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Περίληψη

Οι ηλεκτρονικές δημοπρασίες διαφημίσεων, οι οποίες πουλάνε διαφημιστικό χώρο δίπλα από το
αποτελέσματα των οργανικών αναζητήσεων, φέρνουν έσοδα δισεκατομμυρίων δολλαρίων. Στις
δημοπρασίες για λέξεις κλειδιά όποτε ο χρήστης κάνει αναζήτηση για κάποια λέξη κλειδί, οι δια-
φημιστές κάνουν μια προσφορά στη μηχανή αναζήτησης και αφού η μηχανή αναζήτησης συλλέξει
όλες τις προσφορές, αποφασίζει, λαμβάνοντας υπόψιν και κάποιους άλλους παράγοντες, πώς θα
κατανείμει τον διαφημιστικό χώρο. Ένα κοινό χαρακτηριστικό των περίσσοτερων διαφορετικών
τύπων δημοπρασιών για λέξεις κλειδιά που χρησιμοποιούνται στην πράξη είναι η μη-φιλαληθεία,
κάτι που σημαίνει ότι η προσφορά που κάνουν οι διαφημιζόμενοι δεν είναι η ωφελεία τους, δη-
λαδή το πόσο πραγματικά θέλουν το κλικ του χρήστη. Ένα μείζον πρόβλημα για τον δημοπράτη
σε τέτοια συστήματα είναι η εκτίμηση αυτής της παραμέτρου, της ωφελείας, χρησιμοποιώντας
δεδομένα από προηγούμενες δημοπρασίες στις οποίες έχει συμμετάσχει ο διαφημιζόμενος. Οι
κλασσικές προσεγγίσεις σε αυτό το πρόβλημα υποθέτουν ότι οι διαφημιζόμενοι έχουν φτάσει σε
μια σταθερή κατάσταση όπου ο καθένας αντιδρά με βέλτιστο τρόπο στις στρατηγικές αποφά-
σεις των υπολοίπων. Δυστυχώς, αυτή η υπόθεση είναι λανθασμένη στις δυναμικές αγορές όπου
επικεντρωνόμαστε.

Στην παρούσα διπλωματική παρουσίζουμε μια νέο μέθοδο για την επίλυση αυτού του προ-
βλήματος που προτάθηκε από τους Nekipelov κ.α., η οποία βασίζεται στην πολύ ασθενέστερη
υπόθεση ότι οι συμμετέχοντες στις δημοπρασίσες χρησιμοποιούν αλγοριθμικές τεχνικές μάθησης
και πετυχαίνουν τον στόχο της μη-μετάνοιας. Στο μοντέλο που χρησιμοποιούν υποθέτουν ότι οι
ωφελείες των διαφημιζομένων παραμένουν σταθερές στο πέρασμα του χρόνου. Παρουσίαζουμε
μια επέκταση της μεθόδου τους στην οποία οι ωφελείες μεταβάλλονται σχετικά αργά κατά τη
διάρκεια των δημοπρασιών. Επιπλέον, παρουσίαζουμε ένα τρόπο χρήσης της μεθόδου τους σε
περιβάλλοντα δημοπρασιών ενός χρήστη-ενός αντικειμένου όπου η παράμετρος της ωφελείας δεν
αλλάζει, ώστε ο δημοπράτης να θέσει κατάλληλα τις τιμές κράτησης για να βελτιστοποιήσει το
κέρδος του.

Στο τρίτο κεφάλαιο εισάγωγουμε τον αναγνώστη στις βασικές έννοιες του Σχεδιασμού Μη-
χανισμών τις οποίες θα χρησιμοποίησουμε εκτεταμένα σε όλο το κείμενο. Στο τέταρτο κεφάλαιο
εισάγουμε τις βασικές έννοιες και τους αλγορίθμους που χρησιμοποίουνται από τους παίχτες σε
περιβάλλοντα online αποφάσεων, η οποία θα είναι και η βασική μας υπόθεση συμπεριφοράς για
το πώς λειτουργούν οι αγοραστές σε μη-φιλαληθείς δημοπρασίες. Στο πέμπτο κεφάλαιο παρου-
σιάζουμε τη μέθοδο εκτίμησης των Nekipelov κ.α., καθώς και κάποια αποτελέσματα πρόσφατων
δημοσιεύσεων που στοχεύουν να αναλύσουν αγορές κάτω από υποθέσεις μάθησης. Τέλος, στο
έκτο κεφάλαιο παρουσιάζουμε τα αποτελέσματα της δικής μας προσπάθειας.

Λέξεις κλειδιά
αλγοριθμική θεωρία παιγνίων, σχεδίαση μηχανισμών, ηλεκτρονικές δημοπρασίες, ευφυείς πρά-
κτορες, μηχανιστική μάθηση, εκτίμηση ωφέλειας
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Abstract

Online ad auctions, which sell advertising space online alongside the organic results, gener-
ate billions of revenue each year. In the keyword auctions, whenever a user searches for a
specific keyword the advertisers submit a bid to the search engine and, based on these bids
along with some other factors, the engine decides how to allocate the advertising space. A
common characteristic of the different auction formats that are used in practice is that they
are not truthful, which means that it is not of the best interest of the advertisers to submit to
the allocation mechanism their valuation, i.e. how much they value getting clicked. A major
problem for the auctioneers in such settings, is to manage to infer that parameter based on
the past data that they have collected from previous auctions. Classical work on this problem
assumed that the advertisers have managed to somehow reach a stable state, in which each
one best responds to the strategies of his opponents. However, this assumption is unrealistic
in dynamic markets that we are interested in.

In this thesis we present the new approach to that problem that was suggested by
Nekipelov et al. [NST15], which is based on the much weaker assumption that advertis-
ers are learning agents who achieve the no-regret task. In their model, they assume that the
bidders’ valuations remain constant over time. We extend their results in settings in which
these valuations are slowly changing throughout the repeated auctions. We also show how to
use the valuation inferring method that was proposed by Nekipelov et al. to set the reserve
prices in single item-single buyer settings in order to maximize his revenue , when the valu-
ation of the buyer does not change.

In the third chapter we introduce the reader to some basic mechanism design concepts
that we will use extensively in the following chapters. In the fourth chapter we introduce basic
concepts and algorithms used by players in online decision settings which will constitute our
basic assumption about how players behave in non-truthful auction settings. In the fifth
chapter we present the inference method proposed by Nekipelov et al. as well as some other
results from the recent line of work that aims to analyze repeated games under learning
assumptions. Finally, in the sixth chapter we analyze our results regarding the extension of
that valuation inference method.

Key words
algorithmic game theory, mechanism design, sponsored search auctions, GSP, online convex
optimization, online learning, valuation inference
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Κεφάλαιο 1

Εκτεταμένη Ελληνική Περίληψη

Στο σημείο αυτό θα συνοψίσουμε το περιεχόμενο της παρούσας διπλωματικής, δίνοντας βα-
σικούς ορισμούς και θεωρήματα, χωρίς αποδείξεις.

1.1 Σημεία Ισορροπίας και Σχεδιασμός Μηχανισμών
1.1.1 Σημεία Ισορροπίας

Η Θεωρία Παιγνίων μελετά την αλληλεπίδραση στρατηγικών οντοτήτων. Πολύ σημαντικό
ρόλο στην αλληλεπίδραση αυτή παίζουν τα λεγόμενα ”σημεία ισορροπίας”. Διαισθήτικα, λέμε ότι
ένα παίγνιο είναι σε κάποιο σημείο ισορροπίας όταν οι συμμετέχοντες σε αυτό δεν έχουν λόγο
να διαφοροποιήσουν τη στρατηγική τους, οπότε καθώς ο χρόνος περνά, οι κινήσεις που κάνουν
δεν αλλάζουν. Έτσι, υπάρχει κατά κάποιο τρόπο ισορροπία. Για να δούμε βασικά παραδείγματα
τέτοιων ισορροπιών είναι χρήσιμο να ορίσουμε ένας είδος παιγνίου.

Ορισμός: Παίγνιο Ελαχιστοποίησης Κόστους

• n παίχτες

• ένας πεπερασμένος στρατηγικός χώρος Si για κάθε παίχτη i. Στο πλαίσιο των δημοπρα-
σιών, αυτός ο χώρος είναι οι διαφορετικές προσφορές που μπορεί να κάνει ο παίχτης.
Συμβολίζουμε με s = (s1, ..., sn) το στρατηγικό προφίλ του παιγνίου

• μια συνάρτηση κόστους Ci : S1 × ... × Sn → R για κάθε παίχτη i (ο καθένας θέλει να
ελαχιστοποιήσει το κόστος του)

Παρακάτω παραθέτουμε μερικές από τις πιο σημαντικές έννοιες ισορροπίας.

• Κυρίαρχη Στρατηγική
Η στρατηγική s′ για τον παίχτη i είναι κυρίαρχη ∀s ∈ Si,∀s−i ∈ S1 × ...× Si−1 × Si+1 ×
...× Sn ισχύει

Ci(s
′, s−i) ≤ Ci(s, s−i)

• Ανάμεικτη Ισορροπία Nash
Για κάθε παίχτη και κάθε άλλη στρατηγική του ισχύει

Es∼σ[Ci(s)] ≤ Es−i∼σ−i [Ci(s
′
i, s−i)]

• Καθαρή Ισορροπία Nash
Για κάθε παίχτη και κάθε αλλη στρατηγική ισχύει

Ci(s) ≤ Ci(s
′
i, s−i)
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• Συσχετισμένη Ισορροπία
Για κάθε παίχτη και κάθε αλλη στρατηγική ισχύει

Es∼σ[Ci(s)|si] ≤ Es−i∼σ−i [Ci(s
′
i, s−i)|si]

• Χαλαρά Συσχετισμένη Ισορροπία
Για κάθε παίχτη και κάθε αλλη στρατηγική ισχύει

Es∼σ[Ci(s)] ≤ Es−i∼σ−i [Ci(s
′
i, s−i)]

1.1.2 Σχεδιασμός Μηχανισμών
Ο Σχεδιασμος Μηχανισμών ασχολείται με τη δημιουργία κανόνων και συστημάτων που διέ-

πουν τη λειτουργία τέτοιων στρατηγικών οντοτήτων. Στόχος είναι ο σχεδιασμός κανόνων που
δίνουν στους παίκτες εύκολα ανιχνεύσιμες κυρίαρχες στρατηγικές. Με αυτό τον τρόπο είναι εύ-
κολο για τους παίχτες να αποφασίσουν πώς θα παίξουν, αλλά και για τον δημιουργό να προβλέ-
ψει το αποτέλεσμα της αλληλεπίδρασης. Ένα παράδειγμα τέτοιου μηχανισμού είναι η δημοπρασία
Δεύτερης Τιμής.

Δημοπρασία Δεύτερης Τιμής
Έστω ότι θέλουμε να πουλήσουμε ένα αντικείμενο σε ένα σύνολο από n αγοραστές. Ζητάμε από
όλους να μας δώσουν μια προσφορά ιδιωτικά και δίνουμε το αντικείμενο σε αυτόν που έκανε τη
μεγαλύτερη προσφορά και κατόπιν τον χρεώνουμε τη δεύτερη μεγαλύτερη προσφορά. Ο λόγος
γι’ αυτή τη φαινομενικά περίεργη τακτική είναι ότι με αυτό τον τρόπο καταφέρνουμε να δώσουμε
κίνητρο στους αγοραστές να μας πουν την αλήθεια για το πόσο πραγματικά είναι διατεθημένοι
να πληρώσουν για το αντικείμενο. Μηχανισμοί στους οποίους το να λένε οι παίχτες την αλήθεια
είναι κυρίαρχη στρατηγική λέγονται φιλαληθείς. Αυτή είναι μια πολύ σημαντική ιδιότητα των
μηχανισμών.

Περιβάλλον Μονής Παραμέτρου
Χαρακτηρίζουμε περίβαλλοντα μονής παραμέτρου αυτά στα οποία η ικανοποίηση των συμμε-
τεχόντων έχει τη μορφή u(b) = v · x(b) − c(b), όπου x(), p() είναι η συνάρτηση τοποθέτησης
και πληρωμής αντίστοιχα, τις οποίες επιλέγει ο μηχανισμός. Οι μηχανισμοί μονής παραμέτρου
παίζουν πολύ σημαντικό ρόλο και έχουν μελετηθεί εκτενώς. Ένα πολύ σημαντικό αποτέλεσμα
είναι το Λήμμα του Myerson που παρατίθεται παρακάτω.

Λήμμα Myerson Στο περιβάλλον μονής παραμέτρου ισχύουν τα ακόλουθα

1. Ένας κανόνας τοποθέτησης x μπορεί να γίνει φιλαληθής αν και μόνο αν είναι μονότονος.

2. Αν ένας κανόνας τοποθέτησης είναι μονότονος υπάρχει ένας κανόνας πληρωμής p ώστε ο
μηχανισμός (x, p) να είναι φιλαληθής.

3. Ο τύπος για τον κανόνα πληρωμής είναι pi(bi, b−i) =
∫ bi
0 z · d

dzxi(z, b−i)dz.

Γενικευμένες Δημοπρασίες Δεύτερης Τιμής Με τη χρήση των γενικευμένων
δημοπρασιών δεύτερης τιμής πωλείται διαφημιστικός χώρος στις αναζητήσεις για λέξεις κλειδιά
στο διαδίκτυο. Παραθέτουμε τα βασικά συστατικά τους.

1. n διαφημιζόμενοι

2. m διαφημιστικές θέσεις

3. vi ιδιωτική παράμετρος για τον καθένα
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4. a = (a1, ..., am) οι συντελεστές θέσης a1 ≥ a2 ≥ ... ≥ am που υποθέτουμε ότι είναι σε
φθίνουσα σειρά

5. γ = (γ1, ..., γn) οι πιθανότητες κλικ των διαφημιζομένων

6. s = (s1, ..., sn), οι συντελεστές ποιότητας των διαφημιζομένων

7. r, το σκορ κράτησης της δημοπρασίας

8. b = (b1, ..., bn) οι προσφορές που έγιναν από τους παίχτες

Οι διαφημιζόμενοι ταξινομούνται σύμφωνα με το σκορ sibi και παίρνουν θέσεις σε φθίνουσα
σειρά. Κάθε φορά που ο χρήστης πατάει τις διαφημίσεις τους χρεώνονται την ελάχιστη τιμή που
θα πρεπε να εχουν προσφέρει για να διατηρήσουν τη θέση τους. Το πρόβλημα είναι ότι αυτός ο
μηχανισμός δεν είναι φιλαληθής. Γι’ αυτό το λόγο οι παίχτες θα πρέπει να εφαρμόσουν κάποιους
αλγόριθμους μηχανικής μάθησης ώστε να μάθουν να παίζουν σωστά.

1.2 Online Μάθηση
Η online μάθηση είναι ένας τομέας της μηχανικής μάθησης που ασχολείται με τη λήψη ακο-

λουθιακών αποφάσεων σε ενα άγνωστο περιβάλλον, χωρίς κάποιες υποθέσεις για πιθανοτική
κατανομή. Το μοντέλο έχει την ακόλουθη μορφή

• Σε κάθε γύρο t διαλέγουμε ένα σημείο xt

• Ο αντίπαλος διαλέγει μια συνάρτηση ft()

• Χάνουμε ft(xt)

1.2.1 Στατικό no-regret
Στόχος του παίχτη που χρησιμοποιεί ένα τέτοιο αλγόριθμο είναι να ελαχιστοποιήσει το regret

του που ορίζεται ως εξής.

Regret

regretT (A) = sup
{f1,...,fT }⊆F

{ T∑
t=1

ft(xt)− min
x∈K

T∑
t=1

ft(x)
}

Το regret μετράει το πόσο μετανιώνει ο παίχτης ότι δεν έπαιζε συνέχεια το καλύτερο στα-
θερό σημείο του συνόλου. Για να θεωρήσουμε ότι κάποιος έχει no-regret θα πρέπει η παραπάνω
ποσότητα να είναι o(T ). Θεωρούμε ότι το σύνολο απόφασης είναι κυρτό και οι συναρτήσεις του
αντιπάλου είναι επίσης κυρτές. Δίνουμε τον ορισμό παρακάτω.

Κυρτό Σύνολο
Ένα σύνολο K ⊆ Rn είναι κυρτό αν ∀x, y ∈ K, ∀a ∈ [0, 1] ισχύει ότι ax + (1 − a)y ∈ K,
δηλαδή τα σημεία που βρίσκονται στη γραμμή που ενώνει δύο σημεία του συνόλου βρίσκονται
επίσης στο σύνολο.

Κυρτή Συνάρτηση
Μια συνάρτηση f : K → R είναι κυρτή αν ∀x, y ∈ K,∀a ∈ [0, 1] ισχύει ότι f(ax+ (1− a)y) ≤
af(x) + (1− a)f(y).

Υπάρχουν πολλοί αλγόριθμοι που επιτυγχάνουν no-regret. Όταν το σύνολο απόφαση είναι
διακριτό πολύ χρήσιμος είναι ο παρακάτω.
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Algorithm 1 Multiplicative Weights Update
1: Initialize: ∀i ∈ [N ],W1(i) = 1
2: for t = 1...T do ▷ We have to answer T questions
3: receive question qt
4: pick it according to Wt, i.e. P[it = i] = xt(i) =

Wt(i)∑n
j=1 Wt(j)

5: suffer loss lt(it)
6: update weights Wt+1(i) = Wt(i)e

−ϵlt(i),∀i

Η διαίσθηση πίσω από τον προηγούμενο αλγόριθμο είναι ότι όλη η μάζα πιθανότητας που
μοιράζουμε μεταξύ των διαφορετικών σημείων του χώρου μαζεύεται γρήγορα γύρω από το σημείο
που έχει καλή επίδοση.

