the image pairs in the da-
taset, which can be successfully registrated, had satisfying results compared with all
previously mentioned methods. As a result, the registration was sped up not only be-
cause of the image downsizing, but also because of the FPGA implementation,
achieving even greater times than before.
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CHAPTER 7: CONCLUSIONS

/.1 THESIS SUMMARY AND CONCLUSIONS

Image registration is a computationally demanding field of image processing
with an impact on medical, military and navigating applications. Rendering the regis-
tration solvers effective and practical in embedded system designs can be a difficult
and complex matter, as the traditional software designing methodologies are not suffi-
cient in terms of execution time and sometimes power consumption.

The topic of this thesis was the implementation of a software/hardware co-
design, capable of achieving the desired precision, whilst meeting the timing criteria.
More precisely a hardware platform with a SoC FPGA (Zybo) was chosen, in order to
implement the time consuming part of the registration algorithm. Alternative plat-
forms suitable for the design could be GPUs or ASICs. After briefly presenting the
scientific background of the registration problem, the chosen platform’s capabilities
and characteristics were analyzed, with an extensive reference to the basic aspects of
the FPGA and the major communication protocols. In order to handle the designing
complexity, the standard processing flow of a registration solver was modified in such
a way so as to render the co-design feasible. After a proper and careful timing profil-
ing, the computationally heavier function was removed from the software domain and
implemented on the FPGA, thereby achieving the optimum partition between the two
design levels. The communication between the FPGA and the ARM processor was
achieved using an effective and simple system called Xillybus, which incorporates the
AXI4-Streaming protocol using proper and hidden from the user DMA drivers. Hav-
ing already designed the accelerator and established an optimal communication with
the processor, the solver’s final integration was illustrated. The methodologies and
ideas explained in this thesis can be used in many other image processing applica-
tions, where effective image streaming protocols are required, in combination with a
careful synchronization and communication.

Finally, the system’s evaluation was carried out. Since, as already explained,
there is a small precision error in the calculations on the FPGA, because of rounding
of numbers caused by specific hardware components, the output of the design had a
small deviation from the output of the initial implementation. For images that can be
processed using the rigid model, this error is too small and doesn’t affect the perfor-
mance of the registration solver. However, in some cases, where elastic deformations
may be present, the optimizer can be quite unstable, producing different results based
on the architecture and the 32-bit or 64-bit choice of floating point numbers’ represen-
tation. The speedup achieved can vary from 40 to 80 times when compared to the im-
plementation on the standalone ARM processor, a number which can vary between

image sets, because of different errors in each that may lead to a requirement for more
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iterations of the optimizer. The corresponding speedup when compared to a laptop or
desktop computer with a high frequency processor was 2-4 times.

7.2 FUTURE WORK/EXTENSIONS

Future work that could improve certain aspects of the design, as well as ex-
pand its characteristics could be the following. Firstly, the downsizing algorithm can
be incorporated in the program, so that the images can get downsized immediately
before the registration, whatever the image size and without the use of external tools.
This procedure will obviously need to be executed by the processor, as it is not very
time consuming and the remaining resources in the FPGA are limited. There can also
be a software procedure, which will apply the optimum transformation of the optimiz-
er to the moving image and run an edge detection and image fusion for a visual repre-
sentation of the registration’s results, in order to determine whether it was successful
or not. Finally, different floating point representations can be examined to see if they
match the application’s criteria, such as the fixed point representation, which will of-
fer a trade between resources utilized and available precision. If the experiments show
that this design is feasible, the great amount of resources saved can allow for extra
parallelization. Splitting the design in two identical components that will do the same
processing on each half of the image can increase the speed by a factor of 2.

Aside from these, different platforms can also be examined to speed the regis-
tration up, such as implementation on a CPU-GPU platform or a SoC FPGA with
more resources than the Zybo, which would allow for the implementation of the solv-
er, without the need to downsize the images and potentially lose important precision
in stricter applications. Acceleration of elastic deformation models can also be a very
challenging task. As the complexity is significantly higher than the rigid model’s,
more resources are bound to be needed, as well as a possibly different design flow. A
final comparison between all the said designs can lead to a decision as to which archi-
tecture is the optimum and most practical one to use.
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