Όταν ο χώρος απόφασης είναι συνεχής ένας σημαντικός αλγόριθμος είναι ο παρακάτω.

Algorithm 2 Online Gradient Descent
1: for t = 1...T do ▷ We make T iterations
2: play xt and observe loss ft(xt)
3: yt = xt − ηt∇ft(xt),xt+1 = ΠK(yt+1) ▷ Project to K to maintain feasibility
4: return xT+1

Η έμπνευση του έρχεται από τον τομέα της Κυρτής Βελτιστοποίησης στον οποίο κατέχει
κεντρικό ρόλο.

1.2.2 Δυναμικό no-regret
Σε περίπτωση που οι συναρτήσεις τις οποίες πρέπει να ”μάθει” ο παίχτης δεν αλλάζουν συχνά

στο χρόνο, τότε μπορεί η διαδικασία μάθησης να έχει ισχυρότερες εγγυήσεις επίδοσης. Ορίζουμε
πρώτα της παρακάτω μετρικές που δείχνουν πόσο μεγάλες είναι οι αλλαγές στο περιβάλλον.

VT =
T∑
t=2

sup
x∈K
|ft(x)− ft−1(x)|

Η παραπάνω ποσότητα μετράει το πόσο αλλάζουν οι συναρτήσεις που μας δίνει ο αντίπαλος.

CT (u1, ...,uT ) =
T∑
t=2

||ut − ut−1||

Αυτή η ποσότητα μετράει το πόσο αλλάζει η ακολουθία των σημείων που ανταγωνιζόμαστε.
Το δυναμικό regret ορίζεται ως εξής.

regretdT (x∗
1, ...,x

∗
T ) =

T∑
t=1

ft(xt)−
T∑
t=1

ft(x
∗
t )

Όλοι οι αλγόριθμοι που πετυχαίνουν o(T ) dynamic regret έχουν το κοινό χαρακτηριστικό
ότι μεροληπτούν και δίνουν μεγαλύτερο βάρος στις πρόσφατες εισόδους των αλγορίθμων έναντι
των παλαιών. Παρακάτω φαίνονται τα όρια του dynamic regret για διάφορες περιπτώσεις.
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Σχήμα 1.1: Όρια δυναμικού regret

1.2.3 Εξαγωγή Παραμέτρων Ωφελείας σε Δημοπρασίες για Λέξεις
Κλειδιά

Ένα πολύ σημαντικό πρόβλημα σε δημοπρασίες για λέξεις κλειδιά, αλλά και μη-φιλαληθείς
μηχανισμούς γενικότερα, είναι η εκτίμηση της παραμέτρου v του διαφημιζόμενου. Οι κλασικές
προσεγγίσεις για αυτό το πρόβλημα υπέθεταν ότι οι παίχτες έχουν φτάσει σε μια ισορροπία Nash,
δηλαδή ότι ο καθένας αντιδρά με βέλτιστο τρόπο στις στρατηγικές αποφάσεις των αντιπάλων
του. Κάτι τέτοιο ωστόσο δεν είναι ρεαλιστικό στις μεγάλες και δυναμικές αγορές που μελετάμε,
αφού από τη μία η εύρεση μιας τέτοιας ισορροπίας είναι ένα υπολογιστικά δύσκολο πρόβλημα,
και από την άλλη ο όγκος της πληροφορίας που χρειάζεται να ανταλλαχθεί μεταξύ των παικτών
είναι πολύ μεγάλος. Μια μέθοδος που προτάθηκε πρόσφατα από τους Nekipelov κ.α. βασίζεται
στην ασθενέστερη υπόθεση ότι οι παίχτες χρησιμοποιούν αλγόριθμους μάθησης όπως αυτούς
που περιγράψαμε πριν. Αρχικά θα δώσουμε κάποιους ορισμούς.

•

∆P (b′) =
1

T

T∑
t=1

(pit(b
′, b−i)− pit(b))

Αυτή η ποσότητα μετράει το πόσο θα μεταβληθεί η πιθανότητα του κλικ αν ο παίχτης
άλλαζε την ακολουθία των πονταρισμάτων του και πόνταρε συνέχεια b′.

•

∆C(b′) =
1

T

T∑
t=1

(cit(b
′, b−i)− cit(b))

Αυτή η ποσότητα μετράει το πόσο θα μεταβληθεί το κόστος του κλικ αν ο παίχτης άλλαζε
την ακολουθία των πονταρισμάτων του και πόνταρε συνέχεια b′.

Χρησιμοποιώντας αυτούς τους ορισμούς λέμε ότι ένα ζευγάρι ωφελείας, regret είναι ”λο-
γικό” όταν ισχύει v∆P (b) ≤ ∆C(b)+ ϵ, ∀b ∈ B. Αυτή η συνθήκη μας λέει ότι αν ο παίχτης είχε
παράμετρο ωφελείας v τότε το regret του θα ήταν το πολύ ϵ. Το σύνολο αυτών των σημείων
ονομάζεται ”λογικό” σύνολο. Ισχύουν τα παρακάτω δύο θεωρήματα σχετικά με αυτό το σύνολο.

Θεώρημα: Το σύνολο των ζευγαριών που ικανοποιούν αυτή την ανισότητα είναι κλειστό
και κυρτό.

Θεώρημα: Για κάθε regret ϵ το σύνολο των παραμέτρων ωφελείας που είναι λογικές για
αυτό το regret δίνεται από τη σχέση

v ∈
[

max
b′:∆P (b′)<0

∆C(b′) + ϵ

∆P (b′)
, min
b′:∆P (b′)>0

∆C(b′) + ϵ

∆P (b′)

]
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Το παραπάνω θεώρημα μας δίνει ένα τρόπο να εκτιμήσουμε το λογικό σύνολο από τα δεδο-
μένα. Κάνουμε μια διακριτοποίηση στο χώρο των ϵ και b και έτσι μπορούμε να υπολογίσουμε
όλες τις παραμέτρους που υπάρχουν στο παραπάνω θεώρημα.

1.3 Αποτελέσματα
Το βασικό πρόβλημα με το οποίο ασχοληθήκαμε είναι η εξαγωγή ιδιωτικών παραμέτρων

σε περιβάλλοντα δημοπρασιών για λέξεις κλειδιά, οι οποίες δεν ικανοποιούν την ιδιότητα της
φιλαληθείας. Στηριχθήκαμε στη μέθοδο που παρουσιάσαμε στην προηγούμενη ενότητα, όπου
διατηρήσαμε την υπόθεση ότι οι παίχτες χρησιμοποιούν κάποια διαδικασία μάθησης ώστε να
βελτιώνονται στο χρόνο. Η μέθοδος των Nekipelov κ.α. [NST15] υποθέτει ότι η παράμετρος
της ωφελείας παραμένει σταθερή στο χρόνο. Κάτι τέτοιο όμως δεν είναι ρεαλιστικό σε μεγάλες
αγορές, όπου η εποχικότητα και άλλοι παράγοντες παίζουν μεγάλο ρόλο. Για παράδειγμα, ένα
ανθοπωλείο την ημέρα του Αγίου Βαλεντίνου έχει πολύ μεγαλύτερα κέρδη από τις επισκέψεις
των χρηστών απ’ ότι μια οποιαδήποτε άλλη μέρα του χρόνου. Για αυτό το λόγο προτείνουμε
μια επέκταση αυτής της μεθόδου στην οποία η ωφελεία των παικτών αλλάζει σχετικά αργά στο
χρόνο. Κάτι τέτοιο φαντάζει αρκετά λογικό αφού από μέρα σε μέρα δεν παρατηρούνται στην
πράξη ριζικές αλλαγές στις ωφελείες. Πιο συγκεκριμένα, στο μοντέλο μας υποθέτουμε ότι οι
παίχτες παίζουν δυναμικό no-regret και φτιάχνουμε ένα δυναμικό ”λογικό” σύνολο, με όμοια λο-
γική με αυτή στο στατικό μοντέλο. Δηλαδή, υποθέτουμε ότι οι παίχτες είναι αρκετά καλοί ώστε
σε βάθος χρόνου να μπορούν να ανταγωνίζονται οποιαδήποτε ακολουθία διαφορετικών ποντα-
ρισμάτων. Για να μπορέσουν να παίξουν τόσο καλά οι παίχτες θα πρέπει να μην παρατηρούνται
πολύ μεγάλες αλλαγές στο περιβάλλον των δημοπρασιών, αλλίως η διαδικασία της μάθησης δεν
μπορεί να επιτευχθεί. Η συνάρτηση που προσπαθεί να βελτιστοποιήσει ο παίχτης έχει τη μορφή
ut(bt) = vtPt(bt) − Ct(bt). Παρατηρούμε ότι υπάρχουν τρεις ”ποσότητες” που επηρεάζουν τη
συνάρτηση, οι vt, Pt(bt), Ct(bt). Η πρώτη είναι η παράμετρος της ωφελείας που επιθυμούμε να
μάθουμε και καθορίζεται από τον ίδιο τον παίχτη, ενώ οι άλλες δύο είναι η πιθανότητα κλικαρί-
σματος καθώς και το κόστος ανά κλικ, που καθορίζονται από τον μηχανισμό και το περιβάλλον
του παίχτη. Το παρακάτω θεώρημα μας δείχνει το μέγεθος των αλλαγών που επιτρέπονται σε
αυτές τις ποσότητες ώστε να επιτευχθεί η μάθηση.

Θεώρημα:Έστω ϵPt(x) = Pt(x)− Pt−1(x), ϵCt(x) = Ct(x)− Ct−1(x). Αν vt ≤ V, ∀t, τότε
για να έχει ο παίχτης δυναμικό regret που ”εξαφανίζεται” στο πέρασμα του χρόνου θα πρέπει να
ισχύουν οι ακόλουθες συνθήκες:
•
∑T

t=2 |vt − vt−1| = o(T )

•
∑T

t=2 supx∈X |ϵPt(x)| = o(T )

•
∑T

t=2 supx∈X |ϵCt(x)| = o(T )

Από το παραπάνω θεώρημα βλέπουμε ότι οι επιτρεπόμενες αλλαγές είναι πολύ μεγάλες. Δε
θα μπορούσαμε να ελπίζουμε ότι ο παίχτης θα μάθει κάτι σε περίπτωση που το περιβάλλον αλ-
λάζει τελείως από γύρο σε γύρο.

Η συνθήκη ότι ο παίχτης πετυχαίνει δυναμικό no-regret μεταφράζεται στην παρακάτω σχέση
για τις ποσότητες που εξετάσαμε πριν.

1

T
(

T∑
t=1

vtPt(bt)− Ct(bt)) ≥
1

T
(

T∑
t=1

vtPt(b
′
t)− Ct(b

′
t))− ϵ,∀b′ ∈ BT

Βλέπουμε ουσιαστικά ότι ο παίχτης παίζει τόσο καλά (κατά μέσο όρο) όσο οποιαδήποτε άλλη
ακολουθία πονταρισμάτων, μείον κάποιο μικρή τιμή η οποία καθώς περνάει ο χρόνος πηγαίνει
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στο 0. Αν ορίσουμε ∆Pt(b
′
t) =

1
T (Pt(b

′
t) − Pt(bt)),∆Ct(b

′
t) =

1
T (Ct(b

′
t) − Ct(bt)), που μετράνε

την (κανονικοποιημένη) αλλαγή στην πιθανοτήτα και στο κόστος του κλικ όταν στο γύρο t αλ-
λάζει το ποντάρισμα από bt σε σε b′t, καθώς και ∆P (b′) = (∆P1(b

′
1), ...,∆PT (b

′
T )),∆C(b′) =

(∆C1(b
′
1), ...,∆CT (b

′
T )) η προηγούμενη συνθήκη της μάθησης γράφεται ισοδύναμα ως

T∑
t=1

vt ·
1

T
(Pt(b

′
t)− Pt(bt))−

T∑
t=1

1

T
(Ct(b

′
t)− Ct(bt)) ≤ ϵ, ∀b′ ∈ BT

v ·∆P (b′)− 1 ·∆C(b′) ≤ ϵ, ∀b′ ∈ BT

Ορίζουμε ως δυναμικό ”λογικό” σύνολο, το σύνολο των (v, ϵ) που ικανοποιούν την προη-
γούμενη σχέση. Κάθε τέτοιο ζευγάρι μας λέει ότι αν ο παίχτης είχε την ακολουθία ωφελειών
v τότε το δυναμικό του regret (με βάση το πώς έπαιξε) είναι το πολύ ϵ. Το σύνολο αυτό έχει
πολλές καλές ιδιοτήτες, όπως αντίστοιχα είχε και στη ”στατική” περίπτωση. Η πιο βασική απ’
όλες είναι η ακόλουθη.

Θεώρημα: Το δυναμικό ”λογικό” σύνολο είναι ένα κλειστό, κυρτό σύνολο.

Πρόβλεψη συγκεκριμένης ακολουθίας Το σύνολο που περιγράψαμε παραπάνω πε-
ριέχει ως στοιχεία του όλες τις πιθανές ακολουθίες που θα μπορούσε να έχει ο παίχτης, μαζί
με το αντίστοιχο regret που αντιστοιχεί σε κάθε μία. Σε αντίθεση με το στατικό πρόβλημα που
μελετήσαμε στην προήγουμενη ενότητα, σε αυτό το να απαντάμε απλά την ακολουθία που έχει
το μικρότερο δυνατό δυναμικό regret δεν είναι τόσο καλό, για τον εξής λόγο. Σε κάθε χρονική
στιγμή αφού μπορούμε να απαντάμε διαφορετική ωφελεία, μπορούμε να δίνουμε ως έξοδο την
ωφελεία εκείνη που εξηγεί το ποντάρισμα αυτού του γύρου ως το βέλτιστο δυνατό. Με άλλα
λόγια, αν απαντάμε απλά την ακολουθία με το ελάχιστο δυνατό regret το αποτέλεσμα θα είναι ότι
τελικά θα υπάρχουν μεγάλες διαφορές από γύρο σε γύρο για να είναι μικρό το σφάλμα του παί-
χτη, πράγμα όμως που δεν είναι ρεαλιστικό. Παρακάτω παρουσιάζουμε το γραμμικό πρόγραμμα
που απαντάει τη ζητούμενη ακολουθία, για να λύσει το πρόβλημα που αναφέραμε πριν.

minimize
T∑
t=1

ϵt

subject to 1
T (vt∆P (b′)−∆C(b′)) ≤ ϵt , t = 1, ..., T, b′ = b1, ..., b|B|
vt − vt−1 ≤ k, vt−1 − vt ≤ k,t = 2, ..., T

Η λογική της απάντησης που δίνουμε είναι ότι ψάχνουμε μια ακολουθία από ωφελείες η οποία
από τη μία έχει μικρό δυναμικό regret για τον παίχτη και από την αλλή έχει μικρές αλλαγές, ώστε
να είναι πιο ρεαλιστική. Αυτό φαίνεται από τη δεύτερη συνθήκη του γραμμικού προγράμματος,
όπου θέλουμε από γύρο σε γύρο οι ωφελείες να μη διαφέρουν περισσότερο από k. Βλέπουμε
λοιπόν ότι για τη σωστή εκτίμηση της ακολουθίας υπάρχει ένας συμβιβασμός μεταξύ του πόσο
μεγάλες αλλαγές ανεχόμαστε από γύρο σε γύρο και πόσο μικρό σφάλμα θέλουμε να έχει ο
παίκτης.

Εναλλακτική προσέγγιση στην πρόβλεψη ακολουθίας

Το πρόβλημα με την παραπάνω προσέγγιση είναι ότι οι υποθέτουμε ότι γνωρίζουμε εκ των
προτέρων ένα φράγμα στο πόσο πολύ μπορούν να αλλάζουν οι ωφελείες από γύρο σε γύρο.
Κάτι τέτοιο όμως πολλές φορές δεν μπορεί να είναι γνωστό, επομένως θα πρέπει να χρησιμοποι-
ήσουμε μια εναλλακτική προσέγγιση που καλύπτει και αυτή τη περίπτωση. Αυτή η εναλλακτική
προσέγγιση δίνεται από το παρακάτω γραμμικό πρόγραμμα.
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minimize λ

T∑
t=1

ϵt + (1− λ)k

subject to 1
T (vt∆P (b′)−∆C(b′)) ≤ ϵt , t = 1, ..., T, b′ = b1, ..., b|B|
vt − vt−1 ≤ k, vt−1 − vt ≤ k,t = 2, ..., T

Όπως αναφέραμε και πριν υπάρχει ένας συμβιβασμός ανάμεσα στο πόσο μεγάλες αλλαγές
επιτρέπουμε στην ακολουθία και πόσο μεγάλο σφάλμα αφήνουμε τον παίχτη να έχει. Αυτή η
συνάρτηση ελαχιστοποίησης του γραμμικού προγράμματος δείχνει ακριβώς αυτό το συμβιβασμό.
Θέλουμε δηλαδή να ελαχιστοποιήσουμε ταυτόχρονα το σφάλμα και τις αλλαγές στη συνάρτηση,
ενώ το λ είναι μια παράμετρος που δείχνει πόσο βάρος θέλουμε να δώσουμε σε κάθε ένα από
τους δύο όρους της ελαχιστοποίησης.

Παρακάτω φαίνονται κάποια αποτελέσματα προσομοιώσεων της μεθόδου μας από συνθετικά
δεδομένα. Η πράσινη καμπύλη είναι οι προσφορές του παίχτη, η πορτοκαλί δείχνει τις πραγματι-
κές ωφέλεις του παίχτη, ενώ η μπλε δείχνει την ακολουθία που δίνουμε ως απάντηση.

Σχήμα 1.2: Εξαγωγή Παραμέτρων Πρώτης Μεθόδου

Βελτιστοποίηση Κέρδους σε περιβάλλοντα ενός παίκτη-ενός αντικειμέ-
νου

Από τη σκοπιά του δημοπράτη, ενδιαφερόμαστε να χρησιμοποιήσουμε τη μέθοδο πρόβλεψης
των ωφελειών ώστε να βελτιστοποιήσουμε το κέρδος μας. Επικεντρωνόμαστε σε περιβάλλοντα
ενός παίχτη-ενός αντικειμένου όπου αυτή η παράμετρος της ωφελείας διατηρείται σταθερή στο
χρόνο. Σε ένα τέτοιο περιβάλλον ο μόνος τρόπος με τον οποίο μπορεί ο δημοπράτης να επηρεάσει
το κέρδος του είναι μέσω των τιμών κράτησης. Οι κανόνες του παιχνιδιού είναι απλοί: σε κάθε
γύρο ο δημοπράτης πριν δει την προσφορά του παίχτη θέτει μία τιμή κράτησης και ο παίχτης
(χωρίς να γνωρίζει την τιμή αυτή) υποβάλει μια προσφορά. Αν η προσφορά είναι μεγαλύτερη
από την τιμή κράτησης τότε ο παίχτης παίρνει το αντικείμενο και πληρώνει ένα ποσό ίσο με
την τιμή αυτή, ενώ σε διαφορετική περίπτωση δεν παίρνει και δεν πληρώνει τίποτα. Αυτό που θα
κάνουμε είναι μια προσεκτική δυαδική αναζήτηση στο χώρο των ωφελειών, έχοντας ως αρχικό
σημείο της αναζήτησής μας την τιμή ωφελείας που μας δίνει η μέθοδος πρόβλεψης. Η ιδέα είναι
ότι αν το αποτέλεσμα της πρόβλεψης είναι κοντά στην πραγματική τιμή τότε θα μπορέσουμε
γρήγορα να φτάσουμε όσο κοντά της θέλουμε. Ξεκινάμε με αυτή την τιμή και ανάλογα με το
αν αγοραστεί ή όχι το αντικείμενο για

√
T γύρους (ώστε να δώσουμε την ευκαιρία στον παίχτη
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Σχήμα 1.3: Εξαγωγή Παραμέτρων Δεύτερης Μεθόδου

να μάθει να παίζει σε αυτή τη τιμή) αλλάζουμε την τιμή σε v0 + b0, v0 + 2b0, v0 + 4b0, ..., ή
v0 − b0, v0 − 2b0, v0 − 4b0, ..., αντίστοιχα, όπου v0 είναι το αρχικό σημείο και b0 η ελάχιστη
επιτρεπτή αύξηση της προσφοράς. Τέλος, μόλις αγοραστεί (ή δεν αγοραστεί) για πρώτη φορά
το αντικείμενο κάνουμε μια δυαδική αναζήτηση στο τελικό μας διάστημα. Το παρακάτω θεώρημα
δίνει το συνολικό κέρδος από αυτή τη διαδικασία.

Θεώρημα: Το συνολικό κέρδος από αυτή τη διαδικασία ανάθεσης τιμών είναι τουλάχιστον
(v∗ − ϵ)T − Θ((log η + log η

ϵ )
√
T ), όπου T είναι οι συνολικοί γύροι του παιχνιδιού, η είναι

η απόσταση της αρχικής πρόβλεψης από την πραγματική τιμή και ϵ είναι το πόσο κοντά στο
πραγματικό v θέλουμε να φτάσουμε.
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Chapter 2

Introduction

2.1 Motivation
It is undeniable that the emergence of the internet had a tremendous impact on marketing

and especially advertising. Online advertising has, in a great extent, taken the place of tradi-
tional means of advertising such as newspapers, magazines and television. A very important
type of online advertising are the so-called sponsored search ads that appear alongside the
organic search results, when a user is searching for a specific keyword in some major search
engine, such as Google, Yahoo! or Bing. These ads generate billions of revenue each year
for the respective search engines, therefore it is of utmost importance for these companies
to study them. There are major questions that arise not only from the search engines’ per-
spective, but also from the advertisers’ point of view. How should the search engines allocate
the advertising spots and how should they charge the advertisers in order to maximize their
profits? How should the advertisers behave to make the most of their advertising campaign?
These are deep questions that need to be answered.

Figure 2.1: Sponsored Search Example

Before ads such as the ones that are shown above are displayed to the user, an auction
takes place behind the scenes, which has very severe time constraints. The advertisers submit
a bid and after the search engine has collected all the bids, it decides which slots to allocate
at each advertiser (if any). The most prevalent auction format that is used in practice is the
so-called Generalized Second Price Auction(GSP). There are also many platforms which use
First Price Auctions. Roughly speaking, in the GSP mechanism each advertiser is associated
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with a quality score, which is independent of the actual auction that takes place, and the bid
that he submits. The mechanism uses the product of these two quantities in order to rank
the bidders in descending order and allocates the k available slots to the first k players, as
long as their score passes a predetermined quantity, which is unknown to them. Whenever an
ad is clicked, the advertiser is charged the least amount he had to bid in order to maintain
his ranking position. In the First Price auctions, the bidders are ranked according to the bids
that they submitted, and after each click they are charged their actual bid. We will dig into
the details of those mechanisms in the following chapter.

It turns out that in such auctions, although the format is pretty simple, it isn’t easy, as a
bidder, to decide on your bidding strategy. Almost all of the interesting mechanisms that are
used in practice lack truthfulness; simply bidding how much they really ”value” the item for
sale is not the best strategy for the players. Under such mechanisms, the optimal behavior of
the bidder depends heavily on his surrounding environment, which is the competition that he
faces as well as some limitations that are imposed by the auctioneer. Therefore, agents should
use some kind of machine learning techniques, that allow them to change their strategies dy-
namically in order to adapt to a contiuously varying environment. Data from major search
engines confirm this belief, thus it is necessary to bear in mind this learning behavior when
analyzing past data from those players. Nekipelov et al. [NST15] suggested that advertisers’
behavior in such settings should be analyzed under the online learning framework. Roughly
speaking, if we view each auction as a round of some game, this learning behavior allows
the advertisers to have the same profit (on average) as if they had known all the rounds
in advance and they were submitting the same bid at each round. We will give a detailed
description of the online learning framework in Chapter 4.

Econometrics is a branch of economics which applies mathematical models to extract
information from data regarding economic activities, in order to possibly forecast future
trends from historical data or test the validity of some theory. A parameter which is of
interest in the setting described above is the advertisers’ valuation, which translates to their
”happiness” for getting clicked. Knowledge of this paratemer allows the search engines to
optimize the configuration of their auction formats, in order to maximize their revenue. When
the mechanism that is used is truthful, retrieving the bidders’ valuation is a trivial task; since
bidding the true value is a dominant strategy past bids correspond to the actual valuation.
However, things get more complicated when mechanisms are not truthful, thus it is necessary
to make some further assumptions which are related to the state of the game.

2.2 Problem Statement
The general question that we are trying to answer is the following; Given past data from

strategic interactions between players, how can we use them in order to estimate private
parameters that are not observed? We focus our attention on repeated auctions that are
not truthful and the participants are characterized by a single dimensional private valua-
tion. We assume that players are learning agents and that their environment as well as their
valuation vary slowly enough, so that they are able to learn how to behave under those
new circumstances. The objective that each player i is trying to maximize every round t is
uit(bit) = vit · xit(bit) − cit(bit), where bit is the bid that he submits in that round, vit is his
private parameter for that round, xit(·) is the allocation function for that round (it can be
thought of as the probability of getting clicked in the sponsored search auction context) and
cit(·) is the function that determines the amount that the bidder is charged. Since we are
viewing this problem from the auctioneer’s perspective, for each player i and every round t
we observe bit, xit(·), cit(·). The unknown parameter that we are trying to infer is vit and we
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want to do that for all the rounds and all the players that participate in the game.

2.3 Related Work
Classical econometric approaches that aimed to infer these parameters assumed that each

advertiser’s behavior had reached a stable state, which is known as a Nash equilibrium (see
e.g. [AN10, BHN13, JLB07]). However, Daskalakis et al. [DGP09] showed that such an as-
sumption is unrealistic, since it is computationally difficult for the players who interact in
that way to reach such a state. Moreover, the amount of information that needs to be ex-
changes is not available to the players in such settings. Recently, Nekipelov et al. [NST15]
proposed an alternative approach to that econometric problem which is based on the learn-
ing behavior that we explained before. Instead of assuming that the players have reached an
equilibrium state in which each one best responds to his opponents strategies, they suggest
that the strategies of the players are contiously changing in a way that minimizes their aver-
age regret. This assumption is much weaker and more realistic than that of Nash equilibria.
Their method can be used in single parameter environments, which we will define formally
in the next chapter, and capture many real-world scenarios. There is an ongoing line of work
in algorithmic game theory literature which tries to characterize the effects that no-regret
learning has on outcomes of games, such as approximate efficiency with respect to the opti-
mal welfare (i.e the happiness of the people that participate in the auction) and revenue (i.e.
the income that the auctioneer collects). For instance, Caragiannis et al. [CKKK11] proved
that in the Generalized Second Price auction the average welfare of any no regret learning
outcome is at least 30% of the optimal welfare. Syrgkanis et al. [SALS15] showed that when
players use learning algorithms from a specific class, the welfare of the game converges to
the optimal at rate O(1/T ) and each player’s regret drops at rate O(T− 3

4 ), which is faster
than the convergence rate of vanilla learning algorithms. Foster et al. [FLL+16] showed that a
wider class of algorithms can achieve these results, with less information than it was required
before. Lykouris et al. [LST16] explored a dynamic setting, in the sense that the players that
participate in the game change over time. They showed that in many games, even when there
are significant variations from round to round, the welfare of the game is close to the opti-
mal. Braverman et al. [BMSW18] analyzed single item-single buyer auctions under learning
assumptions and provided a fairly complete characterization for that setting, showing that
there are some cases in which the seller can extract revenue arbitrarily close to the buyer’s
valuation. We will discuss these results further in chapter 5.

2.4 Contribution
In this thesis we extend the inference method proposed by Nekipelov et al. [NST15],

dropping the assumption that the advertisers’ valuation, which is their ”happiness” for getting
clicked by the user, remains constant over time. The challenge in that setting is that instead
of answering just a scalar value we have to answer a sequence of them, so the search space
gets very large quickly and we have to determine which of these sequences are meaningful.
In our model, we allow the advertisers’ valuation to vary slowly over time and we propose a
method which estimates the sequence of these changing valuations. We assume that bidders
are dynamic no regret learners, which means that their performance is (on average) as good
as the performance of any other bidding sequence they could have chosen. Although this
assumption might seem very strong, we show that in order to achieve that, the deviation
of their valuations sequence can be up to o(T ). We present an experimental evaluation of
the aforementioned method which shows some very encouraging results, since the predicted

27



sequence of valuations is very close to the actual one. This method is independent of the
underlying mechanism through which the advertisng slots are allocated and can be used to
infer the valuations of players in any single-parameter environment. Furthermore, we develop
a pricing method in the single item-single buyer setting for a no regret buyer, whose valuation
remains constant over time, using the [NST15] inference method. We set the initial selling
price to the predicted valuation and continue by doing a binary search on the valuation space.
Since the valuation remains constant, we can get (on average) revenue that is arbitrarily
close to the valuation, as expected. We show that the convergence rate of our pricing method
depends on the distance between the predicted and the actual valuation.

2.5 Organization
• The first chapter serves as an extended summary of the thesis in greek.

• The second chapter is a general overview of the problem domain that was investigated.

• In the third chapter we introduce the reader to the basic concepts of Mechanism De-
sign, which aims to design systems that are to be used by strategic agents. We define some
formal models for the auctions that we are interested in and present some important results
from that area.

• In the fourth chapter we formalize the online learning model that we discussed before.
We start by presenting algorithms that achieve the learning goal in discrete environments
and continue by describing algorithms for the continuous setting. The main purpose of this
chapter is to show how bidders who participate in auctions can behave in order to maximize
their profit, but the setting is actually very general and can model many other problems.

• In the fifth chapter we present some important results from the ongoing line of work
which tries to analyze and understand these type of auctions under a no regret learning point
of view.

• Finally, in the sixth chapter we present our results, which were shortly discussed earlier.
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Chapter 3

Equilibrium Concepts and Mechanism Design

Game theory studies the interactions between strategic agents, who act in a selfish way in
order to maximize their own objectives. A very important notion in game theory is that of an
equilibrium. Equilibria are states in such interactions in which the players have no reason to
unilaterally deviate from their current strategies, therefore equilibria are steady states in the
sense that if the agents somehow manage to reach them, it is reasonable to believe that their
strategies will remain the same. A particularly interesting steady state arises when players
have dominant strategies, meaning that no matter what their opponents are doing, it is in
their best interest to behave in a specific way. Thus, when games are designed in a way that
provide the players with dominant strategies it is very easy to predict the outcome.

Mechanism design is the science of designing rules that regulate the interaction of such
strategic entities. Those entities can be people who participate in an auction, drivers who
wish to arrive somewhere as soon as possible, sports teams that participate in tournaments,
advertisers who wish to display their ads after a search for a specific keyword, etc.. It is
very important, and sometimes difficult, to design systems that will yield a ”good” result, no
matter what the preferences of the participating agents are. We will define later two notions
of ”good” results, which depend on the system’s desginer goals. Ideally, we would like to have
mechanisms that provide agents with dominant strategies, which are efficently computable.

As an introductory mechanism design problem, imagine that we want to give away an
item that is of no use to us anymore, but we are generous enough to not care about what we
will get in return, we just want to give the item to the person that wants it the most. A first
approach would likely be to just ask all the potential receivers of that item to write down
a number that represents ”how much” they want it, and give it to the one with the biggest
number. The problem is that since those receivers are strategic, they have no reason at all to
tell us the truth; in fact, their best strategy is to write the largest number that fits in their
piece of paper. Clearly, the previous mechanism won’t achieve the goal that we had in mind,
it is an example of a poorly designed system. What can we do to fix that?

3.1 Equilibrium Concepts
As we briefly discussed above, in strategic interactions between players such as auctions,

there are some ”stable” situations which enjoy various interesting properties and can help us
analyze these games. Let’s now define a ”game” formally, in order to define some of the equi-
librium concepts. The interaction we are interested in is called a Cost Minimization Game
and consists of the following elements.

Definition 3.1.1. Cost Minimization Game
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• n players, where n is a finite number

• a finite strategy space Si for each player i. In the auctions setting, this strategy space
consists of the different bids that each player is allowed to submit. We denote by s =
(s1, ..., sn) the strategy profile of the game

• a cost function Ci : S1 × ...× Sn → R for each player i (each bidder wants to minimize
his cost)

We will present five important equilibrium concepts, which are different notions of stable
situations.

Definition 3.1.2. Dominant Strategy
A strategy s′ for player i is dominant if ∀s ∈ Si, ∀s−i ∈ S1 × ... × Si−1 × Si+1 × ... × Sn we
have that

Ci(s
′, s−i) ≤ Ci(s, s−i)

Definition 3.1.3. Pure Nash Equilibrium-PNE
A strategy profile s is a pure Nash equilibrium if for every player i and every unilateral
deviation s′i ∈ Si we have that

Ci(s) ≤ Ci(s
′
i, s−i)

If every player i has a dominant strategy it is very easy for the player to participate in
it and for the designer to predict its outcome. Unfortunately not all games have dominant
strategies, therefore we have to generalize the equilibrium concepts.

This definition is due to Nash [Nas51]. Notice that a pure Nash equilibrium is a weaker
notion than a dominant strategy, since it only requires that each player best responds to
some specific strategies that the others follow, and not that he should behave in a specific
way, no matter what the others are doing. Unfortunately, not every game has a pure Nash
equilibrium, so we will extend that definition a little bit in order to obtain universality.

Definition 3.1.4. Mixed Nash Equilibrium-MNE
Distributions σ1, ..., σn over S1, ..., Sn respectively constitute a mixed Nash equilibrium if for
every player i and every unilateral deviation s′i ∈ Si we have that

Es∼σ[Ci(s)] ≤ Es−i∼σ−i [Ci(s
′
i, s−i)]

where by σ we denote the product distribution σ1 × ...× σn.

This definition is a generalization of the previous in the sense that it permits each player
to randomize over his strategies, so if we set the distributions to be a fixed action, we can
obtain the previous. Nash [Nas51] proved that each game has at least one mixed Nash equi-
librium, so under this new definition we have obtained the universality that we looked for.
Unfortunately, Daskalakis et al. [DGP09] proved that in general games it is hard to com-
pute mixed Nash equilibria. So we have to extent our definitions even more in order to find
tractable notions.

The intuition behind the next equilibrium concept that we will define is the following.
Suppose that every player knows a common joint distribution σ and that there is a trusted
third party which draws samples from that distribution and reports them to the players. We
want that distribution to have the property that after the third party reveals some strategy
si to player i, then assuming that everyone else follows their suggestion, i has no reason to
deviate. An example of a correlated equilibrium is the traffic light. We know that there is
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distribution σ from which the traffic light draws its proposals, such that when we are shown
the green light the other cars are shown the red and vice versa. In a situation like that, our
best move is to simply follow the strategy that the light indicates. Let’s now define the notion
of a correlated equilibrium formally.

Definition 3.1.5. Correlated Equilibrium-CE
A distribution σ over S1, ..., Sn is a correlated equilibrium of a cost minimization game if for
every player i and every unilateral deviation s′i ∈ Si we have that

Es∼σ[Ci(s)|si] ≤ Es−i∼σ−i [Ci(s
′
i, s−i)|si]

By generalizing our definition, we now have equilibria that are tractable. Correlated equi-
libria are also guaranteed to exist. Notice that we didn’t require σ to be a product distribution,
so the strategies of the players can be arbitrarily correlated. Also notice that player i doesn’t
know the suggestion that the trusted authority made to the other players, he just knows his
own suggestion and the distribution σ. In the following chapter we will discuss algorithms
that reach such a stable state.

We will generalize our definition a little further and introduce the so-called coarse corre-
lated equilibria. This time, we only require that the distribution is known to the players, and
that the players follow the suggested strategy by the trusted third party without even seeing
it first.

Definition 3.1.6. Coarse Correlated Equilibrium-CCE
A distribution σ over S1, ..., Sn is a correlated equilibrium of a cost minimization game if for
every player i and every unilateral deviation s′i ∈ Si we have that

Es∼σ[Ci(s)] ≤ Es−i∼σ−i [Ci(s
′
i, s−i)]

We can see that a CCE protects agains unconditional unilateral deviations, whereas the
CE protects against conditional. Every CE is also a CCE, so CCEs are also guaranteed to
exist in every finite game and are tractable as well. The reason why we extended the notion
of CE to CCE is that there are learning algorithms that reach a CCE which are simpler and
more natural compared to those that achieve a CE.

It is illustrative to depict the notions we defined above.

Figure 3.1: Hierarchy of equilibrium concepts
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3.2 Single Item Auction Model
Let us now define a formal model in the so-called single item auction setting, which we will

use throughout the text, and will help us tackle the problem discussed in the introduction. We
assume that there is a single item for sale by an auctioneer, n potential buyers (or players),
and each player i has a private valuation vi, which represents ”how much” he wants that item,
and it is measured in monetary units (we don’t care how the buyer actually arrives at this
value, we just assume that he does). This value can also be interpreted as the maximum
amount that he is willing to pay for that item. The auctioneer is responsible for determining
who gets the item, if any, and how much he is charged for that. That payment is denoted by
p. We assume that the overall ”happiness” of each participant i, called utility and denoted by
ui, is quasilinear, namely that

ui =

{
vi − p, if i receives the item
0, otherwise

The auction, sometimes referred to as game, proceeds in the following way.

1. Each player i, simultaneously and privately, reports his bid bi to the auctioneer.

2. The auctioneer, based on these bids, decides who gets the item.

3. The auctioneer decides the amount that the winner is charged.

Our goal as auctioneers is to design allocation rules (i.e. rules that dictate who gets the
item) and payment rules that incentivize the players to act in a predictable way, so that we
can reason about the outcome of the auction. Even if we are altruists and don’t care about
the money that we will get in return, payment rules are necessary to avoid the situation that
was described in the introductory example.

Formally, in the single item setting, B is the set of all possible bids (we assume that it’s
the same for each player). The bids that were collected constitute a bid profile, b = (b1, ..., bn).
The allocation rule x(b) : Bn → {0, 1}n, s.t.

∑n
i=1 xi ≤ 1, is a mapping from the bid profile

to the winner of the item, namely

xi =

{
1, if i receives the item
0, otherwise

The payment rule, p(b) : Bn → R, is a mapping from the bid profile to the real numbers, that
corresponds to the amount that the winner is charged. For simplicity, we will overload the
notation and sometimes omit the dependence of both x, p on b. It is clear that each player’s
utility depends on the allocation x and payment p, which depend on b, and to emphasize
that dependece we will sometimes denote it as ui(b).

Under those definitions the two objectives that we will consider, which measure the suc-
cess of our mechanisms, are the Social Welfare and the Revenue. The Social Welfare of
an allocation x, W (x), is defined as W (x) =

∑n
i=1 vi · xi, whereas the Revenue is simply

Rev(x) =
∑n

i=1 p · xi.

In the following sections we will focus our attention on auction formats that maximize
the Social Welfare objective.
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3.2.1 First Price Auction
A very natural allocation rule for the problem described above is to just give the item to

the highest bidder, whereas the payment rule is to simply charge him the amount that he
decided to bid. Although from the auctioneer’s perspective this auction is very simple (and
very fast to implement), it is not easy to find out how you should play as a bidder. Clearly a
bidder has no reason to bid his true valuation v, because, in that way, his utility will always
be 0. Therefore, there is an inherent tradeoff between bidding near his valuation and possibly
paying more than needed and bidding far below his valuation, with the risk of losing the
item. In order to decide his best strategy, the bidder has to make some assumptions about
his competition, namely to find out the number of bidders that participate in the auction,
their valuations’ distribution and how these are correlated between them. Hoy et al. [HTW18]
proved that under those assumptions, assuming furthermore that valuation distributions are
independent, the Welfare of the First Price Auction is at least an .743 approximation of the
optimal Welfare, whereas Syrgkanis [ST13] proved that this mechanism gives an e−1

e approx-
imation, which is tight when the valuations are correlated.

The previous mechanism shows us that we should try to design systems that make it easy
for the participants to decide on their strategy, no matter what the other palyers do. We want
rules that provide agents with dominant strategies, i.e. bidding decisions which depend solely
on their valuation. We also want these dominant strategies to be efficiently computable. The
First Price Auction lacks the dominant strategy that we seek.

3.2.2 Second Price Auction
The Second Price Auction, or Vickrey Auction, proposed by Vickrey [Vic61], has the same

allocation rule as the First Price Auction, but the payment is different; this time the winner
has to pay the second highest bid and not his own. The motivation behind that payment rule
is that we should charge the winner just the amount that he had to bid in order to win the
item. This simple modfication in the previous mechanism has very important consequences.
More precisely, it is now clear what every player should do; they should simply report their
true valuation. This auction has a very simple dominant strategy, which is proved formally
below.

Theorem 3.2.1. In the Second Price Auction every bidder i has a dominant strategy, to set
bi = vi, meaning that for any fixed b−i ∈ Bn−1 it holds that ui(vi, b−i) ≥ ui(b, b−i), ∀b ∈ B.

Proof. Let b∗ = maxj ̸=ibj be the highest bid among the other players. From the auction
format, if bi < b∗ =⇒ ui = 0, whereas if bi ≥ b∗ =⇒ ui = vi − b∗. Consider two cases for
player i. If vi < b∗ then underbidding still leads to 0 utility, while overbidding leads to negative
utility because the payment will be higher than the valuation. If vi >= b∗ then overbidding
makes no difference as the player i still wins the item and pays b∗, whereas underbidding
might lead to some other player j ̸= i getting the item, leaving i with 0 utility.
Therefore, setting bi = vi =⇒ ui = max{0, vi − b∗}

We call mechanisms in which telling the truth is a dominant strategy truthful. A corollary
that follows immediately from the previous theorem is that the Second Price Auction max-
imizes the Social Welfare. If we assume that the bidders are rational, i.e. they follow their
dominant strategy, then the mechanism allocates the item to the player that wants it the
most. Moreover, everyone’s utility is non-negative, so no player regrets participating in the
auction, even if they don’t win the item.
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The Second Price Auction is a very good mechanism because it has the following three
properties.

1. It is a dominant strategy for every player to report his true valuation (incentive guar-
antees).

2. If players act rationally it maximizes a predefined objective, in that case the Social
Welfare (perfomance guarantees).

3. It runs in polynomial, more precisely linear, time (computational efficiency).

3.3 Myerson’s Lemma
In this section we will generalize the model that we defined earlier a little bit. We can

imagine this new environment as having an item which is divisible and we can sell a portion
of it to each bidder.

Definition 3.3.1. Single Parameter Environment

• Every player i has a valuation vi ∈ R which represents his ”happiness” for each unit of
item that he gets.

• Every player i reports a bid bi ∈ R to the mechanism.

• There exists a feasible set X which enforces some restrictions on the mechanism and
depends on the specific application. For instance in the Single Item Auction X =
{(x1, ..., xn)|xi ∈ {0, 1},

∑n
i=1 ≤ 1}. If we have an auction with k identical goods then

X = {(x1, ..., xn)|xi ∈ {0, 1},
∑n

i=1 ≤ k}.

• There is an allocation rule x(b) : Bn → X, in the same way as before.

• There is a payment rule p(b) : Bn → Rn. Notice that now the payment is a vector
instead of a real number.

• The utility of each bidder i is ui(b) = vi · xi(b)− pi(b).

The rules of the game remain the same as before. The mechanism collects the bids pri-
vately, chooses a feasible allocation and then charges each player a specific amount. A natural
restriction for the payments is that pi(b) ∈ [0, bi · xi(b)]. The reason for the first restriction
is that it doesn’t make sense for the auctioneer to pay the buyers, while the second ensures
that if the bidders play truthfully then their utility will be non-negative. Before stating the
actual theorem we need two more definitions.

Definition 3.3.2. Implementable Allocation Rule
An Allocation Rule x for the single parameter environment defined above is implementable
if there exists a payment rule p, such that bidding truthfully in the (x,p) mechanism is a
dominant strategy.

Definition 3.3.3. Monotone Allocation Rule
An Allocation Rule x for the single parameter environment defined above is monotone if for
every bidder i and every b−i bid profile the function x(b, b−i) is non-decreasing in b.
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Myerson’s lemma [Mye81] consists of three parts and provides a complete characterization
of the mechanisms that achieve the goals we had in mind in the single parameter environment.
More precisely, it provides a (simple) necessary and sufficient condition for an allocation rule
to be implementable and gives an exact formula for the payments that this mechanism must
impose. We state it formally below.

Theorem 3.3.1. In the single parameter environment the following hold

1. An allocation rule x is implementable if and only if it is monotone.

2. If the allocation rule is monotone then there exists a unique payment rule p such that
the mechanism (x, p) is truthful.

3. The formula for that payment rule is pi(bi, b−i) =
∫ bi
0 z · d

dzxi(z, b−i)dz.

Myerson’s Lemma provides a very strong result for the not-so-trivial single parameter
environment. It states that whenever we want to design a truthful mechanism for such an
environment we just have to make sure that the allocation rule is monotone, we don’t have
to think about the payments at all. Moreover, no matter how hard we try, we cannot design
a truthful mechanism in which the allocation rule isn’t monotone. An immediate corollary is
that the single item auction that we analyzed before has a unique truthful mechanism; the
Second Price Auction.

3.4 Revenue Maximizing Auctions
In this section we will switch gears and we will examine mechanisms that care about a

different objective instead of the Social Welfare, namely the Revenue. In the mechanisms that
we examined before, the only reason that we had to impose payments on the buyers was to
incentivize them to bid their true valuation, therefore although there was revenue generated
for the auctioneer, it was only a as side effect of some other goal. We investigated auctions
which achieve the previous goal for two main reasons; First, there are many real-world scenar-
ios in which maximizing the Social Welfare is the actual goal of the auctioneer, for instance
government auctions for wireless sprectrum. The other important reason is that Welfare max-
imizing auctions in the single parameter environment can achieve their goal without any prior
information about the participants, and they can be implemented in polynomial time - they
seem to be able to handle strategic interactions for free. In contrast, Revenue maximizing
mechanisms can’t be achieved without some prior knowledge about the players that they are
dealing with.

As a motivating example consider an auctioneer who wants to sell a single item to a single
buyer. If the auctioneer wants to maximize the Social Welfare his job is trivial, he just has
to give it to him for free. The selling price is the same for all potential buyers. Consider
now what happens when the auctioneer wants to maximize his revenue instead; He definitely
cannot give the item for free, his optimal strategy would be to price it ϵ below the buyer’s val-
uation. The problem is that this valuation is unknown to the auctioneer, therefore in order to
approach the problem we have to make some assumptions about the valuation, even though
we don’t know its exact value. Even in a simple instance of the Revenue maximization prob-
lem we can see that the seller has to behave differently when dealing with different buyers.
Below we define a formal model under which we present a Revenue maximization mechanism.

Definition 3.4.1. Bayesian Model for Revenue Maximization
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• We have a single parameter environment.

• We assume that each bidder i draws his valuation from a known distribution Fi, with
a density function fi which has bounded support. We also assume that distributions
F1, ..., Fn are independent. These distributions encode some prior knowledge that the
auctioneer has about the participants. Notice that we only require that the distributions
of the valuations are known, but not the realizations of these distributions. Information
like that can be obtained from historical data.

• The bidders don’t need to know the distributions.

In the model that we described above, our goal is to find a truthful mechanism that
achieves the highest possible revenue in expectation. For instance, in the example that we
discussed above the optimal pricing strategy is r = argmax r(1− F (r)), where r is the rev-
enue generated by the sale, whereas 1 − F (r) is the probability of actually selling the item.
Below we state a theorem by Myerson [Mye81] which characterizes optimal auctions in the
environment we defined above.

Theorem 3.4.1. Let F be the joint valuation distribution function and ϕi(vi) = vi− 1−Fi(vi)
fi(vi)

.
Then Ev∼F [

∑n
i=1 pi(v)] = Ev∼F [

∑n
i=1 ϕi(vi) · xi(v)].

We can prove the above theorem by expressing p using Myerson’s formula and then ma-
nipulating the integrals. The terms ϕi(vi) are called virtual valuations. What it actally tells
us is that maximizing the expected revenue boils down to maximizing the expected virtual
social welfare. In order to do that, we will maximize the virtual social welfare function point-
wise, meaning that for every input v we will choose an x which maximizes

∑n
i=1 ϕi(vi) ·xi(v).

Let’s consider now the single item auction. Should we just allocate the item to the bidder
who has the highest virtual valuation? We have to bear in mind that virtual valuations can
be negative, so there are some instances in which the best thing to do is not give the item
at all. Remember that we are interested in designing payments in a way that induce truthful
auctions, so we can safely assume that bids correspond to actual valuations. In order to find
out if our previous virtual welfare maximizing rule can be extended to a truthful mechanism
we have to ask if it is monotone. The monotonicity of this rule depends on the underlying
distribution function, whenever ϕi(vi) is increasing in vi the allocation rule defined above is
monotone. Distributions F for which the virtual valuation function is monotone are called
regular

Let’s return again to the single item case, assuming further that bidders are i.i.d. and
that their distributions are regular. Since ϕi(·) is the same for all bidders, we can drop the
dependence on i. In that case, the allocation rule described above is to simply give the item
to the bidder with the highest virtual bid, which in that case corresponds to the bidder with
the highest bid, as long as it is higher than a predefined value, which is ϕ−1(0). If i is the
winner, the payment is p = max{maxj ̸=i bj , ϕ

−1(0)}. Therefore, we can view ϕ−1(0) as an
extra bidder who bids in favor of the auctioneer. Then, the Revenue maximizing auction is
simply a Second Price Auction with that extra bidder. The value ϕ−1(0) is called reserve price.

3.5 Online Ad Auctions
As we mentioned in the introductory chapter, the most dominant way to sell advertis-

ing spots in online keyword auctions is the GSP mechanism. To show the importance of
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this mechanism, it is worth mentioning that a large fraction of Google’s and Yahoo’s rev-
enue came from sponsored search auctions. More precisely, in 2005 over 98% of Google’s
6.14 billions revenue was generated from this type of auctions, while in the same year it
is believed that over half of Yahoo’s 5.26 billions revenue came from the same source. For
a more recent analysis of Google’s advertising revenues we refer the interested reader to
https://www.wordstream.com/articles/google-earnings.

We will start by providing a high level description of the system these search engines use,
the GSP mechanism. Each time a user searchs for some specific keywords an auction takes
place, which has to be executed in real time. Then, alongside the search engine’s results,
which are referred to as organic results, some ads could be displayed. In order for that ad to
be displayed, the advertising company submits a bid to the search engine, which represents
the maximum amount that they are willing to pay if their ad gets clicked by the user. So
whenever an ad is getting clicked by a user, the respective advertiser has to pay an amount
which is less or equal to the bid they submitted. It makes sense to use the Single Parameter
Model that we described in the previous section to model the situation at hand; the advertiser
has a private valuation v which represents their ”happiness” for getting clicked. This valuation
corresponds to the expected profit that the advertiser gets when a user visits their site. We
will use the traditional seperable click-through rates model, which states that the probability
of an ad getting clicked is simply the product of two factors, the advertiser’s probability and
the ad’s position. We note that there are more expressive models that might be more realistic,
such as the Cascade Click Model by Kempe and Mahdian [KM08]. Below we define the model
formally.

3.5.1 Model
It is worth mentioning that each bidder i is associated with a factor γi, which represents

the bidder’s click probability, and a scoring factor si which represents their quality. Every
advertising position j is associated with a factor aj , which is independent of the ad that will
eventually get that place. So in the seperable click-through rate model, if bidder i is awarded
the position j his click probability is simply ai · γj . We have the following elements as part of
the system:

1. n bidders that participate in the auction

2. m advertsing positions that can be sold

3. a private parameter vi for each bidder, as we discussed above

4. a = (a1, ..., am), a vector of position coefficients that are assumed to be non decreasing,
i.e. a1 ≥ a2 ≥ ... ≥ am, since in that model it doesn’t make sense to hurt the bidder if
his ad is displayed higher

5. γ = (γ1, ..., γn), a vector of bidders’ click probabilities

6. s = (s1, ..., sn), a vector of bidders’ scoring coefficients

7. r, the reserve score of the auction. If a player’s rank-score (which we’ll define shortly)
is lower than that, then his ad won’t be displayed no matter what the other bidders do

8. b = (b1, ..., bn) which represents the bids that were submitted by the players
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Let’s see now how the game proceeds. Every advertiser is asked to submit a bid bi to the
system. Then, bidders are ranked by their so-called rank score qi = si · bi, and are allocated
the m positions in decreasing order as long as they pass the reserve score of the auction. The
reason why the search engines use the ranking coefficients is that they are only getting paid
after the user clicks on some ad. Therefore, even if a player bids very highly, if users never
click his ads, because his products or services are of low quality, the search engine’s revenue
will be zero, so these coefficients can help solve this problem. If advertiser i is allocated the
position j his click probability is pij = aj · γi (click through rate-CTR). When that advertiser
is clicked, his payment (cost per click-CPC) is the minimum bid he had to submit in order to
keep his position, namely cij(b, s, r) = max{ sπ(j+1)·bπ(j+1)

si
, r
si
}, where by πj we denote the ad-

vertiser that is allocated position j. The allocation and the payment rules are the reason that
this mechanism is called the Generalized Second Price (GSP) auction. Let Pi(b) = aσi(b) · γi,
where σi(b) is the slot that i is allocated under bid profile b. Let Ci(b) = aσi(b) · γi · ciσi(b)(b),
be the expected payment of i. Then, we assume that his utility is ui(bi) = vi · Pi(b)− Ci(b).

The next question follows immediately after the description of the GSP mechanism. Is it
truthful or could it be better for the players to report a different bid than their true valuation?
The answer is negative and it’s illustrative to see an example in which underbidding is a
strictly better strategy than telling the truth. Imagine a setting with three bidders and two
slots, where γi = σi = 1, ∀i, a1 = 1, a2 = 0.4, r = 0 and v1 = 7, v2 = 6, v3 = 1. Let’s see
what happens for player 1 when players 2,3 bid truthfully. If he plays truthfully as well,
he will earn the first slot, therefore his expected utility will be (v1 − b2) · a1 = 1. If he
underbids, setting b1 = 5 for example, he will earn the second slot and his utility will be
(v1 − b3) · a2 = 6 · 0.4 = 2.4. Therefore, even in this trivial example we can see that the GSP
mechanism is not truthful.

3.5.2 Myerson’s Lemma vs GSP
Let’s simplify the model a little bit in order to understand why the truthfulness property,

which holds in the Second Price auction, doesn’t hold anymore. Suppose that σi = 1, ∀i and
r = 0. Then, the allocation rule of GSP boils down to just giving the m slots to the m highest
bidders respectively. It’s easy to see that this allocation rule is monotone, bidding higher can
only give you a more valuable slot. Therefore, we know that an immediate consequence of
Myerson’s Lemma is that there exists a payment rule p′ such that the mechanism (xGSP,p′)
is truthful.

Myerson’s payment rule Let’s now see how the payments imposed by Myerson’s for-
mula would look like in that setting. W.l.o.g. assume that b1 ≥ b2 ≥ ... ≥ bn. Then, for player
i we have that

ciσi(b)(b) =

bidders allocated∑
i=1

aj − aj+1

ai
bj+1

We can see now that Myerson’s Lemma suggests that bidder’s i payment for each click should
be a suitable combination of lower bids. This mechanism is guaranteed to be truthful, and
the payment rule described above is the only which when coupled with GSP’s allocation rule
produces a truthful mechanism. Therefore, we can conclude that the average cost Ci(b) for
bidder i is

Ci(b) =
bidders allocated∑

i=1

γi(aj − aj+1)bj+1 (3.1)
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Recall that the average cost for bidder i imposed by the GSP mechanism has the following
form

Ci(b) = aσi(b)γibπσi(b)+1
(3.2)

Comparing equations (3.1) and (3.2) we can understanding clearly the reason why the GSP
mechanism isn’t truthful; it’s payment for i rule doesn’t involve all the lowest bids, as Myer-
son’s formula suggests, and since Myerson’s rule is the only one that can produce a truthful
auction we know for sure that GSP isn’t truthful.

3.5.3 GSP’s properties
Although it is known that GSP isn’t truthful it remains the most widely used mechanism

for allocating advertising slots in online markets. Therefore it’s crucial to understand some
of the properties that it possesses. Edelman et al. [EOS07] and Varian [Var07] analyzed some
of them. Imagine that the bids of n players reach a stable state, meaning that no player
can increase his payoff by deviating to some other bid unilaterally. Assuming again w.l.o.g.
that b1 ≥ b2 ≥ ... ≥ bn and that bi ≥ r,∀i, we have that the bid profile b is ”stable” if and only if

aiγi(vi − bi+1) ≥ ajγi(vi − bj+1), j > i (3.3)
aiγi(vi − bi+1) ≥ ajγi(vi − bj), j < i (3.4)

Another interesting property of the GSP mechanism has to do with the revenue that it
generates for the auctioneer. Suppose that the bidders reach a different notion of a stable
state, called an envy-free equilibrium. That is, each bidder i is as happy with his current slot
at the price he pays for that as he would be for any other slot in its respective current price. A
locally envy-free equilibrium is a state where the above condition holds only for each bidder’s
neighboring slots. In that state, the following theorem holds.

Theorem 3.5.1. If the number of advertisers is greater than the number of advertising slots
then the auctioneer’s revenue under any locally envy-free equilibrium of the GSP auction is
at least as much as the revenue of the Myerson’s derived auction under the assumption that
bidders are truthful.

The above theorem suggests that in order to increase your revenue, if some (mild) as-
sumptions hold, you should use the GSP mechanism instead of the Myerson’s payment rule.
This is one of the main reasons why it’s so widely used. Apart from that, the GSP mechanism
protects -in some sense- the bidder’s privacy, since the bidder doesn’t have to reveal his true
value in order to maximize his revenue. Furthermore, the payment rule is much simpler than
that of Myerson’s derived auction.

Nevertheless there is a key challenge in that setting. The previous analysis assumed that
the bidders can reach a stable setting that enjoys some good properties. However, it doesn’t
give any strategy whatsoever that can help them reach that state. This deep question re-
garding how bidders should behave in such settings will be analyzed thoroughly in the next
chapter.
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Chapter 4

Online Learning

In the previous chapter we presented some basic ideas and results regarding Mechanism
Design, illustrating some important mechanisms that are used in practice and have strong
theoretical guarantees. In this chapter we will switch gears and discuss how players can be-
have in highly uncertain environments in order to have non trivial performance guarantees.
We call these players learners, because they are trying to learn from past interactions how
they should play in the future. More precisely, we will present a field of Machine Learning
which is called Online Learning and that has interesting theoretical properties and various
practical applications. Online learning is the process of answering a sequence of questions
given some (sometimes partial) knowledge of the correct answers to previous questions and
possibly other information. This field has elements borrowed from game theory (its measure
of ”success”), convex optimization and statistical learning theory.

We will start by providing a high level description of the ”game” that occurs in online
learning. The game proceeds in discrete rounds, and at each time step the learner commits to
a decision from a predefined space. After that, the learner suffers a loss which is associated
with the decision. Different decisions can produce possibly different losses. These losses aren’t
known to the decision maker beforehand and aren’t necessarily generated stochastically. In
fact they can be adversarially chosen or even depend on the action taken by the decision
maker at the current time step. We can already see that several restrictions are necessary in
order to be able to obtain non-trivial results in that framework.

1. The losses that are determined by the adversary have to be bounded. To see why that
is necessary imagine that the adversary keeps decreasing the scale of loss at each time
step. In that case, no online algorithm can ever recover from the loss that incurred in the
first time step. Therefore, we have to assume that the losses are in some bounded region.

2. The decision set must be somehow bounded and/or structured, otherwise in an infinite
decision set the adversary can assign high loss to all strategies chosen by the player
indefinitely, while setting some decisions’ losses to zero. A situation like that prohibits
any meaningful performance benchmark.

4.1 Online Learning Model
Before we define the formal model of online learning is useful to provide two important

definitions, regarding convex sets and convex functions.

Definition 4.1.1. Convex Set
A set K ⊆ Rn is convex if ∀x, y ∈ K, ∀a ∈ [0, 1] we have that ax + (1 − a)y ∈ K, that is

41



for every two points in the set, all the points on the line segment connecting them are also
in the set.

Definition 4.1.2. Convex Function
A function f : K → R is convex if ∀x, y ∈ K, ∀a ∈ [0, 1] we have that f(ax + (1 − a)y) ≤
af(x) + (1− a)f(y).

We are now ready to define a formal model for Online Learning. Its basic elements are
the following.

• a decision set K ⊆ Rn, which is convex

• a bounded set F of cost functions available to the adversary. Every ft : K → R is
assumed to be convex

• T is the total number of game iterations

The game proceeds in the following way. At each time step t the player commits to a decision
xt ∈ K. After that, the adversary reveals a cost function ft ∈ F and the player’s loss is
ft(xt), which is the value of the function at his decision point.

What makes an algorithm successful in the setting at hand? Since the framework is game-
theoretic the suitable metric for success comes also from game theory and is called regret.

Definition 4.1.3. Regret
Let A be an online learning algorithm. We define the regret of A after T rounds as

regretT (A) = sup
{f1,...,fT }⊆F

{ T∑
t=1

ft(xt)− min
x∈K

T∑
t=1

ft(x)
}

This metric measures how much the learner regrets not following at each round the best
fixed point in hindsight. Intuitively, we want the regret to be a sublinear funtion of T , that
is regretT (A) = o(T ), since then the player will perform on average as well as the best fixed
strategy in hindsight. When it is clear from context we will omit the supremum over F .

The running time of an online learning algorithm is defined to be the worst case time
needed to produce xt for an iteration t. Typically, it depends on n, which is the dimension
of the decision space, T , the total number of iterations, as well as some other parameters
regarding the cost functions and the underlying convex set that we will explore later on.

4.2 Discrete Setting
We will start by exploring algorithms that perform on a discrete decision space. Imagine

that you want to answer a sequence of yes/no questions and everytime you guess correctly
you suffer a loss of 0, whereas when your answer is wrong you suffer a loss of 1. In addition
to the answers of previous rounds, you are given a set of N (presumable) experts who are
willing to provide their opinions at the beginning of each round. The problem is that you
don’t know if these people are actually experts or scammers. What should you do?
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4.2.1 Realizable Case
Let’s restrict the problem a little bit further. Suppose that at least one of them is actually

an expert and will never make a mistake throughout the game. We call that setting the Real-
izable Case. This makes things a lot easier as we only need to identify him. A first approach
is the following algorithm, called Consistent.

Algorithm 3 Consistent
Input a finite set H of n experts

1: V1 ← H
2: for t = 1...T do ▷ We have to answer T questions
3: receive question qt
4: choose any expert ht ∈ Vt

5: submit his opinion pt = ht(qt)
6: receive true answer yt
7: update Vt+1 = {ht ∈ Vt|ht(qt) = yt} ▷ Keep the experts who were consistent so far

The simple idea is that we keep a set of all the experts who haven’t yet made any mistake,
because then the expert who makes no mistakes is guaranteed to be among them. Calculating
the total number of mistakes that our algorithm makes is also simple. If we make a mistake
at step t at least one expert is removed from Vt. Therefore, after making M mistakes we have
that |Vt| ≤ |H| −M and since we know that |Vt| ≥ 1,∀t we get that MConsistent(H) ≤ |H| − 1.
Since, in the worst case, we remove experts linearly from our initial set, we get as expected
a linear bound on the number of mistakes that the algorithm makes. However, this is not
satisfactory since H can be very large in many cases of interest. Can we improve that?

The answer is positive. The problem with the approach described above is that (in the
worst case) after each mistake we evict only one expert from our consistent set. We will
modify our strategy in order to obtain a logarithmic bound on the number of mistakes. This
new algorithm is called Halving.

Algorithm 4 Halving
Input a finite set H of n experts

1: V1 ← H
2: for t = 1...T do ▷ We have to answer T questions
3: receive question qt
4: predict pt = argmaxr∈{0,1} |{ht ∈ Vt : ht(qt) = r}| ▷ Break ties arbitrarily
5: submit pt
6: receive true answer yt
7: update Vt+1 = {ht ∈ Vt|ht(qt) = yt} ▷ Same idea as before

What we do now is that instead of picking a single expert from the consistent set, we
consult every one of them and follow the opinion of the majority. In that way, whenever
our prediction is wrong we don’t reduce our set by one expert, we halve it because at least
half of the experts in our consistent set were wrong in that turn. Therefore, we get that
MHalving(M) ≤ log2(|H|), since 1 ≤ |Vt+1| ≤ |H|2−M . We can see that by modifying our
initial, seemingly naive, approach we get an exponential improvement in the number of mis-
takes that our algorithm makes. Next we will use the idea of following the majority a little
differently, in order to obtain regret bounds for the general problem in the discrete setting.
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4.2.2 Multiplicative Weights Update
Let’s now consider the case where each expert i has his own opinion and after each round

t is associated with a loss, lt(i), which is a non-negative number. The losses are not binary as
before and we do not know that there exists an expert who is never wrong. The algorithm that
we present below guarantees that the average expected loss of the player is approaching that
of the best expert in hindsight. The idea is to assign weights to each expert and to penalize
each one according to his loss in the previous round, in an exponential fashion, so that very
quickly the whole ”mass” will be concentrated on the best experts. This algorithm is called
Multiplicative Weights Update and has been rediscovered independently in many different
fields (in game theory see e.g. [Bro51, BVN50, Rob51], in machine learning [Lit88, LW94]).
For an extensive presentation of the various applications of that algorithm the interested
reader is referred to [AHK12].

Algorithm 5 Multiplicative Weights Update
1: Initialize: ∀i ∈ [N ],W1(i) = 1
2: for t = 1...T do ▷ We have to answer T questions
3: receive question qt
4: pick it according to Wt, i.e. P[it = i] = xt(i) =

Wt(i)∑n
j=1 Wt(j)

5: suffer loss lt(it)
6: update weights Wt+1(i) = Wt(i)e

−ϵlt(i),∀i

We can see that the expected loss of that algorithm at round t is E[lt(it)] =
∑N

i=1 xt(i)lt(i) =

x⊤
t lt, therefore, on expectation, the total expected loss of MWU is

∑T
t=1 x

⊤
t lt. The following

theorem provides a bound on the regret of the algorithm.

Theorem 4.2.1. Let l2t denote the n-dimensional vector of square losses, i.e. l2t (i) = lt(i)
2,

let ϵ > 0 and assume all losses to be non-negative. Then, for any expert i∗ ∈ [n] the algorithm
satisfies

T∑
t=1

x⊤
t lt ≤

T∑
t=1

lt(i) + ϵ

T∑
t=1

x⊤
t l

2
t +

logn
ϵ

Proof. Let Φt =
∑n

i=1Wt(i) be the sum of the weights assigned to the experts. After round
t we have that

Φt+1 =

n∑
i=1

Wt(i)e
ϵlt(i)

= Φt

n∑
i=1

xt(i)e
ϵlt(i)

≤ Φt

n∑
i=1

xt(i)(1− ϵlt(i)+)ϵ2l2t (i))

= Φt(1− ϵx⊤
t lt + ϵ2x⊤

t l
2
t )

≤ Φte
−ϵx⊤

t lt+ϵ2x⊤
t l2t

Observe that Φ0 = N , therefore ΦT ≤ Ne−ϵ
∑T

t=1 x
⊤
t lt+ϵ2

∑T
t=1 x

⊤
t l2t . On the other hand, by

definition, for i∗ we get that
WT (i

∗) = e−ϵ
∑T

t=1 lt(i
∗)

We know that WT (i
∗) ≤ ΦT , thus

WT (i
∗) ≤ Ne−ϵ

∑T
t=1 x

⊤
t lt+ϵ2

∑T
t=1 x

⊤
t l2t
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The theorem follows by taking the logarithm of both sides and simplifying.

4.3 Continuous Setting
We will now switch gears and discuss the continuous model, which was defined in the

previous sections. Before doing that, it is worth analyzing the so-called offline case which
serves as a motivation for one of the most important algorithms that we will present.

4.3.1 Offline Gradient Descent
In the offline convex optimization setting we are given a convex function f defined over

a convex domain K and we are asked to find its (global) minimum. Since the function is
convex, we know that a local optimum translates to a global optimum, so our task reduces
to simply finding a local minimum of the function. Let’s define first some notions which will
be useful.

• diameter D of a set K is a value such that ||x−y|| ≤ D, ∀x, y ∈ K, where || · || is some
norm defined on K

• if f : K → R is differentiable, then it is convex if and only if ∀x, y ∈ K we have

f(y) ≥ f(x) +∇f(x)⊤(y − x)

If f is convex but non-differentiable, then the subgradient of f at x is defined to be any
member of the set {∇f(x)} that satisfies the above inequality for all y.

• a function f is Lipschitz continuous with parameter G if ∀x, y ∈ K

|f(x)− f(y)| ≤ G||x− y||

If the norm of the subgradient of f is bounded by G then f is Lipschitz continuous with
parameter G.

• f is α-strongly convex if

f(y) ≥ f(x) +∇f(x)⊤(y − x) +
α

2
||y − x||2

• f is β-smooth if
f(y) ≤ f(x) +∇f(x)⊤(y − x) +

β

2
||y − x||2

This condition is equivalent to a Lipschitz condition over the gradients, with parameter
β, i.e.

||∇f(x)−∇f(y)|| ≤ β||x− y||

• if a function is α-strongly convex and β-smooth then it is called γ-well-conditioned,
where γ = α

β , and it holds that γ ≤ 1.

• a function f is is δ-exp-concave over K if the function g is concave, where g : K → R is

g(x) = e−af(x)

• a projection of a point y ∈ Rn to a set K with respect to norm || · ||, is defined as
ΠK(y) = argminx∈K ||y − x||.
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Algorithm 6 Gradient Descent
1: Initialize: pick x0 ∈ K
2: for t = 1...T do ▷ We make T iterations
3: yt = xt − ηt∇f(xt),xt+1 = ΠK(yt+1) ▷ Project to K to maintain feasibility
4: return xT+1

A very intuitive and straightforward algorithm that achieves that goal is gradient descent,
an iterative algorithm which starts from an arbitrary point of the set and at each step moves
to the direction of the steepest descent of the function. By making careful steps towards
that direction it ends up abitrarily close to the optimum. The convergence rate of the above
algorithm is given by the following theorem.

Theorem 4.3.1. For step size η = D
G
√
T
the sequence x1, ...,xT of the above algorithm

satisfies

f(
1

T

T∑
t=1

xt) ≤ min
x∗∈K

f(x∗) +
DG√
T

where D is the diameter of the set K and G is an upper bound on the norm of the gradients.

Proof. Start by observing that

||x∗ − yt+1||2 = ||x∗ − xt||2 − 2η∇f(xt)(xt − x∗) + η2||∇f(xt)||2

Moreover, Pythagoras’ theorem implies

||x∗ − xt+1|| ≤ ||x∗ − yt+1||

Thus, we have that

||x∗ − xt+1|| ≤ ||x∗ − xt||2 − 2η∇f(xt)(xt − x∗) + η2G2 (4.1)

We obtain the result by exploiting the convexity of f .

f(
1

T

T∑
t=1

xt)− f(x∗)

≤ 1

T

T∑
t=1

f(xt)− f(x∗)

≤ 1

T

T∑
t=1

∇f(xt)(xt − x∗)

≤ 1

T

T∑
t=1

1

2η
(||x∗ − xt+1||2 − ||x∗ − xt||2) +

η

2
G2

≤ 1

2ηT
D2 +

η

2
G2 ≤ DG√

T

The first two inequalities follow from the convexity of f , the next from 4.1 and the last from
summing the telescoping series.

An immediate corollary of the previous theorem is that in order to get an ϵ-approximate
solution one needs to apply O( 1

ϵ2
) gradient iterations.
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4.3.2 Online Gradient Descent
We are now ready to tackle the original problem that we were interested in. We briefly

remind the setting; at each time step t the learner picks a point xt ∈ K from a convex domain
K, then the adversary picks a convex loss function ft and the learners suffer a loss ft(xt). The
goal for the learner is to be competitive with the best fixed point in hindsight, i.e. to incur on
average the same loss as that point. As it turns out, by carefully tuning the step size ηt, we can
use the exact algorithm we described above in order to achieve vanishing regret. The online
version of gradient descent and the general online convex optimization(OCO) framework is
due to Zinkevich [Zin03].

Algorithm 7 Online Gradient Descent
1: for t = 1...T do ▷ We make T iterations
2: play xt and observe loss ft(xt)
3: yt = xt − ηt∇ft(xt),xt+1 = ΠK(yt+1) ▷ Project to K to maintain feasibility
4: return xT+1

Theorem 4.3.2. Online gradient descent with step size ηt = D
G
√
t
gurantees the following

regret bound:

regretT =

T∑
t=1

ft(xt)− min
x∗∈K

T∑
t=1

ft(x
∗) ≤ 3

2
GD
√
T

The proof of the theorem is very similar to the one in the offline case, as we use an in-
equality similar to 4.1 and exploit the convexity of the loss functions. At first glance it might
not make sense to move in the direction of the gradient of the previous loss function, after
all the function in the next round might be very different than the previous one. In order to
make it seem more intuitive we can view the whole process a little differently; imagine that
we want to optimize the function F (x) =

∑T
t=1 ft(x) that we do not know beforehand and

at each time step we are given one new ”component”. Since gradient is a linear operator, in
order to move to the direction of the gradient of function F (x) we can simply move to the
direction of the gradients of functions ft(x) and add those steps.

We note that in the previous algorithm we assume that the learner has an oracle access
to the gradients of the loss functions and we do not care about the computational cost of
evaluating neither the gradient nor the projection to K. It is worth mentioning that this
setting is called full information, since the learner has access to the losses of all points in K.
In many interesting applications this is not true, as the learner can only find out the loss that
he suffers. In that case we have the so-called bandit setting. For an excellent survey of that
topic by Bubeck and Cesa-Bianchi the interested reader is referred to [BCB+12].

4.3.3 Follow the Leader
In this section we will describe a (meta)algorithm that guarantees sublinear regret, which

is more intuitive than the one discussed above. The most natural thing to do at round t would
be to simply pick the point with the minimum loss in the first t− 1 rounds and hope that it
continues its success. That’s the reason why this algorithm is called Follow the Leader(FTL).
Formally, we have that

xt+1 = argmin
z∈K

T∑
t=1

ft(z),∀t
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A useful property of that strategy is that the cumulative regret is bounded by the cumulative
difference between the loss of xt,xt+1.

Lemma 4.3.3. Let x1,x2, ...,xT be the sequence of points produced by FTL. Then, ∀x∗ ∈ K
it holds that

regretT (x∗) =

T∑
t=1

(ft(xt)− ft(x
∗)) ≤

T∑
t=1

(ft(xt)− ft(xt+1))

Proof. Subtracting
∑T

t=1(ft(xt) from both sides we need to show, equivalently, that

T∑
t=1

ft(xt+1) ≤
T∑
t=1

ft(x
∗)

We will prove it using induction. The base case of T = 1 follows directly from the definition
of xt+1. Assume that the inequality holds for T − 1, then for all x∗ ∈ K we have

T−1∑
t=1

ft(xt+1) ≤
T−1∑
t=1

ft(x
∗)

Adding ft(xt+1) to both sides we get

T∑
t=1

ft(xt+1) ≤
T−1∑
t=1

ft(x
∗) + ft(x+1)

Since the above holds ∀x∗ ∈ K, it holds for x∗ = x+1, therefore we get

T∑
t=1

ft(xt+1) ≤
T∑
t=1

ft(xT+1) = min
x∗∈K

T∑
t=1

ft(x
∗)

Since ft are Lipschitz continuous functions, the above theorem shows us that if the predic-
tions of FTL, i.e. the best points so far, are relatively stable then the regret of the algorithm
will be low. Therefore, we can see that stability plays a very significant role in the performance
of this strategy. For instance, if the loss functions are quadratic, namely ft(x) =

1
2 ||x− zt||2,

then FTL guarantees regret of at most 4L2(log(T ) + 1), where L = maxt ||zt||. The reason
for that is that the predictions vary little as time goes by.

Unfortunately, this is not the case for linear loss functions. Consider the following counter
example. Let K = [−1, 1] and ft(x) = x · zt where

zt =


−0.5 0 ≤ t = 1
1 t mod 2 = 0
−1 t > 1 ∧ t mod 2 = 1

In that case, FTL will predict xt = 1 when t is odd and xt = −1 when t is even. Thus, its
total loss will be T , while the cumulative loss of the best point in hindsight is 0 (x∗ = 0). The
reason why the algorithm fails in that case is that the predictions are very unstable, adding
one more function vastly changes the point that it answers.

In order to fix that problem we will tweek the algorithm a little bit by adding a regularizer,
which is a function R : K → R, that will ensure the stability of the decisions. Intuitively, the
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regularizer prevents a situation similar to overfitting, that is choosing a point that minimizes
the loss in the previous rounds but is not able to ”generalize” well in the next round. By
not minimizing exactly that loss, the algorithm is able to make relatively stable decisions,
which in turn ensure low regret. This version of Follow the Leader is referred to as Follow
the Regularized Leader(RFTL). Formally, we now have

xt+1 = argmin
z∈K

T∑
t=1

ft(z) +R(z),∀t

Naturally, different choices of regularization functions will yield different algorithms, that
is why RFTL is sometimes called a meta algorithm. Before we provide the regret bounds of
this modified approach, observe that since ft is convex, the regret of every sequence f1, ..., fT
can be upper bounded by

∑
∇ft(xt)(xt−x∗). Therefore, it suffices to provide regret bounds

against a sequence of linear functions.

Theorem 4.3.4. Consider running FTRL against a sequence of linear functions, i.e. ft(x) =
x · zt, with K = Rn, and with the regularizer R(x) = 1

2η ||x||
2
2. Then ∀x∗ ∈ K we have

regretT ≤
1

2η
||x∗||2 + η

T∑
t=1

||zt||22

Moreover, if we assume that ||x∗|| ≤ B, ∀x∗ ∈ K and 1
T

∑T
t=1 ||zt||22 ≤ L2, then setting

η = B
L
√
2T
we get

regretT ≤ BL
√
2T

Before proving that theorem we have to figure out how will the decision of the algorithm
look like. We can easily verify that xt+1 = xt − ηzt, and since zt is the derivative of the loss
function, RFTL with that regularizer yields Online Gradient Descent. Using that formula for
xt we can prove the previous theorem by simply bounding the stability of the decision points.

4.4 Lower Bounds on Regret
So far we have seem some algorithms that achieve sublinear cumulative regret in discrete

as well as continuous settings. A natural question to ask is how low can the regret of any
online learning algorithm be? The following theorem provides an answer to that qestion.

Theorem 4.4.1. The regret of any online learning algorithm is Ω(DG
√
T ) in the worst case,

where D is the diameter of the decision set and G is a bound on the norm of the gradients.
This holds even when the losses are generated from a fixed stationary distribution.

We will provide a sketch of the proof. Consider an instance of online learning where
K = {x ∈ Rn, ||x||∞ ≤ 1}. There are 2n linear cost functions, one for each vertex v ∈ {±1}n
defined as

∀v ∈ {±1}n, fv(x) = v · x

Notice that for the diameter of K and for the gradients of the functions it holds that

D ≤

√√√√ n∑
i=1

22 = 2
√
n,G ≤

√√√√ n∑
i=1

(±1)2 =
√
n

At each time step one of these 2n functions is chosen uniformly and independently at random,
thus for any t and any xt ∈ K we have that Evt [ft(xt)] = Evt [vt · xt] = 0.
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However Ev1,...,vT [minx∈K
∑T

t=1 ft(x)] = Ev1,...,vT [minx∈K
∑n

i=1

∑T
t=1 vt(i)xt] =

nEv1,...,vT [−|
∑T

t=1 vt(1)|] = −Ω(n
√
T ), where we get the second to last equality because the

coordinates are i.i.d.. The last one follows by bounding the difference between the heads and
tails in a sequence of T (fair) coin tosses.

Until now, we have discussed some algorithms that guarantee O(
√
T ) regret in the general

setting, and we proved that (in the worst case) we cannot do any better than that. So is that
all the online learning framework has to offer? The answer is negative. As it is many times
the case, by making some more assumptions on the loss functions we can design algorithms
that guarantee improved regret bounds. The following table summarizes them.

a-strongly convex β-smooth δ-exp-concave
Upper Bound 1

a logT
√
T n

δ logT
Lower Bound 1

a logT
√
T n

δ logT
Average Regret logT

aT
1√
T

n logT
δT

It is worth mentioning that in the offline case, smoothness improves the convergance rate
to the optimum, whereas (as we see above) in the online it does not. On the other hand,
exp-concavity does not improve offline covergence rate, but it helps in the online setting.

4.5 More Notions of Regret
Thus far we have studied algorithms that minimize static regret, in the sense that the

optimum point that they compete against , although unknown beforehand, is fixed. Using
that metric makes sense in many cases, for instance when there is an underlying distribution
generating the losses these learning algorithms manage to ”learn” that distribution and ap-
proach the optimal strategy. However, there are instances in which it does not make sense to
compete against a fixed point. Imagine that the underlying distribution that generates the
losses varies slowly over time. Then, the algorithms that we presented before will converge
to an ”average” solution that is not instead of adapting to the changing environment. We
will present two more notions of regret which serve as benchmarks for algorithms that are
constantly trying to adapt to those changes.

4.5.1 Adaptive Regret
Hazan and Seshadhri [HS07] introduced the notion of adaptive regret to measure the

perfomance of algorithms that are learning to play in a contiously changing environment, and
provided an efficient scheme to convert any low (static) regret algorithm to a low adaptive
regret algorithm. Intuitively, this metric requires that the learning algorithm achieves low
regret in any sufficiently large continuous interval. Formally, we have

Adaptive-Regret(A) = sup
I=[r,s]⊂[T ]

{
s∑

t=r

ft(xt)− min
x∗∈K

s∑
t=r

ft(x
∗)} (4.2)

It follows directly from the definition that adaptive regret strictly generalizes static regret.
Also, notice that if a learning algorithm A guarantees O(R) adaptive regret then it converges
to a ”local” optimum in each interval of length Ω(R).

The reason why algorithms that minimize regret fail under that new metric is that they
treat equally all the past iterations, while in fact it is often the case that the distant past
should not affect the decisions very much. For instance, consider using FTL in a game that
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K = [−1, 1], while the adversary chooses ft(x) = (x − 1)2 for the first T/2 iterations and
ft(x) = (x + 1)2 in the last T/2. The algorithm will set xt = 1 in the first T/2 while slowly
moving towards 0 in the last T/2. Although static regret is O(logT ) we notice that under
this new benchmark this algorithm has regret Ω(T ), since in the last T/2 iterations the best
fixed point is -1.

The solution to overcome that problem is to design algorithms that are biased towards
more recent outcomes of the learning process, so that the distant past will not affect the out-
come that much. The two methods, Follow the Leading History(FLH) and Advanced Follow the
Leading History(AFLH), that Hazan and Seshadhri proposed guarantee the following bounds.

Theorem 4.5.1. Suppose the functions f1, ..., fT are convex and bounded by M and there
exists an algorithm giving R(T ) regret with running time V . The running time of algorithm
FLH is O(V T ) and Adaptive-Regret(FLH) ≤ R(T ) + 0(M

√
T logT ). The running time of

algorithm AFLH is O(V logT ) and Adaptive-Regret(AFLH) ≤ R(T ) logT + 0(M
√
T log3 T )

4.5.2 Dynamic Regret
Another benchmark that has been proposed to measure the performance of learning al-

gorithms which try to operate in a changing environment is the dynamic regret (see e.g.
[BGZ15, HW15, JRSS15, MSJR16]). This metric, instead of comparing the total loss of the
algorithm to that of the best fixed point, it compares it with a sequence of changing points
that possibly correspond to locally optimal solutions. If this sequence varies ”slowly” these
learning algorithms that can adapt to those changes. Formally, the dynamic regret is defined
as

regretdT (x∗
1, ...,x

∗
T ) =

T∑
t=1

ft(xt)−
T∑
t=1

ft(x
∗
t ) (4.3)

Usually, the variation of the sequence is quantified using the follow 4 metrics.

VT =

T∑
t=2

sup
x∈K
|ft(x)− ft−1(x)| (4.4)

This quantity measures how different are the consecutive loss functions that are chosen from
the adversary, using the supremum of their difference over all points of the decision set.

DT =
T∑
t=1

||∇ft(xt)−Mt||2 (4.5)

where Mt is a prediction that is available to the algorithm at time t (for instance, it could be
∇ft(xt)). This metric measures how much the gradients of the loss functions vary over time.

CT (u1, ...,uT ) =
T∑
t=2

||ut − ut−1|| (4.6)

C ′
T (u1, ...,uT ) =

T∑
t=2

||ut − Φt(ut−1)|| (4.7)

where Φt(ut−1) is the predicted point by the learner at time t, using information from the
previous round. These two metrics quantify the variation of the sequence of points that the
learning algorithm is competing against.
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The following table summarizes the dynamic regret bounds using the variation metrics
that were defined above.

Figure 4.1: Dynamic Regret Bounds
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Chapter 5

Analyzing Markets under Learning assumptions

The classical approach to analyze strategic interactions between agents was to assume that
the players somehow manage to reach a stable state, i.e. a Nash equilibrium. This was also
the standard econometric approach when trying to infer various information from observed
data (see e.g. [AN10, BHN13, JLB07]). The idea behind this approach is straightforward; the
distribution of players’ actions is observed in the data and if we assume that each player best
responds to that distribution we can recover this response from the data. Then, we can invert
each player’s best response function in order to obtain the private parameter that we are
interested in. However, there are several drawbacks regarding this approach. To start with,
Daskalakis et al. [DGP09] showed that computing a Nash equilibrium in the general case is
a hard problem, therefore it is unrealistic to expect that the outcomes of such games will
eventually reach that state. Moreover, even if we assume that somehow players can reach a
Nash equilibrium, since it is many times the case that more than just one them exist the
”inversion” of the function that we mentioned above can be computationally hard.

Recently, learning outcomes have emerged as attractive alternatives to Nash equilibria.
This solution concept is very well suited for online environments, such as internet advertising
auctions, which can be thought of as strategic interactions in a constantly changing enviro-
ment. In that setting players have to constantly update their strategies in order to adapt to
those variations. For that reason, there have been developed many sophisticated bidding tools
that are used by high volume advertisers. Nekipelov et al. [NST15] initiated a line of work
which explores properties of such stratetigic interactions under learning assumptions, meaning
that players use some type of no regret algorithms, like the ones we discussed in the previous
section. They explored the problem of inferring a bidder’s private valuation using past data in
sponsored search auctions, under the assumption that the bidder achieves vanishing (average)
regret over time. Subsequently, several works explored the efficiency (welfare) guarantees of
games in which players use these learning algorithms (see e.g. [SALS15, LST16, FLL+16]).
More recently, Braverman et al. [BMSW18] proposed selling strategies for the auctioneer in
the single item-single buyer setting, where the bidder is a learning agent, that maximize the
seller’s revenue. In the following sections we will discuss some of these results further.

5.1 Inferring Valuations in Sponsored Search Auctions

We will start by presenting the valuation inference method proposed in [NST15]. We
briefly remind the setting of the sponsored search auctions; at each round, there is a set of
n bidders that participate in the auction, each bidder i submits a bid bi, and the mechanism
decides which slot will be allocated to each bidder, if any. We assume that each bidder’s
utility at round t is uit(b, vi) = vipit(b)− cit(b), where pit(), cit() are the click probability and
payment functions which are determined by the underlying mechanism (e.g. GSP). Notice
that the valuation of each bidder remains constant. The assumption that bidders are learning
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agents implies that

1

T

T∑
t=1

ui(b, vi) ≥
1

T

T∑
t=1

ui((b
′, b−i), vi)− ϵi, ∀b′ ∈ Bi (5.1)

Using the definition of ui() the above inequality translates to

vi
1

T

T∑
t=1

(pit(b
′, b−i)− pit(b)) ≤

1

T

T∑
t=1

(cit(b
′, b−i)− cit(b))− ϵi,∀b′ ∈ Bi (5.2)

Since we are focused on inferring the valuation of player i from now on we will drop the
dependence on i. Moreover, we denote

∆P (b′) =
1

T

T∑
t=1

(pit(b
′, b−i)− pit(b)) (5.3)

the increase in the average click probability when bidder i switches to bid b′ and with

∆C(b′) =
1

T

T∑
t=1

(cit(b
′, b−i)− cit(b)) (5.4)

the increase in the cost per click from that move. Therefore, we have that no regret learning
implies that

v∆P (b′) ≤ ∆C(b′) + ϵ, ∀b′ ∈ B (5.5)

We define the Rationalizable Set(NR) to be the set of all (v, ϵ) pairs that satisfy the above
inequality. As it turns out, this set has some useful properties that make its estimation from
data a computationally efficient task.

Lemma 5.1.1. The rationalizable set is closed and convex.

The proof of the above lemma follows by the fact that NR is defined by a set of linear
inequalities, hence it is convex. It is also closed since the points that satisfy the constraints
with equality are also included in the set.

Another useful property is that for each error level ϵ we can easily find all the valuations
v such that the (v, ϵ) pairs are rationalizable. Notice that the larger ϵ gets, the more pairs are
rationalizable under that value. The following lemma provides the characterization of that
pairs.

Lemma 5.1.2. For any error level ϵ, the valuations that belong in the rationalizable set are
in the interval

v ∈
[

max
b′:∆P (b′)<0

∆C(b′) + ϵ

∆P (b′)
, min
b′:∆P (b′)>0

∆C(b′) + ϵ

∆P (b′)

]
Proof. NR is the set that contains all (v, ϵ) pairs such that v∆P (b) ≤ ∆C(b) + ϵ, ∀b ∈ B.
Therefore, if ∆P (b) < 0 we get that v ≥ ∆C(b)+ϵ

∆P (b) ≥ maxb′:∆P (b′)<0
∆C(b′)+ϵ
∆P (b′) .

Similarly, if ∆P (b) > 0 we get that v ≤ ∆C(b)+ϵ
∆P (b) ≤ minb′:∆P (b′)>0

∆C(b′)+ϵ
∆P (b′) .

It is worth mentioning that this lemma provides a way to infer the rationalizable set
from data. Since ∆P (),∆C() are observable functions, if we discretize the error space and
the bid space we can easily calculate the quantities that come into play in the previous lemma.

54



The problem with the aforementioned approach is that, due to the very high volume of
the data that are generated in sponsored search auctions, it might be very inefficient to use
all of them when we try to infer the rationalizable set. Therefore, one natural approach is
to use only a sample of that data in order to approximate the set that we are interested
in. As it turns out, we can leverage the convexity of the set and use its support function
representation in order to derive good approximation guarantees, under mild assumptions
about the click probability and cost functions. Before we state the theorem regarding the
approximation error we need to define some terms.

Definition 5.1.1. The Hausdorff distance dH(A,B) for subsets A,B of the metric space E
with metric ρ(·, ·) is defined as

dH(A,B) = max{sup
a∈A

inf
b∈B

ρ(a, b), sup
b∈B

inf
a∈A

ρ(a, b)}

The Hausdorff distance is used to measure how far two subsets A,B of a metric space are
from each other.

Definition 5.1.2. The support function of a closed convex set X is defined as

h(X,u) = sup
x∈X

x · u

The support function representation of a convex set X is very convenient because, as
it turns out dH(A,B) = supu |h(A,u) − h(B,u)|, thus in order to approximate the ratio-
nalizable set we simply need to find a good estimator of its support function. If we define
f(·) = ∆C(∆P−1(·)) using the support function of the rationalizable set, we can prove that
dH(NR, N̂R) ≤ supz |f(z) − f̂(z)|, where N̂R, f̂(·) are the approximations we get via sub-
sampling. We state the formal theorem for the estimation of the set NR below.

Theorem 5.1.3. Suppose that function f has derivative up to order k ≥ 0 and for some
L ≥ 0

|f (k)(z1)− f (k)(z2)| ≤ L|z1 − z2|a

Then, we have
dH(NR, N̂R) ≤ O((N−1 logN)

γ
2γ+1 ), γ = k + a

Although at first glance the theorem might seem to make some strong assumptions, notice
that it also holds when f is not differentiable, in the special case where k = 0. If we also set
a = 1 we can see that it holds for functions who are simply Lipschitz continuous. Thus, it does
not require differentiability of functions ∆P (·),∆C(·). In that case, the theorem provides a
O((N−1 logN)

1
3 ) convergence rate for the estimated set.

Thus far, we have shown a way to both infer the exact rationalizable set and a good es-
timation of it using sampling. In practice, we are interested in extracting a single point from
that set. A reasonable choice is to select the point which corresponds to the smallest ϵ, i.e.
the valuation under which the learner would have the smallest regret. Below are the results
from [NST15] who used that approach to infer bidders’ valuations using datasets from Bing
and found out that advertisers bid approximately 60% less than their true value.
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Figure 5.1: Bid Shading

Nisan and Noti [NN17b] used data from an experiment that they conducted, in which ac-
tual human beings participated in simulated auctions that were similar to those that are run
in practice. Each bidder i was randomly assigned a private value vi, which in the GV setting
was known to him whereas in the DV was unknownm and the valuations of his opponents
were not revealed. They found out that as time went by, the average regret of each bidder
was decreasing, but the reget of players who had low valuation was much higher than that of
players who had high valuation. This is evidence of irrational behavior by low value players.
A possible psychological explanation for the previous fact is that when these players behave
rationally, they win the lowest ad slots and although their utility is high, they have impulse
to rank higher than their opponents, even if that leads to lower utility. In such settings, the
point estimation method which we described before is not very effective. The results for the
various valuations and auction formats are presented in the following figure.

Figure 5.2: [NST15] method evaluation

We can clearly see that the auction format does not have a significant effect on the outcome
of the prediction, but the type (value) does. When players have low valuations, the estimation
method overshots the actual value, whereas when the type is higher there is an undershooting.

Based on their previous findings, they proposed a different method to predict the private
valutation [NN17a]. The drawback of [NST15] projection method is that they use only the
tip of the rationalizable set, so it should be modified a little bit in order to use encapsulate
more information that is provided from the rationalizable set. Furthermore, learning agents
are not able to optimize perfectly their behavior, but they are more likely to act in a way that
has low regret. Thus, instead of using only the one with the minimum regret, one natural
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extension is to assign weights to each point and output the weighted average. Since we want
to assign more weight to valuations that have low regret, we can use a rule similar to MWU
algorithm and assign weights which are exponentially decreasing in the regret of that value.
Formally, we have that

v̂ = Z−1
∑
v

v · e−λ
∑T

i=1 regreti(v)

where Z is a normalization constant and λ is a tuning parameter. Notice that this is actually
a generalization of the previous approach, as when λ→∞ the prediction approaches that of
[NST15]. This is called the quantal regret method. Below are presented the results in the VCG
auction of the comparision between the quantal regret method (QR), the min-regret method
([NST15], MR) and a classical approaches (EQ) that assumed equilibrium. The metric that
it is used is the root mean square error RMSE =

√
1
|S|

∑
v̂∈S |v̂ − v|2, where S is the set of

all players that participate in the game.

Figure 5.3: Estimation methods comparision under the VCG mechanism

We can see that the QR method outperforms every other. Similar results hold when the GSP
auction format is used, which are presented below.

Figure 5.4: Estimation methods comparision under the GSP mechanism

5.2 Efficiency Guarantees
An interesting line of work in the analysis of strategic interactions of learning agents has

to do with the efficiency guarantees of the outcome of the game, i.e. how ”good” is the result
that is achieved for all the players. The most common metric for that quantity is the welfare,
which is simply the sum of utilities of all participants. Learning algorithms converge to coarse
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correlated and correlated equilibria (we defined these notions of steady states in a previous
chapter), therefore it is natural to analyze the welfare in these equilibria. Syrgkanis et al.
[SALS15] proved that in a wide class of learning algorithms that have a recency bias the
welfare converges to the optimal at the rate O(1/T ), meaning that the (expected) welfare
of these algorithms is at least (λ/(1 + µ))OPT − O(1/T ), where λ, µ are parameters of the
smoothness condition of the game, which were introduced by Roughgarden [Rou09]. Further-
more, for these algorithms each player’s average (expected) regret converges to zero at the
rate O(T− 3

4 ). Subesequently, Foster et al. [FLL+16] investigated algorithms that achieve low
approximate regret, meaning that the cumulative cost of the learner who uses them mul-
tiplicatively approximates the cost of the best action they could have chosen in hindsight.
These algorithms form a broader class than those which have a recency bias, this property
seems to be ubiquitous among learning algorithms. They improved the previous results in
the following ways; the convergence rate was improved by a factor of n (the players in the
game), the learning agents required less feedback from the environment in order to achieve
the learning task and the convergence occured with high probability (the previous work ex-
plored the expected outcome).

There is another interesting work by Lykoyris et al. [LST16], which investigates the ef-
ficiency of the outcomes of games with dynamic population, i.e. games in which the players
that participate are not fixed over time. In their model, at each time step every player is
replaced with an arbitrary new player with probability p (independently), or equivalently
each player changes his valuation with probability p. In that setting, the socially optimal
solution varies over time and, from a learner’s perspective, the static regret is too weak of a
benchmark. Thus they assume that players use algorithms that achieve no adaptive regret,
which is a natural assumption in such a dynamic setting. The intuition behind their results
is that in many games that satisfy a ”smoothness” property, even when the population is
changing, there is an approximate solution that remains relatively stable over time (it is not
very sensitive to population variations) and that solution can serve as a benchmark for the
sequence of outcomes that take place in the actual game. In many cases, like matching mar-
kets, greedy algorithms give stable approximate solutions. If the outcomes are close to that
benchmark, then they are also close to the optimum.

Before we state the results we have to provide some definitions.

Definition 5.2.1. A randomized sequence of solutions x1:T = {x1, ...,xT } and types v1:T =
{v1, ...,vT } is k-stable if the average expected number of changes in each individual player’s
solution or type is at most k, i.e. if ki(v1:Ti , x1:Ti ) is the number of times that xti ̸= xt+1

i or
vti ̸= vt+1

i , then
1

n

n∑
i=1

E[ki(v1:Ti , x1:Ti )] ≤ k

Definition 5.2.2. A cost minimization game G is (λ, µ)-smooth with respect to a solution
x, if for some λ > 0 and µ < 1, for any type profile v, for each player i there is a strategy
s∗i ∈ Si depending on his type vi and his part of the solution xi such that for any strategy
profile s ∑

i

ci(s
∗
i (vi, xi), s−i; vi) ≤ C(x;v) + µC(s;v)

We are now ready to present the main theorem regarding cost minimization games.

Theorem 5.2.1. Consider a repeated cost game with dynamic population Γ = (G,T, p)
such that the stage game G is solution based (λ, µ) smooth and costs are bounded in [0, 1].
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Suppose that v1:T ,x1:T are k-stable sequences and that xt is a feasible and a-approximately
(in expectation) optimal solution for each t, i.e. E[C(st;vt)] ≤ aE[OPT (vt)]. If players are
using an adaptive no regret algorithm with constant CR then∑

t

E[C(st;vt)] ≤ λa

1− µ

∑
t

E[OPT (vt)] +
n

1− µ
CR

√
T (k + 1) ln(NT )

Notice that the first term is reminiscent of the static price of anarchy bounds, multiplied
with the approximation ratio of the benchmark that we are competing against, while the sec-
ond term encodes the learning behavior of the participants. They also proved similar results
in other settings, such as matchings markets and badnwidth allocation games.

5.3 Revenue Guarantees
A recent work by Braverman et al. [BMSW18] analyzed single item-single buyer auctions

from a revenue point of view. More concretely, they considered a series of single item auc-
tions which have only a single participant. They assume that the bidder is a no-regret learning
agent and try to find out how should the seller design the mechanism in order to maximize
his revenue, if he knows that bidding behavior from the seller. In their model, at each round t
the bidder chooses his valuation vt randomly (and independently from round to round) from
a fixed distribution D, which is known to the seller, submits a bid bt to the seller, and the
seller picks an allocation and a payment function xt(·), pt(·), such that pt(b) ≤ b · xt(b), ∀t, b.
A simple strategy for the seller, since the valuation distribution is known to him, is to simply
use the Myerson’s revenue-optimal reserve price and if the bid is higher than that allocate
the item and charge the buyer the reserve price, whereas whenever it is lower do nothing.
The buyer will learn to bid higher than the reserve price whenever his valuation is higher,
and lower whenever it is lower. Thus, the revenue that is generated from that strategy is
T ·Rev(D)−o(T ). The question that arises is whether the seller can do any better than that.

When the bidder uses an algorithm that works like MWU the answer to the previous
question is that the seller can do much better than that, in fact he can collect revenue which
is arbitrarily close to the welfare. The technique to achieve might seem a little odd; the seller
gives away the item for free in the first rounds and then, with a careful transition, charges
very high price. Although it might seem unnatural at first glance, their is a clear intuition be-
hind this approach. Recall the way that MWU works, the probability mass gets concentrated
very quickly in actions that performed better in the past, thus by giving the item away for
free (for carefully chosen high bids) the seller can trick the learning algorithm into putting a
lot of mass in those actions. Therefore, when the prices start getting higher, the probability
that those high bids will be selected, will remain relatively high for a fairly long amount of
time. As it turns out, MWU is not the only algorithm that has this property. We provide the
formal definition below.

Definition 5.3.1. Let σit =
∑t

s=1 ris be the sum of rewards of action i until round t. An
algorithm for the experts problem is γ-mean-based if whenever σit < σjt − γT then the
probability that the algorithm pulls arm i on round t is at most γ. We say that an algorithm
is mean-based, if it is γ-mean-based for some γ = o(1).

Intuitively, mean-based algorithms pick actions who have significant less reward so far,
only with a small probability. We provide the formal theorem that holds in that case below.
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Theorem 5.3.1. Let V al(D) = Ev∼D[v]. Then, if the buyer is running a mean-based algo-
rithm, for any constant ϵ, there exists a strategy for the seller which obtains revenue a least
(1− ϵ)V al(D)T − o(T ).

In the above theorem, we have a (1− ϵ) approximation of the welfare and not the exact
welfare, since we have to use prices that motivate the bidder to buy the item, so he has to
have even a negligible utility. The o(T ) term is the price we pay for tricking the learning
algorithm and giving away the item for free at the beginning.

We have so far seen how the seller can leverage the learning behavior of the buyer in order
to outperform Myerson’s revenue. Thus, it is natural to wonder whether the buyer can used
a learning algorithm which cannot be fooled in that way. The answer is again positive, but
we have to require a stronger notion of no-regret (which is still achievable by starting from
an arbitrary no-regret algorithm and using a black-box construction). The learning algorithm
needs to have to regret not only against every fixed bid, but also with respect to the ”policy
of play” as if the learner had any lower value v′ than his current. This reduction looks like
the one used to achieve no-swap-regret, we take several copies of the learning algorithms who
ran for different valuations v′ and we carefully tune them to achieve the learning task. Under
this learning behavior, the following theorem holds for the seller.

Theorem 5.3.2. There exists a no-regret learning algorithm for the buyer against which
every selling strategy extracts no more than Mye(D)T +O(m

√
δT ) revenue, where Mye(D)

is the revenue generated from using Myerson’s reserve price.

The intuition behind the previous theorem is the following; the key property of the learn-
ing behavior which is ”not regretting playing as if my value were v′” looks like ”not preferring
to report v′ instead of v”, which suggests that the average allocation probabilities and prices
paid by the buyer using that algorithm should look like the ones in a truthful auction. Thus,
the average revenue cannot exceed that of Myerson’s pricing strategy.

It is worth investigating auctions in which overbidding is a dominated strategy, which
arise many times. We say that an auction is critical whenever the previous property holds,
and the buyer is clever if he never plays a dominated bid. Suppose that the buyer is clever
and he simply uses a mean-based algorithm (not something better like we discussed before).
Then, the seller can extract revenue MBRev(D) ·T , which is tight, where MBRev(D) is the
solution of the following linear program.

maximize
m∑
i=1

qi(vixi − ui)

subject to ui ≥ (vi − vj)xj ,∀i, j ∈ [m], i > j
ui ≥ 0, 1 ≥ xi ≥ 0, ∀i ∈ [m]

We will now explain the LP that LP. For the function that we want to maximize, qi is
the probability that the buyer has valuation vi, xi represents the average probability that the
learner gets the item when his has value vi and ui is his average utility under that valuation.
Thus, the bidder’s average value is vixi so the price that they pay is vixi − ui, therefore we
can see that the objective we are maximizing is the revenue. The second line of constaints
ensure simply a normalization of the values. The first line of constraints look like those in a
truthful auction; the LHS is the utility of the buyer with value vi for telling the truth, but
his utility for reporting vj is (vi − vj)xj + uj , so the term uj is missing. The outline of the
proof is the following.
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• The buyer has no regret when he has value vi, so his utility must be at least as high as
playing arm j every time.

• The auction never charges arm j more than vj (if it wins the item), the buyer’s utility
for playinr arm j every round is at least yj(vi− vj), where yj is the average probability
that arm j wins.

• The auction is monotone and the buyer never considers overbidding, thus if xj is the
probability that he gets the item when he has value vj it holds that yj ≥ xj .

The following two theorems hold, regarding MBRev(D).

Theorem 5.3.3. Any strategy for the seller achieves revenue at most MBRev(D)T + o(T )
against a buyer who runs a no-regret learning algorithm and never overbids.

Theorem 5.3.4. For any ϵ > 0 there exists a strategy for the seller that gets revenue at least
(MBRev(D) − ϵ)T − o(T ) against a buyer who runs a mean-based algorithm who overbids
with probability 0. The strategy sets a decreasing cutoff rt and for all rounds t awards the
item only whenever bt ≥ rt.

Thus, we see that the revenue the seller collects in that case is tight.
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Chapter 6

Results

In this chapter we will present an extension of the [NST15] inference method that we
discussed previously, in an environment where the valuations of the bidders vary over time.
Valuations represent the average income that will be generated for the advertiser once a user
clicks on his ad. Therefore it is reasonable to expect that these valuations will not remain
constant, but they will fluctuate slowly, since they are affected by many factors, including
seasonality trends. For instance, on Valentine’s Day flower shops’ owners will value their ads
higher than the day before, as users are much more likely to convert these clicks to actual
purchases.

Moreover, we will demonstrate a way to use the inference method suggested by [NST15]
in the single buyer-single item setting, when the valuation of the bidder remains constant, in
order to maximize the seller’s revenue. We do not make any assumptions about the quality
of the prediction and we bound the total revenue that is lost by a function of the difference
of the initial prediction and the actual valuation.

6.1 Inferring Time-Varying Valuations
6.1.1 Model

We consider the problem of inferring time varying valuations of bidders who partici-
pate in online keyword auctions, where at each time step they submit a single dimen-
sional bid. We assume that bidders have quasilinear utilities that vary over time, namely
ut(b) = vt · Pt(b) − Ct(b), where vt, Pt(·), Ct(·), are the bidder’s valuation, click probability
function and cost per click function respectively, at time t. At each step we observe the bid
bt as well as the aforementioned functions. We assume that Pt(·) is concave and Ct(·) is
convex, which is true in several contexts of interest, such as the GSP mechanism. Moreover,
we assume that bidders are learning agents who achieve no dynamic regret, meaning that as
time goes by their average utility per time step is as good the best sequence of bids. More
concretely, they achieve the following objective:

1

T
(

T∑
t=1

vtPt(bt)− Ct(bt)) ≥
1

T
(

T∑
t=1

vtPt(b
′
t)− Ct(b

′
t))− ϵ,∀b′ ∈ BT (6.1)

where B denotes the space of all possible bids, b is the learner’s bid sequence and ϵ denotes
the regret, which, as T → ∞, goes to 0 (in the whole text bold letters denote vectors). Al-
though dynamic regret might seem too strong of a benchmark, there are many algorithms
that achieve it, for slowly changing utility functions. Intuitively, the reason why we need the
learner to achieve that instead of the weaker no static regret benchmark which compares
the performance of the learner to that of the best fixed bid in hindsight, is that we want
the learning process to be biased towards more recent valuations and click probability, cost
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functions, so that the bids correspond better to the current valuation and functions, instead
of converging to some kind of “average”.

6.1.2 Rationalizable Set
Let v = (v1, ..., vT ) be a valuation sequence and b = (b1, .., bT ) be the bid sequence that

the learner actually played. We define the rationalizable set NR to be the set of all (v, ϵ) tuples
that satisfy inequality (1). Let ∆Pt(b

′
t) = 1

T (Pt(b
′
t) − Pt(bt)),∆Ct(b

′
t) = 1

T (Ct(b
′
t) − Ct(bt)),

which measure the (normalized) change in click probability and cost when switching from
the observed bid bt to b′t at time t, and ∆P (b′) = (∆P1(b

′
1), ...,∆PT (b

′
T )),∆C(b′) =

(∆C1(b
′
1), ...,∆CT (b

′
T )). By simply rearranging terms, inequality (1) becomes:

T∑
t=1

vt ·
1

T
(Pt(b

′
t)− Pt(bt))−

T∑
t=1

1

T
(Ct(b

′
t)− Ct(bt)) ≤ ϵ,∀b′ ∈ BT

v ·∆P (b′)− 1 ·∆C(b′) ≤ ϵ,∀b′ ∈ BT (6.2)

Lemma 6.1.1. The rationalizable set NR is convex.

Proof. Let (v, ϵ) ∈ NR and (v′, ϵ′) ∈ NR. Then, by inequality (2), for an arbitrary b′ ∈ BT

we get that v · ∆P (b′) − 1 · ∆C(b′) ≤ ϵ, v′ · ∆P (b′) − 1 · ∆C(b′) ≤ ϵ′. Multiplying
these by λ, 1− λ respectively to take the convex combination of the two points, we get that
λv ·∆P (b′)−λ1 ·∆C(b′) ≤ λϵ, (1−λ)v′ ·∆P (b′)− (1−λ)1 ·∆C(b′) ≤ (1−λ)ϵ′. Finally,
by adding them together we get that (λv+(1−λ)v′) ·∆P (b′)−1 ·∆C(b′) ≤ λϵ+(1−λ)ϵ′.
Since b′ was arbitrary this holds ∀b′ ∈ BT , so (λv + (1 − λ)v′, λϵ + (1 − λ)ϵ′), which is the
convex combination of the two starting points, is indeed in NR.

6.1.3 Point Prediction
We are interested in predicting a meaningful point from that set and in order to do so we

have constructed a Linear Program. Let’s start by presenting the intuition behind it. Firstly,
as time goes by, the learner’s average dynamic regret goes to 0. Furthermore, no matter which
valuation sequence we answer, the average dynamic regret of that sequence will always be
lower bounded by 0, since the benchmark is the optimal bid sequence. So it is reasonable to
answer the point with the minimum dynamic regret, since the learner’s actual regret con-
verges to the regret of that point. If we view answering the right v as a data fitting problem,
where we need to find a valuation sequence that best explains the learner’s decisions, and by
explains we mean minimizes their dynamic regret for the bid sequence we have observed, we
have the following tradeoff: if we allow the sequence to be very “expressive”, and by that we
mean vary very much between consecutive time steps, it will probably “overfit”, meaning that
it will try to justify bid changes which might be caused from other factors, such as changes
in Pt(·) or Ct(·), as changes in valuation in order to reduce the regret that the learner would
presumably have if their actual valuation sequence was the one we answer. In order to avoid
that, we restrict the expressibility of our class of valuation sequences by imposing a Lipschitz
alike condition |vt − vt−1| ≤ k, t ∈ {2, .., T}, where k is a constant upper bound. Thus, we
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have the following LP:

minimize
T∑
t=1

ϵt

subject to 1
T (vt∆P (b′)−∆C(b′)) ≤ ϵt , t = 1, ..., T, b′ = b1, ..., b|B|
vt − vt−1 ≤ k, vt−1 − vt ≤ k,t = 2, ..., T

Each of the |B| consecutive constraints from the first |B| ·T measure the regret on that round
and in order to minimize the total regret we simply have to minimize the regret on each
round. The last 2T − 2 constraints control the variance of the answer. So, in total, the 2T
decision variables are v1, ..., vT , ϵ1, ..., ϵT and we have |B| ·T +2T −2 constraints. If the upper
bound on the variance isn’t known a priori, we can minimize the function λ

∑T
t=1 ϵt+(1−λ)k,

where λ is a free variable.

6.1.4 Magnitude of changes allowed

The bidder’s utility depends on their valuation and on the click probability and cost
per click functions, which in turn depend on the mechanism and the behaviour of the other
players. We present some bounds on the allowed variation of the bidder’s valuations, as
well as the aforementioned functions, in order to achieve vanishing dynamic regret. Let
VT =

∑T
t=2 supx∈X |ft(x) − ft−1(x)|, Besbes et al. [BGZ15] established regret bounds of

the form
∑T

t=1 E[ft(xt)] − ft(x
∗
t ) = O(T 2/3(1 + VT )

1/3). This means that the average re-
gret of a learner who uses that algorithm is O(T−1/3(1 + VT )

1/3) = O((1/T + VT /T )
1
3 ), so

in order to have vanishing regret it should hold that VT = o(T ). We have the following lemma.

Lemma 6.1.2. Let ϵPt(x) = Pt(x)−Pt−1(x), ϵCt(x) = Ct(x)−Ct−1(x). If vt ≤ V, ∀t, in order
for the learner to have vanishing dynamic regret the following conditions should hold:
•
∑T

t=2 |vt − vt−1| = o(T )

•
∑T

t=2 supx∈X |ϵPt(x)| = o(T )

•
∑T

t=2 supx∈X |ϵCt(x)| = o(T )

Proof. The proof of the above lemma follows by simply noticing that we can relate the
deviation of the learner’s utility to the variation of his valuation and the functions that he is
provided by the mechanism.
|ft(x)− ft−1(x) = vtPt(x)− Ct(x)− vt−1Pt−1(x) + Ct−1(x)| ≤

|vt(Pt−1(x) + Pt(x)− Pt−1(x))− vt−1Pt−1(x)|+ |Ct(x)− Ct−1(x)| =

|vt(Pt−1(x) + ϵPt(x))− vt−1Pt−1(x)|+ |Ct(x)− Ct−1(x)| =

|Pt−1(x)(vt − vt−1) + vtϵPt(x)|+ |Ct(x)− Ct−1(x)| ≤

|Pt−1(x)(vt − vt−1)|+ |vtϵPt(x)|+ |Ct(x)− Ct−1(x)| ≤

|vt − vt−1|+ V |ϵPt(x)|+ |ϵCt(x)|

So, VT ≤
∑T

t=2 |vt− vt−1|+V
∑T

t=2 supx∈X |ϵPt(x)|+
∑T

t=2 supx∈X |ϵCt(x)|, which implies that
if

∑T
t=2 |vt − vt−1| = o(T ),

∑T
t=2 supx∈X |ϵPt(x)| = o(T ),

∑T
t=2 supx∈X |ϵCt(x)| = o(T ) then

VT ≤ o(T ).
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6.1.5 Simple Simulations
We present the results of some simple simulations in which a learner uses a variation

of gradient descent and at each round is given some slowly changing click probability and
cost functions, which are concave and convex respectively. The click probability function is
P (b) =

√
b+ ϵb, where ϵ is some small random noise and the cost function is C(b) = 1

2b
2+ ϵ′b,

where ϵ′ is again some small random noise. The green curve represents the learner’s bids, the
orange represents the actual valuations and the blue the inferred valuations. The valuations
are in the interval [0, 1] and we have run the simulation for 300 iterations.

We first present the results of the LP in which a constant upper bound on the variance of
the valuations is known a priori.

Figure 6.1: Inference with known bound on the variance

Below we present the results of the LP in which the upper bound is not known (the second
version which we presented above).

Figure 6.2: Inferenece with unknown upper bound on the variance
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6.2 Maximizing Revenue in Single Buyer-Single Item
Auctions

We are interested in using the valuation inference method in a setting where we have a
single bidder bidding for a single item over a period of T iterations, and whose valuation v
for that item remains constant over time in order to maximize the seller’s revenue. In that
setting, the only way to affect the auctioneer’s revenue, is through using carefully chosen
reserve prices. The rules of the game are simple; at each time step we set a reserve price pt
and if bt ≥ pt then the bidder gets the item and pays pt, whereas if bt < pt the bidder does
not get the item and of course he does not pay anything. Since we do not know anything
about the quality of the prediction beforehand, we cannot simply set the price close to that
prediction. Instead, we will do a binary search using that prediction as a starting point. We
assume that the buyer is a learning agent who has O(

√
T ) cumulative regret, namely

T∑
t=1

ut(b
∗)−

T∑
t=1

ut(bt) ≤ a
√
T , ∀b∗ ∈ B (6.3)

where ut(bt) = (v − pt)1{bt>pt} and a is some known constant. Note that even if we set a
selling price lower than his actual valuation, we do not know for sure that the player will buy
the item, we have to let some time pass in order to allow him to ”learn” how to play under
this reserve price.

Let v∗ be the actual valuation of the learner. Then
∑T

t=1 ut(bt) ≤ v∗T, ∀(b1, ..., bT ) ∈ BT .
Since this auction is truthful we know that ut(v∗) ≥ ut(b),∀b ∈ B, ∀t ∈ [T ].

Lemma 6.2.1. If we set a price p for c
√
T ,with c ≥ a, iterations and the player does not

buy the item then we have that v∗ ≤ p + a
c . If he buys it, then v∗ ≥ p since we assume that

he never bids higher than his valuation.

Proof. For contradiction, assume that although the learner does not buy this item in the
c
√
T iteration under price p, it holds that v∗ > p+ a

c . Then regretT =
∑T

t=1 ut(v
∗)−ut(bt) ≥

c
√
T (v∗ − p) > c

√
T (p+ a

c − p) = aT , which is a contradiction since we know that regretT ≤
aT .

The above lemma gives us a simple selling strategy. We assume that the bidding space
is discrete and that the difference between consecutive bids is b0. Let η = v0−v∗

b0
, where v0 is

the point that the estimation method predicts, and for simplicity of the exposition let a
c = ϵ.

The intuition is that instead of searching at the whole valuation space V , we can construct
an interval of length Θ(η) that is guaranteed to contain the actual valuation and do a binary
search on that space, so that whenever our prediction is good the search will be faster. Our
initial selling price is p0 = v0 which we keep for c

√
T iterations and depending on whether the

player buys the item or not we set the price to be v0+2b0, v0+4b0, ... or v0− 2b0, v0− 4b0, ...
respectively. Every time we change the price, we keep it for c

√
T iterations. We stop this

procedure when the outcome of the auction differs for the first time from the initial outcome,
i.e. if the player did not buy at the beginning we stop whenever he buys for the first time and
vice versa. Thus, after Θ(log η) iterations, we have an interval of length Θ(η), which we know
for sure that contains v∗. We then continue by doing a binary search on that interval until it
has size ϵ (we still insist on every price for c

√
T iterations). There is a small asymmetry in

the search since whenever the player buys the item on price p we know that v∗ ≥ p, whereas
if he does not buy it we have that v ≤ p + ϵ, but it does not make a big difference. In the
worst case, the search interval has lengths Θ(η)+ϵ

2 , Θ(η)+3ϵ
4 , Θ(η)+7ϵ

8 , ..., Θ(η)+(2i−1+1)ϵ
2i

. We want
after i rounds the interval to have length at most ϵ, thus the number of rounds i that are
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needed are Θ(η)+(2i−1+1)ϵ
2i

≤ ϵ =⇒ i ≥ log Θ(η)
ϵ + 1. The revenue that is generated from the

procedure described before is at least (v∗ − ϵ)T −Θ((log η + log η
ϵ )
√
T ).

6.3 Future Work
In this thesis, we have made the first step towards inferring time-varying private valuations

in single-parameter environments. Although our results seem promising there is still work to
be done in that direction. The main future directions, in our opinion, are the following.

• Since we have to answer a sequence of valuations, the rationalizable set seems to expand
very quickly and it consists of valuation sequences that do not seem to be rational. We
have imposed a Lipschitz-alike condition in order to answer meaningful sequences, but
we believe that there are more constraints that can be taken into account so that the
resulting projection of the set is a better estimation of the actual one.

• A very interesting direction, which we believe that is tightly connected to the one that
we mentioned above, is to find a way to use the valuation sequence that our estimation
method predicts in order to set the right reserve prices and maximize the revenue in a
dynamic environment. There is a key challenge that we need to tackle in order to solve
that problem; if we insist on a reserve price for a long period of time the valuation of
the player might change rapidly whereas if we set it only for a few iterations it might be
the case that the bidder will not manage to learn how to play correctly. By setting the
reserve prices correctly we can reduce the size of the rationalizable set because many
potential valuations can be ruled out, as they lead to a very high regret.
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